src/share/vm/gc_implementation/g1/heapRegion.cpp

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6680
78bbf4d43a14
parent 0
f90c822e73f8
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/nmethod.hpp"
    27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    30 #include "gc_implementation/g1/heapRegion.inline.hpp"
    31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    33 #include "memory/genOopClosures.inline.hpp"
    34 #include "memory/iterator.hpp"
    35 #include "oops/oop.inline.hpp"
    37 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    39 int    HeapRegion::LogOfHRGrainBytes = 0;
    40 int    HeapRegion::LogOfHRGrainWords = 0;
    41 size_t HeapRegion::GrainBytes        = 0;
    42 size_t HeapRegion::GrainWords        = 0;
    43 size_t HeapRegion::CardsPerRegion    = 0;
    45 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    46                                  HeapRegion* hr, ExtendedOopClosure* cl,
    47                                  CardTableModRefBS::PrecisionStyle precision,
    48                                  FilterKind fk) :
    49   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
    50   _hr(hr), _fk(fk), _g1(g1) { }
    52 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    53                                                    OopClosure* oc) :
    54   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
    56 template<class ClosureType>
    57 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
    58                                HeapRegion* hr,
    59                                HeapWord* cur, HeapWord* top) {
    60   oop cur_oop = oop(cur);
    61   int oop_size = cur_oop->size();
    62   HeapWord* next_obj = cur + oop_size;
    63   while (next_obj < top) {
    64     // Keep filtering the remembered set.
    65     if (!g1h->is_obj_dead(cur_oop, hr)) {
    66       // Bottom lies entirely below top, so we can call the
    67       // non-memRegion version of oop_iterate below.
    68       cur_oop->oop_iterate(cl);
    69     }
    70     cur = next_obj;
    71     cur_oop = oop(cur);
    72     oop_size = cur_oop->size();
    73     next_obj = cur + oop_size;
    74   }
    75   return cur;
    76 }
    78 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
    79                                               HeapWord* bottom,
    80                                               HeapWord* top,
    81                                               ExtendedOopClosure* cl) {
    82   G1CollectedHeap* g1h = _g1;
    83   int oop_size;
    84   ExtendedOopClosure* cl2 = NULL;
    86   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
    87   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
    89   switch (_fk) {
    90   case NoFilterKind:          cl2 = cl; break;
    91   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
    92   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
    93   default:                    ShouldNotReachHere();
    94   }
    96   // Start filtering what we add to the remembered set. If the object is
    97   // not considered dead, either because it is marked (in the mark bitmap)
    98   // or it was allocated after marking finished, then we add it. Otherwise
    99   // we can safely ignore the object.
   100   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   101     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   102   } else {
   103     oop_size = oop(bottom)->size();
   104   }
   106   bottom += oop_size;
   108   if (bottom < top) {
   109     // We replicate the loop below for several kinds of possible filters.
   110     switch (_fk) {
   111     case NoFilterKind:
   112       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
   113       break;
   115     case IntoCSFilterKind: {
   116       FilterIntoCSClosure filt(this, g1h, cl);
   117       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   118       break;
   119     }
   121     case OutOfRegionFilterKind: {
   122       FilterOutOfRegionClosure filt(_hr, cl);
   123       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   124       break;
   125     }
   127     default:
   128       ShouldNotReachHere();
   129     }
   131     // Last object. Need to do dead-obj filtering here too.
   132     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   133       oop(bottom)->oop_iterate(cl2, mr);
   134     }
   135   }
   136 }
   138 // Minimum region size; we won't go lower than that.
   139 // We might want to decrease this in the future, to deal with small
   140 // heaps a bit more efficiently.
   141 #define MIN_REGION_SIZE  (      1024 * 1024 )
   143 // Maximum region size; we don't go higher than that. There's a good
   144 // reason for having an upper bound. We don't want regions to get too
   145 // large, otherwise cleanup's effectiveness would decrease as there
   146 // will be fewer opportunities to find totally empty regions after
   147 // marking.
   148 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   150 // The automatic region size calculation will try to have around this
   151 // many regions in the heap (based on the min heap size).
   152 #define TARGET_REGION_NUMBER          2048
   154 size_t HeapRegion::max_region_size() {
   155   return (size_t)MAX_REGION_SIZE;
   156 }
   158 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
   159   uintx region_size = G1HeapRegionSize;
   160   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   161     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
   162     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
   163                        (uintx) MIN_REGION_SIZE);
   164   }
   166   int region_size_log = log2_long((jlong) region_size);
   167   // Recalculate the region size to make sure it's a power of
   168   // 2. This means that region_size is the largest power of 2 that's
   169   // <= what we've calculated so far.
   170   region_size = ((uintx)1 << region_size_log);
   172   // Now make sure that we don't go over or under our limits.
   173   if (region_size < MIN_REGION_SIZE) {
   174     region_size = MIN_REGION_SIZE;
   175   } else if (region_size > MAX_REGION_SIZE) {
   176     region_size = MAX_REGION_SIZE;
   177   }
   179   // And recalculate the log.
   180   region_size_log = log2_long((jlong) region_size);
   182   // Now, set up the globals.
   183   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   184   LogOfHRGrainBytes = region_size_log;
   186   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   187   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   189   guarantee(GrainBytes == 0, "we should only set it once");
   190   // The cast to int is safe, given that we've bounded region_size by
   191   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   192   GrainBytes = (size_t)region_size;
   194   guarantee(GrainWords == 0, "we should only set it once");
   195   GrainWords = GrainBytes >> LogHeapWordSize;
   196   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
   198   guarantee(CardsPerRegion == 0, "we should only set it once");
   199   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   200 }
   202 void HeapRegion::reset_after_compaction() {
   203   G1OffsetTableContigSpace::reset_after_compaction();
   204   // After a compaction the mark bitmap is invalid, so we must
   205   // treat all objects as being inside the unmarked area.
   206   zero_marked_bytes();
   207   init_top_at_mark_start();
   208 }
   210 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
   211   assert(_humongous_type == NotHumongous,
   212          "we should have already filtered out humongous regions");
   213   assert(_humongous_start_region == NULL,
   214          "we should have already filtered out humongous regions");
   215   assert(_end == _orig_end,
   216          "we should have already filtered out humongous regions");
   218   _in_collection_set = false;
   220   set_young_index_in_cset(-1);
   221   uninstall_surv_rate_group();
   222   set_young_type(NotYoung);
   223   reset_pre_dummy_top();
   225   if (!par) {
   226     // If this is parallel, this will be done later.
   227     HeapRegionRemSet* hrrs = rem_set();
   228     if (locked) {
   229       hrrs->clear_locked();
   230     } else {
   231       hrrs->clear();
   232     }
   233     _claimed = InitialClaimValue;
   234   }
   235   zero_marked_bytes();
   237   _offsets.resize(HeapRegion::GrainWords);
   238   init_top_at_mark_start();
   239   if (clear_space) clear(SpaceDecorator::Mangle);
   240 }
   242 void HeapRegion::par_clear() {
   243   assert(used() == 0, "the region should have been already cleared");
   244   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
   245   HeapRegionRemSet* hrrs = rem_set();
   246   hrrs->clear();
   247   CardTableModRefBS* ct_bs =
   248                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
   249   ct_bs->clear(MemRegion(bottom(), end()));
   250 }
   252 void HeapRegion::calc_gc_efficiency() {
   253   // GC efficiency is the ratio of how much space would be
   254   // reclaimed over how long we predict it would take to reclaim it.
   255   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   256   G1CollectorPolicy* g1p = g1h->g1_policy();
   258   // Retrieve a prediction of the elapsed time for this region for
   259   // a mixed gc because the region will only be evacuated during a
   260   // mixed gc.
   261   double region_elapsed_time_ms =
   262     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
   263   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
   264 }
   266 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   267   assert(!isHumongous(), "sanity / pre-condition");
   268   assert(end() == _orig_end,
   269          "Should be normal before the humongous object allocation");
   270   assert(top() == bottom(), "should be empty");
   271   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   273   _humongous_type = StartsHumongous;
   274   _humongous_start_region = this;
   276   set_end(new_end);
   277   _offsets.set_for_starts_humongous(new_top);
   278 }
   280 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   281   assert(!isHumongous(), "sanity / pre-condition");
   282   assert(end() == _orig_end,
   283          "Should be normal before the humongous object allocation");
   284   assert(top() == bottom(), "should be empty");
   285   assert(first_hr->startsHumongous(), "pre-condition");
   287   _humongous_type = ContinuesHumongous;
   288   _humongous_start_region = first_hr;
   289 }
   291 void HeapRegion::set_notHumongous() {
   292   assert(isHumongous(), "pre-condition");
   294   if (startsHumongous()) {
   295     assert(top() <= end(), "pre-condition");
   296     set_end(_orig_end);
   297     if (top() > end()) {
   298       // at least one "continues humongous" region after it
   299       set_top(end());
   300     }
   301   } else {
   302     // continues humongous
   303     assert(end() == _orig_end, "sanity");
   304   }
   306   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
   307   _humongous_type = NotHumongous;
   308   _humongous_start_region = NULL;
   309 }
   311 bool HeapRegion::claimHeapRegion(jint claimValue) {
   312   jint current = _claimed;
   313   if (current != claimValue) {
   314     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   315     if (res == current) {
   316       return true;
   317     }
   318   }
   319   return false;
   320 }
   322 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   323   HeapWord* low = addr;
   324   HeapWord* high = end();
   325   while (low < high) {
   326     size_t diff = pointer_delta(high, low);
   327     // Must add one below to bias toward the high amount.  Otherwise, if
   328   // "high" were at the desired value, and "low" were one less, we
   329     // would not converge on "high".  This is not symmetric, because
   330     // we set "high" to a block start, which might be the right one,
   331     // which we don't do for "low".
   332     HeapWord* middle = low + (diff+1)/2;
   333     if (middle == high) return high;
   334     HeapWord* mid_bs = block_start_careful(middle);
   335     if (mid_bs < addr) {
   336       low = middle;
   337     } else {
   338       high = mid_bs;
   339     }
   340   }
   341   assert(low == high && low >= addr, "Didn't work.");
   342   return low;
   343 }
   345 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   346 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   347 #endif // _MSC_VER
   350 HeapRegion::HeapRegion(uint hrs_index,
   351                        G1BlockOffsetSharedArray* sharedOffsetArray,
   352                        MemRegion mr) :
   353     G1OffsetTableContigSpace(sharedOffsetArray, mr),
   354     _hrs_index(hrs_index),
   355     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   356     _in_collection_set(false),
   357     _next_in_special_set(NULL), _orig_end(NULL),
   358     _claimed(InitialClaimValue), _evacuation_failed(false),
   359     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
   360     _young_type(NotYoung), _next_young_region(NULL),
   361     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), _pending_removal(false),
   362 #ifdef ASSERT
   363     _containing_set(NULL),
   364 #endif // ASSERT
   365      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   366     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   367     _predicted_bytes_to_copy(0)
   368 {
   369   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
   370   _orig_end = mr.end();
   371   // Note that initialize() will set the start of the unmarked area of the
   372   // region.
   373   hr_clear(false /*par*/, false /*clear_space*/);
   374   set_top(bottom());
   375   set_saved_mark();
   377   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   378 }
   380 CompactibleSpace* HeapRegion::next_compaction_space() const {
   381   // We're not using an iterator given that it will wrap around when
   382   // it reaches the last region and this is not what we want here.
   383   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   384   uint index = hrs_index() + 1;
   385   while (index < g1h->n_regions()) {
   386     HeapRegion* hr = g1h->region_at(index);
   387     if (!hr->isHumongous()) {
   388       return hr;
   389     }
   390     index += 1;
   391   }
   392   return NULL;
   393 }
   395 void HeapRegion::save_marks() {
   396   set_saved_mark();
   397 }
   399 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
   400   HeapWord* p = mr.start();
   401   HeapWord* e = mr.end();
   402   oop obj;
   403   while (p < e) {
   404     obj = oop(p);
   405     p += obj->oop_iterate(cl);
   406   }
   407   assert(p == e, "bad memregion: doesn't end on obj boundary");
   408 }
   410 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   411 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
   412   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
   413 }
   414 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
   417 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
   418   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
   419 }
   421 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
   422                                                     bool during_conc_mark) {
   423   // We always recreate the prev marking info and we'll explicitly
   424   // mark all objects we find to be self-forwarded on the prev
   425   // bitmap. So all objects need to be below PTAMS.
   426   _prev_top_at_mark_start = top();
   427   _prev_marked_bytes = 0;
   429   if (during_initial_mark) {
   430     // During initial-mark, we'll also explicitly mark all objects
   431     // we find to be self-forwarded on the next bitmap. So all
   432     // objects need to be below NTAMS.
   433     _next_top_at_mark_start = top();
   434     _next_marked_bytes = 0;
   435   } else if (during_conc_mark) {
   436     // During concurrent mark, all objects in the CSet (including
   437     // the ones we find to be self-forwarded) are implicitly live.
   438     // So all objects need to be above NTAMS.
   439     _next_top_at_mark_start = bottom();
   440     _next_marked_bytes = 0;
   441   }
   442 }
   444 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
   445                                                   bool during_conc_mark,
   446                                                   size_t marked_bytes) {
   447   assert(0 <= marked_bytes && marked_bytes <= used(),
   448          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
   449                  marked_bytes, used()));
   450   _prev_marked_bytes = marked_bytes;
   451 }
   453 HeapWord*
   454 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   455                                                  ObjectClosure* cl) {
   456   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   457   // We used to use "block_start_careful" here.  But we're actually happy
   458   // to update the BOT while we do this...
   459   HeapWord* cur = block_start(mr.start());
   460   mr = mr.intersection(used_region());
   461   if (mr.is_empty()) return NULL;
   462   // Otherwise, find the obj that extends onto mr.start().
   464   assert(cur <= mr.start()
   465          && (oop(cur)->klass_or_null() == NULL ||
   466              cur + oop(cur)->size() > mr.start()),
   467          "postcondition of block_start");
   468   oop obj;
   469   while (cur < mr.end()) {
   470     obj = oop(cur);
   471     if (obj->klass_or_null() == NULL) {
   472       // Ran into an unparseable point.
   473       return cur;
   474     } else if (!g1h->is_obj_dead(obj)) {
   475       cl->do_object(obj);
   476     }
   477     if (cl->abort()) return cur;
   478     // The check above must occur before the operation below, since an
   479     // abort might invalidate the "size" operation.
   480     cur += obj->size();
   481   }
   482   return NULL;
   483 }
   485 HeapWord*
   486 HeapRegion::
   487 oops_on_card_seq_iterate_careful(MemRegion mr,
   488                                  FilterOutOfRegionClosure* cl,
   489                                  bool filter_young,
   490                                  jbyte* card_ptr) {
   491   // Currently, we should only have to clean the card if filter_young
   492   // is true and vice versa.
   493   if (filter_young) {
   494     assert(card_ptr != NULL, "pre-condition");
   495   } else {
   496     assert(card_ptr == NULL, "pre-condition");
   497   }
   498   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   500   // If we're within a stop-world GC, then we might look at a card in a
   501   // GC alloc region that extends onto a GC LAB, which may not be
   502   // parseable.  Stop such at the "saved_mark" of the region.
   503   if (g1h->is_gc_active()) {
   504     mr = mr.intersection(used_region_at_save_marks());
   505   } else {
   506     mr = mr.intersection(used_region());
   507   }
   508   if (mr.is_empty()) return NULL;
   509   // Otherwise, find the obj that extends onto mr.start().
   511   // The intersection of the incoming mr (for the card) and the
   512   // allocated part of the region is non-empty. This implies that
   513   // we have actually allocated into this region. The code in
   514   // G1CollectedHeap.cpp that allocates a new region sets the
   515   // is_young tag on the region before allocating. Thus we
   516   // safely know if this region is young.
   517   if (is_young() && filter_young) {
   518     return NULL;
   519   }
   521   assert(!is_young(), "check value of filter_young");
   523   // We can only clean the card here, after we make the decision that
   524   // the card is not young. And we only clean the card if we have been
   525   // asked to (i.e., card_ptr != NULL).
   526   if (card_ptr != NULL) {
   527     *card_ptr = CardTableModRefBS::clean_card_val();
   528     // We must complete this write before we do any of the reads below.
   529     OrderAccess::storeload();
   530   }
   532   // Cache the boundaries of the memory region in some const locals
   533   HeapWord* const start = mr.start();
   534   HeapWord* const end = mr.end();
   536   // We used to use "block_start_careful" here.  But we're actually happy
   537   // to update the BOT while we do this...
   538   HeapWord* cur = block_start(start);
   539   assert(cur <= start, "Postcondition");
   541   oop obj;
   543   HeapWord* next = cur;
   544   while (next <= start) {
   545     cur = next;
   546     obj = oop(cur);
   547     if (obj->klass_or_null() == NULL) {
   548       // Ran into an unparseable point.
   549       return cur;
   550     }
   551     // Otherwise...
   552     next = (cur + obj->size());
   553   }
   555   // If we finish the above loop...We have a parseable object that
   556   // begins on or before the start of the memory region, and ends
   557   // inside or spans the entire region.
   559   assert(obj == oop(cur), "sanity");
   560   assert(cur <= start &&
   561          obj->klass_or_null() != NULL &&
   562          (cur + obj->size()) > start,
   563          "Loop postcondition");
   565   if (!g1h->is_obj_dead(obj)) {
   566     obj->oop_iterate(cl, mr);
   567   }
   569   while (cur < end) {
   570     obj = oop(cur);
   571     if (obj->klass_or_null() == NULL) {
   572       // Ran into an unparseable point.
   573       return cur;
   574     };
   576     // Otherwise:
   577     next = (cur + obj->size());
   579     if (!g1h->is_obj_dead(obj)) {
   580       if (next < end || !obj->is_objArray()) {
   581         // This object either does not span the MemRegion
   582         // boundary, or if it does it's not an array.
   583         // Apply closure to whole object.
   584         obj->oop_iterate(cl);
   585       } else {
   586         // This obj is an array that spans the boundary.
   587         // Stop at the boundary.
   588         obj->oop_iterate(cl, mr);
   589       }
   590     }
   591     cur = next;
   592   }
   593   return NULL;
   594 }
   596 // Code roots support
   598 void HeapRegion::add_strong_code_root(nmethod* nm) {
   599   HeapRegionRemSet* hrrs = rem_set();
   600   hrrs->add_strong_code_root(nm);
   601 }
   603 void HeapRegion::remove_strong_code_root(nmethod* nm) {
   604   HeapRegionRemSet* hrrs = rem_set();
   605   hrrs->remove_strong_code_root(nm);
   606 }
   608 void HeapRegion::migrate_strong_code_roots() {
   609   assert(in_collection_set(), "only collection set regions");
   610   assert(!isHumongous(),
   611           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
   612                   HR_FORMAT_PARAMS(this)));
   614   HeapRegionRemSet* hrrs = rem_set();
   615   hrrs->migrate_strong_code_roots();
   616 }
   618 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
   619   HeapRegionRemSet* hrrs = rem_set();
   620   hrrs->strong_code_roots_do(blk);
   621 }
   623 class VerifyStrongCodeRootOopClosure: public OopClosure {
   624   const HeapRegion* _hr;
   625   nmethod* _nm;
   626   bool _failures;
   627   bool _has_oops_in_region;
   629   template <class T> void do_oop_work(T* p) {
   630     T heap_oop = oopDesc::load_heap_oop(p);
   631     if (!oopDesc::is_null(heap_oop)) {
   632       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   634       // Note: not all the oops embedded in the nmethod are in the
   635       // current region. We only look at those which are.
   636       if (_hr->is_in(obj)) {
   637         // Object is in the region. Check that its less than top
   638         if (_hr->top() <= (HeapWord*)obj) {
   639           // Object is above top
   640           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
   641                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
   642                                  "top "PTR_FORMAT,
   643                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
   644           _failures = true;
   645           return;
   646         }
   647         // Nmethod has at least one oop in the current region
   648         _has_oops_in_region = true;
   649       }
   650     }
   651   }
   653 public:
   654   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
   655     _hr(hr), _failures(false), _has_oops_in_region(false) {}
   657   void do_oop(narrowOop* p) { do_oop_work(p); }
   658   void do_oop(oop* p)       { do_oop_work(p); }
   660   bool failures()           { return _failures; }
   661   bool has_oops_in_region() { return _has_oops_in_region; }
   662 };
   664 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
   665   const HeapRegion* _hr;
   666   bool _failures;
   667 public:
   668   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
   669     _hr(hr), _failures(false) {}
   671   void do_code_blob(CodeBlob* cb) {
   672     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
   673     if (nm != NULL) {
   674       // Verify that the nemthod is live
   675       if (!nm->is_alive()) {
   676         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
   677                                PTR_FORMAT" in its strong code roots",
   678                                _hr->bottom(), _hr->end(), nm);
   679         _failures = true;
   680       } else {
   681         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
   682         nm->oops_do(&oop_cl);
   683         if (!oop_cl.has_oops_in_region()) {
   684           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
   685                                  PTR_FORMAT" in its strong code roots "
   686                                  "with no pointers into region",
   687                                  _hr->bottom(), _hr->end(), nm);
   688           _failures = true;
   689         } else if (oop_cl.failures()) {
   690           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
   691                                  "failures for nmethod "PTR_FORMAT,
   692                                  _hr->bottom(), _hr->end(), nm);
   693           _failures = true;
   694         }
   695       }
   696     }
   697   }
   699   bool failures()       { return _failures; }
   700 };
   702 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
   703   if (!G1VerifyHeapRegionCodeRoots) {
   704     // We're not verifying code roots.
   705     return;
   706   }
   707   if (vo == VerifyOption_G1UseMarkWord) {
   708     // Marking verification during a full GC is performed after class
   709     // unloading, code cache unloading, etc so the strong code roots
   710     // attached to each heap region are in an inconsistent state. They won't
   711     // be consistent until the strong code roots are rebuilt after the
   712     // actual GC. Skip verifying the strong code roots in this particular
   713     // time.
   714     assert(VerifyDuringGC, "only way to get here");
   715     return;
   716   }
   718   HeapRegionRemSet* hrrs = rem_set();
   719   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
   721   // if this region is empty then there should be no entries
   722   // on its strong code root list
   723   if (is_empty()) {
   724     if (strong_code_roots_length > 0) {
   725       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
   726                              "but has "SIZE_FORMAT" code root entries",
   727                              bottom(), end(), strong_code_roots_length);
   728       *failures = true;
   729     }
   730     return;
   731   }
   733   if (continuesHumongous()) {
   734     if (strong_code_roots_length > 0) {
   735       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
   736                              "region but has "SIZE_FORMAT" code root entries",
   737                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
   738       *failures = true;
   739     }
   740     return;
   741   }
   743   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
   744   strong_code_roots_do(&cb_cl);
   746   if (cb_cl.failures()) {
   747     *failures = true;
   748   }
   749 }
   751 void HeapRegion::print() const { print_on(gclog_or_tty); }
   752 void HeapRegion::print_on(outputStream* st) const {
   753   if (isHumongous()) {
   754     if (startsHumongous())
   755       st->print(" HS");
   756     else
   757       st->print(" HC");
   758   } else {
   759     st->print("   ");
   760   }
   761   if (in_collection_set())
   762     st->print(" CS");
   763   else
   764     st->print("   ");
   765   if (is_young())
   766     st->print(is_survivor() ? " SU" : " Y ");
   767   else
   768     st->print("   ");
   769   if (is_empty())
   770     st->print(" F");
   771   else
   772     st->print("  ");
   773   st->print(" TS %5d", _gc_time_stamp);
   774   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   775             prev_top_at_mark_start(), next_top_at_mark_start());
   776   G1OffsetTableContigSpace::print_on(st);
   777 }
   779 class VerifyLiveClosure: public OopClosure {
   780 private:
   781   G1CollectedHeap* _g1h;
   782   CardTableModRefBS* _bs;
   783   oop _containing_obj;
   784   bool _failures;
   785   int _n_failures;
   786   VerifyOption _vo;
   787 public:
   788   // _vo == UsePrevMarking -> use "prev" marking information,
   789   // _vo == UseNextMarking -> use "next" marking information,
   790   // _vo == UseMarkWord    -> use mark word from object header.
   791   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
   792     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
   793     _failures(false), _n_failures(0), _vo(vo)
   794   {
   795     BarrierSet* bs = _g1h->barrier_set();
   796     if (bs->is_a(BarrierSet::CardTableModRef))
   797       _bs = (CardTableModRefBS*)bs;
   798   }
   800   void set_containing_obj(oop obj) {
   801     _containing_obj = obj;
   802   }
   804   bool failures() { return _failures; }
   805   int n_failures() { return _n_failures; }
   807   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
   808   virtual void do_oop(      oop* p) { do_oop_work(p); }
   810   void print_object(outputStream* out, oop obj) {
   811 #ifdef PRODUCT
   812     Klass* k = obj->klass();
   813     const char* class_name = InstanceKlass::cast(k)->external_name();
   814     out->print_cr("class name %s", class_name);
   815 #else // PRODUCT
   816     obj->print_on(out);
   817 #endif // PRODUCT
   818   }
   820   template <class T>
   821   void do_oop_work(T* p) {
   822     assert(_containing_obj != NULL, "Precondition");
   823     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
   824            "Precondition");
   825     T heap_oop = oopDesc::load_heap_oop(p);
   826     if (!oopDesc::is_null(heap_oop)) {
   827       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   828       bool failed = false;
   829       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
   830         MutexLockerEx x(ParGCRareEvent_lock,
   831                         Mutex::_no_safepoint_check_flag);
   833         if (!_failures) {
   834           gclog_or_tty->cr();
   835           gclog_or_tty->print_cr("----------");
   836         }
   837         if (!_g1h->is_in_closed_subset(obj)) {
   838           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   839           gclog_or_tty->print_cr("Field "PTR_FORMAT
   840                                  " of live obj "PTR_FORMAT" in region "
   841                                  "["PTR_FORMAT", "PTR_FORMAT")",
   842                                  p, (void*) _containing_obj,
   843                                  from->bottom(), from->end());
   844           print_object(gclog_or_tty, _containing_obj);
   845           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   846                                  (void*) obj);
   847         } else {
   848           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   849           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   850           gclog_or_tty->print_cr("Field "PTR_FORMAT
   851                                  " of live obj "PTR_FORMAT" in region "
   852                                  "["PTR_FORMAT", "PTR_FORMAT")",
   853                                  p, (void*) _containing_obj,
   854                                  from->bottom(), from->end());
   855           print_object(gclog_or_tty, _containing_obj);
   856           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   857                                  "["PTR_FORMAT", "PTR_FORMAT")",
   858                                  (void*) obj, to->bottom(), to->end());
   859           print_object(gclog_or_tty, obj);
   860         }
   861         gclog_or_tty->print_cr("----------");
   862         gclog_or_tty->flush();
   863         _failures = true;
   864         failed = true;
   865         _n_failures++;
   866       }
   868       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
   869         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   870         HeapRegion* to   = _g1h->heap_region_containing(obj);
   871         if (from != NULL && to != NULL &&
   872             from != to &&
   873             !to->isHumongous()) {
   874           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   875           jbyte cv_field = *_bs->byte_for_const(p);
   876           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   878           bool is_bad = !(from->is_young()
   879                           || to->rem_set()->contains_reference(p)
   880                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   881                               (_containing_obj->is_objArray() ?
   882                                   cv_field == dirty
   883                                : cv_obj == dirty || cv_field == dirty));
   884           if (is_bad) {
   885             MutexLockerEx x(ParGCRareEvent_lock,
   886                             Mutex::_no_safepoint_check_flag);
   888             if (!_failures) {
   889               gclog_or_tty->cr();
   890               gclog_or_tty->print_cr("----------");
   891             }
   892             gclog_or_tty->print_cr("Missing rem set entry:");
   893             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
   894                                    "of obj "PTR_FORMAT", "
   895                                    "in region "HR_FORMAT,
   896                                    p, (void*) _containing_obj,
   897                                    HR_FORMAT_PARAMS(from));
   898             _containing_obj->print_on(gclog_or_tty);
   899             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
   900                                    "in region "HR_FORMAT,
   901                                    (void*) obj,
   902                                    HR_FORMAT_PARAMS(to));
   903             obj->print_on(gclog_or_tty);
   904             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   905                           cv_obj, cv_field);
   906             gclog_or_tty->print_cr("----------");
   907             gclog_or_tty->flush();
   908             _failures = true;
   909             if (!failed) _n_failures++;
   910           }
   911         }
   912       }
   913     }
   914   }
   915 };
   917 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   918 // We would need a mechanism to make that code skip dead objects.
   920 void HeapRegion::verify(VerifyOption vo,
   921                         bool* failures) const {
   922   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   923   *failures = false;
   924   HeapWord* p = bottom();
   925   HeapWord* prev_p = NULL;
   926   VerifyLiveClosure vl_cl(g1, vo);
   927   bool is_humongous = isHumongous();
   928   bool do_bot_verify = !is_young();
   929   size_t object_num = 0;
   930   while (p < top()) {
   931     oop obj = oop(p);
   932     size_t obj_size = obj->size();
   933     object_num += 1;
   935     if (is_humongous != g1->isHumongous(obj_size)) {
   936       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   937                              SIZE_FORMAT" words) in a %shumongous region",
   938                              p, g1->isHumongous(obj_size) ? "" : "non-",
   939                              obj_size, is_humongous ? "" : "non-");
   940        *failures = true;
   941        return;
   942     }
   944     // If it returns false, verify_for_object() will output the
   945     // appropriate messasge.
   946     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
   947       *failures = true;
   948       return;
   949     }
   951     if (!g1->is_obj_dead_cond(obj, this, vo)) {
   952       if (obj->is_oop()) {
   953         Klass* klass = obj->klass();
   954         if (!klass->is_metaspace_object()) {
   955           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   956                                  "not metadata", klass, (void *)obj);
   957           *failures = true;
   958           return;
   959         } else if (!klass->is_klass()) {
   960           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   961                                  "not a klass", klass, (void *)obj);
   962           *failures = true;
   963           return;
   964         } else {
   965           vl_cl.set_containing_obj(obj);
   966           obj->oop_iterate_no_header(&vl_cl);
   967           if (vl_cl.failures()) {
   968             *failures = true;
   969           }
   970           if (G1MaxVerifyFailures >= 0 &&
   971               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   972             return;
   973           }
   974         }
   975       } else {
   976         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
   977         *failures = true;
   978         return;
   979       }
   980     }
   981     prev_p = p;
   982     p += obj_size;
   983   }
   985   if (p != top()) {
   986     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   987                            "does not match top "PTR_FORMAT, p, top());
   988     *failures = true;
   989     return;
   990   }
   992   HeapWord* the_end = end();
   993   assert(p == top(), "it should still hold");
   994   // Do some extra BOT consistency checking for addresses in the
   995   // range [top, end). BOT look-ups in this range should yield
   996   // top. No point in doing that if top == end (there's nothing there).
   997   if (p < the_end) {
   998     // Look up top
   999     HeapWord* addr_1 = p;
  1000     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
  1001     if (b_start_1 != p) {
  1002       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
  1003                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1004                              addr_1, b_start_1, p);
  1005       *failures = true;
  1006       return;
  1009     // Look up top + 1
  1010     HeapWord* addr_2 = p + 1;
  1011     if (addr_2 < the_end) {
  1012       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
  1013       if (b_start_2 != p) {
  1014         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
  1015                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1016                                addr_2, b_start_2, p);
  1017         *failures = true;
  1018         return;
  1022     // Look up an address between top and end
  1023     size_t diff = pointer_delta(the_end, p) / 2;
  1024     HeapWord* addr_3 = p + diff;
  1025     if (addr_3 < the_end) {
  1026       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
  1027       if (b_start_3 != p) {
  1028         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
  1029                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1030                                addr_3, b_start_3, p);
  1031         *failures = true;
  1032         return;
  1036     // Loook up end - 1
  1037     HeapWord* addr_4 = the_end - 1;
  1038     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
  1039     if (b_start_4 != p) {
  1040       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
  1041                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
  1042                              addr_4, b_start_4, p);
  1043       *failures = true;
  1044       return;
  1048   if (is_humongous && object_num > 1) {
  1049     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
  1050                            "but has "SIZE_FORMAT", objects",
  1051                            bottom(), end(), object_num);
  1052     *failures = true;
  1053     return;
  1056   verify_strong_code_roots(vo, failures);
  1059 void HeapRegion::verify() const {
  1060   bool dummy = false;
  1061   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
  1064 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
  1065 // away eventually.
  1067 void G1OffsetTableContigSpace::clear(bool mangle_space) {
  1068   ContiguousSpace::clear(mangle_space);
  1069   _offsets.zero_bottom_entry();
  1070   _offsets.initialize_threshold();
  1073 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
  1074   Space::set_bottom(new_bottom);
  1075   _offsets.set_bottom(new_bottom);
  1078 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
  1079   Space::set_end(new_end);
  1080   _offsets.resize(new_end - bottom());
  1083 void G1OffsetTableContigSpace::print() const {
  1084   print_short();
  1085   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
  1086                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  1087                 bottom(), top(), _offsets.threshold(), end());
  1090 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
  1091   return _offsets.initialize_threshold();
  1094 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
  1095                                                     HeapWord* end) {
  1096   _offsets.alloc_block(start, end);
  1097   return _offsets.threshold();
  1100 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
  1101   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1102   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
  1103   if (_gc_time_stamp < g1h->get_gc_time_stamp())
  1104     return top();
  1105   else
  1106     return ContiguousSpace::saved_mark_word();
  1109 void G1OffsetTableContigSpace::set_saved_mark() {
  1110   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1111   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
  1113   if (_gc_time_stamp < curr_gc_time_stamp) {
  1114     // The order of these is important, as another thread might be
  1115     // about to start scanning this region. If it does so after
  1116     // set_saved_mark and before _gc_time_stamp = ..., then the latter
  1117     // will be false, and it will pick up top() as the high water mark
  1118     // of region. If it does so after _gc_time_stamp = ..., then it
  1119     // will pick up the right saved_mark_word() as the high water mark
  1120     // of the region. Either way, the behaviour will be correct.
  1121     ContiguousSpace::set_saved_mark();
  1122     OrderAccess::storestore();
  1123     _gc_time_stamp = curr_gc_time_stamp;
  1124     // No need to do another barrier to flush the writes above. If
  1125     // this is called in parallel with other threads trying to
  1126     // allocate into the region, the caller should call this while
  1127     // holding a lock and when the lock is released the writes will be
  1128     // flushed.
  1132 G1OffsetTableContigSpace::
  1133 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
  1134                          MemRegion mr) :
  1135   _offsets(sharedOffsetArray, mr),
  1136   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
  1137   _gc_time_stamp(0)
  1139   _offsets.set_space(this);
  1140   // false ==> we'll do the clearing if there's clearing to be done.
  1141   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
  1142   _offsets.zero_bottom_entry();
  1143   _offsets.initialize_threshold();

mercurial