src/share/vm/memory/genCollectedHeap.hpp

Wed, 03 Jul 2013 17:26:59 -0400

author
jiangli
date
Wed, 03 Jul 2013 17:26:59 -0400
changeset 5369
71180a6e5080
parent 5011
a08c80e9e1e5
child 5516
330dfb0476f4
permissions
-rw-r--r--

7133260: AllocationProfiler uses space in metadata and doesn't seem to do anything useful.
Summary: Remove -Xaprof and Klass::_alloc_count & ArrayKlass::_alloc_size.
Reviewed-by: stefank, coleenp

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
    28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
    29 #include "memory/collectorPolicy.hpp"
    30 #include "memory/generation.hpp"
    31 #include "memory/sharedHeap.hpp"
    33 class SubTasksDone;
    35 // A "GenCollectedHeap" is a SharedHeap that uses generational
    36 // collection.  It is represented with a sequence of Generation's.
    37 class GenCollectedHeap : public SharedHeap {
    38   friend class GenCollectorPolicy;
    39   friend class Generation;
    40   friend class DefNewGeneration;
    41   friend class TenuredGeneration;
    42   friend class ConcurrentMarkSweepGeneration;
    43   friend class CMSCollector;
    44   friend class GenMarkSweep;
    45   friend class VM_GenCollectForAllocation;
    46   friend class VM_GenCollectFull;
    47   friend class VM_GenCollectFullConcurrent;
    48   friend class VM_GC_HeapInspection;
    49   friend class VM_HeapDumper;
    50   friend class HeapInspection;
    51   friend class GCCauseSetter;
    52   friend class VMStructs;
    53 public:
    54   enum SomeConstants {
    55     max_gens = 10
    56   };
    58   friend class VM_PopulateDumpSharedSpace;
    60  protected:
    61   // Fields:
    62   static GenCollectedHeap* _gch;
    64  private:
    65   int _n_gens;
    66   Generation* _gens[max_gens];
    67   GenerationSpec** _gen_specs;
    69   // The generational collector policy.
    70   GenCollectorPolicy* _gen_policy;
    72   // Indicates that the most recent previous incremental collection failed.
    73   // The flag is cleared when an action is taken that might clear the
    74   // condition that caused that incremental collection to fail.
    75   bool _incremental_collection_failed;
    77   // In support of ExplicitGCInvokesConcurrent functionality
    78   unsigned int _full_collections_completed;
    80   // Data structure for claiming the (potentially) parallel tasks in
    81   // (gen-specific) strong roots processing.
    82   SubTasksDone* _gen_process_strong_tasks;
    83   SubTasksDone* gen_process_strong_tasks() { return _gen_process_strong_tasks; }
    85   // In block contents verification, the number of header words to skip
    86   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
    88 protected:
    89   // Directs each generation up to and including "collectedGen" to recompute
    90   // its desired size.
    91   void compute_new_generation_sizes(int collectedGen);
    93   // Helper functions for allocation
    94   HeapWord* attempt_allocation(size_t size,
    95                                bool   is_tlab,
    96                                bool   first_only);
    98   // Helper function for two callbacks below.
    99   // Considers collection of the first max_level+1 generations.
   100   void do_collection(bool   full,
   101                      bool   clear_all_soft_refs,
   102                      size_t size,
   103                      bool   is_tlab,
   104                      int    max_level);
   106   // Callback from VM_GenCollectForAllocation operation.
   107   // This function does everything necessary/possible to satisfy an
   108   // allocation request that failed in the youngest generation that should
   109   // have handled it (including collection, expansion, etc.)
   110   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
   112   // Callback from VM_GenCollectFull operation.
   113   // Perform a full collection of the first max_level+1 generations.
   114   virtual void do_full_collection(bool clear_all_soft_refs);
   115   void do_full_collection(bool clear_all_soft_refs, int max_level);
   117   // Does the "cause" of GC indicate that
   118   // we absolutely __must__ clear soft refs?
   119   bool must_clear_all_soft_refs();
   121 public:
   122   GenCollectedHeap(GenCollectorPolicy *policy);
   124   GCStats* gc_stats(int level) const;
   126   // Returns JNI_OK on success
   127   virtual jint initialize();
   128   char* allocate(size_t alignment,
   129                  size_t* _total_reserved, int* _n_covered_regions,
   130                  ReservedSpace* heap_rs);
   132   // Does operations required after initialization has been done.
   133   void post_initialize();
   135   // Initialize ("weak") refs processing support
   136   virtual void ref_processing_init();
   138   virtual CollectedHeap::Name kind() const {
   139     return CollectedHeap::GenCollectedHeap;
   140   }
   142   // The generational collector policy.
   143   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
   144   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
   146   // Adaptive size policy
   147   virtual AdaptiveSizePolicy* size_policy() {
   148     return gen_policy()->size_policy();
   149   }
   151   size_t capacity() const;
   152   size_t used() const;
   154   // Save the "used_region" for generations level and lower.
   155   void save_used_regions(int level);
   157   size_t max_capacity() const;
   159   HeapWord* mem_allocate(size_t size,
   160                          bool*  gc_overhead_limit_was_exceeded);
   162   // We may support a shared contiguous allocation area, if the youngest
   163   // generation does.
   164   bool supports_inline_contig_alloc() const;
   165   HeapWord** top_addr() const;
   166   HeapWord** end_addr() const;
   168   // Return an estimate of the maximum allocation that could be performed
   169   // without triggering any collection activity.  In a generational
   170   // collector, for example, this is probably the largest allocation that
   171   // could be supported in the youngest generation.  It is "unsafe" because
   172   // no locks are taken; the result should be treated as an approximation,
   173   // not a guarantee.
   174   size_t unsafe_max_alloc();
   176   // Does this heap support heap inspection? (+PrintClassHistogram)
   177   virtual bool supports_heap_inspection() const { return true; }
   179   // Perform a full collection of the heap; intended for use in implementing
   180   // "System.gc". This implies as full a collection as the CollectedHeap
   181   // supports. Caller does not hold the Heap_lock on entry.
   182   void collect(GCCause::Cause cause);
   184   // The same as above but assume that the caller holds the Heap_lock.
   185   void collect_locked(GCCause::Cause cause);
   187   // Perform a full collection of the first max_level+1 generations.
   188   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
   189   void collect(GCCause::Cause cause, int max_level);
   191   // Returns "TRUE" iff "p" points into the committed areas of the heap.
   192   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
   193   // be expensive to compute in general, so, to prevent
   194   // their inadvertent use in product jvm's, we restrict their use to
   195   // assertion checking or verification only.
   196   bool is_in(const void* p) const;
   198   // override
   199   bool is_in_closed_subset(const void* p) const {
   200     if (UseConcMarkSweepGC) {
   201       return is_in_reserved(p);
   202     } else {
   203       return is_in(p);
   204     }
   205   }
   207   // Returns true if the reference is to an object in the reserved space
   208   // for the young generation.
   209   // Assumes the the young gen address range is less than that of the old gen.
   210   bool is_in_young(oop p);
   212 #ifdef ASSERT
   213   virtual bool is_in_partial_collection(const void* p);
   214 #endif
   216   virtual bool is_scavengable(const void* addr) {
   217     return is_in_young((oop)addr);
   218   }
   220   // Iteration functions.
   221   void oop_iterate(ExtendedOopClosure* cl);
   222   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
   223   void object_iterate(ObjectClosure* cl);
   224   void safe_object_iterate(ObjectClosure* cl);
   225   Space* space_containing(const void* addr) const;
   227   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   228   // each address in the (reserved) heap is a member of exactly
   229   // one block.  The defining characteristic of a block is that it is
   230   // possible to find its size, and thus to progress forward to the next
   231   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   232   // represent Java objects, or they might be free blocks in a
   233   // free-list-based heap (or subheap), as long as the two kinds are
   234   // distinguishable and the size of each is determinable.
   236   // Returns the address of the start of the "block" that contains the
   237   // address "addr".  We say "blocks" instead of "object" since some heaps
   238   // may not pack objects densely; a chunk may either be an object or a
   239   // non-object.
   240   virtual HeapWord* block_start(const void* addr) const;
   242   // Requires "addr" to be the start of a chunk, and returns its size.
   243   // "addr + size" is required to be the start of a new chunk, or the end
   244   // of the active area of the heap. Assumes (and verifies in non-product
   245   // builds) that addr is in the allocated part of the heap and is
   246   // the start of a chunk.
   247   virtual size_t block_size(const HeapWord* addr) const;
   249   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   250   // the block is an object. Assumes (and verifies in non-product
   251   // builds) that addr is in the allocated part of the heap and is
   252   // the start of a chunk.
   253   virtual bool block_is_obj(const HeapWord* addr) const;
   255   // Section on TLAB's.
   256   virtual bool supports_tlab_allocation() const;
   257   virtual size_t tlab_capacity(Thread* thr) const;
   258   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
   259   virtual HeapWord* allocate_new_tlab(size_t size);
   261   // Can a compiler initialize a new object without store barriers?
   262   // This permission only extends from the creation of a new object
   263   // via a TLAB up to the first subsequent safepoint.
   264   virtual bool can_elide_tlab_store_barriers() const {
   265     return true;
   266   }
   268   virtual bool card_mark_must_follow_store() const {
   269     return UseConcMarkSweepGC;
   270   }
   272   // We don't need barriers for stores to objects in the
   273   // young gen and, a fortiori, for initializing stores to
   274   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
   275   // only and may need to be re-examined in case other
   276   // kinds of collectors are implemented in the future.
   277   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
   278     // We wanted to assert that:-
   279     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
   280     //       "Check can_elide_initializing_store_barrier() for this collector");
   281     // but unfortunately the flag UseSerialGC need not necessarily always
   282     // be set when DefNew+Tenured are being used.
   283     return is_in_young(new_obj);
   284   }
   286   // The "requestor" generation is performing some garbage collection
   287   // action for which it would be useful to have scratch space.  The
   288   // requestor promises to allocate no more than "max_alloc_words" in any
   289   // older generation (via promotion say.)   Any blocks of space that can
   290   // be provided are returned as a list of ScratchBlocks, sorted by
   291   // decreasing size.
   292   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
   293   // Allow each generation to reset any scratch space that it has
   294   // contributed as it needs.
   295   void release_scratch();
   297   // Ensure parsability: override
   298   virtual void ensure_parsability(bool retire_tlabs);
   300   // Time in ms since the longest time a collector ran in
   301   // in any generation.
   302   virtual jlong millis_since_last_gc();
   304   // Total number of full collections completed.
   305   unsigned int total_full_collections_completed() {
   306     assert(_full_collections_completed <= _total_full_collections,
   307            "Can't complete more collections than were started");
   308     return _full_collections_completed;
   309   }
   311   // Update above counter, as appropriate, at the end of a stop-world GC cycle
   312   unsigned int update_full_collections_completed();
   313   // Update above counter, as appropriate, at the end of a concurrent GC cycle
   314   unsigned int update_full_collections_completed(unsigned int count);
   316   // Update "time of last gc" for all constituent generations
   317   // to "now".
   318   void update_time_of_last_gc(jlong now) {
   319     for (int i = 0; i < _n_gens; i++) {
   320       _gens[i]->update_time_of_last_gc(now);
   321     }
   322   }
   324   // Update the gc statistics for each generation.
   325   // "level" is the level of the lastest collection
   326   void update_gc_stats(int current_level, bool full) {
   327     for (int i = 0; i < _n_gens; i++) {
   328       _gens[i]->update_gc_stats(current_level, full);
   329     }
   330   }
   332   // Override.
   333   bool no_gc_in_progress() { return !is_gc_active(); }
   335   // Override.
   336   void prepare_for_verify();
   338   // Override.
   339   void verify(bool silent, VerifyOption option);
   341   // Override.
   342   virtual void print_on(outputStream* st) const;
   343   virtual void print_gc_threads_on(outputStream* st) const;
   344   virtual void gc_threads_do(ThreadClosure* tc) const;
   345   virtual void print_tracing_info() const;
   346   virtual void print_on_error(outputStream* st) const;
   348   // PrintGC, PrintGCDetails support
   349   void print_heap_change(size_t prev_used) const;
   351   // The functions below are helper functions that a subclass of
   352   // "CollectedHeap" can use in the implementation of its virtual
   353   // functions.
   355   class GenClosure : public StackObj {
   356    public:
   357     virtual void do_generation(Generation* gen) = 0;
   358   };
   360   // Apply "cl.do_generation" to all generations in the heap
   361   // If "old_to_young" determines the order.
   362   void generation_iterate(GenClosure* cl, bool old_to_young);
   364   void space_iterate(SpaceClosure* cl);
   366   // Return "true" if all generations have reached the
   367   // maximal committed limit that they can reach, without a garbage
   368   // collection.
   369   virtual bool is_maximal_no_gc() const;
   371   // Return the generation before "gen", or else NULL.
   372   Generation* prev_gen(Generation* gen) const {
   373     int l = gen->level();
   374     if (l == 0) return NULL;
   375     else return _gens[l-1];
   376   }
   378   // Return the generation after "gen", or else NULL.
   379   Generation* next_gen(Generation* gen) const {
   380     int l = gen->level() + 1;
   381     if (l == _n_gens) return NULL;
   382     else return _gens[l];
   383   }
   385   Generation* get_gen(int i) const {
   386     if (i >= 0 && i < _n_gens)
   387       return _gens[i];
   388     else
   389       return NULL;
   390   }
   392   int n_gens() const {
   393     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
   394     return _n_gens;
   395   }
   397   // Convenience function to be used in situations where the heap type can be
   398   // asserted to be this type.
   399   static GenCollectedHeap* heap();
   401   void set_par_threads(uint t);
   403   // Invoke the "do_oop" method of one of the closures "not_older_gens"
   404   // or "older_gens" on root locations for the generation at
   405   // "level".  (The "older_gens" closure is used for scanning references
   406   // from older generations; "not_older_gens" is used everywhere else.)
   407   // If "younger_gens_as_roots" is false, younger generations are
   408   // not scanned as roots; in this case, the caller must be arranging to
   409   // scan the younger generations itself.  (For example, a generation might
   410   // explicitly mark reachable objects in younger generations, to avoid
   411   // excess storage retention.)
   412   // The "so" argument determines which of the roots
   413   // the closure is applied to:
   414   // "SO_None" does none;
   415   // "SO_AllClasses" applies the closure to all entries in the SystemDictionary;
   416   // "SO_SystemClasses" to all the "system" classes and loaders;
   417   // "SO_Strings" applies the closure to all entries in the StringTable.
   418   void gen_process_strong_roots(int level,
   419                                 bool younger_gens_as_roots,
   420                                 // The remaining arguments are in an order
   421                                 // consistent with SharedHeap::process_strong_roots:
   422                                 bool activate_scope,
   423                                 bool is_scavenging,
   424                                 SharedHeap::ScanningOption so,
   425                                 OopsInGenClosure* not_older_gens,
   426                                 bool do_code_roots,
   427                                 OopsInGenClosure* older_gens,
   428                                 KlassClosure* klass_closure);
   430   // Apply "blk" to all the weak roots of the system.  These include
   431   // JNI weak roots, the code cache, system dictionary, symbol table,
   432   // string table, and referents of reachable weak refs.
   433   void gen_process_weak_roots(OopClosure* root_closure,
   434                               CodeBlobClosure* code_roots);
   436   // Set the saved marks of generations, if that makes sense.
   437   // In particular, if any generation might iterate over the oops
   438   // in other generations, it should call this method.
   439   void save_marks();
   441   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
   442   // allocated since the last call to save_marks in generations at or above
   443   // "level".  The "cur" closure is
   444   // applied to references in the generation at "level", and the "older"
   445   // closure to older generations.
   446 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
   447   void oop_since_save_marks_iterate(int level,                          \
   448                                     OopClosureType* cur,                \
   449                                     OopClosureType* older);
   451   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
   453 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
   455   // Returns "true" iff no allocations have occurred in any generation at
   456   // "level" or above since the last
   457   // call to "save_marks".
   458   bool no_allocs_since_save_marks(int level);
   460   // Returns true if an incremental collection is likely to fail.
   461   // We optionally consult the young gen, if asked to do so;
   462   // otherwise we base our answer on whether the previous incremental
   463   // collection attempt failed with no corrective action as of yet.
   464   bool incremental_collection_will_fail(bool consult_young) {
   465     // Assumes a 2-generation system; the first disjunct remembers if an
   466     // incremental collection failed, even when we thought (second disjunct)
   467     // that it would not.
   468     assert(heap()->collector_policy()->is_two_generation_policy(),
   469            "the following definition may not be suitable for an n(>2)-generation system");
   470     return incremental_collection_failed() ||
   471            (consult_young && !get_gen(0)->collection_attempt_is_safe());
   472   }
   474   // If a generation bails out of an incremental collection,
   475   // it sets this flag.
   476   bool incremental_collection_failed() const {
   477     return _incremental_collection_failed;
   478   }
   479   void set_incremental_collection_failed() {
   480     _incremental_collection_failed = true;
   481   }
   482   void clear_incremental_collection_failed() {
   483     _incremental_collection_failed = false;
   484   }
   486   // Promotion of obj into gen failed.  Try to promote obj to higher
   487   // gens in ascending order; return the new location of obj if successful.
   488   // Otherwise, try expand-and-allocate for obj in each generation starting at
   489   // gen; return the new location of obj if successful.  Otherwise, return NULL.
   490   oop handle_failed_promotion(Generation* gen,
   491                               oop obj,
   492                               size_t obj_size);
   494 private:
   495   // Accessor for memory state verification support
   496   NOT_PRODUCT(
   497     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
   498   )
   500   // Override
   501   void check_for_non_bad_heap_word_value(HeapWord* addr,
   502     size_t size) PRODUCT_RETURN;
   504   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
   505   // in an essential way: compaction is performed across generations, by
   506   // iterating over spaces.
   507   void prepare_for_compaction();
   509   // Perform a full collection of the first max_level+1 generations.
   510   // This is the low level interface used by the public versions of
   511   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
   512   void collect_locked(GCCause::Cause cause, int max_level);
   514   // Returns success or failure.
   515   bool create_cms_collector();
   517   // In support of ExplicitGCInvokesConcurrent functionality
   518   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   519   void collect_mostly_concurrent(GCCause::Cause cause);
   521   // Save the tops of the spaces in all generations
   522   void record_gen_tops_before_GC() PRODUCT_RETURN;
   524 protected:
   525   virtual void gc_prologue(bool full);
   526   virtual void gc_epilogue(bool full);
   527 };
   529 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP

mercurial