src/share/vm/utilities/stack.inline.hpp

Thu, 27 Dec 2018 11:43:33 +0800

author
aoqi
date
Thu, 27 Dec 2018 11:43:33 +0800
changeset 9448
73d689add964
parent 9316
a27880c1288b
parent 6876
710a3c8b516e
child 10015
eb7ce841ccec
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2009, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_UTILITIES_STACK_INLINE_HPP
    26 #define SHARE_VM_UTILITIES_STACK_INLINE_HPP
    28 #include "utilities/stack.hpp"
    30 template <MEMFLAGS F> StackBase<F>::StackBase(size_t segment_size, size_t max_cache_size,
    31                      size_t max_size):
    32   _seg_size(segment_size),
    33   _max_cache_size(max_cache_size),
    34   _max_size(adjust_max_size(max_size, segment_size))
    35 {
    36   assert(_max_size % _seg_size == 0, "not a multiple");
    37 }
    39 template <MEMFLAGS F> size_t StackBase<F>::adjust_max_size(size_t max_size, size_t seg_size)
    40 {
    41   assert(seg_size > 0, "cannot be 0");
    42   assert(max_size >= seg_size || max_size == 0, "max_size too small");
    43   const size_t limit = max_uintx - (seg_size - 1);
    44   if (max_size == 0 || max_size > limit) {
    45     max_size = limit;
    46   }
    47   return (max_size + seg_size - 1) / seg_size * seg_size;
    48 }
    50 template <class E, MEMFLAGS F>
    51 Stack<E, F>::Stack(size_t segment_size, size_t max_cache_size, size_t max_size):
    52   StackBase<F>(adjust_segment_size(segment_size), max_cache_size, max_size)
    53 {
    54   reset(true);
    55 }
    57 template <class E, MEMFLAGS F>
    58 void Stack<E, F>::push(E item)
    59 {
    60   assert(!is_full(), "pushing onto a full stack");
    61   if (this->_cur_seg_size == this->_seg_size) {
    62     push_segment();
    63   }
    64   this->_cur_seg[this->_cur_seg_size] = item;
    65   ++this->_cur_seg_size;
    66 }
    68 template <class E, MEMFLAGS F>
    69 E Stack<E, F>::pop()
    70 {
    71   assert(!is_empty(), "popping from an empty stack");
    72   if (this->_cur_seg_size == 1) {
    73     E tmp = _cur_seg[--this->_cur_seg_size];
    74     pop_segment();
    75     return tmp;
    76   }
    77   return this->_cur_seg[--this->_cur_seg_size];
    78 }
    80 template <class E, MEMFLAGS F>
    81 void Stack<E, F>::clear(bool clear_cache)
    82 {
    83   free_segments(_cur_seg);
    84   if (clear_cache) free_segments(_cache);
    85   reset(clear_cache);
    86 }
    88 template <class E, MEMFLAGS F>
    89 size_t Stack<E, F>::adjust_segment_size(size_t seg_size)
    90 {
    91   const size_t elem_sz = sizeof(E);
    92   const size_t ptr_sz = sizeof(E*);
    93   assert(elem_sz % ptr_sz == 0 || ptr_sz % elem_sz == 0, "bad element size");
    94   if (elem_sz < ptr_sz) {
    95     return align_size_up(seg_size * elem_sz, ptr_sz) / elem_sz;
    96   }
    97   return seg_size;
    98 }
   100 template <class E, MEMFLAGS F>
   101 size_t Stack<E, F>::link_offset() const
   102 {
   103   return align_size_up(this->_seg_size * sizeof(E), sizeof(E*));
   104 }
   106 template <class E, MEMFLAGS F>
   107 size_t Stack<E, F>::segment_bytes() const
   108 {
   109   return link_offset() + sizeof(E*);
   110 }
   112 template <class E, MEMFLAGS F>
   113 E** Stack<E, F>::link_addr(E* seg) const
   114 {
   115   return (E**) ((char*)seg + link_offset());
   116 }
   118 template <class E, MEMFLAGS F>
   119 E* Stack<E, F>::get_link(E* seg) const
   120 {
   121   return *link_addr(seg);
   122 }
   124 template <class E, MEMFLAGS F>
   125 E* Stack<E, F>::set_link(E* new_seg, E* old_seg)
   126 {
   127   *link_addr(new_seg) = old_seg;
   128   return new_seg;
   129 }
   131 template <class E, MEMFLAGS F>
   132 E* Stack<E, F>::alloc(size_t bytes)
   133 {
   134   return (E*) NEW_C_HEAP_ARRAY(char, bytes, F);
   135 }
   137 template <class E, MEMFLAGS F>
   138 void Stack<E, F>::free(E* addr, size_t bytes)
   139 {
   140   FREE_C_HEAP_ARRAY(char, (char*) addr, F);
   141 }
   143 template <class E, MEMFLAGS F>
   144 void Stack<E, F>::push_segment()
   145 {
   146   assert(this->_cur_seg_size == this->_seg_size, "current segment is not full");
   147   E* next;
   148   if (this->_cache_size > 0) {
   149     // Use a cached segment.
   150     next = _cache;
   151     _cache = get_link(_cache);
   152     --this->_cache_size;
   153   } else {
   154     next = alloc(segment_bytes());
   155     DEBUG_ONLY(zap_segment(next, true);)
   156   }
   157   const bool at_empty_transition = is_empty();
   158   this->_cur_seg = set_link(next, _cur_seg);
   159   this->_cur_seg_size = 0;
   160   this->_full_seg_size += at_empty_transition ? 0 : this->_seg_size;
   161   DEBUG_ONLY(verify(at_empty_transition);)
   162 }
   164 template <class E, MEMFLAGS F>
   165 void Stack<E, F>::pop_segment()
   166 {
   167   assert(this->_cur_seg_size == 0, "current segment is not empty");
   168   E* const prev = get_link(_cur_seg);
   169   if (this->_cache_size < this->_max_cache_size) {
   170     // Add the current segment to the cache.
   171     DEBUG_ONLY(zap_segment(_cur_seg, false);)
   172     _cache = set_link(_cur_seg, _cache);
   173     ++this->_cache_size;
   174   } else {
   175     DEBUG_ONLY(zap_segment(_cur_seg, true);)
   176     free(_cur_seg, segment_bytes());
   177   }
   178   const bool at_empty_transition = prev == NULL;
   179   this->_cur_seg = prev;
   180   this->_cur_seg_size = this->_seg_size;
   181   this->_full_seg_size -= at_empty_transition ? 0 : this->_seg_size;
   182   DEBUG_ONLY(verify(at_empty_transition);)
   183 }
   185 template <class E, MEMFLAGS F>
   186 void Stack<E, F>::free_segments(E* seg)
   187 {
   188   const size_t bytes = segment_bytes();
   189   while (seg != NULL) {
   190     E* const prev = get_link(seg);
   191     free(seg, bytes);
   192     seg = prev;
   193   }
   194 }
   196 template <class E, MEMFLAGS F>
   197 void Stack<E, F>::reset(bool reset_cache)
   198 {
   199   this->_cur_seg_size = this->_seg_size; // So push() will alloc a new segment.
   200   this->_full_seg_size = 0;
   201   _cur_seg = NULL;
   202   if (reset_cache) {
   203     this->_cache_size = 0;
   204     _cache = NULL;
   205   }
   206 }
   208 #ifdef ASSERT
   209 template <class E, MEMFLAGS F>
   210 void Stack<E, F>::verify(bool at_empty_transition) const
   211 {
   212   assert(size() <= this->max_size(), "stack exceeded bounds");
   213   assert(this->cache_size() <= this->max_cache_size(), "cache exceeded bounds");
   214   assert(this->_cur_seg_size <= this->segment_size(), "segment index exceeded bounds");
   216   assert(this->_full_seg_size % this->_seg_size == 0, "not a multiple");
   217   assert(at_empty_transition || is_empty() == (size() == 0), "mismatch");
   218   assert((_cache == NULL) == (this->cache_size() == 0), "mismatch");
   220   if (is_empty()) {
   221     assert(this->_cur_seg_size == this->segment_size(), "sanity");
   222   }
   223 }
   225 template <class E, MEMFLAGS F>
   226 void Stack<E, F>::zap_segment(E* seg, bool zap_link_field) const
   227 {
   228   if (!ZapStackSegments) return;
   229   const size_t zap_bytes = segment_bytes() - (zap_link_field ? 0 : sizeof(E*));
   230   uint32_t* cur = (uint32_t*)seg;
   231   const uint32_t* end = cur + zap_bytes / sizeof(uint32_t);
   232   while (cur < end) {
   233     *cur++ = 0xfadfaded;
   234   }
   235 }
   236 #endif
   238 template <class E, MEMFLAGS F>
   239 E* ResourceStack<E, F>::alloc(size_t bytes)
   240 {
   241   return (E*) resource_allocate_bytes(bytes);
   242 }
   244 template <class E, MEMFLAGS F>
   245 void ResourceStack<E, F>::free(E* addr, size_t bytes)
   246 {
   247   resource_free_bytes((char*) addr, bytes);
   248 }
   250 template <class E, MEMFLAGS F>
   251 void StackIterator<E, F>::sync()
   252 {
   253   _full_seg_size = _stack._full_seg_size;
   254   _cur_seg_size = _stack._cur_seg_size;
   255   _cur_seg = _stack._cur_seg;
   256 }
   258 template <class E, MEMFLAGS F>
   259 E* StackIterator<E, F>::next_addr()
   260 {
   261   assert(!is_empty(), "no items left");
   262   if (_cur_seg_size == 1) {
   263     E* addr = _cur_seg;
   264     _cur_seg = _stack.get_link(_cur_seg);
   265     _cur_seg_size = _stack.segment_size();
   266     _full_seg_size -= _stack.segment_size();
   267     return addr;
   268   }
   269   return _cur_seg + --_cur_seg_size;
   270 }
   272 #endif // SHARE_VM_UTILITIES_STACK_INLINE_HPP

mercurial