src/share/vm/memory/genCollectedHeap.cpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6680
78bbf4d43a14
parent 0
f90c822e73f8
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/symbolTable.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "gc_implementation/shared/collectorCounters.hpp"
    31 #include "gc_implementation/shared/gcTraceTime.hpp"
    32 #include "gc_implementation/shared/vmGCOperations.hpp"
    33 #include "gc_interface/collectedHeap.inline.hpp"
    34 #include "memory/filemap.hpp"
    35 #include "memory/gcLocker.inline.hpp"
    36 #include "memory/genCollectedHeap.hpp"
    37 #include "memory/genOopClosures.inline.hpp"
    38 #include "memory/generation.inline.hpp"
    39 #include "memory/generationSpec.hpp"
    40 #include "memory/resourceArea.hpp"
    41 #include "memory/sharedHeap.hpp"
    42 #include "memory/space.hpp"
    43 #include "oops/oop.inline.hpp"
    44 #include "oops/oop.inline2.hpp"
    45 #include "runtime/biasedLocking.hpp"
    46 #include "runtime/fprofiler.hpp"
    47 #include "runtime/handles.hpp"
    48 #include "runtime/handles.inline.hpp"
    49 #include "runtime/java.hpp"
    50 #include "runtime/vmThread.hpp"
    51 #include "services/memoryService.hpp"
    52 #include "utilities/vmError.hpp"
    53 #include "utilities/workgroup.hpp"
    54 #include "utilities/macros.hpp"
    55 #if INCLUDE_ALL_GCS
    56 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    57 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    58 #endif // INCLUDE_ALL_GCS
    60 GenCollectedHeap* GenCollectedHeap::_gch;
    61 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
    63 // The set of potentially parallel tasks in strong root scanning.
    64 enum GCH_process_strong_roots_tasks {
    65   // We probably want to parallelize both of these internally, but for now...
    66   GCH_PS_younger_gens,
    67   // Leave this one last.
    68   GCH_PS_NumElements
    69 };
    71 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
    72   SharedHeap(policy),
    73   _gen_policy(policy),
    74   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
    75   _full_collections_completed(0)
    76 {
    77   if (_gen_process_strong_tasks == NULL ||
    78       !_gen_process_strong_tasks->valid()) {
    79     vm_exit_during_initialization("Failed necessary allocation.");
    80   }
    81   assert(policy != NULL, "Sanity check");
    82 }
    84 jint GenCollectedHeap::initialize() {
    85   CollectedHeap::pre_initialize();
    87   int i;
    88   _n_gens = gen_policy()->number_of_generations();
    90   // While there are no constraints in the GC code that HeapWordSize
    91   // be any particular value, there are multiple other areas in the
    92   // system which believe this to be true (e.g. oop->object_size in some
    93   // cases incorrectly returns the size in wordSize units rather than
    94   // HeapWordSize).
    95   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
    97   // The heap must be at least as aligned as generations.
    98   size_t gen_alignment = Generation::GenGrain;
   100   _gen_specs = gen_policy()->generations();
   102   // Make sure the sizes are all aligned.
   103   for (i = 0; i < _n_gens; i++) {
   104     _gen_specs[i]->align(gen_alignment);
   105   }
   107   // Allocate space for the heap.
   109   char* heap_address;
   110   size_t total_reserved = 0;
   111   int n_covered_regions = 0;
   112   ReservedSpace heap_rs;
   114   size_t heap_alignment = collector_policy()->heap_alignment();
   116   heap_address = allocate(heap_alignment, &total_reserved,
   117                           &n_covered_regions, &heap_rs);
   119   if (!heap_rs.is_reserved()) {
   120     vm_shutdown_during_initialization(
   121       "Could not reserve enough space for object heap");
   122     return JNI_ENOMEM;
   123   }
   125   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   126                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   128   // It is important to do this in a way such that concurrent readers can't
   129   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
   130   _reserved.set_word_size(0);
   131   _reserved.set_start((HeapWord*)heap_rs.base());
   132   size_t actual_heap_size = heap_rs.size();
   133   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
   135   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
   136   set_barrier_set(rem_set()->bs());
   138   _gch = this;
   140   for (i = 0; i < _n_gens; i++) {
   141     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
   142     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
   143     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
   144   }
   145   clear_incremental_collection_failed();
   147 #if INCLUDE_ALL_GCS
   148   // If we are running CMS, create the collector responsible
   149   // for collecting the CMS generations.
   150   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
   151     bool success = create_cms_collector();
   152     if (!success) return JNI_ENOMEM;
   153   }
   154 #endif // INCLUDE_ALL_GCS
   156   return JNI_OK;
   157 }
   160 char* GenCollectedHeap::allocate(size_t alignment,
   161                                  size_t* _total_reserved,
   162                                  int* _n_covered_regions,
   163                                  ReservedSpace* heap_rs){
   164   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
   165     "the maximum representable size";
   167   // Now figure out the total size.
   168   size_t total_reserved = 0;
   169   int n_covered_regions = 0;
   170   const size_t pageSize = UseLargePages ?
   171       os::large_page_size() : os::vm_page_size();
   173   assert(alignment % pageSize == 0, "Must be");
   175   for (int i = 0; i < _n_gens; i++) {
   176     total_reserved += _gen_specs[i]->max_size();
   177     if (total_reserved < _gen_specs[i]->max_size()) {
   178       vm_exit_during_initialization(overflow_msg);
   179     }
   180     n_covered_regions += _gen_specs[i]->n_covered_regions();
   181   }
   182   assert(total_reserved % alignment == 0,
   183          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
   184                  SIZE_FORMAT, total_reserved, alignment));
   186   // Needed until the cardtable is fixed to have the right number
   187   // of covered regions.
   188   n_covered_regions += 2;
   190   *_total_reserved = total_reserved;
   191   *_n_covered_regions = n_covered_regions;
   193   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
   194   return heap_rs->base();
   195 }
   198 void GenCollectedHeap::post_initialize() {
   199   SharedHeap::post_initialize();
   200   TwoGenerationCollectorPolicy *policy =
   201     (TwoGenerationCollectorPolicy *)collector_policy();
   202   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
   203   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
   204   assert(def_new_gen->kind() == Generation::DefNew ||
   205          def_new_gen->kind() == Generation::ParNew ||
   206          def_new_gen->kind() == Generation::ASParNew,
   207          "Wrong generation kind");
   209   Generation* old_gen = get_gen(1);
   210   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
   211          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
   212          old_gen->kind() == Generation::MarkSweepCompact,
   213     "Wrong generation kind");
   215   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
   216                                  old_gen->capacity(),
   217                                  def_new_gen->from()->capacity());
   218   policy->initialize_gc_policy_counters();
   219 }
   221 void GenCollectedHeap::ref_processing_init() {
   222   SharedHeap::ref_processing_init();
   223   for (int i = 0; i < _n_gens; i++) {
   224     _gens[i]->ref_processor_init();
   225   }
   226 }
   228 size_t GenCollectedHeap::capacity() const {
   229   size_t res = 0;
   230   for (int i = 0; i < _n_gens; i++) {
   231     res += _gens[i]->capacity();
   232   }
   233   return res;
   234 }
   236 size_t GenCollectedHeap::used() const {
   237   size_t res = 0;
   238   for (int i = 0; i < _n_gens; i++) {
   239     res += _gens[i]->used();
   240   }
   241   return res;
   242 }
   244 // Save the "used_region" for generations level and lower.
   245 void GenCollectedHeap::save_used_regions(int level) {
   246   assert(level < _n_gens, "Illegal level parameter");
   247   for (int i = level; i >= 0; i--) {
   248     _gens[i]->save_used_region();
   249   }
   250 }
   252 size_t GenCollectedHeap::max_capacity() const {
   253   size_t res = 0;
   254   for (int i = 0; i < _n_gens; i++) {
   255     res += _gens[i]->max_capacity();
   256   }
   257   return res;
   258 }
   260 // Update the _full_collections_completed counter
   261 // at the end of a stop-world full GC.
   262 unsigned int GenCollectedHeap::update_full_collections_completed() {
   263   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   264   assert(_full_collections_completed <= _total_full_collections,
   265          "Can't complete more collections than were started");
   266   _full_collections_completed = _total_full_collections;
   267   ml.notify_all();
   268   return _full_collections_completed;
   269 }
   271 // Update the _full_collections_completed counter, as appropriate,
   272 // at the end of a concurrent GC cycle. Note the conditional update
   273 // below to allow this method to be called by a concurrent collector
   274 // without synchronizing in any manner with the VM thread (which
   275 // may already have initiated a STW full collection "concurrently").
   276 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
   277   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   278   assert((_full_collections_completed <= _total_full_collections) &&
   279          (count <= _total_full_collections),
   280          "Can't complete more collections than were started");
   281   if (count > _full_collections_completed) {
   282     _full_collections_completed = count;
   283     ml.notify_all();
   284   }
   285   return _full_collections_completed;
   286 }
   289 #ifndef PRODUCT
   290 // Override of memory state checking method in CollectedHeap:
   291 // Some collectors (CMS for example) can't have badHeapWordVal written
   292 // in the first two words of an object. (For instance , in the case of
   293 // CMS these words hold state used to synchronize between certain
   294 // (concurrent) GC steps and direct allocating mutators.)
   295 // The skip_header_HeapWords() method below, allows us to skip
   296 // over the requisite number of HeapWord's. Note that (for
   297 // generational collectors) this means that those many words are
   298 // skipped in each object, irrespective of the generation in which
   299 // that object lives. The resultant loss of precision seems to be
   300 // harmless and the pain of avoiding that imprecision appears somewhat
   301 // higher than we are prepared to pay for such rudimentary debugging
   302 // support.
   303 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
   304                                                          size_t size) {
   305   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   306     // We are asked to check a size in HeapWords,
   307     // but the memory is mangled in juint words.
   308     juint* start = (juint*) (addr + skip_header_HeapWords());
   309     juint* end   = (juint*) (addr + size);
   310     for (juint* slot = start; slot < end; slot += 1) {
   311       assert(*slot == badHeapWordVal,
   312              "Found non badHeapWordValue in pre-allocation check");
   313     }
   314   }
   315 }
   316 #endif
   318 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
   319                                                bool is_tlab,
   320                                                bool first_only) {
   321   HeapWord* res;
   322   for (int i = 0; i < _n_gens; i++) {
   323     if (_gens[i]->should_allocate(size, is_tlab)) {
   324       res = _gens[i]->allocate(size, is_tlab);
   325       if (res != NULL) return res;
   326       else if (first_only) break;
   327     }
   328   }
   329   // Otherwise...
   330   return NULL;
   331 }
   333 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
   334                                          bool* gc_overhead_limit_was_exceeded) {
   335   return collector_policy()->mem_allocate_work(size,
   336                                                false /* is_tlab */,
   337                                                gc_overhead_limit_was_exceeded);
   338 }
   340 bool GenCollectedHeap::must_clear_all_soft_refs() {
   341   return _gc_cause == GCCause::_last_ditch_collection;
   342 }
   344 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
   345   return UseConcMarkSweepGC &&
   346          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
   347           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
   348 }
   350 void GenCollectedHeap::do_collection(bool  full,
   351                                      bool   clear_all_soft_refs,
   352                                      size_t size,
   353                                      bool   is_tlab,
   354                                      int    max_level) {
   355   bool prepared_for_verification = false;
   356   ResourceMark rm;
   357   DEBUG_ONLY(Thread* my_thread = Thread::current();)
   359   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   360   assert(my_thread->is_VM_thread() ||
   361          my_thread->is_ConcurrentGC_thread(),
   362          "incorrect thread type capability");
   363   assert(Heap_lock->is_locked(),
   364          "the requesting thread should have the Heap_lock");
   365   guarantee(!is_gc_active(), "collection is not reentrant");
   366   assert(max_level < n_gens(), "sanity check");
   368   if (GC_locker::check_active_before_gc()) {
   369     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   370   }
   372   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
   373                           collector_policy()->should_clear_all_soft_refs();
   375   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
   377   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
   379   print_heap_before_gc();
   381   {
   382     FlagSetting fl(_is_gc_active, true);
   384     bool complete = full && (max_level == (n_gens()-1));
   385     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
   386     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   387     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   388     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL);
   390     gc_prologue(complete);
   391     increment_total_collections(complete);
   393     size_t gch_prev_used = used();
   395     int starting_level = 0;
   396     if (full) {
   397       // Search for the oldest generation which will collect all younger
   398       // generations, and start collection loop there.
   399       for (int i = max_level; i >= 0; i--) {
   400         if (_gens[i]->full_collects_younger_generations()) {
   401           starting_level = i;
   402           break;
   403         }
   404       }
   405     }
   407     bool must_restore_marks_for_biased_locking = false;
   409     int max_level_collected = starting_level;
   410     for (int i = starting_level; i <= max_level; i++) {
   411       if (_gens[i]->should_collect(full, size, is_tlab)) {
   412         if (i == n_gens() - 1) {  // a major collection is to happen
   413           if (!complete) {
   414             // The full_collections increment was missed above.
   415             increment_total_full_collections();
   416           }
   417           pre_full_gc_dump(NULL);    // do any pre full gc dumps
   418         }
   419         // Timer for individual generations. Last argument is false: no CR
   420         // FIXME: We should try to start the timing earlier to cover more of the GC pause
   421         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL);
   422         TraceCollectorStats tcs(_gens[i]->counters());
   423         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
   425         size_t prev_used = _gens[i]->used();
   426         _gens[i]->stat_record()->invocations++;
   427         _gens[i]->stat_record()->accumulated_time.start();
   429         // Must be done anew before each collection because
   430         // a previous collection will do mangling and will
   431         // change top of some spaces.
   432         record_gen_tops_before_GC();
   434         if (PrintGC && Verbose) {
   435           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
   436                      i,
   437                      _gens[i]->stat_record()->invocations,
   438                      size*HeapWordSize);
   439         }
   441         if (VerifyBeforeGC && i >= VerifyGCLevel &&
   442             total_collections() >= VerifyGCStartAt) {
   443           HandleMark hm;  // Discard invalid handles created during verification
   444           if (!prepared_for_verification) {
   445             prepare_for_verify();
   446             prepared_for_verification = true;
   447           }
   448           Universe::verify(" VerifyBeforeGC:");
   449         }
   450         COMPILER2_PRESENT(DerivedPointerTable::clear());
   452         if (!must_restore_marks_for_biased_locking &&
   453             _gens[i]->performs_in_place_marking()) {
   454           // We perform this mark word preservation work lazily
   455           // because it's only at this point that we know whether we
   456           // absolutely have to do it; we want to avoid doing it for
   457           // scavenge-only collections where it's unnecessary
   458           must_restore_marks_for_biased_locking = true;
   459           BiasedLocking::preserve_marks();
   460         }
   462         // Do collection work
   463         {
   464           // Note on ref discovery: For what appear to be historical reasons,
   465           // GCH enables and disabled (by enqueing) refs discovery.
   466           // In the future this should be moved into the generation's
   467           // collect method so that ref discovery and enqueueing concerns
   468           // are local to a generation. The collect method could return
   469           // an appropriate indication in the case that notification on
   470           // the ref lock was needed. This will make the treatment of
   471           // weak refs more uniform (and indeed remove such concerns
   472           // from GCH). XXX
   474           HandleMark hm;  // Discard invalid handles created during gc
   475           save_marks();   // save marks for all gens
   476           // We want to discover references, but not process them yet.
   477           // This mode is disabled in process_discovered_references if the
   478           // generation does some collection work, or in
   479           // enqueue_discovered_references if the generation returns
   480           // without doing any work.
   481           ReferenceProcessor* rp = _gens[i]->ref_processor();
   482           // If the discovery of ("weak") refs in this generation is
   483           // atomic wrt other collectors in this configuration, we
   484           // are guaranteed to have empty discovered ref lists.
   485           if (rp->discovery_is_atomic()) {
   486             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
   487             rp->setup_policy(do_clear_all_soft_refs);
   488           } else {
   489             // collect() below will enable discovery as appropriate
   490           }
   491           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
   492           if (!rp->enqueuing_is_done()) {
   493             rp->enqueue_discovered_references();
   494           } else {
   495             rp->set_enqueuing_is_done(false);
   496           }
   497           rp->verify_no_references_recorded();
   498         }
   499         max_level_collected = i;
   501         // Determine if allocation request was met.
   502         if (size > 0) {
   503           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
   504             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
   505               size = 0;
   506             }
   507           }
   508         }
   510         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   512         _gens[i]->stat_record()->accumulated_time.stop();
   514         update_gc_stats(i, full);
   516         if (VerifyAfterGC && i >= VerifyGCLevel &&
   517             total_collections() >= VerifyGCStartAt) {
   518           HandleMark hm;  // Discard invalid handles created during verification
   519           Universe::verify(" VerifyAfterGC:");
   520         }
   522         if (PrintGCDetails) {
   523           gclog_or_tty->print(":");
   524           _gens[i]->print_heap_change(prev_used);
   525         }
   526       }
   527     }
   529     // Update "complete" boolean wrt what actually transpired --
   530     // for instance, a promotion failure could have led to
   531     // a whole heap collection.
   532     complete = complete || (max_level_collected == n_gens() - 1);
   534     if (complete) { // We did a "major" collection
   535       // FIXME: See comment at pre_full_gc_dump call
   536       post_full_gc_dump(NULL);   // do any post full gc dumps
   537     }
   539     if (PrintGCDetails) {
   540       print_heap_change(gch_prev_used);
   542       // Print metaspace info for full GC with PrintGCDetails flag.
   543       if (complete) {
   544         MetaspaceAux::print_metaspace_change(metadata_prev_used);
   545       }
   546     }
   548     for (int j = max_level_collected; j >= 0; j -= 1) {
   549       // Adjust generation sizes.
   550       _gens[j]->compute_new_size();
   551     }
   553     if (complete) {
   554       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
   555       ClassLoaderDataGraph::purge();
   556       MetaspaceAux::verify_metrics();
   557       // Resize the metaspace capacity after full collections
   558       MetaspaceGC::compute_new_size();
   559       update_full_collections_completed();
   560     }
   562     // Track memory usage and detect low memory after GC finishes
   563     MemoryService::track_memory_usage();
   565     gc_epilogue(complete);
   567     if (must_restore_marks_for_biased_locking) {
   568       BiasedLocking::restore_marks();
   569     }
   570   }
   572   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
   573   AdaptiveSizePolicyOutput(sp, total_collections());
   575   print_heap_after_gc();
   577 #ifdef TRACESPINNING
   578   ParallelTaskTerminator::print_termination_counts();
   579 #endif
   580 }
   582 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
   583   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
   584 }
   586 void GenCollectedHeap::set_par_threads(uint t) {
   587   SharedHeap::set_par_threads(t);
   588   _gen_process_strong_tasks->set_n_threads(t);
   589 }
   591 void GenCollectedHeap::
   592 gen_process_strong_roots(int level,
   593                          bool younger_gens_as_roots,
   594                          bool activate_scope,
   595                          bool is_scavenging,
   596                          SharedHeap::ScanningOption so,
   597                          OopsInGenClosure* not_older_gens,
   598                          bool do_code_roots,
   599                          OopsInGenClosure* older_gens,
   600                          KlassClosure* klass_closure) {
   601   // General strong roots.
   603   if (!do_code_roots) {
   604     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
   605                                      not_older_gens, NULL, klass_closure);
   606   } else {
   607     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
   608     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
   609     SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
   610                                      not_older_gens, &code_roots, klass_closure);
   611   }
   613   if (younger_gens_as_roots) {
   614     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
   615       for (int i = 0; i < level; i++) {
   616         not_older_gens->set_generation(_gens[i]);
   617         _gens[i]->oop_iterate(not_older_gens);
   618       }
   619       not_older_gens->reset_generation();
   620     }
   621   }
   622   // When collection is parallel, all threads get to cooperate to do
   623   // older-gen scanning.
   624   for (int i = level+1; i < _n_gens; i++) {
   625     older_gens->set_generation(_gens[i]);
   626     rem_set()->younger_refs_iterate(_gens[i], older_gens);
   627     older_gens->reset_generation();
   628   }
   630   _gen_process_strong_tasks->all_tasks_completed();
   631 }
   633 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
   634                                               CodeBlobClosure* code_roots) {
   635   SharedHeap::process_weak_roots(root_closure, code_roots);
   636   // "Local" "weak" refs
   637   for (int i = 0; i < _n_gens; i++) {
   638     _gens[i]->ref_processor()->weak_oops_do(root_closure);
   639   }
   640 }
   642 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
   643 void GenCollectedHeap::                                                 \
   644 oop_since_save_marks_iterate(int level,                                 \
   645                              OopClosureType* cur,                       \
   646                              OopClosureType* older) {                   \
   647   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
   648   for (int i = level+1; i < n_gens(); i++) {                            \
   649     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
   650   }                                                                     \
   651 }
   653 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
   655 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
   657 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
   658   for (int i = level; i < _n_gens; i++) {
   659     if (!_gens[i]->no_allocs_since_save_marks()) return false;
   660   }
   661   return true;
   662 }
   664 bool GenCollectedHeap::supports_inline_contig_alloc() const {
   665   return _gens[0]->supports_inline_contig_alloc();
   666 }
   668 HeapWord** GenCollectedHeap::top_addr() const {
   669   return _gens[0]->top_addr();
   670 }
   672 HeapWord** GenCollectedHeap::end_addr() const {
   673   return _gens[0]->end_addr();
   674 }
   676 size_t GenCollectedHeap::unsafe_max_alloc() {
   677   return _gens[0]->unsafe_max_alloc_nogc();
   678 }
   680 // public collection interfaces
   682 void GenCollectedHeap::collect(GCCause::Cause cause) {
   683   if (should_do_concurrent_full_gc(cause)) {
   684 #if INCLUDE_ALL_GCS
   685     // mostly concurrent full collection
   686     collect_mostly_concurrent(cause);
   687 #else  // INCLUDE_ALL_GCS
   688     ShouldNotReachHere();
   689 #endif // INCLUDE_ALL_GCS
   690   } else {
   691 #ifdef ASSERT
   692     if (cause == GCCause::_scavenge_alot) {
   693       // minor collection only
   694       collect(cause, 0);
   695     } else {
   696       // Stop-the-world full collection
   697       collect(cause, n_gens() - 1);
   698     }
   699 #else
   700     // Stop-the-world full collection
   701     collect(cause, n_gens() - 1);
   702 #endif
   703   }
   704 }
   706 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
   707   // The caller doesn't have the Heap_lock
   708   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   709   MutexLocker ml(Heap_lock);
   710   collect_locked(cause, max_level);
   711 }
   713 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
   714   // The caller has the Heap_lock
   715   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
   716   collect_locked(cause, n_gens() - 1);
   717 }
   719 // this is the private collection interface
   720 // The Heap_lock is expected to be held on entry.
   722 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
   723   // Read the GC count while holding the Heap_lock
   724   unsigned int gc_count_before      = total_collections();
   725   unsigned int full_gc_count_before = total_full_collections();
   726   {
   727     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
   728     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
   729                          cause, max_level);
   730     VMThread::execute(&op);
   731   }
   732 }
   734 #if INCLUDE_ALL_GCS
   735 bool GenCollectedHeap::create_cms_collector() {
   737   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
   738          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
   739          "Unexpected generation kinds");
   740   // Skip two header words in the block content verification
   741   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
   742   CMSCollector* collector = new CMSCollector(
   743     (ConcurrentMarkSweepGeneration*)_gens[1],
   744     _rem_set->as_CardTableRS(),
   745     (ConcurrentMarkSweepPolicy*) collector_policy());
   747   if (collector == NULL || !collector->completed_initialization()) {
   748     if (collector) {
   749       delete collector;  // Be nice in embedded situation
   750     }
   751     vm_shutdown_during_initialization("Could not create CMS collector");
   752     return false;
   753   }
   754   return true;  // success
   755 }
   757 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
   758   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
   760   MutexLocker ml(Heap_lock);
   761   // Read the GC counts while holding the Heap_lock
   762   unsigned int full_gc_count_before = total_full_collections();
   763   unsigned int gc_count_before      = total_collections();
   764   {
   765     MutexUnlocker mu(Heap_lock);
   766     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
   767     VMThread::execute(&op);
   768   }
   769 }
   770 #endif // INCLUDE_ALL_GCS
   772 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
   773    do_full_collection(clear_all_soft_refs, _n_gens - 1);
   774 }
   776 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
   777                                           int max_level) {
   778   int local_max_level;
   779   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
   780       gc_cause() == GCCause::_gc_locker) {
   781     local_max_level = 0;
   782   } else {
   783     local_max_level = max_level;
   784   }
   786   do_collection(true                 /* full */,
   787                 clear_all_soft_refs  /* clear_all_soft_refs */,
   788                 0                    /* size */,
   789                 false                /* is_tlab */,
   790                 local_max_level      /* max_level */);
   791   // Hack XXX FIX ME !!!
   792   // A scavenge may not have been attempted, or may have
   793   // been attempted and failed, because the old gen was too full
   794   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
   795       incremental_collection_will_fail(false /* don't consult_young */)) {
   796     if (PrintGCDetails) {
   797       gclog_or_tty->print_cr("GC locker: Trying a full collection "
   798                              "because scavenge failed");
   799     }
   800     // This time allow the old gen to be collected as well
   801     do_collection(true                 /* full */,
   802                   clear_all_soft_refs  /* clear_all_soft_refs */,
   803                   0                    /* size */,
   804                   false                /* is_tlab */,
   805                   n_gens() - 1         /* max_level */);
   806   }
   807 }
   809 bool GenCollectedHeap::is_in_young(oop p) {
   810   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
   811   assert(result == _gens[0]->is_in_reserved(p),
   812          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, p2i((void*)p)));
   813   return result;
   814 }
   816 // Returns "TRUE" iff "p" points into the committed areas of the heap.
   817 bool GenCollectedHeap::is_in(const void* p) const {
   818   #ifndef ASSERT
   819   guarantee(VerifyBeforeGC      ||
   820             VerifyDuringGC      ||
   821             VerifyBeforeExit    ||
   822             VerifyDuringStartup ||
   823             PrintAssembly       ||
   824             tty->count() != 0   ||   // already printing
   825             VerifyAfterGC       ||
   826     VMError::fatal_error_in_progress(), "too expensive");
   828   #endif
   829   // This might be sped up with a cache of the last generation that
   830   // answered yes.
   831   for (int i = 0; i < _n_gens; i++) {
   832     if (_gens[i]->is_in(p)) return true;
   833   }
   834   // Otherwise...
   835   return false;
   836 }
   838 #ifdef ASSERT
   839 // Don't implement this by using is_in_young().  This method is used
   840 // in some cases to check that is_in_young() is correct.
   841 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
   842   assert(is_in_reserved(p) || p == NULL,
   843     "Does not work if address is non-null and outside of the heap");
   844   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
   845 }
   846 #endif
   848 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
   849   for (int i = 0; i < _n_gens; i++) {
   850     _gens[i]->oop_iterate(cl);
   851   }
   852 }
   854 void GenCollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
   855   for (int i = 0; i < _n_gens; i++) {
   856     _gens[i]->oop_iterate(mr, cl);
   857   }
   858 }
   860 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
   861   for (int i = 0; i < _n_gens; i++) {
   862     _gens[i]->object_iterate(cl);
   863   }
   864 }
   866 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
   867   for (int i = 0; i < _n_gens; i++) {
   868     _gens[i]->safe_object_iterate(cl);
   869   }
   870 }
   872 Space* GenCollectedHeap::space_containing(const void* addr) const {
   873   for (int i = 0; i < _n_gens; i++) {
   874     Space* res = _gens[i]->space_containing(addr);
   875     if (res != NULL) return res;
   876   }
   877   // Otherwise...
   878   assert(false, "Could not find containing space");
   879   return NULL;
   880 }
   883 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
   884   assert(is_in_reserved(addr), "block_start of address outside of heap");
   885   for (int i = 0; i < _n_gens; i++) {
   886     if (_gens[i]->is_in_reserved(addr)) {
   887       assert(_gens[i]->is_in(addr),
   888              "addr should be in allocated part of generation");
   889       return _gens[i]->block_start(addr);
   890     }
   891   }
   892   assert(false, "Some generation should contain the address");
   893   return NULL;
   894 }
   896 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
   897   assert(is_in_reserved(addr), "block_size of address outside of heap");
   898   for (int i = 0; i < _n_gens; i++) {
   899     if (_gens[i]->is_in_reserved(addr)) {
   900       assert(_gens[i]->is_in(addr),
   901              "addr should be in allocated part of generation");
   902       return _gens[i]->block_size(addr);
   903     }
   904   }
   905   assert(false, "Some generation should contain the address");
   906   return 0;
   907 }
   909 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
   910   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
   911   assert(block_start(addr) == addr, "addr must be a block start");
   912   for (int i = 0; i < _n_gens; i++) {
   913     if (_gens[i]->is_in_reserved(addr)) {
   914       return _gens[i]->block_is_obj(addr);
   915     }
   916   }
   917   assert(false, "Some generation should contain the address");
   918   return false;
   919 }
   921 bool GenCollectedHeap::supports_tlab_allocation() const {
   922   for (int i = 0; i < _n_gens; i += 1) {
   923     if (_gens[i]->supports_tlab_allocation()) {
   924       return true;
   925     }
   926   }
   927   return false;
   928 }
   930 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
   931   size_t result = 0;
   932   for (int i = 0; i < _n_gens; i += 1) {
   933     if (_gens[i]->supports_tlab_allocation()) {
   934       result += _gens[i]->tlab_capacity();
   935     }
   936   }
   937   return result;
   938 }
   940 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
   941   size_t result = 0;
   942   for (int i = 0; i < _n_gens; i += 1) {
   943     if (_gens[i]->supports_tlab_allocation()) {
   944       result += _gens[i]->tlab_used();
   945     }
   946   }
   947   return result;
   948 }
   950 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   951   size_t result = 0;
   952   for (int i = 0; i < _n_gens; i += 1) {
   953     if (_gens[i]->supports_tlab_allocation()) {
   954       result += _gens[i]->unsafe_max_tlab_alloc();
   955     }
   956   }
   957   return result;
   958 }
   960 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
   961   bool gc_overhead_limit_was_exceeded;
   962   return collector_policy()->mem_allocate_work(size /* size */,
   963                                                true /* is_tlab */,
   964                                                &gc_overhead_limit_was_exceeded);
   965 }
   967 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
   968 // from the list headed by "*prev_ptr".
   969 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
   970   bool first = true;
   971   size_t min_size = 0;   // "first" makes this conceptually infinite.
   972   ScratchBlock **smallest_ptr, *smallest;
   973   ScratchBlock  *cur = *prev_ptr;
   974   while (cur) {
   975     assert(*prev_ptr == cur, "just checking");
   976     if (first || cur->num_words < min_size) {
   977       smallest_ptr = prev_ptr;
   978       smallest     = cur;
   979       min_size     = smallest->num_words;
   980       first        = false;
   981     }
   982     prev_ptr = &cur->next;
   983     cur     =  cur->next;
   984   }
   985   smallest      = *smallest_ptr;
   986   *smallest_ptr = smallest->next;
   987   return smallest;
   988 }
   990 // Sort the scratch block list headed by res into decreasing size order,
   991 // and set "res" to the result.
   992 static void sort_scratch_list(ScratchBlock*& list) {
   993   ScratchBlock* sorted = NULL;
   994   ScratchBlock* unsorted = list;
   995   while (unsorted) {
   996     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
   997     smallest->next  = sorted;
   998     sorted          = smallest;
   999   }
  1000   list = sorted;
  1003 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
  1004                                                size_t max_alloc_words) {
  1005   ScratchBlock* res = NULL;
  1006   for (int i = 0; i < _n_gens; i++) {
  1007     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  1009   sort_scratch_list(res);
  1010   return res;
  1013 void GenCollectedHeap::release_scratch() {
  1014   for (int i = 0; i < _n_gens; i++) {
  1015     _gens[i]->reset_scratch();
  1019 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  1020   void do_generation(Generation* gen) {
  1021     gen->prepare_for_verify();
  1023 };
  1025 void GenCollectedHeap::prepare_for_verify() {
  1026   ensure_parsability(false);        // no need to retire TLABs
  1027   GenPrepareForVerifyClosure blk;
  1028   generation_iterate(&blk, false);
  1032 void GenCollectedHeap::generation_iterate(GenClosure* cl,
  1033                                           bool old_to_young) {
  1034   if (old_to_young) {
  1035     for (int i = _n_gens-1; i >= 0; i--) {
  1036       cl->do_generation(_gens[i]);
  1038   } else {
  1039     for (int i = 0; i < _n_gens; i++) {
  1040       cl->do_generation(_gens[i]);
  1045 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  1046   for (int i = 0; i < _n_gens; i++) {
  1047     _gens[i]->space_iterate(cl, true);
  1051 bool GenCollectedHeap::is_maximal_no_gc() const {
  1052   for (int i = 0; i < _n_gens; i++) {
  1053     if (!_gens[i]->is_maximal_no_gc()) {
  1054       return false;
  1057   return true;
  1060 void GenCollectedHeap::save_marks() {
  1061   for (int i = 0; i < _n_gens; i++) {
  1062     _gens[i]->save_marks();
  1066 GenCollectedHeap* GenCollectedHeap::heap() {
  1067   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  1068   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  1069   return _gch;
  1073 void GenCollectedHeap::prepare_for_compaction() {
  1074   guarantee(_n_gens = 2, "Wrong number of generations");
  1075   Generation* old_gen = _gens[1];
  1076   // Start by compacting into same gen.
  1077   CompactPoint cp(old_gen, NULL, NULL);
  1078   old_gen->prepare_for_compaction(&cp);
  1079   Generation* young_gen = _gens[0];
  1080   young_gen->prepare_for_compaction(&cp);
  1083 GCStats* GenCollectedHeap::gc_stats(int level) const {
  1084   return _gens[level]->gc_stats();
  1087 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
  1088   for (int i = _n_gens-1; i >= 0; i--) {
  1089     Generation* g = _gens[i];
  1090     if (!silent) {
  1091       gclog_or_tty->print("%s", g->name());
  1092       gclog_or_tty->print(" ");
  1094     g->verify();
  1096   if (!silent) {
  1097     gclog_or_tty->print("remset ");
  1099   rem_set()->verify();
  1102 void GenCollectedHeap::print_on(outputStream* st) const {
  1103   for (int i = 0; i < _n_gens; i++) {
  1104     _gens[i]->print_on(st);
  1106   MetaspaceAux::print_on(st);
  1109 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  1110   if (workers() != NULL) {
  1111     workers()->threads_do(tc);
  1113 #if INCLUDE_ALL_GCS
  1114   if (UseConcMarkSweepGC) {
  1115     ConcurrentMarkSweepThread::threads_do(tc);
  1117 #endif // INCLUDE_ALL_GCS
  1120 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
  1121 #if INCLUDE_ALL_GCS
  1122   if (UseParNewGC) {
  1123     workers()->print_worker_threads_on(st);
  1125   if (UseConcMarkSweepGC) {
  1126     ConcurrentMarkSweepThread::print_all_on(st);
  1128 #endif // INCLUDE_ALL_GCS
  1131 void GenCollectedHeap::print_on_error(outputStream* st) const {
  1132   this->CollectedHeap::print_on_error(st);
  1134 #if INCLUDE_ALL_GCS
  1135   if (UseConcMarkSweepGC) {
  1136     st->cr();
  1137     CMSCollector::print_on_error(st);
  1139 #endif // INCLUDE_ALL_GCS
  1142 void GenCollectedHeap::print_tracing_info() const {
  1143   if (TraceGen0Time) {
  1144     get_gen(0)->print_summary_info();
  1146   if (TraceGen1Time) {
  1147     get_gen(1)->print_summary_info();
  1151 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  1152   if (PrintGCDetails && Verbose) {
  1153     gclog_or_tty->print(" "  SIZE_FORMAT
  1154                         "->" SIZE_FORMAT
  1155                         "("  SIZE_FORMAT ")",
  1156                         prev_used, used(), capacity());
  1157   } else {
  1158     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  1159                         "->" SIZE_FORMAT "K"
  1160                         "("  SIZE_FORMAT "K)",
  1161                         prev_used / K, used() / K, capacity() / K);
  1165 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
  1166  private:
  1167   bool _full;
  1168  public:
  1169   void do_generation(Generation* gen) {
  1170     gen->gc_prologue(_full);
  1172   GenGCPrologueClosure(bool full) : _full(full) {};
  1173 };
  1175 void GenCollectedHeap::gc_prologue(bool full) {
  1176   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  1178   always_do_update_barrier = false;
  1179   // Fill TLAB's and such
  1180   CollectedHeap::accumulate_statistics_all_tlabs();
  1181   ensure_parsability(true);   // retire TLABs
  1183   // Walk generations
  1184   GenGCPrologueClosure blk(full);
  1185   generation_iterate(&blk, false);  // not old-to-young.
  1186 };
  1188 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
  1189  private:
  1190   bool _full;
  1191  public:
  1192   void do_generation(Generation* gen) {
  1193     gen->gc_epilogue(_full);
  1195   GenGCEpilogueClosure(bool full) : _full(full) {};
  1196 };
  1198 void GenCollectedHeap::gc_epilogue(bool full) {
  1199 #ifdef COMPILER2
  1200   assert(DerivedPointerTable::is_empty(), "derived pointer present");
  1201   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  1202   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
  1203 #endif /* COMPILER2 */
  1205   resize_all_tlabs();
  1207   GenGCEpilogueClosure blk(full);
  1208   generation_iterate(&blk, false);  // not old-to-young.
  1210   if (!CleanChunkPoolAsync) {
  1211     Chunk::clean_chunk_pool();
  1214   MetaspaceCounters::update_performance_counters();
  1215   CompressedClassSpaceCounters::update_performance_counters();
  1217   always_do_update_barrier = UseConcMarkSweepGC;
  1218 };
  1220 #ifndef PRODUCT
  1221 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
  1222  private:
  1223  public:
  1224   void do_generation(Generation* gen) {
  1225     gen->record_spaces_top();
  1227 };
  1229 void GenCollectedHeap::record_gen_tops_before_GC() {
  1230   if (ZapUnusedHeapArea) {
  1231     GenGCSaveTopsBeforeGCClosure blk;
  1232     generation_iterate(&blk, false);  // not old-to-young.
  1235 #endif  // not PRODUCT
  1237 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
  1238  public:
  1239   void do_generation(Generation* gen) {
  1240     gen->ensure_parsability();
  1242 };
  1244 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  1245   CollectedHeap::ensure_parsability(retire_tlabs);
  1246   GenEnsureParsabilityClosure ep_cl;
  1247   generation_iterate(&ep_cl, false);
  1250 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
  1251                                               oop obj,
  1252                                               size_t obj_size) {
  1253   guarantee(old_gen->level() == 1, "We only get here with an old generation");
  1254   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1255   HeapWord* result = NULL;
  1257   result = old_gen->expand_and_allocate(obj_size, false);
  1259   if (result != NULL) {
  1260     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  1262   return oop(result);
  1265 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  1266   jlong _time;   // in ms
  1267   jlong _now;    // in ms
  1269  public:
  1270   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
  1272   jlong time() { return _time; }
  1274   void do_generation(Generation* gen) {
  1275     _time = MIN2(_time, gen->time_of_last_gc(_now));
  1277 };
  1279 jlong GenCollectedHeap::millis_since_last_gc() {
  1280   // We need a monotonically non-deccreasing time in ms but
  1281   // os::javaTimeMillis() does not guarantee monotonicity.
  1282   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  1283   GenTimeOfLastGCClosure tolgc_cl(now);
  1284   // iterate over generations getting the oldest
  1285   // time that a generation was collected
  1286   generation_iterate(&tolgc_cl, false);
  1288   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
  1289   // provided the underlying platform provides such a time source
  1290   // (and it is bug free). So we still have to guard against getting
  1291   // back a time later than 'now'.
  1292   jlong retVal = now - tolgc_cl.time();
  1293   if (retVal < 0) {
  1294     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, (int64_t) retVal);)
  1295     return 0;
  1297   return retVal;

mercurial