src/share/vm/memory/genCollectedHeap.cpp

Wed, 26 Jun 2013 16:58:37 +0200

author
ehelin
date
Wed, 26 Jun 2013 16:58:37 +0200
changeset 5312
71963b3f802a
parent 5237
f2110083203d
child 5369
71180a6e5080
permissions
-rw-r--r--

8013590: NPG: Add a memory pool MXBean for Metaspace
Reviewed-by: jmasa, mgerdin

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "gc_implementation/shared/collectorCounters.hpp"
    31 #include "gc_implementation/shared/gcTraceTime.hpp"
    32 #include "gc_implementation/shared/vmGCOperations.hpp"
    33 #include "gc_interface/collectedHeap.inline.hpp"
    34 #include "memory/filemap.hpp"
    35 #include "memory/gcLocker.inline.hpp"
    36 #include "memory/genCollectedHeap.hpp"
    37 #include "memory/genOopClosures.inline.hpp"
    38 #include "memory/generation.inline.hpp"
    39 #include "memory/generationSpec.hpp"
    40 #include "memory/resourceArea.hpp"
    41 #include "memory/sharedHeap.hpp"
    42 #include "memory/space.hpp"
    43 #include "oops/oop.inline.hpp"
    44 #include "oops/oop.inline2.hpp"
    45 #include "runtime/aprofiler.hpp"
    46 #include "runtime/biasedLocking.hpp"
    47 #include "runtime/fprofiler.hpp"
    48 #include "runtime/handles.hpp"
    49 #include "runtime/handles.inline.hpp"
    50 #include "runtime/java.hpp"
    51 #include "runtime/vmThread.hpp"
    52 #include "services/memoryService.hpp"
    53 #include "utilities/vmError.hpp"
    54 #include "utilities/workgroup.hpp"
    55 #include "utilities/macros.hpp"
    56 #if INCLUDE_ALL_GCS
    57 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    58 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    59 #endif // INCLUDE_ALL_GCS
    61 GenCollectedHeap* GenCollectedHeap::_gch;
    62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
    64 // The set of potentially parallel tasks in strong root scanning.
    65 enum GCH_process_strong_roots_tasks {
    66   // We probably want to parallelize both of these internally, but for now...
    67   GCH_PS_younger_gens,
    68   // Leave this one last.
    69   GCH_PS_NumElements
    70 };
    72 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
    73   SharedHeap(policy),
    74   _gen_policy(policy),
    75   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
    76   _full_collections_completed(0)
    77 {
    78   if (_gen_process_strong_tasks == NULL ||
    79       !_gen_process_strong_tasks->valid()) {
    80     vm_exit_during_initialization("Failed necessary allocation.");
    81   }
    82   assert(policy != NULL, "Sanity check");
    83 }
    85 jint GenCollectedHeap::initialize() {
    86   CollectedHeap::pre_initialize();
    88   int i;
    89   _n_gens = gen_policy()->number_of_generations();
    91   // While there are no constraints in the GC code that HeapWordSize
    92   // be any particular value, there are multiple other areas in the
    93   // system which believe this to be true (e.g. oop->object_size in some
    94   // cases incorrectly returns the size in wordSize units rather than
    95   // HeapWordSize).
    96   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
    98   // The heap must be at least as aligned as generations.
    99   size_t alignment = Generation::GenGrain;
   101   _gen_specs = gen_policy()->generations();
   103   // Make sure the sizes are all aligned.
   104   for (i = 0; i < _n_gens; i++) {
   105     _gen_specs[i]->align(alignment);
   106   }
   108   // Allocate space for the heap.
   110   char* heap_address;
   111   size_t total_reserved = 0;
   112   int n_covered_regions = 0;
   113   ReservedSpace heap_rs(0);
   115   heap_address = allocate(alignment, &total_reserved,
   116                           &n_covered_regions, &heap_rs);
   118   if (!heap_rs.is_reserved()) {
   119     vm_shutdown_during_initialization(
   120       "Could not reserve enough space for object heap");
   121     return JNI_ENOMEM;
   122   }
   124   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   125                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   127   // It is important to do this in a way such that concurrent readers can't
   128   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
   129   _reserved.set_word_size(0);
   130   _reserved.set_start((HeapWord*)heap_rs.base());
   131   size_t actual_heap_size = heap_rs.size();
   132   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
   134   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
   135   set_barrier_set(rem_set()->bs());
   137   _gch = this;
   139   for (i = 0; i < _n_gens; i++) {
   140     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
   141     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
   142     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
   143   }
   144   clear_incremental_collection_failed();
   146 #if INCLUDE_ALL_GCS
   147   // If we are running CMS, create the collector responsible
   148   // for collecting the CMS generations.
   149   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
   150     bool success = create_cms_collector();
   151     if (!success) return JNI_ENOMEM;
   152   }
   153 #endif // INCLUDE_ALL_GCS
   155   return JNI_OK;
   156 }
   159 char* GenCollectedHeap::allocate(size_t alignment,
   160                                  size_t* _total_reserved,
   161                                  int* _n_covered_regions,
   162                                  ReservedSpace* heap_rs){
   163   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
   164     "the maximum representable size";
   166   // Now figure out the total size.
   167   size_t total_reserved = 0;
   168   int n_covered_regions = 0;
   169   const size_t pageSize = UseLargePages ?
   170       os::large_page_size() : os::vm_page_size();
   172   for (int i = 0; i < _n_gens; i++) {
   173     total_reserved += _gen_specs[i]->max_size();
   174     if (total_reserved < _gen_specs[i]->max_size()) {
   175       vm_exit_during_initialization(overflow_msg);
   176     }
   177     n_covered_regions += _gen_specs[i]->n_covered_regions();
   178   }
   179   assert(total_reserved % pageSize == 0,
   180          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize="
   181                  SIZE_FORMAT, total_reserved, pageSize));
   183   // Needed until the cardtable is fixed to have the right number
   184   // of covered regions.
   185   n_covered_regions += 2;
   187   if (UseLargePages) {
   188     assert(total_reserved != 0, "total_reserved cannot be 0");
   189     total_reserved = round_to(total_reserved, os::large_page_size());
   190     if (total_reserved < os::large_page_size()) {
   191       vm_exit_during_initialization(overflow_msg);
   192     }
   193   }
   195       *_total_reserved = total_reserved;
   196       *_n_covered_regions = n_covered_regions;
   197   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
   198   return heap_rs->base();
   199 }
   202 void GenCollectedHeap::post_initialize() {
   203   SharedHeap::post_initialize();
   204   TwoGenerationCollectorPolicy *policy =
   205     (TwoGenerationCollectorPolicy *)collector_policy();
   206   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
   207   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
   208   assert(def_new_gen->kind() == Generation::DefNew ||
   209          def_new_gen->kind() == Generation::ParNew ||
   210          def_new_gen->kind() == Generation::ASParNew,
   211          "Wrong generation kind");
   213   Generation* old_gen = get_gen(1);
   214   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
   215          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
   216          old_gen->kind() == Generation::MarkSweepCompact,
   217     "Wrong generation kind");
   219   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
   220                                  old_gen->capacity(),
   221                                  def_new_gen->from()->capacity());
   222   policy->initialize_gc_policy_counters();
   223 }
   225 void GenCollectedHeap::ref_processing_init() {
   226   SharedHeap::ref_processing_init();
   227   for (int i = 0; i < _n_gens; i++) {
   228     _gens[i]->ref_processor_init();
   229   }
   230 }
   232 size_t GenCollectedHeap::capacity() const {
   233   size_t res = 0;
   234   for (int i = 0; i < _n_gens; i++) {
   235     res += _gens[i]->capacity();
   236   }
   237   return res;
   238 }
   240 size_t GenCollectedHeap::used() const {
   241   size_t res = 0;
   242   for (int i = 0; i < _n_gens; i++) {
   243     res += _gens[i]->used();
   244   }
   245   return res;
   246 }
   248 // Save the "used_region" for generations level and lower.
   249 void GenCollectedHeap::save_used_regions(int level) {
   250   assert(level < _n_gens, "Illegal level parameter");
   251   for (int i = level; i >= 0; i--) {
   252     _gens[i]->save_used_region();
   253   }
   254 }
   256 size_t GenCollectedHeap::max_capacity() const {
   257   size_t res = 0;
   258   for (int i = 0; i < _n_gens; i++) {
   259     res += _gens[i]->max_capacity();
   260   }
   261   return res;
   262 }
   264 // Update the _full_collections_completed counter
   265 // at the end of a stop-world full GC.
   266 unsigned int GenCollectedHeap::update_full_collections_completed() {
   267   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   268   assert(_full_collections_completed <= _total_full_collections,
   269          "Can't complete more collections than were started");
   270   _full_collections_completed = _total_full_collections;
   271   ml.notify_all();
   272   return _full_collections_completed;
   273 }
   275 // Update the _full_collections_completed counter, as appropriate,
   276 // at the end of a concurrent GC cycle. Note the conditional update
   277 // below to allow this method to be called by a concurrent collector
   278 // without synchronizing in any manner with the VM thread (which
   279 // may already have initiated a STW full collection "concurrently").
   280 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
   281   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   282   assert((_full_collections_completed <= _total_full_collections) &&
   283          (count <= _total_full_collections),
   284          "Can't complete more collections than were started");
   285   if (count > _full_collections_completed) {
   286     _full_collections_completed = count;
   287     ml.notify_all();
   288   }
   289   return _full_collections_completed;
   290 }
   293 #ifndef PRODUCT
   294 // Override of memory state checking method in CollectedHeap:
   295 // Some collectors (CMS for example) can't have badHeapWordVal written
   296 // in the first two words of an object. (For instance , in the case of
   297 // CMS these words hold state used to synchronize between certain
   298 // (concurrent) GC steps and direct allocating mutators.)
   299 // The skip_header_HeapWords() method below, allows us to skip
   300 // over the requisite number of HeapWord's. Note that (for
   301 // generational collectors) this means that those many words are
   302 // skipped in each object, irrespective of the generation in which
   303 // that object lives. The resultant loss of precision seems to be
   304 // harmless and the pain of avoiding that imprecision appears somewhat
   305 // higher than we are prepared to pay for such rudimentary debugging
   306 // support.
   307 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
   308                                                          size_t size) {
   309   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   310     // We are asked to check a size in HeapWords,
   311     // but the memory is mangled in juint words.
   312     juint* start = (juint*) (addr + skip_header_HeapWords());
   313     juint* end   = (juint*) (addr + size);
   314     for (juint* slot = start; slot < end; slot += 1) {
   315       assert(*slot == badHeapWordVal,
   316              "Found non badHeapWordValue in pre-allocation check");
   317     }
   318   }
   319 }
   320 #endif
   322 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
   323                                                bool is_tlab,
   324                                                bool first_only) {
   325   HeapWord* res;
   326   for (int i = 0; i < _n_gens; i++) {
   327     if (_gens[i]->should_allocate(size, is_tlab)) {
   328       res = _gens[i]->allocate(size, is_tlab);
   329       if (res != NULL) return res;
   330       else if (first_only) break;
   331     }
   332   }
   333   // Otherwise...
   334   return NULL;
   335 }
   337 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
   338                                          bool* gc_overhead_limit_was_exceeded) {
   339   return collector_policy()->mem_allocate_work(size,
   340                                                false /* is_tlab */,
   341                                                gc_overhead_limit_was_exceeded);
   342 }
   344 bool GenCollectedHeap::must_clear_all_soft_refs() {
   345   return _gc_cause == GCCause::_last_ditch_collection;
   346 }
   348 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
   349   return UseConcMarkSweepGC &&
   350          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
   351           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
   352 }
   354 void GenCollectedHeap::do_collection(bool  full,
   355                                      bool   clear_all_soft_refs,
   356                                      size_t size,
   357                                      bool   is_tlab,
   358                                      int    max_level) {
   359   bool prepared_for_verification = false;
   360   ResourceMark rm;
   361   DEBUG_ONLY(Thread* my_thread = Thread::current();)
   363   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   364   assert(my_thread->is_VM_thread() ||
   365          my_thread->is_ConcurrentGC_thread(),
   366          "incorrect thread type capability");
   367   assert(Heap_lock->is_locked(),
   368          "the requesting thread should have the Heap_lock");
   369   guarantee(!is_gc_active(), "collection is not reentrant");
   370   assert(max_level < n_gens(), "sanity check");
   372   if (GC_locker::check_active_before_gc()) {
   373     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   374   }
   376   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   377                           collector_policy()->should_clear_all_soft_refs();
   379   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   381   const size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
   383   print_heap_before_gc();
   385   {
   386     FlagSetting fl(_is_gc_active, true);
   388     bool complete = full && (max_level == (n_gens()-1));
   389     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
   390     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   391     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   392     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL);
   394     gc_prologue(complete);
   395     increment_total_collections(complete);
   397     size_t gch_prev_used = used();
   399     int starting_level = 0;
   400     if (full) {
   401       // Search for the oldest generation which will collect all younger
   402       // generations, and start collection loop there.
   403       for (int i = max_level; i >= 0; i--) {
   404         if (_gens[i]->full_collects_younger_generations()) {
   405           starting_level = i;
   406           break;
   407         }
   408       }
   409     }
   411     bool must_restore_marks_for_biased_locking = false;
   413     int max_level_collected = starting_level;
   414     for (int i = starting_level; i <= max_level; i++) {
   415       if (_gens[i]->should_collect(full, size, is_tlab)) {
   416         if (i == n_gens() - 1) {  // a major collection is to happen
   417           if (!complete) {
   418             // The full_collections increment was missed above.
   419             increment_total_full_collections();
   420           }
   421           pre_full_gc_dump(NULL);    // do any pre full gc dumps
   422         }
   423         // Timer for individual generations. Last argument is false: no CR
   424         // FIXME: We should try to start the timing earlier to cover more of the GC pause
   425         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL);
   426         TraceCollectorStats tcs(_gens[i]->counters());
   427         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
   429         size_t prev_used = _gens[i]->used();
   430         _gens[i]->stat_record()->invocations++;
   431         _gens[i]->stat_record()->accumulated_time.start();
   433         // Must be done anew before each collection because
   434         // a previous collection will do mangling and will
   435         // change top of some spaces.
   436         record_gen_tops_before_GC();
   438         if (PrintGC && Verbose) {
   439           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
   440                      i,
   441                      _gens[i]->stat_record()->invocations,
   442                      size*HeapWordSize);
   443         }
   445         if (VerifyBeforeGC && i >= VerifyGCLevel &&
   446             total_collections() >= VerifyGCStartAt) {
   447           HandleMark hm;  // Discard invalid handles created during verification
   448           if (!prepared_for_verification) {
   449             prepare_for_verify();
   450             prepared_for_verification = true;
   451           }
   452           Universe::verify(" VerifyBeforeGC:");
   453         }
   454         COMPILER2_PRESENT(DerivedPointerTable::clear());
   456         if (!must_restore_marks_for_biased_locking &&
   457             _gens[i]->performs_in_place_marking()) {
   458           // We perform this mark word preservation work lazily
   459           // because it's only at this point that we know whether we
   460           // absolutely have to do it; we want to avoid doing it for
   461           // scavenge-only collections where it's unnecessary
   462           must_restore_marks_for_biased_locking = true;
   463           BiasedLocking::preserve_marks();
   464         }
   466         // Do collection work
   467         {
   468           // Note on ref discovery: For what appear to be historical reasons,
   469           // GCH enables and disabled (by enqueing) refs discovery.
   470           // In the future this should be moved into the generation's
   471           // collect method so that ref discovery and enqueueing concerns
   472           // are local to a generation. The collect method could return
   473           // an appropriate indication in the case that notification on
   474           // the ref lock was needed. This will make the treatment of
   475           // weak refs more uniform (and indeed remove such concerns
   476           // from GCH). XXX
   478           HandleMark hm;  // Discard invalid handles created during gc
   479           save_marks();   // save marks for all gens
   480           // We want to discover references, but not process them yet.
   481           // This mode is disabled in process_discovered_references if the
   482           // generation does some collection work, or in
   483           // enqueue_discovered_references if the generation returns
   484           // without doing any work.
   485           ReferenceProcessor* rp = _gens[i]->ref_processor();
   486           // If the discovery of ("weak") refs in this generation is
   487           // atomic wrt other collectors in this configuration, we
   488           // are guaranteed to have empty discovered ref lists.
   489           if (rp->discovery_is_atomic()) {
   490             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   491             rp->setup_policy(do_clear_all_soft_refs);
   492           } else {
   493             // collect() below will enable discovery as appropriate
   494           }
   495           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
   496           if (!rp->enqueuing_is_done()) {
   497             rp->enqueue_discovered_references();
   498           } else {
   499             rp->set_enqueuing_is_done(false);
   500           }
   501           rp->verify_no_references_recorded();
   502         }
   503         max_level_collected = i;
   505         // Determine if allocation request was met.
   506         if (size > 0) {
   507           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
   508             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
   509               size = 0;
   510             }
   511           }
   512         }
   514         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   516         _gens[i]->stat_record()->accumulated_time.stop();
   518         update_gc_stats(i, full);
   520         if (VerifyAfterGC && i >= VerifyGCLevel &&
   521             total_collections() >= VerifyGCStartAt) {
   522           HandleMark hm;  // Discard invalid handles created during verification
   523           Universe::verify(" VerifyAfterGC:");
   524         }
   526         if (PrintGCDetails) {
   527           gclog_or_tty->print(":");
   528           _gens[i]->print_heap_change(prev_used);
   529         }
   530       }
   531     }
   533     // Update "complete" boolean wrt what actually transpired --
   534     // for instance, a promotion failure could have led to
   535     // a whole heap collection.
   536     complete = complete || (max_level_collected == n_gens() - 1);
   538     if (complete) { // We did a "major" collection
   539       // FIXME: See comment at pre_full_gc_dump call
   540       post_full_gc_dump(NULL);   // do any post full gc dumps
   541     }
   543     if (PrintGCDetails) {
   544       print_heap_change(gch_prev_used);
   546       // Print metaspace info for full GC with PrintGCDetails flag.
   547       if (complete) {
   548         MetaspaceAux::print_metaspace_change(metadata_prev_used);
   549       }
   550     }
   552     for (int j = max_level_collected; j >= 0; j -= 1) {
   553       // Adjust generation sizes.
   554       _gens[j]->compute_new_size();
   555     }
   557     if (complete) {
   558       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
   559       ClassLoaderDataGraph::purge();
   560       MetaspaceAux::verify_metrics();
   561       // Resize the metaspace capacity after full collections
   562       MetaspaceGC::compute_new_size();
   563       update_full_collections_completed();
   564     }
   566     // Track memory usage and detect low memory after GC finishes
   567     MemoryService::track_memory_usage();
   569     gc_epilogue(complete);
   571     if (must_restore_marks_for_biased_locking) {
   572       BiasedLocking::restore_marks();
   573     }
   574   }
   576   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
   577   AdaptiveSizePolicyOutput(sp, total_collections());
   579   print_heap_after_gc();
   581 #ifdef TRACESPINNING
   582   ParallelTaskTerminator::print_termination_counts();
   583 #endif
   584 }
   586 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
   587   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
   588 }
   590 void GenCollectedHeap::set_par_threads(uint t) {
   591   SharedHeap::set_par_threads(t);
   592   _gen_process_strong_tasks->set_n_threads(t);
   593 }
   595 void GenCollectedHeap::
   596 gen_process_strong_roots(int level,
   597                          bool younger_gens_as_roots,
   598                          bool activate_scope,
   599                          bool is_scavenging,
   600                          SharedHeap::ScanningOption so,
   601                          OopsInGenClosure* not_older_gens,
   602                          bool do_code_roots,
   603                          OopsInGenClosure* older_gens,
   604                          KlassClosure* klass_closure) {
   605   // General strong roots.
   607   if (!do_code_roots) {
   608     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
   609                                      not_older_gens, NULL, klass_closure);
   610   } else {
   611     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
   612     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
   613     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
   614                                      not_older_gens, &code_roots, klass_closure);
   615   }
   617   if (younger_gens_as_roots) {
   618     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
   619       for (int i = 0; i < level; i++) {
   620         not_older_gens->set_generation(_gens[i]);
   621         _gens[i]->oop_iterate(not_older_gens);
   622       }
   623       not_older_gens->reset_generation();
   624     }
   625   }
   626   // When collection is parallel, all threads get to cooperate to do
   627   // older-gen scanning.
   628   for (int i = level+1; i < _n_gens; i++) {
   629     older_gens->set_generation(_gens[i]);
   630     rem_set()->younger_refs_iterate(_gens[i], older_gens);
   631     older_gens->reset_generation();
   632   }
   634   _gen_process_strong_tasks->all_tasks_completed();
   635 }
   637 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
   638                                               CodeBlobClosure* code_roots) {
   639   SharedHeap::process_weak_roots(root_closure, code_roots);
   640   // "Local" "weak" refs
   641   for (int i = 0; i < _n_gens; i++) {
   642     _gens[i]->ref_processor()->weak_oops_do(root_closure);
   643   }
   644 }
   646 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
   647 void GenCollectedHeap::                                                 \
   648 oop_since_save_marks_iterate(int level,                                 \
   649                              OopClosureType* cur,                       \
   650                              OopClosureType* older) {                   \
   651   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
   652   for (int i = level+1; i < n_gens(); i++) {                            \
   653     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
   654   }                                                                     \
   655 }
   657 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
   659 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
   661 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
   662   for (int i = level; i < _n_gens; i++) {
   663     if (!_gens[i]->no_allocs_since_save_marks()) return false;
   664   }
   665   return true;
   666 }
   668 bool GenCollectedHeap::supports_inline_contig_alloc() const {
   669   return _gens[0]->supports_inline_contig_alloc();
   670 }
   672 HeapWord** GenCollectedHeap::top_addr() const {
   673   return _gens[0]->top_addr();
   674 }
   676 HeapWord** GenCollectedHeap::end_addr() const {
   677   return _gens[0]->end_addr();
   678 }
   680 size_t GenCollectedHeap::unsafe_max_alloc() {
   681   return _gens[0]->unsafe_max_alloc_nogc();
   682 }
   684 // public collection interfaces
   686 void GenCollectedHeap::collect(GCCause::Cause cause) {
   687   if (should_do_concurrent_full_gc(cause)) {
   688 #if INCLUDE_ALL_GCS
   689     // mostly concurrent full collection
   690     collect_mostly_concurrent(cause);
   691 #else  // INCLUDE_ALL_GCS
   692     ShouldNotReachHere();
   693 #endif // INCLUDE_ALL_GCS
   694   } else {
   695 #ifdef ASSERT
   696     if (cause == GCCause::_scavenge_alot) {
   697       // minor collection only
   698       collect(cause, 0);
   699     } else {
   700       // Stop-the-world full collection
   701       collect(cause, n_gens() - 1);
   702     }
   703 #else
   704     // Stop-the-world full collection
   705     collect(cause, n_gens() - 1);
   706 #endif
   707   }
   708 }
   710 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
   711   // The caller doesn't have the Heap_lock
   712   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   713   MutexLocker ml(Heap_lock);
   714   collect_locked(cause, max_level);
   715 }
   717 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
   718   // The caller has the Heap_lock
   719   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
   720   collect_locked(cause, n_gens() - 1);
   721 }
   723 // this is the private collection interface
   724 // The Heap_lock is expected to be held on entry.
   726 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
   727   // Read the GC count while holding the Heap_lock
   728   unsigned int gc_count_before      = total_collections();
   729   unsigned int full_gc_count_before = total_full_collections();
   730   {
   731     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
   732     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
   733                          cause, max_level);
   734     VMThread::execute(&op);
   735   }
   736 }
   738 #if INCLUDE_ALL_GCS
   739 bool GenCollectedHeap::create_cms_collector() {
   741   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
   742          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
   743          "Unexpected generation kinds");
   744   // Skip two header words in the block content verification
   745   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
   746   CMSCollector* collector = new CMSCollector(
   747     (ConcurrentMarkSweepGeneration*)_gens[1],
   748     _rem_set->as_CardTableRS(),
   749     (ConcurrentMarkSweepPolicy*) collector_policy());
   751   if (collector == NULL || !collector->completed_initialization()) {
   752     if (collector) {
   753       delete collector;  // Be nice in embedded situation
   754     }
   755     vm_shutdown_during_initialization("Could not create CMS collector");
   756     return false;
   757   }
   758   return true;  // success
   759 }
   761 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
   762   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
   764   MutexLocker ml(Heap_lock);
   765   // Read the GC counts while holding the Heap_lock
   766   unsigned int full_gc_count_before = total_full_collections();
   767   unsigned int gc_count_before      = total_collections();
   768   {
   769     MutexUnlocker mu(Heap_lock);
   770     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
   771     VMThread::execute(&op);
   772   }
   773 }
   774 #endif // INCLUDE_ALL_GCS
   776 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
   777    do_full_collection(clear_all_soft_refs, _n_gens - 1);
   778 }
   780 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
   781                                           int max_level) {
   782   int local_max_level;
   783   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
   784       gc_cause() == GCCause::_gc_locker) {
   785     local_max_level = 0;
   786   } else {
   787     local_max_level = max_level;
   788   }
   790   do_collection(true                 /* full */,
   791                 clear_all_soft_refs  /* clear_all_soft_refs */,
   792                 0                    /* size */,
   793                 false                /* is_tlab */,
   794                 local_max_level      /* max_level */);
   795   // Hack XXX FIX ME !!!
   796   // A scavenge may not have been attempted, or may have
   797   // been attempted and failed, because the old gen was too full
   798   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
   799       incremental_collection_will_fail(false /* don't consult_young */)) {
   800     if (PrintGCDetails) {
   801       gclog_or_tty->print_cr("GC locker: Trying a full collection "
   802                              "because scavenge failed");
   803     }
   804     // This time allow the old gen to be collected as well
   805     do_collection(true                 /* full */,
   806                   clear_all_soft_refs  /* clear_all_soft_refs */,
   807                   0                    /* size */,
   808                   false                /* is_tlab */,
   809                   n_gens() - 1         /* max_level */);
   810   }
   811 }
   813 bool GenCollectedHeap::is_in_young(oop p) {
   814   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
   815   assert(result == _gens[0]->is_in_reserved(p),
   816          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
   817   return result;
   818 }
   820 // Returns "TRUE" iff "p" points into the committed areas of the heap.
   821 bool GenCollectedHeap::is_in(const void* p) const {
   822   #ifndef ASSERT
   823   guarantee(VerifyBeforeGC      ||
   824             VerifyDuringGC      ||
   825             VerifyBeforeExit    ||
   826             VerifyDuringStartup ||
   827             PrintAssembly       ||
   828             tty->count() != 0   ||   // already printing
   829             VerifyAfterGC       ||
   830     VMError::fatal_error_in_progress(), "too expensive");
   832   #endif
   833   // This might be sped up with a cache of the last generation that
   834   // answered yes.
   835   for (int i = 0; i < _n_gens; i++) {
   836     if (_gens[i]->is_in(p)) return true;
   837   }
   838   // Otherwise...
   839   return false;
   840 }
   842 #ifdef ASSERT
   843 // Don't implement this by using is_in_young().  This method is used
   844 // in some cases to check that is_in_young() is correct.
   845 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
   846   assert(is_in_reserved(p) || p == NULL,
   847     "Does not work if address is non-null and outside of the heap");
   848   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
   849 }
   850 #endif
   852 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
   853   for (int i = 0; i < _n_gens; i++) {
   854     _gens[i]->oop_iterate(cl);
   855   }
   856 }
   858 void GenCollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
   859   for (int i = 0; i < _n_gens; i++) {
   860     _gens[i]->oop_iterate(mr, cl);
   861   }
   862 }
   864 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
   865   for (int i = 0; i < _n_gens; i++) {
   866     _gens[i]->object_iterate(cl);
   867   }
   868 }
   870 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
   871   for (int i = 0; i < _n_gens; i++) {
   872     _gens[i]->safe_object_iterate(cl);
   873   }
   874 }
   876 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
   877   for (int i = 0; i < _n_gens; i++) {
   878     _gens[i]->object_iterate_since_last_GC(cl);
   879   }
   880 }
   882 Space* GenCollectedHeap::space_containing(const void* addr) const {
   883   for (int i = 0; i < _n_gens; i++) {
   884     Space* res = _gens[i]->space_containing(addr);
   885     if (res != NULL) return res;
   886   }
   887   // Otherwise...
   888   assert(false, "Could not find containing space");
   889   return NULL;
   890 }
   893 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
   894   assert(is_in_reserved(addr), "block_start of address outside of heap");
   895   for (int i = 0; i < _n_gens; i++) {
   896     if (_gens[i]->is_in_reserved(addr)) {
   897       assert(_gens[i]->is_in(addr),
   898              "addr should be in allocated part of generation");
   899       return _gens[i]->block_start(addr);
   900     }
   901   }
   902   assert(false, "Some generation should contain the address");
   903   return NULL;
   904 }
   906 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
   907   assert(is_in_reserved(addr), "block_size of address outside of heap");
   908   for (int i = 0; i < _n_gens; i++) {
   909     if (_gens[i]->is_in_reserved(addr)) {
   910       assert(_gens[i]->is_in(addr),
   911              "addr should be in allocated part of generation");
   912       return _gens[i]->block_size(addr);
   913     }
   914   }
   915   assert(false, "Some generation should contain the address");
   916   return 0;
   917 }
   919 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
   920   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
   921   assert(block_start(addr) == addr, "addr must be a block start");
   922   for (int i = 0; i < _n_gens; i++) {
   923     if (_gens[i]->is_in_reserved(addr)) {
   924       return _gens[i]->block_is_obj(addr);
   925     }
   926   }
   927   assert(false, "Some generation should contain the address");
   928   return false;
   929 }
   931 bool GenCollectedHeap::supports_tlab_allocation() const {
   932   for (int i = 0; i < _n_gens; i += 1) {
   933     if (_gens[i]->supports_tlab_allocation()) {
   934       return true;
   935     }
   936   }
   937   return false;
   938 }
   940 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
   941   size_t result = 0;
   942   for (int i = 0; i < _n_gens; i += 1) {
   943     if (_gens[i]->supports_tlab_allocation()) {
   944       result += _gens[i]->tlab_capacity();
   945     }
   946   }
   947   return result;
   948 }
   950 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   951   size_t result = 0;
   952   for (int i = 0; i < _n_gens; i += 1) {
   953     if (_gens[i]->supports_tlab_allocation()) {
   954       result += _gens[i]->unsafe_max_tlab_alloc();
   955     }
   956   }
   957   return result;
   958 }
   960 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
   961   bool gc_overhead_limit_was_exceeded;
   962   return collector_policy()->mem_allocate_work(size /* size */,
   963                                                true /* is_tlab */,
   964                                                &gc_overhead_limit_was_exceeded);
   965 }
   967 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
   968 // from the list headed by "*prev_ptr".
   969 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
   970   bool first = true;
   971   size_t min_size = 0;   // "first" makes this conceptually infinite.
   972   ScratchBlock **smallest_ptr, *smallest;
   973   ScratchBlock  *cur = *prev_ptr;
   974   while (cur) {
   975     assert(*prev_ptr == cur, "just checking");
   976     if (first || cur->num_words < min_size) {
   977       smallest_ptr = prev_ptr;
   978       smallest     = cur;
   979       min_size     = smallest->num_words;
   980       first        = false;
   981     }
   982     prev_ptr = &cur->next;
   983     cur     =  cur->next;
   984   }
   985   smallest      = *smallest_ptr;
   986   *smallest_ptr = smallest->next;
   987   return smallest;
   988 }
   990 // Sort the scratch block list headed by res into decreasing size order,
   991 // and set "res" to the result.
   992 static void sort_scratch_list(ScratchBlock*& list) {
   993   ScratchBlock* sorted = NULL;
   994   ScratchBlock* unsorted = list;
   995   while (unsorted) {
   996     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
   997     smallest->next  = sorted;
   998     sorted          = smallest;
   999   }
  1000   list = sorted;
  1003 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
  1004                                                size_t max_alloc_words) {
  1005   ScratchBlock* res = NULL;
  1006   for (int i = 0; i < _n_gens; i++) {
  1007     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  1009   sort_scratch_list(res);
  1010   return res;
  1013 void GenCollectedHeap::release_scratch() {
  1014   for (int i = 0; i < _n_gens; i++) {
  1015     _gens[i]->reset_scratch();
  1019 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  1020   void do_generation(Generation* gen) {
  1021     gen->prepare_for_verify();
  1023 };
  1025 void GenCollectedHeap::prepare_for_verify() {
  1026   ensure_parsability(false);        // no need to retire TLABs
  1027   GenPrepareForVerifyClosure blk;
  1028   generation_iterate(&blk, false);
  1032 void GenCollectedHeap::generation_iterate(GenClosure* cl,
  1033                                           bool old_to_young) {
  1034   if (old_to_young) {
  1035     for (int i = _n_gens-1; i >= 0; i--) {
  1036       cl->do_generation(_gens[i]);
  1038   } else {
  1039     for (int i = 0; i < _n_gens; i++) {
  1040       cl->do_generation(_gens[i]);
  1045 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  1046   for (int i = 0; i < _n_gens; i++) {
  1047     _gens[i]->space_iterate(cl, true);
  1051 bool GenCollectedHeap::is_maximal_no_gc() const {
  1052   for (int i = 0; i < _n_gens; i++) {
  1053     if (!_gens[i]->is_maximal_no_gc()) {
  1054       return false;
  1057   return true;
  1060 void GenCollectedHeap::save_marks() {
  1061   for (int i = 0; i < _n_gens; i++) {
  1062     _gens[i]->save_marks();
  1066 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
  1067   for (int i = 0; i <= collectedGen; i++) {
  1068     _gens[i]->compute_new_size();
  1072 GenCollectedHeap* GenCollectedHeap::heap() {
  1073   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  1074   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  1075   return _gch;
  1079 void GenCollectedHeap::prepare_for_compaction() {
  1080   Generation* scanning_gen = _gens[_n_gens-1];
  1081   // Start by compacting into same gen.
  1082   CompactPoint cp(scanning_gen, NULL, NULL);
  1083   while (scanning_gen != NULL) {
  1084     scanning_gen->prepare_for_compaction(&cp);
  1085     scanning_gen = prev_gen(scanning_gen);
  1089 GCStats* GenCollectedHeap::gc_stats(int level) const {
  1090   return _gens[level]->gc_stats();
  1093 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
  1094   for (int i = _n_gens-1; i >= 0; i--) {
  1095     Generation* g = _gens[i];
  1096     if (!silent) {
  1097       gclog_or_tty->print(g->name());
  1098       gclog_or_tty->print(" ");
  1100     g->verify();
  1102   if (!silent) {
  1103     gclog_or_tty->print("remset ");
  1105   rem_set()->verify();
  1108 void GenCollectedHeap::print_on(outputStream* st) const {
  1109   for (int i = 0; i < _n_gens; i++) {
  1110     _gens[i]->print_on(st);
  1112   MetaspaceAux::print_on(st);
  1115 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  1116   if (workers() != NULL) {
  1117     workers()->threads_do(tc);
  1119 #if INCLUDE_ALL_GCS
  1120   if (UseConcMarkSweepGC) {
  1121     ConcurrentMarkSweepThread::threads_do(tc);
  1123 #endif // INCLUDE_ALL_GCS
  1126 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
  1127 #if INCLUDE_ALL_GCS
  1128   if (UseParNewGC) {
  1129     workers()->print_worker_threads_on(st);
  1131   if (UseConcMarkSweepGC) {
  1132     ConcurrentMarkSweepThread::print_all_on(st);
  1134 #endif // INCLUDE_ALL_GCS
  1137 void GenCollectedHeap::print_on_error(outputStream* st) const {
  1138   this->CollectedHeap::print_on_error(st);
  1140 #if INCLUDE_ALL_GCS
  1141   if (UseConcMarkSweepGC) {
  1142     st->cr();
  1143     CMSCollector::print_on_error(st);
  1145 #endif // INCLUDE_ALL_GCS
  1148 void GenCollectedHeap::print_tracing_info() const {
  1149   if (TraceGen0Time) {
  1150     get_gen(0)->print_summary_info();
  1152   if (TraceGen1Time) {
  1153     get_gen(1)->print_summary_info();
  1157 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  1158   if (PrintGCDetails && Verbose) {
  1159     gclog_or_tty->print(" "  SIZE_FORMAT
  1160                         "->" SIZE_FORMAT
  1161                         "("  SIZE_FORMAT ")",
  1162                         prev_used, used(), capacity());
  1163   } else {
  1164     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  1165                         "->" SIZE_FORMAT "K"
  1166                         "("  SIZE_FORMAT "K)",
  1167                         prev_used / K, used() / K, capacity() / K);
  1171 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
  1172  private:
  1173   bool _full;
  1174  public:
  1175   void do_generation(Generation* gen) {
  1176     gen->gc_prologue(_full);
  1178   GenGCPrologueClosure(bool full) : _full(full) {};
  1179 };
  1181 void GenCollectedHeap::gc_prologue(bool full) {
  1182   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  1184   always_do_update_barrier = false;
  1185   // Fill TLAB's and such
  1186   CollectedHeap::accumulate_statistics_all_tlabs();
  1187   ensure_parsability(true);   // retire TLABs
  1189   // Call allocation profiler
  1190   AllocationProfiler::iterate_since_last_gc();
  1191   // Walk generations
  1192   GenGCPrologueClosure blk(full);
  1193   generation_iterate(&blk, false);  // not old-to-young.
  1194 };
  1196 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
  1197  private:
  1198   bool _full;
  1199  public:
  1200   void do_generation(Generation* gen) {
  1201     gen->gc_epilogue(_full);
  1203   GenGCEpilogueClosure(bool full) : _full(full) {};
  1204 };
  1206 void GenCollectedHeap::gc_epilogue(bool full) {
  1207 #ifdef COMPILER2
  1208   assert(DerivedPointerTable::is_empty(), "derived pointer present");
  1209   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  1210   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
  1211 #endif /* COMPILER2 */
  1213   resize_all_tlabs();
  1215   GenGCEpilogueClosure blk(full);
  1216   generation_iterate(&blk, false);  // not old-to-young.
  1218   if (!CleanChunkPoolAsync) {
  1219     Chunk::clean_chunk_pool();
  1222   MetaspaceCounters::update_performance_counters();
  1224   always_do_update_barrier = UseConcMarkSweepGC;
  1225 };
  1227 #ifndef PRODUCT
  1228 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
  1229  private:
  1230  public:
  1231   void do_generation(Generation* gen) {
  1232     gen->record_spaces_top();
  1234 };
  1236 void GenCollectedHeap::record_gen_tops_before_GC() {
  1237   if (ZapUnusedHeapArea) {
  1238     GenGCSaveTopsBeforeGCClosure blk;
  1239     generation_iterate(&blk, false);  // not old-to-young.
  1242 #endif  // not PRODUCT
  1244 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
  1245  public:
  1246   void do_generation(Generation* gen) {
  1247     gen->ensure_parsability();
  1249 };
  1251 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  1252   CollectedHeap::ensure_parsability(retire_tlabs);
  1253   GenEnsureParsabilityClosure ep_cl;
  1254   generation_iterate(&ep_cl, false);
  1257 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
  1258                                               oop obj,
  1259                                               size_t obj_size) {
  1260   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1261   HeapWord* result = NULL;
  1263   // First give each higher generation a chance to allocate the promoted object.
  1264   Generation* allocator = next_gen(gen);
  1265   if (allocator != NULL) {
  1266     do {
  1267       result = allocator->allocate(obj_size, false);
  1268     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
  1271   if (result == NULL) {
  1272     // Then give gen and higher generations a chance to expand and allocate the
  1273     // object.
  1274     do {
  1275       result = gen->expand_and_allocate(obj_size, false);
  1276     } while (result == NULL && (gen = next_gen(gen)) != NULL);
  1279   if (result != NULL) {
  1280     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  1282   return oop(result);
  1285 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  1286   jlong _time;   // in ms
  1287   jlong _now;    // in ms
  1289  public:
  1290   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
  1292   jlong time() { return _time; }
  1294   void do_generation(Generation* gen) {
  1295     _time = MIN2(_time, gen->time_of_last_gc(_now));
  1297 };
  1299 jlong GenCollectedHeap::millis_since_last_gc() {
  1300   // We need a monotonically non-deccreasing time in ms but
  1301   // os::javaTimeMillis() does not guarantee monotonicity.
  1302   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  1303   GenTimeOfLastGCClosure tolgc_cl(now);
  1304   // iterate over generations getting the oldest
  1305   // time that a generation was collected
  1306   generation_iterate(&tolgc_cl, false);
  1308   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
  1309   // provided the underlying platform provides such a time source
  1310   // (and it is bug free). So we still have to guard against getting
  1311   // back a time later than 'now'.
  1312   jlong retVal = now - tolgc_cl.time();
  1313   if (retVal < 0) {
  1314     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
  1315     return 0;
  1317   return retVal;

mercurial