src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Thu, 15 May 2014 18:23:26 -0400

author
coleenp
date
Thu, 15 May 2014 18:23:26 -0400
changeset 6678
7384f6a12fc1
parent 6420
9fdaa79b0c27
child 6680
78bbf4d43a14
permissions
-rw-r--r--

8038212: Method::is_valid_method() check has performance regression impact for stackwalking
Summary: Only prune metaspace virtual spaces at safepoint so walking them is safe outside a safepoint.
Reviewed-by: mgerdin, mgronlun, hseigel, stefank

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoaderData.hpp"
    27 #include "classfile/symbolTable.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "code/codeCache.hpp"
    30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
    32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
    34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
    35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
    36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    38 #include "gc_implementation/parNew/parNewGeneration.hpp"
    39 #include "gc_implementation/shared/collectorCounters.hpp"
    40 #include "gc_implementation/shared/gcTimer.hpp"
    41 #include "gc_implementation/shared/gcTrace.hpp"
    42 #include "gc_implementation/shared/gcTraceTime.hpp"
    43 #include "gc_implementation/shared/isGCActiveMark.hpp"
    44 #include "gc_interface/collectedHeap.inline.hpp"
    45 #include "memory/allocation.hpp"
    46 #include "memory/cardTableRS.hpp"
    47 #include "memory/collectorPolicy.hpp"
    48 #include "memory/gcLocker.inline.hpp"
    49 #include "memory/genCollectedHeap.hpp"
    50 #include "memory/genMarkSweep.hpp"
    51 #include "memory/genOopClosures.inline.hpp"
    52 #include "memory/iterator.hpp"
    53 #include "memory/padded.hpp"
    54 #include "memory/referencePolicy.hpp"
    55 #include "memory/resourceArea.hpp"
    56 #include "memory/tenuredGeneration.hpp"
    57 #include "oops/oop.inline.hpp"
    58 #include "prims/jvmtiExport.hpp"
    59 #include "runtime/globals_extension.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/java.hpp"
    62 #include "runtime/vmThread.hpp"
    63 #include "services/memoryService.hpp"
    64 #include "services/runtimeService.hpp"
    66 // statics
    67 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    68 bool CMSCollector::_full_gc_requested = false;
    69 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
    71 //////////////////////////////////////////////////////////////////
    72 // In support of CMS/VM thread synchronization
    73 //////////////////////////////////////////////////////////////////
    74 // We split use of the CGC_lock into 2 "levels".
    75 // The low-level locking is of the usual CGC_lock monitor. We introduce
    76 // a higher level "token" (hereafter "CMS token") built on top of the
    77 // low level monitor (hereafter "CGC lock").
    78 // The token-passing protocol gives priority to the VM thread. The
    79 // CMS-lock doesn't provide any fairness guarantees, but clients
    80 // should ensure that it is only held for very short, bounded
    81 // durations.
    82 //
    83 // When either of the CMS thread or the VM thread is involved in
    84 // collection operations during which it does not want the other
    85 // thread to interfere, it obtains the CMS token.
    86 //
    87 // If either thread tries to get the token while the other has
    88 // it, that thread waits. However, if the VM thread and CMS thread
    89 // both want the token, then the VM thread gets priority while the
    90 // CMS thread waits. This ensures, for instance, that the "concurrent"
    91 // phases of the CMS thread's work do not block out the VM thread
    92 // for long periods of time as the CMS thread continues to hog
    93 // the token. (See bug 4616232).
    94 //
    95 // The baton-passing functions are, however, controlled by the
    96 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
    97 // and here the low-level CMS lock, not the high level token,
    98 // ensures mutual exclusion.
    99 //
   100 // Two important conditions that we have to satisfy:
   101 // 1. if a thread does a low-level wait on the CMS lock, then it
   102 //    relinquishes the CMS token if it were holding that token
   103 //    when it acquired the low-level CMS lock.
   104 // 2. any low-level notifications on the low-level lock
   105 //    should only be sent when a thread has relinquished the token.
   106 //
   107 // In the absence of either property, we'd have potential deadlock.
   108 //
   109 // We protect each of the CMS (concurrent and sequential) phases
   110 // with the CMS _token_, not the CMS _lock_.
   111 //
   112 // The only code protected by CMS lock is the token acquisition code
   113 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
   114 // baton-passing code.
   115 //
   116 // Unfortunately, i couldn't come up with a good abstraction to factor and
   117 // hide the naked CGC_lock manipulation in the baton-passing code
   118 // further below. That's something we should try to do. Also, the proof
   119 // of correctness of this 2-level locking scheme is far from obvious,
   120 // and potentially quite slippery. We have an uneasy supsicion, for instance,
   121 // that there may be a theoretical possibility of delay/starvation in the
   122 // low-level lock/wait/notify scheme used for the baton-passing because of
   123 // potential intereference with the priority scheme embodied in the
   124 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
   125 // invocation further below and marked with "XXX 20011219YSR".
   126 // Indeed, as we note elsewhere, this may become yet more slippery
   127 // in the presence of multiple CMS and/or multiple VM threads. XXX
   129 class CMSTokenSync: public StackObj {
   130  private:
   131   bool _is_cms_thread;
   132  public:
   133   CMSTokenSync(bool is_cms_thread):
   134     _is_cms_thread(is_cms_thread) {
   135     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
   136            "Incorrect argument to constructor");
   137     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
   138   }
   140   ~CMSTokenSync() {
   141     assert(_is_cms_thread ?
   142              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   143              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   144           "Incorrect state");
   145     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   146   }
   147 };
   149 // Convenience class that does a CMSTokenSync, and then acquires
   150 // upto three locks.
   151 class CMSTokenSyncWithLocks: public CMSTokenSync {
   152  private:
   153   // Note: locks are acquired in textual declaration order
   154   // and released in the opposite order
   155   MutexLockerEx _locker1, _locker2, _locker3;
   156  public:
   157   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   158                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   159     CMSTokenSync(is_cms_thread),
   160     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   161     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   162     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   163   { }
   164 };
   167 // Wrapper class to temporarily disable icms during a foreground cms collection.
   168 class ICMSDisabler: public StackObj {
   169  public:
   170   // The ctor disables icms and wakes up the thread so it notices the change;
   171   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   172   // CMSIncrementalMode.
   173   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   174   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   175 };
   177 //////////////////////////////////////////////////////////////////
   178 //  Concurrent Mark-Sweep Generation /////////////////////////////
   179 //////////////////////////////////////////////////////////////////
   181 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   183 // This struct contains per-thread things necessary to support parallel
   184 // young-gen collection.
   185 class CMSParGCThreadState: public CHeapObj<mtGC> {
   186  public:
   187   CFLS_LAB lab;
   188   PromotionInfo promo;
   190   // Constructor.
   191   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   192     promo.setSpace(cfls);
   193   }
   194 };
   196 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   197      ReservedSpace rs, size_t initial_byte_size, int level,
   198      CardTableRS* ct, bool use_adaptive_freelists,
   199      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
   200   CardGeneration(rs, initial_byte_size, level, ct),
   201   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
   202   _debug_collection_type(Concurrent_collection_type),
   203   _did_compact(false)
   204 {
   205   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   206   HeapWord* end    = (HeapWord*) _virtual_space.high();
   208   _direct_allocated_words = 0;
   209   NOT_PRODUCT(
   210     _numObjectsPromoted = 0;
   211     _numWordsPromoted = 0;
   212     _numObjectsAllocated = 0;
   213     _numWordsAllocated = 0;
   214   )
   216   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   217                                            use_adaptive_freelists,
   218                                            dictionaryChoice);
   219   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   220   if (_cmsSpace == NULL) {
   221     vm_exit_during_initialization(
   222       "CompactibleFreeListSpace allocation failure");
   223   }
   224   _cmsSpace->_gen = this;
   226   _gc_stats = new CMSGCStats();
   228   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   229   // offsets match. The ability to tell free chunks from objects
   230   // depends on this property.
   231   debug_only(
   232     FreeChunk* junk = NULL;
   233     assert(UseCompressedClassPointers ||
   234            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   235            "Offset of FreeChunk::_prev within FreeChunk must match"
   236            "  that of OopDesc::_klass within OopDesc");
   237   )
   238   if (CollectedHeap::use_parallel_gc_threads()) {
   239     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   240     _par_gc_thread_states =
   241       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
   242     if (_par_gc_thread_states == NULL) {
   243       vm_exit_during_initialization("Could not allocate par gc structs");
   244     }
   245     for (uint i = 0; i < ParallelGCThreads; i++) {
   246       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   247       if (_par_gc_thread_states[i] == NULL) {
   248         vm_exit_during_initialization("Could not allocate par gc structs");
   249       }
   250     }
   251   } else {
   252     _par_gc_thread_states = NULL;
   253   }
   254   _incremental_collection_failed = false;
   255   // The "dilatation_factor" is the expansion that can occur on
   256   // account of the fact that the minimum object size in the CMS
   257   // generation may be larger than that in, say, a contiguous young
   258   //  generation.
   259   // Ideally, in the calculation below, we'd compute the dilatation
   260   // factor as: MinChunkSize/(promoting_gen's min object size)
   261   // Since we do not have such a general query interface for the
   262   // promoting generation, we'll instead just use the mimimum
   263   // object size (which today is a header's worth of space);
   264   // note that all arithmetic is in units of HeapWords.
   265   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
   266   assert(_dilatation_factor >= 1.0, "from previous assert");
   267 }
   270 // The field "_initiating_occupancy" represents the occupancy percentage
   271 // at which we trigger a new collection cycle.  Unless explicitly specified
   272 // via CMSInitiatingOccupancyFraction (argument "io" below), it
   273 // is calculated by:
   274 //
   275 //   Let "f" be MinHeapFreeRatio in
   276 //
   277 //    _intiating_occupancy = 100-f +
   278 //                           f * (CMSTriggerRatio/100)
   279 //   where CMSTriggerRatio is the argument "tr" below.
   280 //
   281 // That is, if we assume the heap is at its desired maximum occupancy at the
   282 // end of a collection, we let CMSTriggerRatio of the (purported) free
   283 // space be allocated before initiating a new collection cycle.
   284 //
   285 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
   286   assert(io <= 100 && tr <= 100, "Check the arguments");
   287   if (io >= 0) {
   288     _initiating_occupancy = (double)io / 100.0;
   289   } else {
   290     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
   291                              (double)(tr * MinHeapFreeRatio) / 100.0)
   292                             / 100.0;
   293   }
   294 }
   296 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   297   assert(collector() != NULL, "no collector");
   298   collector()->ref_processor_init();
   299 }
   301 void CMSCollector::ref_processor_init() {
   302   if (_ref_processor == NULL) {
   303     // Allocate and initialize a reference processor
   304     _ref_processor =
   305       new ReferenceProcessor(_span,                               // span
   306                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
   307                              (int) ParallelGCThreads,             // mt processing degree
   308                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
   309                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
   310                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
   311                              &_is_alive_closure,                  // closure for liveness info
   312                              false);                              // next field updates do not need write barrier
   313     // Initialize the _ref_processor field of CMSGen
   314     _cmsGen->set_ref_processor(_ref_processor);
   316   }
   317 }
   319 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   320   GenCollectedHeap* gch = GenCollectedHeap::heap();
   321   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   322     "Wrong type of heap");
   323   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   324     gch->gen_policy()->size_policy();
   325   assert(sp->is_gc_cms_adaptive_size_policy(),
   326     "Wrong type of size policy");
   327   return sp;
   328 }
   330 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   331   CMSGCAdaptivePolicyCounters* results =
   332     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   333   assert(
   334     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   335     "Wrong gc policy counter kind");
   336   return results;
   337 }
   340 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   342   const char* gen_name = "old";
   344   // Generation Counters - generation 1, 1 subspace
   345   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   347   _space_counters = new GSpaceCounters(gen_name, 0,
   348                                        _virtual_space.reserved_size(),
   349                                        this, _gen_counters);
   350 }
   352 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   353   _cms_gen(cms_gen)
   354 {
   355   assert(alpha <= 100, "bad value");
   356   _saved_alpha = alpha;
   358   // Initialize the alphas to the bootstrap value of 100.
   359   _gc0_alpha = _cms_alpha = 100;
   361   _cms_begin_time.update();
   362   _cms_end_time.update();
   364   _gc0_duration = 0.0;
   365   _gc0_period = 0.0;
   366   _gc0_promoted = 0;
   368   _cms_duration = 0.0;
   369   _cms_period = 0.0;
   370   _cms_allocated = 0;
   372   _cms_used_at_gc0_begin = 0;
   373   _cms_used_at_gc0_end = 0;
   374   _allow_duty_cycle_reduction = false;
   375   _valid_bits = 0;
   376   _icms_duty_cycle = CMSIncrementalDutyCycle;
   377 }
   379 double CMSStats::cms_free_adjustment_factor(size_t free) const {
   380   // TBD: CR 6909490
   381   return 1.0;
   382 }
   384 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
   385 }
   387 // If promotion failure handling is on use
   388 // the padded average size of the promotion for each
   389 // young generation collection.
   390 double CMSStats::time_until_cms_gen_full() const {
   391   size_t cms_free = _cms_gen->cmsSpace()->free();
   392   GenCollectedHeap* gch = GenCollectedHeap::heap();
   393   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
   394                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
   395   if (cms_free > expected_promotion) {
   396     // Start a cms collection if there isn't enough space to promote
   397     // for the next minor collection.  Use the padded average as
   398     // a safety factor.
   399     cms_free -= expected_promotion;
   401     // Adjust by the safety factor.
   402     double cms_free_dbl = (double)cms_free;
   403     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
   404     // Apply a further correction factor which tries to adjust
   405     // for recent occurance of concurrent mode failures.
   406     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
   407     cms_free_dbl = cms_free_dbl * cms_adjustment;
   409     if (PrintGCDetails && Verbose) {
   410       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   411         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   412         cms_free, expected_promotion);
   413       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   414         cms_free_dbl, cms_consumption_rate() + 1.0);
   415     }
   416     // Add 1 in case the consumption rate goes to zero.
   417     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   418   }
   419   return 0.0;
   420 }
   422 // Compare the duration of the cms collection to the
   423 // time remaining before the cms generation is empty.
   424 // Note that the time from the start of the cms collection
   425 // to the start of the cms sweep (less than the total
   426 // duration of the cms collection) can be used.  This
   427 // has been tried and some applications experienced
   428 // promotion failures early in execution.  This was
   429 // possibly because the averages were not accurate
   430 // enough at the beginning.
   431 double CMSStats::time_until_cms_start() const {
   432   // We add "gc0_period" to the "work" calculation
   433   // below because this query is done (mostly) at the
   434   // end of a scavenge, so we need to conservatively
   435   // account for that much possible delay
   436   // in the query so as to avoid concurrent mode failures
   437   // due to starting the collection just a wee bit too
   438   // late.
   439   double work = cms_duration() + gc0_period();
   440   double deadline = time_until_cms_gen_full();
   441   // If a concurrent mode failure occurred recently, we want to be
   442   // more conservative and halve our expected time_until_cms_gen_full()
   443   if (work > deadline) {
   444     if (Verbose && PrintGCDetails) {
   445       gclog_or_tty->print(
   446         " CMSCollector: collect because of anticipated promotion "
   447         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   448         gc0_period(), time_until_cms_gen_full());
   449     }
   450     return 0.0;
   451   }
   452   return work - deadline;
   453 }
   455 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   456 // amount of change to prevent wild oscillation.
   457 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   458                                               unsigned int new_duty_cycle) {
   459   assert(old_duty_cycle <= 100, "bad input value");
   460   assert(new_duty_cycle <= 100, "bad input value");
   462   // Note:  use subtraction with caution since it may underflow (values are
   463   // unsigned).  Addition is safe since we're in the range 0-100.
   464   unsigned int damped_duty_cycle = new_duty_cycle;
   465   if (new_duty_cycle < old_duty_cycle) {
   466     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   467     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   468       damped_duty_cycle = old_duty_cycle - largest_delta;
   469     }
   470   } else if (new_duty_cycle > old_duty_cycle) {
   471     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   472     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   473       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   474     }
   475   }
   476   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   478   if (CMSTraceIncrementalPacing) {
   479     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   480                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   481   }
   482   return damped_duty_cycle;
   483 }
   485 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   486   assert(CMSIncrementalPacing && valid(),
   487          "should be handled in icms_update_duty_cycle()");
   489   double cms_time_so_far = cms_timer().seconds();
   490   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   491   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   493   // Avoid division by 0.
   494   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   495   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   497   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   498   if (new_duty_cycle > _icms_duty_cycle) {
   499     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   500     if (new_duty_cycle > 2) {
   501       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   502                                                 new_duty_cycle);
   503     }
   504   } else if (_allow_duty_cycle_reduction) {
   505     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   506     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   507     // Respect the minimum duty cycle.
   508     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   509     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   510   }
   512   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   513     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   514   }
   516   _allow_duty_cycle_reduction = false;
   517   return _icms_duty_cycle;
   518 }
   520 #ifndef PRODUCT
   521 void CMSStats::print_on(outputStream *st) const {
   522   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   523   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   524                gc0_duration(), gc0_period(), gc0_promoted());
   525   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   526             cms_duration(), cms_duration_per_mb(),
   527             cms_period(), cms_allocated());
   528   st->print(",cms_since_beg=%g,cms_since_end=%g",
   529             cms_time_since_begin(), cms_time_since_end());
   530   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   531             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   532   if (CMSIncrementalMode) {
   533     st->print(",dc=%d", icms_duty_cycle());
   534   }
   536   if (valid()) {
   537     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   538               promotion_rate(), cms_allocation_rate());
   539     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   540               cms_consumption_rate(), time_until_cms_gen_full());
   541   }
   542   st->print(" ");
   543 }
   544 #endif // #ifndef PRODUCT
   546 CMSCollector::CollectorState CMSCollector::_collectorState =
   547                              CMSCollector::Idling;
   548 bool CMSCollector::_foregroundGCIsActive = false;
   549 bool CMSCollector::_foregroundGCShouldWait = false;
   551 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   552                            CardTableRS*                   ct,
   553                            ConcurrentMarkSweepPolicy*     cp):
   554   _cmsGen(cmsGen),
   555   _ct(ct),
   556   _ref_processor(NULL),    // will be set later
   557   _conc_workers(NULL),     // may be set later
   558   _abort_preclean(false),
   559   _start_sampling(false),
   560   _between_prologue_and_epilogue(false),
   561   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   562   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   563                  -1 /* lock-free */, "No_lock" /* dummy */),
   564   _modUnionClosure(&_modUnionTable),
   565   _modUnionClosurePar(&_modUnionTable),
   566   // Adjust my span to cover old (cms) gen
   567   _span(cmsGen->reserved()),
   568   // Construct the is_alive_closure with _span & markBitMap
   569   _is_alive_closure(_span, &_markBitMap),
   570   _restart_addr(NULL),
   571   _overflow_list(NULL),
   572   _stats(cmsGen),
   573   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
   574   _eden_chunk_array(NULL),     // may be set in ctor body
   575   _eden_chunk_capacity(0),     // -- ditto --
   576   _eden_chunk_index(0),        // -- ditto --
   577   _survivor_plab_array(NULL),  // -- ditto --
   578   _survivor_chunk_array(NULL), // -- ditto --
   579   _survivor_chunk_capacity(0), // -- ditto --
   580   _survivor_chunk_index(0),    // -- ditto --
   581   _ser_pmc_preclean_ovflw(0),
   582   _ser_kac_preclean_ovflw(0),
   583   _ser_pmc_remark_ovflw(0),
   584   _par_pmc_remark_ovflw(0),
   585   _ser_kac_ovflw(0),
   586   _par_kac_ovflw(0),
   587 #ifndef PRODUCT
   588   _num_par_pushes(0),
   589 #endif
   590   _collection_count_start(0),
   591   _verifying(false),
   592   _icms_start_limit(NULL),
   593   _icms_stop_limit(NULL),
   594   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   595   _completed_initialization(false),
   596   _collector_policy(cp),
   597   _should_unload_classes(CMSClassUnloadingEnabled),
   598   _concurrent_cycles_since_last_unload(0),
   599   _roots_scanning_options(SharedHeap::SO_None),
   600   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
   601   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
   602   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
   603   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
   604   _cms_start_registered(false)
   605 {
   606   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   607     ExplicitGCInvokesConcurrent = true;
   608   }
   609   // Now expand the span and allocate the collection support structures
   610   // (MUT, marking bit map etc.) to cover both generations subject to
   611   // collection.
   613   // For use by dirty card to oop closures.
   614   _cmsGen->cmsSpace()->set_collector(this);
   616   // Allocate MUT and marking bit map
   617   {
   618     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   619     if (!_markBitMap.allocate(_span)) {
   620       warning("Failed to allocate CMS Bit Map");
   621       return;
   622     }
   623     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   624   }
   625   {
   626     _modUnionTable.allocate(_span);
   627     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   628   }
   630   if (!_markStack.allocate(MarkStackSize)) {
   631     warning("Failed to allocate CMS Marking Stack");
   632     return;
   633   }
   635   // Support for multi-threaded concurrent phases
   636   if (CMSConcurrentMTEnabled) {
   637     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
   638       // just for now
   639       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
   640     }
   641     if (ConcGCThreads > 1) {
   642       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   643                                  ConcGCThreads, true);
   644       if (_conc_workers == NULL) {
   645         warning("GC/CMS: _conc_workers allocation failure: "
   646               "forcing -CMSConcurrentMTEnabled");
   647         CMSConcurrentMTEnabled = false;
   648       } else {
   649         _conc_workers->initialize_workers();
   650       }
   651     } else {
   652       CMSConcurrentMTEnabled = false;
   653     }
   654   }
   655   if (!CMSConcurrentMTEnabled) {
   656     ConcGCThreads = 0;
   657   } else {
   658     // Turn off CMSCleanOnEnter optimization temporarily for
   659     // the MT case where it's not fixed yet; see 6178663.
   660     CMSCleanOnEnter = false;
   661   }
   662   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
   663          "Inconsistency");
   665   // Parallel task queues; these are shared for the
   666   // concurrent and stop-world phases of CMS, but
   667   // are not shared with parallel scavenge (ParNew).
   668   {
   669     uint i;
   670     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
   672     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   673          || ParallelRefProcEnabled)
   674         && num_queues > 0) {
   675       _task_queues = new OopTaskQueueSet(num_queues);
   676       if (_task_queues == NULL) {
   677         warning("task_queues allocation failure.");
   678         return;
   679       }
   680       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
   681       if (_hash_seed == NULL) {
   682         warning("_hash_seed array allocation failure");
   683         return;
   684       }
   686       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
   687       for (i = 0; i < num_queues; i++) {
   688         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
   689         if (q == NULL) {
   690           warning("work_queue allocation failure.");
   691           return;
   692         }
   693         _task_queues->register_queue(i, q);
   694       }
   695       for (i = 0; i < num_queues; i++) {
   696         _task_queues->queue(i)->initialize();
   697         _hash_seed[i] = 17;  // copied from ParNew
   698       }
   699     }
   700   }
   702   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
   704   // Clip CMSBootstrapOccupancy between 0 and 100.
   705   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
   707   _full_gcs_since_conc_gc = 0;
   709   // Now tell CMS generations the identity of their collector
   710   ConcurrentMarkSweepGeneration::set_collector(this);
   712   // Create & start a CMS thread for this CMS collector
   713   _cmsThread = ConcurrentMarkSweepThread::start(this);
   714   assert(cmsThread() != NULL, "CMS Thread should have been created");
   715   assert(cmsThread()->collector() == this,
   716          "CMS Thread should refer to this gen");
   717   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   719   // Support for parallelizing young gen rescan
   720   GenCollectedHeap* gch = GenCollectedHeap::heap();
   721   _young_gen = gch->prev_gen(_cmsGen);
   722   if (gch->supports_inline_contig_alloc()) {
   723     _top_addr = gch->top_addr();
   724     _end_addr = gch->end_addr();
   725     assert(_young_gen != NULL, "no _young_gen");
   726     _eden_chunk_index = 0;
   727     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   728     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
   729     if (_eden_chunk_array == NULL) {
   730       _eden_chunk_capacity = 0;
   731       warning("GC/CMS: _eden_chunk_array allocation failure");
   732     }
   733   }
   734   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   736   // Support for parallelizing survivor space rescan
   737   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
   738     const size_t max_plab_samples =
   739       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
   741     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
   742     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
   743     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
   744     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   745         || _cursor == NULL) {
   746       warning("Failed to allocate survivor plab/chunk array");
   747       if (_survivor_plab_array  != NULL) {
   748         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
   749         _survivor_plab_array = NULL;
   750       }
   751       if (_survivor_chunk_array != NULL) {
   752         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
   753         _survivor_chunk_array = NULL;
   754       }
   755       if (_cursor != NULL) {
   756         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
   757         _cursor = NULL;
   758       }
   759     } else {
   760       _survivor_chunk_capacity = 2*max_plab_samples;
   761       for (uint i = 0; i < ParallelGCThreads; i++) {
   762         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
   763         if (vec == NULL) {
   764           warning("Failed to allocate survivor plab array");
   765           for (int j = i; j > 0; j--) {
   766             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
   767           }
   768           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
   769           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
   770           _survivor_plab_array = NULL;
   771           _survivor_chunk_array = NULL;
   772           _survivor_chunk_capacity = 0;
   773           break;
   774         } else {
   775           ChunkArray* cur =
   776             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   777                                                         max_plab_samples);
   778           assert(cur->end() == 0, "Should be 0");
   779           assert(cur->array() == vec, "Should be vec");
   780           assert(cur->capacity() == max_plab_samples, "Error");
   781         }
   782       }
   783     }
   784   }
   785   assert(   (   _survivor_plab_array  != NULL
   786              && _survivor_chunk_array != NULL)
   787          || (   _survivor_chunk_capacity == 0
   788              && _survivor_chunk_index == 0),
   789          "Error");
   791   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   792   _gc_counters = new CollectorCounters("CMS", 1);
   793   _completed_initialization = true;
   794   _inter_sweep_timer.start();  // start of time
   795 }
   797 const char* ConcurrentMarkSweepGeneration::name() const {
   798   return "concurrent mark-sweep generation";
   799 }
   800 void ConcurrentMarkSweepGeneration::update_counters() {
   801   if (UsePerfData) {
   802     _space_counters->update_all();
   803     _gen_counters->update_all();
   804   }
   805 }
   807 // this is an optimized version of update_counters(). it takes the
   808 // used value as a parameter rather than computing it.
   809 //
   810 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   811   if (UsePerfData) {
   812     _space_counters->update_used(used);
   813     _space_counters->update_capacity();
   814     _gen_counters->update_all();
   815   }
   816 }
   818 void ConcurrentMarkSweepGeneration::print() const {
   819   Generation::print();
   820   cmsSpace()->print();
   821 }
   823 #ifndef PRODUCT
   824 void ConcurrentMarkSweepGeneration::print_statistics() {
   825   cmsSpace()->printFLCensus(0);
   826 }
   827 #endif
   829 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   830   GenCollectedHeap* gch = GenCollectedHeap::heap();
   831   if (PrintGCDetails) {
   832     if (Verbose) {
   833       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   834         level(), short_name(), s, used(), capacity());
   835     } else {
   836       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   837         level(), short_name(), s, used() / K, capacity() / K);
   838     }
   839   }
   840   if (Verbose) {
   841     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   842               gch->used(), gch->capacity());
   843   } else {
   844     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   845               gch->used() / K, gch->capacity() / K);
   846   }
   847 }
   849 size_t
   850 ConcurrentMarkSweepGeneration::contiguous_available() const {
   851   // dld proposes an improvement in precision here. If the committed
   852   // part of the space ends in a free block we should add that to
   853   // uncommitted size in the calculation below. Will make this
   854   // change later, staying with the approximation below for the
   855   // time being. -- ysr.
   856   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   857 }
   859 size_t
   860 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   861   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   862 }
   864 size_t ConcurrentMarkSweepGeneration::max_available() const {
   865   return free() + _virtual_space.uncommitted_size();
   866 }
   868 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
   869   size_t available = max_available();
   870   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
   871   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
   872   if (Verbose && PrintGCDetails) {
   873     gclog_or_tty->print_cr(
   874       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
   875       "max_promo("SIZE_FORMAT")",
   876       res? "":" not", available, res? ">=":"<",
   877       av_promo, max_promotion_in_bytes);
   878   }
   879   return res;
   880 }
   882 // At a promotion failure dump information on block layout in heap
   883 // (cms old generation).
   884 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
   885   if (CMSDumpAtPromotionFailure) {
   886     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
   887   }
   888 }
   890 CompactibleSpace*
   891 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   892   return _cmsSpace;
   893 }
   895 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   896   // Clear the promotion information.  These pointers can be adjusted
   897   // along with all the other pointers into the heap but
   898   // compaction is expected to be a rare event with
   899   // a heap using cms so don't do it without seeing the need.
   900   if (CollectedHeap::use_parallel_gc_threads()) {
   901     for (uint i = 0; i < ParallelGCThreads; i++) {
   902       _par_gc_thread_states[i]->promo.reset();
   903     }
   904   }
   905 }
   907 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   908   blk->do_space(_cmsSpace);
   909 }
   911 void ConcurrentMarkSweepGeneration::compute_new_size() {
   912   assert_locked_or_safepoint(Heap_lock);
   914   // If incremental collection failed, we just want to expand
   915   // to the limit.
   916   if (incremental_collection_failed()) {
   917     clear_incremental_collection_failed();
   918     grow_to_reserved();
   919     return;
   920   }
   922   // The heap has been compacted but not reset yet.
   923   // Any metric such as free() or used() will be incorrect.
   925   CardGeneration::compute_new_size();
   927   // Reset again after a possible resizing
   928   if (did_compact()) {
   929     cmsSpace()->reset_after_compaction();
   930   }
   931 }
   933 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
   934   assert_locked_or_safepoint(Heap_lock);
   936   // If incremental collection failed, we just want to expand
   937   // to the limit.
   938   if (incremental_collection_failed()) {
   939     clear_incremental_collection_failed();
   940     grow_to_reserved();
   941     return;
   942   }
   944   double free_percentage = ((double) free()) / capacity();
   945   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   946   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   948   // compute expansion delta needed for reaching desired free percentage
   949   if (free_percentage < desired_free_percentage) {
   950     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   951     assert(desired_capacity >= capacity(), "invalid expansion size");
   952     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   953     if (PrintGCDetails && Verbose) {
   954       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   955       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   956       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   957       gclog_or_tty->print_cr("  Desired free fraction %f",
   958         desired_free_percentage);
   959       gclog_or_tty->print_cr("  Maximum free fraction %f",
   960         maximum_free_percentage);
   961       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   962       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   963         desired_capacity/1000);
   964       int prev_level = level() - 1;
   965       if (prev_level >= 0) {
   966         size_t prev_size = 0;
   967         GenCollectedHeap* gch = GenCollectedHeap::heap();
   968         Generation* prev_gen = gch->_gens[prev_level];
   969         prev_size = prev_gen->capacity();
   970           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   971                                  prev_size/1000);
   972       }
   973       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   974         unsafe_max_alloc_nogc()/1000);
   975       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   976         contiguous_available()/1000);
   977       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   978         expand_bytes);
   979     }
   980     // safe if expansion fails
   981     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   982     if (PrintGCDetails && Verbose) {
   983       gclog_or_tty->print_cr("  Expanded free fraction %f",
   984         ((double) free()) / capacity());
   985     }
   986   } else {
   987     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   988     assert(desired_capacity <= capacity(), "invalid expansion size");
   989     size_t shrink_bytes = capacity() - desired_capacity;
   990     // Don't shrink unless the delta is greater than the minimum shrink we want
   991     if (shrink_bytes >= MinHeapDeltaBytes) {
   992       shrink_free_list_by(shrink_bytes);
   993     }
   994   }
   995 }
   997 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
   998   return cmsSpace()->freelistLock();
   999 }
  1001 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
  1002                                                   bool   tlab) {
  1003   CMSSynchronousYieldRequest yr;
  1004   MutexLockerEx x(freelistLock(),
  1005                   Mutex::_no_safepoint_check_flag);
  1006   return have_lock_and_allocate(size, tlab);
  1009 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
  1010                                                   bool   tlab /* ignored */) {
  1011   assert_lock_strong(freelistLock());
  1012   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
  1013   HeapWord* res = cmsSpace()->allocate(adjustedSize);
  1014   // Allocate the object live (grey) if the background collector has
  1015   // started marking. This is necessary because the marker may
  1016   // have passed this address and consequently this object will
  1017   // not otherwise be greyed and would be incorrectly swept up.
  1018   // Note that if this object contains references, the writing
  1019   // of those references will dirty the card containing this object
  1020   // allowing the object to be blackened (and its references scanned)
  1021   // either during a preclean phase or at the final checkpoint.
  1022   if (res != NULL) {
  1023     // We may block here with an uninitialized object with
  1024     // its mark-bit or P-bits not yet set. Such objects need
  1025     // to be safely navigable by block_start().
  1026     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
  1027     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
  1028     collector()->direct_allocated(res, adjustedSize);
  1029     _direct_allocated_words += adjustedSize;
  1030     // allocation counters
  1031     NOT_PRODUCT(
  1032       _numObjectsAllocated++;
  1033       _numWordsAllocated += (int)adjustedSize;
  1036   return res;
  1039 // In the case of direct allocation by mutators in a generation that
  1040 // is being concurrently collected, the object must be allocated
  1041 // live (grey) if the background collector has started marking.
  1042 // This is necessary because the marker may
  1043 // have passed this address and consequently this object will
  1044 // not otherwise be greyed and would be incorrectly swept up.
  1045 // Note that if this object contains references, the writing
  1046 // of those references will dirty the card containing this object
  1047 // allowing the object to be blackened (and its references scanned)
  1048 // either during a preclean phase or at the final checkpoint.
  1049 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1050   assert(_markBitMap.covers(start, size), "Out of bounds");
  1051   if (_collectorState >= Marking) {
  1052     MutexLockerEx y(_markBitMap.lock(),
  1053                     Mutex::_no_safepoint_check_flag);
  1054     // [see comments preceding SweepClosure::do_blk() below for details]
  1055     //
  1056     // Can the P-bits be deleted now?  JJJ
  1057     //
  1058     // 1. need to mark the object as live so it isn't collected
  1059     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1060     // 3. need to mark the end of the object so marking, precleaning or sweeping
  1061     //    can skip over uninitialized or unparsable objects. An allocated
  1062     //    object is considered uninitialized for our purposes as long as
  1063     //    its klass word is NULL.  All old gen objects are parsable
  1064     //    as soon as they are initialized.)
  1065     _markBitMap.mark(start);          // object is live
  1066     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1067     _markBitMap.mark(start + size - 1);
  1068                                       // mark end of object
  1070   // check that oop looks uninitialized
  1071   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
  1074 void CMSCollector::promoted(bool par, HeapWord* start,
  1075                             bool is_obj_array, size_t obj_size) {
  1076   assert(_markBitMap.covers(start), "Out of bounds");
  1077   // See comment in direct_allocated() about when objects should
  1078   // be allocated live.
  1079   if (_collectorState >= Marking) {
  1080     // we already hold the marking bit map lock, taken in
  1081     // the prologue
  1082     if (par) {
  1083       _markBitMap.par_mark(start);
  1084     } else {
  1085       _markBitMap.mark(start);
  1087     // We don't need to mark the object as uninitialized (as
  1088     // in direct_allocated above) because this is being done with the
  1089     // world stopped and the object will be initialized by the
  1090     // time the marking, precleaning or sweeping get to look at it.
  1091     // But see the code for copying objects into the CMS generation,
  1092     // where we need to ensure that concurrent readers of the
  1093     // block offset table are able to safely navigate a block that
  1094     // is in flux from being free to being allocated (and in
  1095     // transition while being copied into) and subsequently
  1096     // becoming a bona-fide object when the copy/promotion is complete.
  1097     assert(SafepointSynchronize::is_at_safepoint(),
  1098            "expect promotion only at safepoints");
  1100     if (_collectorState < Sweeping) {
  1101       // Mark the appropriate cards in the modUnionTable, so that
  1102       // this object gets scanned before the sweep. If this is
  1103       // not done, CMS generation references in the object might
  1104       // not get marked.
  1105       // For the case of arrays, which are otherwise precisely
  1106       // marked, we need to dirty the entire array, not just its head.
  1107       if (is_obj_array) {
  1108         // The [par_]mark_range() method expects mr.end() below to
  1109         // be aligned to the granularity of a bit's representation
  1110         // in the heap. In the case of the MUT below, that's a
  1111         // card size.
  1112         MemRegion mr(start,
  1113                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1114                         CardTableModRefBS::card_size /* bytes */));
  1115         if (par) {
  1116           _modUnionTable.par_mark_range(mr);
  1117         } else {
  1118           _modUnionTable.mark_range(mr);
  1120       } else {  // not an obj array; we can just mark the head
  1121         if (par) {
  1122           _modUnionTable.par_mark(start);
  1123         } else {
  1124           _modUnionTable.mark(start);
  1131 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1133   size_t delta = pointer_delta(addr, space->bottom());
  1134   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1137 void CMSCollector::icms_update_allocation_limits()
  1139   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1140   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1142   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1143   if (CMSTraceIncrementalPacing) {
  1144     stats().print();
  1147   assert(duty_cycle <= 100, "invalid duty cycle");
  1148   if (duty_cycle != 0) {
  1149     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1150     // then compute the offset from the endpoints of the space.
  1151     size_t free_words = eden->free() / HeapWordSize;
  1152     double free_words_dbl = (double)free_words;
  1153     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1154     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1156     _icms_start_limit = eden->top() + offset_words;
  1157     _icms_stop_limit = eden->end() - offset_words;
  1159     // The limits may be adjusted (shifted to the right) by
  1160     // CMSIncrementalOffset, to allow the application more mutator time after a
  1161     // young gen gc (when all mutators were stopped) and before CMS starts and
  1162     // takes away one or more cpus.
  1163     if (CMSIncrementalOffset != 0) {
  1164       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1165       size_t adjustment = (size_t)adjustment_dbl;
  1166       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1167       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1168         _icms_start_limit += adjustment;
  1169         _icms_stop_limit = tmp_stop;
  1173   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1174     _icms_start_limit = _icms_stop_limit = eden->end();
  1177   // Install the new start limit.
  1178   eden->set_soft_end(_icms_start_limit);
  1180   if (CMSTraceIncrementalMode) {
  1181     gclog_or_tty->print(" icms alloc limits:  "
  1182                            PTR_FORMAT "," PTR_FORMAT
  1183                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1184                            _icms_start_limit, _icms_stop_limit,
  1185                            percent_of_space(eden, _icms_start_limit),
  1186                            percent_of_space(eden, _icms_stop_limit));
  1187     if (Verbose) {
  1188       gclog_or_tty->print("eden:  ");
  1189       eden->print_on(gclog_or_tty);
  1194 // Any changes here should try to maintain the invariant
  1195 // that if this method is called with _icms_start_limit
  1196 // and _icms_stop_limit both NULL, then it should return NULL
  1197 // and not notify the icms thread.
  1198 HeapWord*
  1199 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1200                                        size_t word_size)
  1202   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1203   // nop.
  1204   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1205     if (top <= _icms_start_limit) {
  1206       if (CMSTraceIncrementalMode) {
  1207         space->print_on(gclog_or_tty);
  1208         gclog_or_tty->stamp();
  1209         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1210                                ", new limit=" PTR_FORMAT
  1211                                " (" SIZE_FORMAT "%%)",
  1212                                top, _icms_stop_limit,
  1213                                percent_of_space(space, _icms_stop_limit));
  1215       ConcurrentMarkSweepThread::start_icms();
  1216       assert(top < _icms_stop_limit, "Tautology");
  1217       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1218         return _icms_stop_limit;
  1221       // The allocation will cross both the _start and _stop limits, so do the
  1222       // stop notification also and return end().
  1223       if (CMSTraceIncrementalMode) {
  1224         space->print_on(gclog_or_tty);
  1225         gclog_or_tty->stamp();
  1226         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1227                                ", new limit=" PTR_FORMAT
  1228                                " (" SIZE_FORMAT "%%)",
  1229                                top, space->end(),
  1230                                percent_of_space(space, space->end()));
  1232       ConcurrentMarkSweepThread::stop_icms();
  1233       return space->end();
  1236     if (top <= _icms_stop_limit) {
  1237       if (CMSTraceIncrementalMode) {
  1238         space->print_on(gclog_or_tty);
  1239         gclog_or_tty->stamp();
  1240         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1241                                ", new limit=" PTR_FORMAT
  1242                                " (" SIZE_FORMAT "%%)",
  1243                                top, space->end(),
  1244                                percent_of_space(space, space->end()));
  1246       ConcurrentMarkSweepThread::stop_icms();
  1247       return space->end();
  1250     if (CMSTraceIncrementalMode) {
  1251       space->print_on(gclog_or_tty);
  1252       gclog_or_tty->stamp();
  1253       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1254                              ", new limit=" PTR_FORMAT,
  1255                              top, NULL);
  1259   return NULL;
  1262 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
  1263   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1264   // allocate, copy and if necessary update promoinfo --
  1265   // delegate to underlying space.
  1266   assert_lock_strong(freelistLock());
  1268 #ifndef PRODUCT
  1269   if (Universe::heap()->promotion_should_fail()) {
  1270     return NULL;
  1272 #endif  // #ifndef PRODUCT
  1274   oop res = _cmsSpace->promote(obj, obj_size);
  1275   if (res == NULL) {
  1276     // expand and retry
  1277     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1278     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1279       CMSExpansionCause::_satisfy_promotion);
  1280     // Since there's currently no next generation, we don't try to promote
  1281     // into a more senior generation.
  1282     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1283                                "is made to pass on a possibly failing "
  1284                                "promotion to next generation");
  1285     res = _cmsSpace->promote(obj, obj_size);
  1287   if (res != NULL) {
  1288     // See comment in allocate() about when objects should
  1289     // be allocated live.
  1290     assert(obj->is_oop(), "Will dereference klass pointer below");
  1291     collector()->promoted(false,           // Not parallel
  1292                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1293     // promotion counters
  1294     NOT_PRODUCT(
  1295       _numObjectsPromoted++;
  1296       _numWordsPromoted +=
  1297         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1300   return res;
  1304 HeapWord*
  1305 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1306                                              HeapWord* top,
  1307                                              size_t word_sz)
  1309   return collector()->allocation_limit_reached(space, top, word_sz);
  1312 // IMPORTANT: Notes on object size recognition in CMS.
  1313 // ---------------------------------------------------
  1314 // A block of storage in the CMS generation is always in
  1315 // one of three states. A free block (FREE), an allocated
  1316 // object (OBJECT) whose size() method reports the correct size,
  1317 // and an intermediate state (TRANSIENT) in which its size cannot
  1318 // be accurately determined.
  1319 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
  1320 // -----------------------------------------------------
  1321 // FREE:      klass_word & 1 == 1; mark_word holds block size
  1322 //
  1323 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
  1324 //            obj->size() computes correct size
  1325 //
  1326 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
  1327 //
  1328 // STATE IDENTIFICATION: (64 bit+COOPS)
  1329 // ------------------------------------
  1330 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
  1331 //
  1332 // OBJECT:    klass_word installed; klass_word != 0;
  1333 //            obj->size() computes correct size
  1334 //
  1335 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
  1336 //
  1337 //
  1338 // STATE TRANSITION DIAGRAM
  1339 //
  1340 //        mut / parnew                     mut  /  parnew
  1341 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
  1342 //  ^                                                                   |
  1343 //  |------------------------ DEAD <------------------------------------|
  1344 //         sweep                            mut
  1345 //
  1346 // While a block is in TRANSIENT state its size cannot be determined
  1347 // so readers will either need to come back later or stall until
  1348 // the size can be determined. Note that for the case of direct
  1349 // allocation, P-bits, when available, may be used to determine the
  1350 // size of an object that may not yet have been initialized.
  1352 // Things to support parallel young-gen collection.
  1353 oop
  1354 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1355                                            oop old, markOop m,
  1356                                            size_t word_sz) {
  1357 #ifndef PRODUCT
  1358   if (Universe::heap()->promotion_should_fail()) {
  1359     return NULL;
  1361 #endif  // #ifndef PRODUCT
  1363   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1364   PromotionInfo* promoInfo = &ps->promo;
  1365   // if we are tracking promotions, then first ensure space for
  1366   // promotion (including spooling space for saving header if necessary).
  1367   // then allocate and copy, then track promoted info if needed.
  1368   // When tracking (see PromotionInfo::track()), the mark word may
  1369   // be displaced and in this case restoration of the mark word
  1370   // occurs in the (oop_since_save_marks_)iterate phase.
  1371   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1372     // Out of space for allocating spooling buffers;
  1373     // try expanding and allocating spooling buffers.
  1374     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1375       return NULL;
  1378   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1379   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
  1380   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
  1381   if (obj_ptr == NULL) {
  1382      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
  1383      if (obj_ptr == NULL) {
  1384        return NULL;
  1387   oop obj = oop(obj_ptr);
  1388   OrderAccess::storestore();
  1389   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1390   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
  1391   // IMPORTANT: See note on object initialization for CMS above.
  1392   // Otherwise, copy the object.  Here we must be careful to insert the
  1393   // klass pointer last, since this marks the block as an allocated object.
  1394   // Except with compressed oops it's the mark word.
  1395   HeapWord* old_ptr = (HeapWord*)old;
  1396   // Restore the mark word copied above.
  1397   obj->set_mark(m);
  1398   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1399   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
  1400   OrderAccess::storestore();
  1402   if (UseCompressedClassPointers) {
  1403     // Copy gap missed by (aligned) header size calculation below
  1404     obj->set_klass_gap(old->klass_gap());
  1406   if (word_sz > (size_t)oopDesc::header_size()) {
  1407     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1408                                  obj_ptr + oopDesc::header_size(),
  1409                                  word_sz - oopDesc::header_size());
  1412   // Now we can track the promoted object, if necessary.  We take care
  1413   // to delay the transition from uninitialized to full object
  1414   // (i.e., insertion of klass pointer) until after, so that it
  1415   // atomically becomes a promoted object.
  1416   if (promoInfo->tracking()) {
  1417     promoInfo->track((PromotedObject*)obj, old->klass());
  1419   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1420   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
  1421   assert(old->is_oop(), "Will use and dereference old klass ptr below");
  1423   // Finally, install the klass pointer (this should be volatile).
  1424   OrderAccess::storestore();
  1425   obj->set_klass(old->klass());
  1426   // We should now be able to calculate the right size for this object
  1427   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
  1429   collector()->promoted(true,          // parallel
  1430                         obj_ptr, old->is_objArray(), word_sz);
  1432   NOT_PRODUCT(
  1433     Atomic::inc_ptr(&_numObjectsPromoted);
  1434     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
  1437   return obj;
  1440 void
  1441 ConcurrentMarkSweepGeneration::
  1442 par_promote_alloc_undo(int thread_num,
  1443                        HeapWord* obj, size_t word_sz) {
  1444   // CMS does not support promotion undo.
  1445   ShouldNotReachHere();
  1448 void
  1449 ConcurrentMarkSweepGeneration::
  1450 par_promote_alloc_done(int thread_num) {
  1451   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1452   ps->lab.retire(thread_num);
  1455 void
  1456 ConcurrentMarkSweepGeneration::
  1457 par_oop_since_save_marks_iterate_done(int thread_num) {
  1458   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1459   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1460   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1463 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1464                                                    size_t size,
  1465                                                    bool   tlab)
  1467   // We allow a STW collection only if a full
  1468   // collection was requested.
  1469   return full || should_allocate(size, tlab); // FIX ME !!!
  1470   // This and promotion failure handling are connected at the
  1471   // hip and should be fixed by untying them.
  1474 bool CMSCollector::shouldConcurrentCollect() {
  1475   if (_full_gc_requested) {
  1476     if (Verbose && PrintGCDetails) {
  1477       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1478                              " gc request (or gc_locker)");
  1480     return true;
  1483   // For debugging purposes, change the type of collection.
  1484   // If the rotation is not on the concurrent collection
  1485   // type, don't start a concurrent collection.
  1486   NOT_PRODUCT(
  1487     if (RotateCMSCollectionTypes &&
  1488         (_cmsGen->debug_collection_type() !=
  1489           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1490       assert(_cmsGen->debug_collection_type() !=
  1491         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1492         "Bad cms collection type");
  1493       return false;
  1497   FreelistLocker x(this);
  1498   // ------------------------------------------------------------------
  1499   // Print out lots of information which affects the initiation of
  1500   // a collection.
  1501   if (PrintCMSInitiationStatistics && stats().valid()) {
  1502     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1503     gclog_or_tty->stamp();
  1504     gclog_or_tty->print_cr("");
  1505     stats().print_on(gclog_or_tty);
  1506     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1507       stats().time_until_cms_gen_full());
  1508     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1509     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1510                            _cmsGen->contiguous_available());
  1511     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1512     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1513     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1514     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
  1515     gclog_or_tty->print_cr("metadata initialized %d",
  1516       MetaspaceGC::should_concurrent_collect());
  1518   // ------------------------------------------------------------------
  1520   // If the estimated time to complete a cms collection (cms_duration())
  1521   // is less than the estimated time remaining until the cms generation
  1522   // is full, start a collection.
  1523   if (!UseCMSInitiatingOccupancyOnly) {
  1524     if (stats().valid()) {
  1525       if (stats().time_until_cms_start() == 0.0) {
  1526         return true;
  1528     } else {
  1529       // We want to conservatively collect somewhat early in order
  1530       // to try and "bootstrap" our CMS/promotion statistics;
  1531       // this branch will not fire after the first successful CMS
  1532       // collection because the stats should then be valid.
  1533       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1534         if (Verbose && PrintGCDetails) {
  1535           gclog_or_tty->print_cr(
  1536             " CMSCollector: collect for bootstrapping statistics:"
  1537             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1538             _bootstrap_occupancy);
  1540         return true;
  1545   // Otherwise, we start a collection cycle if
  1546   // old gen want a collection cycle started. Each may use
  1547   // an appropriate criterion for making this decision.
  1548   // XXX We need to make sure that the gen expansion
  1549   // criterion dovetails well with this. XXX NEED TO FIX THIS
  1550   if (_cmsGen->should_concurrent_collect()) {
  1551     if (Verbose && PrintGCDetails) {
  1552       gclog_or_tty->print_cr("CMS old gen initiated");
  1554     return true;
  1557   // We start a collection if we believe an incremental collection may fail;
  1558   // this is not likely to be productive in practice because it's probably too
  1559   // late anyway.
  1560   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1561   assert(gch->collector_policy()->is_two_generation_policy(),
  1562          "You may want to check the correctness of the following");
  1563   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
  1564     if (Verbose && PrintGCDetails) {
  1565       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
  1567     return true;
  1570   if (MetaspaceGC::should_concurrent_collect()) {
  1571       if (Verbose && PrintGCDetails) {
  1572       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
  1574       return true;
  1577   return false;
  1580 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
  1582 // Clear _expansion_cause fields of constituent generations
  1583 void CMSCollector::clear_expansion_cause() {
  1584   _cmsGen->clear_expansion_cause();
  1587 // We should be conservative in starting a collection cycle.  To
  1588 // start too eagerly runs the risk of collecting too often in the
  1589 // extreme.  To collect too rarely falls back on full collections,
  1590 // which works, even if not optimum in terms of concurrent work.
  1591 // As a work around for too eagerly collecting, use the flag
  1592 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1593 // giving the user an easily understandable way of controlling the
  1594 // collections.
  1595 // We want to start a new collection cycle if any of the following
  1596 // conditions hold:
  1597 // . our current occupancy exceeds the configured initiating occupancy
  1598 //   for this generation, or
  1599 // . we recently needed to expand this space and have not, since that
  1600 //   expansion, done a collection of this generation, or
  1601 // . the underlying space believes that it may be a good idea to initiate
  1602 //   a concurrent collection (this may be based on criteria such as the
  1603 //   following: the space uses linear allocation and linear allocation is
  1604 //   going to fail, or there is believed to be excessive fragmentation in
  1605 //   the generation, etc... or ...
  1606 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
  1607 //   the case of the old generation; see CR 6543076):
  1608 //   we may be approaching a point at which allocation requests may fail because
  1609 //   we will be out of sufficient free space given allocation rate estimates.]
  1610 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
  1612   assert_lock_strong(freelistLock());
  1613   if (occupancy() > initiating_occupancy()) {
  1614     if (PrintGCDetails && Verbose) {
  1615       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1616         short_name(), occupancy(), initiating_occupancy());
  1618     return true;
  1620   if (UseCMSInitiatingOccupancyOnly) {
  1621     return false;
  1623   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1624     if (PrintGCDetails && Verbose) {
  1625       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1626         short_name());
  1628     return true;
  1630   if (_cmsSpace->should_concurrent_collect()) {
  1631     if (PrintGCDetails && Verbose) {
  1632       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
  1633         short_name());
  1635     return true;
  1637   return false;
  1640 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1641                                             bool   clear_all_soft_refs,
  1642                                             size_t size,
  1643                                             bool   tlab)
  1645   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1648 void CMSCollector::collect(bool   full,
  1649                            bool   clear_all_soft_refs,
  1650                            size_t size,
  1651                            bool   tlab)
  1653   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1654     // For debugging purposes skip the collection if the state
  1655     // is not currently idle
  1656     if (TraceCMSState) {
  1657       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1658         Thread::current(), full, _collectorState);
  1660     return;
  1663   // The following "if" branch is present for defensive reasons.
  1664   // In the current uses of this interface, it can be replaced with:
  1665   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1666   // But I am not placing that assert here to allow future
  1667   // generality in invoking this interface.
  1668   if (GC_locker::is_active()) {
  1669     // A consistency test for GC_locker
  1670     assert(GC_locker::needs_gc(), "Should have been set already");
  1671     // Skip this foreground collection, instead
  1672     // expanding the heap if necessary.
  1673     // Need the free list locks for the call to free() in compute_new_size()
  1674     compute_new_size();
  1675     return;
  1677   acquire_control_and_collect(full, clear_all_soft_refs);
  1678   _full_gcs_since_conc_gc++;
  1681 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
  1682   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1683   unsigned int gc_count = gch->total_full_collections();
  1684   if (gc_count == full_gc_count) {
  1685     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1686     _full_gc_requested = true;
  1687     _full_gc_cause = cause;
  1688     CGC_lock->notify();   // nudge CMS thread
  1689   } else {
  1690     assert(gc_count > full_gc_count, "Error: causal loop");
  1694 bool CMSCollector::is_external_interruption() {
  1695   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1696   return GCCause::is_user_requested_gc(cause) ||
  1697          GCCause::is_serviceability_requested_gc(cause);
  1700 void CMSCollector::report_concurrent_mode_interruption() {
  1701   if (is_external_interruption()) {
  1702     if (PrintGCDetails) {
  1703       gclog_or_tty->print(" (concurrent mode interrupted)");
  1705   } else {
  1706     if (PrintGCDetails) {
  1707       gclog_or_tty->print(" (concurrent mode failure)");
  1709     _gc_tracer_cm->report_concurrent_mode_failure();
  1714 // The foreground and background collectors need to coordinate in order
  1715 // to make sure that they do not mutually interfere with CMS collections.
  1716 // When a background collection is active,
  1717 // the foreground collector may need to take over (preempt) and
  1718 // synchronously complete an ongoing collection. Depending on the
  1719 // frequency of the background collections and the heap usage
  1720 // of the application, this preemption can be seldom or frequent.
  1721 // There are only certain
  1722 // points in the background collection that the "collection-baton"
  1723 // can be passed to the foreground collector.
  1724 //
  1725 // The foreground collector will wait for the baton before
  1726 // starting any part of the collection.  The foreground collector
  1727 // will only wait at one location.
  1728 //
  1729 // The background collector will yield the baton before starting a new
  1730 // phase of the collection (e.g., before initial marking, marking from roots,
  1731 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1732 // of the loop which switches the phases. The background collector does some
  1733 // of the phases (initial mark, final re-mark) with the world stopped.
  1734 // Because of locking involved in stopping the world,
  1735 // the foreground collector should not block waiting for the background
  1736 // collector when it is doing a stop-the-world phase.  The background
  1737 // collector will yield the baton at an additional point just before
  1738 // it enters a stop-the-world phase.  Once the world is stopped, the
  1739 // background collector checks the phase of the collection.  If the
  1740 // phase has not changed, it proceeds with the collection.  If the
  1741 // phase has changed, it skips that phase of the collection.  See
  1742 // the comments on the use of the Heap_lock in collect_in_background().
  1743 //
  1744 // Variable used in baton passing.
  1745 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1746 //      it wants the baton.  The foreground clears it when it has finished
  1747 //      the collection.
  1748 //   _foregroundGCShouldWait - Set to true by the background collector
  1749 //        when it is running.  The foreground collector waits while
  1750 //      _foregroundGCShouldWait is true.
  1751 //  CGC_lock - monitor used to protect access to the above variables
  1752 //      and to notify the foreground and background collectors.
  1753 //  _collectorState - current state of the CMS collection.
  1754 //
  1755 // The foreground collector
  1756 //   acquires the CGC_lock
  1757 //   sets _foregroundGCIsActive
  1758 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1759 //     various locks acquired in preparation for the collection
  1760 //     are released so as not to block the background collector
  1761 //     that is in the midst of a collection
  1762 //   proceeds with the collection
  1763 //   clears _foregroundGCIsActive
  1764 //   returns
  1765 //
  1766 // The background collector in a loop iterating on the phases of the
  1767 //      collection
  1768 //   acquires the CGC_lock
  1769 //   sets _foregroundGCShouldWait
  1770 //   if _foregroundGCIsActive is set
  1771 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1772 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1773 //     and exits the loop.
  1774 //   otherwise
  1775 //     proceed with that phase of the collection
  1776 //     if the phase is a stop-the-world phase,
  1777 //       yield the baton once more just before enqueueing
  1778 //       the stop-world CMS operation (executed by the VM thread).
  1779 //   returns after all phases of the collection are done
  1780 //
  1782 void CMSCollector::acquire_control_and_collect(bool full,
  1783         bool clear_all_soft_refs) {
  1784   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1785   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1786          "shouldn't try to acquire control from self!");
  1788   // Start the protocol for acquiring control of the
  1789   // collection from the background collector (aka CMS thread).
  1790   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1791          "VM thread should have CMS token");
  1792   // Remember the possibly interrupted state of an ongoing
  1793   // concurrent collection
  1794   CollectorState first_state = _collectorState;
  1796   // Signal to a possibly ongoing concurrent collection that
  1797   // we want to do a foreground collection.
  1798   _foregroundGCIsActive = true;
  1800   // Disable incremental mode during a foreground collection.
  1801   ICMSDisabler icms_disabler;
  1803   // release locks and wait for a notify from the background collector
  1804   // releasing the locks in only necessary for phases which
  1805   // do yields to improve the granularity of the collection.
  1806   assert_lock_strong(bitMapLock());
  1807   // We need to lock the Free list lock for the space that we are
  1808   // currently collecting.
  1809   assert(haveFreelistLocks(), "Must be holding free list locks");
  1810   bitMapLock()->unlock();
  1811   releaseFreelistLocks();
  1813     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1814     if (_foregroundGCShouldWait) {
  1815       // We are going to be waiting for action for the CMS thread;
  1816       // it had better not be gone (for instance at shutdown)!
  1817       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1818              "CMS thread must be running");
  1819       // Wait here until the background collector gives us the go-ahead
  1820       ConcurrentMarkSweepThread::clear_CMS_flag(
  1821         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1822       // Get a possibly blocked CMS thread going:
  1823       //   Note that we set _foregroundGCIsActive true above,
  1824       //   without protection of the CGC_lock.
  1825       CGC_lock->notify();
  1826       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1827              "Possible deadlock");
  1828       while (_foregroundGCShouldWait) {
  1829         // wait for notification
  1830         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1831         // Possibility of delay/starvation here, since CMS token does
  1832         // not know to give priority to VM thread? Actually, i think
  1833         // there wouldn't be any delay/starvation, but the proof of
  1834         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1836       ConcurrentMarkSweepThread::set_CMS_flag(
  1837         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1840   // The CMS_token is already held.  Get back the other locks.
  1841   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1842          "VM thread should have CMS token");
  1843   getFreelistLocks();
  1844   bitMapLock()->lock_without_safepoint_check();
  1845   if (TraceCMSState) {
  1846     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1847       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1848     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1851   // Check if we need to do a compaction, or if not, whether
  1852   // we need to start the mark-sweep from scratch.
  1853   bool should_compact    = false;
  1854   bool should_start_over = false;
  1855   decide_foreground_collection_type(clear_all_soft_refs,
  1856     &should_compact, &should_start_over);
  1858 NOT_PRODUCT(
  1859   if (RotateCMSCollectionTypes) {
  1860     if (_cmsGen->debug_collection_type() ==
  1861         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1862       should_compact = true;
  1863     } else if (_cmsGen->debug_collection_type() ==
  1864                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1865       should_compact = false;
  1870   if (first_state > Idling) {
  1871     report_concurrent_mode_interruption();
  1874   set_did_compact(should_compact);
  1875   if (should_compact) {
  1876     // If the collection is being acquired from the background
  1877     // collector, there may be references on the discovered
  1878     // references lists that have NULL referents (being those
  1879     // that were concurrently cleared by a mutator) or
  1880     // that are no longer active (having been enqueued concurrently
  1881     // by the mutator).
  1882     // Scrub the list of those references because Mark-Sweep-Compact
  1883     // code assumes referents are not NULL and that all discovered
  1884     // Reference objects are active.
  1885     ref_processor()->clean_up_discovered_references();
  1887     if (first_state > Idling) {
  1888       save_heap_summary();
  1891     do_compaction_work(clear_all_soft_refs);
  1893     // Has the GC time limit been exceeded?
  1894     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
  1895     size_t max_eden_size = young_gen->max_capacity() -
  1896                            young_gen->to()->capacity() -
  1897                            young_gen->from()->capacity();
  1898     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1899     GCCause::Cause gc_cause = gch->gc_cause();
  1900     size_policy()->check_gc_overhead_limit(_young_gen->used(),
  1901                                            young_gen->eden()->used(),
  1902                                            _cmsGen->max_capacity(),
  1903                                            max_eden_size,
  1904                                            full,
  1905                                            gc_cause,
  1906                                            gch->collector_policy());
  1907   } else {
  1908     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1909       should_start_over);
  1911   // Reset the expansion cause, now that we just completed
  1912   // a collection cycle.
  1913   clear_expansion_cause();
  1914   _foregroundGCIsActive = false;
  1915   return;
  1918 // Resize the tenured generation
  1919 // after obtaining the free list locks for the
  1920 // two generations.
  1921 void CMSCollector::compute_new_size() {
  1922   assert_locked_or_safepoint(Heap_lock);
  1923   FreelistLocker z(this);
  1924   MetaspaceGC::compute_new_size();
  1925   _cmsGen->compute_new_size_free_list();
  1928 // A work method used by foreground collection to determine
  1929 // what type of collection (compacting or not, continuing or fresh)
  1930 // it should do.
  1931 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1932 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1933 // and do away with the flags after a suitable period.
  1934 void CMSCollector::decide_foreground_collection_type(
  1935   bool clear_all_soft_refs, bool* should_compact,
  1936   bool* should_start_over) {
  1937   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1938   // flag is set, and we have either requested a System.gc() or
  1939   // the number of full gc's since the last concurrent cycle
  1940   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1941   // or if an incremental collection has failed
  1942   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1943   assert(gch->collector_policy()->is_two_generation_policy(),
  1944          "You may want to check the correctness of the following");
  1945   // Inform cms gen if this was due to partial collection failing.
  1946   // The CMS gen may use this fact to determine its expansion policy.
  1947   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
  1948     assert(!_cmsGen->incremental_collection_failed(),
  1949            "Should have been noticed, reacted to and cleared");
  1950     _cmsGen->set_incremental_collection_failed();
  1952   *should_compact =
  1953     UseCMSCompactAtFullCollection &&
  1954     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1955      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1956      gch->incremental_collection_will_fail(true /* consult_young */));
  1957   *should_start_over = false;
  1958   if (clear_all_soft_refs && !*should_compact) {
  1959     // We are about to do a last ditch collection attempt
  1960     // so it would normally make sense to do a compaction
  1961     // to reclaim as much space as possible.
  1962     if (CMSCompactWhenClearAllSoftRefs) {
  1963       // Default: The rationale is that in this case either
  1964       // we are past the final marking phase, in which case
  1965       // we'd have to start over, or so little has been done
  1966       // that there's little point in saving that work. Compaction
  1967       // appears to be the sensible choice in either case.
  1968       *should_compact = true;
  1969     } else {
  1970       // We have been asked to clear all soft refs, but not to
  1971       // compact. Make sure that we aren't past the final checkpoint
  1972       // phase, for that is where we process soft refs. If we are already
  1973       // past that phase, we'll need to redo the refs discovery phase and
  1974       // if necessary clear soft refs that weren't previously
  1975       // cleared. We do so by remembering the phase in which
  1976       // we came in, and if we are past the refs processing
  1977       // phase, we'll choose to just redo the mark-sweep
  1978       // collection from scratch.
  1979       if (_collectorState > FinalMarking) {
  1980         // We are past the refs processing phase;
  1981         // start over and do a fresh synchronous CMS cycle
  1982         _collectorState = Resetting; // skip to reset to start new cycle
  1983         reset(false /* == !asynch */);
  1984         *should_start_over = true;
  1985       } // else we can continue a possibly ongoing current cycle
  1990 // A work method used by the foreground collector to do
  1991 // a mark-sweep-compact.
  1992 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1993   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1995   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
  1996   gc_timer->register_gc_start();
  1998   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
  1999   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
  2001   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
  2002   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  2003     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  2004       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  2007   // Sample collection interval time and reset for collection pause.
  2008   if (UseAdaptiveSizePolicy) {
  2009     size_policy()->msc_collection_begin();
  2012   // Temporarily widen the span of the weak reference processing to
  2013   // the entire heap.
  2014   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  2015   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
  2016   // Temporarily, clear the "is_alive_non_header" field of the
  2017   // reference processor.
  2018   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
  2019   // Temporarily make reference _processing_ single threaded (non-MT).
  2020   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
  2021   // Temporarily make refs discovery atomic
  2022   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
  2023   // Temporarily make reference _discovery_ single threaded (non-MT)
  2024   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
  2026   ref_processor()->set_enqueuing_is_done(false);
  2027   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
  2028   ref_processor()->setup_policy(clear_all_soft_refs);
  2029   // If an asynchronous collection finishes, the _modUnionTable is
  2030   // all clear.  If we are assuming the collection from an asynchronous
  2031   // collection, clear the _modUnionTable.
  2032   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  2033     "_modUnionTable should be clear if the baton was not passed");
  2034   _modUnionTable.clear_all();
  2035   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
  2036     "mod union for klasses should be clear if the baton was passed");
  2037   _ct->klass_rem_set()->clear_mod_union();
  2039   // We must adjust the allocation statistics being maintained
  2040   // in the free list space. We do so by reading and clearing
  2041   // the sweep timer and updating the block flux rate estimates below.
  2042   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
  2043   if (_inter_sweep_timer.is_active()) {
  2044     _inter_sweep_timer.stop();
  2045     // Note that we do not use this sample to update the _inter_sweep_estimate.
  2046     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
  2047                                             _inter_sweep_estimate.padded_average(),
  2048                                             _intra_sweep_estimate.padded_average());
  2051   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  2052     ref_processor(), clear_all_soft_refs);
  2053   #ifdef ASSERT
  2054     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  2055     size_t free_size = cms_space->free();
  2056     assert(free_size ==
  2057            pointer_delta(cms_space->end(), cms_space->compaction_top())
  2058            * HeapWordSize,
  2059       "All the free space should be compacted into one chunk at top");
  2060     assert(cms_space->dictionary()->total_chunk_size(
  2061                                       debug_only(cms_space->freelistLock())) == 0 ||
  2062            cms_space->totalSizeInIndexedFreeLists() == 0,
  2063       "All the free space should be in a single chunk");
  2064     size_t num = cms_space->totalCount();
  2065     assert((free_size == 0 && num == 0) ||
  2066            (free_size > 0  && (num == 1 || num == 2)),
  2067          "There should be at most 2 free chunks after compaction");
  2068   #endif // ASSERT
  2069   _collectorState = Resetting;
  2070   assert(_restart_addr == NULL,
  2071          "Should have been NULL'd before baton was passed");
  2072   reset(false /* == !asynch */);
  2073   _cmsGen->reset_after_compaction();
  2074   _concurrent_cycles_since_last_unload = 0;
  2076   // Clear any data recorded in the PLAB chunk arrays.
  2077   if (_survivor_plab_array != NULL) {
  2078     reset_survivor_plab_arrays();
  2081   // Adjust the per-size allocation stats for the next epoch.
  2082   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
  2083   // Restart the "inter sweep timer" for the next epoch.
  2084   _inter_sweep_timer.reset();
  2085   _inter_sweep_timer.start();
  2087   // Sample collection pause time and reset for collection interval.
  2088   if (UseAdaptiveSizePolicy) {
  2089     size_policy()->msc_collection_end(gch->gc_cause());
  2092   gc_timer->register_gc_end();
  2094   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
  2096   // For a mark-sweep-compact, compute_new_size() will be called
  2097   // in the heap's do_collection() method.
  2100 // A work method used by the foreground collector to do
  2101 // a mark-sweep, after taking over from a possibly on-going
  2102 // concurrent mark-sweep collection.
  2103 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2104   CollectorState first_state, bool should_start_over) {
  2105   if (PrintGC && Verbose) {
  2106     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2107       "collector with count %d",
  2108       _full_gcs_since_conc_gc);
  2110   switch (_collectorState) {
  2111     case Idling:
  2112       if (first_state == Idling || should_start_over) {
  2113         // The background GC was not active, or should
  2114         // restarted from scratch;  start the cycle.
  2115         _collectorState = InitialMarking;
  2117       // If first_state was not Idling, then a background GC
  2118       // was in progress and has now finished.  No need to do it
  2119       // again.  Leave the state as Idling.
  2120       break;
  2121     case Precleaning:
  2122       // In the foreground case don't do the precleaning since
  2123       // it is not done concurrently and there is extra work
  2124       // required.
  2125       _collectorState = FinalMarking;
  2127   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
  2129   // For a mark-sweep, compute_new_size() will be called
  2130   // in the heap's do_collection() method.
  2134 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
  2135   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
  2136   EdenSpace* eden_space = dng->eden();
  2137   ContiguousSpace* from_space = dng->from();
  2138   ContiguousSpace* to_space   = dng->to();
  2139   // Eden
  2140   if (_eden_chunk_array != NULL) {
  2141     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
  2142                            eden_space->bottom(), eden_space->top(),
  2143                            eden_space->end(), eden_space->capacity());
  2144     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
  2145                            "_eden_chunk_capacity=" SIZE_FORMAT,
  2146                            _eden_chunk_index, _eden_chunk_capacity);
  2147     for (size_t i = 0; i < _eden_chunk_index; i++) {
  2148       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
  2149                              i, _eden_chunk_array[i]);
  2152   // Survivor
  2153   if (_survivor_chunk_array != NULL) {
  2154     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
  2155                            from_space->bottom(), from_space->top(),
  2156                            from_space->end(), from_space->capacity());
  2157     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
  2158                            "_survivor_chunk_capacity=" SIZE_FORMAT,
  2159                            _survivor_chunk_index, _survivor_chunk_capacity);
  2160     for (size_t i = 0; i < _survivor_chunk_index; i++) {
  2161       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
  2162                              i, _survivor_chunk_array[i]);
  2167 void CMSCollector::getFreelistLocks() const {
  2168   // Get locks for all free lists in all generations that this
  2169   // collector is responsible for
  2170   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2173 void CMSCollector::releaseFreelistLocks() const {
  2174   // Release locks for all free lists in all generations that this
  2175   // collector is responsible for
  2176   _cmsGen->freelistLock()->unlock();
  2179 bool CMSCollector::haveFreelistLocks() const {
  2180   // Check locks for all free lists in all generations that this
  2181   // collector is responsible for
  2182   assert_lock_strong(_cmsGen->freelistLock());
  2183   PRODUCT_ONLY(ShouldNotReachHere());
  2184   return true;
  2187 // A utility class that is used by the CMS collector to
  2188 // temporarily "release" the foreground collector from its
  2189 // usual obligation to wait for the background collector to
  2190 // complete an ongoing phase before proceeding.
  2191 class ReleaseForegroundGC: public StackObj {
  2192  private:
  2193   CMSCollector* _c;
  2194  public:
  2195   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2196     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2197     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2198     // allow a potentially blocked foreground collector to proceed
  2199     _c->_foregroundGCShouldWait = false;
  2200     if (_c->_foregroundGCIsActive) {
  2201       CGC_lock->notify();
  2203     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2204            "Possible deadlock");
  2207   ~ReleaseForegroundGC() {
  2208     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2209     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2210     _c->_foregroundGCShouldWait = true;
  2212 };
  2214 // There are separate collect_in_background and collect_in_foreground because of
  2215 // the different locking requirements of the background collector and the
  2216 // foreground collector.  There was originally an attempt to share
  2217 // one "collect" method between the background collector and the foreground
  2218 // collector but the if-then-else required made it cleaner to have
  2219 // separate methods.
  2220 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
  2221   assert(Thread::current()->is_ConcurrentGC_thread(),
  2222     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2224   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2226     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2227     MutexLockerEx hl(Heap_lock, safepoint_check);
  2228     FreelistLocker fll(this);
  2229     MutexLockerEx x(CGC_lock, safepoint_check);
  2230     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2231       // The foreground collector is active or we're
  2232       // not using asynchronous collections.  Skip this
  2233       // background collection.
  2234       assert(!_foregroundGCShouldWait, "Should be clear");
  2235       return;
  2236     } else {
  2237       assert(_collectorState == Idling, "Should be idling before start.");
  2238       _collectorState = InitialMarking;
  2239       register_gc_start(cause);
  2240       // Reset the expansion cause, now that we are about to begin
  2241       // a new cycle.
  2242       clear_expansion_cause();
  2244       // Clear the MetaspaceGC flag since a concurrent collection
  2245       // is starting but also clear it after the collection.
  2246       MetaspaceGC::set_should_concurrent_collect(false);
  2248     // Decide if we want to enable class unloading as part of the
  2249     // ensuing concurrent GC cycle.
  2250     update_should_unload_classes();
  2251     _full_gc_requested = false;           // acks all outstanding full gc requests
  2252     _full_gc_cause = GCCause::_no_gc;
  2253     // Signal that we are about to start a collection
  2254     gch->increment_total_full_collections();  // ... starting a collection cycle
  2255     _collection_count_start = gch->total_full_collections();
  2258   // Used for PrintGC
  2259   size_t prev_used;
  2260   if (PrintGC && Verbose) {
  2261     prev_used = _cmsGen->used(); // XXXPERM
  2264   // The change of the collection state is normally done at this level;
  2265   // the exceptions are phases that are executed while the world is
  2266   // stopped.  For those phases the change of state is done while the
  2267   // world is stopped.  For baton passing purposes this allows the
  2268   // background collector to finish the phase and change state atomically.
  2269   // The foreground collector cannot wait on a phase that is done
  2270   // while the world is stopped because the foreground collector already
  2271   // has the world stopped and would deadlock.
  2272   while (_collectorState != Idling) {
  2273     if (TraceCMSState) {
  2274       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2275         Thread::current(), _collectorState);
  2277     // The foreground collector
  2278     //   holds the Heap_lock throughout its collection.
  2279     //   holds the CMS token (but not the lock)
  2280     //     except while it is waiting for the background collector to yield.
  2281     //
  2282     // The foreground collector should be blocked (not for long)
  2283     //   if the background collector is about to start a phase
  2284     //   executed with world stopped.  If the background
  2285     //   collector has already started such a phase, the
  2286     //   foreground collector is blocked waiting for the
  2287     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2288     //   are executed in the VM thread.
  2289     //
  2290     // The locking order is
  2291     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2292     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2293     //   CMS token  (claimed in
  2294     //                stop_world_and_do() -->
  2295     //                  safepoint_synchronize() -->
  2296     //                    CMSThread::synchronize())
  2299       // Check if the FG collector wants us to yield.
  2300       CMSTokenSync x(true); // is cms thread
  2301       if (waitForForegroundGC()) {
  2302         // We yielded to a foreground GC, nothing more to be
  2303         // done this round.
  2304         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2305                "waitForForegroundGC()");
  2306         if (TraceCMSState) {
  2307           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2308             " exiting collection CMS state %d",
  2309             Thread::current(), _collectorState);
  2311         return;
  2312       } else {
  2313         // The background collector can run but check to see if the
  2314         // foreground collector has done a collection while the
  2315         // background collector was waiting to get the CGC_lock
  2316         // above.  If yes, break so that _foregroundGCShouldWait
  2317         // is cleared before returning.
  2318         if (_collectorState == Idling) {
  2319           break;
  2324     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2325       "should be waiting");
  2327     switch (_collectorState) {
  2328       case InitialMarking:
  2330           ReleaseForegroundGC x(this);
  2331           stats().record_cms_begin();
  2332           VM_CMS_Initial_Mark initial_mark_op(this);
  2333           VMThread::execute(&initial_mark_op);
  2335         // The collector state may be any legal state at this point
  2336         // since the background collector may have yielded to the
  2337         // foreground collector.
  2338         break;
  2339       case Marking:
  2340         // initial marking in checkpointRootsInitialWork has been completed
  2341         if (markFromRoots(true)) { // we were successful
  2342           assert(_collectorState == Precleaning, "Collector state should "
  2343             "have changed");
  2344         } else {
  2345           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2347         break;
  2348       case Precleaning:
  2349         if (UseAdaptiveSizePolicy) {
  2350           size_policy()->concurrent_precleaning_begin();
  2352         // marking from roots in markFromRoots has been completed
  2353         preclean();
  2354         if (UseAdaptiveSizePolicy) {
  2355           size_policy()->concurrent_precleaning_end();
  2357         assert(_collectorState == AbortablePreclean ||
  2358                _collectorState == FinalMarking,
  2359                "Collector state should have changed");
  2360         break;
  2361       case AbortablePreclean:
  2362         if (UseAdaptiveSizePolicy) {
  2363         size_policy()->concurrent_phases_resume();
  2365         abortable_preclean();
  2366         if (UseAdaptiveSizePolicy) {
  2367           size_policy()->concurrent_precleaning_end();
  2369         assert(_collectorState == FinalMarking, "Collector state should "
  2370           "have changed");
  2371         break;
  2372       case FinalMarking:
  2374           ReleaseForegroundGC x(this);
  2376           VM_CMS_Final_Remark final_remark_op(this);
  2377           VMThread::execute(&final_remark_op);
  2379         assert(_foregroundGCShouldWait, "block post-condition");
  2380         break;
  2381       case Sweeping:
  2382         if (UseAdaptiveSizePolicy) {
  2383           size_policy()->concurrent_sweeping_begin();
  2385         // final marking in checkpointRootsFinal has been completed
  2386         sweep(true);
  2387         assert(_collectorState == Resizing, "Collector state change "
  2388           "to Resizing must be done under the free_list_lock");
  2389         _full_gcs_since_conc_gc = 0;
  2391         // Stop the timers for adaptive size policy for the concurrent phases
  2392         if (UseAdaptiveSizePolicy) {
  2393           size_policy()->concurrent_sweeping_end();
  2394           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2395                                              gch->prev_gen(_cmsGen)->capacity(),
  2396                                              _cmsGen->free());
  2399       case Resizing: {
  2400         // Sweeping has been completed...
  2401         // At this point the background collection has completed.
  2402         // Don't move the call to compute_new_size() down
  2403         // into code that might be executed if the background
  2404         // collection was preempted.
  2406           ReleaseForegroundGC x(this);   // unblock FG collection
  2407           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2408           CMSTokenSync        z(true);   // not strictly needed.
  2409           if (_collectorState == Resizing) {
  2410             compute_new_size();
  2411             save_heap_summary();
  2412             _collectorState = Resetting;
  2413           } else {
  2414             assert(_collectorState == Idling, "The state should only change"
  2415                    " because the foreground collector has finished the collection");
  2418         break;
  2420       case Resetting:
  2421         // CMS heap resizing has been completed
  2422         reset(true);
  2423         assert(_collectorState == Idling, "Collector state should "
  2424           "have changed");
  2426         MetaspaceGC::set_should_concurrent_collect(false);
  2428         stats().record_cms_end();
  2429         // Don't move the concurrent_phases_end() and compute_new_size()
  2430         // calls to here because a preempted background collection
  2431         // has it's state set to "Resetting".
  2432         break;
  2433       case Idling:
  2434       default:
  2435         ShouldNotReachHere();
  2436         break;
  2438     if (TraceCMSState) {
  2439       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2440         Thread::current(), _collectorState);
  2442     assert(_foregroundGCShouldWait, "block post-condition");
  2445   // Should this be in gc_epilogue?
  2446   collector_policy()->counters()->update_counters();
  2449     // Clear _foregroundGCShouldWait and, in the event that the
  2450     // foreground collector is waiting, notify it, before
  2451     // returning.
  2452     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2453     _foregroundGCShouldWait = false;
  2454     if (_foregroundGCIsActive) {
  2455       CGC_lock->notify();
  2457     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2458            "Possible deadlock");
  2460   if (TraceCMSState) {
  2461     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2462       " exiting collection CMS state %d",
  2463       Thread::current(), _collectorState);
  2465   if (PrintGC && Verbose) {
  2466     _cmsGen->print_heap_change(prev_used);
  2470 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
  2471   if (!_cms_start_registered) {
  2472     register_gc_start(cause);
  2476 void CMSCollector::register_gc_start(GCCause::Cause cause) {
  2477   _cms_start_registered = true;
  2478   _gc_timer_cm->register_gc_start();
  2479   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
  2482 void CMSCollector::register_gc_end() {
  2483   if (_cms_start_registered) {
  2484     report_heap_summary(GCWhen::AfterGC);
  2486     _gc_timer_cm->register_gc_end();
  2487     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
  2488     _cms_start_registered = false;
  2492 void CMSCollector::save_heap_summary() {
  2493   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2494   _last_heap_summary = gch->create_heap_summary();
  2495   _last_metaspace_summary = gch->create_metaspace_summary();
  2498 void CMSCollector::report_heap_summary(GCWhen::Type when) {
  2499   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
  2500   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
  2503 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
  2504   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2505          "Foreground collector should be waiting, not executing");
  2506   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2507     "may only be done by the VM Thread with the world stopped");
  2508   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2509          "VM thread should have CMS token");
  2511   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2512     true, NULL);)
  2513   if (UseAdaptiveSizePolicy) {
  2514     size_policy()->ms_collection_begin();
  2516   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2518   HandleMark hm;  // Discard invalid handles created during verification
  2520   if (VerifyBeforeGC &&
  2521       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2522     Universe::verify();
  2525   // Snapshot the soft reference policy to be used in this collection cycle.
  2526   ref_processor()->setup_policy(clear_all_soft_refs);
  2528   // Decide if class unloading should be done
  2529   update_should_unload_classes();
  2531   bool init_mark_was_synchronous = false; // until proven otherwise
  2532   while (_collectorState != Idling) {
  2533     if (TraceCMSState) {
  2534       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2535         Thread::current(), _collectorState);
  2537     switch (_collectorState) {
  2538       case InitialMarking:
  2539         register_foreground_gc_start(cause);
  2540         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2541         checkpointRootsInitial(false);
  2542         assert(_collectorState == Marking, "Collector state should have changed"
  2543           " within checkpointRootsInitial()");
  2544         break;
  2545       case Marking:
  2546         // initial marking in checkpointRootsInitialWork has been completed
  2547         if (VerifyDuringGC &&
  2548             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2549           Universe::verify("Verify before initial mark: ");
  2552           bool res = markFromRoots(false);
  2553           assert(res && _collectorState == FinalMarking, "Collector state should "
  2554             "have changed");
  2555           break;
  2557       case FinalMarking:
  2558         if (VerifyDuringGC &&
  2559             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2560           Universe::verify("Verify before re-mark: ");
  2562         checkpointRootsFinal(false, clear_all_soft_refs,
  2563                              init_mark_was_synchronous);
  2564         assert(_collectorState == Sweeping, "Collector state should not "
  2565           "have changed within checkpointRootsFinal()");
  2566         break;
  2567       case Sweeping:
  2568         // final marking in checkpointRootsFinal has been completed
  2569         if (VerifyDuringGC &&
  2570             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2571           Universe::verify("Verify before sweep: ");
  2573         sweep(false);
  2574         assert(_collectorState == Resizing, "Incorrect state");
  2575         break;
  2576       case Resizing: {
  2577         // Sweeping has been completed; the actual resize in this case
  2578         // is done separately; nothing to be done in this state.
  2579         _collectorState = Resetting;
  2580         break;
  2582       case Resetting:
  2583         // The heap has been resized.
  2584         if (VerifyDuringGC &&
  2585             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2586           Universe::verify("Verify before reset: ");
  2588         save_heap_summary();
  2589         reset(false);
  2590         assert(_collectorState == Idling, "Collector state should "
  2591           "have changed");
  2592         break;
  2593       case Precleaning:
  2594       case AbortablePreclean:
  2595         // Elide the preclean phase
  2596         _collectorState = FinalMarking;
  2597         break;
  2598       default:
  2599         ShouldNotReachHere();
  2601     if (TraceCMSState) {
  2602       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2603         Thread::current(), _collectorState);
  2607   if (UseAdaptiveSizePolicy) {
  2608     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2609     size_policy()->ms_collection_end(gch->gc_cause());
  2612   if (VerifyAfterGC &&
  2613       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2614     Universe::verify();
  2616   if (TraceCMSState) {
  2617     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2618       " exiting collection CMS state %d",
  2619       Thread::current(), _collectorState);
  2623 bool CMSCollector::waitForForegroundGC() {
  2624   bool res = false;
  2625   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2626          "CMS thread should have CMS token");
  2627   // Block the foreground collector until the
  2628   // background collectors decides whether to
  2629   // yield.
  2630   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2631   _foregroundGCShouldWait = true;
  2632   if (_foregroundGCIsActive) {
  2633     // The background collector yields to the
  2634     // foreground collector and returns a value
  2635     // indicating that it has yielded.  The foreground
  2636     // collector can proceed.
  2637     res = true;
  2638     _foregroundGCShouldWait = false;
  2639     ConcurrentMarkSweepThread::clear_CMS_flag(
  2640       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2641     ConcurrentMarkSweepThread::set_CMS_flag(
  2642       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2643     // Get a possibly blocked foreground thread going
  2644     CGC_lock->notify();
  2645     if (TraceCMSState) {
  2646       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2647         Thread::current(), _collectorState);
  2649     while (_foregroundGCIsActive) {
  2650       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2652     ConcurrentMarkSweepThread::set_CMS_flag(
  2653       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2654     ConcurrentMarkSweepThread::clear_CMS_flag(
  2655       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2657   if (TraceCMSState) {
  2658     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2659       Thread::current(), _collectorState);
  2661   return res;
  2664 // Because of the need to lock the free lists and other structures in
  2665 // the collector, common to all the generations that the collector is
  2666 // collecting, we need the gc_prologues of individual CMS generations
  2667 // delegate to their collector. It may have been simpler had the
  2668 // current infrastructure allowed one to call a prologue on a
  2669 // collector. In the absence of that we have the generation's
  2670 // prologue delegate to the collector, which delegates back
  2671 // some "local" work to a worker method in the individual generations
  2672 // that it's responsible for collecting, while itself doing any
  2673 // work common to all generations it's responsible for. A similar
  2674 // comment applies to the  gc_epilogue()'s.
  2675 // The role of the varaible _between_prologue_and_epilogue is to
  2676 // enforce the invocation protocol.
  2677 void CMSCollector::gc_prologue(bool full) {
  2678   // Call gc_prologue_work() for the CMSGen
  2679   // we are responsible for.
  2681   // The following locking discipline assumes that we are only called
  2682   // when the world is stopped.
  2683   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2685   // The CMSCollector prologue must call the gc_prologues for the
  2686   // "generations" that it's responsible
  2687   // for.
  2689   assert(   Thread::current()->is_VM_thread()
  2690          || (   CMSScavengeBeforeRemark
  2691              && Thread::current()->is_ConcurrentGC_thread()),
  2692          "Incorrect thread type for prologue execution");
  2694   if (_between_prologue_and_epilogue) {
  2695     // We have already been invoked; this is a gc_prologue delegation
  2696     // from yet another CMS generation that we are responsible for, just
  2697     // ignore it since all relevant work has already been done.
  2698     return;
  2701   // set a bit saying prologue has been called; cleared in epilogue
  2702   _between_prologue_and_epilogue = true;
  2703   // Claim locks for common data structures, then call gc_prologue_work()
  2704   // for each CMSGen.
  2706   getFreelistLocks();   // gets free list locks on constituent spaces
  2707   bitMapLock()->lock_without_safepoint_check();
  2709   // Should call gc_prologue_work() for all cms gens we are responsible for
  2710   bool duringMarking =    _collectorState >= Marking
  2711                          && _collectorState < Sweeping;
  2713   // The young collections clear the modified oops state, which tells if
  2714   // there are any modified oops in the class. The remark phase also needs
  2715   // that information. Tell the young collection to save the union of all
  2716   // modified klasses.
  2717   if (duringMarking) {
  2718     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
  2721   bool registerClosure = duringMarking;
  2723   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
  2724                                                &_modUnionClosurePar
  2725                                                : &_modUnionClosure;
  2726   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2728   if (!full) {
  2729     stats().record_gc0_begin();
  2733 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2735   _capacity_at_prologue = capacity();
  2736   _used_at_prologue = used();
  2738   // Delegate to CMScollector which knows how to coordinate between
  2739   // this and any other CMS generations that it is responsible for
  2740   // collecting.
  2741   collector()->gc_prologue(full);
  2744 // This is a "private" interface for use by this generation's CMSCollector.
  2745 // Not to be called directly by any other entity (for instance,
  2746 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2747 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2748   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2749   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2750   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2751     "Should be NULL");
  2752   if (registerClosure) {
  2753     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2755   cmsSpace()->gc_prologue();
  2756   // Clear stat counters
  2757   NOT_PRODUCT(
  2758     assert(_numObjectsPromoted == 0, "check");
  2759     assert(_numWordsPromoted   == 0, "check");
  2760     if (Verbose && PrintGC) {
  2761       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2762                           SIZE_FORMAT" bytes concurrently",
  2763       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2765     _numObjectsAllocated = 0;
  2766     _numWordsAllocated   = 0;
  2770 void CMSCollector::gc_epilogue(bool full) {
  2771   // The following locking discipline assumes that we are only called
  2772   // when the world is stopped.
  2773   assert(SafepointSynchronize::is_at_safepoint(),
  2774          "world is stopped assumption");
  2776   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2777   // if linear allocation blocks need to be appropriately marked to allow the
  2778   // the blocks to be parsable. We also check here whether we need to nudge the
  2779   // CMS collector thread to start a new cycle (if it's not already active).
  2780   assert(   Thread::current()->is_VM_thread()
  2781          || (   CMSScavengeBeforeRemark
  2782              && Thread::current()->is_ConcurrentGC_thread()),
  2783          "Incorrect thread type for epilogue execution");
  2785   if (!_between_prologue_and_epilogue) {
  2786     // We have already been invoked; this is a gc_epilogue delegation
  2787     // from yet another CMS generation that we are responsible for, just
  2788     // ignore it since all relevant work has already been done.
  2789     return;
  2791   assert(haveFreelistLocks(), "must have freelist locks");
  2792   assert_lock_strong(bitMapLock());
  2794   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
  2796   _cmsGen->gc_epilogue_work(full);
  2798   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2799     // in case sampling was not already enabled, enable it
  2800     _start_sampling = true;
  2802   // reset _eden_chunk_array so sampling starts afresh
  2803   _eden_chunk_index = 0;
  2805   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2807   // update performance counters - this uses a special version of
  2808   // update_counters() that allows the utilization to be passed as a
  2809   // parameter, avoiding multiple calls to used().
  2810   //
  2811   _cmsGen->update_counters(cms_used);
  2813   if (CMSIncrementalMode) {
  2814     icms_update_allocation_limits();
  2817   bitMapLock()->unlock();
  2818   releaseFreelistLocks();
  2820   if (!CleanChunkPoolAsync) {
  2821     Chunk::clean_chunk_pool();
  2824   set_did_compact(false);
  2825   _between_prologue_and_epilogue = false;  // ready for next cycle
  2828 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2829   collector()->gc_epilogue(full);
  2831   // Also reset promotion tracking in par gc thread states.
  2832   if (CollectedHeap::use_parallel_gc_threads()) {
  2833     for (uint i = 0; i < ParallelGCThreads; i++) {
  2834       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
  2839 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2840   assert(!incremental_collection_failed(), "Should have been cleared");
  2841   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2842   cmsSpace()->gc_epilogue();
  2843     // Print stat counters
  2844   NOT_PRODUCT(
  2845     assert(_numObjectsAllocated == 0, "check");
  2846     assert(_numWordsAllocated == 0, "check");
  2847     if (Verbose && PrintGC) {
  2848       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2849                           SIZE_FORMAT" bytes",
  2850                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2852     _numObjectsPromoted = 0;
  2853     _numWordsPromoted   = 0;
  2856   if (PrintGC && Verbose) {
  2857     // Call down the chain in contiguous_available needs the freelistLock
  2858     // so print this out before releasing the freeListLock.
  2859     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2860                         contiguous_available());
  2864 #ifndef PRODUCT
  2865 bool CMSCollector::have_cms_token() {
  2866   Thread* thr = Thread::current();
  2867   if (thr->is_VM_thread()) {
  2868     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2869   } else if (thr->is_ConcurrentGC_thread()) {
  2870     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2871   } else if (thr->is_GC_task_thread()) {
  2872     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2873            ParGCRareEvent_lock->owned_by_self();
  2875   return false;
  2877 #endif
  2879 // Check reachability of the given heap address in CMS generation,
  2880 // treating all other generations as roots.
  2881 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2882   // We could "guarantee" below, rather than assert, but i'll
  2883   // leave these as "asserts" so that an adventurous debugger
  2884   // could try this in the product build provided some subset of
  2885   // the conditions were met, provided they were intersted in the
  2886   // results and knew that the computation below wouldn't interfere
  2887   // with other concurrent computations mutating the structures
  2888   // being read or written.
  2889   assert(SafepointSynchronize::is_at_safepoint(),
  2890          "Else mutations in object graph will make answer suspect");
  2891   assert(have_cms_token(), "Should hold cms token");
  2892   assert(haveFreelistLocks(), "must hold free list locks");
  2893   assert_lock_strong(bitMapLock());
  2895   // Clear the marking bit map array before starting, but, just
  2896   // for kicks, first report if the given address is already marked
  2897   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2898                 _markBitMap.isMarked(addr) ? "" : " not");
  2900   if (verify_after_remark()) {
  2901     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2902     bool result = verification_mark_bm()->isMarked(addr);
  2903     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2904                            result ? "IS" : "is NOT");
  2905     return result;
  2906   } else {
  2907     gclog_or_tty->print_cr("Could not compute result");
  2908     return false;
  2913 void
  2914 CMSCollector::print_on_error(outputStream* st) {
  2915   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
  2916   if (collector != NULL) {
  2917     CMSBitMap* bitmap = &collector->_markBitMap;
  2918     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
  2919     bitmap->print_on_error(st, " Bits: ");
  2921     st->cr();
  2923     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
  2924     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
  2925     mut_bitmap->print_on_error(st, " Bits: ");
  2929 ////////////////////////////////////////////////////////
  2930 // CMS Verification Support
  2931 ////////////////////////////////////////////////////////
  2932 // Following the remark phase, the following invariant
  2933 // should hold -- each object in the CMS heap which is
  2934 // marked in markBitMap() should be marked in the verification_mark_bm().
  2936 class VerifyMarkedClosure: public BitMapClosure {
  2937   CMSBitMap* _marks;
  2938   bool       _failed;
  2940  public:
  2941   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2943   bool do_bit(size_t offset) {
  2944     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2945     if (!_marks->isMarked(addr)) {
  2946       oop(addr)->print_on(gclog_or_tty);
  2947       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2948       _failed = true;
  2950     return true;
  2953   bool failed() { return _failed; }
  2954 };
  2956 bool CMSCollector::verify_after_remark(bool silent) {
  2957   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
  2958   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2959   static bool init = false;
  2961   assert(SafepointSynchronize::is_at_safepoint(),
  2962          "Else mutations in object graph will make answer suspect");
  2963   assert(have_cms_token(),
  2964          "Else there may be mutual interference in use of "
  2965          " verification data structures");
  2966   assert(_collectorState > Marking && _collectorState <= Sweeping,
  2967          "Else marking info checked here may be obsolete");
  2968   assert(haveFreelistLocks(), "must hold free list locks");
  2969   assert_lock_strong(bitMapLock());
  2972   // Allocate marking bit map if not already allocated
  2973   if (!init) { // first time
  2974     if (!verification_mark_bm()->allocate(_span)) {
  2975       return false;
  2977     init = true;
  2980   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  2982   // Turn off refs discovery -- so we will be tracing through refs.
  2983   // This is as intended, because by this time
  2984   // GC must already have cleared any refs that need to be cleared,
  2985   // and traced those that need to be marked; moreover,
  2986   // the marking done here is not going to intefere in any
  2987   // way with the marking information used by GC.
  2988   NoRefDiscovery no_discovery(ref_processor());
  2990   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  2992   // Clear any marks from a previous round
  2993   verification_mark_bm()->clear_all();
  2994   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  2995   verify_work_stacks_empty();
  2997   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2998   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  2999   // Update the saved marks which may affect the root scans.
  3000   gch->save_marks();
  3002   if (CMSRemarkVerifyVariant == 1) {
  3003     // In this first variant of verification, we complete
  3004     // all marking, then check if the new marks-verctor is
  3005     // a subset of the CMS marks-vector.
  3006     verify_after_remark_work_1();
  3007   } else if (CMSRemarkVerifyVariant == 2) {
  3008     // In this second variant of verification, we flag an error
  3009     // (i.e. an object reachable in the new marks-vector not reachable
  3010     // in the CMS marks-vector) immediately, also indicating the
  3011     // identify of an object (A) that references the unmarked object (B) --
  3012     // presumably, a mutation to A failed to be picked up by preclean/remark?
  3013     verify_after_remark_work_2();
  3014   } else {
  3015     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  3016             CMSRemarkVerifyVariant);
  3018   if (!silent) gclog_or_tty->print(" done] ");
  3019   return true;
  3022 void CMSCollector::verify_after_remark_work_1() {
  3023   ResourceMark rm;
  3024   HandleMark  hm;
  3025   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3027   // Get a clear set of claim bits for the strong roots processing to work with.
  3028   ClassLoaderDataGraph::clear_claimed_marks();
  3030   // Mark from roots one level into CMS
  3031   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
  3032   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3034   gch->gen_process_strong_roots(_cmsGen->level(),
  3035                                 true,   // younger gens are roots
  3036                                 true,   // activate StrongRootsScope
  3037                                 false,  // not scavenging
  3038                                 SharedHeap::ScanningOption(roots_scanning_options()),
  3039                                 &notOlder,
  3040                                 true,   // walk code active on stacks
  3041                                 NULL,
  3042                                 NULL); // SSS: Provide correct closure
  3044   // Now mark from the roots
  3045   MarkFromRootsClosure markFromRootsClosure(this, _span,
  3046     verification_mark_bm(), verification_mark_stack(),
  3047     false /* don't yield */, true /* verifying */);
  3048   assert(_restart_addr == NULL, "Expected pre-condition");
  3049   verification_mark_bm()->iterate(&markFromRootsClosure);
  3050   while (_restart_addr != NULL) {
  3051     // Deal with stack overflow: by restarting at the indicated
  3052     // address.
  3053     HeapWord* ra = _restart_addr;
  3054     markFromRootsClosure.reset(ra);
  3055     _restart_addr = NULL;
  3056     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  3058   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  3059   verify_work_stacks_empty();
  3061   // Marking completed -- now verify that each bit marked in
  3062   // verification_mark_bm() is also marked in markBitMap(); flag all
  3063   // errors by printing corresponding objects.
  3064   VerifyMarkedClosure vcl(markBitMap());
  3065   verification_mark_bm()->iterate(&vcl);
  3066   if (vcl.failed()) {
  3067     gclog_or_tty->print("Verification failed");
  3068     Universe::heap()->print_on(gclog_or_tty);
  3069     fatal("CMS: failed marking verification after remark");
  3073 class VerifyKlassOopsKlassClosure : public KlassClosure {
  3074   class VerifyKlassOopsClosure : public OopClosure {
  3075     CMSBitMap* _bitmap;
  3076    public:
  3077     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
  3078     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
  3079     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  3080   } _oop_closure;
  3081  public:
  3082   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
  3083   void do_klass(Klass* k) {
  3084     k->oops_do(&_oop_closure);
  3086 };
  3088 void CMSCollector::verify_after_remark_work_2() {
  3089   ResourceMark rm;
  3090   HandleMark  hm;
  3091   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3093   // Get a clear set of claim bits for the strong roots processing to work with.
  3094   ClassLoaderDataGraph::clear_claimed_marks();
  3096   // Mark from roots one level into CMS
  3097   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  3098                                      markBitMap());
  3099   CMKlassClosure klass_closure(&notOlder);
  3101   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3102   gch->gen_process_strong_roots(_cmsGen->level(),
  3103                                 true,   // younger gens are roots
  3104                                 true,   // activate StrongRootsScope
  3105                                 false,  // not scavenging
  3106                                 SharedHeap::ScanningOption(roots_scanning_options()),
  3107                                 &notOlder,
  3108                                 true,   // walk code active on stacks
  3109                                 NULL,
  3110                                 &klass_closure);
  3112   // Now mark from the roots
  3113   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  3114     verification_mark_bm(), markBitMap(), verification_mark_stack());
  3115   assert(_restart_addr == NULL, "Expected pre-condition");
  3116   verification_mark_bm()->iterate(&markFromRootsClosure);
  3117   while (_restart_addr != NULL) {
  3118     // Deal with stack overflow: by restarting at the indicated
  3119     // address.
  3120     HeapWord* ra = _restart_addr;
  3121     markFromRootsClosure.reset(ra);
  3122     _restart_addr = NULL;
  3123     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  3125   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  3126   verify_work_stacks_empty();
  3128   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
  3129   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
  3131   // Marking completed -- now verify that each bit marked in
  3132   // verification_mark_bm() is also marked in markBitMap(); flag all
  3133   // errors by printing corresponding objects.
  3134   VerifyMarkedClosure vcl(markBitMap());
  3135   verification_mark_bm()->iterate(&vcl);
  3136   assert(!vcl.failed(), "Else verification above should not have succeeded");
  3139 void ConcurrentMarkSweepGeneration::save_marks() {
  3140   // delegate to CMS space
  3141   cmsSpace()->save_marks();
  3142   for (uint i = 0; i < ParallelGCThreads; i++) {
  3143     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  3147 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  3148   return cmsSpace()->no_allocs_since_save_marks();
  3151 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  3153 void ConcurrentMarkSweepGeneration::                            \
  3154 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  3155   cl->set_generation(this);                                     \
  3156   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  3157   cl->reset_generation();                                       \
  3158   save_marks();                                                 \
  3161 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  3163 void
  3164 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  3165   cl->set_generation(this);
  3166   younger_refs_in_space_iterate(_cmsSpace, cl);
  3167   cl->reset_generation();
  3170 void
  3171 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
  3172   if (freelistLock()->owned_by_self()) {
  3173     Generation::oop_iterate(mr, cl);
  3174   } else {
  3175     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3176     Generation::oop_iterate(mr, cl);
  3180 void
  3181 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
  3182   if (freelistLock()->owned_by_self()) {
  3183     Generation::oop_iterate(cl);
  3184   } else {
  3185     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3186     Generation::oop_iterate(cl);
  3190 void
  3191 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  3192   if (freelistLock()->owned_by_self()) {
  3193     Generation::object_iterate(cl);
  3194   } else {
  3195     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3196     Generation::object_iterate(cl);
  3200 void
  3201 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
  3202   if (freelistLock()->owned_by_self()) {
  3203     Generation::safe_object_iterate(cl);
  3204   } else {
  3205     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3206     Generation::safe_object_iterate(cl);
  3210 void
  3211 ConcurrentMarkSweepGeneration::post_compact() {
  3214 void
  3215 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  3216   // Fix the linear allocation blocks to look like free blocks.
  3218   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3219   // are not called when the heap is verified during universe initialization and
  3220   // at vm shutdown.
  3221   if (freelistLock()->owned_by_self()) {
  3222     cmsSpace()->prepare_for_verify();
  3223   } else {
  3224     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3225     cmsSpace()->prepare_for_verify();
  3229 void
  3230 ConcurrentMarkSweepGeneration::verify() {
  3231   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3232   // are not called when the heap is verified during universe initialization and
  3233   // at vm shutdown.
  3234   if (freelistLock()->owned_by_self()) {
  3235     cmsSpace()->verify();
  3236   } else {
  3237     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3238     cmsSpace()->verify();
  3242 void CMSCollector::verify() {
  3243   _cmsGen->verify();
  3246 #ifndef PRODUCT
  3247 bool CMSCollector::overflow_list_is_empty() const {
  3248   assert(_num_par_pushes >= 0, "Inconsistency");
  3249   if (_overflow_list == NULL) {
  3250     assert(_num_par_pushes == 0, "Inconsistency");
  3252   return _overflow_list == NULL;
  3255 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3256 // merely consolidate assertion checks that appear to occur together frequently.
  3257 void CMSCollector::verify_work_stacks_empty() const {
  3258   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3259   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3262 void CMSCollector::verify_overflow_empty() const {
  3263   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3264   assert(no_preserved_marks(), "No preserved marks");
  3266 #endif // PRODUCT
  3268 // Decide if we want to enable class unloading as part of the
  3269 // ensuing concurrent GC cycle. We will collect and
  3270 // unload classes if it's the case that:
  3271 // (1) an explicit gc request has been made and the flag
  3272 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
  3273 // (2) (a) class unloading is enabled at the command line, and
  3274 //     (b) old gen is getting really full
  3275 // NOTE: Provided there is no change in the state of the heap between
  3276 // calls to this method, it should have idempotent results. Moreover,
  3277 // its results should be monotonically increasing (i.e. going from 0 to 1,
  3278 // but not 1 to 0) between successive calls between which the heap was
  3279 // not collected. For the implementation below, it must thus rely on
  3280 // the property that concurrent_cycles_since_last_unload()
  3281 // will not decrease unless a collection cycle happened and that
  3282 // _cmsGen->is_too_full() are
  3283 // themselves also monotonic in that sense. See check_monotonicity()
  3284 // below.
  3285 void CMSCollector::update_should_unload_classes() {
  3286   _should_unload_classes = false;
  3287   // Condition 1 above
  3288   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
  3289     _should_unload_classes = true;
  3290   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
  3291     // Disjuncts 2.b.(i,ii,iii) above
  3292     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
  3293                               CMSClassUnloadingMaxInterval)
  3294                            || _cmsGen->is_too_full();
  3298 bool ConcurrentMarkSweepGeneration::is_too_full() const {
  3299   bool res = should_concurrent_collect();
  3300   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
  3301   return res;
  3304 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3305   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3306                              || VerifyBeforeExit;
  3307   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
  3309   // We set the proper root for this CMS cycle here.
  3310   if (should_unload_classes()) {   // Should unload classes this cycle
  3311     remove_root_scanning_option(SharedHeap::SO_AllClasses);
  3312     add_root_scanning_option(SharedHeap::SO_SystemClasses);
  3313     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3314     set_verifying(should_verify);    // Set verification state for this cycle
  3315     return;                            // Nothing else needs to be done at this time
  3318   // Not unloading classes this cycle
  3319   assert(!should_unload_classes(), "Inconsitency!");
  3320   remove_root_scanning_option(SharedHeap::SO_SystemClasses);
  3321   add_root_scanning_option(SharedHeap::SO_AllClasses);
  3323   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
  3324     // Include symbols, strings and code cache elements to prevent their resurrection.
  3325     add_root_scanning_option(rso);
  3326     set_verifying(true);
  3327   } else if (verifying() && !should_verify) {
  3328     // We were verifying, but some verification flags got disabled.
  3329     set_verifying(false);
  3330     // Exclude symbols, strings and code cache elements from root scanning to
  3331     // reduce IM and RM pauses.
  3332     remove_root_scanning_option(rso);
  3337 #ifndef PRODUCT
  3338 HeapWord* CMSCollector::block_start(const void* p) const {
  3339   const HeapWord* addr = (HeapWord*)p;
  3340   if (_span.contains(p)) {
  3341     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3342       return _cmsGen->cmsSpace()->block_start(p);
  3345   return NULL;
  3347 #endif
  3349 HeapWord*
  3350 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3351                                                    bool   tlab,
  3352                                                    bool   parallel) {
  3353   CMSSynchronousYieldRequest yr;
  3354   assert(!tlab, "Can't deal with TLAB allocation");
  3355   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3356   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3357     CMSExpansionCause::_satisfy_allocation);
  3358   if (GCExpandToAllocateDelayMillis > 0) {
  3359     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3361   return have_lock_and_allocate(word_size, tlab);
  3364 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3365 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3366 // to CardGeneration and share it...
  3367 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
  3368   return CardGeneration::expand(bytes, expand_bytes);
  3371 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3372   CMSExpansionCause::Cause cause)
  3375   bool success = expand(bytes, expand_bytes);
  3377   // remember why we expanded; this information is used
  3378   // by shouldConcurrentCollect() when making decisions on whether to start
  3379   // a new CMS cycle.
  3380   if (success) {
  3381     set_expansion_cause(cause);
  3382     if (PrintGCDetails && Verbose) {
  3383       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3384         CMSExpansionCause::to_string(cause));
  3389 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3390   HeapWord* res = NULL;
  3391   MutexLocker x(ParGCRareEvent_lock);
  3392   while (true) {
  3393     // Expansion by some other thread might make alloc OK now:
  3394     res = ps->lab.alloc(word_sz);
  3395     if (res != NULL) return res;
  3396     // If there's not enough expansion space available, give up.
  3397     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3398       return NULL;
  3400     // Otherwise, we try expansion.
  3401     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3402       CMSExpansionCause::_allocate_par_lab);
  3403     // Now go around the loop and try alloc again;
  3404     // A competing par_promote might beat us to the expansion space,
  3405     // so we may go around the loop again if promotion fails agaion.
  3406     if (GCExpandToAllocateDelayMillis > 0) {
  3407       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3413 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3414   PromotionInfo* promo) {
  3415   MutexLocker x(ParGCRareEvent_lock);
  3416   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3417   while (true) {
  3418     // Expansion by some other thread might make alloc OK now:
  3419     if (promo->ensure_spooling_space()) {
  3420       assert(promo->has_spooling_space(),
  3421              "Post-condition of successful ensure_spooling_space()");
  3422       return true;
  3424     // If there's not enough expansion space available, give up.
  3425     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3426       return false;
  3428     // Otherwise, we try expansion.
  3429     expand(refill_size_bytes, MinHeapDeltaBytes,
  3430       CMSExpansionCause::_allocate_par_spooling_space);
  3431     // Now go around the loop and try alloc again;
  3432     // A competing allocation might beat us to the expansion space,
  3433     // so we may go around the loop again if allocation fails again.
  3434     if (GCExpandToAllocateDelayMillis > 0) {
  3435       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3441 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3442   assert_locked_or_safepoint(ExpandHeap_lock);
  3443   // Shrink committed space
  3444   _virtual_space.shrink_by(bytes);
  3445   // Shrink space; this also shrinks the space's BOT
  3446   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
  3447   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
  3448   // Shrink the shared block offset array
  3449   _bts->resize(new_word_size);
  3450   MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3451   // Shrink the card table
  3452   Universe::heap()->barrier_set()->resize_covered_region(mr);
  3454   if (Verbose && PrintGC) {
  3455     size_t new_mem_size = _virtual_space.committed_size();
  3456     size_t old_mem_size = new_mem_size + bytes;
  3457     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
  3458                   name(), old_mem_size/K, new_mem_size/K);
  3462 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3463   assert_locked_or_safepoint(Heap_lock);
  3464   size_t size = ReservedSpace::page_align_size_down(bytes);
  3465   // Only shrink if a compaction was done so that all the free space
  3466   // in the generation is in a contiguous block at the end.
  3467   if (size > 0 && did_compact()) {
  3468     shrink_by(size);
  3472 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3473   assert_locked_or_safepoint(Heap_lock);
  3474   bool result = _virtual_space.expand_by(bytes);
  3475   if (result) {
  3476     size_t new_word_size =
  3477       heap_word_size(_virtual_space.committed_size());
  3478     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3479     _bts->resize(new_word_size);  // resize the block offset shared array
  3480     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3481     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3482     // This is quite ugly; FIX ME XXX
  3483     _cmsSpace->assert_locked(freelistLock());
  3484     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3486     // update the space and generation capacity counters
  3487     if (UsePerfData) {
  3488       _space_counters->update_capacity();
  3489       _gen_counters->update_all();
  3492     if (Verbose && PrintGC) {
  3493       size_t new_mem_size = _virtual_space.committed_size();
  3494       size_t old_mem_size = new_mem_size - bytes;
  3495       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
  3496                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3499   return result;
  3502 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3503   assert_locked_or_safepoint(Heap_lock);
  3504   bool success = true;
  3505   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3506   if (remaining_bytes > 0) {
  3507     success = grow_by(remaining_bytes);
  3508     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3510   return success;
  3513 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
  3514   assert_locked_or_safepoint(Heap_lock);
  3515   assert_lock_strong(freelistLock());
  3516   if (PrintGCDetails && Verbose) {
  3517     warning("Shrinking of CMS not yet implemented");
  3519   return;
  3523 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3524 // phases.
  3525 class CMSPhaseAccounting: public StackObj {
  3526  public:
  3527   CMSPhaseAccounting(CMSCollector *collector,
  3528                      const char *phase,
  3529                      bool print_cr = true);
  3530   ~CMSPhaseAccounting();
  3532  private:
  3533   CMSCollector *_collector;
  3534   const char *_phase;
  3535   elapsedTimer _wallclock;
  3536   bool _print_cr;
  3538  public:
  3539   // Not MT-safe; so do not pass around these StackObj's
  3540   // where they may be accessed by other threads.
  3541   jlong wallclock_millis() {
  3542     assert(_wallclock.is_active(), "Wall clock should not stop");
  3543     _wallclock.stop();  // to record time
  3544     jlong ret = _wallclock.milliseconds();
  3545     _wallclock.start(); // restart
  3546     return ret;
  3548 };
  3550 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3551                                        const char *phase,
  3552                                        bool print_cr) :
  3553   _collector(collector), _phase(phase), _print_cr(print_cr) {
  3555   if (PrintCMSStatistics != 0) {
  3556     _collector->resetYields();
  3558   if (PrintGCDetails) {
  3559     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3560     gclog_or_tty->stamp(PrintGCTimeStamps);
  3561     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
  3562       _collector->cmsGen()->short_name(), _phase);
  3564   _collector->resetTimer();
  3565   _wallclock.start();
  3566   _collector->startTimer();
  3569 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3570   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3571   _collector->stopTimer();
  3572   _wallclock.stop();
  3573   if (PrintGCDetails) {
  3574     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3575     gclog_or_tty->stamp(PrintGCTimeStamps);
  3576     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3577                  _collector->cmsGen()->short_name(),
  3578                  _phase, _collector->timerValue(), _wallclock.seconds());
  3579     if (_print_cr) {
  3580       gclog_or_tty->print_cr("");
  3582     if (PrintCMSStatistics != 0) {
  3583       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3584                     _collector->yields());
  3589 // CMS work
  3591 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
  3592 class CMSParMarkTask : public AbstractGangTask {
  3593  protected:
  3594   CMSCollector*     _collector;
  3595   int               _n_workers;
  3596   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
  3597       AbstractGangTask(name),
  3598       _collector(collector),
  3599       _n_workers(n_workers) {}
  3600   // Work method in support of parallel rescan ... of young gen spaces
  3601   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
  3602                              ContiguousSpace* space,
  3603                              HeapWord** chunk_array, size_t chunk_top);
  3604   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
  3605 };
  3607 // Parallel initial mark task
  3608 class CMSParInitialMarkTask: public CMSParMarkTask {
  3609  public:
  3610   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
  3611       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
  3612                      collector, n_workers) {}
  3613   void work(uint worker_id);
  3614 };
  3616 // Checkpoint the roots into this generation from outside
  3617 // this generation. [Note this initial checkpoint need only
  3618 // be approximate -- we'll do a catch up phase subsequently.]
  3619 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3620   assert(_collectorState == InitialMarking, "Wrong collector state");
  3621   check_correct_thread_executing();
  3622   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
  3624   save_heap_summary();
  3625   report_heap_summary(GCWhen::BeforeGC);
  3627   ReferenceProcessor* rp = ref_processor();
  3628   SpecializationStats::clear();
  3629   assert(_restart_addr == NULL, "Control point invariant");
  3630   if (asynch) {
  3631     // acquire locks for subsequent manipulations
  3632     MutexLockerEx x(bitMapLock(),
  3633                     Mutex::_no_safepoint_check_flag);
  3634     checkpointRootsInitialWork(asynch);
  3635     // enable ("weak") refs discovery
  3636     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
  3637     _collectorState = Marking;
  3638   } else {
  3639     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3640     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3641     // discovery; verify that they aren't meddling.
  3642     assert(!rp->discovery_is_atomic(),
  3643            "incorrect setting of discovery predicate");
  3644     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3645            "ref discovery for this generation kind");
  3646     // already have locks
  3647     checkpointRootsInitialWork(asynch);
  3648     // now enable ("weak") refs discovery
  3649     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
  3650     _collectorState = Marking;
  3652   SpecializationStats::print();
  3655 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3656   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3657   assert(_collectorState == InitialMarking, "just checking");
  3659   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3660   // precede our marking with a collection of all
  3661   // younger generations to keep floating garbage to a minimum.
  3662   // XXX: we won't do this for now -- it's an optimization to be done later.
  3664   // already have locks
  3665   assert_lock_strong(bitMapLock());
  3666   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3668   // Setup the verification and class unloading state for this
  3669   // CMS collection cycle.
  3670   setup_cms_unloading_and_verification_state();
  3672   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
  3673     PrintGCDetails && Verbose, true, _gc_timer_cm);)
  3674   if (UseAdaptiveSizePolicy) {
  3675     size_policy()->checkpoint_roots_initial_begin();
  3678   // Reset all the PLAB chunk arrays if necessary.
  3679   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3680     reset_survivor_plab_arrays();
  3683   ResourceMark rm;
  3684   HandleMark  hm;
  3686   FalseClosure falseClosure;
  3687   // In the case of a synchronous collection, we will elide the
  3688   // remark step, so it's important to catch all the nmethod oops
  3689   // in this step.
  3690   // The final 'true' flag to gen_process_strong_roots will ensure this.
  3691   // If 'async' is true, we can relax the nmethod tracing.
  3692   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
  3693   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3695   verify_work_stacks_empty();
  3696   verify_overflow_empty();
  3698   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3699   // Update the saved marks which may affect the root scans.
  3700   gch->save_marks();
  3702   // weak reference processing has not started yet.
  3703   ref_processor()->set_enqueuing_is_done(false);
  3705   // Need to remember all newly created CLDs,
  3706   // so that we can guarantee that the remark finds them.
  3707   ClassLoaderDataGraph::remember_new_clds(true);
  3709   // Whenever a CLD is found, it will be claimed before proceeding to mark
  3710   // the klasses. The claimed marks need to be cleared before marking starts.
  3711   ClassLoaderDataGraph::clear_claimed_marks();
  3713   if (CMSPrintEdenSurvivorChunks) {
  3714     print_eden_and_survivor_chunk_arrays();
  3718     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3719     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
  3720       // The parallel version.
  3721       FlexibleWorkGang* workers = gch->workers();
  3722       assert(workers != NULL, "Need parallel worker threads.");
  3723       int n_workers = workers->active_workers();
  3724       CMSParInitialMarkTask tsk(this, n_workers);
  3725       gch->set_par_threads(n_workers);
  3726       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  3727       if (n_workers > 1) {
  3728         GenCollectedHeap::StrongRootsScope srs(gch);
  3729         workers->run_task(&tsk);
  3730       } else {
  3731         GenCollectedHeap::StrongRootsScope srs(gch);
  3732         tsk.work(0);
  3734       gch->set_par_threads(0);
  3735     } else {
  3736       // The serial version.
  3737       CMKlassClosure klass_closure(&notOlder);
  3738       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3739       gch->gen_process_strong_roots(_cmsGen->level(),
  3740                                     true,   // younger gens are roots
  3741                                     true,   // activate StrongRootsScope
  3742                                     false,  // not scavenging
  3743                                     SharedHeap::ScanningOption(roots_scanning_options()),
  3744                                     &notOlder,
  3745                                     true,   // walk all of code cache if (so & SO_CodeCache)
  3746                                     NULL,
  3747                                     &klass_closure);
  3751   // Clear mod-union table; it will be dirtied in the prologue of
  3752   // CMS generation per each younger generation collection.
  3754   assert(_modUnionTable.isAllClear(),
  3755        "Was cleared in most recent final checkpoint phase"
  3756        " or no bits are set in the gc_prologue before the start of the next "
  3757        "subsequent marking phase.");
  3759   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
  3761   // Save the end of the used_region of the constituent generations
  3762   // to be used to limit the extent of sweep in each generation.
  3763   save_sweep_limits();
  3764   if (UseAdaptiveSizePolicy) {
  3765     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3767   verify_overflow_empty();
  3770 bool CMSCollector::markFromRoots(bool asynch) {
  3771   // we might be tempted to assert that:
  3772   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3773   //        "inconsistent argument?");
  3774   // However that wouldn't be right, because it's possible that
  3775   // a safepoint is indeed in progress as a younger generation
  3776   // stop-the-world GC happens even as we mark in this generation.
  3777   assert(_collectorState == Marking, "inconsistent state?");
  3778   check_correct_thread_executing();
  3779   verify_overflow_empty();
  3781   bool res;
  3782   if (asynch) {
  3784     // Start the timers for adaptive size policy for the concurrent phases
  3785     // Do it here so that the foreground MS can use the concurrent
  3786     // timer since a foreground MS might has the sweep done concurrently
  3787     // or STW.
  3788     if (UseAdaptiveSizePolicy) {
  3789       size_policy()->concurrent_marking_begin();
  3792     // Weak ref discovery note: We may be discovering weak
  3793     // refs in this generation concurrent (but interleaved) with
  3794     // weak ref discovery by a younger generation collector.
  3796     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3797     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3798     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  3799     res = markFromRootsWork(asynch);
  3800     if (res) {
  3801       _collectorState = Precleaning;
  3802     } else { // We failed and a foreground collection wants to take over
  3803       assert(_foregroundGCIsActive, "internal state inconsistency");
  3804       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3805       if (PrintGCDetails) {
  3806         gclog_or_tty->print_cr("bailing out to foreground collection");
  3809     if (UseAdaptiveSizePolicy) {
  3810       size_policy()->concurrent_marking_end();
  3812   } else {
  3813     assert(SafepointSynchronize::is_at_safepoint(),
  3814            "inconsistent with asynch == false");
  3815     if (UseAdaptiveSizePolicy) {
  3816       size_policy()->ms_collection_marking_begin();
  3818     // already have locks
  3819     res = markFromRootsWork(asynch);
  3820     _collectorState = FinalMarking;
  3821     if (UseAdaptiveSizePolicy) {
  3822       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3823       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3826   verify_overflow_empty();
  3827   return res;
  3830 bool CMSCollector::markFromRootsWork(bool asynch) {
  3831   // iterate over marked bits in bit map, doing a full scan and mark
  3832   // from these roots using the following algorithm:
  3833   // . if oop is to the right of the current scan pointer,
  3834   //   mark corresponding bit (we'll process it later)
  3835   // . else (oop is to left of current scan pointer)
  3836   //   push oop on marking stack
  3837   // . drain the marking stack
  3839   // Note that when we do a marking step we need to hold the
  3840   // bit map lock -- recall that direct allocation (by mutators)
  3841   // and promotion (by younger generation collectors) is also
  3842   // marking the bit map. [the so-called allocate live policy.]
  3843   // Because the implementation of bit map marking is not
  3844   // robust wrt simultaneous marking of bits in the same word,
  3845   // we need to make sure that there is no such interference
  3846   // between concurrent such updates.
  3848   // already have locks
  3849   assert_lock_strong(bitMapLock());
  3851   verify_work_stacks_empty();
  3852   verify_overflow_empty();
  3853   bool result = false;
  3854   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
  3855     result = do_marking_mt(asynch);
  3856   } else {
  3857     result = do_marking_st(asynch);
  3859   return result;
  3862 // Forward decl
  3863 class CMSConcMarkingTask;
  3865 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3866   CMSCollector*       _collector;
  3867   CMSConcMarkingTask* _task;
  3868  public:
  3869   virtual void yield();
  3871   // "n_threads" is the number of threads to be terminated.
  3872   // "queue_set" is a set of work queues of other threads.
  3873   // "collector" is the CMS collector associated with this task terminator.
  3874   // "yield" indicates whether we need the gang as a whole to yield.
  3875   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
  3876     ParallelTaskTerminator(n_threads, queue_set),
  3877     _collector(collector) { }
  3879   void set_task(CMSConcMarkingTask* task) {
  3880     _task = task;
  3882 };
  3884 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
  3885   CMSConcMarkingTask* _task;
  3886  public:
  3887   bool should_exit_termination();
  3888   void set_task(CMSConcMarkingTask* task) {
  3889     _task = task;
  3891 };
  3893 // MT Concurrent Marking Task
  3894 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3895   CMSCollector* _collector;
  3896   int           _n_workers;                  // requested/desired # workers
  3897   bool          _asynch;
  3898   bool          _result;
  3899   CompactibleFreeListSpace*  _cms_space;
  3900   char          _pad_front[64];   // padding to ...
  3901   HeapWord*     _global_finger;   // ... avoid sharing cache line
  3902   char          _pad_back[64];
  3903   HeapWord*     _restart_addr;
  3905   //  Exposed here for yielding support
  3906   Mutex* const _bit_map_lock;
  3908   // The per thread work queues, available here for stealing
  3909   OopTaskQueueSet*  _task_queues;
  3911   // Termination (and yielding) support
  3912   CMSConcMarkingTerminator _term;
  3913   CMSConcMarkingTerminatorTerminator _term_term;
  3915  public:
  3916   CMSConcMarkingTask(CMSCollector* collector,
  3917                  CompactibleFreeListSpace* cms_space,
  3918                  bool asynch,
  3919                  YieldingFlexibleWorkGang* workers,
  3920                  OopTaskQueueSet* task_queues):
  3921     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3922     _collector(collector),
  3923     _cms_space(cms_space),
  3924     _asynch(asynch), _n_workers(0), _result(true),
  3925     _task_queues(task_queues),
  3926     _term(_n_workers, task_queues, _collector),
  3927     _bit_map_lock(collector->bitMapLock())
  3929     _requested_size = _n_workers;
  3930     _term.set_task(this);
  3931     _term_term.set_task(this);
  3932     _restart_addr = _global_finger = _cms_space->bottom();
  3936   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3938   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3940   HeapWord** global_finger_addr() { return &_global_finger; }
  3942   CMSConcMarkingTerminator* terminator() { return &_term; }
  3944   virtual void set_for_termination(int active_workers) {
  3945     terminator()->reset_for_reuse(active_workers);
  3948   void work(uint worker_id);
  3949   bool should_yield() {
  3950     return    ConcurrentMarkSweepThread::should_yield()
  3951            && !_collector->foregroundGCIsActive()
  3952            && _asynch;
  3955   virtual void coordinator_yield();  // stuff done by coordinator
  3956   bool result() { return _result; }
  3958   void reset(HeapWord* ra) {
  3959     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
  3960     _restart_addr = _global_finger = ra;
  3961     _term.reset_for_reuse();
  3964   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3965                                            OopTaskQueue* work_q);
  3967  private:
  3968   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3969   void do_work_steal(int i);
  3970   void bump_global_finger(HeapWord* f);
  3971 };
  3973 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
  3974   assert(_task != NULL, "Error");
  3975   return _task->yielding();
  3976   // Note that we do not need the disjunct || _task->should_yield() above
  3977   // because we want terminating threads to yield only if the task
  3978   // is already in the midst of yielding, which happens only after at least one
  3979   // thread has yielded.
  3982 void CMSConcMarkingTerminator::yield() {
  3983   if (_task->should_yield()) {
  3984     _task->yield();
  3985   } else {
  3986     ParallelTaskTerminator::yield();
  3990 ////////////////////////////////////////////////////////////////
  3991 // Concurrent Marking Algorithm Sketch
  3992 ////////////////////////////////////////////////////////////////
  3993 // Until all tasks exhausted (both spaces):
  3994 // -- claim next available chunk
  3995 // -- bump global finger via CAS
  3996 // -- find first object that starts in this chunk
  3997 //    and start scanning bitmap from that position
  3998 // -- scan marked objects for oops
  3999 // -- CAS-mark target, and if successful:
  4000 //    . if target oop is above global finger (volatile read)
  4001 //      nothing to do
  4002 //    . if target oop is in chunk and above local finger
  4003 //        then nothing to do
  4004 //    . else push on work-queue
  4005 // -- Deal with possible overflow issues:
  4006 //    . local work-queue overflow causes stuff to be pushed on
  4007 //      global (common) overflow queue
  4008 //    . always first empty local work queue
  4009 //    . then get a batch of oops from global work queue if any
  4010 //    . then do work stealing
  4011 // -- When all tasks claimed (both spaces)
  4012 //    and local work queue empty,
  4013 //    then in a loop do:
  4014 //    . check global overflow stack; steal a batch of oops and trace
  4015 //    . try to steal from other threads oif GOS is empty
  4016 //    . if neither is available, offer termination
  4017 // -- Terminate and return result
  4018 //
  4019 void CMSConcMarkingTask::work(uint worker_id) {
  4020   elapsedTimer _timer;
  4021   ResourceMark rm;
  4022   HandleMark hm;
  4024   DEBUG_ONLY(_collector->verify_overflow_empty();)
  4026   // Before we begin work, our work queue should be empty
  4027   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
  4028   // Scan the bitmap covering _cms_space, tracing through grey objects.
  4029   _timer.start();
  4030   do_scan_and_mark(worker_id, _cms_space);
  4031   _timer.stop();
  4032   if (PrintCMSStatistics != 0) {
  4033     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  4034       worker_id, _timer.seconds());
  4035       // XXX: need xxx/xxx type of notation, two timers
  4038   // ... do work stealing
  4039   _timer.reset();
  4040   _timer.start();
  4041   do_work_steal(worker_id);
  4042   _timer.stop();
  4043   if (PrintCMSStatistics != 0) {
  4044     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  4045       worker_id, _timer.seconds());
  4046       // XXX: need xxx/xxx type of notation, two timers
  4048   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  4049   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
  4050   // Note that under the current task protocol, the
  4051   // following assertion is true even of the spaces
  4052   // expanded since the completion of the concurrent
  4053   // marking. XXX This will likely change under a strict
  4054   // ABORT semantics.
  4055   // After perm removal the comparison was changed to
  4056   // greater than or equal to from strictly greater than.
  4057   // Before perm removal the highest address sweep would
  4058   // have been at the end of perm gen but now is at the
  4059   // end of the tenured gen.
  4060   assert(_global_finger >=  _cms_space->end(),
  4061          "All tasks have been completed");
  4062   DEBUG_ONLY(_collector->verify_overflow_empty();)
  4065 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  4066   HeapWord* read = _global_finger;
  4067   HeapWord* cur  = read;
  4068   while (f > read) {
  4069     cur = read;
  4070     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  4071     if (cur == read) {
  4072       // our cas succeeded
  4073       assert(_global_finger >= f, "protocol consistency");
  4074       break;
  4079 // This is really inefficient, and should be redone by
  4080 // using (not yet available) block-read and -write interfaces to the
  4081 // stack and the work_queue. XXX FIX ME !!!
  4082 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  4083                                                       OopTaskQueue* work_q) {
  4084   // Fast lock-free check
  4085   if (ovflw_stk->length() == 0) {
  4086     return false;
  4088   assert(work_q->size() == 0, "Shouldn't steal");
  4089   MutexLockerEx ml(ovflw_stk->par_lock(),
  4090                    Mutex::_no_safepoint_check_flag);
  4091   // Grab up to 1/4 the size of the work queue
  4092   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  4093                     (size_t)ParGCDesiredObjsFromOverflowList);
  4094   num = MIN2(num, ovflw_stk->length());
  4095   for (int i = (int) num; i > 0; i--) {
  4096     oop cur = ovflw_stk->pop();
  4097     assert(cur != NULL, "Counted wrong?");
  4098     work_q->push(cur);
  4100   return num > 0;
  4103 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  4104   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  4105   int n_tasks = pst->n_tasks();
  4106   // We allow that there may be no tasks to do here because
  4107   // we are restarting after a stack overflow.
  4108   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
  4109   uint nth_task = 0;
  4111   HeapWord* aligned_start = sp->bottom();
  4112   if (sp->used_region().contains(_restart_addr)) {
  4113     // Align down to a card boundary for the start of 0th task
  4114     // for this space.
  4115     aligned_start =
  4116       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
  4117                                  CardTableModRefBS::card_size);
  4120   size_t chunk_size = sp->marking_task_size();
  4121   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  4122     // Having claimed the nth task in this space,
  4123     // compute the chunk that it corresponds to:
  4124     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
  4125                                aligned_start + (nth_task+1)*chunk_size);
  4126     // Try and bump the global finger via a CAS;
  4127     // note that we need to do the global finger bump
  4128     // _before_ taking the intersection below, because
  4129     // the task corresponding to that region will be
  4130     // deemed done even if the used_region() expands
  4131     // because of allocation -- as it almost certainly will
  4132     // during start-up while the threads yield in the
  4133     // closure below.
  4134     HeapWord* finger = span.end();
  4135     bump_global_finger(finger);   // atomically
  4136     // There are null tasks here corresponding to chunks
  4137     // beyond the "top" address of the space.
  4138     span = span.intersection(sp->used_region());
  4139     if (!span.is_empty()) {  // Non-null task
  4140       HeapWord* prev_obj;
  4141       assert(!span.contains(_restart_addr) || nth_task == 0,
  4142              "Inconsistency");
  4143       if (nth_task == 0) {
  4144         // For the 0th task, we'll not need to compute a block_start.
  4145         if (span.contains(_restart_addr)) {
  4146           // In the case of a restart because of stack overflow,
  4147           // we might additionally skip a chunk prefix.
  4148           prev_obj = _restart_addr;
  4149         } else {
  4150           prev_obj = span.start();
  4152       } else {
  4153         // We want to skip the first object because
  4154         // the protocol is to scan any object in its entirety
  4155         // that _starts_ in this span; a fortiori, any
  4156         // object starting in an earlier span is scanned
  4157         // as part of an earlier claimed task.
  4158         // Below we use the "careful" version of block_start
  4159         // so we do not try to navigate uninitialized objects.
  4160         prev_obj = sp->block_start_careful(span.start());
  4161         // Below we use a variant of block_size that uses the
  4162         // Printezis bits to avoid waiting for allocated
  4163         // objects to become initialized/parsable.
  4164         while (prev_obj < span.start()) {
  4165           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  4166           if (sz > 0) {
  4167             prev_obj += sz;
  4168           } else {
  4169             // In this case we may end up doing a bit of redundant
  4170             // scanning, but that appears unavoidable, short of
  4171             // locking the free list locks; see bug 6324141.
  4172             break;
  4176       if (prev_obj < span.end()) {
  4177         MemRegion my_span = MemRegion(prev_obj, span.end());
  4178         // Do the marking work within a non-empty span --
  4179         // the last argument to the constructor indicates whether the
  4180         // iteration should be incremental with periodic yields.
  4181         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  4182                                     &_collector->_markBitMap,
  4183                                     work_queue(i),
  4184                                     &_collector->_markStack,
  4185                                     _asynch);
  4186         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  4187       } // else nothing to do for this task
  4188     }   // else nothing to do for this task
  4190   // We'd be tempted to assert here that since there are no
  4191   // more tasks left to claim in this space, the global_finger
  4192   // must exceed space->top() and a fortiori space->end(). However,
  4193   // that would not quite be correct because the bumping of
  4194   // global_finger occurs strictly after the claiming of a task,
  4195   // so by the time we reach here the global finger may not yet
  4196   // have been bumped up by the thread that claimed the last
  4197   // task.
  4198   pst->all_tasks_completed();
  4201 class Par_ConcMarkingClosure: public CMSOopClosure {
  4202  private:
  4203   CMSCollector* _collector;
  4204   CMSConcMarkingTask* _task;
  4205   MemRegion     _span;
  4206   CMSBitMap*    _bit_map;
  4207   CMSMarkStack* _overflow_stack;
  4208   OopTaskQueue* _work_queue;
  4209  protected:
  4210   DO_OOP_WORK_DEFN
  4211  public:
  4212   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
  4213                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
  4214     CMSOopClosure(collector->ref_processor()),
  4215     _collector(collector),
  4216     _task(task),
  4217     _span(collector->_span),
  4218     _work_queue(work_queue),
  4219     _bit_map(bit_map),
  4220     _overflow_stack(overflow_stack)
  4221   { }
  4222   virtual void do_oop(oop* p);
  4223   virtual void do_oop(narrowOop* p);
  4225   void trim_queue(size_t max);
  4226   void handle_stack_overflow(HeapWord* lost);
  4227   void do_yield_check() {
  4228     if (_task->should_yield()) {
  4229       _task->yield();
  4232 };
  4234 // Grey object scanning during work stealing phase --
  4235 // the salient assumption here is that any references
  4236 // that are in these stolen objects being scanned must
  4237 // already have been initialized (else they would not have
  4238 // been published), so we do not need to check for
  4239 // uninitialized objects before pushing here.
  4240 void Par_ConcMarkingClosure::do_oop(oop obj) {
  4241   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  4242   HeapWord* addr = (HeapWord*)obj;
  4243   // Check if oop points into the CMS generation
  4244   // and is not marked
  4245   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  4246     // a white object ...
  4247     // If we manage to "claim" the object, by being the
  4248     // first thread to mark it, then we push it on our
  4249     // marking stack
  4250     if (_bit_map->par_mark(addr)) {     // ... now grey
  4251       // push on work queue (grey set)
  4252       bool simulate_overflow = false;
  4253       NOT_PRODUCT(
  4254         if (CMSMarkStackOverflowALot &&
  4255             _collector->simulate_overflow()) {
  4256           // simulate a stack overflow
  4257           simulate_overflow = true;
  4260       if (simulate_overflow ||
  4261           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  4262         // stack overflow
  4263         if (PrintCMSStatistics != 0) {
  4264           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  4265                                  SIZE_FORMAT, _overflow_stack->capacity());
  4267         // We cannot assert that the overflow stack is full because
  4268         // it may have been emptied since.
  4269         assert(simulate_overflow ||
  4270                _work_queue->size() == _work_queue->max_elems(),
  4271               "Else push should have succeeded");
  4272         handle_stack_overflow(addr);
  4274     } // Else, some other thread got there first
  4275     do_yield_check();
  4279 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
  4280 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
  4282 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  4283   while (_work_queue->size() > max) {
  4284     oop new_oop;
  4285     if (_work_queue->pop_local(new_oop)) {
  4286       assert(new_oop->is_oop(), "Should be an oop");
  4287       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  4288       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  4289       new_oop->oop_iterate(this);  // do_oop() above
  4290       do_yield_check();
  4295 // Upon stack overflow, we discard (part of) the stack,
  4296 // remembering the least address amongst those discarded
  4297 // in CMSCollector's _restart_address.
  4298 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  4299   // We need to do this under a mutex to prevent other
  4300   // workers from interfering with the work done below.
  4301   MutexLockerEx ml(_overflow_stack->par_lock(),
  4302                    Mutex::_no_safepoint_check_flag);
  4303   // Remember the least grey address discarded
  4304   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  4305   _collector->lower_restart_addr(ra);
  4306   _overflow_stack->reset();  // discard stack contents
  4307   _overflow_stack->expand(); // expand the stack if possible
  4311 void CMSConcMarkingTask::do_work_steal(int i) {
  4312   OopTaskQueue* work_q = work_queue(i);
  4313   oop obj_to_scan;
  4314   CMSBitMap* bm = &(_collector->_markBitMap);
  4315   CMSMarkStack* ovflw = &(_collector->_markStack);
  4316   int* seed = _collector->hash_seed(i);
  4317   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
  4318   while (true) {
  4319     cl.trim_queue(0);
  4320     assert(work_q->size() == 0, "Should have been emptied above");
  4321     if (get_work_from_overflow_stack(ovflw, work_q)) {
  4322       // Can't assert below because the work obtained from the
  4323       // overflow stack may already have been stolen from us.
  4324       // assert(work_q->size() > 0, "Work from overflow stack");
  4325       continue;
  4326     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  4327       assert(obj_to_scan->is_oop(), "Should be an oop");
  4328       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  4329       obj_to_scan->oop_iterate(&cl);
  4330     } else if (terminator()->offer_termination(&_term_term)) {
  4331       assert(work_q->size() == 0, "Impossible!");
  4332       break;
  4333     } else if (yielding() || should_yield()) {
  4334       yield();
  4339 // This is run by the CMS (coordinator) thread.
  4340 void CMSConcMarkingTask::coordinator_yield() {
  4341   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4342          "CMS thread should hold CMS token");
  4343   // First give up the locks, then yield, then re-lock
  4344   // We should probably use a constructor/destructor idiom to
  4345   // do this unlock/lock or modify the MutexUnlocker class to
  4346   // serve our purpose. XXX
  4347   assert_lock_strong(_bit_map_lock);
  4348   _bit_map_lock->unlock();
  4349   ConcurrentMarkSweepThread::desynchronize(true);
  4350   ConcurrentMarkSweepThread::acknowledge_yield_request();
  4351   _collector->stopTimer();
  4352   if (PrintCMSStatistics != 0) {
  4353     _collector->incrementYields();
  4355   _collector->icms_wait();
  4357   // It is possible for whichever thread initiated the yield request
  4358   // not to get a chance to wake up and take the bitmap lock between
  4359   // this thread releasing it and reacquiring it. So, while the
  4360   // should_yield() flag is on, let's sleep for a bit to give the
  4361   // other thread a chance to wake up. The limit imposed on the number
  4362   // of iterations is defensive, to avoid any unforseen circumstances
  4363   // putting us into an infinite loop. Since it's always been this
  4364   // (coordinator_yield()) method that was observed to cause the
  4365   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4366   // which is by default non-zero. For the other seven methods that
  4367   // also perform the yield operation, as are using a different
  4368   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4369   // can enable the sleeping for those methods too, if necessary.
  4370   // See 6442774.
  4371   //
  4372   // We really need to reconsider the synchronization between the GC
  4373   // thread and the yield-requesting threads in the future and we
  4374   // should really use wait/notify, which is the recommended
  4375   // way of doing this type of interaction. Additionally, we should
  4376   // consolidate the eight methods that do the yield operation and they
  4377   // are almost identical into one for better maintenability and
  4378   // readability. See 6445193.
  4379   //
  4380   // Tony 2006.06.29
  4381   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4382                    ConcurrentMarkSweepThread::should_yield() &&
  4383                    !CMSCollector::foregroundGCIsActive(); ++i) {
  4384     os::sleep(Thread::current(), 1, false);
  4385     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4388   ConcurrentMarkSweepThread::synchronize(true);
  4389   _bit_map_lock->lock_without_safepoint_check();
  4390   _collector->startTimer();
  4393 bool CMSCollector::do_marking_mt(bool asynch) {
  4394   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
  4395   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
  4396                                        conc_workers()->total_workers(),
  4397                                        conc_workers()->active_workers(),
  4398                                        Threads::number_of_non_daemon_threads());
  4399   conc_workers()->set_active_workers(num_workers);
  4401   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4403   CMSConcMarkingTask tsk(this,
  4404                          cms_space,
  4405                          asynch,
  4406                          conc_workers(),
  4407                          task_queues());
  4409   // Since the actual number of workers we get may be different
  4410   // from the number we requested above, do we need to do anything different
  4411   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4412   // class?? XXX
  4413   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4415   // Refs discovery is already non-atomic.
  4416   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4417   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
  4418   conc_workers()->start_task(&tsk);
  4419   while (tsk.yielded()) {
  4420     tsk.coordinator_yield();
  4421     conc_workers()->continue_task(&tsk);
  4423   // If the task was aborted, _restart_addr will be non-NULL
  4424   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4425   while (_restart_addr != NULL) {
  4426     // XXX For now we do not make use of ABORTED state and have not
  4427     // yet implemented the right abort semantics (even in the original
  4428     // single-threaded CMS case). That needs some more investigation
  4429     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4430     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4431     // If _restart_addr is non-NULL, a marking stack overflow
  4432     // occurred; we need to do a fresh marking iteration from the
  4433     // indicated restart address.
  4434     if (_foregroundGCIsActive && asynch) {
  4435       // We may be running into repeated stack overflows, having
  4436       // reached the limit of the stack size, while making very
  4437       // slow forward progress. It may be best to bail out and
  4438       // let the foreground collector do its job.
  4439       // Clear _restart_addr, so that foreground GC
  4440       // works from scratch. This avoids the headache of
  4441       // a "rescan" which would otherwise be needed because
  4442       // of the dirty mod union table & card table.
  4443       _restart_addr = NULL;
  4444       return false;
  4446     // Adjust the task to restart from _restart_addr
  4447     tsk.reset(_restart_addr);
  4448     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4449                   _restart_addr);
  4450     _restart_addr = NULL;
  4451     // Get the workers going again
  4452     conc_workers()->start_task(&tsk);
  4453     while (tsk.yielded()) {
  4454       tsk.coordinator_yield();
  4455       conc_workers()->continue_task(&tsk);
  4458   assert(tsk.completed(), "Inconsistency");
  4459   assert(tsk.result() == true, "Inconsistency");
  4460   return true;
  4463 bool CMSCollector::do_marking_st(bool asynch) {
  4464   ResourceMark rm;
  4465   HandleMark   hm;
  4467   // Temporarily make refs discovery single threaded (non-MT)
  4468   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
  4469   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4470     &_markStack, CMSYield && asynch);
  4471   // the last argument to iterate indicates whether the iteration
  4472   // should be incremental with periodic yields.
  4473   _markBitMap.iterate(&markFromRootsClosure);
  4474   // If _restart_addr is non-NULL, a marking stack overflow
  4475   // occurred; we need to do a fresh iteration from the
  4476   // indicated restart address.
  4477   while (_restart_addr != NULL) {
  4478     if (_foregroundGCIsActive && asynch) {
  4479       // We may be running into repeated stack overflows, having
  4480       // reached the limit of the stack size, while making very
  4481       // slow forward progress. It may be best to bail out and
  4482       // let the foreground collector do its job.
  4483       // Clear _restart_addr, so that foreground GC
  4484       // works from scratch. This avoids the headache of
  4485       // a "rescan" which would otherwise be needed because
  4486       // of the dirty mod union table & card table.
  4487       _restart_addr = NULL;
  4488       return false;  // indicating failure to complete marking
  4490     // Deal with stack overflow:
  4491     // we restart marking from _restart_addr
  4492     HeapWord* ra = _restart_addr;
  4493     markFromRootsClosure.reset(ra);
  4494     _restart_addr = NULL;
  4495     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4497   return true;
  4500 void CMSCollector::preclean() {
  4501   check_correct_thread_executing();
  4502   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4503   verify_work_stacks_empty();
  4504   verify_overflow_empty();
  4505   _abort_preclean = false;
  4506   if (CMSPrecleaningEnabled) {
  4507     if (!CMSEdenChunksRecordAlways) {
  4508       _eden_chunk_index = 0;
  4510     size_t used = get_eden_used();
  4511     size_t capacity = get_eden_capacity();
  4512     // Don't start sampling unless we will get sufficiently
  4513     // many samples.
  4514     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4515                 * CMSScheduleRemarkEdenPenetration)) {
  4516       _start_sampling = true;
  4517     } else {
  4518       _start_sampling = false;
  4520     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4521     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  4522     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4524   CMSTokenSync x(true); // is cms thread
  4525   if (CMSPrecleaningEnabled) {
  4526     sample_eden();
  4527     _collectorState = AbortablePreclean;
  4528   } else {
  4529     _collectorState = FinalMarking;
  4531   verify_work_stacks_empty();
  4532   verify_overflow_empty();
  4535 // Try and schedule the remark such that young gen
  4536 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4537 void CMSCollector::abortable_preclean() {
  4538   check_correct_thread_executing();
  4539   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4540   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4542   // If Eden's current occupancy is below this threshold,
  4543   // immediately schedule the remark; else preclean
  4544   // past the next scavenge in an effort to
  4545   // schedule the pause as described avove. By choosing
  4546   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4547   // we will never do an actual abortable preclean cycle.
  4548   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4549     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4550     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  4551     // We need more smarts in the abortable preclean
  4552     // loop below to deal with cases where allocation
  4553     // in young gen is very very slow, and our precleaning
  4554     // is running a losing race against a horde of
  4555     // mutators intent on flooding us with CMS updates
  4556     // (dirty cards).
  4557     // One, admittedly dumb, strategy is to give up
  4558     // after a certain number of abortable precleaning loops
  4559     // or after a certain maximum time. We want to make
  4560     // this smarter in the next iteration.
  4561     // XXX FIX ME!!! YSR
  4562     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4563     while (!(should_abort_preclean() ||
  4564              ConcurrentMarkSweepThread::should_terminate())) {
  4565       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4566       cumworkdone += workdone;
  4567       loops++;
  4568       // Voluntarily terminate abortable preclean phase if we have
  4569       // been at it for too long.
  4570       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4571           loops >= CMSMaxAbortablePrecleanLoops) {
  4572         if (PrintGCDetails) {
  4573           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4575         break;
  4577       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4578         if (PrintGCDetails) {
  4579           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4581         break;
  4583       // If we are doing little work each iteration, we should
  4584       // take a short break.
  4585       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4586         // Sleep for some time, waiting for work to accumulate
  4587         stopTimer();
  4588         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4589         startTimer();
  4590         waited++;
  4593     if (PrintCMSStatistics > 0) {
  4594       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4595                           loops, waited, cumworkdone);
  4598   CMSTokenSync x(true); // is cms thread
  4599   if (_collectorState != Idling) {
  4600     assert(_collectorState == AbortablePreclean,
  4601            "Spontaneous state transition?");
  4602     _collectorState = FinalMarking;
  4603   } // Else, a foreground collection completed this CMS cycle.
  4604   return;
  4607 // Respond to an Eden sampling opportunity
  4608 void CMSCollector::sample_eden() {
  4609   // Make sure a young gc cannot sneak in between our
  4610   // reading and recording of a sample.
  4611   assert(Thread::current()->is_ConcurrentGC_thread(),
  4612          "Only the cms thread may collect Eden samples");
  4613   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4614          "Should collect samples while holding CMS token");
  4615   if (!_start_sampling) {
  4616     return;
  4618   // When CMSEdenChunksRecordAlways is true, the eden chunk array
  4619   // is populated by the young generation.
  4620   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
  4621     if (_eden_chunk_index < _eden_chunk_capacity) {
  4622       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4623       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4624              "Unexpected state of Eden");
  4625       // We'd like to check that what we just sampled is an oop-start address;
  4626       // however, we cannot do that here since the object may not yet have been
  4627       // initialized. So we'll instead do the check when we _use_ this sample
  4628       // later.
  4629       if (_eden_chunk_index == 0 ||
  4630           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4631                          _eden_chunk_array[_eden_chunk_index-1])
  4632            >= CMSSamplingGrain)) {
  4633         _eden_chunk_index++;  // commit sample
  4637   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4638     size_t used = get_eden_used();
  4639     size_t capacity = get_eden_capacity();
  4640     assert(used <= capacity, "Unexpected state of Eden");
  4641     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4642       _abort_preclean = true;
  4648 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4649   assert(_collectorState == Precleaning ||
  4650          _collectorState == AbortablePreclean, "incorrect state");
  4651   ResourceMark rm;
  4652   HandleMark   hm;
  4654   // Precleaning is currently not MT but the reference processor
  4655   // may be set for MT.  Disable it temporarily here.
  4656   ReferenceProcessor* rp = ref_processor();
  4657   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
  4659   // Do one pass of scrubbing the discovered reference lists
  4660   // to remove any reference objects with strongly-reachable
  4661   // referents.
  4662   if (clean_refs) {
  4663     CMSPrecleanRefsYieldClosure yield_cl(this);
  4664     assert(rp->span().equals(_span), "Spans should be equal");
  4665     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4666                                    &_markStack, true /* preclean */);
  4667     CMSDrainMarkingStackClosure complete_trace(this,
  4668                                    _span, &_markBitMap, &_markStack,
  4669                                    &keep_alive, true /* preclean */);
  4671     // We don't want this step to interfere with a young
  4672     // collection because we don't want to take CPU
  4673     // or memory bandwidth away from the young GC threads
  4674     // (which may be as many as there are CPUs).
  4675     // Note that we don't need to protect ourselves from
  4676     // interference with mutators because they can't
  4677     // manipulate the discovered reference lists nor affect
  4678     // the computed reachability of the referents, the
  4679     // only properties manipulated by the precleaning
  4680     // of these reference lists.
  4681     stopTimer();
  4682     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4683                             bitMapLock());
  4684     startTimer();
  4685     sample_eden();
  4687     // The following will yield to allow foreground
  4688     // collection to proceed promptly. XXX YSR:
  4689     // The code in this method may need further
  4690     // tweaking for better performance and some restructuring
  4691     // for cleaner interfaces.
  4692     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
  4693     rp->preclean_discovered_references(
  4694           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
  4695           gc_timer);
  4698   if (clean_survivor) {  // preclean the active survivor space(s)
  4699     assert(_young_gen->kind() == Generation::DefNew ||
  4700            _young_gen->kind() == Generation::ParNew ||
  4701            _young_gen->kind() == Generation::ASParNew,
  4702          "incorrect type for cast");
  4703     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4704     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4705                              &_markBitMap, &_modUnionTable,
  4706                              &_markStack, true /* precleaning phase */);
  4707     stopTimer();
  4708     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4709                              bitMapLock());
  4710     startTimer();
  4711     unsigned int before_count =
  4712       GenCollectedHeap::heap()->total_collections();
  4713     SurvivorSpacePrecleanClosure
  4714       sss_cl(this, _span, &_markBitMap, &_markStack,
  4715              &pam_cl, before_count, CMSYield);
  4716     dng->from()->object_iterate_careful(&sss_cl);
  4717     dng->to()->object_iterate_careful(&sss_cl);
  4719   MarkRefsIntoAndScanClosure
  4720     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4721              &_markStack, this, CMSYield,
  4722              true /* precleaning phase */);
  4723   // CAUTION: The following closure has persistent state that may need to
  4724   // be reset upon a decrease in the sequence of addresses it
  4725   // processes.
  4726   ScanMarkedObjectsAgainCarefullyClosure
  4727     smoac_cl(this, _span,
  4728       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
  4730   // Preclean dirty cards in ModUnionTable and CardTable using
  4731   // appropriate convergence criterion;
  4732   // repeat CMSPrecleanIter times unless we find that
  4733   // we are losing.
  4734   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4735   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4736          "Bad convergence multiplier");
  4737   assert(CMSPrecleanThreshold >= 100,
  4738          "Unreasonably low CMSPrecleanThreshold");
  4740   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4741   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4742        numIter < CMSPrecleanIter;
  4743        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4744     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4745     if (Verbose && PrintGCDetails) {
  4746       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4748     // Either there are very few dirty cards, so re-mark
  4749     // pause will be small anyway, or our pre-cleaning isn't
  4750     // that much faster than the rate at which cards are being
  4751     // dirtied, so we might as well stop and re-mark since
  4752     // precleaning won't improve our re-mark time by much.
  4753     if (curNumCards <= CMSPrecleanThreshold ||
  4754         (numIter > 0 &&
  4755          (curNumCards * CMSPrecleanDenominator >
  4756          lastNumCards * CMSPrecleanNumerator))) {
  4757       numIter++;
  4758       cumNumCards += curNumCards;
  4759       break;
  4763   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
  4765   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4766   cumNumCards += curNumCards;
  4767   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4768     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4769                   curNumCards, cumNumCards, numIter);
  4771   return cumNumCards;   // as a measure of useful work done
  4774 // PRECLEANING NOTES:
  4775 // Precleaning involves:
  4776 // . reading the bits of the modUnionTable and clearing the set bits.
  4777 // . For the cards corresponding to the set bits, we scan the
  4778 //   objects on those cards. This means we need the free_list_lock
  4779 //   so that we can safely iterate over the CMS space when scanning
  4780 //   for oops.
  4781 // . When we scan the objects, we'll be both reading and setting
  4782 //   marks in the marking bit map, so we'll need the marking bit map.
  4783 // . For protecting _collector_state transitions, we take the CGC_lock.
  4784 //   Note that any races in the reading of of card table entries by the
  4785 //   CMS thread on the one hand and the clearing of those entries by the
  4786 //   VM thread or the setting of those entries by the mutator threads on the
  4787 //   other are quite benign. However, for efficiency it makes sense to keep
  4788 //   the VM thread from racing with the CMS thread while the latter is
  4789 //   dirty card info to the modUnionTable. We therefore also use the
  4790 //   CGC_lock to protect the reading of the card table and the mod union
  4791 //   table by the CM thread.
  4792 // . We run concurrently with mutator updates, so scanning
  4793 //   needs to be done carefully  -- we should not try to scan
  4794 //   potentially uninitialized objects.
  4795 //
  4796 // Locking strategy: While holding the CGC_lock, we scan over and
  4797 // reset a maximal dirty range of the mod union / card tables, then lock
  4798 // the free_list_lock and bitmap lock to do a full marking, then
  4799 // release these locks; and repeat the cycle. This allows for a
  4800 // certain amount of fairness in the sharing of these locks between
  4801 // the CMS collector on the one hand, and the VM thread and the
  4802 // mutators on the other.
  4804 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4805 // further below are largely identical; if you need to modify
  4806 // one of these methods, please check the other method too.
  4808 size_t CMSCollector::preclean_mod_union_table(
  4809   ConcurrentMarkSweepGeneration* gen,
  4810   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4811   verify_work_stacks_empty();
  4812   verify_overflow_empty();
  4814   // strategy: starting with the first card, accumulate contiguous
  4815   // ranges of dirty cards; clear these cards, then scan the region
  4816   // covered by these cards.
  4818   // Since all of the MUT is committed ahead, we can just use
  4819   // that, in case the generations expand while we are precleaning.
  4820   // It might also be fine to just use the committed part of the
  4821   // generation, but we might potentially miss cards when the
  4822   // generation is rapidly expanding while we are in the midst
  4823   // of precleaning.
  4824   HeapWord* startAddr = gen->reserved().start();
  4825   HeapWord* endAddr   = gen->reserved().end();
  4827   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4829   size_t numDirtyCards, cumNumDirtyCards;
  4830   HeapWord *nextAddr, *lastAddr;
  4831   for (cumNumDirtyCards = numDirtyCards = 0,
  4832        nextAddr = lastAddr = startAddr;
  4833        nextAddr < endAddr;
  4834        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4836     ResourceMark rm;
  4837     HandleMark   hm;
  4839     MemRegion dirtyRegion;
  4841       stopTimer();
  4842       // Potential yield point
  4843       CMSTokenSync ts(true);
  4844       startTimer();
  4845       sample_eden();
  4846       // Get dirty region starting at nextOffset (inclusive),
  4847       // simultaneously clearing it.
  4848       dirtyRegion =
  4849         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4850       assert(dirtyRegion.start() >= nextAddr,
  4851              "returned region inconsistent?");
  4853     // Remember where the next search should begin.
  4854     // The returned region (if non-empty) is a right open interval,
  4855     // so lastOffset is obtained from the right end of that
  4856     // interval.
  4857     lastAddr = dirtyRegion.end();
  4858     // Should do something more transparent and less hacky XXX
  4859     numDirtyCards =
  4860       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4862     // We'll scan the cards in the dirty region (with periodic
  4863     // yields for foreground GC as needed).
  4864     if (!dirtyRegion.is_empty()) {
  4865       assert(numDirtyCards > 0, "consistency check");
  4866       HeapWord* stop_point = NULL;
  4867       stopTimer();
  4868       // Potential yield point
  4869       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4870                                bitMapLock());
  4871       startTimer();
  4873         verify_work_stacks_empty();
  4874         verify_overflow_empty();
  4875         sample_eden();
  4876         stop_point =
  4877           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4879       if (stop_point != NULL) {
  4880         // The careful iteration stopped early either because it found an
  4881         // uninitialized object, or because we were in the midst of an
  4882         // "abortable preclean", which should now be aborted. Redirty
  4883         // the bits corresponding to the partially-scanned or unscanned
  4884         // cards. We'll either restart at the next block boundary or
  4885         // abort the preclean.
  4886         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
  4887                "Should only be AbortablePreclean.");
  4888         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4889         if (should_abort_preclean()) {
  4890           break; // out of preclean loop
  4891         } else {
  4892           // Compute the next address at which preclean should pick up;
  4893           // might need bitMapLock in order to read P-bits.
  4894           lastAddr = next_card_start_after_block(stop_point);
  4897     } else {
  4898       assert(lastAddr == endAddr, "consistency check");
  4899       assert(numDirtyCards == 0, "consistency check");
  4900       break;
  4903   verify_work_stacks_empty();
  4904   verify_overflow_empty();
  4905   return cumNumDirtyCards;
  4908 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4909 // below are largely identical; if you need to modify
  4910 // one of these methods, please check the other method too.
  4912 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4913   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4914   // strategy: it's similar to precleamModUnionTable above, in that
  4915   // we accumulate contiguous ranges of dirty cards, mark these cards
  4916   // precleaned, then scan the region covered by these cards.
  4917   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4918   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4920   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4922   size_t numDirtyCards, cumNumDirtyCards;
  4923   HeapWord *lastAddr, *nextAddr;
  4925   for (cumNumDirtyCards = numDirtyCards = 0,
  4926        nextAddr = lastAddr = startAddr;
  4927        nextAddr < endAddr;
  4928        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4930     ResourceMark rm;
  4931     HandleMark   hm;
  4933     MemRegion dirtyRegion;
  4935       // See comments in "Precleaning notes" above on why we
  4936       // do this locking. XXX Could the locking overheads be
  4937       // too high when dirty cards are sparse? [I don't think so.]
  4938       stopTimer();
  4939       CMSTokenSync x(true); // is cms thread
  4940       startTimer();
  4941       sample_eden();
  4942       // Get and clear dirty region from card table
  4943       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
  4944                                     MemRegion(nextAddr, endAddr),
  4945                                     true,
  4946                                     CardTableModRefBS::precleaned_card_val());
  4948       assert(dirtyRegion.start() >= nextAddr,
  4949              "returned region inconsistent?");
  4951     lastAddr = dirtyRegion.end();
  4952     numDirtyCards =
  4953       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4955     if (!dirtyRegion.is_empty()) {
  4956       stopTimer();
  4957       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4958       startTimer();
  4959       sample_eden();
  4960       verify_work_stacks_empty();
  4961       verify_overflow_empty();
  4962       HeapWord* stop_point =
  4963         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4964       if (stop_point != NULL) {
  4965         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
  4966                "Should only be AbortablePreclean.");
  4967         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4968         if (should_abort_preclean()) {
  4969           break; // out of preclean loop
  4970         } else {
  4971           // Compute the next address at which preclean should pick up.
  4972           lastAddr = next_card_start_after_block(stop_point);
  4975     } else {
  4976       break;
  4979   verify_work_stacks_empty();
  4980   verify_overflow_empty();
  4981   return cumNumDirtyCards;
  4984 class PrecleanKlassClosure : public KlassClosure {
  4985   CMKlassClosure _cm_klass_closure;
  4986  public:
  4987   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
  4988   void do_klass(Klass* k) {
  4989     if (k->has_accumulated_modified_oops()) {
  4990       k->clear_accumulated_modified_oops();
  4992       _cm_klass_closure.do_klass(k);
  4995 };
  4997 // The freelist lock is needed to prevent asserts, is it really needed?
  4998 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
  5000   cl->set_freelistLock(freelistLock);
  5002   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
  5004   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
  5005   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
  5006   PrecleanKlassClosure preclean_klass_closure(cl);
  5007   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
  5009   verify_work_stacks_empty();
  5010   verify_overflow_empty();
  5013 void CMSCollector::checkpointRootsFinal(bool asynch,
  5014   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  5015   assert(_collectorState == FinalMarking, "incorrect state transition?");
  5016   check_correct_thread_executing();
  5017   // world is stopped at this checkpoint
  5018   assert(SafepointSynchronize::is_at_safepoint(),
  5019          "world should be stopped");
  5020   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
  5022   verify_work_stacks_empty();
  5023   verify_overflow_empty();
  5025   SpecializationStats::clear();
  5026   if (PrintGCDetails) {
  5027     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  5028                         _young_gen->used() / K,
  5029                         _young_gen->capacity() / K);
  5031   if (asynch) {
  5032     if (CMSScavengeBeforeRemark) {
  5033       GenCollectedHeap* gch = GenCollectedHeap::heap();
  5034       // Temporarily set flag to false, GCH->do_collection will
  5035       // expect it to be false and set to true
  5036       FlagSetting fl(gch->_is_gc_active, false);
  5037       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
  5038         PrintGCDetails && Verbose, true, _gc_timer_cm);)
  5039       int level = _cmsGen->level() - 1;
  5040       if (level >= 0) {
  5041         gch->do_collection(true,        // full (i.e. force, see below)
  5042                            false,       // !clear_all_soft_refs
  5043                            0,           // size
  5044                            false,       // is_tlab
  5045                            level        // max_level
  5046                           );
  5049     FreelistLocker x(this);
  5050     MutexLockerEx y(bitMapLock(),
  5051                     Mutex::_no_safepoint_check_flag);
  5052     assert(!init_mark_was_synchronous, "but that's impossible!");
  5053     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  5054   } else {
  5055     // already have all the locks
  5056     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  5057                              init_mark_was_synchronous);
  5059   verify_work_stacks_empty();
  5060   verify_overflow_empty();
  5061   SpecializationStats::print();
  5064 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  5065   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  5067   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
  5069   assert(haveFreelistLocks(), "must have free list locks");
  5070   assert_lock_strong(bitMapLock());
  5072   if (UseAdaptiveSizePolicy) {
  5073     size_policy()->checkpoint_roots_final_begin();
  5076   ResourceMark rm;
  5077   HandleMark   hm;
  5079   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5081   if (should_unload_classes()) {
  5082     CodeCache::gc_prologue();
  5084   assert(haveFreelistLocks(), "must have free list locks");
  5085   assert_lock_strong(bitMapLock());
  5087   if (!init_mark_was_synchronous) {
  5088     // We might assume that we need not fill TLAB's when
  5089     // CMSScavengeBeforeRemark is set, because we may have just done
  5090     // a scavenge which would have filled all TLAB's -- and besides
  5091     // Eden would be empty. This however may not always be the case --
  5092     // for instance although we asked for a scavenge, it may not have
  5093     // happened because of a JNI critical section. We probably need
  5094     // a policy for deciding whether we can in that case wait until
  5095     // the critical section releases and then do the remark following
  5096     // the scavenge, and skip it here. In the absence of that policy,
  5097     // or of an indication of whether the scavenge did indeed occur,
  5098     // we cannot rely on TLAB's having been filled and must do
  5099     // so here just in case a scavenge did not happen.
  5100     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  5101     // Update the saved marks which may affect the root scans.
  5102     gch->save_marks();
  5104     if (CMSPrintEdenSurvivorChunks) {
  5105       print_eden_and_survivor_chunk_arrays();
  5109       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  5111       // Note on the role of the mod union table:
  5112       // Since the marker in "markFromRoots" marks concurrently with
  5113       // mutators, it is possible for some reachable objects not to have been
  5114       // scanned. For instance, an only reference to an object A was
  5115       // placed in object B after the marker scanned B. Unless B is rescanned,
  5116       // A would be collected. Such updates to references in marked objects
  5117       // are detected via the mod union table which is the set of all cards
  5118       // dirtied since the first checkpoint in this GC cycle and prior to
  5119       // the most recent young generation GC, minus those cleaned up by the
  5120       // concurrent precleaning.
  5121       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
  5122         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
  5123         do_remark_parallel();
  5124       } else {
  5125         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  5126                     _gc_timer_cm);
  5127         do_remark_non_parallel();
  5130   } else {
  5131     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  5132     // The initial mark was stop-world, so there's no rescanning to
  5133     // do; go straight on to the next step below.
  5135   verify_work_stacks_empty();
  5136   verify_overflow_empty();
  5139     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
  5140     refProcessingWork(asynch, clear_all_soft_refs);
  5142   verify_work_stacks_empty();
  5143   verify_overflow_empty();
  5145   if (should_unload_classes()) {
  5146     CodeCache::gc_epilogue();
  5148   JvmtiExport::gc_epilogue();
  5150   // If we encountered any (marking stack / work queue) overflow
  5151   // events during the current CMS cycle, take appropriate
  5152   // remedial measures, where possible, so as to try and avoid
  5153   // recurrence of that condition.
  5154   assert(_markStack.isEmpty(), "No grey objects");
  5155   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  5156                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
  5157   if (ser_ovflw > 0) {
  5158     if (PrintCMSStatistics != 0) {
  5159       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  5160         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
  5161         ", kac_preclean="SIZE_FORMAT")",
  5162         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  5163         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
  5165     _markStack.expand();
  5166     _ser_pmc_remark_ovflw = 0;
  5167     _ser_pmc_preclean_ovflw = 0;
  5168     _ser_kac_preclean_ovflw = 0;
  5169     _ser_kac_ovflw = 0;
  5171   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  5172     if (PrintCMSStatistics != 0) {
  5173       gclog_or_tty->print_cr("Work queue overflow (benign) "
  5174         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  5175         _par_pmc_remark_ovflw, _par_kac_ovflw);
  5177     _par_pmc_remark_ovflw = 0;
  5178     _par_kac_ovflw = 0;
  5180   if (PrintCMSStatistics != 0) {
  5181      if (_markStack._hit_limit > 0) {
  5182        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  5183                               _markStack._hit_limit);
  5185      if (_markStack._failed_double > 0) {
  5186        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  5187                               " current capacity "SIZE_FORMAT,
  5188                               _markStack._failed_double,
  5189                               _markStack.capacity());
  5192   _markStack._hit_limit = 0;
  5193   _markStack._failed_double = 0;
  5195   if ((VerifyAfterGC || VerifyDuringGC) &&
  5196       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5197     verify_after_remark();
  5200   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
  5202   // Change under the freelistLocks.
  5203   _collectorState = Sweeping;
  5204   // Call isAllClear() under bitMapLock
  5205   assert(_modUnionTable.isAllClear(),
  5206       "Should be clear by end of the final marking");
  5207   assert(_ct->klass_rem_set()->mod_union_is_clear(),
  5208       "Should be clear by end of the final marking");
  5209   if (UseAdaptiveSizePolicy) {
  5210     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  5214 void CMSParInitialMarkTask::work(uint worker_id) {
  5215   elapsedTimer _timer;
  5216   ResourceMark rm;
  5217   HandleMark   hm;
  5219   // ---------- scan from roots --------------
  5220   _timer.start();
  5221   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5222   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
  5223   CMKlassClosure klass_closure(&par_mri_cl);
  5225   // ---------- young gen roots --------------
  5227     work_on_young_gen_roots(worker_id, &par_mri_cl);
  5228     _timer.stop();
  5229     if (PrintCMSStatistics != 0) {
  5230       gclog_or_tty->print_cr(
  5231         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
  5232         worker_id, _timer.seconds());
  5236   // ---------- remaining roots --------------
  5237   _timer.reset();
  5238   _timer.start();
  5239   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  5240                                 false,     // yg was scanned above
  5241                                 false,     // this is parallel code
  5242                                 false,     // not scavenging
  5243                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  5244                                 &par_mri_cl,
  5245                                 true,   // walk all of code cache if (so & SO_CodeCache)
  5246                                 NULL,
  5247                                 &klass_closure);
  5248   assert(_collector->should_unload_classes()
  5249          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
  5250          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5251   _timer.stop();
  5252   if (PrintCMSStatistics != 0) {
  5253     gclog_or_tty->print_cr(
  5254       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
  5255       worker_id, _timer.seconds());
  5259 // Parallel remark task
  5260 class CMSParRemarkTask: public CMSParMarkTask {
  5261   CompactibleFreeListSpace* _cms_space;
  5263   // The per-thread work queues, available here for stealing.
  5264   OopTaskQueueSet*       _task_queues;
  5265   ParallelTaskTerminator _term;
  5267  public:
  5268   // A value of 0 passed to n_workers will cause the number of
  5269   // workers to be taken from the active workers in the work gang.
  5270   CMSParRemarkTask(CMSCollector* collector,
  5271                    CompactibleFreeListSpace* cms_space,
  5272                    int n_workers, FlexibleWorkGang* workers,
  5273                    OopTaskQueueSet* task_queues):
  5274     CMSParMarkTask("Rescan roots and grey objects in parallel",
  5275                    collector, n_workers),
  5276     _cms_space(cms_space),
  5277     _task_queues(task_queues),
  5278     _term(n_workers, task_queues) { }
  5280   OopTaskQueueSet* task_queues() { return _task_queues; }
  5282   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5284   ParallelTaskTerminator* terminator() { return &_term; }
  5285   int n_workers() { return _n_workers; }
  5287   void work(uint worker_id);
  5289  private:
  5290   // ... of  dirty cards in old space
  5291   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  5292                                   Par_MarkRefsIntoAndScanClosure* cl);
  5294   // ... work stealing for the above
  5295   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  5296 };
  5298 class RemarkKlassClosure : public KlassClosure {
  5299   CMKlassClosure _cm_klass_closure;
  5300  public:
  5301   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
  5302   void do_klass(Klass* k) {
  5303     // Check if we have modified any oops in the Klass during the concurrent marking.
  5304     if (k->has_accumulated_modified_oops()) {
  5305       k->clear_accumulated_modified_oops();
  5307       // We could have transfered the current modified marks to the accumulated marks,
  5308       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
  5309     } else if (k->has_modified_oops()) {
  5310       // Don't clear anything, this info is needed by the next young collection.
  5311     } else {
  5312       // No modified oops in the Klass.
  5313       return;
  5316     // The klass has modified fields, need to scan the klass.
  5317     _cm_klass_closure.do_klass(k);
  5319 };
  5321 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
  5322   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  5323   EdenSpace* eden_space = dng->eden();
  5324   ContiguousSpace* from_space = dng->from();
  5325   ContiguousSpace* to_space   = dng->to();
  5327   HeapWord** eca = _collector->_eden_chunk_array;
  5328   size_t     ect = _collector->_eden_chunk_index;
  5329   HeapWord** sca = _collector->_survivor_chunk_array;
  5330   size_t     sct = _collector->_survivor_chunk_index;
  5332   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  5333   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  5335   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
  5336   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
  5337   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
  5340 // work_queue(i) is passed to the closure
  5341 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
  5342 // also is passed to do_dirty_card_rescan_tasks() and to
  5343 // do_work_steal() to select the i-th task_queue.
  5345 void CMSParRemarkTask::work(uint worker_id) {
  5346   elapsedTimer _timer;
  5347   ResourceMark rm;
  5348   HandleMark   hm;
  5350   // ---------- rescan from roots --------------
  5351   _timer.start();
  5352   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5353   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  5354     _collector->_span, _collector->ref_processor(),
  5355     &(_collector->_markBitMap),
  5356     work_queue(worker_id));
  5358   // Rescan young gen roots first since these are likely
  5359   // coarsely partitioned and may, on that account, constitute
  5360   // the critical path; thus, it's best to start off that
  5361   // work first.
  5362   // ---------- young gen roots --------------
  5364     work_on_young_gen_roots(worker_id, &par_mrias_cl);
  5365     _timer.stop();
  5366     if (PrintCMSStatistics != 0) {
  5367       gclog_or_tty->print_cr(
  5368         "Finished young gen rescan work in %dth thread: %3.3f sec",
  5369         worker_id, _timer.seconds());
  5373   // ---------- remaining roots --------------
  5374   _timer.reset();
  5375   _timer.start();
  5376   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  5377                                 false,     // yg was scanned above
  5378                                 false,     // this is parallel code
  5379                                 false,     // not scavenging
  5380                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  5381                                 &par_mrias_cl,
  5382                                 true,   // walk all of code cache if (so & SO_CodeCache)
  5383                                 NULL,
  5384                                 NULL);     // The dirty klasses will be handled below
  5385   assert(_collector->should_unload_classes()
  5386          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
  5387          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5388   _timer.stop();
  5389   if (PrintCMSStatistics != 0) {
  5390     gclog_or_tty->print_cr(
  5391       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  5392       worker_id, _timer.seconds());
  5395   // ---------- unhandled CLD scanning ----------
  5396   if (worker_id == 0) { // Single threaded at the moment.
  5397     _timer.reset();
  5398     _timer.start();
  5400     // Scan all new class loader data objects and new dependencies that were
  5401     // introduced during concurrent marking.
  5402     ResourceMark rm;
  5403     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
  5404     for (int i = 0; i < array->length(); i++) {
  5405       par_mrias_cl.do_class_loader_data(array->at(i));
  5408     // We don't need to keep track of new CLDs anymore.
  5409     ClassLoaderDataGraph::remember_new_clds(false);
  5411     _timer.stop();
  5412     if (PrintCMSStatistics != 0) {
  5413       gclog_or_tty->print_cr(
  5414           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
  5415           worker_id, _timer.seconds());
  5419   // ---------- dirty klass scanning ----------
  5420   if (worker_id == 0) { // Single threaded at the moment.
  5421     _timer.reset();
  5422     _timer.start();
  5424     // Scan all classes that was dirtied during the concurrent marking phase.
  5425     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
  5426     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
  5428     _timer.stop();
  5429     if (PrintCMSStatistics != 0) {
  5430       gclog_or_tty->print_cr(
  5431           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
  5432           worker_id, _timer.seconds());
  5436   // We might have added oops to ClassLoaderData::_handles during the
  5437   // concurrent marking phase. These oops point to newly allocated objects
  5438   // that are guaranteed to be kept alive. Either by the direct allocation
  5439   // code, or when the young collector processes the strong roots. Hence,
  5440   // we don't have to revisit the _handles block during the remark phase.
  5442   // ---------- rescan dirty cards ------------
  5443   _timer.reset();
  5444   _timer.start();
  5446   // Do the rescan tasks for each of the two spaces
  5447   // (cms_space) in turn.
  5448   // "worker_id" is passed to select the task_queue for "worker_id"
  5449   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
  5450   _timer.stop();
  5451   if (PrintCMSStatistics != 0) {
  5452     gclog_or_tty->print_cr(
  5453       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  5454       worker_id, _timer.seconds());
  5457   // ---------- steal work from other threads ...
  5458   // ---------- ... and drain overflow list.
  5459   _timer.reset();
  5460   _timer.start();
  5461   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
  5462   _timer.stop();
  5463   if (PrintCMSStatistics != 0) {
  5464     gclog_or_tty->print_cr(
  5465       "Finished work stealing in %dth thread: %3.3f sec",
  5466       worker_id, _timer.seconds());
  5470 // Note that parameter "i" is not used.
  5471 void
  5472 CMSParMarkTask::do_young_space_rescan(uint worker_id,
  5473   OopsInGenClosure* cl, ContiguousSpace* space,
  5474   HeapWord** chunk_array, size_t chunk_top) {
  5475   // Until all tasks completed:
  5476   // . claim an unclaimed task
  5477   // . compute region boundaries corresponding to task claimed
  5478   //   using chunk_array
  5479   // . par_oop_iterate(cl) over that region
  5481   ResourceMark rm;
  5482   HandleMark   hm;
  5484   SequentialSubTasksDone* pst = space->par_seq_tasks();
  5486   uint nth_task = 0;
  5487   uint n_tasks  = pst->n_tasks();
  5489   if (n_tasks > 0) {
  5490     assert(pst->valid(), "Uninitialized use?");
  5491     HeapWord *start, *end;
  5492     while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5493       // We claimed task # nth_task; compute its boundaries.
  5494       if (chunk_top == 0) {  // no samples were taken
  5495         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  5496         start = space->bottom();
  5497         end   = space->top();
  5498       } else if (nth_task == 0) {
  5499         start = space->bottom();
  5500         end   = chunk_array[nth_task];
  5501       } else if (nth_task < (uint)chunk_top) {
  5502         assert(nth_task >= 1, "Control point invariant");
  5503         start = chunk_array[nth_task - 1];
  5504         end   = chunk_array[nth_task];
  5505       } else {
  5506         assert(nth_task == (uint)chunk_top, "Control point invariant");
  5507         start = chunk_array[chunk_top - 1];
  5508         end   = space->top();
  5510       MemRegion mr(start, end);
  5511       // Verify that mr is in space
  5512       assert(mr.is_empty() || space->used_region().contains(mr),
  5513              "Should be in space");
  5514       // Verify that "start" is an object boundary
  5515       assert(mr.is_empty() || oop(mr.start())->is_oop(),
  5516              "Should be an oop");
  5517       space->par_oop_iterate(mr, cl);
  5519     pst->all_tasks_completed();
  5523 void
  5524 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5525   CompactibleFreeListSpace* sp, int i,
  5526   Par_MarkRefsIntoAndScanClosure* cl) {
  5527   // Until all tasks completed:
  5528   // . claim an unclaimed task
  5529   // . compute region boundaries corresponding to task claimed
  5530   // . transfer dirty bits ct->mut for that region
  5531   // . apply rescanclosure to dirty mut bits for that region
  5533   ResourceMark rm;
  5534   HandleMark   hm;
  5536   OopTaskQueue* work_q = work_queue(i);
  5537   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5538   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5539   // CAUTION: This closure has state that persists across calls to
  5540   // the work method dirty_range_iterate_clear() in that it has
  5541   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5542   // use of that state in the imbedded UpwardsObjectClosure instance
  5543   // assumes that the cards are always iterated (even if in parallel
  5544   // by several threads) in monotonically increasing order per each
  5545   // thread. This is true of the implementation below which picks
  5546   // card ranges (chunks) in monotonically increasing order globally
  5547   // and, a-fortiori, in monotonically increasing order per thread
  5548   // (the latter order being a subsequence of the former).
  5549   // If the work code below is ever reorganized into a more chaotic
  5550   // work-partitioning form than the current "sequential tasks"
  5551   // paradigm, the use of that persistent state will have to be
  5552   // revisited and modified appropriately. See also related
  5553   // bug 4756801 work on which should examine this code to make
  5554   // sure that the changes there do not run counter to the
  5555   // assumptions made here and necessary for correctness and
  5556   // efficiency. Note also that this code might yield inefficient
  5557   // behaviour in the case of very large objects that span one or
  5558   // more work chunks. Such objects would potentially be scanned
  5559   // several times redundantly. Work on 4756801 should try and
  5560   // address that performance anomaly if at all possible. XXX
  5561   MemRegion  full_span  = _collector->_span;
  5562   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5563   MarkFromDirtyCardsClosure
  5564     greyRescanClosure(_collector, full_span, // entire span of interest
  5565                       sp, bm, work_q, cl);
  5567   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5568   assert(pst->valid(), "Uninitialized use?");
  5569   uint nth_task = 0;
  5570   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5571   MemRegion span = sp->used_region();
  5572   HeapWord* start_addr = span.start();
  5573   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5574                                            alignment);
  5575   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5576   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5577          start_addr, "Check alignment");
  5578   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5579          chunk_size, "Check alignment");
  5581   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5582     // Having claimed the nth_task, compute corresponding mem-region,
  5583     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5584     // The alignment restriction ensures that we do not need any
  5585     // synchronization with other gang-workers while setting or
  5586     // clearing bits in thus chunk of the MUT.
  5587     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5588                                     start_addr + (nth_task+1)*chunk_size);
  5589     // The last chunk's end might be way beyond end of the
  5590     // used region. In that case pull back appropriately.
  5591     if (this_span.end() > end_addr) {
  5592       this_span.set_end(end_addr);
  5593       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5595     // Iterate over the dirty cards covering this chunk, marking them
  5596     // precleaned, and setting the corresponding bits in the mod union
  5597     // table. Since we have been careful to partition at Card and MUT-word
  5598     // boundaries no synchronization is needed between parallel threads.
  5599     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5600                                                  &modUnionClosure);
  5602     // Having transferred these marks into the modUnionTable,
  5603     // rescan the marked objects on the dirty cards in the modUnionTable.
  5604     // Even if this is at a synchronous collection, the initial marking
  5605     // may have been done during an asynchronous collection so there
  5606     // may be dirty bits in the mod-union table.
  5607     _collector->_modUnionTable.dirty_range_iterate_clear(
  5608                   this_span, &greyRescanClosure);
  5609     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5610                                  this_span.start(),
  5611                                  this_span.end());
  5613   pst->all_tasks_completed();  // declare that i am done
  5616 // . see if we can share work_queues with ParNew? XXX
  5617 void
  5618 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5619                                 int* seed) {
  5620   OopTaskQueue* work_q = work_queue(i);
  5621   NOT_PRODUCT(int num_steals = 0;)
  5622   oop obj_to_scan;
  5623   CMSBitMap* bm = &(_collector->_markBitMap);
  5625   while (true) {
  5626     // Completely finish any left over work from (an) earlier round(s)
  5627     cl->trim_queue(0);
  5628     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  5629                                          (size_t)ParGCDesiredObjsFromOverflowList);
  5630     // Now check if there's any work in the overflow list
  5631     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
  5632     // only affects the number of attempts made to get work from the
  5633     // overflow list and does not affect the number of workers.  Just
  5634     // pass ParallelGCThreads so this behavior is unchanged.
  5635     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5636                                                 work_q,
  5637                                                 ParallelGCThreads)) {
  5638       // found something in global overflow list;
  5639       // not yet ready to go stealing work from others.
  5640       // We'd like to assert(work_q->size() != 0, ...)
  5641       // because we just took work from the overflow list,
  5642       // but of course we can't since all of that could have
  5643       // been already stolen from us.
  5644       // "He giveth and He taketh away."
  5645       continue;
  5647     // Verify that we have no work before we resort to stealing
  5648     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5649     // Try to steal from other queues that have work
  5650     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5651       NOT_PRODUCT(num_steals++;)
  5652       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5653       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5654       // Do scanning work
  5655       obj_to_scan->oop_iterate(cl);
  5656       // Loop around, finish this work, and try to steal some more
  5657     } else if (terminator()->offer_termination()) {
  5658         break;  // nirvana from the infinite cycle
  5661   NOT_PRODUCT(
  5662     if (PrintCMSStatistics != 0) {
  5663       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5666   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5667          "Else our work is not yet done");
  5670 // Record object boundaries in _eden_chunk_array by sampling the eden
  5671 // top in the slow-path eden object allocation code path and record
  5672 // the boundaries, if CMSEdenChunksRecordAlways is true. If
  5673 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
  5674 // sampling in sample_eden() that activates during the part of the
  5675 // preclean phase.
  5676 void CMSCollector::sample_eden_chunk() {
  5677   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
  5678     if (_eden_chunk_lock->try_lock()) {
  5679       // Record a sample. This is the critical section. The contents
  5680       // of the _eden_chunk_array have to be non-decreasing in the
  5681       // address order.
  5682       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
  5683       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  5684              "Unexpected state of Eden");
  5685       if (_eden_chunk_index == 0 ||
  5686           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
  5687            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  5688                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
  5689         _eden_chunk_index++;  // commit sample
  5691       _eden_chunk_lock->unlock();
  5696 // Return a thread-local PLAB recording array, as appropriate.
  5697 void* CMSCollector::get_data_recorder(int thr_num) {
  5698   if (_survivor_plab_array != NULL &&
  5699       (CMSPLABRecordAlways ||
  5700        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5701     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5702     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5703     ca->reset();   // clear it so that fresh data is recorded
  5704     return (void*) ca;
  5705   } else {
  5706     return NULL;
  5710 // Reset all the thread-local PLAB recording arrays
  5711 void CMSCollector::reset_survivor_plab_arrays() {
  5712   for (uint i = 0; i < ParallelGCThreads; i++) {
  5713     _survivor_plab_array[i].reset();
  5717 // Merge the per-thread plab arrays into the global survivor chunk
  5718 // array which will provide the partitioning of the survivor space
  5719 // for CMS initial scan and rescan.
  5720 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
  5721                                               int no_of_gc_threads) {
  5722   assert(_survivor_plab_array  != NULL, "Error");
  5723   assert(_survivor_chunk_array != NULL, "Error");
  5724   assert(_collectorState == FinalMarking ||
  5725          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
  5726   for (int j = 0; j < no_of_gc_threads; j++) {
  5727     _cursor[j] = 0;
  5729   HeapWord* top = surv->top();
  5730   size_t i;
  5731   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5732     HeapWord* min_val = top;          // Higher than any PLAB address
  5733     uint      min_tid = 0;            // position of min_val this round
  5734     for (int j = 0; j < no_of_gc_threads; j++) {
  5735       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5736       if (_cursor[j] == cur_sca->end()) {
  5737         continue;
  5739       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5740       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5741       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5742       if (cur_val < min_val) {
  5743         min_tid = j;
  5744         min_val = cur_val;
  5745       } else {
  5746         assert(cur_val < top, "All recorded addresses should be less");
  5749     // At this point min_val and min_tid are respectively
  5750     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5751     // and the thread (j) that witnesses that address.
  5752     // We record this address in the _survivor_chunk_array[i]
  5753     // and increment _cursor[min_tid] prior to the next round i.
  5754     if (min_val == top) {
  5755       break;
  5757     _survivor_chunk_array[i] = min_val;
  5758     _cursor[min_tid]++;
  5760   // We are all done; record the size of the _survivor_chunk_array
  5761   _survivor_chunk_index = i; // exclusive: [0, i)
  5762   if (PrintCMSStatistics > 0) {
  5763     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5765   // Verify that we used up all the recorded entries
  5766   #ifdef ASSERT
  5767     size_t total = 0;
  5768     for (int j = 0; j < no_of_gc_threads; j++) {
  5769       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5770       total += _cursor[j];
  5772     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5773     // Check that the merged array is in sorted order
  5774     if (total > 0) {
  5775       for (size_t i = 0; i < total - 1; i++) {
  5776         if (PrintCMSStatistics > 0) {
  5777           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5778                               i, _survivor_chunk_array[i]);
  5780         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5781                "Not sorted");
  5784   #endif // ASSERT
  5787 // Set up the space's par_seq_tasks structure for work claiming
  5788 // for parallel initial scan and rescan of young gen.
  5789 // See ParRescanTask where this is currently used.
  5790 void
  5791 CMSCollector::
  5792 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5793   assert(n_threads > 0, "Unexpected n_threads argument");
  5794   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5796   // Eden space
  5797   if (!dng->eden()->is_empty()) {
  5798     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5799     assert(!pst->valid(), "Clobbering existing data?");
  5800     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5801     size_t n_tasks = _eden_chunk_index + 1;
  5802     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5803     // Sets the condition for completion of the subtask (how many threads
  5804     // need to finish in order to be done).
  5805     pst->set_n_threads(n_threads);
  5806     pst->set_n_tasks((int)n_tasks);
  5809   // Merge the survivor plab arrays into _survivor_chunk_array
  5810   if (_survivor_plab_array != NULL) {
  5811     merge_survivor_plab_arrays(dng->from(), n_threads);
  5812   } else {
  5813     assert(_survivor_chunk_index == 0, "Error");
  5816   // To space
  5818     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5819     assert(!pst->valid(), "Clobbering existing data?");
  5820     // Sets the condition for completion of the subtask (how many threads
  5821     // need to finish in order to be done).
  5822     pst->set_n_threads(n_threads);
  5823     pst->set_n_tasks(1);
  5824     assert(pst->valid(), "Error");
  5827   // From space
  5829     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5830     assert(!pst->valid(), "Clobbering existing data?");
  5831     size_t n_tasks = _survivor_chunk_index + 1;
  5832     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5833     // Sets the condition for completion of the subtask (how many threads
  5834     // need to finish in order to be done).
  5835     pst->set_n_threads(n_threads);
  5836     pst->set_n_tasks((int)n_tasks);
  5837     assert(pst->valid(), "Error");
  5841 // Parallel version of remark
  5842 void CMSCollector::do_remark_parallel() {
  5843   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5844   FlexibleWorkGang* workers = gch->workers();
  5845   assert(workers != NULL, "Need parallel worker threads.");
  5846   // Choose to use the number of GC workers most recently set
  5847   // into "active_workers".  If active_workers is not set, set it
  5848   // to ParallelGCThreads.
  5849   int n_workers = workers->active_workers();
  5850   if (n_workers == 0) {
  5851     assert(n_workers > 0, "Should have been set during scavenge");
  5852     n_workers = ParallelGCThreads;
  5853     workers->set_active_workers(n_workers);
  5855   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5857   CMSParRemarkTask tsk(this,
  5858     cms_space,
  5859     n_workers, workers, task_queues());
  5861   // Set up for parallel process_strong_roots work.
  5862   gch->set_par_threads(n_workers);
  5863   // We won't be iterating over the cards in the card table updating
  5864   // the younger_gen cards, so we shouldn't call the following else
  5865   // the verification code as well as subsequent younger_refs_iterate
  5866   // code would get confused. XXX
  5867   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5869   // The young gen rescan work will not be done as part of
  5870   // process_strong_roots (which currently doesn't knw how to
  5871   // parallelize such a scan), but rather will be broken up into
  5872   // a set of parallel tasks (via the sampling that the [abortable]
  5873   // preclean phase did of EdenSpace, plus the [two] tasks of
  5874   // scanning the [two] survivor spaces. Further fine-grain
  5875   // parallelization of the scanning of the survivor spaces
  5876   // themselves, and of precleaning of the younger gen itself
  5877   // is deferred to the future.
  5878   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5880   // The dirty card rescan work is broken up into a "sequence"
  5881   // of parallel tasks (per constituent space) that are dynamically
  5882   // claimed by the parallel threads.
  5883   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5885   // It turns out that even when we're using 1 thread, doing the work in a
  5886   // separate thread causes wide variance in run times.  We can't help this
  5887   // in the multi-threaded case, but we special-case n=1 here to get
  5888   // repeatable measurements of the 1-thread overhead of the parallel code.
  5889   if (n_workers > 1) {
  5890     // Make refs discovery MT-safe, if it isn't already: it may not
  5891     // necessarily be so, since it's possible that we are doing
  5892     // ST marking.
  5893     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
  5894     GenCollectedHeap::StrongRootsScope srs(gch);
  5895     workers->run_task(&tsk);
  5896   } else {
  5897     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
  5898     GenCollectedHeap::StrongRootsScope srs(gch);
  5899     tsk.work(0);
  5902   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5903   // restore, single-threaded for now, any preserved marks
  5904   // as a result of work_q overflow
  5905   restore_preserved_marks_if_any();
  5908 // Non-parallel version of remark
  5909 void CMSCollector::do_remark_non_parallel() {
  5910   ResourceMark rm;
  5911   HandleMark   hm;
  5912   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5913   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
  5915   MarkRefsIntoAndScanClosure
  5916     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
  5917              &_markStack, this,
  5918              false /* should_yield */, false /* not precleaning */);
  5919   MarkFromDirtyCardsClosure
  5920     markFromDirtyCardsClosure(this, _span,
  5921                               NULL,  // space is set further below
  5922                               &_markBitMap, &_markStack, &mrias_cl);
  5924     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
  5925     // Iterate over the dirty cards, setting the corresponding bits in the
  5926     // mod union table.
  5928       ModUnionClosure modUnionClosure(&_modUnionTable);
  5929       _ct->ct_bs()->dirty_card_iterate(
  5930                       _cmsGen->used_region(),
  5931                       &modUnionClosure);
  5933     // Having transferred these marks into the modUnionTable, we just need
  5934     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5935     // The initial marking may have been done during an asynchronous
  5936     // collection so there may be dirty bits in the mod-union table.
  5937     const int alignment =
  5938       CardTableModRefBS::card_size * BitsPerWord;
  5940       // ... First handle dirty cards in CMS gen
  5941       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5942       MemRegion ur = _cmsGen->used_region();
  5943       HeapWord* lb = ur.start();
  5944       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5945       MemRegion cms_span(lb, ub);
  5946       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5947                                                &markFromDirtyCardsClosure);
  5948       verify_work_stacks_empty();
  5949       if (PrintCMSStatistics != 0) {
  5950         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5951           markFromDirtyCardsClosure.num_dirty_cards());
  5955   if (VerifyDuringGC &&
  5956       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5957     HandleMark hm;  // Discard invalid handles created during verification
  5958     Universe::verify();
  5961     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
  5963     verify_work_stacks_empty();
  5965     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5966     GenCollectedHeap::StrongRootsScope srs(gch);
  5967     gch->gen_process_strong_roots(_cmsGen->level(),
  5968                                   true,  // younger gens as roots
  5969                                   false, // use the local StrongRootsScope
  5970                                   false, // not scavenging
  5971                                   SharedHeap::ScanningOption(roots_scanning_options()),
  5972                                   &mrias_cl,
  5973                                   true,   // walk code active on stacks
  5974                                   NULL,
  5975                                   NULL);  // The dirty klasses will be handled below
  5977     assert(should_unload_classes()
  5978            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
  5979            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5983     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
  5985     verify_work_stacks_empty();
  5987     // Scan all class loader data objects that might have been introduced
  5988     // during concurrent marking.
  5989     ResourceMark rm;
  5990     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
  5991     for (int i = 0; i < array->length(); i++) {
  5992       mrias_cl.do_class_loader_data(array->at(i));
  5995     // We don't need to keep track of new CLDs anymore.
  5996     ClassLoaderDataGraph::remember_new_clds(false);
  5998     verify_work_stacks_empty();
  6002     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
  6004     verify_work_stacks_empty();
  6006     RemarkKlassClosure remark_klass_closure(&mrias_cl);
  6007     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
  6009     verify_work_stacks_empty();
  6012   // We might have added oops to ClassLoaderData::_handles during the
  6013   // concurrent marking phase. These oops point to newly allocated objects
  6014   // that are guaranteed to be kept alive. Either by the direct allocation
  6015   // code, or when the young collector processes the strong roots. Hence,
  6016   // we don't have to revisit the _handles block during the remark phase.
  6018   verify_work_stacks_empty();
  6019   // Restore evacuated mark words, if any, used for overflow list links
  6020   if (!CMSOverflowEarlyRestoration) {
  6021     restore_preserved_marks_if_any();
  6023   verify_overflow_empty();
  6026 ////////////////////////////////////////////////////////
  6027 // Parallel Reference Processing Task Proxy Class
  6028 ////////////////////////////////////////////////////////
  6029 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
  6030   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  6031   CMSCollector*          _collector;
  6032   CMSBitMap*             _mark_bit_map;
  6033   const MemRegion        _span;
  6034   ProcessTask&           _task;
  6036 public:
  6037   CMSRefProcTaskProxy(ProcessTask&     task,
  6038                       CMSCollector*    collector,
  6039                       const MemRegion& span,
  6040                       CMSBitMap*       mark_bit_map,
  6041                       AbstractWorkGang* workers,
  6042                       OopTaskQueueSet* task_queues):
  6043     // XXX Should superclass AGTWOQ also know about AWG since it knows
  6044     // about the task_queues used by the AWG? Then it could initialize
  6045     // the terminator() object. See 6984287. The set_for_termination()
  6046     // below is a temporary band-aid for the regression in 6984287.
  6047     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
  6048       task_queues),
  6049     _task(task),
  6050     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
  6052     assert(_collector->_span.equals(_span) && !_span.is_empty(),
  6053            "Inconsistency in _span");
  6054     set_for_termination(workers->active_workers());
  6057   OopTaskQueueSet* task_queues() { return queues(); }
  6059   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  6061   void do_work_steal(int i,
  6062                      CMSParDrainMarkingStackClosure* drain,
  6063                      CMSParKeepAliveClosure* keep_alive,
  6064                      int* seed);
  6066   virtual void work(uint worker_id);
  6067 };
  6069 void CMSRefProcTaskProxy::work(uint worker_id) {
  6070   assert(_collector->_span.equals(_span), "Inconsistency in _span");
  6071   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  6072                                         _mark_bit_map,
  6073                                         work_queue(worker_id));
  6074   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  6075                                                  _mark_bit_map,
  6076                                                  work_queue(worker_id));
  6077   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
  6078   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
  6079   if (_task.marks_oops_alive()) {
  6080     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
  6081                   _collector->hash_seed(worker_id));
  6083   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
  6084   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  6087 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  6088   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  6089   EnqueueTask& _task;
  6091 public:
  6092   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  6093     : AbstractGangTask("Enqueue reference objects in parallel"),
  6094       _task(task)
  6095   { }
  6097   virtual void work(uint worker_id)
  6099     _task.work(worker_id);
  6101 };
  6103 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  6104   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
  6105    _span(span),
  6106    _bit_map(bit_map),
  6107    _work_queue(work_queue),
  6108    _mark_and_push(collector, span, bit_map, work_queue),
  6109    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6110                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  6111 { }
  6113 // . see if we can share work_queues with ParNew? XXX
  6114 void CMSRefProcTaskProxy::do_work_steal(int i,
  6115   CMSParDrainMarkingStackClosure* drain,
  6116   CMSParKeepAliveClosure* keep_alive,
  6117   int* seed) {
  6118   OopTaskQueue* work_q = work_queue(i);
  6119   NOT_PRODUCT(int num_steals = 0;)
  6120   oop obj_to_scan;
  6122   while (true) {
  6123     // Completely finish any left over work from (an) earlier round(s)
  6124     drain->trim_queue(0);
  6125     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  6126                                          (size_t)ParGCDesiredObjsFromOverflowList);
  6127     // Now check if there's any work in the overflow list
  6128     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
  6129     // only affects the number of attempts made to get work from the
  6130     // overflow list and does not affect the number of workers.  Just
  6131     // pass ParallelGCThreads so this behavior is unchanged.
  6132     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  6133                                                 work_q,
  6134                                                 ParallelGCThreads)) {
  6135       // Found something in global overflow list;
  6136       // not yet ready to go stealing work from others.
  6137       // We'd like to assert(work_q->size() != 0, ...)
  6138       // because we just took work from the overflow list,
  6139       // but of course we can't, since all of that might have
  6140       // been already stolen from us.
  6141       continue;
  6143     // Verify that we have no work before we resort to stealing
  6144     assert(work_q->size() == 0, "Have work, shouldn't steal");
  6145     // Try to steal from other queues that have work
  6146     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  6147       NOT_PRODUCT(num_steals++;)
  6148       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  6149       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  6150       // Do scanning work
  6151       obj_to_scan->oop_iterate(keep_alive);
  6152       // Loop around, finish this work, and try to steal some more
  6153     } else if (terminator()->offer_termination()) {
  6154       break;  // nirvana from the infinite cycle
  6157   NOT_PRODUCT(
  6158     if (PrintCMSStatistics != 0) {
  6159       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  6164 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  6166   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6167   FlexibleWorkGang* workers = gch->workers();
  6168   assert(workers != NULL, "Need parallel worker threads.");
  6169   CMSRefProcTaskProxy rp_task(task, &_collector,
  6170                               _collector.ref_processor()->span(),
  6171                               _collector.markBitMap(),
  6172                               workers, _collector.task_queues());
  6173   workers->run_task(&rp_task);
  6176 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  6179   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6180   FlexibleWorkGang* workers = gch->workers();
  6181   assert(workers != NULL, "Need parallel worker threads.");
  6182   CMSRefEnqueueTaskProxy enq_task(task);
  6183   workers->run_task(&enq_task);
  6186 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  6188   ResourceMark rm;
  6189   HandleMark   hm;
  6191   ReferenceProcessor* rp = ref_processor();
  6192   assert(rp->span().equals(_span), "Spans should be equal");
  6193   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
  6194   // Process weak references.
  6195   rp->setup_policy(clear_all_soft_refs);
  6196   verify_work_stacks_empty();
  6198   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  6199                                           &_markStack, false /* !preclean */);
  6200   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  6201                                 _span, &_markBitMap, &_markStack,
  6202                                 &cmsKeepAliveClosure, false /* !preclean */);
  6204     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
  6206     ReferenceProcessorStats stats;
  6207     if (rp->processing_is_mt()) {
  6208       // Set the degree of MT here.  If the discovery is done MT, there
  6209       // may have been a different number of threads doing the discovery
  6210       // and a different number of discovered lists may have Ref objects.
  6211       // That is OK as long as the Reference lists are balanced (see
  6212       // balance_all_queues() and balance_queues()).
  6213       GenCollectedHeap* gch = GenCollectedHeap::heap();
  6214       int active_workers = ParallelGCThreads;
  6215       FlexibleWorkGang* workers = gch->workers();
  6216       if (workers != NULL) {
  6217         active_workers = workers->active_workers();
  6218         // The expectation is that active_workers will have already
  6219         // been set to a reasonable value.  If it has not been set,
  6220         // investigate.
  6221         assert(active_workers > 0, "Should have been set during scavenge");
  6223       rp->set_active_mt_degree(active_workers);
  6224       CMSRefProcTaskExecutor task_executor(*this);
  6225       stats = rp->process_discovered_references(&_is_alive_closure,
  6226                                         &cmsKeepAliveClosure,
  6227                                         &cmsDrainMarkingStackClosure,
  6228                                         &task_executor,
  6229                                         _gc_timer_cm);
  6230     } else {
  6231       stats = rp->process_discovered_references(&_is_alive_closure,
  6232                                         &cmsKeepAliveClosure,
  6233                                         &cmsDrainMarkingStackClosure,
  6234                                         NULL,
  6235                                         _gc_timer_cm);
  6237     _gc_tracer_cm->report_gc_reference_stats(stats);
  6241   // This is the point where the entire marking should have completed.
  6242   verify_work_stacks_empty();
  6244   if (should_unload_classes()) {
  6246       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
  6248       // Unload classes and purge the SystemDictionary.
  6249       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  6251       // Unload nmethods.
  6252       CodeCache::do_unloading(&_is_alive_closure, purged_class);
  6254       // Prune dead klasses from subklass/sibling/implementor lists.
  6255       Klass::clean_weak_klass_links(&_is_alive_closure);
  6259       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
  6260       // Clean up unreferenced symbols in symbol table.
  6261       SymbolTable::unlink();
  6265   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
  6266   // Need to check if we really scanned the StringTable.
  6267   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
  6268     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
  6269     // Delete entries for dead interned strings.
  6270     StringTable::unlink(&_is_alive_closure);
  6273   // Restore any preserved marks as a result of mark stack or
  6274   // work queue overflow
  6275   restore_preserved_marks_if_any();  // done single-threaded for now
  6277   rp->set_enqueuing_is_done(true);
  6278   if (rp->processing_is_mt()) {
  6279     rp->balance_all_queues();
  6280     CMSRefProcTaskExecutor task_executor(*this);
  6281     rp->enqueue_discovered_references(&task_executor);
  6282   } else {
  6283     rp->enqueue_discovered_references(NULL);
  6285   rp->verify_no_references_recorded();
  6286   assert(!rp->discovery_enabled(), "should have been disabled");
  6289 #ifndef PRODUCT
  6290 void CMSCollector::check_correct_thread_executing() {
  6291   Thread* t = Thread::current();
  6292   // Only the VM thread or the CMS thread should be here.
  6293   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  6294          "Unexpected thread type");
  6295   // If this is the vm thread, the foreground process
  6296   // should not be waiting.  Note that _foregroundGCIsActive is
  6297   // true while the foreground collector is waiting.
  6298   if (_foregroundGCShouldWait) {
  6299     // We cannot be the VM thread
  6300     assert(t->is_ConcurrentGC_thread(),
  6301            "Should be CMS thread");
  6302   } else {
  6303     // We can be the CMS thread only if we are in a stop-world
  6304     // phase of CMS collection.
  6305     if (t->is_ConcurrentGC_thread()) {
  6306       assert(_collectorState == InitialMarking ||
  6307              _collectorState == FinalMarking,
  6308              "Should be a stop-world phase");
  6309       // The CMS thread should be holding the CMS_token.
  6310       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6311              "Potential interference with concurrently "
  6312              "executing VM thread");
  6316 #endif
  6318 void CMSCollector::sweep(bool asynch) {
  6319   assert(_collectorState == Sweeping, "just checking");
  6320   check_correct_thread_executing();
  6321   verify_work_stacks_empty();
  6322   verify_overflow_empty();
  6323   increment_sweep_count();
  6324   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
  6326   _inter_sweep_timer.stop();
  6327   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
  6328   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  6330   assert(!_intra_sweep_timer.is_active(), "Should not be active");
  6331   _intra_sweep_timer.reset();
  6332   _intra_sweep_timer.start();
  6333   if (asynch) {
  6334     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6335     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  6336     // First sweep the old gen
  6338       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  6339                                bitMapLock());
  6340       sweepWork(_cmsGen, asynch);
  6343     // Update Universe::_heap_*_at_gc figures.
  6344     // We need all the free list locks to make the abstract state
  6345     // transition from Sweeping to Resetting. See detailed note
  6346     // further below.
  6348       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
  6349       // Update heap occupancy information which is used as
  6350       // input to soft ref clearing policy at the next gc.
  6351       Universe::update_heap_info_at_gc();
  6352       _collectorState = Resizing;
  6354   } else {
  6355     // already have needed locks
  6356     sweepWork(_cmsGen,  asynch);
  6357     // Update heap occupancy information which is used as
  6358     // input to soft ref clearing policy at the next gc.
  6359     Universe::update_heap_info_at_gc();
  6360     _collectorState = Resizing;
  6362   verify_work_stacks_empty();
  6363   verify_overflow_empty();
  6365   if (should_unload_classes()) {
  6366     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
  6367     // requires that the virtual spaces are stable and not deleted.
  6368     ClassLoaderDataGraph::set_should_purge(true);
  6371   _intra_sweep_timer.stop();
  6372   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
  6374   _inter_sweep_timer.reset();
  6375   _inter_sweep_timer.start();
  6377   // We need to use a monotonically non-deccreasing time in ms
  6378   // or we will see time-warp warnings and os::javaTimeMillis()
  6379   // does not guarantee monotonicity.
  6380   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  6381   update_time_of_last_gc(now);
  6383   // NOTE on abstract state transitions:
  6384   // Mutators allocate-live and/or mark the mod-union table dirty
  6385   // based on the state of the collection.  The former is done in
  6386   // the interval [Marking, Sweeping] and the latter in the interval
  6387   // [Marking, Sweeping).  Thus the transitions into the Marking state
  6388   // and out of the Sweeping state must be synchronously visible
  6389   // globally to the mutators.
  6390   // The transition into the Marking state happens with the world
  6391   // stopped so the mutators will globally see it.  Sweeping is
  6392   // done asynchronously by the background collector so the transition
  6393   // from the Sweeping state to the Resizing state must be done
  6394   // under the freelistLock (as is the check for whether to
  6395   // allocate-live and whether to dirty the mod-union table).
  6396   assert(_collectorState == Resizing, "Change of collector state to"
  6397     " Resizing must be done under the freelistLocks (plural)");
  6399   // Now that sweeping has been completed, we clear
  6400   // the incremental_collection_failed flag,
  6401   // thus inviting a younger gen collection to promote into
  6402   // this generation. If such a promotion may still fail,
  6403   // the flag will be set again when a young collection is
  6404   // attempted.
  6405   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6406   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
  6407   gch->update_full_collections_completed(_collection_count_start);
  6410 // FIX ME!!! Looks like this belongs in CFLSpace, with
  6411 // CMSGen merely delegating to it.
  6412 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  6413   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
  6414   HeapWord*  minAddr        = _cmsSpace->bottom();
  6415   HeapWord*  largestAddr    =
  6416     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
  6417   if (largestAddr == NULL) {
  6418     // The dictionary appears to be empty.  In this case
  6419     // try to coalesce at the end of the heap.
  6420     largestAddr = _cmsSpace->end();
  6422   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  6423   size_t nearLargestOffset =
  6424     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  6425   if (PrintFLSStatistics != 0) {
  6426     gclog_or_tty->print_cr(
  6427       "CMS: Large Block: " PTR_FORMAT ";"
  6428       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
  6429       largestAddr,
  6430       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
  6432   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  6435 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  6436   return addr >= _cmsSpace->nearLargestChunk();
  6439 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  6440   return _cmsSpace->find_chunk_at_end();
  6443 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  6444                                                     bool full) {
  6445   // The next lower level has been collected.  Gather any statistics
  6446   // that are of interest at this point.
  6447   if (!full && (current_level + 1) == level()) {
  6448     // Gather statistics on the young generation collection.
  6449     collector()->stats().record_gc0_end(used());
  6453 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  6454   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6455   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  6456     "Wrong type of heap");
  6457   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  6458     gch->gen_policy()->size_policy();
  6459   assert(sp->is_gc_cms_adaptive_size_policy(),
  6460     "Wrong type of size policy");
  6461   return sp;
  6464 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  6465   if (PrintGCDetails && Verbose) {
  6466     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  6468   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  6469   _debug_collection_type =
  6470     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  6471   if (PrintGCDetails && Verbose) {
  6472     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  6476 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  6477   bool asynch) {
  6478   // We iterate over the space(s) underlying this generation,
  6479   // checking the mark bit map to see if the bits corresponding
  6480   // to specific blocks are marked or not. Blocks that are
  6481   // marked are live and are not swept up. All remaining blocks
  6482   // are swept up, with coalescing on-the-fly as we sweep up
  6483   // contiguous free and/or garbage blocks:
  6484   // We need to ensure that the sweeper synchronizes with allocators
  6485   // and stop-the-world collectors. In particular, the following
  6486   // locks are used:
  6487   // . CMS token: if this is held, a stop the world collection cannot occur
  6488   // . freelistLock: if this is held no allocation can occur from this
  6489   //                 generation by another thread
  6490   // . bitMapLock: if this is held, no other thread can access or update
  6491   //
  6493   // Note that we need to hold the freelistLock if we use
  6494   // block iterate below; else the iterator might go awry if
  6495   // a mutator (or promotion) causes block contents to change
  6496   // (for instance if the allocator divvies up a block).
  6497   // If we hold the free list lock, for all practical purposes
  6498   // young generation GC's can't occur (they'll usually need to
  6499   // promote), so we might as well prevent all young generation
  6500   // GC's while we do a sweeping step. For the same reason, we might
  6501   // as well take the bit map lock for the entire duration
  6503   // check that we hold the requisite locks
  6504   assert(have_cms_token(), "Should hold cms token");
  6505   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  6506          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  6507         "Should possess CMS token to sweep");
  6508   assert_lock_strong(gen->freelistLock());
  6509   assert_lock_strong(bitMapLock());
  6511   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
  6512   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
  6513   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
  6514                                       _inter_sweep_estimate.padded_average(),
  6515                                       _intra_sweep_estimate.padded_average());
  6516   gen->setNearLargestChunk();
  6519     SweepClosure sweepClosure(this, gen, &_markBitMap,
  6520                             CMSYield && asynch);
  6521     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  6522     // We need to free-up/coalesce garbage/blocks from a
  6523     // co-terminal free run. This is done in the SweepClosure
  6524     // destructor; so, do not remove this scope, else the
  6525     // end-of-sweep-census below will be off by a little bit.
  6527   gen->cmsSpace()->sweep_completed();
  6528   gen->cmsSpace()->endSweepFLCensus(sweep_count());
  6529   if (should_unload_classes()) {                // unloaded classes this cycle,
  6530     _concurrent_cycles_since_last_unload = 0;   // ... reset count
  6531   } else {                                      // did not unload classes,
  6532     _concurrent_cycles_since_last_unload++;     // ... increment count
  6536 // Reset CMS data structures (for now just the marking bit map)
  6537 // preparatory for the next cycle.
  6538 void CMSCollector::reset(bool asynch) {
  6539   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6540   CMSAdaptiveSizePolicy* sp = size_policy();
  6541   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  6542   if (asynch) {
  6543     CMSTokenSyncWithLocks ts(true, bitMapLock());
  6545     // If the state is not "Resetting", the foreground  thread
  6546     // has done a collection and the resetting.
  6547     if (_collectorState != Resetting) {
  6548       assert(_collectorState == Idling, "The state should only change"
  6549         " because the foreground collector has finished the collection");
  6550       return;
  6553     // Clear the mark bitmap (no grey objects to start with)
  6554     // for the next cycle.
  6555     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6556     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  6558     HeapWord* curAddr = _markBitMap.startWord();
  6559     while (curAddr < _markBitMap.endWord()) {
  6560       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  6561       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  6562       _markBitMap.clear_large_range(chunk);
  6563       if (ConcurrentMarkSweepThread::should_yield() &&
  6564           !foregroundGCIsActive() &&
  6565           CMSYield) {
  6566         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6567                "CMS thread should hold CMS token");
  6568         assert_lock_strong(bitMapLock());
  6569         bitMapLock()->unlock();
  6570         ConcurrentMarkSweepThread::desynchronize(true);
  6571         ConcurrentMarkSweepThread::acknowledge_yield_request();
  6572         stopTimer();
  6573         if (PrintCMSStatistics != 0) {
  6574           incrementYields();
  6576         icms_wait();
  6578         // See the comment in coordinator_yield()
  6579         for (unsigned i = 0; i < CMSYieldSleepCount &&
  6580                          ConcurrentMarkSweepThread::should_yield() &&
  6581                          !CMSCollector::foregroundGCIsActive(); ++i) {
  6582           os::sleep(Thread::current(), 1, false);
  6583           ConcurrentMarkSweepThread::acknowledge_yield_request();
  6586         ConcurrentMarkSweepThread::synchronize(true);
  6587         bitMapLock()->lock_without_safepoint_check();
  6588         startTimer();
  6590       curAddr = chunk.end();
  6592     // A successful mostly concurrent collection has been done.
  6593     // Because only the full (i.e., concurrent mode failure) collections
  6594     // are being measured for gc overhead limits, clean the "near" flag
  6595     // and count.
  6596     sp->reset_gc_overhead_limit_count();
  6597     _collectorState = Idling;
  6598   } else {
  6599     // already have the lock
  6600     assert(_collectorState == Resetting, "just checking");
  6601     assert_lock_strong(bitMapLock());
  6602     _markBitMap.clear_all();
  6603     _collectorState = Idling;
  6606   // Stop incremental mode after a cycle completes, so that any future cycles
  6607   // are triggered by allocation.
  6608   stop_icms();
  6610   NOT_PRODUCT(
  6611     if (RotateCMSCollectionTypes) {
  6612       _cmsGen->rotate_debug_collection_type();
  6616   register_gc_end();
  6619 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
  6620   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6621   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6622   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
  6623   TraceCollectorStats tcs(counters());
  6625   switch (op) {
  6626     case CMS_op_checkpointRootsInitial: {
  6627       SvcGCMarker sgcm(SvcGCMarker::OTHER);
  6628       checkpointRootsInitial(true);       // asynch
  6629       if (PrintGC) {
  6630         _cmsGen->printOccupancy("initial-mark");
  6632       break;
  6634     case CMS_op_checkpointRootsFinal: {
  6635       SvcGCMarker sgcm(SvcGCMarker::OTHER);
  6636       checkpointRootsFinal(true,    // asynch
  6637                            false,   // !clear_all_soft_refs
  6638                            false);  // !init_mark_was_synchronous
  6639       if (PrintGC) {
  6640         _cmsGen->printOccupancy("remark");
  6642       break;
  6644     default:
  6645       fatal("No such CMS_op");
  6649 #ifndef PRODUCT
  6650 size_t const CMSCollector::skip_header_HeapWords() {
  6651   return FreeChunk::header_size();
  6654 // Try and collect here conditions that should hold when
  6655 // CMS thread is exiting. The idea is that the foreground GC
  6656 // thread should not be blocked if it wants to terminate
  6657 // the CMS thread and yet continue to run the VM for a while
  6658 // after that.
  6659 void CMSCollector::verify_ok_to_terminate() const {
  6660   assert(Thread::current()->is_ConcurrentGC_thread(),
  6661          "should be called by CMS thread");
  6662   assert(!_foregroundGCShouldWait, "should be false");
  6663   // We could check here that all the various low-level locks
  6664   // are not held by the CMS thread, but that is overkill; see
  6665   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6666   // is checked.
  6668 #endif
  6670 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6671    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6672           "missing Printezis mark?");
  6673   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6674   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6675   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6676          "alignment problem");
  6677   assert(size >= 3, "Necessary for Printezis marks to work");
  6678   return size;
  6681 // A variant of the above (block_size_using_printezis_bits()) except
  6682 // that we return 0 if the P-bits are not yet set.
  6683 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6684   if (_markBitMap.isMarked(addr + 1)) {
  6685     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
  6686     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6687     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6688     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6689            "alignment problem");
  6690     assert(size >= 3, "Necessary for Printezis marks to work");
  6691     return size;
  6693   return 0;
  6696 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6697   size_t sz = 0;
  6698   oop p = (oop)addr;
  6699   if (p->klass_or_null() != NULL) {
  6700     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6701   } else {
  6702     sz = block_size_using_printezis_bits(addr);
  6704   assert(sz > 0, "size must be nonzero");
  6705   HeapWord* next_block = addr + sz;
  6706   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6707                                              CardTableModRefBS::card_size);
  6708   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6709          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6710          "must be different cards");
  6711   return next_card;
  6715 // CMS Bit Map Wrapper /////////////////////////////////////////
  6717 // Construct a CMS bit map infrastructure, but don't create the
  6718 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6719 // further below.
  6720 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6721   _bm(),
  6722   _shifter(shifter),
  6723   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6725   _bmStartWord = 0;
  6726   _bmWordSize  = 0;
  6729 bool CMSBitMap::allocate(MemRegion mr) {
  6730   _bmStartWord = mr.start();
  6731   _bmWordSize  = mr.word_size();
  6732   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6733                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6734   if (!brs.is_reserved()) {
  6735     warning("CMS bit map allocation failure");
  6736     return false;
  6738   // For now we'll just commit all of the bit map up fromt.
  6739   // Later on we'll try to be more parsimonious with swap.
  6740   if (!_virtual_space.initialize(brs, brs.size())) {
  6741     warning("CMS bit map backing store failure");
  6742     return false;
  6744   assert(_virtual_space.committed_size() == brs.size(),
  6745          "didn't reserve backing store for all of CMS bit map?");
  6746   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
  6747   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6748          _bmWordSize, "inconsistency in bit map sizing");
  6749   _bm.set_size(_bmWordSize >> _shifter);
  6751   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6752   assert(isAllClear(),
  6753          "Expected zero'd memory from ReservedSpace constructor");
  6754   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6755          "consistency check");
  6756   return true;
  6759 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6760   HeapWord *next_addr, *end_addr, *last_addr;
  6761   assert_locked();
  6762   assert(covers(mr), "out-of-range error");
  6763   // XXX assert that start and end are appropriately aligned
  6764   for (next_addr = mr.start(), end_addr = mr.end();
  6765        next_addr < end_addr; next_addr = last_addr) {
  6766     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6767     last_addr = dirty_region.end();
  6768     if (!dirty_region.is_empty()) {
  6769       cl->do_MemRegion(dirty_region);
  6770     } else {
  6771       assert(last_addr == end_addr, "program logic");
  6772       return;
  6777 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
  6778   _bm.print_on_error(st, prefix);
  6781 #ifndef PRODUCT
  6782 void CMSBitMap::assert_locked() const {
  6783   CMSLockVerifier::assert_locked(lock());
  6786 bool CMSBitMap::covers(MemRegion mr) const {
  6787   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6788   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6789          "size inconsistency");
  6790   return (mr.start() >= _bmStartWord) &&
  6791          (mr.end()   <= endWord());
  6794 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6795     return (start >= _bmStartWord && (start + size) <= endWord());
  6798 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6799   // verify that there are no 1 bits in the interval [left, right)
  6800   FalseBitMapClosure falseBitMapClosure;
  6801   iterate(&falseBitMapClosure, left, right);
  6804 void CMSBitMap::region_invariant(MemRegion mr)
  6806   assert_locked();
  6807   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6808   assert(!mr.is_empty(), "unexpected empty region");
  6809   assert(covers(mr), "mr should be covered by bit map");
  6810   // convert address range into offset range
  6811   size_t start_ofs = heapWordToOffset(mr.start());
  6812   // Make sure that end() is appropriately aligned
  6813   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6814                         (1 << (_shifter+LogHeapWordSize))),
  6815          "Misaligned mr.end()");
  6816   size_t end_ofs   = heapWordToOffset(mr.end());
  6817   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6820 #endif
  6822 bool CMSMarkStack::allocate(size_t size) {
  6823   // allocate a stack of the requisite depth
  6824   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6825                    size * sizeof(oop)));
  6826   if (!rs.is_reserved()) {
  6827     warning("CMSMarkStack allocation failure");
  6828     return false;
  6830   if (!_virtual_space.initialize(rs, rs.size())) {
  6831     warning("CMSMarkStack backing store failure");
  6832     return false;
  6834   assert(_virtual_space.committed_size() == rs.size(),
  6835          "didn't reserve backing store for all of CMS stack?");
  6836   _base = (oop*)(_virtual_space.low());
  6837   _index = 0;
  6838   _capacity = size;
  6839   NOT_PRODUCT(_max_depth = 0);
  6840   return true;
  6843 // XXX FIX ME !!! In the MT case we come in here holding a
  6844 // leaf lock. For printing we need to take a further lock
  6845 // which has lower rank. We need to recallibrate the two
  6846 // lock-ranks involved in order to be able to rpint the
  6847 // messages below. (Or defer the printing to the caller.
  6848 // For now we take the expedient path of just disabling the
  6849 // messages for the problematic case.)
  6850 void CMSMarkStack::expand() {
  6851   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
  6852   if (_capacity == MarkStackSizeMax) {
  6853     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6854       // We print a warning message only once per CMS cycle.
  6855       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6857     return;
  6859   // Double capacity if possible
  6860   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
  6861   // Do not give up existing stack until we have managed to
  6862   // get the double capacity that we desired.
  6863   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6864                    new_capacity * sizeof(oop)));
  6865   if (rs.is_reserved()) {
  6866     // Release the backing store associated with old stack
  6867     _virtual_space.release();
  6868     // Reinitialize virtual space for new stack
  6869     if (!_virtual_space.initialize(rs, rs.size())) {
  6870       fatal("Not enough swap for expanded marking stack");
  6872     _base = (oop*)(_virtual_space.low());
  6873     _index = 0;
  6874     _capacity = new_capacity;
  6875   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6876     // Failed to double capacity, continue;
  6877     // we print a detail message only once per CMS cycle.
  6878     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6879             SIZE_FORMAT"K",
  6880             _capacity / K, new_capacity / K);
  6885 // Closures
  6886 // XXX: there seems to be a lot of code  duplication here;
  6887 // should refactor and consolidate common code.
  6889 // This closure is used to mark refs into the CMS generation in
  6890 // the CMS bit map. Called at the first checkpoint. This closure
  6891 // assumes that we do not need to re-mark dirty cards; if the CMS
  6892 // generation on which this is used is not an oldest
  6893 // generation then this will lose younger_gen cards!
  6895 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6896   MemRegion span, CMSBitMap* bitMap):
  6897     _span(span),
  6898     _bitMap(bitMap)
  6900     assert(_ref_processor == NULL, "deliberately left NULL");
  6901     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6904 void MarkRefsIntoClosure::do_oop(oop obj) {
  6905   // if p points into _span, then mark corresponding bit in _markBitMap
  6906   assert(obj->is_oop(), "expected an oop");
  6907   HeapWord* addr = (HeapWord*)obj;
  6908   if (_span.contains(addr)) {
  6909     // this should be made more efficient
  6910     _bitMap->mark(addr);
  6914 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
  6915 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
  6917 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
  6918   MemRegion span, CMSBitMap* bitMap):
  6919     _span(span),
  6920     _bitMap(bitMap)
  6922     assert(_ref_processor == NULL, "deliberately left NULL");
  6923     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6926 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
  6927   // if p points into _span, then mark corresponding bit in _markBitMap
  6928   assert(obj->is_oop(), "expected an oop");
  6929   HeapWord* addr = (HeapWord*)obj;
  6930   if (_span.contains(addr)) {
  6931     // this should be made more efficient
  6932     _bitMap->par_mark(addr);
  6936 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
  6937 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
  6939 // A variant of the above, used for CMS marking verification.
  6940 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6941   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
  6942     _span(span),
  6943     _verification_bm(verification_bm),
  6944     _cms_bm(cms_bm)
  6946     assert(_ref_processor == NULL, "deliberately left NULL");
  6947     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6950 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
  6951   // if p points into _span, then mark corresponding bit in _markBitMap
  6952   assert(obj->is_oop(), "expected an oop");
  6953   HeapWord* addr = (HeapWord*)obj;
  6954   if (_span.contains(addr)) {
  6955     _verification_bm->mark(addr);
  6956     if (!_cms_bm->isMarked(addr)) {
  6957       oop(addr)->print();
  6958       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
  6959       fatal("... aborting");
  6964 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6965 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6967 //////////////////////////////////////////////////
  6968 // MarkRefsIntoAndScanClosure
  6969 //////////////////////////////////////////////////
  6971 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6972                                                        ReferenceProcessor* rp,
  6973                                                        CMSBitMap* bit_map,
  6974                                                        CMSBitMap* mod_union_table,
  6975                                                        CMSMarkStack*  mark_stack,
  6976                                                        CMSCollector* collector,
  6977                                                        bool should_yield,
  6978                                                        bool concurrent_precleaning):
  6979   _collector(collector),
  6980   _span(span),
  6981   _bit_map(bit_map),
  6982   _mark_stack(mark_stack),
  6983   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  6984                       mark_stack, concurrent_precleaning),
  6985   _yield(should_yield),
  6986   _concurrent_precleaning(concurrent_precleaning),
  6987   _freelistLock(NULL)
  6989   _ref_processor = rp;
  6990   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6993 // This closure is used to mark refs into the CMS generation at the
  6994 // second (final) checkpoint, and to scan and transitively follow
  6995 // the unmarked oops. It is also used during the concurrent precleaning
  6996 // phase while scanning objects on dirty cards in the CMS generation.
  6997 // The marks are made in the marking bit map and the marking stack is
  6998 // used for keeping the (newly) grey objects during the scan.
  6999 // The parallel version (Par_...) appears further below.
  7000 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  7001   if (obj != NULL) {
  7002     assert(obj->is_oop(), "expected an oop");
  7003     HeapWord* addr = (HeapWord*)obj;
  7004     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  7005     assert(_collector->overflow_list_is_empty(),
  7006            "overflow list should be empty");
  7007     if (_span.contains(addr) &&
  7008         !_bit_map->isMarked(addr)) {
  7009       // mark bit map (object is now grey)
  7010       _bit_map->mark(addr);
  7011       // push on marking stack (stack should be empty), and drain the
  7012       // stack by applying this closure to the oops in the oops popped
  7013       // from the stack (i.e. blacken the grey objects)
  7014       bool res = _mark_stack->push(obj);
  7015       assert(res, "Should have space to push on empty stack");
  7016       do {
  7017         oop new_oop = _mark_stack->pop();
  7018         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  7019         assert(_bit_map->isMarked((HeapWord*)new_oop),
  7020                "only grey objects on this stack");
  7021         // iterate over the oops in this oop, marking and pushing
  7022         // the ones in CMS heap (i.e. in _span).
  7023         new_oop->oop_iterate(&_pushAndMarkClosure);
  7024         // check if it's time to yield
  7025         do_yield_check();
  7026       } while (!_mark_stack->isEmpty() ||
  7027                (!_concurrent_precleaning && take_from_overflow_list()));
  7028         // if marking stack is empty, and we are not doing this
  7029         // during precleaning, then check the overflow list
  7031     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  7032     assert(_collector->overflow_list_is_empty(),
  7033            "overflow list was drained above");
  7034     // We could restore evacuated mark words, if any, used for
  7035     // overflow list links here because the overflow list is
  7036     // provably empty here. That would reduce the maximum
  7037     // size requirements for preserved_{oop,mark}_stack.
  7038     // But we'll just postpone it until we are all done
  7039     // so we can just stream through.
  7040     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  7041       _collector->restore_preserved_marks_if_any();
  7042       assert(_collector->no_preserved_marks(), "No preserved marks");
  7044     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  7045            "All preserved marks should have been restored above");
  7049 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  7050 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  7052 void MarkRefsIntoAndScanClosure::do_yield_work() {
  7053   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7054          "CMS thread should hold CMS token");
  7055   assert_lock_strong(_freelistLock);
  7056   assert_lock_strong(_bit_map->lock());
  7057   // relinquish the free_list_lock and bitMaplock()
  7058   _bit_map->lock()->unlock();
  7059   _freelistLock->unlock();
  7060   ConcurrentMarkSweepThread::desynchronize(true);
  7061   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7062   _collector->stopTimer();
  7063   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7064   if (PrintCMSStatistics != 0) {
  7065     _collector->incrementYields();
  7067   _collector->icms_wait();
  7069   // See the comment in coordinator_yield()
  7070   for (unsigned i = 0;
  7071        i < CMSYieldSleepCount &&
  7072        ConcurrentMarkSweepThread::should_yield() &&
  7073        !CMSCollector::foregroundGCIsActive();
  7074        ++i) {
  7075     os::sleep(Thread::current(), 1, false);
  7076     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7079   ConcurrentMarkSweepThread::synchronize(true);
  7080   _freelistLock->lock_without_safepoint_check();
  7081   _bit_map->lock()->lock_without_safepoint_check();
  7082   _collector->startTimer();
  7085 ///////////////////////////////////////////////////////////
  7086 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  7087 //                                 MarkRefsIntoAndScanClosure
  7088 ///////////////////////////////////////////////////////////
  7089 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  7090   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  7091   CMSBitMap* bit_map, OopTaskQueue* work_queue):
  7092   _span(span),
  7093   _bit_map(bit_map),
  7094   _work_queue(work_queue),
  7095   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  7096                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  7097   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
  7099   _ref_processor = rp;
  7100   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7103 // This closure is used to mark refs into the CMS generation at the
  7104 // second (final) checkpoint, and to scan and transitively follow
  7105 // the unmarked oops. The marks are made in the marking bit map and
  7106 // the work_queue is used for keeping the (newly) grey objects during
  7107 // the scan phase whence they are also available for stealing by parallel
  7108 // threads. Since the marking bit map is shared, updates are
  7109 // synchronized (via CAS).
  7110 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  7111   if (obj != NULL) {
  7112     // Ignore mark word because this could be an already marked oop
  7113     // that may be chained at the end of the overflow list.
  7114     assert(obj->is_oop(true), "expected an oop");
  7115     HeapWord* addr = (HeapWord*)obj;
  7116     if (_span.contains(addr) &&
  7117         !_bit_map->isMarked(addr)) {
  7118       // mark bit map (object will become grey):
  7119       // It is possible for several threads to be
  7120       // trying to "claim" this object concurrently;
  7121       // the unique thread that succeeds in marking the
  7122       // object first will do the subsequent push on
  7123       // to the work queue (or overflow list).
  7124       if (_bit_map->par_mark(addr)) {
  7125         // push on work_queue (which may not be empty), and trim the
  7126         // queue to an appropriate length by applying this closure to
  7127         // the oops in the oops popped from the stack (i.e. blacken the
  7128         // grey objects)
  7129         bool res = _work_queue->push(obj);
  7130         assert(res, "Low water mark should be less than capacity?");
  7131         trim_queue(_low_water_mark);
  7132       } // Else, another thread claimed the object
  7137 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  7138 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  7140 // This closure is used to rescan the marked objects on the dirty cards
  7141 // in the mod union table and the card table proper.
  7142 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  7143   oop p, MemRegion mr) {
  7145   size_t size = 0;
  7146   HeapWord* addr = (HeapWord*)p;
  7147   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  7148   assert(_span.contains(addr), "we are scanning the CMS generation");
  7149   // check if it's time to yield
  7150   if (do_yield_check()) {
  7151     // We yielded for some foreground stop-world work,
  7152     // and we have been asked to abort this ongoing preclean cycle.
  7153     return 0;
  7155   if (_bitMap->isMarked(addr)) {
  7156     // it's marked; is it potentially uninitialized?
  7157     if (p->klass_or_null() != NULL) {
  7158         // an initialized object; ignore mark word in verification below
  7159         // since we are running concurrent with mutators
  7160         assert(p->is_oop(true), "should be an oop");
  7161         if (p->is_objArray()) {
  7162           // objArrays are precisely marked; restrict scanning
  7163           // to dirty cards only.
  7164           size = CompactibleFreeListSpace::adjustObjectSize(
  7165                    p->oop_iterate(_scanningClosure, mr));
  7166         } else {
  7167           // A non-array may have been imprecisely marked; we need
  7168           // to scan object in its entirety.
  7169           size = CompactibleFreeListSpace::adjustObjectSize(
  7170                    p->oop_iterate(_scanningClosure));
  7172         #ifdef ASSERT
  7173           size_t direct_size =
  7174             CompactibleFreeListSpace::adjustObjectSize(p->size());
  7175           assert(size == direct_size, "Inconsistency in size");
  7176           assert(size >= 3, "Necessary for Printezis marks to work");
  7177           if (!_bitMap->isMarked(addr+1)) {
  7178             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  7179           } else {
  7180             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  7181             assert(_bitMap->isMarked(addr+size-1),
  7182                    "inconsistent Printezis mark");
  7184         #endif // ASSERT
  7185     } else {
  7186       // an unitialized object
  7187       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  7188       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  7189       size = pointer_delta(nextOneAddr + 1, addr);
  7190       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  7191              "alignment problem");
  7192       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  7193       // will dirty the card when the klass pointer is installed in the
  7194       // object (signalling the completion of initialization).
  7196   } else {
  7197     // Either a not yet marked object or an uninitialized object
  7198     if (p->klass_or_null() == NULL) {
  7199       // An uninitialized object, skip to the next card, since
  7200       // we may not be able to read its P-bits yet.
  7201       assert(size == 0, "Initial value");
  7202     } else {
  7203       // An object not (yet) reached by marking: we merely need to
  7204       // compute its size so as to go look at the next block.
  7205       assert(p->is_oop(true), "should be an oop");
  7206       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  7209   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  7210   return size;
  7213 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  7214   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7215          "CMS thread should hold CMS token");
  7216   assert_lock_strong(_freelistLock);
  7217   assert_lock_strong(_bitMap->lock());
  7218   // relinquish the free_list_lock and bitMaplock()
  7219   _bitMap->lock()->unlock();
  7220   _freelistLock->unlock();
  7221   ConcurrentMarkSweepThread::desynchronize(true);
  7222   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7223   _collector->stopTimer();
  7224   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7225   if (PrintCMSStatistics != 0) {
  7226     _collector->incrementYields();
  7228   _collector->icms_wait();
  7230   // See the comment in coordinator_yield()
  7231   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7232                    ConcurrentMarkSweepThread::should_yield() &&
  7233                    !CMSCollector::foregroundGCIsActive(); ++i) {
  7234     os::sleep(Thread::current(), 1, false);
  7235     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7238   ConcurrentMarkSweepThread::synchronize(true);
  7239   _freelistLock->lock_without_safepoint_check();
  7240   _bitMap->lock()->lock_without_safepoint_check();
  7241   _collector->startTimer();
  7245 //////////////////////////////////////////////////////////////////
  7246 // SurvivorSpacePrecleanClosure
  7247 //////////////////////////////////////////////////////////////////
  7248 // This (single-threaded) closure is used to preclean the oops in
  7249 // the survivor spaces.
  7250 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  7252   HeapWord* addr = (HeapWord*)p;
  7253   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  7254   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  7255   assert(p->klass_or_null() != NULL, "object should be initializd");
  7256   // an initialized object; ignore mark word in verification below
  7257   // since we are running concurrent with mutators
  7258   assert(p->is_oop(true), "should be an oop");
  7259   // Note that we do not yield while we iterate over
  7260   // the interior oops of p, pushing the relevant ones
  7261   // on our marking stack.
  7262   size_t size = p->oop_iterate(_scanning_closure);
  7263   do_yield_check();
  7264   // Observe that below, we do not abandon the preclean
  7265   // phase as soon as we should; rather we empty the
  7266   // marking stack before returning. This is to satisfy
  7267   // some existing assertions. In general, it may be a
  7268   // good idea to abort immediately and complete the marking
  7269   // from the grey objects at a later time.
  7270   while (!_mark_stack->isEmpty()) {
  7271     oop new_oop = _mark_stack->pop();
  7272     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  7273     assert(_bit_map->isMarked((HeapWord*)new_oop),
  7274            "only grey objects on this stack");
  7275     // iterate over the oops in this oop, marking and pushing
  7276     // the ones in CMS heap (i.e. in _span).
  7277     new_oop->oop_iterate(_scanning_closure);
  7278     // check if it's time to yield
  7279     do_yield_check();
  7281   unsigned int after_count =
  7282     GenCollectedHeap::heap()->total_collections();
  7283   bool abort = (_before_count != after_count) ||
  7284                _collector->should_abort_preclean();
  7285   return abort ? 0 : size;
  7288 void SurvivorSpacePrecleanClosure::do_yield_work() {
  7289   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7290          "CMS thread should hold CMS token");
  7291   assert_lock_strong(_bit_map->lock());
  7292   // Relinquish the bit map lock
  7293   _bit_map->lock()->unlock();
  7294   ConcurrentMarkSweepThread::desynchronize(true);
  7295   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7296   _collector->stopTimer();
  7297   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7298   if (PrintCMSStatistics != 0) {
  7299     _collector->incrementYields();
  7301   _collector->icms_wait();
  7303   // See the comment in coordinator_yield()
  7304   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7305                        ConcurrentMarkSweepThread::should_yield() &&
  7306                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7307     os::sleep(Thread::current(), 1, false);
  7308     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7311   ConcurrentMarkSweepThread::synchronize(true);
  7312   _bit_map->lock()->lock_without_safepoint_check();
  7313   _collector->startTimer();
  7316 // This closure is used to rescan the marked objects on the dirty cards
  7317 // in the mod union table and the card table proper. In the parallel
  7318 // case, although the bitMap is shared, we do a single read so the
  7319 // isMarked() query is "safe".
  7320 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  7321   // Ignore mark word because we are running concurrent with mutators
  7322   assert(p->is_oop_or_null(true), "expected an oop or null");
  7323   HeapWord* addr = (HeapWord*)p;
  7324   assert(_span.contains(addr), "we are scanning the CMS generation");
  7325   bool is_obj_array = false;
  7326   #ifdef ASSERT
  7327     if (!_parallel) {
  7328       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  7329       assert(_collector->overflow_list_is_empty(),
  7330              "overflow list should be empty");
  7333   #endif // ASSERT
  7334   if (_bit_map->isMarked(addr)) {
  7335     // Obj arrays are precisely marked, non-arrays are not;
  7336     // so we scan objArrays precisely and non-arrays in their
  7337     // entirety.
  7338     if (p->is_objArray()) {
  7339       is_obj_array = true;
  7340       if (_parallel) {
  7341         p->oop_iterate(_par_scan_closure, mr);
  7342       } else {
  7343         p->oop_iterate(_scan_closure, mr);
  7345     } else {
  7346       if (_parallel) {
  7347         p->oop_iterate(_par_scan_closure);
  7348       } else {
  7349         p->oop_iterate(_scan_closure);
  7353   #ifdef ASSERT
  7354     if (!_parallel) {
  7355       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  7356       assert(_collector->overflow_list_is_empty(),
  7357              "overflow list should be empty");
  7360   #endif // ASSERT
  7361   return is_obj_array;
  7364 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  7365                         MemRegion span,
  7366                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7367                         bool should_yield, bool verifying):
  7368   _collector(collector),
  7369   _span(span),
  7370   _bitMap(bitMap),
  7371   _mut(&collector->_modUnionTable),
  7372   _markStack(markStack),
  7373   _yield(should_yield),
  7374   _skipBits(0)
  7376   assert(_markStack->isEmpty(), "stack should be empty");
  7377   _finger = _bitMap->startWord();
  7378   _threshold = _finger;
  7379   assert(_collector->_restart_addr == NULL, "Sanity check");
  7380   assert(_span.contains(_finger), "Out of bounds _finger?");
  7381   DEBUG_ONLY(_verifying = verifying;)
  7384 void MarkFromRootsClosure::reset(HeapWord* addr) {
  7385   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  7386   assert(_span.contains(addr), "Out of bounds _finger?");
  7387   _finger = addr;
  7388   _threshold = (HeapWord*)round_to(
  7389                  (intptr_t)_finger, CardTableModRefBS::card_size);
  7392 // Should revisit to see if this should be restructured for
  7393 // greater efficiency.
  7394 bool MarkFromRootsClosure::do_bit(size_t offset) {
  7395   if (_skipBits > 0) {
  7396     _skipBits--;
  7397     return true;
  7399   // convert offset into a HeapWord*
  7400   HeapWord* addr = _bitMap->startWord() + offset;
  7401   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  7402          "address out of range");
  7403   assert(_bitMap->isMarked(addr), "tautology");
  7404   if (_bitMap->isMarked(addr+1)) {
  7405     // this is an allocated but not yet initialized object
  7406     assert(_skipBits == 0, "tautology");
  7407     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  7408     oop p = oop(addr);
  7409     if (p->klass_or_null() == NULL) {
  7410       DEBUG_ONLY(if (!_verifying) {)
  7411         // We re-dirty the cards on which this object lies and increase
  7412         // the _threshold so that we'll come back to scan this object
  7413         // during the preclean or remark phase. (CMSCleanOnEnter)
  7414         if (CMSCleanOnEnter) {
  7415           size_t sz = _collector->block_size_using_printezis_bits(addr);
  7416           HeapWord* end_card_addr   = (HeapWord*)round_to(
  7417                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  7418           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  7419           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  7420           // Bump _threshold to end_card_addr; note that
  7421           // _threshold cannot possibly exceed end_card_addr, anyhow.
  7422           // This prevents future clearing of the card as the scan proceeds
  7423           // to the right.
  7424           assert(_threshold <= end_card_addr,
  7425                  "Because we are just scanning into this object");
  7426           if (_threshold < end_card_addr) {
  7427             _threshold = end_card_addr;
  7429           if (p->klass_or_null() != NULL) {
  7430             // Redirty the range of cards...
  7431             _mut->mark_range(redirty_range);
  7432           } // ...else the setting of klass will dirty the card anyway.
  7434       DEBUG_ONLY(})
  7435       return true;
  7438   scanOopsInOop(addr);
  7439   return true;
  7442 // We take a break if we've been at this for a while,
  7443 // so as to avoid monopolizing the locks involved.
  7444 void MarkFromRootsClosure::do_yield_work() {
  7445   // First give up the locks, then yield, then re-lock
  7446   // We should probably use a constructor/destructor idiom to
  7447   // do this unlock/lock or modify the MutexUnlocker class to
  7448   // serve our purpose. XXX
  7449   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7450          "CMS thread should hold CMS token");
  7451   assert_lock_strong(_bitMap->lock());
  7452   _bitMap->lock()->unlock();
  7453   ConcurrentMarkSweepThread::desynchronize(true);
  7454   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7455   _collector->stopTimer();
  7456   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7457   if (PrintCMSStatistics != 0) {
  7458     _collector->incrementYields();
  7460   _collector->icms_wait();
  7462   // See the comment in coordinator_yield()
  7463   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7464                        ConcurrentMarkSweepThread::should_yield() &&
  7465                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7466     os::sleep(Thread::current(), 1, false);
  7467     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7470   ConcurrentMarkSweepThread::synchronize(true);
  7471   _bitMap->lock()->lock_without_safepoint_check();
  7472   _collector->startTimer();
  7475 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  7476   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  7477   assert(_markStack->isEmpty(),
  7478          "should drain stack to limit stack usage");
  7479   // convert ptr to an oop preparatory to scanning
  7480   oop obj = oop(ptr);
  7481   // Ignore mark word in verification below, since we
  7482   // may be running concurrent with mutators.
  7483   assert(obj->is_oop(true), "should be an oop");
  7484   assert(_finger <= ptr, "_finger runneth ahead");
  7485   // advance the finger to right end of this object
  7486   _finger = ptr + obj->size();
  7487   assert(_finger > ptr, "we just incremented it above");
  7488   // On large heaps, it may take us some time to get through
  7489   // the marking phase (especially if running iCMS). During
  7490   // this time it's possible that a lot of mutations have
  7491   // accumulated in the card table and the mod union table --
  7492   // these mutation records are redundant until we have
  7493   // actually traced into the corresponding card.
  7494   // Here, we check whether advancing the finger would make
  7495   // us cross into a new card, and if so clear corresponding
  7496   // cards in the MUT (preclean them in the card-table in the
  7497   // future).
  7499   DEBUG_ONLY(if (!_verifying) {)
  7500     // The clean-on-enter optimization is disabled by default,
  7501     // until we fix 6178663.
  7502     if (CMSCleanOnEnter && (_finger > _threshold)) {
  7503       // [_threshold, _finger) represents the interval
  7504       // of cards to be cleared  in MUT (or precleaned in card table).
  7505       // The set of cards to be cleared is all those that overlap
  7506       // with the interval [_threshold, _finger); note that
  7507       // _threshold is always kept card-aligned but _finger isn't
  7508       // always card-aligned.
  7509       HeapWord* old_threshold = _threshold;
  7510       assert(old_threshold == (HeapWord*)round_to(
  7511               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7512              "_threshold should always be card-aligned");
  7513       _threshold = (HeapWord*)round_to(
  7514                      (intptr_t)_finger, CardTableModRefBS::card_size);
  7515       MemRegion mr(old_threshold, _threshold);
  7516       assert(!mr.is_empty(), "Control point invariant");
  7517       assert(_span.contains(mr), "Should clear within span");
  7518       _mut->clear_range(mr);
  7520   DEBUG_ONLY(})
  7521   // Note: the finger doesn't advance while we drain
  7522   // the stack below.
  7523   PushOrMarkClosure pushOrMarkClosure(_collector,
  7524                                       _span, _bitMap, _markStack,
  7525                                       _finger, this);
  7526   bool res = _markStack->push(obj);
  7527   assert(res, "Empty non-zero size stack should have space for single push");
  7528   while (!_markStack->isEmpty()) {
  7529     oop new_oop = _markStack->pop();
  7530     // Skip verifying header mark word below because we are
  7531     // running concurrent with mutators.
  7532     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7533     // now scan this oop's oops
  7534     new_oop->oop_iterate(&pushOrMarkClosure);
  7535     do_yield_check();
  7537   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  7540 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  7541                        CMSCollector* collector, MemRegion span,
  7542                        CMSBitMap* bit_map,
  7543                        OopTaskQueue* work_queue,
  7544                        CMSMarkStack*  overflow_stack,
  7545                        bool should_yield):
  7546   _collector(collector),
  7547   _whole_span(collector->_span),
  7548   _span(span),
  7549   _bit_map(bit_map),
  7550   _mut(&collector->_modUnionTable),
  7551   _work_queue(work_queue),
  7552   _overflow_stack(overflow_stack),
  7553   _yield(should_yield),
  7554   _skip_bits(0),
  7555   _task(task)
  7557   assert(_work_queue->size() == 0, "work_queue should be empty");
  7558   _finger = span.start();
  7559   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  7560   assert(_span.contains(_finger), "Out of bounds _finger?");
  7563 // Should revisit to see if this should be restructured for
  7564 // greater efficiency.
  7565 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
  7566   if (_skip_bits > 0) {
  7567     _skip_bits--;
  7568     return true;
  7570   // convert offset into a HeapWord*
  7571   HeapWord* addr = _bit_map->startWord() + offset;
  7572   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  7573          "address out of range");
  7574   assert(_bit_map->isMarked(addr), "tautology");
  7575   if (_bit_map->isMarked(addr+1)) {
  7576     // this is an allocated object that might not yet be initialized
  7577     assert(_skip_bits == 0, "tautology");
  7578     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  7579     oop p = oop(addr);
  7580     if (p->klass_or_null() == NULL) {
  7581       // in the case of Clean-on-Enter optimization, redirty card
  7582       // and avoid clearing card by increasing  the threshold.
  7583       return true;
  7586   scan_oops_in_oop(addr);
  7587   return true;
  7590 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  7591   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  7592   // Should we assert that our work queue is empty or
  7593   // below some drain limit?
  7594   assert(_work_queue->size() == 0,
  7595          "should drain stack to limit stack usage");
  7596   // convert ptr to an oop preparatory to scanning
  7597   oop obj = oop(ptr);
  7598   // Ignore mark word in verification below, since we
  7599   // may be running concurrent with mutators.
  7600   assert(obj->is_oop(true), "should be an oop");
  7601   assert(_finger <= ptr, "_finger runneth ahead");
  7602   // advance the finger to right end of this object
  7603   _finger = ptr + obj->size();
  7604   assert(_finger > ptr, "we just incremented it above");
  7605   // On large heaps, it may take us some time to get through
  7606   // the marking phase (especially if running iCMS). During
  7607   // this time it's possible that a lot of mutations have
  7608   // accumulated in the card table and the mod union table --
  7609   // these mutation records are redundant until we have
  7610   // actually traced into the corresponding card.
  7611   // Here, we check whether advancing the finger would make
  7612   // us cross into a new card, and if so clear corresponding
  7613   // cards in the MUT (preclean them in the card-table in the
  7614   // future).
  7616   // The clean-on-enter optimization is disabled by default,
  7617   // until we fix 6178663.
  7618   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7619     // [_threshold, _finger) represents the interval
  7620     // of cards to be cleared  in MUT (or precleaned in card table).
  7621     // The set of cards to be cleared is all those that overlap
  7622     // with the interval [_threshold, _finger); note that
  7623     // _threshold is always kept card-aligned but _finger isn't
  7624     // always card-aligned.
  7625     HeapWord* old_threshold = _threshold;
  7626     assert(old_threshold == (HeapWord*)round_to(
  7627             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7628            "_threshold should always be card-aligned");
  7629     _threshold = (HeapWord*)round_to(
  7630                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7631     MemRegion mr(old_threshold, _threshold);
  7632     assert(!mr.is_empty(), "Control point invariant");
  7633     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7634     _mut->clear_range(mr);
  7637   // Note: the local finger doesn't advance while we drain
  7638   // the stack below, but the global finger sure can and will.
  7639   HeapWord** gfa = _task->global_finger_addr();
  7640   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7641                                       _span, _bit_map,
  7642                                       _work_queue,
  7643                                       _overflow_stack,
  7644                                       _finger,
  7645                                       gfa, this);
  7646   bool res = _work_queue->push(obj);   // overflow could occur here
  7647   assert(res, "Will hold once we use workqueues");
  7648   while (true) {
  7649     oop new_oop;
  7650     if (!_work_queue->pop_local(new_oop)) {
  7651       // We emptied our work_queue; check if there's stuff that can
  7652       // be gotten from the overflow stack.
  7653       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7654             _overflow_stack, _work_queue)) {
  7655         do_yield_check();
  7656         continue;
  7657       } else {  // done
  7658         break;
  7661     // Skip verifying header mark word below because we are
  7662     // running concurrent with mutators.
  7663     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7664     // now scan this oop's oops
  7665     new_oop->oop_iterate(&pushOrMarkClosure);
  7666     do_yield_check();
  7668   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7671 // Yield in response to a request from VM Thread or
  7672 // from mutators.
  7673 void Par_MarkFromRootsClosure::do_yield_work() {
  7674   assert(_task != NULL, "sanity");
  7675   _task->yield();
  7678 // A variant of the above used for verifying CMS marking work.
  7679 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7680                         MemRegion span,
  7681                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7682                         CMSMarkStack*  mark_stack):
  7683   _collector(collector),
  7684   _span(span),
  7685   _verification_bm(verification_bm),
  7686   _cms_bm(cms_bm),
  7687   _mark_stack(mark_stack),
  7688   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7689                       mark_stack)
  7691   assert(_mark_stack->isEmpty(), "stack should be empty");
  7692   _finger = _verification_bm->startWord();
  7693   assert(_collector->_restart_addr == NULL, "Sanity check");
  7694   assert(_span.contains(_finger), "Out of bounds _finger?");
  7697 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7698   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7699   assert(_span.contains(addr), "Out of bounds _finger?");
  7700   _finger = addr;
  7703 // Should revisit to see if this should be restructured for
  7704 // greater efficiency.
  7705 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7706   // convert offset into a HeapWord*
  7707   HeapWord* addr = _verification_bm->startWord() + offset;
  7708   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7709          "address out of range");
  7710   assert(_verification_bm->isMarked(addr), "tautology");
  7711   assert(_cms_bm->isMarked(addr), "tautology");
  7713   assert(_mark_stack->isEmpty(),
  7714          "should drain stack to limit stack usage");
  7715   // convert addr to an oop preparatory to scanning
  7716   oop obj = oop(addr);
  7717   assert(obj->is_oop(), "should be an oop");
  7718   assert(_finger <= addr, "_finger runneth ahead");
  7719   // advance the finger to right end of this object
  7720   _finger = addr + obj->size();
  7721   assert(_finger > addr, "we just incremented it above");
  7722   // Note: the finger doesn't advance while we drain
  7723   // the stack below.
  7724   bool res = _mark_stack->push(obj);
  7725   assert(res, "Empty non-zero size stack should have space for single push");
  7726   while (!_mark_stack->isEmpty()) {
  7727     oop new_oop = _mark_stack->pop();
  7728     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7729     // now scan this oop's oops
  7730     new_oop->oop_iterate(&_pam_verify_closure);
  7732   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7733   return true;
  7736 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7737   CMSCollector* collector, MemRegion span,
  7738   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7739   CMSMarkStack*  mark_stack):
  7740   CMSOopClosure(collector->ref_processor()),
  7741   _collector(collector),
  7742   _span(span),
  7743   _verification_bm(verification_bm),
  7744   _cms_bm(cms_bm),
  7745   _mark_stack(mark_stack)
  7746 { }
  7748 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
  7749 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
  7751 // Upon stack overflow, we discard (part of) the stack,
  7752 // remembering the least address amongst those discarded
  7753 // in CMSCollector's _restart_address.
  7754 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7755   // Remember the least grey address discarded
  7756   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7757   _collector->lower_restart_addr(ra);
  7758   _mark_stack->reset();  // discard stack contents
  7759   _mark_stack->expand(); // expand the stack if possible
  7762 void PushAndMarkVerifyClosure::do_oop(oop obj) {
  7763   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  7764   HeapWord* addr = (HeapWord*)obj;
  7765   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7766     // Oop lies in _span and isn't yet grey or black
  7767     _verification_bm->mark(addr);            // now grey
  7768     if (!_cms_bm->isMarked(addr)) {
  7769       oop(addr)->print();
  7770       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
  7771                              addr);
  7772       fatal("... aborting");
  7775     if (!_mark_stack->push(obj)) { // stack overflow
  7776       if (PrintCMSStatistics != 0) {
  7777         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7778                                SIZE_FORMAT, _mark_stack->capacity());
  7780       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7781       handle_stack_overflow(addr);
  7783     // anything including and to the right of _finger
  7784     // will be scanned as we iterate over the remainder of the
  7785     // bit map
  7789 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7790                      MemRegion span,
  7791                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7792                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7793   CMSOopClosure(collector->ref_processor()),
  7794   _collector(collector),
  7795   _span(span),
  7796   _bitMap(bitMap),
  7797   _markStack(markStack),
  7798   _finger(finger),
  7799   _parent(parent)
  7800 { }
  7802 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7803                      MemRegion span,
  7804                      CMSBitMap* bit_map,
  7805                      OopTaskQueue* work_queue,
  7806                      CMSMarkStack*  overflow_stack,
  7807                      HeapWord* finger,
  7808                      HeapWord** global_finger_addr,
  7809                      Par_MarkFromRootsClosure* parent) :
  7810   CMSOopClosure(collector->ref_processor()),
  7811   _collector(collector),
  7812   _whole_span(collector->_span),
  7813   _span(span),
  7814   _bit_map(bit_map),
  7815   _work_queue(work_queue),
  7816   _overflow_stack(overflow_stack),
  7817   _finger(finger),
  7818   _global_finger_addr(global_finger_addr),
  7819   _parent(parent)
  7820 { }
  7822 // Assumes thread-safe access by callers, who are
  7823 // responsible for mutual exclusion.
  7824 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7825   assert(_span.contains(low), "Out of bounds addr");
  7826   if (_restart_addr == NULL) {
  7827     _restart_addr = low;
  7828   } else {
  7829     _restart_addr = MIN2(_restart_addr, low);
  7833 // Upon stack overflow, we discard (part of) the stack,
  7834 // remembering the least address amongst those discarded
  7835 // in CMSCollector's _restart_address.
  7836 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7837   // Remember the least grey address discarded
  7838   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7839   _collector->lower_restart_addr(ra);
  7840   _markStack->reset();  // discard stack contents
  7841   _markStack->expand(); // expand the stack if possible
  7844 // Upon stack overflow, we discard (part of) the stack,
  7845 // remembering the least address amongst those discarded
  7846 // in CMSCollector's _restart_address.
  7847 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7848   // We need to do this under a mutex to prevent other
  7849   // workers from interfering with the work done below.
  7850   MutexLockerEx ml(_overflow_stack->par_lock(),
  7851                    Mutex::_no_safepoint_check_flag);
  7852   // Remember the least grey address discarded
  7853   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7854   _collector->lower_restart_addr(ra);
  7855   _overflow_stack->reset();  // discard stack contents
  7856   _overflow_stack->expand(); // expand the stack if possible
  7859 void CMKlassClosure::do_klass(Klass* k) {
  7860   assert(_oop_closure != NULL, "Not initialized?");
  7861   k->oops_do(_oop_closure);
  7864 void PushOrMarkClosure::do_oop(oop obj) {
  7865   // Ignore mark word because we are running concurrent with mutators.
  7866   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7867   HeapWord* addr = (HeapWord*)obj;
  7868   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7869     // Oop lies in _span and isn't yet grey or black
  7870     _bitMap->mark(addr);            // now grey
  7871     if (addr < _finger) {
  7872       // the bit map iteration has already either passed, or
  7873       // sampled, this bit in the bit map; we'll need to
  7874       // use the marking stack to scan this oop's oops.
  7875       bool simulate_overflow = false;
  7876       NOT_PRODUCT(
  7877         if (CMSMarkStackOverflowALot &&
  7878             _collector->simulate_overflow()) {
  7879           // simulate a stack overflow
  7880           simulate_overflow = true;
  7883       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
  7884         if (PrintCMSStatistics != 0) {
  7885           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7886                                  SIZE_FORMAT, _markStack->capacity());
  7888         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7889         handle_stack_overflow(addr);
  7892     // anything including and to the right of _finger
  7893     // will be scanned as we iterate over the remainder of the
  7894     // bit map
  7895     do_yield_check();
  7899 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
  7900 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
  7902 void Par_PushOrMarkClosure::do_oop(oop obj) {
  7903   // Ignore mark word because we are running concurrent with mutators.
  7904   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7905   HeapWord* addr = (HeapWord*)obj;
  7906   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7907     // Oop lies in _span and isn't yet grey or black
  7908     // We read the global_finger (volatile read) strictly after marking oop
  7909     bool res = _bit_map->par_mark(addr);    // now grey
  7910     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7911     // Should we push this marked oop on our stack?
  7912     // -- if someone else marked it, nothing to do
  7913     // -- if target oop is above global finger nothing to do
  7914     // -- if target oop is in chunk and above local finger
  7915     //      then nothing to do
  7916     // -- else push on work queue
  7917     if (   !res       // someone else marked it, they will deal with it
  7918         || (addr >= *gfa)  // will be scanned in a later task
  7919         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7920       return;
  7922     // the bit map iteration has already either passed, or
  7923     // sampled, this bit in the bit map; we'll need to
  7924     // use the marking stack to scan this oop's oops.
  7925     bool simulate_overflow = false;
  7926     NOT_PRODUCT(
  7927       if (CMSMarkStackOverflowALot &&
  7928           _collector->simulate_overflow()) {
  7929         // simulate a stack overflow
  7930         simulate_overflow = true;
  7933     if (simulate_overflow ||
  7934         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  7935       // stack overflow
  7936       if (PrintCMSStatistics != 0) {
  7937         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7938                                SIZE_FORMAT, _overflow_stack->capacity());
  7940       // We cannot assert that the overflow stack is full because
  7941       // it may have been emptied since.
  7942       assert(simulate_overflow ||
  7943              _work_queue->size() == _work_queue->max_elems(),
  7944             "Else push should have succeeded");
  7945       handle_stack_overflow(addr);
  7947     do_yield_check();
  7951 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
  7952 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
  7954 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7955                                        MemRegion span,
  7956                                        ReferenceProcessor* rp,
  7957                                        CMSBitMap* bit_map,
  7958                                        CMSBitMap* mod_union_table,
  7959                                        CMSMarkStack*  mark_stack,
  7960                                        bool           concurrent_precleaning):
  7961   CMSOopClosure(rp),
  7962   _collector(collector),
  7963   _span(span),
  7964   _bit_map(bit_map),
  7965   _mod_union_table(mod_union_table),
  7966   _mark_stack(mark_stack),
  7967   _concurrent_precleaning(concurrent_precleaning)
  7969   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7972 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7973 // the non-parallel version (the parallel version appears further below.)
  7974 void PushAndMarkClosure::do_oop(oop obj) {
  7975   // Ignore mark word verification. If during concurrent precleaning,
  7976   // the object monitor may be locked. If during the checkpoint
  7977   // phases, the object may already have been reached by a  different
  7978   // path and may be at the end of the global overflow list (so
  7979   // the mark word may be NULL).
  7980   assert(obj->is_oop_or_null(true /* ignore mark word */),
  7981          "expected an oop or NULL");
  7982   HeapWord* addr = (HeapWord*)obj;
  7983   // Check if oop points into the CMS generation
  7984   // and is not marked
  7985   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7986     // a white object ...
  7987     _bit_map->mark(addr);         // ... now grey
  7988     // push on the marking stack (grey set)
  7989     bool simulate_overflow = false;
  7990     NOT_PRODUCT(
  7991       if (CMSMarkStackOverflowALot &&
  7992           _collector->simulate_overflow()) {
  7993         // simulate a stack overflow
  7994         simulate_overflow = true;
  7997     if (simulate_overflow || !_mark_stack->push(obj)) {
  7998       if (_concurrent_precleaning) {
  7999          // During precleaning we can just dirty the appropriate card(s)
  8000          // in the mod union table, thus ensuring that the object remains
  8001          // in the grey set  and continue. In the case of object arrays
  8002          // we need to dirty all of the cards that the object spans,
  8003          // since the rescan of object arrays will be limited to the
  8004          // dirty cards.
  8005          // Note that no one can be intefering with us in this action
  8006          // of dirtying the mod union table, so no locking or atomics
  8007          // are required.
  8008          if (obj->is_objArray()) {
  8009            size_t sz = obj->size();
  8010            HeapWord* end_card_addr = (HeapWord*)round_to(
  8011                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  8012            MemRegion redirty_range = MemRegion(addr, end_card_addr);
  8013            assert(!redirty_range.is_empty(), "Arithmetical tautology");
  8014            _mod_union_table->mark_range(redirty_range);
  8015          } else {
  8016            _mod_union_table->mark(addr);
  8018          _collector->_ser_pmc_preclean_ovflw++;
  8019       } else {
  8020          // During the remark phase, we need to remember this oop
  8021          // in the overflow list.
  8022          _collector->push_on_overflow_list(obj);
  8023          _collector->_ser_pmc_remark_ovflw++;
  8029 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  8030                                                MemRegion span,
  8031                                                ReferenceProcessor* rp,
  8032                                                CMSBitMap* bit_map,
  8033                                                OopTaskQueue* work_queue):
  8034   CMSOopClosure(rp),
  8035   _collector(collector),
  8036   _span(span),
  8037   _bit_map(bit_map),
  8038   _work_queue(work_queue)
  8040   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  8043 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
  8044 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
  8046 // Grey object rescan during second checkpoint phase --
  8047 // the parallel version.
  8048 void Par_PushAndMarkClosure::do_oop(oop obj) {
  8049   // In the assert below, we ignore the mark word because
  8050   // this oop may point to an already visited object that is
  8051   // on the overflow stack (in which case the mark word has
  8052   // been hijacked for chaining into the overflow stack --
  8053   // if this is the last object in the overflow stack then
  8054   // its mark word will be NULL). Because this object may
  8055   // have been subsequently popped off the global overflow
  8056   // stack, and the mark word possibly restored to the prototypical
  8057   // value, by the time we get to examined this failing assert in
  8058   // the debugger, is_oop_or_null(false) may subsequently start
  8059   // to hold.
  8060   assert(obj->is_oop_or_null(true),
  8061          "expected an oop or NULL");
  8062   HeapWord* addr = (HeapWord*)obj;
  8063   // Check if oop points into the CMS generation
  8064   // and is not marked
  8065   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  8066     // a white object ...
  8067     // If we manage to "claim" the object, by being the
  8068     // first thread to mark it, then we push it on our
  8069     // marking stack
  8070     if (_bit_map->par_mark(addr)) {     // ... now grey
  8071       // push on work queue (grey set)
  8072       bool simulate_overflow = false;
  8073       NOT_PRODUCT(
  8074         if (CMSMarkStackOverflowALot &&
  8075             _collector->par_simulate_overflow()) {
  8076           // simulate a stack overflow
  8077           simulate_overflow = true;
  8080       if (simulate_overflow || !_work_queue->push(obj)) {
  8081         _collector->par_push_on_overflow_list(obj);
  8082         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  8084     } // Else, some other thread got there first
  8088 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
  8089 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
  8091 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  8092   Mutex* bml = _collector->bitMapLock();
  8093   assert_lock_strong(bml);
  8094   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8095          "CMS thread should hold CMS token");
  8097   bml->unlock();
  8098   ConcurrentMarkSweepThread::desynchronize(true);
  8100   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8102   _collector->stopTimer();
  8103   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8104   if (PrintCMSStatistics != 0) {
  8105     _collector->incrementYields();
  8107   _collector->icms_wait();
  8109   // See the comment in coordinator_yield()
  8110   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8111                        ConcurrentMarkSweepThread::should_yield() &&
  8112                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8113     os::sleep(Thread::current(), 1, false);
  8114     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8117   ConcurrentMarkSweepThread::synchronize(true);
  8118   bml->lock();
  8120   _collector->startTimer();
  8123 bool CMSPrecleanRefsYieldClosure::should_return() {
  8124   if (ConcurrentMarkSweepThread::should_yield()) {
  8125     do_yield_work();
  8127   return _collector->foregroundGCIsActive();
  8130 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  8131   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  8132          "mr should be aligned to start at a card boundary");
  8133   // We'd like to assert:
  8134   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  8135   //        "mr should be a range of cards");
  8136   // However, that would be too strong in one case -- the last
  8137   // partition ends at _unallocated_block which, in general, can be
  8138   // an arbitrary boundary, not necessarily card aligned.
  8139   if (PrintCMSStatistics != 0) {
  8140     _num_dirty_cards +=
  8141          mr.word_size()/CardTableModRefBS::card_size_in_words;
  8143   _space->object_iterate_mem(mr, &_scan_cl);
  8146 SweepClosure::SweepClosure(CMSCollector* collector,
  8147                            ConcurrentMarkSweepGeneration* g,
  8148                            CMSBitMap* bitMap, bool should_yield) :
  8149   _collector(collector),
  8150   _g(g),
  8151   _sp(g->cmsSpace()),
  8152   _limit(_sp->sweep_limit()),
  8153   _freelistLock(_sp->freelistLock()),
  8154   _bitMap(bitMap),
  8155   _yield(should_yield),
  8156   _inFreeRange(false),           // No free range at beginning of sweep
  8157   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  8158   _lastFreeRangeCoalesced(false),
  8159   _freeFinger(g->used_region().start())
  8161   NOT_PRODUCT(
  8162     _numObjectsFreed = 0;
  8163     _numWordsFreed   = 0;
  8164     _numObjectsLive = 0;
  8165     _numWordsLive = 0;
  8166     _numObjectsAlreadyFree = 0;
  8167     _numWordsAlreadyFree = 0;
  8168     _last_fc = NULL;
  8170     _sp->initializeIndexedFreeListArrayReturnedBytes();
  8171     _sp->dictionary()->initialize_dict_returned_bytes();
  8173   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  8174          "sweep _limit out of bounds");
  8175   if (CMSTraceSweeper) {
  8176     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
  8177                         _limit);
  8181 void SweepClosure::print_on(outputStream* st) const {
  8182   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
  8183                 _sp->bottom(), _sp->end());
  8184   tty->print_cr("_limit = " PTR_FORMAT, _limit);
  8185   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
  8186   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
  8187   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
  8188                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
  8191 #ifndef PRODUCT
  8192 // Assertion checking only:  no useful work in product mode --
  8193 // however, if any of the flags below become product flags,
  8194 // you may need to review this code to see if it needs to be
  8195 // enabled in product mode.
  8196 SweepClosure::~SweepClosure() {
  8197   assert_lock_strong(_freelistLock);
  8198   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  8199          "sweep _limit out of bounds");
  8200   if (inFreeRange()) {
  8201     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
  8202     print();
  8203     ShouldNotReachHere();
  8205   if (Verbose && PrintGC) {
  8206     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
  8207                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  8208     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  8209                            SIZE_FORMAT" bytes  "
  8210       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  8211       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  8212       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  8213     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
  8214                         * sizeof(HeapWord);
  8215     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  8217     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  8218       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  8219       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
  8220       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
  8221       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
  8222       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  8223         indexListReturnedBytes);
  8224       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  8225         dict_returned_bytes);
  8228   if (CMSTraceSweeper) {
  8229     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
  8230                            _limit);
  8233 #endif  // PRODUCT
  8235 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  8236     bool freeRangeInFreeLists) {
  8237   if (CMSTraceSweeper) {
  8238     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
  8239                freeFinger, freeRangeInFreeLists);
  8241   assert(!inFreeRange(), "Trampling existing free range");
  8242   set_inFreeRange(true);
  8243   set_lastFreeRangeCoalesced(false);
  8245   set_freeFinger(freeFinger);
  8246   set_freeRangeInFreeLists(freeRangeInFreeLists);
  8247   if (CMSTestInFreeList) {
  8248     if (freeRangeInFreeLists) {
  8249       FreeChunk* fc = (FreeChunk*) freeFinger;
  8250       assert(fc->is_free(), "A chunk on the free list should be free.");
  8251       assert(fc->size() > 0, "Free range should have a size");
  8252       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
  8257 // Note that the sweeper runs concurrently with mutators. Thus,
  8258 // it is possible for direct allocation in this generation to happen
  8259 // in the middle of the sweep. Note that the sweeper also coalesces
  8260 // contiguous free blocks. Thus, unless the sweeper and the allocator
  8261 // synchronize appropriately freshly allocated blocks may get swept up.
  8262 // This is accomplished by the sweeper locking the free lists while
  8263 // it is sweeping. Thus blocks that are determined to be free are
  8264 // indeed free. There is however one additional complication:
  8265 // blocks that have been allocated since the final checkpoint and
  8266 // mark, will not have been marked and so would be treated as
  8267 // unreachable and swept up. To prevent this, the allocator marks
  8268 // the bit map when allocating during the sweep phase. This leads,
  8269 // however, to a further complication -- objects may have been allocated
  8270 // but not yet initialized -- in the sense that the header isn't yet
  8271 // installed. The sweeper can not then determine the size of the block
  8272 // in order to skip over it. To deal with this case, we use a technique
  8273 // (due to Printezis) to encode such uninitialized block sizes in the
  8274 // bit map. Since the bit map uses a bit per every HeapWord, but the
  8275 // CMS generation has a minimum object size of 3 HeapWords, it follows
  8276 // that "normal marks" won't be adjacent in the bit map (there will
  8277 // always be at least two 0 bits between successive 1 bits). We make use
  8278 // of these "unused" bits to represent uninitialized blocks -- the bit
  8279 // corresponding to the start of the uninitialized object and the next
  8280 // bit are both set. Finally, a 1 bit marks the end of the object that
  8281 // started with the two consecutive 1 bits to indicate its potentially
  8282 // uninitialized state.
  8284 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  8285   FreeChunk* fc = (FreeChunk*)addr;
  8286   size_t res;
  8288   // Check if we are done sweeping. Below we check "addr >= _limit" rather
  8289   // than "addr == _limit" because although _limit was a block boundary when
  8290   // we started the sweep, it may no longer be one because heap expansion
  8291   // may have caused us to coalesce the block ending at the address _limit
  8292   // with a newly expanded chunk (this happens when _limit was set to the
  8293   // previous _end of the space), so we may have stepped past _limit:
  8294   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
  8295   if (addr >= _limit) { // we have swept up to or past the limit: finish up
  8296     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  8297            "sweep _limit out of bounds");
  8298     assert(addr < _sp->end(), "addr out of bounds");
  8299     // Flush any free range we might be holding as a single
  8300     // coalesced chunk to the appropriate free list.
  8301     if (inFreeRange()) {
  8302       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
  8303              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
  8304       flush_cur_free_chunk(freeFinger(),
  8305                            pointer_delta(addr, freeFinger()));
  8306       if (CMSTraceSweeper) {
  8307         gclog_or_tty->print("Sweep: last chunk: ");
  8308         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
  8309                    "[coalesced:"SIZE_FORMAT"]\n",
  8310                    freeFinger(), pointer_delta(addr, freeFinger()),
  8311                    lastFreeRangeCoalesced());
  8315     // help the iterator loop finish
  8316     return pointer_delta(_sp->end(), addr);
  8319   assert(addr < _limit, "sweep invariant");
  8320   // check if we should yield
  8321   do_yield_check(addr);
  8322   if (fc->is_free()) {
  8323     // Chunk that is already free
  8324     res = fc->size();
  8325     do_already_free_chunk(fc);
  8326     debug_only(_sp->verifyFreeLists());
  8327     // If we flush the chunk at hand in lookahead_and_flush()
  8328     // and it's coalesced with a preceding chunk, then the
  8329     // process of "mangling" the payload of the coalesced block
  8330     // will cause erasure of the size information from the
  8331     // (erstwhile) header of all the coalesced blocks but the
  8332     // first, so the first disjunct in the assert will not hold
  8333     // in that specific case (in which case the second disjunct
  8334     // will hold).
  8335     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
  8336            "Otherwise the size info doesn't change at this step");
  8337     NOT_PRODUCT(
  8338       _numObjectsAlreadyFree++;
  8339       _numWordsAlreadyFree += res;
  8341     NOT_PRODUCT(_last_fc = fc;)
  8342   } else if (!_bitMap->isMarked(addr)) {
  8343     // Chunk is fresh garbage
  8344     res = do_garbage_chunk(fc);
  8345     debug_only(_sp->verifyFreeLists());
  8346     NOT_PRODUCT(
  8347       _numObjectsFreed++;
  8348       _numWordsFreed += res;
  8350   } else {
  8351     // Chunk that is alive.
  8352     res = do_live_chunk(fc);
  8353     debug_only(_sp->verifyFreeLists());
  8354     NOT_PRODUCT(
  8355         _numObjectsLive++;
  8356         _numWordsLive += res;
  8359   return res;
  8362 // For the smart allocation, record following
  8363 //  split deaths - a free chunk is removed from its free list because
  8364 //      it is being split into two or more chunks.
  8365 //  split birth - a free chunk is being added to its free list because
  8366 //      a larger free chunk has been split and resulted in this free chunk.
  8367 //  coal death - a free chunk is being removed from its free list because
  8368 //      it is being coalesced into a large free chunk.
  8369 //  coal birth - a free chunk is being added to its free list because
  8370 //      it was created when two or more free chunks where coalesced into
  8371 //      this free chunk.
  8372 //
  8373 // These statistics are used to determine the desired number of free
  8374 // chunks of a given size.  The desired number is chosen to be relative
  8375 // to the end of a CMS sweep.  The desired number at the end of a sweep
  8376 // is the
  8377 //      count-at-end-of-previous-sweep (an amount that was enough)
  8378 //              - count-at-beginning-of-current-sweep  (the excess)
  8379 //              + split-births  (gains in this size during interval)
  8380 //              - split-deaths  (demands on this size during interval)
  8381 // where the interval is from the end of one sweep to the end of the
  8382 // next.
  8383 //
  8384 // When sweeping the sweeper maintains an accumulated chunk which is
  8385 // the chunk that is made up of chunks that have been coalesced.  That
  8386 // will be termed the left-hand chunk.  A new chunk of garbage that
  8387 // is being considered for coalescing will be referred to as the
  8388 // right-hand chunk.
  8389 //
  8390 // When making a decision on whether to coalesce a right-hand chunk with
  8391 // the current left-hand chunk, the current count vs. the desired count
  8392 // of the left-hand chunk is considered.  Also if the right-hand chunk
  8393 // is near the large chunk at the end of the heap (see
  8394 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  8395 // left-hand chunk is coalesced.
  8396 //
  8397 // When making a decision about whether to split a chunk, the desired count
  8398 // vs. the current count of the candidate to be split is also considered.
  8399 // If the candidate is underpopulated (currently fewer chunks than desired)
  8400 // a chunk of an overpopulated (currently more chunks than desired) size may
  8401 // be chosen.  The "hint" associated with a free list, if non-null, points
  8402 // to a free list which may be overpopulated.
  8403 //
  8405 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
  8406   const size_t size = fc->size();
  8407   // Chunks that cannot be coalesced are not in the
  8408   // free lists.
  8409   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  8410     assert(_sp->verify_chunk_in_free_list(fc),
  8411       "free chunk should be in free lists");
  8413   // a chunk that is already free, should not have been
  8414   // marked in the bit map
  8415   HeapWord* const addr = (HeapWord*) fc;
  8416   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  8417   // Verify that the bit map has no bits marked between
  8418   // addr and purported end of this block.
  8419   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8421   // Some chunks cannot be coalesced under any circumstances.
  8422   // See the definition of cantCoalesce().
  8423   if (!fc->cantCoalesce()) {
  8424     // This chunk can potentially be coalesced.
  8425     if (_sp->adaptive_freelists()) {
  8426       // All the work is done in
  8427       do_post_free_or_garbage_chunk(fc, size);
  8428     } else {  // Not adaptive free lists
  8429       // this is a free chunk that can potentially be coalesced by the sweeper;
  8430       if (!inFreeRange()) {
  8431         // if the next chunk is a free block that can't be coalesced
  8432         // it doesn't make sense to remove this chunk from the free lists
  8433         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  8434         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
  8435         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
  8436             nextChunk->is_free()               &&     // ... which is free...
  8437             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
  8438           // nothing to do
  8439         } else {
  8440           // Potentially the start of a new free range:
  8441           // Don't eagerly remove it from the free lists.
  8442           // No need to remove it if it will just be put
  8443           // back again.  (Also from a pragmatic point of view
  8444           // if it is a free block in a region that is beyond
  8445           // any allocated blocks, an assertion will fail)
  8446           // Remember the start of a free run.
  8447           initialize_free_range(addr, true);
  8448           // end - can coalesce with next chunk
  8450       } else {
  8451         // the midst of a free range, we are coalescing
  8452         print_free_block_coalesced(fc);
  8453         if (CMSTraceSweeper) {
  8454           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  8456         // remove it from the free lists
  8457         _sp->removeFreeChunkFromFreeLists(fc);
  8458         set_lastFreeRangeCoalesced(true);
  8459         // If the chunk is being coalesced and the current free range is
  8460         // in the free lists, remove the current free range so that it
  8461         // will be returned to the free lists in its entirety - all
  8462         // the coalesced pieces included.
  8463         if (freeRangeInFreeLists()) {
  8464           FreeChunk* ffc = (FreeChunk*) freeFinger();
  8465           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8466             "Size of free range is inconsistent with chunk size.");
  8467           if (CMSTestInFreeList) {
  8468             assert(_sp->verify_chunk_in_free_list(ffc),
  8469               "free range is not in free lists");
  8471           _sp->removeFreeChunkFromFreeLists(ffc);
  8472           set_freeRangeInFreeLists(false);
  8476     // Note that if the chunk is not coalescable (the else arm
  8477     // below), we unconditionally flush, without needing to do
  8478     // a "lookahead," as we do below.
  8479     if (inFreeRange()) lookahead_and_flush(fc, size);
  8480   } else {
  8481     // Code path common to both original and adaptive free lists.
  8483     // cant coalesce with previous block; this should be treated
  8484     // as the end of a free run if any
  8485     if (inFreeRange()) {
  8486       // we kicked some butt; time to pick up the garbage
  8487       assert(freeFinger() < addr, "freeFinger points too high");
  8488       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8490     // else, nothing to do, just continue
  8494 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
  8495   // This is a chunk of garbage.  It is not in any free list.
  8496   // Add it to a free list or let it possibly be coalesced into
  8497   // a larger chunk.
  8498   HeapWord* const addr = (HeapWord*) fc;
  8499   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8501   if (_sp->adaptive_freelists()) {
  8502     // Verify that the bit map has no bits marked between
  8503     // addr and purported end of just dead object.
  8504     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8506     do_post_free_or_garbage_chunk(fc, size);
  8507   } else {
  8508     if (!inFreeRange()) {
  8509       // start of a new free range
  8510       assert(size > 0, "A free range should have a size");
  8511       initialize_free_range(addr, false);
  8512     } else {
  8513       // this will be swept up when we hit the end of the
  8514       // free range
  8515       if (CMSTraceSweeper) {
  8516         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  8518       // If the chunk is being coalesced and the current free range is
  8519       // in the free lists, remove the current free range so that it
  8520       // will be returned to the free lists in its entirety - all
  8521       // the coalesced pieces included.
  8522       if (freeRangeInFreeLists()) {
  8523         FreeChunk* ffc = (FreeChunk*)freeFinger();
  8524         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8525           "Size of free range is inconsistent with chunk size.");
  8526         if (CMSTestInFreeList) {
  8527           assert(_sp->verify_chunk_in_free_list(ffc),
  8528             "free range is not in free lists");
  8530         _sp->removeFreeChunkFromFreeLists(ffc);
  8531         set_freeRangeInFreeLists(false);
  8533       set_lastFreeRangeCoalesced(true);
  8535     // this will be swept up when we hit the end of the free range
  8537     // Verify that the bit map has no bits marked between
  8538     // addr and purported end of just dead object.
  8539     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8541   assert(_limit >= addr + size,
  8542          "A freshly garbage chunk can't possibly straddle over _limit");
  8543   if (inFreeRange()) lookahead_and_flush(fc, size);
  8544   return size;
  8547 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
  8548   HeapWord* addr = (HeapWord*) fc;
  8549   // The sweeper has just found a live object. Return any accumulated
  8550   // left hand chunk to the free lists.
  8551   if (inFreeRange()) {
  8552     assert(freeFinger() < addr, "freeFinger points too high");
  8553     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8556   // This object is live: we'd normally expect this to be
  8557   // an oop, and like to assert the following:
  8558   // assert(oop(addr)->is_oop(), "live block should be an oop");
  8559   // However, as we commented above, this may be an object whose
  8560   // header hasn't yet been initialized.
  8561   size_t size;
  8562   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  8563   if (_bitMap->isMarked(addr + 1)) {
  8564     // Determine the size from the bit map, rather than trying to
  8565     // compute it from the object header.
  8566     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  8567     size = pointer_delta(nextOneAddr + 1, addr);
  8568     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  8569            "alignment problem");
  8571 #ifdef ASSERT
  8572       if (oop(addr)->klass_or_null() != NULL) {
  8573         // Ignore mark word because we are running concurrent with mutators
  8574         assert(oop(addr)->is_oop(true), "live block should be an oop");
  8575         assert(size ==
  8576                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  8577                "P-mark and computed size do not agree");
  8579 #endif
  8581   } else {
  8582     // This should be an initialized object that's alive.
  8583     assert(oop(addr)->klass_or_null() != NULL,
  8584            "Should be an initialized object");
  8585     // Ignore mark word because we are running concurrent with mutators
  8586     assert(oop(addr)->is_oop(true), "live block should be an oop");
  8587     // Verify that the bit map has no bits marked between
  8588     // addr and purported end of this block.
  8589     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8590     assert(size >= 3, "Necessary for Printezis marks to work");
  8591     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  8592     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  8594   return size;
  8597 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
  8598                                                  size_t chunkSize) {
  8599   // do_post_free_or_garbage_chunk() should only be called in the case
  8600   // of the adaptive free list allocator.
  8601   const bool fcInFreeLists = fc->is_free();
  8602   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  8603   assert((HeapWord*)fc <= _limit, "sweep invariant");
  8604   if (CMSTestInFreeList && fcInFreeLists) {
  8605     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
  8608   if (CMSTraceSweeper) {
  8609     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  8612   HeapWord* const fc_addr = (HeapWord*) fc;
  8614   bool coalesce;
  8615   const size_t left  = pointer_delta(fc_addr, freeFinger());
  8616   const size_t right = chunkSize;
  8617   switch (FLSCoalescePolicy) {
  8618     // numeric value forms a coalition aggressiveness metric
  8619     case 0:  { // never coalesce
  8620       coalesce = false;
  8621       break;
  8623     case 1: { // coalesce if left & right chunks on overpopulated lists
  8624       coalesce = _sp->coalOverPopulated(left) &&
  8625                  _sp->coalOverPopulated(right);
  8626       break;
  8628     case 2: { // coalesce if left chunk on overpopulated list (default)
  8629       coalesce = _sp->coalOverPopulated(left);
  8630       break;
  8632     case 3: { // coalesce if left OR right chunk on overpopulated list
  8633       coalesce = _sp->coalOverPopulated(left) ||
  8634                  _sp->coalOverPopulated(right);
  8635       break;
  8637     case 4: { // always coalesce
  8638       coalesce = true;
  8639       break;
  8641     default:
  8642      ShouldNotReachHere();
  8645   // Should the current free range be coalesced?
  8646   // If the chunk is in a free range and either we decided to coalesce above
  8647   // or the chunk is near the large block at the end of the heap
  8648   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8649   const bool doCoalesce = inFreeRange()
  8650                           && (coalesce || _g->isNearLargestChunk(fc_addr));
  8651   if (doCoalesce) {
  8652     // Coalesce the current free range on the left with the new
  8653     // chunk on the right.  If either is on a free list,
  8654     // it must be removed from the list and stashed in the closure.
  8655     if (freeRangeInFreeLists()) {
  8656       FreeChunk* const ffc = (FreeChunk*)freeFinger();
  8657       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
  8658         "Size of free range is inconsistent with chunk size.");
  8659       if (CMSTestInFreeList) {
  8660         assert(_sp->verify_chunk_in_free_list(ffc),
  8661           "Chunk is not in free lists");
  8663       _sp->coalDeath(ffc->size());
  8664       _sp->removeFreeChunkFromFreeLists(ffc);
  8665       set_freeRangeInFreeLists(false);
  8667     if (fcInFreeLists) {
  8668       _sp->coalDeath(chunkSize);
  8669       assert(fc->size() == chunkSize,
  8670         "The chunk has the wrong size or is not in the free lists");
  8671       _sp->removeFreeChunkFromFreeLists(fc);
  8673     set_lastFreeRangeCoalesced(true);
  8674     print_free_block_coalesced(fc);
  8675   } else {  // not in a free range and/or should not coalesce
  8676     // Return the current free range and start a new one.
  8677     if (inFreeRange()) {
  8678       // In a free range but cannot coalesce with the right hand chunk.
  8679       // Put the current free range into the free lists.
  8680       flush_cur_free_chunk(freeFinger(),
  8681                            pointer_delta(fc_addr, freeFinger()));
  8683     // Set up for new free range.  Pass along whether the right hand
  8684     // chunk is in the free lists.
  8685     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8689 // Lookahead flush:
  8690 // If we are tracking a free range, and this is the last chunk that
  8691 // we'll look at because its end crosses past _limit, we'll preemptively
  8692 // flush it along with any free range we may be holding on to. Note that
  8693 // this can be the case only for an already free or freshly garbage
  8694 // chunk. If this block is an object, it can never straddle
  8695 // over _limit. The "straddling" occurs when _limit is set at
  8696 // the previous end of the space when this cycle started, and
  8697 // a subsequent heap expansion caused the previously co-terminal
  8698 // free block to be coalesced with the newly expanded portion,
  8699 // thus rendering _limit a non-block-boundary making it dangerous
  8700 // for the sweeper to step over and examine.
  8701 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
  8702   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8703   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
  8704   assert(_sp->used_region().contains(eob - 1),
  8705          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
  8706                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
  8707                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
  8708                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
  8709   if (eob >= _limit) {
  8710     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
  8711     if (CMSTraceSweeper) {
  8712       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
  8713                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
  8714                              "[" PTR_FORMAT "," PTR_FORMAT ")",
  8715                              _limit, fc, eob, _sp->bottom(), _sp->end());
  8717     // Return the storage we are tracking back into the free lists.
  8718     if (CMSTraceSweeper) {
  8719       gclog_or_tty->print_cr("Flushing ... ");
  8721     assert(freeFinger() < eob, "Error");
  8722     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
  8726 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
  8727   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8728   assert(size > 0,
  8729     "A zero sized chunk cannot be added to the free lists.");
  8730   if (!freeRangeInFreeLists()) {
  8731     if (CMSTestInFreeList) {
  8732       FreeChunk* fc = (FreeChunk*) chunk;
  8733       fc->set_size(size);
  8734       assert(!_sp->verify_chunk_in_free_list(fc),
  8735         "chunk should not be in free lists yet");
  8737     if (CMSTraceSweeper) {
  8738       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8739                     chunk, size);
  8741     // A new free range is going to be starting.  The current
  8742     // free range has not been added to the free lists yet or
  8743     // was removed so add it back.
  8744     // If the current free range was coalesced, then the death
  8745     // of the free range was recorded.  Record a birth now.
  8746     if (lastFreeRangeCoalesced()) {
  8747       _sp->coalBirth(size);
  8749     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8750             lastFreeRangeCoalesced());
  8751   } else if (CMSTraceSweeper) {
  8752     gclog_or_tty->print_cr("Already in free list: nothing to flush");
  8754   set_inFreeRange(false);
  8755   set_freeRangeInFreeLists(false);
  8758 // We take a break if we've been at this for a while,
  8759 // so as to avoid monopolizing the locks involved.
  8760 void SweepClosure::do_yield_work(HeapWord* addr) {
  8761   // Return current free chunk being used for coalescing (if any)
  8762   // to the appropriate freelist.  After yielding, the next
  8763   // free block encountered will start a coalescing range of
  8764   // free blocks.  If the next free block is adjacent to the
  8765   // chunk just flushed, they will need to wait for the next
  8766   // sweep to be coalesced.
  8767   if (inFreeRange()) {
  8768     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8771   // First give up the locks, then yield, then re-lock.
  8772   // We should probably use a constructor/destructor idiom to
  8773   // do this unlock/lock or modify the MutexUnlocker class to
  8774   // serve our purpose. XXX
  8775   assert_lock_strong(_bitMap->lock());
  8776   assert_lock_strong(_freelistLock);
  8777   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8778          "CMS thread should hold CMS token");
  8779   _bitMap->lock()->unlock();
  8780   _freelistLock->unlock();
  8781   ConcurrentMarkSweepThread::desynchronize(true);
  8782   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8783   _collector->stopTimer();
  8784   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8785   if (PrintCMSStatistics != 0) {
  8786     _collector->incrementYields();
  8788   _collector->icms_wait();
  8790   // See the comment in coordinator_yield()
  8791   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8792                        ConcurrentMarkSweepThread::should_yield() &&
  8793                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8794     os::sleep(Thread::current(), 1, false);
  8795     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8798   ConcurrentMarkSweepThread::synchronize(true);
  8799   _freelistLock->lock();
  8800   _bitMap->lock()->lock_without_safepoint_check();
  8801   _collector->startTimer();
  8804 #ifndef PRODUCT
  8805 // This is actually very useful in a product build if it can
  8806 // be called from the debugger.  Compile it into the product
  8807 // as needed.
  8808 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
  8809   return debug_cms_space->verify_chunk_in_free_list(fc);
  8811 #endif
  8813 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
  8814   if (CMSTraceSweeper) {
  8815     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
  8816                            fc, fc->size());
  8820 // CMSIsAliveClosure
  8821 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8822   HeapWord* addr = (HeapWord*)obj;
  8823   return addr != NULL &&
  8824          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8828 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
  8829                       MemRegion span,
  8830                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  8831                       bool cpc):
  8832   _collector(collector),
  8833   _span(span),
  8834   _bit_map(bit_map),
  8835   _mark_stack(mark_stack),
  8836   _concurrent_precleaning(cpc) {
  8837   assert(!_span.is_empty(), "Empty span could spell trouble");
  8841 // CMSKeepAliveClosure: the serial version
  8842 void CMSKeepAliveClosure::do_oop(oop obj) {
  8843   HeapWord* addr = (HeapWord*)obj;
  8844   if (_span.contains(addr) &&
  8845       !_bit_map->isMarked(addr)) {
  8846     _bit_map->mark(addr);
  8847     bool simulate_overflow = false;
  8848     NOT_PRODUCT(
  8849       if (CMSMarkStackOverflowALot &&
  8850           _collector->simulate_overflow()) {
  8851         // simulate a stack overflow
  8852         simulate_overflow = true;
  8855     if (simulate_overflow || !_mark_stack->push(obj)) {
  8856       if (_concurrent_precleaning) {
  8857         // We dirty the overflown object and let the remark
  8858         // phase deal with it.
  8859         assert(_collector->overflow_list_is_empty(), "Error");
  8860         // In the case of object arrays, we need to dirty all of
  8861         // the cards that the object spans. No locking or atomics
  8862         // are needed since no one else can be mutating the mod union
  8863         // table.
  8864         if (obj->is_objArray()) {
  8865           size_t sz = obj->size();
  8866           HeapWord* end_card_addr =
  8867             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
  8868           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  8869           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  8870           _collector->_modUnionTable.mark_range(redirty_range);
  8871         } else {
  8872           _collector->_modUnionTable.mark(addr);
  8874         _collector->_ser_kac_preclean_ovflw++;
  8875       } else {
  8876         _collector->push_on_overflow_list(obj);
  8877         _collector->_ser_kac_ovflw++;
  8883 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
  8884 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
  8886 // CMSParKeepAliveClosure: a parallel version of the above.
  8887 // The work queues are private to each closure (thread),
  8888 // but (may be) available for stealing by other threads.
  8889 void CMSParKeepAliveClosure::do_oop(oop obj) {
  8890   HeapWord* addr = (HeapWord*)obj;
  8891   if (_span.contains(addr) &&
  8892       !_bit_map->isMarked(addr)) {
  8893     // In general, during recursive tracing, several threads
  8894     // may be concurrently getting here; the first one to
  8895     // "tag" it, claims it.
  8896     if (_bit_map->par_mark(addr)) {
  8897       bool res = _work_queue->push(obj);
  8898       assert(res, "Low water mark should be much less than capacity");
  8899       // Do a recursive trim in the hope that this will keep
  8900       // stack usage lower, but leave some oops for potential stealers
  8901       trim_queue(_low_water_mark);
  8902     } // Else, another thread got there first
  8906 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
  8907 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
  8909 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8910   while (_work_queue->size() > max) {
  8911     oop new_oop;
  8912     if (_work_queue->pop_local(new_oop)) {
  8913       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8914       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8915              "no white objects on this stack!");
  8916       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8917       // iterate over the oops in this oop, marking and pushing
  8918       // the ones in CMS heap (i.e. in _span).
  8919       new_oop->oop_iterate(&_mark_and_push);
  8924 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
  8925                                 CMSCollector* collector,
  8926                                 MemRegion span, CMSBitMap* bit_map,
  8927                                 OopTaskQueue* work_queue):
  8928   _collector(collector),
  8929   _span(span),
  8930   _bit_map(bit_map),
  8931   _work_queue(work_queue) { }
  8933 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
  8934   HeapWord* addr = (HeapWord*)obj;
  8935   if (_span.contains(addr) &&
  8936       !_bit_map->isMarked(addr)) {
  8937     if (_bit_map->par_mark(addr)) {
  8938       bool simulate_overflow = false;
  8939       NOT_PRODUCT(
  8940         if (CMSMarkStackOverflowALot &&
  8941             _collector->par_simulate_overflow()) {
  8942           // simulate a stack overflow
  8943           simulate_overflow = true;
  8946       if (simulate_overflow || !_work_queue->push(obj)) {
  8947         _collector->par_push_on_overflow_list(obj);
  8948         _collector->_par_kac_ovflw++;
  8950     } // Else another thread got there already
  8954 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8955 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8957 //////////////////////////////////////////////////////////////////
  8958 //  CMSExpansionCause                /////////////////////////////
  8959 //////////////////////////////////////////////////////////////////
  8960 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8961   switch (cause) {
  8962     case _no_expansion:
  8963       return "No expansion";
  8964     case _satisfy_free_ratio:
  8965       return "Free ratio";
  8966     case _satisfy_promotion:
  8967       return "Satisfy promotion";
  8968     case _satisfy_allocation:
  8969       return "allocation";
  8970     case _allocate_par_lab:
  8971       return "Par LAB";
  8972     case _allocate_par_spooling_space:
  8973       return "Par Spooling Space";
  8974     case _adaptive_size_policy:
  8975       return "Ergonomics";
  8976     default:
  8977       return "unknown";
  8981 void CMSDrainMarkingStackClosure::do_void() {
  8982   // the max number to take from overflow list at a time
  8983   const size_t num = _mark_stack->capacity()/4;
  8984   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
  8985          "Overflow list should be NULL during concurrent phases");
  8986   while (!_mark_stack->isEmpty() ||
  8987          // if stack is empty, check the overflow list
  8988          _collector->take_from_overflow_list(num, _mark_stack)) {
  8989     oop obj = _mark_stack->pop();
  8990     HeapWord* addr = (HeapWord*)obj;
  8991     assert(_span.contains(addr), "Should be within span");
  8992     assert(_bit_map->isMarked(addr), "Should be marked");
  8993     assert(obj->is_oop(), "Should be an oop");
  8994     obj->oop_iterate(_keep_alive);
  8998 void CMSParDrainMarkingStackClosure::do_void() {
  8999   // drain queue
  9000   trim_queue(0);
  9003 // Trim our work_queue so its length is below max at return
  9004 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  9005   while (_work_queue->size() > max) {
  9006     oop new_oop;
  9007     if (_work_queue->pop_local(new_oop)) {
  9008       assert(new_oop->is_oop(), "Expected an oop");
  9009       assert(_bit_map->isMarked((HeapWord*)new_oop),
  9010              "no white objects on this stack!");
  9011       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  9012       // iterate over the oops in this oop, marking and pushing
  9013       // the ones in CMS heap (i.e. in _span).
  9014       new_oop->oop_iterate(&_mark_and_push);
  9019 ////////////////////////////////////////////////////////////////////
  9020 // Support for Marking Stack Overflow list handling and related code
  9021 ////////////////////////////////////////////////////////////////////
  9022 // Much of the following code is similar in shape and spirit to the
  9023 // code used in ParNewGC. We should try and share that code
  9024 // as much as possible in the future.
  9026 #ifndef PRODUCT
  9027 // Debugging support for CMSStackOverflowALot
  9029 // It's OK to call this multi-threaded;  the worst thing
  9030 // that can happen is that we'll get a bunch of closely
  9031 // spaced simulated oveflows, but that's OK, in fact
  9032 // probably good as it would exercise the overflow code
  9033 // under contention.
  9034 bool CMSCollector::simulate_overflow() {
  9035   if (_overflow_counter-- <= 0) { // just being defensive
  9036     _overflow_counter = CMSMarkStackOverflowInterval;
  9037     return true;
  9038   } else {
  9039     return false;
  9043 bool CMSCollector::par_simulate_overflow() {
  9044   return simulate_overflow();
  9046 #endif
  9048 // Single-threaded
  9049 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  9050   assert(stack->isEmpty(), "Expected precondition");
  9051   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  9052   size_t i = num;
  9053   oop  cur = _overflow_list;
  9054   const markOop proto = markOopDesc::prototype();
  9055   NOT_PRODUCT(ssize_t n = 0;)
  9056   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  9057     next = oop(cur->mark());
  9058     cur->set_mark(proto);   // until proven otherwise
  9059     assert(cur->is_oop(), "Should be an oop");
  9060     bool res = stack->push(cur);
  9061     assert(res, "Bit off more than can chew?");
  9062     NOT_PRODUCT(n++;)
  9064   _overflow_list = cur;
  9065 #ifndef PRODUCT
  9066   assert(_num_par_pushes >= n, "Too many pops?");
  9067   _num_par_pushes -=n;
  9068 #endif
  9069   return !stack->isEmpty();
  9072 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
  9073 // (MT-safe) Get a prefix of at most "num" from the list.
  9074 // The overflow list is chained through the mark word of
  9075 // each object in the list. We fetch the entire list,
  9076 // break off a prefix of the right size and return the
  9077 // remainder. If other threads try to take objects from
  9078 // the overflow list at that time, they will wait for
  9079 // some time to see if data becomes available. If (and
  9080 // only if) another thread places one or more object(s)
  9081 // on the global list before we have returned the suffix
  9082 // to the global list, we will walk down our local list
  9083 // to find its end and append the global list to
  9084 // our suffix before returning it. This suffix walk can
  9085 // prove to be expensive (quadratic in the amount of traffic)
  9086 // when there are many objects in the overflow list and
  9087 // there is much producer-consumer contention on the list.
  9088 // *NOTE*: The overflow list manipulation code here and
  9089 // in ParNewGeneration:: are very similar in shape,
  9090 // except that in the ParNew case we use the old (from/eden)
  9091 // copy of the object to thread the list via its klass word.
  9092 // Because of the common code, if you make any changes in
  9093 // the code below, please check the ParNew version to see if
  9094 // similar changes might be needed.
  9095 // CR 6797058 has been filed to consolidate the common code.
  9096 bool CMSCollector::par_take_from_overflow_list(size_t num,
  9097                                                OopTaskQueue* work_q,
  9098                                                int no_of_gc_threads) {
  9099   assert(work_q->size() == 0, "First empty local work queue");
  9100   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  9101   if (_overflow_list == NULL) {
  9102     return false;
  9104   // Grab the entire list; we'll put back a suffix
  9105   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
  9106   Thread* tid = Thread::current();
  9107   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
  9108   // set to ParallelGCThreads.
  9109   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
  9110   size_t sleep_time_millis = MAX2((size_t)1, num/100);
  9111   // If the list is busy, we spin for a short while,
  9112   // sleeping between attempts to get the list.
  9113   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
  9114     os::sleep(tid, sleep_time_millis, false);
  9115     if (_overflow_list == NULL) {
  9116       // Nothing left to take
  9117       return false;
  9118     } else if (_overflow_list != BUSY) {
  9119       // Try and grab the prefix
  9120       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
  9123   // If the list was found to be empty, or we spun long
  9124   // enough, we give up and return empty-handed. If we leave
  9125   // the list in the BUSY state below, it must be the case that
  9126   // some other thread holds the overflow list and will set it
  9127   // to a non-BUSY state in the future.
  9128   if (prefix == NULL || prefix == BUSY) {
  9129      // Nothing to take or waited long enough
  9130      if (prefix == NULL) {
  9131        // Write back the NULL in case we overwrote it with BUSY above
  9132        // and it is still the same value.
  9133        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  9135      return false;
  9137   assert(prefix != NULL && prefix != BUSY, "Error");
  9138   size_t i = num;
  9139   oop cur = prefix;
  9140   // Walk down the first "num" objects, unless we reach the end.
  9141   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  9142   if (cur->mark() == NULL) {
  9143     // We have "num" or fewer elements in the list, so there
  9144     // is nothing to return to the global list.
  9145     // Write back the NULL in lieu of the BUSY we wrote
  9146     // above, if it is still the same value.
  9147     if (_overflow_list == BUSY) {
  9148       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  9150   } else {
  9151     // Chop off the suffix and rerturn it to the global list.
  9152     assert(cur->mark() != BUSY, "Error");
  9153     oop suffix_head = cur->mark(); // suffix will be put back on global list
  9154     cur->set_mark(NULL);           // break off suffix
  9155     // It's possible that the list is still in the empty(busy) state
  9156     // we left it in a short while ago; in that case we may be
  9157     // able to place back the suffix without incurring the cost
  9158     // of a walk down the list.
  9159     oop observed_overflow_list = _overflow_list;
  9160     oop cur_overflow_list = observed_overflow_list;
  9161     bool attached = false;
  9162     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
  9163       observed_overflow_list =
  9164         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  9165       if (cur_overflow_list == observed_overflow_list) {
  9166         attached = true;
  9167         break;
  9168       } else cur_overflow_list = observed_overflow_list;
  9170     if (!attached) {
  9171       // Too bad, someone else sneaked in (at least) an element; we'll need
  9172       // to do a splice. Find tail of suffix so we can prepend suffix to global
  9173       // list.
  9174       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  9175       oop suffix_tail = cur;
  9176       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  9177              "Tautology");
  9178       observed_overflow_list = _overflow_list;
  9179       do {
  9180         cur_overflow_list = observed_overflow_list;
  9181         if (cur_overflow_list != BUSY) {
  9182           // Do the splice ...
  9183           suffix_tail->set_mark(markOop(cur_overflow_list));
  9184         } else { // cur_overflow_list == BUSY
  9185           suffix_tail->set_mark(NULL);
  9187         // ... and try to place spliced list back on overflow_list ...
  9188         observed_overflow_list =
  9189           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  9190       } while (cur_overflow_list != observed_overflow_list);
  9191       // ... until we have succeeded in doing so.
  9195   // Push the prefix elements on work_q
  9196   assert(prefix != NULL, "control point invariant");
  9197   const markOop proto = markOopDesc::prototype();
  9198   oop next;
  9199   NOT_PRODUCT(ssize_t n = 0;)
  9200   for (cur = prefix; cur != NULL; cur = next) {
  9201     next = oop(cur->mark());
  9202     cur->set_mark(proto);   // until proven otherwise
  9203     assert(cur->is_oop(), "Should be an oop");
  9204     bool res = work_q->push(cur);
  9205     assert(res, "Bit off more than we can chew?");
  9206     NOT_PRODUCT(n++;)
  9208 #ifndef PRODUCT
  9209   assert(_num_par_pushes >= n, "Too many pops?");
  9210   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  9211 #endif
  9212   return true;
  9215 // Single-threaded
  9216 void CMSCollector::push_on_overflow_list(oop p) {
  9217   NOT_PRODUCT(_num_par_pushes++;)
  9218   assert(p->is_oop(), "Not an oop");
  9219   preserve_mark_if_necessary(p);
  9220   p->set_mark((markOop)_overflow_list);
  9221   _overflow_list = p;
  9224 // Multi-threaded; use CAS to prepend to overflow list
  9225 void CMSCollector::par_push_on_overflow_list(oop p) {
  9226   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  9227   assert(p->is_oop(), "Not an oop");
  9228   par_preserve_mark_if_necessary(p);
  9229   oop observed_overflow_list = _overflow_list;
  9230   oop cur_overflow_list;
  9231   do {
  9232     cur_overflow_list = observed_overflow_list;
  9233     if (cur_overflow_list != BUSY) {
  9234       p->set_mark(markOop(cur_overflow_list));
  9235     } else {
  9236       p->set_mark(NULL);
  9238     observed_overflow_list =
  9239       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  9240   } while (cur_overflow_list != observed_overflow_list);
  9242 #undef BUSY
  9244 // Single threaded
  9245 // General Note on GrowableArray: pushes may silently fail
  9246 // because we are (temporarily) out of C-heap for expanding
  9247 // the stack. The problem is quite ubiquitous and affects
  9248 // a lot of code in the JVM. The prudent thing for GrowableArray
  9249 // to do (for now) is to exit with an error. However, that may
  9250 // be too draconian in some cases because the caller may be
  9251 // able to recover without much harm. For such cases, we
  9252 // should probably introduce a "soft_push" method which returns
  9253 // an indication of success or failure with the assumption that
  9254 // the caller may be able to recover from a failure; code in
  9255 // the VM can then be changed, incrementally, to deal with such
  9256 // failures where possible, thus, incrementally hardening the VM
  9257 // in such low resource situations.
  9258 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  9259   _preserved_oop_stack.push(p);
  9260   _preserved_mark_stack.push(m);
  9261   assert(m == p->mark(), "Mark word changed");
  9262   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
  9263          "bijection");
  9266 // Single threaded
  9267 void CMSCollector::preserve_mark_if_necessary(oop p) {
  9268   markOop m = p->mark();
  9269   if (m->must_be_preserved(p)) {
  9270     preserve_mark_work(p, m);
  9274 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  9275   markOop m = p->mark();
  9276   if (m->must_be_preserved(p)) {
  9277     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  9278     // Even though we read the mark word without holding
  9279     // the lock, we are assured that it will not change
  9280     // because we "own" this oop, so no other thread can
  9281     // be trying to push it on the overflow list; see
  9282     // the assertion in preserve_mark_work() that checks
  9283     // that m == p->mark().
  9284     preserve_mark_work(p, m);
  9288 // We should be able to do this multi-threaded,
  9289 // a chunk of stack being a task (this is
  9290 // correct because each oop only ever appears
  9291 // once in the overflow list. However, it's
  9292 // not very easy to completely overlap this with
  9293 // other operations, so will generally not be done
  9294 // until all work's been completed. Because we
  9295 // expect the preserved oop stack (set) to be small,
  9296 // it's probably fine to do this single-threaded.
  9297 // We can explore cleverer concurrent/overlapped/parallel
  9298 // processing of preserved marks if we feel the
  9299 // need for this in the future. Stack overflow should
  9300 // be so rare in practice and, when it happens, its
  9301 // effect on performance so great that this will
  9302 // likely just be in the noise anyway.
  9303 void CMSCollector::restore_preserved_marks_if_any() {
  9304   assert(SafepointSynchronize::is_at_safepoint(),
  9305          "world should be stopped");
  9306   assert(Thread::current()->is_ConcurrentGC_thread() ||
  9307          Thread::current()->is_VM_thread(),
  9308          "should be single-threaded");
  9309   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
  9310          "bijection");
  9312   while (!_preserved_oop_stack.is_empty()) {
  9313     oop p = _preserved_oop_stack.pop();
  9314     assert(p->is_oop(), "Should be an oop");
  9315     assert(_span.contains(p), "oop should be in _span");
  9316     assert(p->mark() == markOopDesc::prototype(),
  9317            "Set when taken from overflow list");
  9318     markOop m = _preserved_mark_stack.pop();
  9319     p->set_mark(m);
  9321   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
  9322          "stacks were cleared above");
  9325 #ifndef PRODUCT
  9326 bool CMSCollector::no_preserved_marks() const {
  9327   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
  9329 #endif
  9331 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  9333   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  9334   CMSAdaptiveSizePolicy* size_policy =
  9335     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  9336   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  9337     "Wrong type for size policy");
  9338   return size_policy;
  9341 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  9342                                            size_t desired_promo_size) {
  9343   if (cur_promo_size < desired_promo_size) {
  9344     size_t expand_bytes = desired_promo_size - cur_promo_size;
  9345     if (PrintAdaptiveSizePolicy && Verbose) {
  9346       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  9347         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  9348         expand_bytes);
  9350     expand(expand_bytes,
  9351            MinHeapDeltaBytes,
  9352            CMSExpansionCause::_adaptive_size_policy);
  9353   } else if (desired_promo_size < cur_promo_size) {
  9354     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  9355     if (PrintAdaptiveSizePolicy && Verbose) {
  9356       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  9357         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  9358         shrink_bytes);
  9360     shrink(shrink_bytes);
  9364 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  9365   GenCollectedHeap* gch = GenCollectedHeap::heap();
  9366   CMSGCAdaptivePolicyCounters* counters =
  9367     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  9368   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  9369     "Wrong kind of counters");
  9370   return counters;
  9374 void ASConcurrentMarkSweepGeneration::update_counters() {
  9375   if (UsePerfData) {
  9376     _space_counters->update_all();
  9377     _gen_counters->update_all();
  9378     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  9379     GenCollectedHeap* gch = GenCollectedHeap::heap();
  9380     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  9381     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  9382       "Wrong gc statistics type");
  9383     counters->update_counters(gc_stats_l);
  9387 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  9388   if (UsePerfData) {
  9389     _space_counters->update_used(used);
  9390     _space_counters->update_capacity();
  9391     _gen_counters->update_all();
  9393     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  9394     GenCollectedHeap* gch = GenCollectedHeap::heap();
  9395     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  9396     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  9397       "Wrong gc statistics type");
  9398     counters->update_counters(gc_stats_l);
  9402 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  9403   assert_locked_or_safepoint(Heap_lock);
  9404   assert_lock_strong(freelistLock());
  9405   HeapWord* old_end = _cmsSpace->end();
  9406   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  9407   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  9408   FreeChunk* chunk_at_end = find_chunk_at_end();
  9409   if (chunk_at_end == NULL) {
  9410     // No room to shrink
  9411     if (PrintGCDetails && Verbose) {
  9412       gclog_or_tty->print_cr("No room to shrink: old_end  "
  9413         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  9414         " chunk_at_end  " PTR_FORMAT,
  9415         old_end, unallocated_start, chunk_at_end);
  9417     return;
  9418   } else {
  9420     // Find the chunk at the end of the space and determine
  9421     // how much it can be shrunk.
  9422     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  9423     size_t aligned_shrinkable_size_in_bytes =
  9424       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  9425     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
  9426       "Inconsistent chunk at end of space");
  9427     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  9428     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  9430     // Shrink the underlying space
  9431     _virtual_space.shrink_by(bytes);
  9432     if (PrintGCDetails && Verbose) {
  9433       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  9434         " desired_bytes " SIZE_FORMAT
  9435         " shrinkable_size_in_bytes " SIZE_FORMAT
  9436         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  9437         "  bytes  " SIZE_FORMAT,
  9438         desired_bytes, shrinkable_size_in_bytes,
  9439         aligned_shrinkable_size_in_bytes, bytes);
  9440       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  9441         "  unallocated_start  " SIZE_FORMAT,
  9442         old_end, unallocated_start);
  9445     // If the space did shrink (shrinking is not guaranteed),
  9446     // shrink the chunk at the end by the appropriate amount.
  9447     if (((HeapWord*)_virtual_space.high()) < old_end) {
  9448       size_t new_word_size =
  9449         heap_word_size(_virtual_space.committed_size());
  9451       // Have to remove the chunk from the dictionary because it is changing
  9452       // size and might be someplace elsewhere in the dictionary.
  9454       // Get the chunk at end, shrink it, and put it
  9455       // back.
  9456       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  9457       size_t word_size_change = word_size_before - new_word_size;
  9458       size_t chunk_at_end_old_size = chunk_at_end->size();
  9459       assert(chunk_at_end_old_size >= word_size_change,
  9460         "Shrink is too large");
  9461       chunk_at_end->set_size(chunk_at_end_old_size -
  9462                           word_size_change);
  9463       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  9464         word_size_change);
  9466       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  9468       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  9469       _bts->resize(new_word_size);  // resize the block offset shared array
  9470       Universe::heap()->barrier_set()->resize_covered_region(mr);
  9471       _cmsSpace->assert_locked();
  9472       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  9474       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  9476       // update the space and generation capacity counters
  9477       if (UsePerfData) {
  9478         _space_counters->update_capacity();
  9479         _gen_counters->update_all();
  9482       if (Verbose && PrintGCDetails) {
  9483         size_t new_mem_size = _virtual_space.committed_size();
  9484         size_t old_mem_size = new_mem_size + bytes;
  9485         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
  9486                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  9490     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  9491       "Inconsistency at end of space");
  9492     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
  9493       "Shrinking is inconsistent");
  9494     return;
  9497 // Transfer some number of overflown objects to usual marking
  9498 // stack. Return true if some objects were transferred.
  9499 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  9500   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
  9501                     (size_t)ParGCDesiredObjsFromOverflowList);
  9503   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  9504   assert(_collector->overflow_list_is_empty() || res,
  9505          "If list is not empty, we should have taken something");
  9506   assert(!res || !_mark_stack->isEmpty(),
  9507          "If we took something, it should now be on our stack");
  9508   return res;
  9511 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  9512   size_t res = _sp->block_size_no_stall(addr, _collector);
  9513   if (_sp->block_is_obj(addr)) {
  9514     if (_live_bit_map->isMarked(addr)) {
  9515       // It can't have been dead in a previous cycle
  9516       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  9517     } else {
  9518       _dead_bit_map->mark(addr);      // mark the dead object
  9521   // Could be 0, if the block size could not be computed without stalling.
  9522   return res;
  9525 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
  9527   switch (phase) {
  9528     case CMSCollector::InitialMarking:
  9529       initialize(true  /* fullGC */ ,
  9530                  cause /* cause of the GC */,
  9531                  true  /* recordGCBeginTime */,
  9532                  true  /* recordPreGCUsage */,
  9533                  false /* recordPeakUsage */,
  9534                  false /* recordPostGCusage */,
  9535                  true  /* recordAccumulatedGCTime */,
  9536                  false /* recordGCEndTime */,
  9537                  false /* countCollection */  );
  9538       break;
  9540     case CMSCollector::FinalMarking:
  9541       initialize(true  /* fullGC */ ,
  9542                  cause /* cause of the GC */,
  9543                  false /* recordGCBeginTime */,
  9544                  false /* recordPreGCUsage */,
  9545                  false /* recordPeakUsage */,
  9546                  false /* recordPostGCusage */,
  9547                  true  /* recordAccumulatedGCTime */,
  9548                  false /* recordGCEndTime */,
  9549                  false /* countCollection */  );
  9550       break;
  9552     case CMSCollector::Sweeping:
  9553       initialize(true  /* fullGC */ ,
  9554                  cause /* cause of the GC */,
  9555                  false /* recordGCBeginTime */,
  9556                  false /* recordPreGCUsage */,
  9557                  true  /* recordPeakUsage */,
  9558                  true  /* recordPostGCusage */,
  9559                  false /* recordAccumulatedGCTime */,
  9560                  true  /* recordGCEndTime */,
  9561                  true  /* countCollection */  );
  9562       break;
  9564     default:
  9565       ShouldNotReachHere();

mercurial