src/share/vm/gc_implementation/g1/heapRegion.hpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6680
78bbf4d43a14
parent 0
f90c822e73f8
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    35 #include "utilities/macros.hpp"
    37 #if INCLUDE_ALL_GCS
    39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    40 // can be collected independently.
    42 // NOTE: Although a HeapRegion is a Space, its
    43 // Space::initDirtyCardClosure method must not be called.
    44 // The problem is that the existence of this method breaks
    45 // the independence of barrier sets from remembered sets.
    46 // The solution is to remove this method from the definition
    47 // of a Space.
    49 class CompactibleSpace;
    50 class ContiguousSpace;
    51 class HeapRegionRemSet;
    52 class HeapRegionRemSetIterator;
    53 class HeapRegion;
    54 class HeapRegionSetBase;
    55 class nmethod;
    57 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    58 #define HR_FORMAT_PARAMS(_hr_) \
    59                 (_hr_)->hrs_index(), \
    60                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
    61                 (_hr_)->startsHumongous() ? "HS" : \
    62                 (_hr_)->continuesHumongous() ? "HC" : \
    63                 !(_hr_)->is_empty() ? "O" : "F", \
    64                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
    66 // sentinel value for hrs_index
    67 #define G1_NULL_HRS_INDEX ((uint) -1)
    69 // A dirty card to oop closure for heap regions. It
    70 // knows how to get the G1 heap and how to use the bitmap
    71 // in the concurrent marker used by G1 to filter remembered
    72 // sets.
    74 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    75 public:
    76   // Specification of possible DirtyCardToOopClosure filtering.
    77   enum FilterKind {
    78     NoFilterKind,
    79     IntoCSFilterKind,
    80     OutOfRegionFilterKind
    81   };
    83 protected:
    84   HeapRegion* _hr;
    85   FilterKind _fk;
    86   G1CollectedHeap* _g1;
    88   void walk_mem_region_with_cl(MemRegion mr,
    89                                HeapWord* bottom, HeapWord* top,
    90                                ExtendedOopClosure* cl);
    92   // We don't specialize this for FilteringClosure; filtering is handled by
    93   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    94   // warning.
    95   void walk_mem_region_with_cl(MemRegion mr,
    96                                HeapWord* bottom, HeapWord* top,
    97                                FilteringClosure* cl) {
    98     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    99                                              (ExtendedOopClosure*)cl);
   100   }
   102   // Get the actual top of the area on which the closure will
   103   // operate, given where the top is assumed to be (the end of the
   104   // memory region passed to do_MemRegion) and where the object
   105   // at the top is assumed to start. For example, an object may
   106   // start at the top but actually extend past the assumed top,
   107   // in which case the top becomes the end of the object.
   108   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
   109     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
   110   }
   112   // Walk the given memory region from bottom to (actual) top
   113   // looking for objects and applying the oop closure (_cl) to
   114   // them. The base implementation of this treats the area as
   115   // blocks, where a block may or may not be an object. Sub-
   116   // classes should override this to provide more accurate
   117   // or possibly more efficient walking.
   118   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   119     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   120   }
   122 public:
   123   HeapRegionDCTOC(G1CollectedHeap* g1,
   124                   HeapRegion* hr, ExtendedOopClosure* cl,
   125                   CardTableModRefBS::PrecisionStyle precision,
   126                   FilterKind fk);
   127 };
   129 // The complicating factor is that BlockOffsetTable diverged
   130 // significantly, and we need functionality that is only in the G1 version.
   131 // So I copied that code, which led to an alternate G1 version of
   132 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   133 // be reconciled, then G1OffsetTableContigSpace could go away.
   135 // The idea behind time stamps is the following. Doing a save_marks on
   136 // all regions at every GC pause is time consuming (if I remember
   137 // well, 10ms or so). So, we would like to do that only for regions
   138 // that are GC alloc regions. To achieve this, we use time
   139 // stamps. For every evacuation pause, G1CollectedHeap generates a
   140 // unique time stamp (essentially a counter that gets
   141 // incremented). Every time we want to call save_marks on a region,
   142 // we set the saved_mark_word to top and also copy the current GC
   143 // time stamp to the time stamp field of the space. Reading the
   144 // saved_mark_word involves checking the time stamp of the
   145 // region. If it is the same as the current GC time stamp, then we
   146 // can safely read the saved_mark_word field, as it is valid. If the
   147 // time stamp of the region is not the same as the current GC time
   148 // stamp, then we instead read top, as the saved_mark_word field is
   149 // invalid. Time stamps (on the regions and also on the
   150 // G1CollectedHeap) are reset at every cleanup (we iterate over
   151 // the regions anyway) and at the end of a Full GC. The current scheme
   152 // that uses sequential unsigned ints will fail only if we have 4b
   153 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   155 class G1OffsetTableContigSpace: public ContiguousSpace {
   156   friend class VMStructs;
   157  protected:
   158   G1BlockOffsetArrayContigSpace _offsets;
   159   Mutex _par_alloc_lock;
   160   volatile unsigned _gc_time_stamp;
   161   // When we need to retire an allocation region, while other threads
   162   // are also concurrently trying to allocate into it, we typically
   163   // allocate a dummy object at the end of the region to ensure that
   164   // no more allocations can take place in it. However, sometimes we
   165   // want to know where the end of the last "real" object we allocated
   166   // into the region was and this is what this keeps track.
   167   HeapWord* _pre_dummy_top;
   169  public:
   170   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   171                            MemRegion mr);
   173   void set_bottom(HeapWord* value);
   174   void set_end(HeapWord* value);
   176   virtual HeapWord* saved_mark_word() const;
   177   virtual void set_saved_mark();
   178   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   179   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
   181   // See the comment above in the declaration of _pre_dummy_top for an
   182   // explanation of what it is.
   183   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
   184     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
   185     _pre_dummy_top = pre_dummy_top;
   186   }
   187   HeapWord* pre_dummy_top() {
   188     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
   189   }
   190   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
   192   virtual void clear(bool mangle_space);
   194   HeapWord* block_start(const void* p);
   195   HeapWord* block_start_const(const void* p) const;
   197   // Add offset table update.
   198   virtual HeapWord* allocate(size_t word_size);
   199   HeapWord* par_allocate(size_t word_size);
   201   // MarkSweep support phase3
   202   virtual HeapWord* initialize_threshold();
   203   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   205   virtual void print() const;
   207   void reset_bot() {
   208     _offsets.zero_bottom_entry();
   209     _offsets.initialize_threshold();
   210   }
   212   void update_bot_for_object(HeapWord* start, size_t word_size) {
   213     _offsets.alloc_block(start, word_size);
   214   }
   216   void print_bot_on(outputStream* out) {
   217     _offsets.print_on(out);
   218   }
   219 };
   221 class HeapRegion: public G1OffsetTableContigSpace {
   222   friend class VMStructs;
   223  private:
   225   enum HumongousType {
   226     NotHumongous = 0,
   227     StartsHumongous,
   228     ContinuesHumongous
   229   };
   231   // Requires that the region "mr" be dense with objects, and begin and end
   232   // with an object.
   233   void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
   235   // The remembered set for this region.
   236   // (Might want to make this "inline" later, to avoid some alloc failure
   237   // issues.)
   238   HeapRegionRemSet* _rem_set;
   240   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   242  protected:
   243   // The index of this region in the heap region sequence.
   244   uint  _hrs_index;
   246   HumongousType _humongous_type;
   247   // For a humongous region, region in which it starts.
   248   HeapRegion* _humongous_start_region;
   249   // For the start region of a humongous sequence, it's original end().
   250   HeapWord* _orig_end;
   252   // True iff the region is in current collection_set.
   253   bool _in_collection_set;
   255   // True iff an attempt to evacuate an object in the region failed.
   256   bool _evacuation_failed;
   258   // A heap region may be a member one of a number of special subsets, each
   259   // represented as linked lists through the field below.  Currently, these
   260   // sets include:
   261   //   The collection set.
   262   //   The set of allocation regions used in a collection pause.
   263   //   Spaces that may contain gray objects.
   264   HeapRegion* _next_in_special_set;
   266   // next region in the young "generation" region set
   267   HeapRegion* _next_young_region;
   269   // Next region whose cards need cleaning
   270   HeapRegion* _next_dirty_cards_region;
   272   // Fields used by the HeapRegionSetBase class and subclasses.
   273   HeapRegion* _next;
   274   HeapRegion* _prev;
   275 #ifdef ASSERT
   276   HeapRegionSetBase* _containing_set;
   277 #endif // ASSERT
   278   bool _pending_removal;
   280   // For parallel heapRegion traversal.
   281   jint _claimed;
   283   // We use concurrent marking to determine the amount of live data
   284   // in each heap region.
   285   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   286   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   288   // The calculated GC efficiency of the region.
   289   double _gc_efficiency;
   291   enum YoungType {
   292     NotYoung,                   // a region is not young
   293     Young,                      // a region is young
   294     Survivor                    // a region is young and it contains survivors
   295   };
   297   volatile YoungType _young_type;
   298   int  _young_index_in_cset;
   299   SurvRateGroup* _surv_rate_group;
   300   int  _age_index;
   302   // The start of the unmarked area. The unmarked area extends from this
   303   // word until the top and/or end of the region, and is the part
   304   // of the region for which no marking was done, i.e. objects may
   305   // have been allocated in this part since the last mark phase.
   306   // "prev" is the top at the start of the last completed marking.
   307   // "next" is the top at the start of the in-progress marking (if any.)
   308   HeapWord* _prev_top_at_mark_start;
   309   HeapWord* _next_top_at_mark_start;
   310   // If a collection pause is in progress, this is the top at the start
   311   // of that pause.
   313   void init_top_at_mark_start() {
   314     assert(_prev_marked_bytes == 0 &&
   315            _next_marked_bytes == 0,
   316            "Must be called after zero_marked_bytes.");
   317     HeapWord* bot = bottom();
   318     _prev_top_at_mark_start = bot;
   319     _next_top_at_mark_start = bot;
   320   }
   322   void set_young_type(YoungType new_type) {
   323     //assert(_young_type != new_type, "setting the same type" );
   324     // TODO: add more assertions here
   325     _young_type = new_type;
   326   }
   328   // Cached attributes used in the collection set policy information
   330   // The RSet length that was added to the total value
   331   // for the collection set.
   332   size_t _recorded_rs_length;
   334   // The predicted elapsed time that was added to total value
   335   // for the collection set.
   336   double _predicted_elapsed_time_ms;
   338   // The predicted number of bytes to copy that was added to
   339   // the total value for the collection set.
   340   size_t _predicted_bytes_to_copy;
   342  public:
   343   HeapRegion(uint hrs_index,
   344              G1BlockOffsetSharedArray* sharedOffsetArray,
   345              MemRegion mr);
   347   static int    LogOfHRGrainBytes;
   348   static int    LogOfHRGrainWords;
   350   static size_t GrainBytes;
   351   static size_t GrainWords;
   352   static size_t CardsPerRegion;
   354   static size_t align_up_to_region_byte_size(size_t sz) {
   355     return (sz + (size_t) GrainBytes - 1) &
   356                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
   357   }
   359   static size_t max_region_size();
   361   // It sets up the heap region size (GrainBytes / GrainWords), as
   362   // well as other related fields that are based on the heap region
   363   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   364   // CardsPerRegion). All those fields are considered constant
   365   // throughout the JVM's execution, therefore they should only be set
   366   // up once during initialization time.
   367   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
   369   enum ClaimValues {
   370     InitialClaimValue          = 0,
   371     FinalCountClaimValue       = 1,
   372     NoteEndClaimValue          = 2,
   373     ScrubRemSetClaimValue      = 3,
   374     ParVerifyClaimValue        = 4,
   375     RebuildRSClaimValue        = 5,
   376     ParEvacFailureClaimValue   = 6,
   377     AggregateCountClaimValue   = 7,
   378     VerifyCountClaimValue      = 8,
   379     ParMarkRootClaimValue      = 9
   380   };
   382   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   383     assert(is_young(), "we can only skip BOT updates on young regions");
   384     return ContiguousSpace::par_allocate(word_size);
   385   }
   386   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   387     assert(is_young(), "we can only skip BOT updates on young regions");
   388     return ContiguousSpace::allocate(word_size);
   389   }
   391   // If this region is a member of a HeapRegionSeq, the index in that
   392   // sequence, otherwise -1.
   393   uint hrs_index() const { return _hrs_index; }
   395   // The number of bytes marked live in the region in the last marking phase.
   396   size_t marked_bytes()    { return _prev_marked_bytes; }
   397   size_t live_bytes() {
   398     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
   399   }
   401   // The number of bytes counted in the next marking.
   402   size_t next_marked_bytes() { return _next_marked_bytes; }
   403   // The number of bytes live wrt the next marking.
   404   size_t next_live_bytes() {
   405     return
   406       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
   407   }
   409   // A lower bound on the amount of garbage bytes in the region.
   410   size_t garbage_bytes() {
   411     size_t used_at_mark_start_bytes =
   412       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   413     assert(used_at_mark_start_bytes >= marked_bytes(),
   414            "Can't mark more than we have.");
   415     return used_at_mark_start_bytes - marked_bytes();
   416   }
   418   // Return the amount of bytes we'll reclaim if we collect this
   419   // region. This includes not only the known garbage bytes in the
   420   // region but also any unallocated space in it, i.e., [top, end),
   421   // since it will also be reclaimed if we collect the region.
   422   size_t reclaimable_bytes() {
   423     size_t known_live_bytes = live_bytes();
   424     assert(known_live_bytes <= capacity(), "sanity");
   425     return capacity() - known_live_bytes;
   426   }
   428   // An upper bound on the number of live bytes in the region.
   429   size_t max_live_bytes() { return used() - garbage_bytes(); }
   431   void add_to_marked_bytes(size_t incr_bytes) {
   432     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   433     assert(_next_marked_bytes <= used(), "invariant" );
   434   }
   436   void zero_marked_bytes()      {
   437     _prev_marked_bytes = _next_marked_bytes = 0;
   438   }
   440   bool isHumongous() const { return _humongous_type != NotHumongous; }
   441   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   442   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   443   // For a humongous region, region in which it starts.
   444   HeapRegion* humongous_start_region() const {
   445     return _humongous_start_region;
   446   }
   448   // Return the number of distinct regions that are covered by this region:
   449   // 1 if the region is not humongous, >= 1 if the region is humongous.
   450   uint region_num() const {
   451     if (!isHumongous()) {
   452       return 1U;
   453     } else {
   454       assert(startsHumongous(), "doesn't make sense on HC regions");
   455       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
   456       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
   457     }
   458   }
   460   // Return the index + 1 of the last HC regions that's associated
   461   // with this HS region.
   462   uint last_hc_index() const {
   463     assert(startsHumongous(), "don't call this otherwise");
   464     return hrs_index() + region_num();
   465   }
   467   // Same as Space::is_in_reserved, but will use the original size of the region.
   468   // The original size is different only for start humongous regions. They get
   469   // their _end set up to be the end of the last continues region of the
   470   // corresponding humongous object.
   471   bool is_in_reserved_raw(const void* p) const {
   472     return _bottom <= p && p < _orig_end;
   473   }
   475   // Makes the current region be a "starts humongous" region, i.e.,
   476   // the first region in a series of one or more contiguous regions
   477   // that will contain a single "humongous" object. The two parameters
   478   // are as follows:
   479   //
   480   // new_top : The new value of the top field of this region which
   481   // points to the end of the humongous object that's being
   482   // allocated. If there is more than one region in the series, top
   483   // will lie beyond this region's original end field and on the last
   484   // region in the series.
   485   //
   486   // new_end : The new value of the end field of this region which
   487   // points to the end of the last region in the series. If there is
   488   // one region in the series (namely: this one) end will be the same
   489   // as the original end of this region.
   490   //
   491   // Updating top and end as described above makes this region look as
   492   // if it spans the entire space taken up by all the regions in the
   493   // series and an single allocation moved its top to new_top. This
   494   // ensures that the space (capacity / allocated) taken up by all
   495   // humongous regions can be calculated by just looking at the
   496   // "starts humongous" regions and by ignoring the "continues
   497   // humongous" regions.
   498   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   500   // Makes the current region be a "continues humongous'
   501   // region. first_hr is the "start humongous" region of the series
   502   // which this region will be part of.
   503   void set_continuesHumongous(HeapRegion* first_hr);
   505   // Unsets the humongous-related fields on the region.
   506   void set_notHumongous();
   508   // If the region has a remembered set, return a pointer to it.
   509   HeapRegionRemSet* rem_set() const {
   510     return _rem_set;
   511   }
   513   // True iff the region is in current collection_set.
   514   bool in_collection_set() const {
   515     return _in_collection_set;
   516   }
   517   void set_in_collection_set(bool b) {
   518     _in_collection_set = b;
   519   }
   520   HeapRegion* next_in_collection_set() {
   521     assert(in_collection_set(), "should only invoke on member of CS.");
   522     assert(_next_in_special_set == NULL ||
   523            _next_in_special_set->in_collection_set(),
   524            "Malformed CS.");
   525     return _next_in_special_set;
   526   }
   527   void set_next_in_collection_set(HeapRegion* r) {
   528     assert(in_collection_set(), "should only invoke on member of CS.");
   529     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   530     _next_in_special_set = r;
   531   }
   533   // Methods used by the HeapRegionSetBase class and subclasses.
   535   // Getter and setter for the next and prev fields used to link regions into
   536   // linked lists.
   537   HeapRegion* next()              { return _next; }
   538   HeapRegion* prev()              { return _prev; }
   540   void set_next(HeapRegion* next) { _next = next; }
   541   void set_prev(HeapRegion* prev) { _prev = prev; }
   543   // Every region added to a set is tagged with a reference to that
   544   // set. This is used for doing consistency checking to make sure that
   545   // the contents of a set are as they should be and it's only
   546   // available in non-product builds.
   547 #ifdef ASSERT
   548   void set_containing_set(HeapRegionSetBase* containing_set) {
   549     assert((containing_set == NULL && _containing_set != NULL) ||
   550            (containing_set != NULL && _containing_set == NULL),
   551            err_msg("containing_set: "PTR_FORMAT" "
   552                    "_containing_set: "PTR_FORMAT,
   553                    p2i(containing_set), p2i(_containing_set)));
   555     _containing_set = containing_set;
   556   }
   558   HeapRegionSetBase* containing_set() { return _containing_set; }
   559 #else // ASSERT
   560   void set_containing_set(HeapRegionSetBase* containing_set) { }
   562   // containing_set() is only used in asserts so there's no reason
   563   // to provide a dummy version of it.
   564 #endif // ASSERT
   566   // If we want to remove regions from a list in bulk we can simply tag
   567   // them with the pending_removal tag and call the
   568   // remove_all_pending() method on the list.
   570   bool pending_removal() { return _pending_removal; }
   572   void set_pending_removal(bool pending_removal) {
   573     if (pending_removal) {
   574       assert(!_pending_removal && containing_set() != NULL,
   575              "can only set pending removal to true if it's false and "
   576              "the region belongs to a region set");
   577     } else {
   578       assert( _pending_removal && containing_set() == NULL,
   579               "can only set pending removal to false if it's true and "
   580               "the region does not belong to a region set");
   581     }
   583     _pending_removal = pending_removal;
   584   }
   586   HeapRegion* get_next_young_region() { return _next_young_region; }
   587   void set_next_young_region(HeapRegion* hr) {
   588     _next_young_region = hr;
   589   }
   591   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   592   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   593   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   594   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   596   HeapWord* orig_end() { return _orig_end; }
   598   // Allows logical separation between objects allocated before and after.
   599   void save_marks();
   601   // Reset HR stuff to default values.
   602   void hr_clear(bool par, bool clear_space, bool locked = false);
   603   void par_clear();
   605   // Get the start of the unmarked area in this region.
   606   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   607   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   609   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   610   // allocated in the current region before the last call to "save_mark".
   611   void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
   613   // Note the start or end of marking. This tells the heap region
   614   // that the collector is about to start or has finished (concurrently)
   615   // marking the heap.
   617   // Notify the region that concurrent marking is starting. Initialize
   618   // all fields related to the next marking info.
   619   inline void note_start_of_marking();
   621   // Notify the region that concurrent marking has finished. Copy the
   622   // (now finalized) next marking info fields into the prev marking
   623   // info fields.
   624   inline void note_end_of_marking();
   626   // Notify the region that it will be used as to-space during a GC
   627   // and we are about to start copying objects into it.
   628   inline void note_start_of_copying(bool during_initial_mark);
   630   // Notify the region that it ceases being to-space during a GC and
   631   // we will not copy objects into it any more.
   632   inline void note_end_of_copying(bool during_initial_mark);
   634   // Notify the region that we are about to start processing
   635   // self-forwarded objects during evac failure handling.
   636   void note_self_forwarding_removal_start(bool during_initial_mark,
   637                                           bool during_conc_mark);
   639   // Notify the region that we have finished processing self-forwarded
   640   // objects during evac failure handling.
   641   void note_self_forwarding_removal_end(bool during_initial_mark,
   642                                         bool during_conc_mark,
   643                                         size_t marked_bytes);
   645   // Returns "false" iff no object in the region was allocated when the
   646   // last mark phase ended.
   647   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   649   void reset_during_compaction() {
   650     assert(isHumongous() && startsHumongous(),
   651            "should only be called for starts humongous regions");
   653     zero_marked_bytes();
   654     init_top_at_mark_start();
   655   }
   657   void calc_gc_efficiency(void);
   658   double gc_efficiency() { return _gc_efficiency;}
   660   bool is_young() const     { return _young_type != NotYoung; }
   661   bool is_survivor() const  { return _young_type == Survivor; }
   663   int  young_index_in_cset() const { return _young_index_in_cset; }
   664   void set_young_index_in_cset(int index) {
   665     assert( (index == -1) || is_young(), "pre-condition" );
   666     _young_index_in_cset = index;
   667   }
   669   int age_in_surv_rate_group() {
   670     assert( _surv_rate_group != NULL, "pre-condition" );
   671     assert( _age_index > -1, "pre-condition" );
   672     return _surv_rate_group->age_in_group(_age_index);
   673   }
   675   void record_surv_words_in_group(size_t words_survived) {
   676     assert( _surv_rate_group != NULL, "pre-condition" );
   677     assert( _age_index > -1, "pre-condition" );
   678     int age_in_group = age_in_surv_rate_group();
   679     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   680   }
   682   int age_in_surv_rate_group_cond() {
   683     if (_surv_rate_group != NULL)
   684       return age_in_surv_rate_group();
   685     else
   686       return -1;
   687   }
   689   SurvRateGroup* surv_rate_group() {
   690     return _surv_rate_group;
   691   }
   693   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   694     assert( surv_rate_group != NULL, "pre-condition" );
   695     assert( _surv_rate_group == NULL, "pre-condition" );
   696     assert( is_young(), "pre-condition" );
   698     _surv_rate_group = surv_rate_group;
   699     _age_index = surv_rate_group->next_age_index();
   700   }
   702   void uninstall_surv_rate_group() {
   703     if (_surv_rate_group != NULL) {
   704       assert( _age_index > -1, "pre-condition" );
   705       assert( is_young(), "pre-condition" );
   707       _surv_rate_group = NULL;
   708       _age_index = -1;
   709     } else {
   710       assert( _age_index == -1, "pre-condition" );
   711     }
   712   }
   714   void set_young() { set_young_type(Young); }
   716   void set_survivor() { set_young_type(Survivor); }
   718   void set_not_young() { set_young_type(NotYoung); }
   720   // Determine if an object has been allocated since the last
   721   // mark performed by the collector. This returns true iff the object
   722   // is within the unmarked area of the region.
   723   bool obj_allocated_since_prev_marking(oop obj) const {
   724     return (HeapWord *) obj >= prev_top_at_mark_start();
   725   }
   726   bool obj_allocated_since_next_marking(oop obj) const {
   727     return (HeapWord *) obj >= next_top_at_mark_start();
   728   }
   730   // For parallel heapRegion traversal.
   731   bool claimHeapRegion(int claimValue);
   732   jint claim_value() { return _claimed; }
   733   // Use this carefully: only when you're sure no one is claiming...
   734   void set_claim_value(int claimValue) { _claimed = claimValue; }
   736   // Returns the "evacuation_failed" property of the region.
   737   bool evacuation_failed() { return _evacuation_failed; }
   739   // Sets the "evacuation_failed" property of the region.
   740   void set_evacuation_failed(bool b) {
   741     _evacuation_failed = b;
   743     if (b) {
   744       _next_marked_bytes = 0;
   745     }
   746   }
   748   // Requires that "mr" be entirely within the region.
   749   // Apply "cl->do_object" to all objects that intersect with "mr".
   750   // If the iteration encounters an unparseable portion of the region,
   751   // or if "cl->abort()" is true after a closure application,
   752   // terminate the iteration and return the address of the start of the
   753   // subregion that isn't done.  (The two can be distinguished by querying
   754   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   755   // completed.
   756   HeapWord*
   757   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   759   // filter_young: if true and the region is a young region then we
   760   // skip the iteration.
   761   // card_ptr: if not NULL, and we decide that the card is not young
   762   // and we iterate over it, we'll clean the card before we start the
   763   // iteration.
   764   HeapWord*
   765   oops_on_card_seq_iterate_careful(MemRegion mr,
   766                                    FilterOutOfRegionClosure* cl,
   767                                    bool filter_young,
   768                                    jbyte* card_ptr);
   770   // A version of block start that is guaranteed to find *some* block
   771   // boundary at or before "p", but does not object iteration, and may
   772   // therefore be used safely when the heap is unparseable.
   773   HeapWord* block_start_careful(const void* p) const {
   774     return _offsets.block_start_careful(p);
   775   }
   777   // Requires that "addr" is within the region.  Returns the start of the
   778   // first ("careful") block that starts at or after "addr", or else the
   779   // "end" of the region if there is no such block.
   780   HeapWord* next_block_start_careful(HeapWord* addr);
   782   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   783   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   784   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   786   void set_recorded_rs_length(size_t rs_length) {
   787     _recorded_rs_length = rs_length;
   788   }
   790   void set_predicted_elapsed_time_ms(double ms) {
   791     _predicted_elapsed_time_ms = ms;
   792   }
   794   void set_predicted_bytes_to_copy(size_t bytes) {
   795     _predicted_bytes_to_copy = bytes;
   796   }
   798 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   799   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   800   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   802   virtual CompactibleSpace* next_compaction_space() const;
   804   virtual void reset_after_compaction();
   806   // Routines for managing a list of code roots (attached to the
   807   // this region's RSet) that point into this heap region.
   808   void add_strong_code_root(nmethod* nm);
   809   void remove_strong_code_root(nmethod* nm);
   811   // During a collection, migrate the successfully evacuated
   812   // strong code roots that referenced into this region to the
   813   // new regions that they now point into. Unsuccessfully
   814   // evacuated code roots are not migrated.
   815   void migrate_strong_code_roots();
   817   // Applies blk->do_code_blob() to each of the entries in
   818   // the strong code roots list for this region
   819   void strong_code_roots_do(CodeBlobClosure* blk) const;
   821   // Verify that the entries on the strong code root list for this
   822   // region are live and include at least one pointer into this region.
   823   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
   825   void print() const;
   826   void print_on(outputStream* st) const;
   828   // vo == UsePrevMarking  -> use "prev" marking information,
   829   // vo == UseNextMarking -> use "next" marking information
   830   // vo == UseMarkWord    -> use the mark word in the object header
   831   //
   832   // NOTE: Only the "prev" marking information is guaranteed to be
   833   // consistent most of the time, so most calls to this should use
   834   // vo == UsePrevMarking.
   835   // Currently, there is only one case where this is called with
   836   // vo == UseNextMarking, which is to verify the "next" marking
   837   // information at the end of remark.
   838   // Currently there is only one place where this is called with
   839   // vo == UseMarkWord, which is to verify the marking during a
   840   // full GC.
   841   void verify(VerifyOption vo, bool *failures) const;
   843   // Override; it uses the "prev" marking information
   844   virtual void verify() const;
   845 };
   847 // HeapRegionClosure is used for iterating over regions.
   848 // Terminates the iteration when the "doHeapRegion" method returns "true".
   849 class HeapRegionClosure : public StackObj {
   850   friend class HeapRegionSeq;
   851   friend class G1CollectedHeap;
   853   bool _complete;
   854   void incomplete() { _complete = false; }
   856  public:
   857   HeapRegionClosure(): _complete(true) {}
   859   // Typically called on each region until it returns true.
   860   virtual bool doHeapRegion(HeapRegion* r) = 0;
   862   // True after iteration if the closure was applied to all heap regions
   863   // and returned "false" in all cases.
   864   bool complete() { return _complete; }
   865 };
   867 #endif // INCLUDE_ALL_GCS
   869 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial