src/share/vm/memory/allocation.cpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6695
09619752c16d
parent 0
f90c822e73f8
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "memory/genCollectedHeap.hpp"
    29 #include "memory/metaspaceShared.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "memory/universe.hpp"
    32 #include "runtime/atomic.hpp"
    33 #include "runtime/os.hpp"
    34 #include "runtime/task.hpp"
    35 #include "runtime/threadCritical.hpp"
    36 #include "services/memTracker.hpp"
    37 #include "utilities/ostream.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "os_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "os_solaris.inline.hpp"
    44 #endif
    45 #ifdef TARGET_OS_FAMILY_windows
    46 # include "os_windows.inline.hpp"
    47 #endif
    48 #ifdef TARGET_OS_FAMILY_aix
    49 # include "os_aix.inline.hpp"
    50 #endif
    51 #ifdef TARGET_OS_FAMILY_bsd
    52 # include "os_bsd.inline.hpp"
    53 #endif
    55 void* StackObj::operator new(size_t size)     throw() { ShouldNotCallThis(); return 0; }
    56 void  StackObj::operator delete(void* p)              { ShouldNotCallThis(); }
    57 void* StackObj::operator new [](size_t size)  throw() { ShouldNotCallThis(); return 0; }
    58 void  StackObj::operator delete [](void* p)           { ShouldNotCallThis(); }
    60 void* _ValueObj::operator new(size_t size)    throw() { ShouldNotCallThis(); return 0; }
    61 void  _ValueObj::operator delete(void* p)             { ShouldNotCallThis(); }
    62 void* _ValueObj::operator new [](size_t size) throw() { ShouldNotCallThis(); return 0; }
    63 void  _ValueObj::operator delete [](void* p)          { ShouldNotCallThis(); }
    65 void* MetaspaceObj::operator new(size_t size, ClassLoaderData* loader_data,
    66                                  size_t word_size, bool read_only,
    67                                  MetaspaceObj::Type type, TRAPS) throw() {
    68   // Klass has it's own operator new
    69   return Metaspace::allocate(loader_data, word_size, read_only,
    70                              type, CHECK_NULL);
    71 }
    73 bool MetaspaceObj::is_shared() const {
    74   return MetaspaceShared::is_in_shared_space(this);
    75 }
    77 bool MetaspaceObj::is_metaspace_object() const {
    78   return Metaspace::contains((void*)this);
    79 }
    81 void MetaspaceObj::print_address_on(outputStream* st) const {
    82   st->print(" {" INTPTR_FORMAT "}", p2i(this));
    83 }
    85 void* ResourceObj::operator new(size_t size, allocation_type type, MEMFLAGS flags) throw() {
    86   address res;
    87   switch (type) {
    88    case C_HEAP:
    89     res = (address)AllocateHeap(size, flags, CALLER_PC);
    90     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
    91     break;
    92    case RESOURCE_AREA:
    93     // new(size) sets allocation type RESOURCE_AREA.
    94     res = (address)operator new(size);
    95     break;
    96    default:
    97     ShouldNotReachHere();
    98   }
    99   return res;
   100 }
   102 void* ResourceObj::operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw() {
   103   return (address) operator new(size, type, flags);
   104 }
   106 void* ResourceObj::operator new(size_t size, const std::nothrow_t&  nothrow_constant,
   107     allocation_type type, MEMFLAGS flags) throw() {
   108   //should only call this with std::nothrow, use other operator new() otherwise
   109   address res;
   110   switch (type) {
   111    case C_HEAP:
   112     res = (address)AllocateHeap(size, flags, CALLER_PC, AllocFailStrategy::RETURN_NULL);
   113     DEBUG_ONLY(if (res!= NULL) set_allocation_type(res, C_HEAP);)
   114     break;
   115    case RESOURCE_AREA:
   116     // new(size) sets allocation type RESOURCE_AREA.
   117     res = (address)operator new(size, std::nothrow);
   118     break;
   119    default:
   120     ShouldNotReachHere();
   121   }
   122   return res;
   123 }
   125 void* ResourceObj::operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
   126     allocation_type type, MEMFLAGS flags) throw() {
   127   return (address)operator new(size, nothrow_constant, type, flags);
   128 }
   130 void ResourceObj::operator delete(void* p) {
   131   assert(((ResourceObj *)p)->allocated_on_C_heap(),
   132          "delete only allowed for C_HEAP objects");
   133   DEBUG_ONLY(((ResourceObj *)p)->_allocation_t[0] = (uintptr_t)badHeapOopVal;)
   134   FreeHeap(p);
   135 }
   137 void ResourceObj::operator delete [](void* p) {
   138   operator delete(p);
   139 }
   141 #ifdef ASSERT
   142 void ResourceObj::set_allocation_type(address res, allocation_type type) {
   143     // Set allocation type in the resource object
   144     uintptr_t allocation = (uintptr_t)res;
   145     assert((allocation & allocation_mask) == 0, err_msg("address should be aligned to 4 bytes at least: " INTPTR_FORMAT, p2i(res)));
   146     assert(type <= allocation_mask, "incorrect allocation type");
   147     ResourceObj* resobj = (ResourceObj *)res;
   148     resobj->_allocation_t[0] = ~(allocation + type);
   149     if (type != STACK_OR_EMBEDDED) {
   150       // Called from operator new() and CollectionSetChooser(),
   151       // set verification value.
   152       resobj->_allocation_t[1] = (uintptr_t)&(resobj->_allocation_t[1]) + type;
   153     }
   154 }
   156 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
   157     assert(~(_allocation_t[0] | allocation_mask) == (uintptr_t)this, "lost resource object");
   158     return (allocation_type)((~_allocation_t[0]) & allocation_mask);
   159 }
   161 bool ResourceObj::is_type_set() const {
   162     allocation_type type = (allocation_type)(_allocation_t[1] & allocation_mask);
   163     return get_allocation_type()  == type &&
   164            (_allocation_t[1] - type) == (uintptr_t)(&_allocation_t[1]);
   165 }
   167 ResourceObj::ResourceObj() { // default constructor
   168     if (~(_allocation_t[0] | allocation_mask) != (uintptr_t)this) {
   169       // Operator new() is not called for allocations
   170       // on stack and for embedded objects.
   171       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   172     } else if (allocated_on_stack()) { // STACK_OR_EMBEDDED
   173       // For some reason we got a value which resembles
   174       // an embedded or stack object (operator new() does not
   175       // set such type). Keep it since it is valid value
   176       // (even if it was garbage).
   177       // Ignore garbage in other fields.
   178     } else if (is_type_set()) {
   179       // Operator new() was called and type was set.
   180       assert(!allocated_on_stack(),
   181              err_msg("not embedded or stack, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   182                      p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   183     } else {
   184       // Operator new() was not called.
   185       // Assume that it is embedded or stack object.
   186       set_allocation_type((address)this, STACK_OR_EMBEDDED);
   187     }
   188     _allocation_t[1] = 0; // Zap verification value
   189 }
   191 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
   192     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
   193     // Note: garbage may resembles valid value.
   194     assert(~(_allocation_t[0] | allocation_mask) != (uintptr_t)this || !is_type_set(),
   195            err_msg("embedded or stack only, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   196                    p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   197     set_allocation_type((address)this, STACK_OR_EMBEDDED);
   198     _allocation_t[1] = 0; // Zap verification value
   199 }
   201 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
   202     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
   203     assert(allocated_on_stack(),
   204            err_msg("copy only into local, this(" PTR_FORMAT ") type %d a[0]=(" PTR_FORMAT ") a[1]=(" PTR_FORMAT ")",
   205                    p2i(this), get_allocation_type(), _allocation_t[0], _allocation_t[1]));
   206     // Keep current _allocation_t value;
   207     return *this;
   208 }
   210 ResourceObj::~ResourceObj() {
   211     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
   212     if (!allocated_on_C_heap()) { // ResourceObj::delete() will zap _allocation for C_heap.
   213       _allocation_t[0] = (uintptr_t)badHeapOopVal; // zap type
   214     }
   215 }
   216 #endif // ASSERT
   219 void trace_heap_malloc(size_t size, const char* name, void* p) {
   220   // A lock is not needed here - tty uses a lock internally
   221   tty->print_cr("Heap malloc " INTPTR_FORMAT " " SIZE_FORMAT " %s", p2i(p), size, name == NULL ? "" : name);
   222 }
   225 void trace_heap_free(void* p) {
   226   // A lock is not needed here - tty uses a lock internally
   227   tty->print_cr("Heap free   " INTPTR_FORMAT, p2i(p));
   228 }
   230 //--------------------------------------------------------------------------------------
   231 // ChunkPool implementation
   233 // MT-safe pool of chunks to reduce malloc/free thrashing
   234 // NB: not using Mutex because pools are used before Threads are initialized
   235 class ChunkPool: public CHeapObj<mtInternal> {
   236   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
   237   size_t       _num_chunks;   // number of unused chunks in pool
   238   size_t       _num_used;     // number of chunks currently checked out
   239   const size_t _size;         // size of each chunk (must be uniform)
   241   // Our four static pools
   242   static ChunkPool* _large_pool;
   243   static ChunkPool* _medium_pool;
   244   static ChunkPool* _small_pool;
   245   static ChunkPool* _tiny_pool;
   247   // return first element or null
   248   void* get_first() {
   249     Chunk* c = _first;
   250     if (_first) {
   251       _first = _first->next();
   252       _num_chunks--;
   253     }
   254     return c;
   255   }
   257  public:
   258   // All chunks in a ChunkPool has the same size
   259    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
   261   // Allocate a new chunk from the pool (might expand the pool)
   262   _NOINLINE_ void* allocate(size_t bytes, AllocFailType alloc_failmode) {
   263     assert(bytes == _size, "bad size");
   264     void* p = NULL;
   265     // No VM lock can be taken inside ThreadCritical lock, so os::malloc
   266     // should be done outside ThreadCritical lock due to NMT
   267     { ThreadCritical tc;
   268       _num_used++;
   269       p = get_first();
   270     }
   271     if (p == NULL) p = os::malloc(bytes, mtChunk, CURRENT_PC);
   272     if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   273       vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "ChunkPool::allocate");
   274     }
   275     return p;
   276   }
   278   // Return a chunk to the pool
   279   void free(Chunk* chunk) {
   280     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
   281     ThreadCritical tc;
   282     _num_used--;
   284     // Add chunk to list
   285     chunk->set_next(_first);
   286     _first = chunk;
   287     _num_chunks++;
   288   }
   290   // Prune the pool
   291   void free_all_but(size_t n) {
   292     Chunk* cur = NULL;
   293     Chunk* next;
   294     {
   295     // if we have more than n chunks, free all of them
   296     ThreadCritical tc;
   297     if (_num_chunks > n) {
   298       // free chunks at end of queue, for better locality
   299         cur = _first;
   300       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
   302       if (cur != NULL) {
   303           next = cur->next();
   304         cur->set_next(NULL);
   305         cur = next;
   307           _num_chunks = n;
   308         }
   309       }
   310     }
   312     // Free all remaining chunks, outside of ThreadCritical
   313     // to avoid deadlock with NMT
   314         while(cur != NULL) {
   315           next = cur->next();
   316       os::free(cur, mtChunk);
   317           cur = next;
   318         }
   319       }
   321   // Accessors to preallocated pool's
   322   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
   323   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
   324   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
   325   static ChunkPool* tiny_pool()   { assert(_tiny_pool   != NULL, "must be initialized"); return _tiny_pool;   }
   327   static void initialize() {
   328     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
   329     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
   330     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
   331     _tiny_pool   = new ChunkPool(Chunk::tiny_size   + Chunk::aligned_overhead_size());
   332   }
   334   static void clean() {
   335     enum { BlocksToKeep = 5 };
   336      _tiny_pool->free_all_but(BlocksToKeep);
   337      _small_pool->free_all_but(BlocksToKeep);
   338      _medium_pool->free_all_but(BlocksToKeep);
   339      _large_pool->free_all_but(BlocksToKeep);
   340   }
   341 };
   343 ChunkPool* ChunkPool::_large_pool  = NULL;
   344 ChunkPool* ChunkPool::_medium_pool = NULL;
   345 ChunkPool* ChunkPool::_small_pool  = NULL;
   346 ChunkPool* ChunkPool::_tiny_pool   = NULL;
   348 void chunkpool_init() {
   349   ChunkPool::initialize();
   350 }
   352 void
   353 Chunk::clean_chunk_pool() {
   354   ChunkPool::clean();
   355 }
   358 //--------------------------------------------------------------------------------------
   359 // ChunkPoolCleaner implementation
   360 //
   362 class ChunkPoolCleaner : public PeriodicTask {
   363   enum { CleaningInterval = 5000 };      // cleaning interval in ms
   365  public:
   366    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
   367    void task() {
   368      ChunkPool::clean();
   369    }
   370 };
   372 //--------------------------------------------------------------------------------------
   373 // Chunk implementation
   375 void* Chunk::operator new (size_t requested_size, AllocFailType alloc_failmode, size_t length) throw() {
   376   // requested_size is equal to sizeof(Chunk) but in order for the arena
   377   // allocations to come out aligned as expected the size must be aligned
   378   // to expected arena alignment.
   379   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
   380   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
   381   size_t bytes = ARENA_ALIGN(requested_size) + length;
   382   switch (length) {
   383    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes, alloc_failmode);
   384    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes, alloc_failmode);
   385    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes, alloc_failmode);
   386    case Chunk::tiny_size:   return ChunkPool::tiny_pool()->allocate(bytes, alloc_failmode);
   387    default: {
   388      void* p = os::malloc(bytes, mtChunk, CALLER_PC);
   389      if (p == NULL && alloc_failmode == AllocFailStrategy::EXIT_OOM) {
   390        vm_exit_out_of_memory(bytes, OOM_MALLOC_ERROR, "Chunk::new");
   391      }
   392      return p;
   393    }
   394   }
   395 }
   397 void Chunk::operator delete(void* p) {
   398   Chunk* c = (Chunk*)p;
   399   switch (c->length()) {
   400    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
   401    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
   402    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
   403    case Chunk::tiny_size:   ChunkPool::tiny_pool()->free(c); break;
   404    default:                 os::free(c, mtChunk);
   405   }
   406 }
   408 Chunk::Chunk(size_t length) : _len(length) {
   409   _next = NULL;         // Chain on the linked list
   410 }
   413 void Chunk::chop() {
   414   Chunk *k = this;
   415   while( k ) {
   416     Chunk *tmp = k->next();
   417     // clear out this chunk (to detect allocation bugs)
   418     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
   419     delete k;                   // Free chunk (was malloc'd)
   420     k = tmp;
   421   }
   422 }
   424 void Chunk::next_chop() {
   425   _next->chop();
   426   _next = NULL;
   427 }
   430 void Chunk::start_chunk_pool_cleaner_task() {
   431 #ifdef ASSERT
   432   static bool task_created = false;
   433   assert(!task_created, "should not start chuck pool cleaner twice");
   434   task_created = true;
   435 #endif
   436   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
   437   cleaner->enroll();
   438 }
   440 //------------------------------Arena------------------------------------------
   441 NOT_PRODUCT(volatile jint Arena::_instance_count = 0;)
   443 Arena::Arena(size_t init_size) {
   444   size_t round_size = (sizeof (char *)) - 1;
   445   init_size = (init_size+round_size) & ~round_size;
   446   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, init_size) Chunk(init_size);
   447   _hwm = _chunk->bottom();      // Save the cached hwm, max
   448   _max = _chunk->top();
   449   set_size_in_bytes(init_size);
   450   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   451 }
   453 Arena::Arena() {
   454   _first = _chunk = new (AllocFailStrategy::EXIT_OOM, Chunk::init_size) Chunk(Chunk::init_size);
   455   _hwm = _chunk->bottom();      // Save the cached hwm, max
   456   _max = _chunk->top();
   457   set_size_in_bytes(Chunk::init_size);
   458   NOT_PRODUCT(Atomic::inc(&_instance_count);)
   459 }
   461 Arena *Arena::move_contents(Arena *copy) {
   462   copy->destruct_contents();
   463   copy->_chunk = _chunk;
   464   copy->_hwm   = _hwm;
   465   copy->_max   = _max;
   466   copy->_first = _first;
   468   // workaround rare racing condition, which could double count
   469   // the arena size by native memory tracking
   470   size_t size = size_in_bytes();
   471   set_size_in_bytes(0);
   472   copy->set_size_in_bytes(size);
   473   // Destroy original arena
   474   reset();
   475   return copy;            // Return Arena with contents
   476 }
   478 Arena::~Arena() {
   479   destruct_contents();
   480   NOT_PRODUCT(Atomic::dec(&_instance_count);)
   481 }
   483 void* Arena::operator new(size_t size) throw() {
   484   assert(false, "Use dynamic memory type binding");
   485   return NULL;
   486 }
   488 void* Arena::operator new (size_t size, const std::nothrow_t&  nothrow_constant) throw() {
   489   assert(false, "Use dynamic memory type binding");
   490   return NULL;
   491 }
   493   // dynamic memory type binding
   494 void* Arena::operator new(size_t size, MEMFLAGS flags) throw() {
   495 #ifdef ASSERT
   496   void* p = (void*)AllocateHeap(size, flags|otArena, CALLER_PC);
   497   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   498   return p;
   499 #else
   500   return (void *) AllocateHeap(size, flags|otArena, CALLER_PC);
   501 #endif
   502 }
   504 void* Arena::operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw() {
   505 #ifdef ASSERT
   506   void* p = os::malloc(size, flags|otArena, CALLER_PC);
   507   if (PrintMallocFree) trace_heap_malloc(size, "Arena-new", p);
   508   return p;
   509 #else
   510   return os::malloc(size, flags|otArena, CALLER_PC);
   511 #endif
   512 }
   514 void Arena::operator delete(void* p) {
   515   FreeHeap(p);
   516 }
   518 // Destroy this arenas contents and reset to empty
   519 void Arena::destruct_contents() {
   520   if (UseMallocOnly && _first != NULL) {
   521     char* end = _first->next() ? _first->top() : _hwm;
   522     free_malloced_objects(_first, _first->bottom(), end, _hwm);
   523   }
   524   // reset size before chop to avoid a rare racing condition
   525   // that can have total arena memory exceed total chunk memory
   526   set_size_in_bytes(0);
   527   _first->chop();
   528   reset();
   529 }
   531 // This is high traffic method, but many calls actually don't
   532 // change the size
   533 void Arena::set_size_in_bytes(size_t size) {
   534   if (_size_in_bytes != size) {
   535     _size_in_bytes = size;
   536     MemTracker::record_arena_size((address)this, size);
   537   }
   538 }
   540 // Total of all Chunks in arena
   541 size_t Arena::used() const {
   542   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
   543   register Chunk *k = _first;
   544   while( k != _chunk) {         // Whilst have Chunks in a row
   545     sum += k->length();         // Total size of this Chunk
   546     k = k->next();              // Bump along to next Chunk
   547   }
   548   return sum;                   // Return total consumed space.
   549 }
   551 void Arena::signal_out_of_memory(size_t sz, const char* whence) const {
   552   vm_exit_out_of_memory(sz, OOM_MALLOC_ERROR, whence);
   553 }
   555 // Grow a new Chunk
   556 void* Arena::grow(size_t x, AllocFailType alloc_failmode) {
   557   // Get minimal required size.  Either real big, or even bigger for giant objs
   558   size_t len = MAX2(x, (size_t) Chunk::size);
   560   Chunk *k = _chunk;            // Get filled-up chunk address
   561   _chunk = new (alloc_failmode, len) Chunk(len);
   563   if (_chunk == NULL) {
   564     _chunk = k;                 // restore the previous value of _chunk
   565     return NULL;
   566   }
   567   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
   568   else _first = _chunk;
   569   _hwm  = _chunk->bottom();     // Save the cached hwm, max
   570   _max =  _chunk->top();
   571   set_size_in_bytes(size_in_bytes() + len);
   572   void* result = _hwm;
   573   _hwm += x;
   574   return result;
   575 }
   579 // Reallocate storage in Arena.
   580 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size, AllocFailType alloc_failmode) {
   581   assert(new_size >= 0, "bad size");
   582   if (new_size == 0) return NULL;
   583 #ifdef ASSERT
   584   if (UseMallocOnly) {
   585     // always allocate a new object  (otherwise we'll free this one twice)
   586     char* copy = (char*)Amalloc(new_size, alloc_failmode);
   587     if (copy == NULL) {
   588       return NULL;
   589     }
   590     size_t n = MIN2(old_size, new_size);
   591     if (n > 0) memcpy(copy, old_ptr, n);
   592     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
   593     return copy;
   594   }
   595 #endif
   596   char *c_old = (char*)old_ptr; // Handy name
   597   // Stupid fast special case
   598   if( new_size <= old_size ) {  // Shrink in-place
   599     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
   600       _hwm = c_old+new_size;    // Adjust hwm
   601     return c_old;
   602   }
   604   // make sure that new_size is legal
   605   size_t corrected_new_size = ARENA_ALIGN(new_size);
   607   // See if we can resize in-place
   608   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
   609       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
   610     _hwm = c_old+corrected_new_size;      // Adjust hwm
   611     return c_old;               // Return old pointer
   612   }
   614   // Oops, got to relocate guts
   615   void *new_ptr = Amalloc(new_size, alloc_failmode);
   616   if (new_ptr == NULL) {
   617     return NULL;
   618   }
   619   memcpy( new_ptr, c_old, old_size );
   620   Afree(c_old,old_size);        // Mostly done to keep stats accurate
   621   return new_ptr;
   622 }
   625 // Determine if pointer belongs to this Arena or not.
   626 bool Arena::contains( const void *ptr ) const {
   627 #ifdef ASSERT
   628   if (UseMallocOnly) {
   629     // really slow, but not easy to make fast
   630     if (_chunk == NULL) return false;
   631     char** bottom = (char**)_chunk->bottom();
   632     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
   633       if (*p == ptr) return true;
   634     }
   635     for (Chunk *c = _first; c != NULL; c = c->next()) {
   636       if (c == _chunk) continue;  // current chunk has been processed
   637       char** bottom = (char**)c->bottom();
   638       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
   639         if (*p == ptr) return true;
   640       }
   641     }
   642     return false;
   643   }
   644 #endif
   645   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
   646     return true;                // Check for in this chunk
   647   for (Chunk *c = _first; c; c = c->next()) {
   648     if (c == _chunk) continue;  // current chunk has been processed
   649     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
   650       return true;              // Check for every chunk in Arena
   651     }
   652   }
   653   return false;                 // Not in any Chunk, so not in Arena
   654 }
   657 #ifdef ASSERT
   658 void* Arena::malloc(size_t size) {
   659   assert(UseMallocOnly, "shouldn't call");
   660   // use malloc, but save pointer in res. area for later freeing
   661   char** save = (char**)internal_malloc_4(sizeof(char*));
   662   return (*save = (char*)os::malloc(size, mtChunk));
   663 }
   665 // for debugging with UseMallocOnly
   666 void* Arena::internal_malloc_4(size_t x) {
   667   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
   668   check_for_overflow(x, "Arena::internal_malloc_4");
   669   if (_hwm + x > _max) {
   670     return grow(x);
   671   } else {
   672     char *old = _hwm;
   673     _hwm += x;
   674     return old;
   675   }
   676 }
   677 #endif
   680 //--------------------------------------------------------------------------------------
   681 // Non-product code
   683 #ifndef PRODUCT
   684 // The global operator new should never be called since it will usually indicate
   685 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
   686 // that they're allocated on the C heap.
   687 // Commented out in product version to avoid conflicts with third-party C++ native code.
   688 // On certain platforms, such as Mac OS X (Darwin), in debug version, new is being called
   689 // from jdk source and causing data corruption. Such as
   690 //  Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair
   691 // define ALLOW_OPERATOR_NEW_USAGE for platform on which global operator new allowed.
   692 //
   693 #ifndef ALLOW_OPERATOR_NEW_USAGE
   694 void* operator new(size_t size) throw() {
   695   assert(false, "Should not call global operator new");
   696   return 0;
   697 }
   699 void* operator new [](size_t size) throw() {
   700   assert(false, "Should not call global operator new[]");
   701   return 0;
   702 }
   704 void* operator new(size_t size, const std::nothrow_t&  nothrow_constant) throw() {
   705   assert(false, "Should not call global operator new");
   706   return 0;
   707 }
   709 void* operator new [](size_t size, std::nothrow_t&  nothrow_constant) throw() {
   710   assert(false, "Should not call global operator new[]");
   711   return 0;
   712 }
   714 void operator delete(void* p) {
   715   assert(false, "Should not call global delete");
   716 }
   718 void operator delete [](void* p) {
   719   assert(false, "Should not call global delete []");
   720 }
   721 #endif // ALLOW_OPERATOR_NEW_USAGE
   723 void AllocatedObj::print() const       { print_on(tty); }
   724 void AllocatedObj::print_value() const { print_value_on(tty); }
   726 void AllocatedObj::print_on(outputStream* st) const {
   727   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
   728 }
   730 void AllocatedObj::print_value_on(outputStream* st) const {
   731   st->print("AllocatedObj(" INTPTR_FORMAT ")", p2i(this));
   732 }
   734 julong Arena::_bytes_allocated = 0;
   736 void Arena::inc_bytes_allocated(size_t x) { inc_stat_counter(&_bytes_allocated, x); }
   738 AllocStats::AllocStats() {
   739   start_mallocs      = os::num_mallocs;
   740   start_frees        = os::num_frees;
   741   start_malloc_bytes = os::alloc_bytes;
   742   start_mfree_bytes  = os::free_bytes;
   743   start_res_bytes    = Arena::_bytes_allocated;
   744 }
   746 julong  AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
   747 julong  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
   748 julong  AllocStats::num_frees()   { return os::num_frees - start_frees; }
   749 julong  AllocStats::free_bytes()  { return os::free_bytes - start_mfree_bytes; }
   750 julong  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
   751 void    AllocStats::print() {
   752   tty->print_cr(UINT64_FORMAT " mallocs (" UINT64_FORMAT "MB), "
   753                 UINT64_FORMAT" frees (" UINT64_FORMAT "MB), " UINT64_FORMAT "MB resrc",
   754                 num_mallocs(), alloc_bytes()/M, num_frees(), free_bytes()/M, resource_bytes()/M);
   755 }
   758 // debugging code
   759 inline void Arena::free_all(char** start, char** end) {
   760   for (char** p = start; p < end; p++) if (*p) os::free(*p);
   761 }
   763 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
   764   assert(UseMallocOnly, "should not call");
   765   // free all objects malloced since resource mark was created; resource area
   766   // contains their addresses
   767   if (chunk->next()) {
   768     // this chunk is full, and some others too
   769     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
   770       char* top = c->top();
   771       if (c->next() == NULL) {
   772         top = hwm2;     // last junk is only used up to hwm2
   773         assert(c->contains(hwm2), "bad hwm2");
   774       }
   775       free_all((char**)c->bottom(), (char**)top);
   776     }
   777     assert(chunk->contains(hwm), "bad hwm");
   778     assert(chunk->contains(max), "bad max");
   779     free_all((char**)hwm, (char**)max);
   780   } else {
   781     // this chunk was partially used
   782     assert(chunk->contains(hwm), "bad hwm");
   783     assert(chunk->contains(hwm2), "bad hwm2");
   784     free_all((char**)hwm, (char**)hwm2);
   785   }
   786 }
   789 ReallocMark::ReallocMark() {
   790 #ifdef ASSERT
   791   Thread *thread = ThreadLocalStorage::get_thread_slow();
   792   _nesting = thread->resource_area()->nesting();
   793 #endif
   794 }
   796 void ReallocMark::check() {
   797 #ifdef ASSERT
   798   if (_nesting != Thread::current()->resource_area()->nesting()) {
   799     fatal("allocation bug: array could grow within nested ResourceMark");
   800   }
   801 #endif
   802 }
   804 #endif // Non-product

mercurial