src/share/vm/opto/runtime.cpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6680
78bbf4d43a14
parent 1
2d8a650513c2
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "classfile/systemDictionary.hpp"
    33 #include "classfile/vmSymbols.hpp"
    34 #include "code/compiledIC.hpp"
    35 #include "code/icBuffer.hpp"
    36 #include "code/nmethod.hpp"
    37 #include "code/pcDesc.hpp"
    38 #include "code/scopeDesc.hpp"
    39 #include "code/vtableStubs.hpp"
    40 #include "compiler/compileBroker.hpp"
    41 #include "compiler/compilerOracle.hpp"
    42 #include "compiler/oopMap.hpp"
    43 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    44 #include "gc_implementation/g1/heapRegion.hpp"
    45 #include "gc_interface/collectedHeap.hpp"
    46 #include "interpreter/bytecode.hpp"
    47 #include "interpreter/interpreter.hpp"
    48 #include "interpreter/linkResolver.hpp"
    49 #include "memory/barrierSet.hpp"
    50 #include "memory/gcLocker.inline.hpp"
    51 #include "memory/oopFactory.hpp"
    52 #include "oops/objArrayKlass.hpp"
    53 #include "oops/oop.inline.hpp"
    54 #include "opto/addnode.hpp"
    55 #include "opto/callnode.hpp"
    56 #include "opto/cfgnode.hpp"
    57 #include "opto/connode.hpp"
    58 #include "opto/graphKit.hpp"
    59 #include "opto/machnode.hpp"
    60 #include "opto/matcher.hpp"
    61 #include "opto/memnode.hpp"
    62 #include "opto/mulnode.hpp"
    63 #include "opto/runtime.hpp"
    64 #include "opto/subnode.hpp"
    65 #include "runtime/fprofiler.hpp"
    66 #include "runtime/handles.inline.hpp"
    67 #include "runtime/interfaceSupport.hpp"
    68 #include "runtime/javaCalls.hpp"
    69 #include "runtime/sharedRuntime.hpp"
    70 #include "runtime/signature.hpp"
    71 #include "runtime/threadCritical.hpp"
    72 #include "runtime/vframe.hpp"
    73 #include "runtime/vframeArray.hpp"
    74 #include "runtime/vframe_hp.hpp"
    75 #include "utilities/copy.hpp"
    76 #include "utilities/preserveException.hpp"
    77 #ifdef TARGET_ARCH_MODEL_x86_32
    78 # include "adfiles/ad_x86_32.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_x86_64
    81 # include "adfiles/ad_x86_64.hpp"
    82 #endif
    83 #ifdef TARGET_ARCH_MODEL_mips_64
    84 # include "adfiles/ad_mips_64.hpp"
    85 #endif
    86 #ifdef TARGET_ARCH_MODEL_sparc
    87 # include "adfiles/ad_sparc.hpp"
    88 #endif
    89 #ifdef TARGET_ARCH_MODEL_zero
    90 # include "adfiles/ad_zero.hpp"
    91 #endif
    92 #ifdef TARGET_ARCH_MODEL_arm
    93 # include "adfiles/ad_arm.hpp"
    94 #endif
    95 #ifdef TARGET_ARCH_MODEL_ppc_32
    96 # include "adfiles/ad_ppc_32.hpp"
    97 #endif
    98 #ifdef TARGET_ARCH_MODEL_ppc_64
    99 # include "adfiles/ad_ppc_64.hpp"
   100 #endif
   103 // For debugging purposes:
   104 //  To force FullGCALot inside a runtime function, add the following two lines
   105 //
   106 //  Universe::release_fullgc_alot_dummy();
   107 //  MarkSweep::invoke(0, "Debugging");
   108 //
   109 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
   114 // Compiled code entry points
   115 address OptoRuntime::_new_instance_Java                           = NULL;
   116 address OptoRuntime::_new_array_Java                              = NULL;
   117 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   118 address OptoRuntime::_multianewarray2_Java                        = NULL;
   119 address OptoRuntime::_multianewarray3_Java                        = NULL;
   120 address OptoRuntime::_multianewarray4_Java                        = NULL;
   121 address OptoRuntime::_multianewarray5_Java                        = NULL;
   122 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   123 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   124 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   125 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   126 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   127 address OptoRuntime::_rethrow_Java                                = NULL;
   129 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   130 address OptoRuntime::_register_finalizer_Java                     = NULL;
   132 # ifdef ENABLE_ZAP_DEAD_LOCALS
   133 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   134 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   135 # endif
   137 ExceptionBlob* OptoRuntime::_exception_blob;
   139 // This should be called in an assertion at the start of OptoRuntime routines
   140 // which are entered from compiled code (all of them)
   141 #ifdef ASSERT
   142 static bool check_compiled_frame(JavaThread* thread) {
   143   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   144   RegisterMap map(thread, false);
   145   frame caller = thread->last_frame().sender(&map);
   146   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   147   return true;
   148 }
   149 #endif // ASSERT
   152 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   153   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
   154   if (var == NULL) { return false; }
   156 bool OptoRuntime::generate(ciEnv* env) {
   158   generate_exception_blob();
   160   // Note: tls: Means fetching the return oop out of the thread-local storage
   161   //
   162   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   163   // -------------------------------------------------------------------------------------------------------------------------------
   164   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   165   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   166   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   167   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   168   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   169   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   170   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   171   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   172   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   173   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   174   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
   175   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   177   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   178   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   180 # ifdef ENABLE_ZAP_DEAD_LOCALS
   181   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   182   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   183 # endif
   184   return true;
   185 }
   187 #undef gen
   190 // Helper method to do generation of RunTimeStub's
   191 address OptoRuntime::generate_stub( ciEnv* env,
   192                                     TypeFunc_generator gen, address C_function,
   193                                     const char *name, int is_fancy_jump,
   194                                     bool pass_tls,
   195                                     bool save_argument_registers,
   196                                     bool return_pc ) {
   197   ResourceMark rm;
   198   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   199   return  C.stub_entry_point();
   200 }
   202 const char* OptoRuntime::stub_name(address entry) {
   203 #ifndef PRODUCT
   204   CodeBlob* cb = CodeCache::find_blob(entry);
   205   RuntimeStub* rs =(RuntimeStub *)cb;
   206   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   207   return rs->name();
   208 #else
   209   // Fast implementation for product mode (maybe it should be inlined too)
   210   return "runtime stub";
   211 #endif
   212 }
   215 //=============================================================================
   216 // Opto compiler runtime routines
   217 //=============================================================================
   220 //=============================allocation======================================
   221 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   222 // and try allocation again.
   224 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   225   // After any safepoint, just before going back to compiled code,
   226   // we inform the GC that we will be doing initializing writes to
   227   // this object in the future without emitting card-marks, so
   228   // GC may take any compensating steps.
   229   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   231   oop new_obj = thread->vm_result();
   232   if (new_obj == NULL)  return;
   234   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   235          "compiler must check this first");
   236   // GC may decide to give back a safer copy of new_obj.
   237   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   238   thread->set_vm_result(new_obj);
   239 }
   241 // object allocation
   242 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
   243   JRT_BLOCK;
   244 #ifndef PRODUCT
   245   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   246 #endif
   247   assert(check_compiled_frame(thread), "incorrect caller");
   249   // These checks are cheap to make and support reflective allocation.
   250   int lh = klass->layout_helper();
   251   if (Klass::layout_helper_needs_slow_path(lh)
   252       || !InstanceKlass::cast(klass)->is_initialized()) {
   253     KlassHandle kh(THREAD, klass);
   254     kh->check_valid_for_instantiation(false, THREAD);
   255     if (!HAS_PENDING_EXCEPTION) {
   256       InstanceKlass::cast(kh())->initialize(THREAD);
   257     }
   258     if (!HAS_PENDING_EXCEPTION) {
   259       klass = kh();
   260     } else {
   261       klass = NULL;
   262     }
   263   }
   265   if (klass != NULL) {
   266     // Scavenge and allocate an instance.
   267     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
   268     thread->set_vm_result(result);
   270     // Pass oops back through thread local storage.  Our apparent type to Java
   271     // is that we return an oop, but we can block on exit from this routine and
   272     // a GC can trash the oop in C's return register.  The generated stub will
   273     // fetch the oop from TLS after any possible GC.
   274   }
   276   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   277   JRT_BLOCK_END;
   279   if (GraphKit::use_ReduceInitialCardMarks()) {
   280     // inform GC that we won't do card marks for initializing writes.
   281     new_store_pre_barrier(thread);
   282   }
   283 JRT_END
   286 // array allocation
   287 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
   288   JRT_BLOCK;
   289 #ifndef PRODUCT
   290   SharedRuntime::_new_array_ctr++;            // new array requires GC
   291 #endif
   292   assert(check_compiled_frame(thread), "incorrect caller");
   294   // Scavenge and allocate an instance.
   295   oop result;
   297   if (array_type->oop_is_typeArray()) {
   298     // The oopFactory likes to work with the element type.
   299     // (We could bypass the oopFactory, since it doesn't add much value.)
   300     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   301     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   302   } else {
   303     // Although the oopFactory likes to work with the elem_type,
   304     // the compiler prefers the array_type, since it must already have
   305     // that latter value in hand for the fast path.
   306     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
   307     result = oopFactory::new_objArray(elem_type, len, THREAD);
   308   }
   310   // Pass oops back through thread local storage.  Our apparent type to Java
   311   // is that we return an oop, but we can block on exit from this routine and
   312   // a GC can trash the oop in C's return register.  The generated stub will
   313   // fetch the oop from TLS after any possible GC.
   314   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   315   thread->set_vm_result(result);
   316   JRT_BLOCK_END;
   318   if (GraphKit::use_ReduceInitialCardMarks()) {
   319     // inform GC that we won't do card marks for initializing writes.
   320     new_store_pre_barrier(thread);
   321   }
   322 JRT_END
   324 // array allocation without zeroing
   325 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
   326   JRT_BLOCK;
   327 #ifndef PRODUCT
   328   SharedRuntime::_new_array_ctr++;            // new array requires GC
   329 #endif
   330   assert(check_compiled_frame(thread), "incorrect caller");
   332   // Scavenge and allocate an instance.
   333   oop result;
   335   assert(array_type->oop_is_typeArray(), "should be called only for type array");
   336   // The oopFactory likes to work with the element type.
   337   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   338   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   340   // Pass oops back through thread local storage.  Our apparent type to Java
   341   // is that we return an oop, but we can block on exit from this routine and
   342   // a GC can trash the oop in C's return register.  The generated stub will
   343   // fetch the oop from TLS after any possible GC.
   344   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   345   thread->set_vm_result(result);
   346   JRT_BLOCK_END;
   348   if (GraphKit::use_ReduceInitialCardMarks()) {
   349     // inform GC that we won't do card marks for initializing writes.
   350     new_store_pre_barrier(thread);
   351   }
   353   oop result = thread->vm_result();
   354   if ((len > 0) && (result != NULL) &&
   355       is_deoptimized_caller_frame(thread)) {
   356     // Zero array here if the caller is deoptimized.
   357     int size = ((typeArrayOop)result)->object_size();
   358     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   359     const size_t hs = arrayOopDesc::header_size(elem_type);
   360     // Align to next 8 bytes to avoid trashing arrays's length.
   361     const size_t aligned_hs = align_object_offset(hs);
   362     HeapWord* obj = (HeapWord*)result;
   363     if (aligned_hs > hs) {
   364       Copy::zero_to_words(obj+hs, aligned_hs-hs);
   365     }
   366     // Optimized zeroing.
   367     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
   368   }
   370 JRT_END
   372 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   374 // multianewarray for 2 dimensions
   375 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
   376 #ifndef PRODUCT
   377   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   378 #endif
   379   assert(check_compiled_frame(thread), "incorrect caller");
   380   assert(elem_type->is_klass(), "not a class");
   381   jint dims[2];
   382   dims[0] = len1;
   383   dims[1] = len2;
   384   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   385   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   386   thread->set_vm_result(obj);
   387 JRT_END
   389 // multianewarray for 3 dimensions
   390 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
   391 #ifndef PRODUCT
   392   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   393 #endif
   394   assert(check_compiled_frame(thread), "incorrect caller");
   395   assert(elem_type->is_klass(), "not a class");
   396   jint dims[3];
   397   dims[0] = len1;
   398   dims[1] = len2;
   399   dims[2] = len3;
   400   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   401   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   402   thread->set_vm_result(obj);
   403 JRT_END
   405 // multianewarray for 4 dimensions
   406 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   407 #ifndef PRODUCT
   408   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   409 #endif
   410   assert(check_compiled_frame(thread), "incorrect caller");
   411   assert(elem_type->is_klass(), "not a class");
   412   jint dims[4];
   413   dims[0] = len1;
   414   dims[1] = len2;
   415   dims[2] = len3;
   416   dims[3] = len4;
   417   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   418   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   419   thread->set_vm_result(obj);
   420 JRT_END
   422 // multianewarray for 5 dimensions
   423 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   424 #ifndef PRODUCT
   425   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   426 #endif
   427   assert(check_compiled_frame(thread), "incorrect caller");
   428   assert(elem_type->is_klass(), "not a class");
   429   jint dims[5];
   430   dims[0] = len1;
   431   dims[1] = len2;
   432   dims[2] = len3;
   433   dims[3] = len4;
   434   dims[4] = len5;
   435   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   436   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   437   thread->set_vm_result(obj);
   438 JRT_END
   440 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
   441   assert(check_compiled_frame(thread), "incorrect caller");
   442   assert(elem_type->is_klass(), "not a class");
   443   assert(oop(dims)->is_typeArray(), "not an array");
   445   ResourceMark rm;
   446   jint len = dims->length();
   447   assert(len > 0, "Dimensions array should contain data");
   448   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   449   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   450   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   452   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   453   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   454   thread->set_vm_result(obj);
   455 JRT_END
   458 const TypeFunc *OptoRuntime::new_instance_Type() {
   459   // create input type (domain)
   460   const Type **fields = TypeTuple::fields(1);
   461   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   462   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   464   // create result type (range)
   465   fields = TypeTuple::fields(1);
   466   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   468   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   470   return TypeFunc::make(domain, range);
   471 }
   474 const TypeFunc *OptoRuntime::athrow_Type() {
   475   // create input type (domain)
   476   const Type **fields = TypeTuple::fields(1);
   477   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   478   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   480   // create result type (range)
   481   fields = TypeTuple::fields(0);
   483   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   485   return TypeFunc::make(domain, range);
   486 }
   489 const TypeFunc *OptoRuntime::new_array_Type() {
   490   // create input type (domain)
   491   const Type **fields = TypeTuple::fields(2);
   492   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   493   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   494   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   496   // create result type (range)
   497   fields = TypeTuple::fields(1);
   498   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   500   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   502   return TypeFunc::make(domain, range);
   503 }
   505 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   506   // create input type (domain)
   507   const int nargs = ndim + 1;
   508   const Type **fields = TypeTuple::fields(nargs);
   509   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   510   for( int i = 1; i < nargs; i++ )
   511     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   512   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   514   // create result type (range)
   515   fields = TypeTuple::fields(1);
   516   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   517   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   519   return TypeFunc::make(domain, range);
   520 }
   522 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   523   return multianewarray_Type(2);
   524 }
   526 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   527   return multianewarray_Type(3);
   528 }
   530 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   531   return multianewarray_Type(4);
   532 }
   534 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   535   return multianewarray_Type(5);
   536 }
   538 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   539   // create input type (domain)
   540   const Type **fields = TypeTuple::fields(2);
   541   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   542   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   543   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   545   // create result type (range)
   546   fields = TypeTuple::fields(1);
   547   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   548   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   550   return TypeFunc::make(domain, range);
   551 }
   553 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   554   const Type **fields = TypeTuple::fields(2);
   555   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   556   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   557   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   559   // create result type (range)
   560   fields = TypeTuple::fields(0);
   561   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   563   return TypeFunc::make(domain, range);
   564 }
   566 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   568   const Type **fields = TypeTuple::fields(2);
   569   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   570   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   571   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   573   // create result type (range)
   574   fields = TypeTuple::fields(0);
   575   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   577   return TypeFunc::make(domain, range);
   578 }
   580 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   581   // create input type (domain)
   582   const Type **fields = TypeTuple::fields(1);
   583   // Symbol* name of class to be loaded
   584   fields[TypeFunc::Parms+0] = TypeInt::INT;
   585   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   587   // create result type (range)
   588   fields = TypeTuple::fields(0);
   589   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   591   return TypeFunc::make(domain, range);
   592 }
   594 # ifdef ENABLE_ZAP_DEAD_LOCALS
   595 // Type used for stub generation for zap_dead_locals.
   596 // No inputs or outputs
   597 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   598   // create input type (domain)
   599   const Type **fields = TypeTuple::fields(0);
   600   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   602   // create result type (range)
   603   fields = TypeTuple::fields(0);
   604   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   606   return TypeFunc::make(domain,range);
   607 }
   608 # endif
   611 //-----------------------------------------------------------------------------
   612 // Monitor Handling
   613 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   614   // create input type (domain)
   615   const Type **fields = TypeTuple::fields(2);
   616   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   617   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   618   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   620   // create result type (range)
   621   fields = TypeTuple::fields(0);
   623   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   625   return TypeFunc::make(domain,range);
   626 }
   629 //-----------------------------------------------------------------------------
   630 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   631   // create input type (domain)
   632   const Type **fields = TypeTuple::fields(2);
   633   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   634   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   635   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   637   // create result type (range)
   638   fields = TypeTuple::fields(0);
   640   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   642   return TypeFunc::make(domain,range);
   643 }
   645 const TypeFunc* OptoRuntime::flush_windows_Type() {
   646   // create input type (domain)
   647   const Type** fields = TypeTuple::fields(1);
   648   fields[TypeFunc::Parms+0] = NULL; // void
   649   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   651   // create result type
   652   fields = TypeTuple::fields(1);
   653   fields[TypeFunc::Parms+0] = NULL; // void
   654   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   656   return TypeFunc::make(domain, range);
   657 }
   659 const TypeFunc* OptoRuntime::l2f_Type() {
   660   // create input type (domain)
   661   const Type **fields = TypeTuple::fields(2);
   662   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   663   fields[TypeFunc::Parms+1] = Type::HALF;
   664   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   666   // create result type (range)
   667   fields = TypeTuple::fields(1);
   668   fields[TypeFunc::Parms+0] = Type::FLOAT;
   669   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   671   return TypeFunc::make(domain, range);
   672 }
   674 const TypeFunc* OptoRuntime::modf_Type() {
   675   const Type **fields = TypeTuple::fields(2);
   676   fields[TypeFunc::Parms+0] = Type::FLOAT;
   677   fields[TypeFunc::Parms+1] = Type::FLOAT;
   678   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   680   // create result type (range)
   681   fields = TypeTuple::fields(1);
   682   fields[TypeFunc::Parms+0] = Type::FLOAT;
   684   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   686   return TypeFunc::make(domain, range);
   687 }
   689 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   690   // create input type (domain)
   691   const Type **fields = TypeTuple::fields(2);
   692   // Symbol* name of class to be loaded
   693   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   694   fields[TypeFunc::Parms+1] = Type::HALF;
   695   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   697   // create result type (range)
   698   fields = TypeTuple::fields(2);
   699   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   700   fields[TypeFunc::Parms+1] = Type::HALF;
   701   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   703   return TypeFunc::make(domain, range);
   704 }
   706 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   707   const Type **fields = TypeTuple::fields(4);
   708   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   709   fields[TypeFunc::Parms+1] = Type::HALF;
   710   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   711   fields[TypeFunc::Parms+3] = Type::HALF;
   712   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   714   // create result type (range)
   715   fields = TypeTuple::fields(2);
   716   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   717   fields[TypeFunc::Parms+1] = Type::HALF;
   718   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   720   return TypeFunc::make(domain, range);
   721 }
   723 //-------------- currentTimeMillis, currentTimeNanos, etc
   725 const TypeFunc* OptoRuntime::void_long_Type() {
   726   // create input type (domain)
   727   const Type **fields = TypeTuple::fields(0);
   728   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   730   // create result type (range)
   731   fields = TypeTuple::fields(2);
   732   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   733   fields[TypeFunc::Parms+1] = Type::HALF;
   734   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   736   return TypeFunc::make(domain, range);
   737 }
   739 // arraycopy stub variations:
   740 enum ArrayCopyType {
   741   ac_fast,                      // void(ptr, ptr, size_t)
   742   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   743   ac_slow,                      // void(ptr, int, ptr, int, int)
   744   ac_generic                    //  int(ptr, int, ptr, int, int)
   745 };
   747 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   748   // create input type (domain)
   749   int num_args      = (act == ac_fast ? 3 : 5);
   750   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   751   int argcnt = num_args;
   752   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   753   const Type** fields = TypeTuple::fields(argcnt);
   754   int argp = TypeFunc::Parms;
   755   fields[argp++] = TypePtr::NOTNULL;    // src
   756   if (num_size_args == 0) {
   757     fields[argp++] = TypeInt::INT;      // src_pos
   758   }
   759   fields[argp++] = TypePtr::NOTNULL;    // dest
   760   if (num_size_args == 0) {
   761     fields[argp++] = TypeInt::INT;      // dest_pos
   762     fields[argp++] = TypeInt::INT;      // length
   763   }
   764   while (num_size_args-- > 0) {
   765     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   766     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   767   }
   768   if (act == ac_checkcast) {
   769     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   770   }
   771   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   772   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   774   // create result type if needed
   775   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   776   fields = TypeTuple::fields(1);
   777   if (retcnt == 0)
   778     fields[TypeFunc::Parms+0] = NULL; // void
   779   else
   780     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   781   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   782   return TypeFunc::make(domain, range);
   783 }
   785 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   786   // This signature is simple:  Two base pointers and a size_t.
   787   return make_arraycopy_Type(ac_fast);
   788 }
   790 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   791   // An extension of fast_arraycopy_Type which adds type checking.
   792   return make_arraycopy_Type(ac_checkcast);
   793 }
   795 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   796   // This signature is exactly the same as System.arraycopy.
   797   // There are no intptr_t (int/long) arguments.
   798   return make_arraycopy_Type(ac_slow);
   799 }
   801 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   802   // This signature is like System.arraycopy, except that it returns status.
   803   return make_arraycopy_Type(ac_generic);
   804 }
   807 const TypeFunc* OptoRuntime::array_fill_Type() {
   808   const Type** fields;
   809   int argp = TypeFunc::Parms;
   810   if (CCallingConventionRequiresIntsAsLongs) {
   811   // create input type (domain): pointer, int, size_t
   812     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
   813     fields[argp++] = TypePtr::NOTNULL;
   814     fields[argp++] = TypeLong::LONG;
   815     fields[argp++] = Type::HALF;
   816   } else {
   817     // create input type (domain): pointer, int, size_t
   818     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   819     fields[argp++] = TypePtr::NOTNULL;
   820     fields[argp++] = TypeInt::INT;
   821   }
   822   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   823   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   824   const TypeTuple *domain = TypeTuple::make(argp, fields);
   826   // create result type
   827   fields = TypeTuple::fields(1);
   828   fields[TypeFunc::Parms+0] = NULL; // void
   829   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   831   return TypeFunc::make(domain, range);
   832 }
   834 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
   835 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
   836   // create input type (domain)
   837   int num_args      = 3;
   838   if (Matcher::pass_original_key_for_aes()) {
   839     num_args = 4;
   840   }
   841   int argcnt = num_args;
   842   const Type** fields = TypeTuple::fields(argcnt);
   843   int argp = TypeFunc::Parms;
   844   fields[argp++] = TypePtr::NOTNULL;    // src
   845   fields[argp++] = TypePtr::NOTNULL;    // dest
   846   fields[argp++] = TypePtr::NOTNULL;    // k array
   847   if (Matcher::pass_original_key_for_aes()) {
   848     fields[argp++] = TypePtr::NOTNULL;    // original k array
   849   }
   850   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   851   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   853   // no result type needed
   854   fields = TypeTuple::fields(1);
   855   fields[TypeFunc::Parms+0] = NULL; // void
   856   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   857   return TypeFunc::make(domain, range);
   858 }
   860 /**
   861  * int updateBytesCRC32(int crc, byte* b, int len)
   862  */
   863 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
   864   // create input type (domain)
   865   int num_args      = 3;
   866   int argcnt = num_args;
   867   const Type** fields = TypeTuple::fields(argcnt);
   868   int argp = TypeFunc::Parms;
   869   fields[argp++] = TypeInt::INT;        // crc
   870   fields[argp++] = TypePtr::NOTNULL;    // src
   871   fields[argp++] = TypeInt::INT;        // len
   872   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   873   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   875   // result type needed
   876   fields = TypeTuple::fields(1);
   877   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
   878   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   879   return TypeFunc::make(domain, range);
   880 }
   882 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
   883 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
   884   // create input type (domain)
   885   int num_args      = 5;
   886   if (Matcher::pass_original_key_for_aes()) {
   887     num_args = 6;
   888   }
   889   int argcnt = num_args;
   890   const Type** fields = TypeTuple::fields(argcnt);
   891   int argp = TypeFunc::Parms;
   892   fields[argp++] = TypePtr::NOTNULL;    // src
   893   fields[argp++] = TypePtr::NOTNULL;    // dest
   894   fields[argp++] = TypePtr::NOTNULL;    // k array
   895   fields[argp++] = TypePtr::NOTNULL;    // r array
   896   fields[argp++] = TypeInt::INT;        // src len
   897   if (Matcher::pass_original_key_for_aes()) {
   898     fields[argp++] = TypePtr::NOTNULL;    // original k array
   899   }
   900   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   901   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   903   // returning cipher len (int)
   904   fields = TypeTuple::fields(1);
   905   fields[TypeFunc::Parms+0] = TypeInt::INT;
   906   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   907   return TypeFunc::make(domain, range);
   908 }
   910 //------------- Interpreter state access for on stack replacement
   911 const TypeFunc* OptoRuntime::osr_end_Type() {
   912   // create input type (domain)
   913   const Type **fields = TypeTuple::fields(1);
   914   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
   915   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   917   // create result type
   918   fields = TypeTuple::fields(1);
   919   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
   920   fields[TypeFunc::Parms+0] = NULL; // void
   921   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   922   return TypeFunc::make(domain, range);
   923 }
   925 //-------------- methodData update helpers
   927 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
   928   // create input type (domain)
   929   const Type **fields = TypeTuple::fields(2);
   930   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
   931   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
   932   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   934   // create result type
   935   fields = TypeTuple::fields(1);
   936   fields[TypeFunc::Parms+0] = NULL; // void
   937   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   938   return TypeFunc::make(domain,range);
   939 }
   941 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
   942   if (receiver == NULL) return;
   943   Klass* receiver_klass = receiver->klass();
   945   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
   946   int empty_row = -1;           // free row, if any is encountered
   948   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
   949   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
   950     // if (vc->receiver(row) == receiver_klass)
   951     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
   952     intptr_t row_recv = *(mdp + receiver_off);
   953     if (row_recv == (intptr_t) receiver_klass) {
   954       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
   955       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
   956       *(mdp + count_off) += DataLayout::counter_increment;
   957       return;
   958     } else if (row_recv == 0) {
   959       // else if (vc->receiver(row) == NULL)
   960       empty_row = (int) row;
   961     }
   962   }
   964   if (empty_row != -1) {
   965     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
   966     // vc->set_receiver(empty_row, receiver_klass);
   967     *(mdp + receiver_off) = (intptr_t) receiver_klass;
   968     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
   969     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
   970     *(mdp + count_off) = DataLayout::counter_increment;
   971   } else {
   972     // Receiver did not match any saved receiver and there is no empty row for it.
   973     // Increment total counter to indicate polymorphic case.
   974     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
   975     *count_p += DataLayout::counter_increment;
   976   }
   977 JRT_END
   979 //-------------------------------------------------------------------------------------
   980 // register policy
   982 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
   983   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
   984   switch (register_save_policy[reg]) {
   985     case 'C': return false; //SOC
   986     case 'E': return true ; //SOE
   987     case 'N': return false; //NS
   988     case 'A': return false; //AS
   989   }
   990   ShouldNotReachHere();
   991   return false;
   992 }
   994 //-----------------------------------------------------------------------
   995 // Exceptions
   996 //
   998 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
  1000 // The method is an entry that is always called by a C++ method not
  1001 // directly from compiled code. Compiled code will call the C++ method following.
  1002 // We can't allow async exception to be installed during  exception processing.
  1003 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
  1005   // Do not confuse exception_oop with pending_exception. The exception_oop
  1006   // is only used to pass arguments into the method. Not for general
  1007   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
  1008   // the runtime stubs checks this on exit.
  1009   assert(thread->exception_oop() != NULL, "exception oop is found");
  1010   address handler_address = NULL;
  1012   Handle exception(thread, thread->exception_oop());
  1013   address pc = thread->exception_pc();
  1015   // Clear out the exception oop and pc since looking up an
  1016   // exception handler can cause class loading, which might throw an
  1017   // exception and those fields are expected to be clear during
  1018   // normal bytecode execution.
  1019   thread->clear_exception_oop_and_pc();
  1021   if (TraceExceptions) {
  1022     trace_exception(exception(), pc, "");
  1025   // for AbortVMOnException flag
  1026   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
  1028 #ifdef ASSERT
  1029   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1030     // should throw an exception here
  1031     ShouldNotReachHere();
  1033 #endif
  1035   // new exception handling: this method is entered only from adapters
  1036   // exceptions from compiled java methods are handled in compiled code
  1037   // using rethrow node
  1039   nm = CodeCache::find_nmethod(pc);
  1040   assert(nm != NULL, "No NMethod found");
  1041   if (nm->is_native_method()) {
  1042     fatal("Native method should not have path to exception handling");
  1043   } else {
  1044     // we are switching to old paradigm: search for exception handler in caller_frame
  1045     // instead in exception handler of caller_frame.sender()
  1047     if (JvmtiExport::can_post_on_exceptions()) {
  1048       // "Full-speed catching" is not necessary here,
  1049       // since we're notifying the VM on every catch.
  1050       // Force deoptimization and the rest of the lookup
  1051       // will be fine.
  1052       deoptimize_caller_frame(thread);
  1055     // Check the stack guard pages.  If enabled, look for handler in this frame;
  1056     // otherwise, forcibly unwind the frame.
  1057     //
  1058     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
  1059     bool force_unwind = !thread->reguard_stack();
  1060     bool deopting = false;
  1061     if (nm->is_deopt_pc(pc)) {
  1062       deopting = true;
  1063       RegisterMap map(thread, false);
  1064       frame deoptee = thread->last_frame().sender(&map);
  1065       assert(deoptee.is_deoptimized_frame(), "must be deopted");
  1066       // Adjust the pc back to the original throwing pc
  1067       pc = deoptee.pc();
  1070     // If we are forcing an unwind because of stack overflow then deopt is
  1071     // irrelevant since we are throwing the frame away anyway.
  1073     if (deopting && !force_unwind) {
  1074       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1075     } else {
  1077       handler_address =
  1078         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
  1080       if (handler_address == NULL) {
  1081         Handle original_exception(thread, exception());
  1082         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
  1083         assert (handler_address != NULL, "must have compiled handler");
  1084         // Update the exception cache only when the unwind was not forced
  1085         // and there didn't happen another exception during the computation of the
  1086         // compiled exception handler.
  1087         if (!force_unwind && original_exception() == exception()) {
  1088           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1090       } else {
  1091         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
  1095     thread->set_exception_pc(pc);
  1096     thread->set_exception_handler_pc(handler_address);
  1098     // Check if the exception PC is a MethodHandle call site.
  1099     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1102   // Restore correct return pc.  Was saved above.
  1103   thread->set_exception_oop(exception());
  1104   return handler_address;
  1106 JRT_END
  1108 // We are entering here from exception_blob
  1109 // If there is a compiled exception handler in this method, we will continue there;
  1110 // otherwise we will unwind the stack and continue at the caller of top frame method
  1111 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1112 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1113 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1114 // we must not use the handler and instead return the deopt blob.
  1115 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1116 //
  1117 // We are in Java not VM and in debug mode we have a NoHandleMark
  1118 //
  1119 #ifndef PRODUCT
  1120   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1121 #endif
  1122   debug_only(NoHandleMark __hm;)
  1123   nmethod* nm = NULL;
  1124   address handler_address = NULL;
  1126     // Enter the VM
  1128     ResetNoHandleMark rnhm;
  1129     handler_address = handle_exception_C_helper(thread, nm);
  1132   // Back in java: Use no oops, DON'T safepoint
  1134   // Now check to see if the handler we are returning is in a now
  1135   // deoptimized frame
  1137   if (nm != NULL) {
  1138     RegisterMap map(thread, false);
  1139     frame caller = thread->last_frame().sender(&map);
  1140 #ifdef ASSERT
  1141     assert(caller.is_compiled_frame(), "must be");
  1142 #endif // ASSERT
  1143     if (caller.is_deoptimized_frame()) {
  1144       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1147   return handler_address;
  1150 //------------------------------rethrow----------------------------------------
  1151 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1152 // is either throwing or rethrowing an exception.  The callee-save registers
  1153 // have been restored, synchronized objects have been unlocked and the callee
  1154 // stack frame has been removed.  The return address was passed in.
  1155 // Exception oop is passed as the 1st argument.  This routine is then called
  1156 // from the stub.  On exit, we know where to jump in the caller's code.
  1157 // After this C code exits, the stub will pop his frame and end in a jump
  1158 // (instead of a return).  We enter the caller's default handler.
  1159 //
  1160 // This must be JRT_LEAF:
  1161 //     - caller will not change its state as we cannot block on exit,
  1162 //       therefore raw_exception_handler_for_return_address is all it takes
  1163 //       to handle deoptimized blobs
  1164 //
  1165 // However, there needs to be a safepoint check in the middle!  So compiled
  1166 // safepoints are completely watertight.
  1167 //
  1168 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1169 //
  1170 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1171 //
  1172 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1173 #ifndef PRODUCT
  1174   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1175 #endif
  1176   assert (exception != NULL, "should have thrown a NULLPointerException");
  1177 #ifdef ASSERT
  1178   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1179     // should throw an exception here
  1180     ShouldNotReachHere();
  1182 #endif
  1184   thread->set_vm_result(exception);
  1185   // Frame not compiled (handles deoptimization blob)
  1186   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1190 const TypeFunc *OptoRuntime::rethrow_Type() {
  1191   // create input type (domain)
  1192   const Type **fields = TypeTuple::fields(1);
  1193   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1194   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1196   // create result type (range)
  1197   fields = TypeTuple::fields(1);
  1198   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1199   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1201   return TypeFunc::make(domain, range);
  1205 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1206   // Deoptimize the caller before continuing, as the compiled
  1207   // exception handler table may not be valid.
  1208   if (!StressCompiledExceptionHandlers && doit) {
  1209     deoptimize_caller_frame(thread);
  1213 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
  1214   // Called from within the owner thread, so no need for safepoint
  1215   RegisterMap reg_map(thread);
  1216   frame stub_frame = thread->last_frame();
  1217   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1218   frame caller_frame = stub_frame.sender(&reg_map);
  1220   // Deoptimize the caller frame.
  1221   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1225 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
  1226   // Called from within the owner thread, so no need for safepoint
  1227   RegisterMap reg_map(thread);
  1228   frame stub_frame = thread->last_frame();
  1229   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1230   frame caller_frame = stub_frame.sender(&reg_map);
  1231   return caller_frame.is_deoptimized_frame();
  1235 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1236   // create input type (domain)
  1237   const Type **fields = TypeTuple::fields(1);
  1238   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1239   // // The JavaThread* is passed to each routine as the last argument
  1240   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1241   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1243   // create result type (range)
  1244   fields = TypeTuple::fields(0);
  1246   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1248   return TypeFunc::make(domain,range);
  1252 //-----------------------------------------------------------------------------
  1253 // Dtrace support.  entry and exit probes have the same signature
  1254 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1255   // create input type (domain)
  1256   const Type **fields = TypeTuple::fields(2);
  1257   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1258   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
  1259   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1261   // create result type (range)
  1262   fields = TypeTuple::fields(0);
  1264   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1266   return TypeFunc::make(domain,range);
  1269 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1270   // create input type (domain)
  1271   const Type **fields = TypeTuple::fields(2);
  1272   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1273   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1275   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1277   // create result type (range)
  1278   fields = TypeTuple::fields(0);
  1280   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1282   return TypeFunc::make(domain,range);
  1286 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1287   assert(obj->is_oop(), "must be a valid oop");
  1288   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
  1289   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1290 JRT_END
  1292 //-----------------------------------------------------------------------------
  1294 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1296 //
  1297 // dump the collected NamedCounters.
  1298 //
  1299 void OptoRuntime::print_named_counters() {
  1300   int total_lock_count = 0;
  1301   int eliminated_lock_count = 0;
  1303   NamedCounter* c = _named_counters;
  1304   while (c) {
  1305     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1306       int count = c->count();
  1307       if (count > 0) {
  1308         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1309         if (Verbose) {
  1310           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1312         total_lock_count += count;
  1313         if (eliminated) {
  1314           eliminated_lock_count += count;
  1317     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1318       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1319       if (blc->nonzero()) {
  1320         tty->print_cr("%s", c->name());
  1321         blc->print_on(tty);
  1323 #if INCLUDE_RTM_OPT
  1324     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
  1325       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
  1326       if (rlc->nonzero()) {
  1327         tty->print_cr("%s", c->name());
  1328         rlc->print_on(tty);
  1330 #endif
  1332     c = c->next();
  1334   if (total_lock_count > 0) {
  1335     tty->print_cr("dynamic locks: %d", total_lock_count);
  1336     if (eliminated_lock_count) {
  1337       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1338                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1343 //
  1344 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1345 //  name which consists of method@line for the inlining tree.
  1346 //
  1348 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1349   int max_depth = youngest_jvms->depth();
  1351   // Visit scopes from youngest to oldest.
  1352   bool first = true;
  1353   stringStream st;
  1354   for (int depth = max_depth; depth >= 1; depth--) {
  1355     JVMState* jvms = youngest_jvms->of_depth(depth);
  1356     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1357     if (!first) {
  1358       st.print(" ");
  1359     } else {
  1360       first = false;
  1362     int bci = jvms->bci();
  1363     if (bci < 0) bci = 0;
  1364     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1365     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1367   NamedCounter* c;
  1368   if (tag == NamedCounter::BiasedLockingCounter) {
  1369     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1370   } else if (tag == NamedCounter::RTMLockingCounter) {
  1371     c = new RTMLockingNamedCounter(strdup(st.as_string()));
  1372   } else {
  1373     c = new NamedCounter(strdup(st.as_string()), tag);
  1376   // atomically add the new counter to the head of the list.  We only
  1377   // add counters so this is safe.
  1378   NamedCounter* head;
  1379   do {
  1380     c->set_next(NULL);
  1381     head = _named_counters;
  1382     c->set_next(head);
  1383   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1384   return c;
  1387 //-----------------------------------------------------------------------------
  1388 // Non-product code
  1389 #ifndef PRODUCT
  1391 int trace_exception_counter = 0;
  1392 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1393   ttyLocker ttyl;
  1394   trace_exception_counter++;
  1395   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1396   exception_oop->print_value();
  1397   tty->print(" in ");
  1398   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1399   if (blob->is_nmethod()) {
  1400     nmethod* nm = blob->as_nmethod_or_null();
  1401     nm->method()->print_value();
  1402   } else if (blob->is_runtime_stub()) {
  1403     tty->print("<runtime-stub>");
  1404   } else {
  1405     tty->print("<unknown>");
  1407   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
  1408   tty->print_cr("]");
  1411 #endif  // PRODUCT
  1414 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1415 // Called from call sites in compiled code with oop maps (actually safepoints)
  1416 // Zaps dead locals in first java frame.
  1417 // Is entry because may need to lock to generate oop maps
  1418 // Currently, only used for compiler frames, but someday may be used
  1419 // for interpreter frames, too.
  1421 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1423 // avoid pointers to member funcs with these helpers
  1424 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1425 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1428 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1429                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1430   assert(JavaThread::current() == thread, "is this needed?");
  1432   if ( !ZapDeadCompiledLocals )  return;
  1434   bool skip = false;
  1436        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1437   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1438   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1439     warning("starting zapping after skipping");
  1441        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1442   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1443   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1444     warning("about to zap last zap");
  1446   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1448   if ( skip )  return;
  1450   // find java frame and zap it
  1452   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1453     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1454       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1455       return;
  1458   warning("no frame found to zap in zap_dead_Java_locals_C");
  1461 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1462   zap_dead_java_or_native_locals(thread, is_java_frame);
  1463 JRT_END
  1465 // The following does not work because for one thing, the
  1466 // thread state is wrong; it expects java, but it is native.
  1467 // Also, the invariants in a native stub are different and
  1468 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1469 // in there.
  1470 // So for now, we do not zap in native stubs.
  1472 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1473   zap_dead_java_or_native_locals(thread, is_native_frame);
  1474 JRT_END
  1476 # endif

mercurial