src/share/vm/memory/cardTableModRefBS.cpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6680
78bbf4d43a14
parent 1
2d8a650513c2
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 /*
    26  * This file has been modified by Loongson Technology in 2015. These
    27  * modifications are Copyright (c) 2015 Loongson Technology, and are made
    28  * available on the same license terms set forth above.
    29  */
    31 #include "precompiled.hpp"
    32 #include "memory/allocation.inline.hpp"
    33 #include "memory/cardTableModRefBS.hpp"
    34 #include "memory/cardTableRS.hpp"
    35 #include "memory/sharedHeap.hpp"
    36 #include "memory/space.hpp"
    37 #include "memory/space.inline.hpp"
    38 #include "memory/universe.hpp"
    39 #include "runtime/java.hpp"
    40 #include "runtime/mutexLocker.hpp"
    41 #include "runtime/virtualspace.hpp"
    42 #include "services/memTracker.hpp"
    43 #include "utilities/macros.hpp"
    44 #ifdef COMPILER1
    45 #include "c1/c1_LIR.hpp"
    46 #include "c1/c1_LIRGenerator.hpp"
    47 #endif
    49 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
    50 // enumerate ref fields that have been modified (since the last
    51 // enumeration.)
    53 size_t CardTableModRefBS::cards_required(size_t covered_words)
    54 {
    55   // Add one for a guard card, used to detect errors.
    56   const size_t words = align_size_up(covered_words, card_size_in_words);
    57   return words / card_size_in_words + 1;
    58 }
    60 size_t CardTableModRefBS::compute_byte_map_size()
    61 {
    62   assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
    63                                         "unitialized, check declaration order");
    64   assert(_page_size != 0, "unitialized, check declaration order");
    65   const size_t granularity = os::vm_allocation_granularity();
    66   return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
    67 }
    69 CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
    70                                      int max_covered_regions):
    71   ModRefBarrierSet(max_covered_regions),
    72   _whole_heap(whole_heap),
    73   _guard_index(cards_required(whole_heap.word_size()) - 1),
    74   _last_valid_index(_guard_index - 1),
    75   _page_size(os::vm_page_size()),
    76   _byte_map_size(compute_byte_map_size())
    77 {
    78   _kind = BarrierSet::CardTableModRef;
    80   HeapWord* low_bound  = _whole_heap.start();
    81   HeapWord* high_bound = _whole_heap.end();
    82   assert((uintptr_t(low_bound)  & (card_size - 1))  == 0, "heap must start at card boundary");
    83   assert((uintptr_t(high_bound) & (card_size - 1))  == 0, "heap must end at card boundary");
    85   assert(card_size <= 512, "card_size must be less than 512"); // why?
    87   _covered   = new MemRegion[max_covered_regions];
    88   _committed = new MemRegion[max_covered_regions];
    89   if (_covered == NULL || _committed == NULL) {
    90     vm_exit_during_initialization("couldn't alloc card table covered region set.");
    91   }
    93   _cur_covered_regions = 0;
    94   const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
    95     MAX2(_page_size, (size_t) os::vm_allocation_granularity());
    96 #ifdef MIPS64
    97   /* 2013/10.25 Jin: try to allocate byte_map_base within 32-bit region.
    98       FIXME: should automatically search a spare space. */ 
    99   ReservedSpace heap_rs(_byte_map_size, rs_align, false, (char *)0x20000000);
   100 #else
   101   ReservedSpace heap_rs(_byte_map_size, rs_align, false);
   102 #endif
   103   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
   105   os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
   106                        _page_size, heap_rs.base(), heap_rs.size());
   107   if (!heap_rs.is_reserved()) {
   108     vm_exit_during_initialization("Could not reserve enough space for the "
   109                                   "card marking array");
   110   }
   112   // The assember store_check code will do an unsigned shift of the oop,
   113   // then add it to byte_map_base, i.e.
   114   //
   115   //   _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
   116   _byte_map = (jbyte*) heap_rs.base();
   117   byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
   118   assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
   119   assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
   121   jbyte* guard_card = &_byte_map[_guard_index];
   122   uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
   123   _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
   124   os::commit_memory_or_exit((char*)guard_page, _page_size, _page_size,
   125                             !ExecMem, "card table last card");
   126   *guard_card = last_card;
   128    _lowest_non_clean =
   129     NEW_C_HEAP_ARRAY(CardArr, max_covered_regions, mtGC);
   130   _lowest_non_clean_chunk_size =
   131     NEW_C_HEAP_ARRAY(size_t, max_covered_regions, mtGC);
   132   _lowest_non_clean_base_chunk_index =
   133     NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions, mtGC);
   134   _last_LNC_resizing_collection =
   135     NEW_C_HEAP_ARRAY(int, max_covered_regions, mtGC);
   136   if (_lowest_non_clean == NULL
   137       || _lowest_non_clean_chunk_size == NULL
   138       || _lowest_non_clean_base_chunk_index == NULL
   139       || _last_LNC_resizing_collection == NULL)
   140     vm_exit_during_initialization("couldn't allocate an LNC array.");
   141   for (int i = 0; i < max_covered_regions; i++) {
   142     _lowest_non_clean[i] = NULL;
   143     _lowest_non_clean_chunk_size[i] = 0;
   144     _last_LNC_resizing_collection[i] = -1;
   145   }
   147   if (TraceCardTableModRefBS) {
   148     gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
   149     gclog_or_tty->print_cr("  "
   150                   "  &_byte_map[0]: " INTPTR_FORMAT
   151                   "  &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
   152                   p2i(&_byte_map[0]),
   153                   p2i(&_byte_map[_last_valid_index]));
   154     gclog_or_tty->print_cr("  "
   155                   "  byte_map_base: " INTPTR_FORMAT,
   156                   p2i(byte_map_base));
   157   }
   158 }
   160 CardTableModRefBS::~CardTableModRefBS() {
   161   if (_covered) {
   162     delete[] _covered;
   163     _covered = NULL;
   164   }
   165   if (_committed) {
   166     delete[] _committed;
   167     _committed = NULL;
   168   }
   169   if (_lowest_non_clean) {
   170     FREE_C_HEAP_ARRAY(CardArr, _lowest_non_clean, mtGC);
   171     _lowest_non_clean = NULL;
   172   }
   173   if (_lowest_non_clean_chunk_size) {
   174     FREE_C_HEAP_ARRAY(size_t, _lowest_non_clean_chunk_size, mtGC);
   175     _lowest_non_clean_chunk_size = NULL;
   176   }
   177   if (_lowest_non_clean_base_chunk_index) {
   178     FREE_C_HEAP_ARRAY(uintptr_t, _lowest_non_clean_base_chunk_index, mtGC);
   179     _lowest_non_clean_base_chunk_index = NULL;
   180   }
   181   if (_last_LNC_resizing_collection) {
   182     FREE_C_HEAP_ARRAY(int, _last_LNC_resizing_collection, mtGC);
   183     _last_LNC_resizing_collection = NULL;
   184   }
   185 }
   187 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
   188   int i;
   189   for (i = 0; i < _cur_covered_regions; i++) {
   190     if (_covered[i].start() == base) return i;
   191     if (_covered[i].start() > base) break;
   192   }
   193   // If we didn't find it, create a new one.
   194   assert(_cur_covered_regions < _max_covered_regions,
   195          "too many covered regions");
   196   // Move the ones above up, to maintain sorted order.
   197   for (int j = _cur_covered_regions; j > i; j--) {
   198     _covered[j] = _covered[j-1];
   199     _committed[j] = _committed[j-1];
   200   }
   201   int res = i;
   202   _cur_covered_regions++;
   203   _covered[res].set_start(base);
   204   _covered[res].set_word_size(0);
   205   jbyte* ct_start = byte_for(base);
   206   uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
   207   _committed[res].set_start((HeapWord*)ct_start_aligned);
   208   _committed[res].set_word_size(0);
   209   return res;
   210 }
   212 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
   213   for (int i = 0; i < _cur_covered_regions; i++) {
   214     if (_covered[i].contains(addr)) {
   215       return i;
   216     }
   217   }
   218   assert(0, "address outside of heap?");
   219   return -1;
   220 }
   222 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
   223   HeapWord* max_end = NULL;
   224   for (int j = 0; j < ind; j++) {
   225     HeapWord* this_end = _committed[j].end();
   226     if (this_end > max_end) max_end = this_end;
   227   }
   228   return max_end;
   229 }
   231 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
   232                                                       MemRegion mr) const {
   233   MemRegion result = mr;
   234   for (int r = 0; r < _cur_covered_regions; r += 1) {
   235     if (r != self) {
   236       result = result.minus(_committed[r]);
   237     }
   238   }
   239   // Never include the guard page.
   240   result = result.minus(_guard_region);
   241   return result;
   242 }
   244 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
   245   // We don't change the start of a region, only the end.
   246   assert(_whole_heap.contains(new_region),
   247            "attempt to cover area not in reserved area");
   248   debug_only(verify_guard();)
   249   // collided is true if the expansion would push into another committed region
   250   debug_only(bool collided = false;)
   251   int const ind = find_covering_region_by_base(new_region.start());
   252   MemRegion const old_region = _covered[ind];
   253   assert(old_region.start() == new_region.start(), "just checking");
   254   if (new_region.word_size() != old_region.word_size()) {
   255     // Commit new or uncommit old pages, if necessary.
   256     MemRegion cur_committed = _committed[ind];
   257     // Extend the end of this _commited region
   258     // to cover the end of any lower _committed regions.
   259     // This forms overlapping regions, but never interior regions.
   260     HeapWord* const max_prev_end = largest_prev_committed_end(ind);
   261     if (max_prev_end > cur_committed.end()) {
   262       cur_committed.set_end(max_prev_end);
   263     }
   264     // Align the end up to a page size (starts are already aligned).
   265     jbyte* const new_end = byte_after(new_region.last());
   266     HeapWord* new_end_aligned =
   267       (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
   268     assert(new_end_aligned >= (HeapWord*) new_end,
   269            "align up, but less");
   270     // Check the other regions (excludes "ind") to ensure that
   271     // the new_end_aligned does not intrude onto the committed
   272     // space of another region.
   273     int ri = 0;
   274     for (ri = 0; ri < _cur_covered_regions; ri++) {
   275       if (ri != ind) {
   276         if (_committed[ri].contains(new_end_aligned)) {
   277           // The prior check included in the assert
   278           // (new_end_aligned >= _committed[ri].start())
   279           // is redundant with the "contains" test.
   280           // Any region containing the new end
   281           // should start at or beyond the region found (ind)
   282           // for the new end (committed regions are not expected to
   283           // be proper subsets of other committed regions).
   284           assert(_committed[ri].start() >= _committed[ind].start(),
   285                  "New end of committed region is inconsistent");
   286           new_end_aligned = _committed[ri].start();
   287           // new_end_aligned can be equal to the start of its
   288           // committed region (i.e., of "ind") if a second
   289           // region following "ind" also start at the same location
   290           // as "ind".
   291           assert(new_end_aligned >= _committed[ind].start(),
   292             "New end of committed region is before start");
   293           debug_only(collided = true;)
   294           // Should only collide with 1 region
   295           break;
   296         }
   297       }
   298     }
   299 #ifdef ASSERT
   300     for (++ri; ri < _cur_covered_regions; ri++) {
   301       assert(!_committed[ri].contains(new_end_aligned),
   302         "New end of committed region is in a second committed region");
   303     }
   304 #endif
   305     // The guard page is always committed and should not be committed over.
   306     // "guarded" is used for assertion checking below and recalls the fact
   307     // that the would-be end of the new committed region would have
   308     // penetrated the guard page.
   309     HeapWord* new_end_for_commit = new_end_aligned;
   311     DEBUG_ONLY(bool guarded = false;)
   312     if (new_end_for_commit > _guard_region.start()) {
   313       new_end_for_commit = _guard_region.start();
   314       DEBUG_ONLY(guarded = true;)
   315     }
   317     if (new_end_for_commit > cur_committed.end()) {
   318       // Must commit new pages.
   319       MemRegion const new_committed =
   320         MemRegion(cur_committed.end(), new_end_for_commit);
   322       assert(!new_committed.is_empty(), "Region should not be empty here");
   323       os::commit_memory_or_exit((char*)new_committed.start(),
   324                                 new_committed.byte_size(), _page_size,
   325                                 !ExecMem, "card table expansion");
   326     // Use new_end_aligned (as opposed to new_end_for_commit) because
   327     // the cur_committed region may include the guard region.
   328     } else if (new_end_aligned < cur_committed.end()) {
   329       // Must uncommit pages.
   330       MemRegion const uncommit_region =
   331         committed_unique_to_self(ind, MemRegion(new_end_aligned,
   332                                                 cur_committed.end()));
   333       if (!uncommit_region.is_empty()) {
   334         // It is not safe to uncommit cards if the boundary between
   335         // the generations is moving.  A shrink can uncommit cards
   336         // owned by generation A but being used by generation B.
   337         if (!UseAdaptiveGCBoundary) {
   338           if (!os::uncommit_memory((char*)uncommit_region.start(),
   339                                    uncommit_region.byte_size())) {
   340             assert(false, "Card table contraction failed");
   341             // The call failed so don't change the end of the
   342             // committed region.  This is better than taking the
   343             // VM down.
   344             new_end_aligned = _committed[ind].end();
   345           }
   346         } else {
   347           new_end_aligned = _committed[ind].end();
   348         }
   349       }
   350     }
   351     // In any case, we can reset the end of the current committed entry.
   352     _committed[ind].set_end(new_end_aligned);
   354 #ifdef ASSERT
   355     // Check that the last card in the new region is committed according
   356     // to the tables.
   357     bool covered = false;
   358     for (int cr = 0; cr < _cur_covered_regions; cr++) {
   359       if (_committed[cr].contains(new_end - 1)) {
   360         covered = true;
   361         break;
   362       }
   363     }
   364     assert(covered, "Card for end of new region not committed");
   365 #endif
   367     // The default of 0 is not necessarily clean cards.
   368     jbyte* entry;
   369     if (old_region.last() < _whole_heap.start()) {
   370       entry = byte_for(_whole_heap.start());
   371     } else {
   372       entry = byte_after(old_region.last());
   373     }
   374     assert(index_for(new_region.last()) <  _guard_index,
   375       "The guard card will be overwritten");
   376     // This line commented out cleans the newly expanded region and
   377     // not the aligned up expanded region.
   378     // jbyte* const end = byte_after(new_region.last());
   379     jbyte* const end = (jbyte*) new_end_for_commit;
   380     assert((end >= byte_after(new_region.last())) || collided || guarded,
   381       "Expect to be beyond new region unless impacting another region");
   382     // do nothing if we resized downward.
   383 #ifdef ASSERT
   384     for (int ri = 0; ri < _cur_covered_regions; ri++) {
   385       if (ri != ind) {
   386         // The end of the new committed region should not
   387         // be in any existing region unless it matches
   388         // the start of the next region.
   389         assert(!_committed[ri].contains(end) ||
   390                (_committed[ri].start() == (HeapWord*) end),
   391                "Overlapping committed regions");
   392       }
   393     }
   394 #endif
   395     if (entry < end) {
   396       memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
   397     }
   398   }
   399   // In any case, the covered size changes.
   400   _covered[ind].set_word_size(new_region.word_size());
   401   if (TraceCardTableModRefBS) {
   402     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
   403     gclog_or_tty->print_cr("  "
   404                   "  _covered[%d].start(): " INTPTR_FORMAT
   405                   "  _covered[%d].last(): " INTPTR_FORMAT,
   406                   ind, p2i(_covered[ind].start()),
   407                   ind, p2i(_covered[ind].last()));
   408     gclog_or_tty->print_cr("  "
   409                   "  _committed[%d].start(): " INTPTR_FORMAT
   410                   "  _committed[%d].last(): " INTPTR_FORMAT,
   411                   ind, p2i(_committed[ind].start()),
   412                   ind, p2i(_committed[ind].last()));
   413     gclog_or_tty->print_cr("  "
   414                   "  byte_for(start): " INTPTR_FORMAT
   415                   "  byte_for(last): " INTPTR_FORMAT,
   416                   p2i(byte_for(_covered[ind].start())),
   417                   p2i(byte_for(_covered[ind].last())));
   418     gclog_or_tty->print_cr("  "
   419                   "  addr_for(start): " INTPTR_FORMAT
   420                   "  addr_for(last): " INTPTR_FORMAT,
   421                   p2i(addr_for((jbyte*) _committed[ind].start())),
   422                   p2i(addr_for((jbyte*) _committed[ind].last())));
   423   }
   424   // Touch the last card of the covered region to show that it
   425   // is committed (or SEGV).
   426   debug_only((void) (*byte_for(_covered[ind].last()));)
   427   debug_only(verify_guard();)
   428 }
   430 // Note that these versions are precise!  The scanning code has to handle the
   431 // fact that the write barrier may be either precise or imprecise.
   433 void CardTableModRefBS::write_ref_field_work(void* field, oop newVal, bool release) {
   434   inline_write_ref_field(field, newVal, release);
   435 }
   438 void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
   439                                                                  MemRegion mr,
   440                                                                  OopsInGenClosure* cl,
   441                                                                  CardTableRS* ct) {
   442   if (!mr.is_empty()) {
   443     // Caller (process_strong_roots()) claims that all GC threads
   444     // execute this call.  With UseDynamicNumberOfGCThreads now all
   445     // active GC threads execute this call.  The number of active GC
   446     // threads needs to be passed to par_non_clean_card_iterate_work()
   447     // to get proper partitioning and termination.
   448     //
   449     // This is an example of where n_par_threads() is used instead
   450     // of workers()->active_workers().  n_par_threads can be set to 0 to
   451     // turn off parallelism.  For example when this code is called as
   452     // part of verification and SharedHeap::process_strong_roots() is being
   453     // used, then n_par_threads() may have been set to 0.  active_workers
   454     // is not overloaded with the meaning that it is a switch to disable
   455     // parallelism and so keeps the meaning of the number of
   456     // active gc workers.  If parallelism has not been shut off by
   457     // setting n_par_threads to 0, then n_par_threads should be
   458     // equal to active_workers.  When a different mechanism for shutting
   459     // off parallelism is used, then active_workers can be used in
   460     // place of n_par_threads.
   461     //  This is an example of a path where n_par_threads is
   462     // set to 0 to turn off parallism.
   463     //  [7] CardTableModRefBS::non_clean_card_iterate()
   464     //  [8] CardTableRS::younger_refs_in_space_iterate()
   465     //  [9] Generation::younger_refs_in_space_iterate()
   466     //  [10] OneContigSpaceCardGeneration::younger_refs_iterate()
   467     //  [11] CompactingPermGenGen::younger_refs_iterate()
   468     //  [12] CardTableRS::younger_refs_iterate()
   469     //  [13] SharedHeap::process_strong_roots()
   470     //  [14] G1CollectedHeap::verify()
   471     //  [15] Universe::verify()
   472     //  [16] G1CollectedHeap::do_collection_pause_at_safepoint()
   473     //
   474     int n_threads =  SharedHeap::heap()->n_par_threads();
   475     bool is_par = n_threads > 0;
   476     if (is_par) {
   477 #if INCLUDE_ALL_GCS
   478       assert(SharedHeap::heap()->n_par_threads() ==
   479              SharedHeap::heap()->workers()->active_workers(), "Mismatch");
   480       non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
   481 #else  // INCLUDE_ALL_GCS
   482       fatal("Parallel gc not supported here.");
   483 #endif // INCLUDE_ALL_GCS
   484     } else {
   485       // We do not call the non_clean_card_iterate_serial() version below because
   486       // we want to clear the cards (which non_clean_card_iterate_serial() does not
   487       // do for us): clear_cl here does the work of finding contiguous dirty ranges
   488       // of cards to process and clear.
   490       DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
   491                                                        cl->gen_boundary());
   492       ClearNoncleanCardWrapper clear_cl(dcto_cl, ct);
   494       clear_cl.do_MemRegion(mr);
   495     }
   496   }
   497 }
   499 // The iterator itself is not MT-aware, but
   500 // MT-aware callers and closures can use this to
   501 // accomplish dirty card iteration in parallel. The
   502 // iterator itself does not clear the dirty cards, or
   503 // change their values in any manner.
   504 void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr,
   505                                                       MemRegionClosure* cl) {
   506   bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
   507   assert(!is_par ||
   508           (SharedHeap::heap()->n_par_threads() ==
   509           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
   510   for (int i = 0; i < _cur_covered_regions; i++) {
   511     MemRegion mri = mr.intersection(_covered[i]);
   512     if (mri.word_size() > 0) {
   513       jbyte* cur_entry = byte_for(mri.last());
   514       jbyte* limit = byte_for(mri.start());
   515       while (cur_entry >= limit) {
   516         jbyte* next_entry = cur_entry - 1;
   517         if (*cur_entry != clean_card) {
   518           size_t non_clean_cards = 1;
   519           // Should the next card be included in this range of dirty cards.
   520           while (next_entry >= limit && *next_entry != clean_card) {
   521             non_clean_cards++;
   522             cur_entry = next_entry;
   523             next_entry--;
   524           }
   525           // The memory region may not be on a card boundary.  So that
   526           // objects beyond the end of the region are not processed, make
   527           // cur_cards precise with regard to the end of the memory region.
   528           MemRegion cur_cards(addr_for(cur_entry),
   529                               non_clean_cards * card_size_in_words);
   530           MemRegion dirty_region = cur_cards.intersection(mri);
   531           cl->do_MemRegion(dirty_region);
   532         }
   533         cur_entry = next_entry;
   534       }
   535     }
   536   }
   537 }
   539 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
   540   assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
   541   assert((HeapWord*)align_size_up  ((uintptr_t)mr.end(),   HeapWordSize) == mr.end(),   "Unaligned end"  );
   542   jbyte* cur  = byte_for(mr.start());
   543   jbyte* last = byte_after(mr.last());
   544   while (cur < last) {
   545     *cur = dirty_card;
   546     cur++;
   547   }
   548 }
   550 void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
   551   assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
   552   assert((HeapWord*)align_size_up  ((uintptr_t)mr.end(),   HeapWordSize) == mr.end(),   "Unaligned end"  );
   553   for (int i = 0; i < _cur_covered_regions; i++) {
   554     MemRegion mri = mr.intersection(_covered[i]);
   555     if (!mri.is_empty()) dirty_MemRegion(mri);
   556   }
   557 }
   559 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
   560   // Be conservative: only clean cards entirely contained within the
   561   // region.
   562   jbyte* cur;
   563   if (mr.start() == _whole_heap.start()) {
   564     cur = byte_for(mr.start());
   565   } else {
   566     assert(mr.start() > _whole_heap.start(), "mr is not covered.");
   567     cur = byte_after(mr.start() - 1);
   568   }
   569   jbyte* last = byte_after(mr.last());
   570   memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
   571 }
   573 void CardTableModRefBS::clear(MemRegion mr) {
   574   for (int i = 0; i < _cur_covered_regions; i++) {
   575     MemRegion mri = mr.intersection(_covered[i]);
   576     if (!mri.is_empty()) clear_MemRegion(mri);
   577   }
   578 }
   580 void CardTableModRefBS::dirty(MemRegion mr) {
   581   jbyte* first = byte_for(mr.start());
   582   jbyte* last  = byte_after(mr.last());
   583   memset(first, dirty_card, last-first);
   584 }
   586 // Unlike several other card table methods, dirty_card_iterate()
   587 // iterates over dirty cards ranges in increasing address order.
   588 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
   589                                            MemRegionClosure* cl) {
   590   for (int i = 0; i < _cur_covered_regions; i++) {
   591     MemRegion mri = mr.intersection(_covered[i]);
   592     if (!mri.is_empty()) {
   593       jbyte *cur_entry, *next_entry, *limit;
   594       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
   595            cur_entry <= limit;
   596            cur_entry  = next_entry) {
   597         next_entry = cur_entry + 1;
   598         if (*cur_entry == dirty_card) {
   599           size_t dirty_cards;
   600           // Accumulate maximal dirty card range, starting at cur_entry
   601           for (dirty_cards = 1;
   602                next_entry <= limit && *next_entry == dirty_card;
   603                dirty_cards++, next_entry++);
   604           MemRegion cur_cards(addr_for(cur_entry),
   605                               dirty_cards*card_size_in_words);
   606           cl->do_MemRegion(cur_cards);
   607         }
   608       }
   609     }
   610   }
   611 }
   613 MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
   614                                                           bool reset,
   615                                                           int reset_val) {
   616   for (int i = 0; i < _cur_covered_regions; i++) {
   617     MemRegion mri = mr.intersection(_covered[i]);
   618     if (!mri.is_empty()) {
   619       jbyte* cur_entry, *next_entry, *limit;
   620       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
   621            cur_entry <= limit;
   622            cur_entry  = next_entry) {
   623         next_entry = cur_entry + 1;
   624         if (*cur_entry == dirty_card) {
   625           size_t dirty_cards;
   626           // Accumulate maximal dirty card range, starting at cur_entry
   627           for (dirty_cards = 1;
   628                next_entry <= limit && *next_entry == dirty_card;
   629                dirty_cards++, next_entry++);
   630           MemRegion cur_cards(addr_for(cur_entry),
   631                               dirty_cards*card_size_in_words);
   632           if (reset) {
   633             for (size_t i = 0; i < dirty_cards; i++) {
   634               cur_entry[i] = reset_val;
   635             }
   636           }
   637           return cur_cards;
   638         }
   639       }
   640     }
   641   }
   642   return MemRegion(mr.end(), mr.end());
   643 }
   645 uintx CardTableModRefBS::ct_max_alignment_constraint() {
   646   return card_size * os::vm_page_size();
   647 }
   649 void CardTableModRefBS::verify_guard() {
   650   // For product build verification
   651   guarantee(_byte_map[_guard_index] == last_card,
   652             "card table guard has been modified");
   653 }
   655 void CardTableModRefBS::verify() {
   656   verify_guard();
   657 }
   659 #ifndef PRODUCT
   660 void CardTableModRefBS::verify_region(MemRegion mr,
   661                                       jbyte val, bool val_equals) {
   662   jbyte* start    = byte_for(mr.start());
   663   jbyte* end      = byte_for(mr.last());
   664   bool   failures = false;
   665   for (jbyte* curr = start; curr <= end; ++curr) {
   666     jbyte curr_val = *curr;
   667     bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
   668     if (failed) {
   669       if (!failures) {
   670         tty->cr();
   671         tty->print_cr("== CT verification failed: [" INTPTR_FORMAT "," INTPTR_FORMAT "]", p2i(start), p2i(end));
   672         tty->print_cr("==   %sexpecting value: %d",
   673                       (val_equals) ? "" : "not ", val);
   674         failures = true;
   675       }
   676       tty->print_cr("==   card "PTR_FORMAT" ["PTR_FORMAT","PTR_FORMAT"], "
   677                     "val: %d", p2i(curr), p2i(addr_for(curr)),
   678                     p2i((HeapWord*) (((size_t) addr_for(curr)) + card_size)),
   679                     (int) curr_val);
   680     }
   681   }
   682   guarantee(!failures, "there should not have been any failures");
   683 }
   685 void CardTableModRefBS::verify_not_dirty_region(MemRegion mr) {
   686   verify_region(mr, dirty_card, false /* val_equals */);
   687 }
   689 void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
   690   verify_region(mr, dirty_card, true /* val_equals */);
   691 }
   692 #endif
   694 void CardTableModRefBS::print_on(outputStream* st) const {
   695   st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] byte_map_base: " INTPTR_FORMAT,
   696                p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(byte_map_base));
   697 }
   699 bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
   700   return
   701     CardTableModRefBS::card_will_be_scanned(cv) ||
   702     _rs->is_prev_nonclean_card_val(cv);
   703 };
   705 bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
   706   return
   707     cv != clean_card &&
   708     (CardTableModRefBS::card_may_have_been_dirty(cv) ||
   709      CardTableRS::youngergen_may_have_been_dirty(cv));
   710 };

mercurial