src/share/vm/memory/referenceProcessor.cpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6719
8e20ef014b08
parent 0
f90c822e73f8
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_implementation/shared/gcTimer.hpp"
    29 #include "gc_implementation/shared/gcTraceTime.hpp"
    30 #include "gc_interface/collectedHeap.hpp"
    31 #include "gc_interface/collectedHeap.inline.hpp"
    32 #include "memory/referencePolicy.hpp"
    33 #include "memory/referenceProcessor.hpp"
    34 #include "oops/oop.inline.hpp"
    35 #include "runtime/java.hpp"
    36 #include "runtime/jniHandles.hpp"
    38 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    40 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    41 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    42 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
    43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
    45 void referenceProcessor_init() {
    46   ReferenceProcessor::init_statics();
    47 }
    49 void ReferenceProcessor::init_statics() {
    50   // We need a monotonically non-deccreasing time in ms but
    51   // os::javaTimeMillis() does not guarantee monotonicity.
    52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
    54   // Initialize the soft ref timestamp clock.
    55   _soft_ref_timestamp_clock = now;
    56   // Also update the soft ref clock in j.l.r.SoftReference
    57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
    59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    60   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    61                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    62   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    63     vm_exit_during_initialization("Could not allocate reference policy object");
    64   }
    65   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    66             RefDiscoveryPolicy == ReferentBasedDiscovery,
    67             "Unrecongnized RefDiscoveryPolicy");
    68   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
    69 }
    71 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
    72 #ifdef ASSERT
    73   // Verify that we're not currently discovering refs
    74   assert(!verify_disabled || !_discovering_refs, "nested call?");
    76   if (check_no_refs) {
    77     // Verify that the discovered lists are empty
    78     verify_no_references_recorded();
    79   }
    80 #endif // ASSERT
    82   // Someone could have modified the value of the static
    83   // field in the j.l.r.SoftReference class that holds the
    84   // soft reference timestamp clock using reflection or
    85   // Unsafe between GCs. Unconditionally update the static
    86   // field in ReferenceProcessor here so that we use the new
    87   // value during reference discovery.
    89   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
    90   _discovering_refs = true;
    91 }
    93 ReferenceProcessor::ReferenceProcessor(MemRegion span,
    94                                        bool      mt_processing,
    95                                        uint      mt_processing_degree,
    96                                        bool      mt_discovery,
    97                                        uint      mt_discovery_degree,
    98                                        bool      atomic_discovery,
    99                                        BoolObjectClosure* is_alive_non_header)  :
   100   _discovering_refs(false),
   101   _enqueuing_is_done(false),
   102   _is_alive_non_header(is_alive_non_header),
   103   _processing_is_mt(mt_processing),
   104   _next_id(0)
   105 {
   106   _span = span;
   107   _discovery_is_atomic = atomic_discovery;
   108   _discovery_is_mt     = mt_discovery;
   109   _num_q               = MAX2(1U, mt_processing_degree);
   110   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
   111   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
   112             _max_num_q * number_of_subclasses_of_ref(), mtGC);
   114   if (_discovered_refs == NULL) {
   115     vm_exit_during_initialization("Could not allocated RefProc Array");
   116   }
   117   _discoveredSoftRefs    = &_discovered_refs[0];
   118   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   119   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   120   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   122   // Initialize all entries to NULL
   123   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   124     _discovered_refs[i].set_head(NULL);
   125     _discovered_refs[i].set_length(0);
   126   }
   128   setup_policy(false /* default soft ref policy */);
   129 }
   131 #ifndef PRODUCT
   132 void ReferenceProcessor::verify_no_references_recorded() {
   133   guarantee(!_discovering_refs, "Discovering refs?");
   134   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   135     guarantee(_discovered_refs[i].is_empty(),
   136               "Found non-empty discovered list");
   137   }
   138 }
   139 #endif
   141 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   142   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   143     if (UseCompressedOops) {
   144       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
   145     } else {
   146       f->do_oop((oop*)_discovered_refs[i].adr_head());
   147     }
   148   }
   149 }
   151 void ReferenceProcessor::update_soft_ref_master_clock() {
   152   // Update (advance) the soft ref master clock field. This must be done
   153   // after processing the soft ref list.
   155   // We need a monotonically non-deccreasing time in ms but
   156   // os::javaTimeMillis() does not guarantee monotonicity.
   157   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   158   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
   159   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
   161   NOT_PRODUCT(
   162   if (now < _soft_ref_timestamp_clock) {
   163     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
   164             _soft_ref_timestamp_clock, now);
   165   }
   166   )
   167   // The values of now and _soft_ref_timestamp_clock are set using
   168   // javaTimeNanos(), which is guaranteed to be monotonically
   169   // non-decreasing provided the underlying platform provides such
   170   // a time source (and it is bug free).
   171   // In product mode, however, protect ourselves from non-monotonicty.
   172   if (now > _soft_ref_timestamp_clock) {
   173     _soft_ref_timestamp_clock = now;
   174     java_lang_ref_SoftReference::set_clock(now);
   175   }
   176   // Else leave clock stalled at its old value until time progresses
   177   // past clock value.
   178 }
   180 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
   181   size_t total = 0;
   182   for (uint i = 0; i < _max_num_q; ++i) {
   183     total += lists[i].length();
   184   }
   185   return total;
   186 }
   188 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
   189   BoolObjectClosure*           is_alive,
   190   OopClosure*                  keep_alive,
   191   VoidClosure*                 complete_gc,
   192   AbstractRefProcTaskExecutor* task_executor,
   193   GCTimer*                     gc_timer) {
   194   NOT_PRODUCT(verify_ok_to_handle_reflists());
   196   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   197   // Stop treating discovered references specially.
   198   disable_discovery();
   200   // If discovery was concurrent, someone could have modified
   201   // the value of the static field in the j.l.r.SoftReference
   202   // class that holds the soft reference timestamp clock using
   203   // reflection or Unsafe between when discovery was enabled and
   204   // now. Unconditionally update the static field in ReferenceProcessor
   205   // here so that we use the new value during processing of the
   206   // discovered soft refs.
   208   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
   210   bool trace_time = PrintGCDetails && PrintReferenceGC;
   212   // Soft references
   213   size_t soft_count = 0;
   214   {
   215     GCTraceTime tt("SoftReference", trace_time, false, gc_timer);
   216     soft_count =
   217       process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   218                                  is_alive, keep_alive, complete_gc, task_executor);
   219   }
   221   update_soft_ref_master_clock();
   223   // Weak references
   224   size_t weak_count = 0;
   225   {
   226     GCTraceTime tt("WeakReference", trace_time, false, gc_timer);
   227     weak_count =
   228       process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   229                                  is_alive, keep_alive, complete_gc, task_executor);
   230   }
   232   // Final references
   233   size_t final_count = 0;
   234   {
   235     GCTraceTime tt("FinalReference", trace_time, false, gc_timer);
   236     final_count =
   237       process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   238                                  is_alive, keep_alive, complete_gc, task_executor);
   239   }
   241   // Phantom references
   242   size_t phantom_count = 0;
   243   {
   244     GCTraceTime tt("PhantomReference", trace_time, false, gc_timer);
   245     phantom_count =
   246       process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   247                                  is_alive, keep_alive, complete_gc, task_executor);
   248   }
   250   // Weak global JNI references. It would make more sense (semantically) to
   251   // traverse these simultaneously with the regular weak references above, but
   252   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   253   // thus use JNI weak references to circumvent the phantom references and
   254   // resurrect a "post-mortem" object.
   255   {
   256     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer);
   257     if (task_executor != NULL) {
   258       task_executor->set_single_threaded_mode();
   259     }
   260     process_phaseJNI(is_alive, keep_alive, complete_gc);
   261   }
   263   return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count);
   264 }
   266 #ifndef PRODUCT
   267 // Calculate the number of jni handles.
   268 uint ReferenceProcessor::count_jni_refs() {
   269   class AlwaysAliveClosure: public BoolObjectClosure {
   270   public:
   271     virtual bool do_object_b(oop obj) { return true; }
   272   };
   274   class CountHandleClosure: public OopClosure {
   275   private:
   276     int _count;
   277   public:
   278     CountHandleClosure(): _count(0) {}
   279     void do_oop(oop* unused)       { _count++; }
   280     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   281     int count() { return _count; }
   282   };
   283   CountHandleClosure global_handle_count;
   284   AlwaysAliveClosure always_alive;
   285   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   286   return global_handle_count.count();
   287 }
   288 #endif
   290 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   291                                           OopClosure*        keep_alive,
   292                                           VoidClosure*       complete_gc) {
   293 #ifndef PRODUCT
   294   if (PrintGCDetails && PrintReferenceGC) {
   295     unsigned int count = count_jni_refs();
   296     gclog_or_tty->print(", %u refs", count);
   297   }
   298 #endif
   299   JNIHandles::weak_oops_do(is_alive, keep_alive);
   300   complete_gc->do_void();
   301 }
   304 template <class T>
   305 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   306                                    AbstractRefProcTaskExecutor* task_executor) {
   308   // Remember old value of pending references list
   309   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   310   T old_pending_list_value = *pending_list_addr;
   312   // Enqueue references that are not made active again, and
   313   // clear the decks for the next collection (cycle).
   314   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   315   // Do the post-barrier on pending_list_addr missed in
   316   // enqueue_discovered_reflist.
   317   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   319   // Stop treating discovered references specially.
   320   ref->disable_discovery();
   322   // Return true if new pending references were added
   323   return old_pending_list_value != *pending_list_addr;
   324 }
   326 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   327   NOT_PRODUCT(verify_ok_to_handle_reflists());
   328   if (UseCompressedOops) {
   329     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   330   } else {
   331     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   332   }
   333 }
   335 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   336                                                     HeapWord* pending_list_addr) {
   337   // Given a list of refs linked through the "discovered" field
   338   // (java.lang.ref.Reference.discovered), self-loop their "next" field
   339   // thus distinguishing them from active References, then
   340   // prepend them to the pending list.
   341   //
   342   // The Java threads will see the Reference objects linked together through
   343   // the discovered field. Instead of trying to do the write barrier updates
   344   // in all places in the reference processor where we manipulate the discovered
   345   // field we make sure to do the barrier here where we anyway iterate through
   346   // all linked Reference objects. Note that it is important to not dirty any
   347   // cards during reference processing since this will cause card table
   348   // verification to fail for G1.
   349   //
   350   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
   351   // the "next" field is used to chain the pending list, not the discovered
   352   // field.
   353   if (TraceReferenceGC && PrintGCDetails) {
   354     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   355                            INTPTR_FORMAT, (address)refs_list.head());
   356   }
   358   oop obj = NULL;
   359   oop next_d = refs_list.head();
   360   if (pending_list_uses_discovered_field()) { // New behavior
   361     // Walk down the list, self-looping the next field
   362     // so that the References are not considered active.
   363     while (obj != next_d) {
   364       obj = next_d;
   365       assert(obj->is_instanceRef(), "should be reference object");
   366       next_d = java_lang_ref_Reference::discovered(obj);
   367       if (TraceReferenceGC && PrintGCDetails) {
   368         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   369                                (void *)obj, (void *)next_d);
   370       }
   371       assert(java_lang_ref_Reference::next(obj) == NULL,
   372              "Reference not active; should not be discovered");
   373       // Self-loop next, so as to make Ref not active.
   374       java_lang_ref_Reference::set_next_raw(obj, obj);
   375       if (next_d != obj) {
   376         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
   377       } else {
   378         // This is the last object.
   379         // Swap refs_list into pending_list_addr and
   380         // set obj's discovered to what we read from pending_list_addr.
   381         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   382         // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
   383         java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
   384         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
   385       }
   386     }
   387   } else { // Old behaviour
   388     // Walk down the list, copying the discovered field into
   389     // the next field and clearing the discovered field.
   390     while (obj != next_d) {
   391       obj = next_d;
   392       assert(obj->is_instanceRef(), "should be reference object");
   393       next_d = java_lang_ref_Reference::discovered(obj);
   394       if (TraceReferenceGC && PrintGCDetails) {
   395         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   396                                (void *)obj, (void *)next_d);
   397       }
   398       assert(java_lang_ref_Reference::next(obj) == NULL,
   399              "The reference should not be enqueued");
   400       if (next_d == obj) {  // obj is last
   401         // Swap refs_list into pendling_list_addr and
   402         // set obj's next to what we read from pending_list_addr.
   403         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   404         // Need oop_check on pending_list_addr above;
   405         // see special oop-check code at the end of
   406         // enqueue_discovered_reflists() further below.
   407         if (old == NULL) {
   408           // obj should be made to point to itself, since
   409           // pending list was empty.
   410           java_lang_ref_Reference::set_next(obj, obj);
   411         } else {
   412           java_lang_ref_Reference::set_next(obj, old);
   413         }
   414       } else {
   415         java_lang_ref_Reference::set_next(obj, next_d);
   416       }
   417       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   418     }
   419   }
   420 }
   422 // Parallel enqueue task
   423 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   424 public:
   425   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   426                      DiscoveredList      discovered_refs[],
   427                      HeapWord*           pending_list_addr,
   428                      int                 n_queues)
   429     : EnqueueTask(ref_processor, discovered_refs,
   430                   pending_list_addr, n_queues)
   431   { }
   433   virtual void work(unsigned int work_id) {
   434     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
   435     // Simplest first cut: static partitioning.
   436     int index = work_id;
   437     // The increment on "index" must correspond to the maximum number of queues
   438     // (n_queues) with which that ReferenceProcessor was created.  That
   439     // is because of the "clever" way the discovered references lists were
   440     // allocated and are indexed into.
   441     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
   442     for (int j = 0;
   443          j < ReferenceProcessor::number_of_subclasses_of_ref();
   444          j++, index += _n_queues) {
   445       _ref_processor.enqueue_discovered_reflist(
   446         _refs_lists[index], _pending_list_addr);
   447       _refs_lists[index].set_head(NULL);
   448       _refs_lists[index].set_length(0);
   449     }
   450   }
   451 };
   453 // Enqueue references that are not made active again
   454 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   455   AbstractRefProcTaskExecutor* task_executor) {
   456   if (_processing_is_mt && task_executor != NULL) {
   457     // Parallel code
   458     RefProcEnqueueTask tsk(*this, _discovered_refs,
   459                            pending_list_addr, _max_num_q);
   460     task_executor->execute(tsk);
   461   } else {
   462     // Serial code: call the parent class's implementation
   463     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   464       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
   465       _discovered_refs[i].set_head(NULL);
   466       _discovered_refs[i].set_length(0);
   467     }
   468   }
   469 }
   471 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   472   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   473   oop discovered = java_lang_ref_Reference::discovered(_ref);
   474   assert(_discovered_addr && discovered->is_oop_or_null(),
   475          "discovered field is bad");
   476   _next = discovered;
   477   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   478   _referent = java_lang_ref_Reference::referent(_ref);
   479   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   480          "Wrong oop found in java.lang.Reference object");
   481   assert(allow_null_referent ?
   482              _referent->is_oop_or_null()
   483            : _referent->is_oop(),
   484          "bad referent");
   485 }
   487 void DiscoveredListIterator::remove() {
   488   assert(_ref->is_oop(), "Dropping a bad reference");
   489   oop_store_raw(_discovered_addr, NULL);
   491   // First _prev_next ref actually points into DiscoveredList (gross).
   492   oop new_next;
   493   if (_next == _ref) {
   494     // At the end of the list, we should make _prev point to itself.
   495     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
   496     // and _prev will be NULL.
   497     new_next = _prev;
   498   } else {
   499     new_next = _next;
   500   }
   501   // Remove Reference object from discovered list. Note that G1 does not need a
   502   // pre-barrier here because we know the Reference has already been found/marked,
   503   // that's how it ended up in the discovered list in the first place.
   504   oop_store_raw(_prev_next, new_next);
   505   NOT_PRODUCT(_removed++);
   506   _refs_list.dec_length(1);
   507 }
   509 // Make the Reference object active again.
   510 void DiscoveredListIterator::make_active() {
   511   // The pre barrier for G1 is probably just needed for the old
   512   // reference processing behavior. Should we guard this with
   513   // ReferenceProcessor::pending_list_uses_discovered_field() ?
   514   if (UseG1GC) {
   515     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
   516     if (UseCompressedOops) {
   517       oopDesc::bs()->write_ref_field_pre((narrowOop*)next_addr, NULL);
   518     } else {
   519       oopDesc::bs()->write_ref_field_pre((oop*)next_addr, NULL);
   520     }
   521   }
   522   java_lang_ref_Reference::set_next_raw(_ref, NULL);
   523 }
   525 void DiscoveredListIterator::clear_referent() {
   526   oop_store_raw(_referent_addr, NULL);
   527 }
   529 // NOTE: process_phase*() are largely similar, and at a high level
   530 // merely iterate over the extant list applying a predicate to
   531 // each of its elements and possibly removing that element from the
   532 // list and applying some further closures to that element.
   533 // We should consider the possibility of replacing these
   534 // process_phase*() methods by abstracting them into
   535 // a single general iterator invocation that receives appropriate
   536 // closures that accomplish this work.
   538 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   539 // referents are not alive, but that should be kept alive for policy reasons.
   540 // Keep alive the transitive closure of all such referents.
   541 void
   542 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   543                                    ReferencePolicy*   policy,
   544                                    BoolObjectClosure* is_alive,
   545                                    OopClosure*        keep_alive,
   546                                    VoidClosure*       complete_gc) {
   547   assert(policy != NULL, "Must have a non-NULL policy");
   548   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   549   // Decide which softly reachable refs should be kept alive.
   550   while (iter.has_next()) {
   551     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   552     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   553     if (referent_is_dead &&
   554         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
   555       if (TraceReferenceGC) {
   556         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   557                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   558       }
   559       // Remove Reference object from list
   560       iter.remove();
   561       // Make the Reference object active again
   562       iter.make_active();
   563       // keep the referent around
   564       iter.make_referent_alive();
   565       iter.move_to_next();
   566     } else {
   567       iter.next();
   568     }
   569   }
   570   // Close the reachable set
   571   complete_gc->do_void();
   572   NOT_PRODUCT(
   573     if (PrintGCDetails && TraceReferenceGC) {
   574       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   575         "discovered Refs by policy, from list " INTPTR_FORMAT,
   576         iter.removed(), iter.processed(), (address)refs_list.head());
   577     }
   578   )
   579 }
   581 // Traverse the list and remove any Refs that are not active, or
   582 // whose referents are either alive or NULL.
   583 void
   584 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   585                              BoolObjectClosure* is_alive,
   586                              OopClosure*        keep_alive) {
   587   assert(discovery_is_atomic(), "Error");
   588   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   589   while (iter.has_next()) {
   590     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   591     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   592     assert(next == NULL, "Should not discover inactive Reference");
   593     if (iter.is_referent_alive()) {
   594       if (TraceReferenceGC) {
   595         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   596                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
   597       }
   598       // The referent is reachable after all.
   599       // Remove Reference object from list.
   600       iter.remove();
   601       // Update the referent pointer as necessary: Note that this
   602       // should not entail any recursive marking because the
   603       // referent must already have been traversed.
   604       iter.make_referent_alive();
   605       iter.move_to_next();
   606     } else {
   607       iter.next();
   608     }
   609   }
   610   NOT_PRODUCT(
   611     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   612       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   613         "Refs in discovered list " INTPTR_FORMAT,
   614         iter.removed(), iter.processed(), (address)refs_list.head());
   615     }
   616   )
   617 }
   619 void
   620 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   621                                                   BoolObjectClosure* is_alive,
   622                                                   OopClosure*        keep_alive,
   623                                                   VoidClosure*       complete_gc) {
   624   assert(!discovery_is_atomic(), "Error");
   625   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   626   while (iter.has_next()) {
   627     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   628     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   629     oop next = java_lang_ref_Reference::next(iter.obj());
   630     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   631          next != NULL)) {
   632       assert(next->is_oop_or_null(), "bad next field");
   633       // Remove Reference object from list
   634       iter.remove();
   635       // Trace the cohorts
   636       iter.make_referent_alive();
   637       if (UseCompressedOops) {
   638         keep_alive->do_oop((narrowOop*)next_addr);
   639       } else {
   640         keep_alive->do_oop((oop*)next_addr);
   641       }
   642       iter.move_to_next();
   643     } else {
   644       iter.next();
   645     }
   646   }
   647   // Now close the newly reachable set
   648   complete_gc->do_void();
   649   NOT_PRODUCT(
   650     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   651       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   652         "Refs in discovered list " INTPTR_FORMAT,
   653         iter.removed(), iter.processed(), (address)refs_list.head());
   654     }
   655   )
   656 }
   658 // Traverse the list and process the referents, by either
   659 // clearing them or keeping them (and their reachable
   660 // closure) alive.
   661 void
   662 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   663                                    bool               clear_referent,
   664                                    BoolObjectClosure* is_alive,
   665                                    OopClosure*        keep_alive,
   666                                    VoidClosure*       complete_gc) {
   667   ResourceMark rm;
   668   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   669   while (iter.has_next()) {
   670     iter.update_discovered();
   671     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   672     if (clear_referent) {
   673       // NULL out referent pointer
   674       iter.clear_referent();
   675     } else {
   676       // keep the referent around
   677       iter.make_referent_alive();
   678     }
   679     if (TraceReferenceGC) {
   680       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   681                              clear_referent ? "cleared " : "",
   682                              (void *)iter.obj(), iter.obj()->klass()->internal_name());
   683     }
   684     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   685     iter.next();
   686   }
   687   // Remember to update the next pointer of the last ref.
   688   iter.update_discovered();
   689   // Close the reachable set
   690   complete_gc->do_void();
   691 }
   693 void
   694 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
   695   oop obj = NULL;
   696   oop next = refs_list.head();
   697   while (next != obj) {
   698     obj = next;
   699     next = java_lang_ref_Reference::discovered(obj);
   700     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   701   }
   702   refs_list.set_head(NULL);
   703   refs_list.set_length(0);
   704 }
   706 void
   707 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   708   clear_discovered_references(refs_list);
   709 }
   711 void ReferenceProcessor::abandon_partial_discovery() {
   712   // loop over the lists
   713   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   714     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   715       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
   716     }
   717     abandon_partial_discovered_list(_discovered_refs[i]);
   718   }
   719 }
   721 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   722 public:
   723   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   724                     DiscoveredList      refs_lists[],
   725                     ReferencePolicy*    policy,
   726                     bool                marks_oops_alive)
   727     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   728       _policy(policy)
   729   { }
   730   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   731                     OopClosure& keep_alive,
   732                     VoidClosure& complete_gc)
   733   {
   734     Thread* thr = Thread::current();
   735     int refs_list_index = ((WorkerThread*)thr)->id();
   736     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   737                                   &is_alive, &keep_alive, &complete_gc);
   738   }
   739 private:
   740   ReferencePolicy* _policy;
   741 };
   743 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   744 public:
   745   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   746                     DiscoveredList      refs_lists[],
   747                     bool                marks_oops_alive)
   748     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   749   { }
   750   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   751                     OopClosure& keep_alive,
   752                     VoidClosure& complete_gc)
   753   {
   754     _ref_processor.process_phase2(_refs_lists[i],
   755                                   &is_alive, &keep_alive, &complete_gc);
   756   }
   757 };
   759 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   760 public:
   761   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   762                     DiscoveredList      refs_lists[],
   763                     bool                clear_referent,
   764                     bool                marks_oops_alive)
   765     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   766       _clear_referent(clear_referent)
   767   { }
   768   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   769                     OopClosure& keep_alive,
   770                     VoidClosure& complete_gc)
   771   {
   772     // Don't use "refs_list_index" calculated in this way because
   773     // balance_queues() has moved the Ref's into the first n queues.
   774     // Thread* thr = Thread::current();
   775     // int refs_list_index = ((WorkerThread*)thr)->id();
   776     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   777     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   778                                   &is_alive, &keep_alive, &complete_gc);
   779   }
   780 private:
   781   bool _clear_referent;
   782 };
   784 // Balances reference queues.
   785 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   786 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   787 // corresponding to the active workers will be processed.
   788 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   789 {
   790   // calculate total length
   791   size_t total_refs = 0;
   792   if (TraceReferenceGC && PrintGCDetails) {
   793     gclog_or_tty->print_cr("\nBalance ref_lists ");
   794   }
   796   for (uint i = 0; i < _max_num_q; ++i) {
   797     total_refs += ref_lists[i].length();
   798     if (TraceReferenceGC && PrintGCDetails) {
   799       gclog_or_tty->print("%d ", ref_lists[i].length());
   800     }
   801   }
   802   if (TraceReferenceGC && PrintGCDetails) {
   803     gclog_or_tty->print_cr(" = %d", total_refs);
   804   }
   805   size_t avg_refs = total_refs / _num_q + 1;
   806   uint to_idx = 0;
   807   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
   808     bool move_all = false;
   809     if (from_idx >= _num_q) {
   810       move_all = ref_lists[from_idx].length() > 0;
   811     }
   812     while ((ref_lists[from_idx].length() > avg_refs) ||
   813            move_all) {
   814       assert(to_idx < _num_q, "Sanity Check!");
   815       if (ref_lists[to_idx].length() < avg_refs) {
   816         // move superfluous refs
   817         size_t refs_to_move;
   818         // Move all the Ref's if the from queue will not be processed.
   819         if (move_all) {
   820           refs_to_move = MIN2(ref_lists[from_idx].length(),
   821                               avg_refs - ref_lists[to_idx].length());
   822         } else {
   823           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   824                               avg_refs - ref_lists[to_idx].length());
   825         }
   827         assert(refs_to_move > 0, "otherwise the code below will fail");
   829         oop move_head = ref_lists[from_idx].head();
   830         oop move_tail = move_head;
   831         oop new_head  = move_head;
   832         // find an element to split the list on
   833         for (size_t j = 0; j < refs_to_move; ++j) {
   834           move_tail = new_head;
   835           new_head = java_lang_ref_Reference::discovered(new_head);
   836         }
   838         // Add the chain to the to list.
   839         if (ref_lists[to_idx].head() == NULL) {
   840           // to list is empty. Make a loop at the end.
   841           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
   842         } else {
   843           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
   844         }
   845         ref_lists[to_idx].set_head(move_head);
   846         ref_lists[to_idx].inc_length(refs_to_move);
   848         // Remove the chain from the from list.
   849         if (move_tail == new_head) {
   850           // We found the end of the from list.
   851           ref_lists[from_idx].set_head(NULL);
   852         } else {
   853           ref_lists[from_idx].set_head(new_head);
   854         }
   855         ref_lists[from_idx].dec_length(refs_to_move);
   856         if (ref_lists[from_idx].length() == 0) {
   857           break;
   858         }
   859       } else {
   860         to_idx = (to_idx + 1) % _num_q;
   861       }
   862     }
   863   }
   864 #ifdef ASSERT
   865   size_t balanced_total_refs = 0;
   866   for (uint i = 0; i < _max_num_q; ++i) {
   867     balanced_total_refs += ref_lists[i].length();
   868     if (TraceReferenceGC && PrintGCDetails) {
   869       gclog_or_tty->print("%d ", ref_lists[i].length());
   870     }
   871   }
   872   if (TraceReferenceGC && PrintGCDetails) {
   873     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   874     gclog_or_tty->flush();
   875   }
   876   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   877 #endif
   878 }
   880 void ReferenceProcessor::balance_all_queues() {
   881   balance_queues(_discoveredSoftRefs);
   882   balance_queues(_discoveredWeakRefs);
   883   balance_queues(_discoveredFinalRefs);
   884   balance_queues(_discoveredPhantomRefs);
   885 }
   887 size_t
   888 ReferenceProcessor::process_discovered_reflist(
   889   DiscoveredList               refs_lists[],
   890   ReferencePolicy*             policy,
   891   bool                         clear_referent,
   892   BoolObjectClosure*           is_alive,
   893   OopClosure*                  keep_alive,
   894   VoidClosure*                 complete_gc,
   895   AbstractRefProcTaskExecutor* task_executor)
   896 {
   897   bool mt_processing = task_executor != NULL && _processing_is_mt;
   898   // If discovery used MT and a dynamic number of GC threads, then
   899   // the queues must be balanced for correctness if fewer than the
   900   // maximum number of queues were used.  The number of queue used
   901   // during discovery may be different than the number to be used
   902   // for processing so don't depend of _num_q < _max_num_q as part
   903   // of the test.
   904   bool must_balance = _discovery_is_mt;
   906   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   907       must_balance) {
   908     balance_queues(refs_lists);
   909   }
   911   size_t total_list_count = total_count(refs_lists);
   913   if (PrintReferenceGC && PrintGCDetails) {
   914     gclog_or_tty->print(", %u refs", total_list_count);
   915   }
   917   // Phase 1 (soft refs only):
   918   // . Traverse the list and remove any SoftReferences whose
   919   //   referents are not alive, but that should be kept alive for
   920   //   policy reasons. Keep alive the transitive closure of all
   921   //   such referents.
   922   if (policy != NULL) {
   923     if (mt_processing) {
   924       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   925       task_executor->execute(phase1);
   926     } else {
   927       for (uint i = 0; i < _max_num_q; i++) {
   928         process_phase1(refs_lists[i], policy,
   929                        is_alive, keep_alive, complete_gc);
   930       }
   931     }
   932   } else { // policy == NULL
   933     assert(refs_lists != _discoveredSoftRefs,
   934            "Policy must be specified for soft references.");
   935   }
   937   // Phase 2:
   938   // . Traverse the list and remove any refs whose referents are alive.
   939   if (mt_processing) {
   940     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   941     task_executor->execute(phase2);
   942   } else {
   943     for (uint i = 0; i < _max_num_q; i++) {
   944       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   945     }
   946   }
   948   // Phase 3:
   949   // . Traverse the list and process referents as appropriate.
   950   if (mt_processing) {
   951     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   952     task_executor->execute(phase3);
   953   } else {
   954     for (uint i = 0; i < _max_num_q; i++) {
   955       process_phase3(refs_lists[i], clear_referent,
   956                      is_alive, keep_alive, complete_gc);
   957     }
   958   }
   960   return total_list_count;
   961 }
   963 void ReferenceProcessor::clean_up_discovered_references() {
   964   // loop over the lists
   965   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   966     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   967       gclog_or_tty->print_cr(
   968         "\nScrubbing %s discovered list of Null referents",
   969         list_name(i));
   970     }
   971     clean_up_discovered_reflist(_discovered_refs[i]);
   972   }
   973 }
   975 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   976   assert(!discovery_is_atomic(), "Else why call this method?");
   977   DiscoveredListIterator iter(refs_list, NULL, NULL);
   978   while (iter.has_next()) {
   979     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   980     oop next = java_lang_ref_Reference::next(iter.obj());
   981     assert(next->is_oop_or_null(), "bad next field");
   982     // If referent has been cleared or Reference is not active,
   983     // drop it.
   984     if (iter.referent() == NULL || next != NULL) {
   985       debug_only(
   986         if (PrintGCDetails && TraceReferenceGC) {
   987           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
   988             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
   989             " and referent: " INTPTR_FORMAT,
   990             (void *)iter.obj(), (void *)next, (void *)iter.referent());
   991         }
   992       )
   993       // Remove Reference object from list
   994       iter.remove();
   995       iter.move_to_next();
   996     } else {
   997       iter.next();
   998     }
   999   }
  1000   NOT_PRODUCT(
  1001     if (PrintGCDetails && TraceReferenceGC) {
  1002       gclog_or_tty->print(
  1003         " Removed %d Refs with NULL referents out of %d discovered Refs",
  1004         iter.removed(), iter.processed());
  1009 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
  1010   uint id = 0;
  1011   // Determine the queue index to use for this object.
  1012   if (_discovery_is_mt) {
  1013     // During a multi-threaded discovery phase,
  1014     // each thread saves to its "own" list.
  1015     Thread* thr = Thread::current();
  1016     id = thr->as_Worker_thread()->id();
  1017   } else {
  1018     // single-threaded discovery, we save in round-robin
  1019     // fashion to each of the lists.
  1020     if (_processing_is_mt) {
  1021       id = next_id();
  1024   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1026   // Get the discovered queue to which we will add
  1027   DiscoveredList* list = NULL;
  1028   switch (rt) {
  1029     case REF_OTHER:
  1030       // Unknown reference type, no special treatment
  1031       break;
  1032     case REF_SOFT:
  1033       list = &_discoveredSoftRefs[id];
  1034       break;
  1035     case REF_WEAK:
  1036       list = &_discoveredWeakRefs[id];
  1037       break;
  1038     case REF_FINAL:
  1039       list = &_discoveredFinalRefs[id];
  1040       break;
  1041     case REF_PHANTOM:
  1042       list = &_discoveredPhantomRefs[id];
  1043       break;
  1044     case REF_NONE:
  1045       // we should not reach here if we are an InstanceRefKlass
  1046     default:
  1047       ShouldNotReachHere();
  1049   if (TraceReferenceGC && PrintGCDetails) {
  1050     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
  1052   return list;
  1055 inline void
  1056 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1057                                               oop             obj,
  1058                                               HeapWord*       discovered_addr) {
  1059   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1060   // First we must make sure this object is only enqueued once. CAS in a non null
  1061   // discovered_addr.
  1062   oop current_head = refs_list.head();
  1063   // The last ref must have its discovered field pointing to itself.
  1064   oop next_discovered = (current_head != NULL) ? current_head : obj;
  1066   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
  1067                                                     NULL);
  1068   if (retest == NULL) {
  1069     // This thread just won the right to enqueue the object.
  1070     // We have separate lists for enqueueing, so no synchronization
  1071     // is necessary.
  1072     refs_list.set_head(obj);
  1073     refs_list.inc_length(1);
  1075     if (TraceReferenceGC) {
  1076       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
  1077                              (void *)obj, obj->klass()->internal_name());
  1079   } else {
  1080     // If retest was non NULL, another thread beat us to it:
  1081     // The reference has already been discovered...
  1082     if (TraceReferenceGC) {
  1083       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1084                              (void *)obj, obj->klass()->internal_name());
  1089 #ifndef PRODUCT
  1090 // Non-atomic (i.e. concurrent) discovery might allow us
  1091 // to observe j.l.References with NULL referents, being those
  1092 // cleared concurrently by mutators during (or after) discovery.
  1093 void ReferenceProcessor::verify_referent(oop obj) {
  1094   bool da = discovery_is_atomic();
  1095   oop referent = java_lang_ref_Reference::referent(obj);
  1096   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
  1097          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
  1098                  INTPTR_FORMAT " during %satomic discovery ",
  1099                  (void *)referent, (void *)obj, da ? "" : "non-"));
  1101 #endif
  1103 // We mention two of several possible choices here:
  1104 // #0: if the reference object is not in the "originating generation"
  1105 //     (or part of the heap being collected, indicated by our "span"
  1106 //     we don't treat it specially (i.e. we scan it as we would
  1107 //     a normal oop, treating its references as strong references).
  1108 //     This means that references can't be discovered unless their
  1109 //     referent is also in the same span. This is the simplest,
  1110 //     most "local" and most conservative approach, albeit one
  1111 //     that may cause weak references to be enqueued least promptly.
  1112 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1113 // #1: the reference object may be in any generation (span), but if
  1114 //     the referent is in the generation (span) being currently collected
  1115 //     then we can discover the reference object, provided
  1116 //     the object has not already been discovered by
  1117 //     a different concurrently running collector (as may be the
  1118 //     case, for instance, if the reference object is in CMS and
  1119 //     the referent in DefNewGeneration), and provided the processing
  1120 //     of this reference object by the current collector will
  1121 //     appear atomic to every other collector in the system.
  1122 //     (Thus, for instance, a concurrent collector may not
  1123 //     discover references in other generations even if the
  1124 //     referent is in its own generation). This policy may,
  1125 //     in certain cases, enqueue references somewhat sooner than
  1126 //     might Policy #0 above, but at marginally increased cost
  1127 //     and complexity in processing these references.
  1128 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1129 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1130   // Make sure we are discovering refs (rather than processing discovered refs).
  1131   if (!_discovering_refs || !RegisterReferences) {
  1132     return false;
  1134   // We only discover active references.
  1135   oop next = java_lang_ref_Reference::next(obj);
  1136   if (next != NULL) {   // Ref is no longer active
  1137     return false;
  1140   HeapWord* obj_addr = (HeapWord*)obj;
  1141   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1142       !_span.contains(obj_addr)) {
  1143     // Reference is not in the originating generation;
  1144     // don't treat it specially (i.e. we want to scan it as a normal
  1145     // object with strong references).
  1146     return false;
  1149   // We only discover references whose referents are not (yet)
  1150   // known to be strongly reachable.
  1151   if (is_alive_non_header() != NULL) {
  1152     verify_referent(obj);
  1153     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
  1154       return false;  // referent is reachable
  1157   if (rt == REF_SOFT) {
  1158     // For soft refs we can decide now if these are not
  1159     // current candidates for clearing, in which case we
  1160     // can mark through them now, rather than delaying that
  1161     // to the reference-processing phase. Since all current
  1162     // time-stamp policies advance the soft-ref clock only
  1163     // at a major collection cycle, this is always currently
  1164     // accurate.
  1165     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
  1166       return false;
  1170   ResourceMark rm;      // Needed for tracing.
  1172   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1173   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1174   assert(discovered->is_oop_or_null(), "bad discovered field");
  1175   if (discovered != NULL) {
  1176     // The reference has already been discovered...
  1177     if (TraceReferenceGC) {
  1178       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1179                              (void *)obj, obj->klass()->internal_name());
  1181     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1182       // assumes that an object is not processed twice;
  1183       // if it's been already discovered it must be on another
  1184       // generation's discovered list; so we won't discover it.
  1185       return false;
  1186     } else {
  1187       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1188              "Unrecognized policy");
  1189       // Check assumption that an object is not potentially
  1190       // discovered twice except by concurrent collectors that potentially
  1191       // trace the same Reference object twice.
  1192       assert(UseConcMarkSweepGC || UseG1GC,
  1193              "Only possible with a concurrent marking collector");
  1194       return true;
  1198   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1199     verify_referent(obj);
  1200     // Discover if and only if EITHER:
  1201     // .. reference is in our span, OR
  1202     // .. we are an atomic collector and referent is in our span
  1203     if (_span.contains(obj_addr) ||
  1204         (discovery_is_atomic() &&
  1205          _span.contains(java_lang_ref_Reference::referent(obj)))) {
  1206       // should_enqueue = true;
  1207     } else {
  1208       return false;
  1210   } else {
  1211     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1212            _span.contains(obj_addr), "code inconsistency");
  1215   // Get the right type of discovered queue head.
  1216   DiscoveredList* list = get_discovered_list(rt);
  1217   if (list == NULL) {
  1218     return false;   // nothing special needs to be done
  1221   if (_discovery_is_mt) {
  1222     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1223   } else {
  1224     // We do a raw store here: the field will be visited later when processing
  1225     // the discovered references.
  1226     oop current_head = list->head();
  1227     // The last ref must have its discovered field pointing to itself.
  1228     oop next_discovered = (current_head != NULL) ? current_head : obj;
  1230     assert(discovered == NULL, "control point invariant");
  1231     oop_store_raw(discovered_addr, next_discovered);
  1232     list->set_head(obj);
  1233     list->inc_length(1);
  1235     if (TraceReferenceGC) {
  1236       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
  1237                                 (void *)obj, obj->klass()->internal_name());
  1240   assert(obj->is_oop(), "Discovered a bad reference");
  1241   verify_referent(obj);
  1242   return true;
  1245 // Preclean the discovered references by removing those
  1246 // whose referents are alive, and by marking from those that
  1247 // are not active. These lists can be handled here
  1248 // in any order and, indeed, concurrently.
  1249 void ReferenceProcessor::preclean_discovered_references(
  1250   BoolObjectClosure* is_alive,
  1251   OopClosure* keep_alive,
  1252   VoidClosure* complete_gc,
  1253   YieldClosure* yield,
  1254   GCTimer* gc_timer) {
  1256   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1258   // Soft references
  1260     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1261               false, gc_timer);
  1262     for (uint i = 0; i < _max_num_q; i++) {
  1263       if (yield->should_return()) {
  1264         return;
  1266       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1267                                   keep_alive, complete_gc, yield);
  1271   // Weak references
  1273     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1274               false, gc_timer);
  1275     for (uint i = 0; i < _max_num_q; i++) {
  1276       if (yield->should_return()) {
  1277         return;
  1279       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1280                                   keep_alive, complete_gc, yield);
  1284   // Final references
  1286     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1287               false, gc_timer);
  1288     for (uint i = 0; i < _max_num_q; i++) {
  1289       if (yield->should_return()) {
  1290         return;
  1292       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1293                                   keep_alive, complete_gc, yield);
  1297   // Phantom references
  1299     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1300               false, gc_timer);
  1301     for (uint i = 0; i < _max_num_q; i++) {
  1302       if (yield->should_return()) {
  1303         return;
  1305       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1306                                   keep_alive, complete_gc, yield);
  1311 // Walk the given discovered ref list, and remove all reference objects
  1312 // whose referents are still alive, whose referents are NULL or which
  1313 // are not active (have a non-NULL next field). NOTE: When we are
  1314 // thus precleaning the ref lists (which happens single-threaded today),
  1315 // we do not disable refs discovery to honour the correct semantics of
  1316 // java.lang.Reference. As a result, we need to be careful below
  1317 // that ref removal steps interleave safely with ref discovery steps
  1318 // (in this thread).
  1319 void
  1320 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1321                                                 BoolObjectClosure* is_alive,
  1322                                                 OopClosure*        keep_alive,
  1323                                                 VoidClosure*       complete_gc,
  1324                                                 YieldClosure*      yield) {
  1325   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1326   while (iter.has_next()) {
  1327     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1328     oop obj = iter.obj();
  1329     oop next = java_lang_ref_Reference::next(obj);
  1330     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1331         next != NULL) {
  1332       // The referent has been cleared, or is alive, or the Reference is not
  1333       // active; we need to trace and mark its cohort.
  1334       if (TraceReferenceGC) {
  1335         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1336                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
  1338       // Remove Reference object from list
  1339       iter.remove();
  1340       // Keep alive its cohort.
  1341       iter.make_referent_alive();
  1342       if (UseCompressedOops) {
  1343         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1344         keep_alive->do_oop(next_addr);
  1345       } else {
  1346         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1347         keep_alive->do_oop(next_addr);
  1349       iter.move_to_next();
  1350     } else {
  1351       iter.next();
  1354   // Close the reachable set
  1355   complete_gc->do_void();
  1357   NOT_PRODUCT(
  1358     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
  1359       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1360         "Refs in discovered list " INTPTR_FORMAT,
  1361         iter.removed(), iter.processed(), (address)refs_list.head());
  1366 const char* ReferenceProcessor::list_name(uint i) {
  1367    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
  1368           "Out of bounds index");
  1370    int j = i / _max_num_q;
  1371    switch (j) {
  1372      case 0: return "SoftRef";
  1373      case 1: return "WeakRef";
  1374      case 2: return "FinalRef";
  1375      case 3: return "PhantomRef";
  1377    ShouldNotReachHere();
  1378    return NULL;
  1381 #ifndef PRODUCT
  1382 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1383   // empty for now
  1385 #endif
  1387 #ifndef PRODUCT
  1388 void ReferenceProcessor::clear_discovered_references() {
  1389   guarantee(!_discovering_refs, "Discovering refs?");
  1390   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
  1391     clear_discovered_references(_discovered_refs[i]);
  1395 #endif // PRODUCT

mercurial