src/cpu/ppc/vm/ppc.ad

Tue, 08 Aug 2017 15:57:29 +0800

author
aoqi
date
Tue, 08 Aug 2017 15:57:29 +0800
changeset 6876
710a3c8b516e
parent 6723
0bf37f737702
parent 0
f90c822e73f8
child 7535
7ae4e26cb1e0
permissions
-rw-r--r--

merge

     1 //
     2 // Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.
     3 // Copyright 2012, 2014 SAP AG. All rights reserved.
     4 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5 //
     6 // This code is free software; you can redistribute it and/or modify it
     7 // under the terms of the GNU General Public License version 2 only, as
     8 // published by the Free Software Foundation.
     9 //
    10 // This code is distributed in the hope that it will be useful, but WITHOUT
    11 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13 // version 2 for more details (a copy is included in the LICENSE file that
    14 // accompanied this code).
    15 //
    16 // You should have received a copy of the GNU General Public License version
    17 // 2 along with this work; if not, write to the Free Software Foundation,
    18 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19 //
    20 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21 // or visit www.oracle.com if you need additional information or have any
    22 // questions.
    23 //
    24 //
    26 //
    27 // PPC64 Architecture Description File
    28 //
    30 //----------REGISTER DEFINITION BLOCK------------------------------------------
    31 // This information is used by the matcher and the register allocator to
    32 // describe individual registers and classes of registers within the target
    33 // architecture.
    34 register %{
    35 //----------Architecture Description Register Definitions----------------------
    36 // General Registers
    37 // "reg_def"  name (register save type, C convention save type,
    38 //                  ideal register type, encoding);
    39 //
    40 // Register Save Types:
    41 //
    42 //   NS  = No-Save:     The register allocator assumes that these registers
    43 //                      can be used without saving upon entry to the method, &
    44 //                      that they do not need to be saved at call sites.
    45 //
    46 //   SOC = Save-On-Call: The register allocator assumes that these registers
    47 //                      can be used without saving upon entry to the method,
    48 //                      but that they must be saved at call sites.
    49 //                      These are called "volatiles" on ppc.
    50 //
    51 //   SOE = Save-On-Entry: The register allocator assumes that these registers
    52 //                      must be saved before using them upon entry to the
    53 //                      method, but they do not need to be saved at call
    54 //                      sites.
    55 //                      These are called "nonvolatiles" on ppc.
    56 //
    57 //   AS  = Always-Save:   The register allocator assumes that these registers
    58 //                      must be saved before using them upon entry to the
    59 //                      method, & that they must be saved at call sites.
    60 //
    61 // Ideal Register Type is used to determine how to save & restore a
    62 // register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
    63 // spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
    64 //
    65 // The encoding number is the actual bit-pattern placed into the opcodes.
    66 //
    67 // PPC64 register definitions, based on the 64-bit PowerPC ELF ABI
    68 // Supplement Version 1.7 as of 2003-10-29.
    69 //
    70 // For each 64-bit register we must define two registers: the register
    71 // itself, e.g. R3, and a corresponding virtual other (32-bit-)'half',
    72 // e.g. R3_H, which is needed by the allocator, but is not used
    73 // for stores, loads, etc.
    75 // ----------------------------
    76 // Integer/Long Registers
    77 // ----------------------------
    79   // PPC64 has 32 64-bit integer registers.
    81   // types: v = volatile, nv = non-volatile, s = system
    82   reg_def R0   ( SOC, SOC, Op_RegI,  0, R0->as_VMReg()         );  // v   used in prologs
    83   reg_def R0_H ( SOC, SOC, Op_RegI, 99, R0->as_VMReg()->next() );
    84   reg_def R1   ( NS,  NS,  Op_RegI,  1, R1->as_VMReg()         );  // s   SP
    85   reg_def R1_H ( NS,  NS,  Op_RegI, 99, R1->as_VMReg()->next() );
    86   reg_def R2   ( SOC, SOC, Op_RegI,  2, R2->as_VMReg()         );  // v   TOC
    87   reg_def R2_H ( SOC, SOC, Op_RegI, 99, R2->as_VMReg()->next() );
    88   reg_def R3   ( SOC, SOC, Op_RegI,  3, R3->as_VMReg()         );  // v   iarg1 & iret
    89   reg_def R3_H ( SOC, SOC, Op_RegI, 99, R3->as_VMReg()->next() );
    90   reg_def R4   ( SOC, SOC, Op_RegI,  4, R4->as_VMReg()         );  //     iarg2
    91   reg_def R4_H ( SOC, SOC, Op_RegI, 99, R4->as_VMReg()->next() );
    92   reg_def R5   ( SOC, SOC, Op_RegI,  5, R5->as_VMReg()         );  // v   iarg3
    93   reg_def R5_H ( SOC, SOC, Op_RegI, 99, R5->as_VMReg()->next() );
    94   reg_def R6   ( SOC, SOC, Op_RegI,  6, R6->as_VMReg()         );  // v   iarg4
    95   reg_def R6_H ( SOC, SOC, Op_RegI, 99, R6->as_VMReg()->next() );
    96   reg_def R7   ( SOC, SOC, Op_RegI,  7, R7->as_VMReg()         );  // v   iarg5
    97   reg_def R7_H ( SOC, SOC, Op_RegI, 99, R7->as_VMReg()->next() );
    98   reg_def R8   ( SOC, SOC, Op_RegI,  8, R8->as_VMReg()         );  // v   iarg6
    99   reg_def R8_H ( SOC, SOC, Op_RegI, 99, R8->as_VMReg()->next() );
   100   reg_def R9   ( SOC, SOC, Op_RegI,  9, R9->as_VMReg()         );  // v   iarg7
   101   reg_def R9_H ( SOC, SOC, Op_RegI, 99, R9->as_VMReg()->next() );
   102   reg_def R10  ( SOC, SOC, Op_RegI, 10, R10->as_VMReg()        );  // v   iarg8
   103   reg_def R10_H( SOC, SOC, Op_RegI, 99, R10->as_VMReg()->next());
   104   reg_def R11  ( SOC, SOC, Op_RegI, 11, R11->as_VMReg()        );  // v   ENV / scratch
   105   reg_def R11_H( SOC, SOC, Op_RegI, 99, R11->as_VMReg()->next());
   106   reg_def R12  ( SOC, SOC, Op_RegI, 12, R12->as_VMReg()        );  // v   scratch
   107   reg_def R12_H( SOC, SOC, Op_RegI, 99, R12->as_VMReg()->next());
   108   reg_def R13  ( NS,  NS,  Op_RegI, 13, R13->as_VMReg()        );  // s   system thread id
   109   reg_def R13_H( NS,  NS,  Op_RegI, 99, R13->as_VMReg()->next());
   110   reg_def R14  ( SOC, SOE, Op_RegI, 14, R14->as_VMReg()        );  // nv
   111   reg_def R14_H( SOC, SOE, Op_RegI, 99, R14->as_VMReg()->next());
   112   reg_def R15  ( SOC, SOE, Op_RegI, 15, R15->as_VMReg()        );  // nv
   113   reg_def R15_H( SOC, SOE, Op_RegI, 99, R15->as_VMReg()->next());
   114   reg_def R16  ( SOC, SOE, Op_RegI, 16, R16->as_VMReg()        );  // nv
   115   reg_def R16_H( SOC, SOE, Op_RegI, 99, R16->as_VMReg()->next());
   116   reg_def R17  ( SOC, SOE, Op_RegI, 17, R17->as_VMReg()        );  // nv
   117   reg_def R17_H( SOC, SOE, Op_RegI, 99, R17->as_VMReg()->next());
   118   reg_def R18  ( SOC, SOE, Op_RegI, 18, R18->as_VMReg()        );  // nv
   119   reg_def R18_H( SOC, SOE, Op_RegI, 99, R18->as_VMReg()->next());
   120   reg_def R19  ( SOC, SOE, Op_RegI, 19, R19->as_VMReg()        );  // nv
   121   reg_def R19_H( SOC, SOE, Op_RegI, 99, R19->as_VMReg()->next());
   122   reg_def R20  ( SOC, SOE, Op_RegI, 20, R20->as_VMReg()        );  // nv
   123   reg_def R20_H( SOC, SOE, Op_RegI, 99, R20->as_VMReg()->next());
   124   reg_def R21  ( SOC, SOE, Op_RegI, 21, R21->as_VMReg()        );  // nv
   125   reg_def R21_H( SOC, SOE, Op_RegI, 99, R21->as_VMReg()->next());
   126   reg_def R22  ( SOC, SOE, Op_RegI, 22, R22->as_VMReg()        );  // nv
   127   reg_def R22_H( SOC, SOE, Op_RegI, 99, R22->as_VMReg()->next());
   128   reg_def R23  ( SOC, SOE, Op_RegI, 23, R23->as_VMReg()        );  // nv
   129   reg_def R23_H( SOC, SOE, Op_RegI, 99, R23->as_VMReg()->next());
   130   reg_def R24  ( SOC, SOE, Op_RegI, 24, R24->as_VMReg()        );  // nv
   131   reg_def R24_H( SOC, SOE, Op_RegI, 99, R24->as_VMReg()->next());
   132   reg_def R25  ( SOC, SOE, Op_RegI, 25, R25->as_VMReg()        );  // nv
   133   reg_def R25_H( SOC, SOE, Op_RegI, 99, R25->as_VMReg()->next());
   134   reg_def R26  ( SOC, SOE, Op_RegI, 26, R26->as_VMReg()        );  // nv
   135   reg_def R26_H( SOC, SOE, Op_RegI, 99, R26->as_VMReg()->next());
   136   reg_def R27  ( SOC, SOE, Op_RegI, 27, R27->as_VMReg()        );  // nv
   137   reg_def R27_H( SOC, SOE, Op_RegI, 99, R27->as_VMReg()->next());
   138   reg_def R28  ( SOC, SOE, Op_RegI, 28, R28->as_VMReg()        );  // nv
   139   reg_def R28_H( SOC, SOE, Op_RegI, 99, R28->as_VMReg()->next());
   140   reg_def R29  ( SOC, SOE, Op_RegI, 29, R29->as_VMReg()        );  // nv
   141   reg_def R29_H( SOC, SOE, Op_RegI, 99, R29->as_VMReg()->next());
   142   reg_def R30  ( SOC, SOE, Op_RegI, 30, R30->as_VMReg()        );  // nv
   143   reg_def R30_H( SOC, SOE, Op_RegI, 99, R30->as_VMReg()->next());
   144   reg_def R31  ( SOC, SOE, Op_RegI, 31, R31->as_VMReg()        );  // nv
   145   reg_def R31_H( SOC, SOE, Op_RegI, 99, R31->as_VMReg()->next());
   148 // ----------------------------
   149 // Float/Double Registers
   150 // ----------------------------
   152   // Double Registers
   153   // The rules of ADL require that double registers be defined in pairs.
   154   // Each pair must be two 32-bit values, but not necessarily a pair of
   155   // single float registers. In each pair, ADLC-assigned register numbers
   156   // must be adjacent, with the lower number even. Finally, when the
   157   // CPU stores such a register pair to memory, the word associated with
   158   // the lower ADLC-assigned number must be stored to the lower address.
   160   // PPC64 has 32 64-bit floating-point registers. Each can store a single
   161   // or double precision floating-point value.
   163   // types: v = volatile, nv = non-volatile, s = system
   164   reg_def F0   ( SOC, SOC, Op_RegF,  0, F0->as_VMReg()         );  // v   scratch
   165   reg_def F0_H ( SOC, SOC, Op_RegF, 99, F0->as_VMReg()->next() );
   166   reg_def F1   ( SOC, SOC, Op_RegF,  1, F1->as_VMReg()         );  // v   farg1 & fret
   167   reg_def F1_H ( SOC, SOC, Op_RegF, 99, F1->as_VMReg()->next() );
   168   reg_def F2   ( SOC, SOC, Op_RegF,  2, F2->as_VMReg()         );  // v   farg2
   169   reg_def F2_H ( SOC, SOC, Op_RegF, 99, F2->as_VMReg()->next() );
   170   reg_def F3   ( SOC, SOC, Op_RegF,  3, F3->as_VMReg()         );  // v   farg3
   171   reg_def F3_H ( SOC, SOC, Op_RegF, 99, F3->as_VMReg()->next() );
   172   reg_def F4   ( SOC, SOC, Op_RegF,  4, F4->as_VMReg()         );  // v   farg4
   173   reg_def F4_H ( SOC, SOC, Op_RegF, 99, F4->as_VMReg()->next() );
   174   reg_def F5   ( SOC, SOC, Op_RegF,  5, F5->as_VMReg()         );  // v   farg5
   175   reg_def F5_H ( SOC, SOC, Op_RegF, 99, F5->as_VMReg()->next() );
   176   reg_def F6   ( SOC, SOC, Op_RegF,  6, F6->as_VMReg()         );  // v   farg6
   177   reg_def F6_H ( SOC, SOC, Op_RegF, 99, F6->as_VMReg()->next() );
   178   reg_def F7   ( SOC, SOC, Op_RegF,  7, F7->as_VMReg()         );  // v   farg7
   179   reg_def F7_H ( SOC, SOC, Op_RegF, 99, F7->as_VMReg()->next() );
   180   reg_def F8   ( SOC, SOC, Op_RegF,  8, F8->as_VMReg()         );  // v   farg8
   181   reg_def F8_H ( SOC, SOC, Op_RegF, 99, F8->as_VMReg()->next() );
   182   reg_def F9   ( SOC, SOC, Op_RegF,  9, F9->as_VMReg()         );  // v   farg9
   183   reg_def F9_H ( SOC, SOC, Op_RegF, 99, F9->as_VMReg()->next() );
   184   reg_def F10  ( SOC, SOC, Op_RegF, 10, F10->as_VMReg()        );  // v   farg10
   185   reg_def F10_H( SOC, SOC, Op_RegF, 99, F10->as_VMReg()->next());
   186   reg_def F11  ( SOC, SOC, Op_RegF, 11, F11->as_VMReg()        );  // v   farg11
   187   reg_def F11_H( SOC, SOC, Op_RegF, 99, F11->as_VMReg()->next());
   188   reg_def F12  ( SOC, SOC, Op_RegF, 12, F12->as_VMReg()        );  // v   farg12
   189   reg_def F12_H( SOC, SOC, Op_RegF, 99, F12->as_VMReg()->next());
   190   reg_def F13  ( SOC, SOC, Op_RegF, 13, F13->as_VMReg()        );  // v   farg13
   191   reg_def F13_H( SOC, SOC, Op_RegF, 99, F13->as_VMReg()->next());
   192   reg_def F14  ( SOC, SOE, Op_RegF, 14, F14->as_VMReg()        );  // nv
   193   reg_def F14_H( SOC, SOE, Op_RegF, 99, F14->as_VMReg()->next());
   194   reg_def F15  ( SOC, SOE, Op_RegF, 15, F15->as_VMReg()        );  // nv
   195   reg_def F15_H( SOC, SOE, Op_RegF, 99, F15->as_VMReg()->next());
   196   reg_def F16  ( SOC, SOE, Op_RegF, 16, F16->as_VMReg()        );  // nv
   197   reg_def F16_H( SOC, SOE, Op_RegF, 99, F16->as_VMReg()->next());
   198   reg_def F17  ( SOC, SOE, Op_RegF, 17, F17->as_VMReg()        );  // nv
   199   reg_def F17_H( SOC, SOE, Op_RegF, 99, F17->as_VMReg()->next());
   200   reg_def F18  ( SOC, SOE, Op_RegF, 18, F18->as_VMReg()        );  // nv
   201   reg_def F18_H( SOC, SOE, Op_RegF, 99, F18->as_VMReg()->next());
   202   reg_def F19  ( SOC, SOE, Op_RegF, 19, F19->as_VMReg()        );  // nv
   203   reg_def F19_H( SOC, SOE, Op_RegF, 99, F19->as_VMReg()->next());
   204   reg_def F20  ( SOC, SOE, Op_RegF, 20, F20->as_VMReg()        );  // nv
   205   reg_def F20_H( SOC, SOE, Op_RegF, 99, F20->as_VMReg()->next());
   206   reg_def F21  ( SOC, SOE, Op_RegF, 21, F21->as_VMReg()        );  // nv
   207   reg_def F21_H( SOC, SOE, Op_RegF, 99, F21->as_VMReg()->next());
   208   reg_def F22  ( SOC, SOE, Op_RegF, 22, F22->as_VMReg()        );  // nv
   209   reg_def F22_H( SOC, SOE, Op_RegF, 99, F22->as_VMReg()->next());
   210   reg_def F23  ( SOC, SOE, Op_RegF, 23, F23->as_VMReg()        );  // nv
   211   reg_def F23_H( SOC, SOE, Op_RegF, 99, F23->as_VMReg()->next());
   212   reg_def F24  ( SOC, SOE, Op_RegF, 24, F24->as_VMReg()        );  // nv
   213   reg_def F24_H( SOC, SOE, Op_RegF, 99, F24->as_VMReg()->next());
   214   reg_def F25  ( SOC, SOE, Op_RegF, 25, F25->as_VMReg()        );  // nv
   215   reg_def F25_H( SOC, SOE, Op_RegF, 99, F25->as_VMReg()->next());
   216   reg_def F26  ( SOC, SOE, Op_RegF, 26, F26->as_VMReg()        );  // nv
   217   reg_def F26_H( SOC, SOE, Op_RegF, 99, F26->as_VMReg()->next());
   218   reg_def F27  ( SOC, SOE, Op_RegF, 27, F27->as_VMReg()        );  // nv
   219   reg_def F27_H( SOC, SOE, Op_RegF, 99, F27->as_VMReg()->next());
   220   reg_def F28  ( SOC, SOE, Op_RegF, 28, F28->as_VMReg()        );  // nv
   221   reg_def F28_H( SOC, SOE, Op_RegF, 99, F28->as_VMReg()->next());
   222   reg_def F29  ( SOC, SOE, Op_RegF, 29, F29->as_VMReg()        );  // nv
   223   reg_def F29_H( SOC, SOE, Op_RegF, 99, F29->as_VMReg()->next());
   224   reg_def F30  ( SOC, SOE, Op_RegF, 30, F30->as_VMReg()        );  // nv
   225   reg_def F30_H( SOC, SOE, Op_RegF, 99, F30->as_VMReg()->next());
   226   reg_def F31  ( SOC, SOE, Op_RegF, 31, F31->as_VMReg()        );  // nv
   227   reg_def F31_H( SOC, SOE, Op_RegF, 99, F31->as_VMReg()->next());
   229 // ----------------------------
   230 // Special Registers
   231 // ----------------------------
   233 // Condition Codes Flag Registers
   235   // PPC64 has 8 condition code "registers" which are all contained
   236   // in the CR register.
   238   // types: v = volatile, nv = non-volatile, s = system
   239   reg_def CCR0(SOC, SOC, Op_RegFlags, 0, CCR0->as_VMReg());  // v
   240   reg_def CCR1(SOC, SOC, Op_RegFlags, 1, CCR1->as_VMReg());  // v
   241   reg_def CCR2(SOC, SOC, Op_RegFlags, 2, CCR2->as_VMReg());  // nv
   242   reg_def CCR3(SOC, SOC, Op_RegFlags, 3, CCR3->as_VMReg());  // nv
   243   reg_def CCR4(SOC, SOC, Op_RegFlags, 4, CCR4->as_VMReg());  // nv
   244   reg_def CCR5(SOC, SOC, Op_RegFlags, 5, CCR5->as_VMReg());  // v
   245   reg_def CCR6(SOC, SOC, Op_RegFlags, 6, CCR6->as_VMReg());  // v
   246   reg_def CCR7(SOC, SOC, Op_RegFlags, 7, CCR7->as_VMReg());  // v
   248   // Special registers of PPC64
   250   reg_def SR_XER(    SOC, SOC, Op_RegP, 0, SR_XER->as_VMReg());     // v
   251   reg_def SR_LR(     SOC, SOC, Op_RegP, 1, SR_LR->as_VMReg());      // v
   252   reg_def SR_CTR(    SOC, SOC, Op_RegP, 2, SR_CTR->as_VMReg());     // v
   253   reg_def SR_VRSAVE( SOC, SOC, Op_RegP, 3, SR_VRSAVE->as_VMReg());  // v
   254   reg_def SR_SPEFSCR(SOC, SOC, Op_RegP, 4, SR_SPEFSCR->as_VMReg()); // v
   255   reg_def SR_PPR(    SOC, SOC, Op_RegP, 5, SR_PPR->as_VMReg());     // v
   258 // ----------------------------
   259 // Specify priority of register selection within phases of register
   260 // allocation. Highest priority is first. A useful heuristic is to
   261 // give registers a low priority when they are required by machine
   262 // instructions, like EAX and EDX on I486, and choose no-save registers
   263 // before save-on-call, & save-on-call before save-on-entry. Registers
   264 // which participate in fixed calling sequences should come last.
   265 // Registers which are used as pairs must fall on an even boundary.
   267 // It's worth about 1% on SPEC geomean to get this right.
   269 // Chunk0, chunk1, and chunk2 form the MachRegisterNumbers enumeration
   270 // in adGlobals_ppc64.hpp which defines the <register>_num values, e.g.
   271 // R3_num. Therefore, R3_num may not be (and in reality is not)
   272 // the same as R3->encoding()! Furthermore, we cannot make any
   273 // assumptions on ordering, e.g. R3_num may be less than R2_num.
   274 // Additionally, the function
   275 //   static enum RC rc_class(OptoReg::Name reg )
   276 // maps a given <register>_num value to its chunk type (except for flags)
   277 // and its current implementation relies on chunk0 and chunk1 having a
   278 // size of 64 each.
   280 // If you change this allocation class, please have a look at the
   281 // default values for the parameters RoundRobinIntegerRegIntervalStart
   282 // and RoundRobinFloatRegIntervalStart
   284 alloc_class chunk0 (
   285   // Chunk0 contains *all* 64 integer registers halves.
   287   // "non-volatile" registers
   288   R14, R14_H,
   289   R15, R15_H,
   290   R17, R17_H,
   291   R18, R18_H,
   292   R19, R19_H,
   293   R20, R20_H,
   294   R21, R21_H,
   295   R22, R22_H,
   296   R23, R23_H,
   297   R24, R24_H,
   298   R25, R25_H,
   299   R26, R26_H,
   300   R27, R27_H,
   301   R28, R28_H,
   302   R29, R29_H,
   303   R30, R30_H,
   304   R31, R31_H,
   306   // scratch/special registers
   307   R11, R11_H,
   308   R12, R12_H,
   310   // argument registers
   311   R10, R10_H,
   312   R9,  R9_H,
   313   R8,  R8_H,
   314   R7,  R7_H,
   315   R6,  R6_H,
   316   R5,  R5_H,
   317   R4,  R4_H,
   318   R3,  R3_H,
   320   // special registers, not available for allocation
   321   R16, R16_H,     // R16_thread
   322   R13, R13_H,     // system thread id
   323   R2,  R2_H,      // may be used for TOC
   324   R1,  R1_H,      // SP
   325   R0,  R0_H       // R0 (scratch)
   326 );
   328 // If you change this allocation class, please have a look at the
   329 // default values for the parameters RoundRobinIntegerRegIntervalStart
   330 // and RoundRobinFloatRegIntervalStart
   332 alloc_class chunk1 (
   333   // Chunk1 contains *all* 64 floating-point registers halves.
   335   // scratch register
   336   F0,  F0_H,
   338   // argument registers
   339   F13, F13_H,
   340   F12, F12_H,
   341   F11, F11_H,
   342   F10, F10_H,
   343   F9,  F9_H,
   344   F8,  F8_H,
   345   F7,  F7_H,
   346   F6,  F6_H,
   347   F5,  F5_H,
   348   F4,  F4_H,
   349   F3,  F3_H,
   350   F2,  F2_H,
   351   F1,  F1_H,
   353   // non-volatile registers
   354   F14, F14_H,
   355   F15, F15_H,
   356   F16, F16_H,
   357   F17, F17_H,
   358   F18, F18_H,
   359   F19, F19_H,
   360   F20, F20_H,
   361   F21, F21_H,
   362   F22, F22_H,
   363   F23, F23_H,
   364   F24, F24_H,
   365   F25, F25_H,
   366   F26, F26_H,
   367   F27, F27_H,
   368   F28, F28_H,
   369   F29, F29_H,
   370   F30, F30_H,
   371   F31, F31_H
   372 );
   374 alloc_class chunk2 (
   375   // Chunk2 contains *all* 8 condition code registers.
   377   CCR0,
   378   CCR1,
   379   CCR2,
   380   CCR3,
   381   CCR4,
   382   CCR5,
   383   CCR6,
   384   CCR7
   385 );
   387 alloc_class chunk3 (
   388   // special registers
   389   // These registers are not allocated, but used for nodes generated by postalloc expand.
   390   SR_XER,
   391   SR_LR,
   392   SR_CTR,
   393   SR_VRSAVE,
   394   SR_SPEFSCR,
   395   SR_PPR
   396 );
   398 //-------Architecture Description Register Classes-----------------------
   400 // Several register classes are automatically defined based upon
   401 // information in this architecture description.
   403 // 1) reg_class inline_cache_reg           ( as defined in frame section )
   404 // 2) reg_class compiler_method_oop_reg    ( as defined in frame section )
   405 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
   406 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
   407 //
   409 // ----------------------------
   410 // 32 Bit Register Classes
   411 // ----------------------------
   413 // We specify registers twice, once as read/write, and once read-only.
   414 // We use the read-only registers for source operands. With this, we
   415 // can include preset read only registers in this class, as a hard-coded
   416 // '0'-register. (We used to simulate this on ppc.)
   418 // 32 bit registers that can be read and written i.e. these registers
   419 // can be dest (or src) of normal instructions.
   420 reg_class bits32_reg_rw(
   421 /*R0*/              // R0
   422 /*R1*/              // SP
   423   R2,               // TOC
   424   R3,
   425   R4,
   426   R5,
   427   R6,
   428   R7,
   429   R8,
   430   R9,
   431   R10,
   432   R11,
   433   R12,
   434 /*R13*/             // system thread id
   435   R14,
   436   R15,
   437 /*R16*/             // R16_thread
   438   R17,
   439   R18,
   440   R19,
   441   R20,
   442   R21,
   443   R22,
   444   R23,
   445   R24,
   446   R25,
   447   R26,
   448   R27,
   449   R28,
   450 /*R29*/             // global TOC
   451 /*R30*/             // Narrow Oop Base
   452   R31
   453 );
   455 // 32 bit registers that can only be read i.e. these registers can
   456 // only be src of all instructions.
   457 reg_class bits32_reg_ro(
   458 /*R0*/              // R0
   459 /*R1*/              // SP
   460   R2                // TOC
   461   R3,
   462   R4,
   463   R5,
   464   R6,
   465   R7,
   466   R8,
   467   R9,
   468   R10,
   469   R11,
   470   R12,
   471 /*R13*/             // system thread id
   472   R14,
   473   R15,
   474 /*R16*/             // R16_thread
   475   R17,
   476   R18,
   477   R19,
   478   R20,
   479   R21,
   480   R22,
   481   R23,
   482   R24,
   483   R25,
   484   R26,
   485   R27,
   486   R28,
   487 /*R29*/
   488 /*R30*/             // Narrow Oop Base
   489   R31
   490 );
   492 // Complement-required-in-pipeline operands for narrow oops.
   493 reg_class bits32_reg_ro_not_complement (
   494 /*R0*/     // R0
   495   R1,      // SP
   496   R2,      // TOC
   497   R3,
   498   R4,
   499   R5,
   500   R6,
   501   R7,
   502   R8,
   503   R9,
   504   R10,
   505   R11,
   506   R12,
   507 /*R13,*/   // system thread id
   508   R14,
   509   R15,
   510   R16,    // R16_thread
   511   R17,
   512   R18,
   513   R19,
   514   R20,
   515   R21,
   516   R22,
   517 /*R23,
   518   R24,
   519   R25,
   520   R26,
   521   R27,
   522   R28,*/
   523 /*R29,*/ // TODO: let allocator handle TOC!!
   524 /*R30,*/
   525   R31
   526 );
   528 // Complement-required-in-pipeline operands for narrow oops.
   529 // See 64-bit declaration.
   530 reg_class bits32_reg_ro_complement (
   531   R23,
   532   R24,
   533   R25,
   534   R26,
   535   R27,
   536   R28
   537 );
   539 reg_class rscratch1_bits32_reg(R11);
   540 reg_class rscratch2_bits32_reg(R12);
   541 reg_class rarg1_bits32_reg(R3);
   542 reg_class rarg2_bits32_reg(R4);
   543 reg_class rarg3_bits32_reg(R5);
   544 reg_class rarg4_bits32_reg(R6);
   546 // ----------------------------
   547 // 64 Bit Register Classes
   548 // ----------------------------
   549 // 64-bit build means 64-bit pointers means hi/lo pairs
   551 reg_class rscratch1_bits64_reg(R11_H, R11);
   552 reg_class rscratch2_bits64_reg(R12_H, R12);
   553 reg_class rarg1_bits64_reg(R3_H, R3);
   554 reg_class rarg2_bits64_reg(R4_H, R4);
   555 reg_class rarg3_bits64_reg(R5_H, R5);
   556 reg_class rarg4_bits64_reg(R6_H, R6);
   557 // Thread register, 'written' by tlsLoadP, see there.
   558 reg_class thread_bits64_reg(R16_H, R16);
   560 reg_class r19_bits64_reg(R19_H, R19);
   562 // 64 bit registers that can be read and written i.e. these registers
   563 // can be dest (or src) of normal instructions.
   564 reg_class bits64_reg_rw(
   565 /*R0_H,  R0*/     // R0
   566 /*R1_H,  R1*/     // SP
   567   R2_H,  R2,      // TOC
   568   R3_H,  R3,
   569   R4_H,  R4,
   570   R5_H,  R5,
   571   R6_H,  R6,
   572   R7_H,  R7,
   573   R8_H,  R8,
   574   R9_H,  R9,
   575   R10_H, R10,
   576   R11_H, R11,
   577   R12_H, R12,
   578 /*R13_H, R13*/   // system thread id
   579   R14_H, R14,
   580   R15_H, R15,
   581 /*R16_H, R16*/   // R16_thread
   582   R17_H, R17,
   583   R18_H, R18,
   584   R19_H, R19,
   585   R20_H, R20,
   586   R21_H, R21,
   587   R22_H, R22,
   588   R23_H, R23,
   589   R24_H, R24,
   590   R25_H, R25,
   591   R26_H, R26,
   592   R27_H, R27,
   593   R28_H, R28,
   594 /*R29_H, R29*/
   595 /*R30_H, R30*/
   596   R31_H, R31
   597 );
   599 // 64 bit registers used excluding r2, r11 and r12
   600 // Used to hold the TOC to avoid collisions with expanded LeafCall which uses
   601 // r2, r11 and r12 internally.
   602 reg_class bits64_reg_leaf_call(
   603 /*R0_H,  R0*/     // R0
   604 /*R1_H,  R1*/     // SP
   605 /*R2_H,  R2*/     // TOC
   606   R3_H,  R3,
   607   R4_H,  R4,
   608   R5_H,  R5,
   609   R6_H,  R6,
   610   R7_H,  R7,
   611   R8_H,  R8,
   612   R9_H,  R9,
   613   R10_H, R10,
   614 /*R11_H, R11*/
   615 /*R12_H, R12*/
   616 /*R13_H, R13*/   // system thread id
   617   R14_H, R14,
   618   R15_H, R15,
   619 /*R16_H, R16*/   // R16_thread
   620   R17_H, R17,
   621   R18_H, R18,
   622   R19_H, R19,
   623   R20_H, R20,
   624   R21_H, R21,
   625   R22_H, R22,
   626   R23_H, R23,
   627   R24_H, R24,
   628   R25_H, R25,
   629   R26_H, R26,
   630   R27_H, R27,
   631   R28_H, R28,
   632 /*R29_H, R29*/
   633 /*R30_H, R30*/
   634   R31_H, R31
   635 );
   637 // Used to hold the TOC to avoid collisions with expanded DynamicCall
   638 // which uses r19 as inline cache internally and expanded LeafCall which uses
   639 // r2, r11 and r12 internally.
   640 reg_class bits64_constant_table_base(
   641 /*R0_H,  R0*/     // R0
   642 /*R1_H,  R1*/     // SP
   643 /*R2_H,  R2*/     // TOC
   644   R3_H,  R3,
   645   R4_H,  R4,
   646   R5_H,  R5,
   647   R6_H,  R6,
   648   R7_H,  R7,
   649   R8_H,  R8,
   650   R9_H,  R9,
   651   R10_H, R10,
   652 /*R11_H, R11*/
   653 /*R12_H, R12*/
   654 /*R13_H, R13*/   // system thread id
   655   R14_H, R14,
   656   R15_H, R15,
   657 /*R16_H, R16*/   // R16_thread
   658   R17_H, R17,
   659   R18_H, R18,
   660 /*R19_H, R19*/
   661   R20_H, R20,
   662   R21_H, R21,
   663   R22_H, R22,
   664   R23_H, R23,
   665   R24_H, R24,
   666   R25_H, R25,
   667   R26_H, R26,
   668   R27_H, R27,
   669   R28_H, R28,
   670 /*R29_H, R29*/
   671 /*R30_H, R30*/
   672   R31_H, R31
   673 );
   675 // 64 bit registers that can only be read i.e. these registers can
   676 // only be src of all instructions.
   677 reg_class bits64_reg_ro(
   678 /*R0_H,  R0*/     // R0
   679   R1_H,  R1,
   680   R2_H,  R2,       // TOC
   681   R3_H,  R3,
   682   R4_H,  R4,
   683   R5_H,  R5,
   684   R6_H,  R6,
   685   R7_H,  R7,
   686   R8_H,  R8,
   687   R9_H,  R9,
   688   R10_H, R10,
   689   R11_H, R11,
   690   R12_H, R12,
   691 /*R13_H, R13*/   // system thread id
   692   R14_H, R14,
   693   R15_H, R15,
   694   R16_H, R16,    // R16_thread
   695   R17_H, R17,
   696   R18_H, R18,
   697   R19_H, R19,
   698   R20_H, R20,
   699   R21_H, R21,
   700   R22_H, R22,
   701   R23_H, R23,
   702   R24_H, R24,
   703   R25_H, R25,
   704   R26_H, R26,
   705   R27_H, R27,
   706   R28_H, R28,
   707 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   708 /*R30_H, R30,*/
   709   R31_H, R31
   710 );
   712 // Complement-required-in-pipeline operands.
   713 reg_class bits64_reg_ro_not_complement (
   714 /*R0_H,  R0*/     // R0
   715   R1_H,  R1,      // SP
   716   R2_H,  R2,      // TOC
   717   R3_H,  R3,
   718   R4_H,  R4,
   719   R5_H,  R5,
   720   R6_H,  R6,
   721   R7_H,  R7,
   722   R8_H,  R8,
   723   R9_H,  R9,
   724   R10_H, R10,
   725   R11_H, R11,
   726   R12_H, R12,
   727 /*R13_H, R13*/   // system thread id
   728   R14_H, R14,
   729   R15_H, R15,
   730   R16_H, R16,    // R16_thread
   731   R17_H, R17,
   732   R18_H, R18,
   733   R19_H, R19,
   734   R20_H, R20,
   735   R21_H, R21,
   736   R22_H, R22,
   737 /*R23_H, R23,
   738   R24_H, R24,
   739   R25_H, R25,
   740   R26_H, R26,
   741   R27_H, R27,
   742   R28_H, R28,*/
   743 /*R29_H, R29*/ // TODO: let allocator handle TOC!!
   744 /*R30_H, R30,*/
   745   R31_H, R31
   746 );
   748 // Complement-required-in-pipeline operands.
   749 // This register mask is used for the trap instructions that implement
   750 // the null checks on AIX. The trap instruction first computes the
   751 // complement of the value it shall trap on. Because of this, the
   752 // instruction can not be scheduled in the same cycle as an other
   753 // instruction reading the normal value of the same register. So we
   754 // force the value to check into 'bits64_reg_ro_not_complement'
   755 // and then copy it to 'bits64_reg_ro_complement' for the trap.
   756 reg_class bits64_reg_ro_complement (
   757   R23_H, R23,
   758   R24_H, R24,
   759   R25_H, R25,
   760   R26_H, R26,
   761   R27_H, R27,
   762   R28_H, R28
   763 );
   766 // ----------------------------
   767 // Special Class for Condition Code Flags Register
   769 reg_class int_flags(
   770 /*CCR0*/             // scratch
   771 /*CCR1*/             // scratch
   772 /*CCR2*/             // nv!
   773 /*CCR3*/             // nv!
   774 /*CCR4*/             // nv!
   775   CCR5,
   776   CCR6,
   777   CCR7
   778 );
   780 reg_class int_flags_CR0(CCR0);
   781 reg_class int_flags_CR1(CCR1);
   782 reg_class int_flags_CR6(CCR6);
   783 reg_class ctr_reg(SR_CTR);
   785 // ----------------------------
   786 // Float Register Classes
   787 // ----------------------------
   789 reg_class flt_reg(
   790 /*F0*/              // scratch
   791   F1,
   792   F2,
   793   F3,
   794   F4,
   795   F5,
   796   F6,
   797   F7,
   798   F8,
   799   F9,
   800   F10,
   801   F11,
   802   F12,
   803   F13,
   804   F14,              // nv!
   805   F15,              // nv!
   806   F16,              // nv!
   807   F17,              // nv!
   808   F18,              // nv!
   809   F19,              // nv!
   810   F20,              // nv!
   811   F21,              // nv!
   812   F22,              // nv!
   813   F23,              // nv!
   814   F24,              // nv!
   815   F25,              // nv!
   816   F26,              // nv!
   817   F27,              // nv!
   818   F28,              // nv!
   819   F29,              // nv!
   820   F30,              // nv!
   821   F31               // nv!
   822 );
   824 // Double precision float registers have virtual `high halves' that
   825 // are needed by the allocator.
   826 reg_class dbl_reg(
   827 /*F0,  F0_H*/     // scratch
   828   F1,  F1_H,
   829   F2,  F2_H,
   830   F3,  F3_H,
   831   F4,  F4_H,
   832   F5,  F5_H,
   833   F6,  F6_H,
   834   F7,  F7_H,
   835   F8,  F8_H,
   836   F9,  F9_H,
   837   F10, F10_H,
   838   F11, F11_H,
   839   F12, F12_H,
   840   F13, F13_H,
   841   F14, F14_H,    // nv!
   842   F15, F15_H,    // nv!
   843   F16, F16_H,    // nv!
   844   F17, F17_H,    // nv!
   845   F18, F18_H,    // nv!
   846   F19, F19_H,    // nv!
   847   F20, F20_H,    // nv!
   848   F21, F21_H,    // nv!
   849   F22, F22_H,    // nv!
   850   F23, F23_H,    // nv!
   851   F24, F24_H,    // nv!
   852   F25, F25_H,    // nv!
   853   F26, F26_H,    // nv!
   854   F27, F27_H,    // nv!
   855   F28, F28_H,    // nv!
   856   F29, F29_H,    // nv!
   857   F30, F30_H,    // nv!
   858   F31, F31_H     // nv!
   859 );
   861  %}
   863 //----------DEFINITION BLOCK---------------------------------------------------
   864 // Define name --> value mappings to inform the ADLC of an integer valued name
   865 // Current support includes integer values in the range [0, 0x7FFFFFFF]
   866 // Format:
   867 //        int_def  <name>         ( <int_value>, <expression>);
   868 // Generated Code in ad_<arch>.hpp
   869 //        #define  <name>   (<expression>)
   870 //        // value == <int_value>
   871 // Generated code in ad_<arch>.cpp adlc_verification()
   872 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
   873 //
   874 definitions %{
   875   // The default cost (of an ALU instruction).
   876   int_def DEFAULT_COST_LOW        (     30,      30);
   877   int_def DEFAULT_COST            (    100,     100);
   878   int_def HUGE_COST               (1000000, 1000000);
   880   // Memory refs
   881   int_def MEMORY_REF_COST_LOW     (    200, DEFAULT_COST * 2);
   882   int_def MEMORY_REF_COST         (    300, DEFAULT_COST * 3);
   884   // Branches are even more expensive.
   885   int_def BRANCH_COST             (    900, DEFAULT_COST * 9);
   886   int_def CALL_COST               (   1300, DEFAULT_COST * 13);
   887 %}
   890 //----------SOURCE BLOCK-------------------------------------------------------
   891 // This is a block of C++ code which provides values, functions, and
   892 // definitions necessary in the rest of the architecture description.
   893 source_hpp %{
   894   // Header information of the source block.
   895   // Method declarations/definitions which are used outside
   896   // the ad-scope can conveniently be defined here.
   897   //
   898   // To keep related declarations/definitions/uses close together,
   899   // we switch between source %{ }% and source_hpp %{ }% freely as needed.
   901   // Returns true if Node n is followed by a MemBar node that
   902   // will do an acquire. If so, this node must not do the acquire
   903   // operation.
   904   bool followed_by_acquire(const Node *n);
   905 %}
   907 source %{
   909 // Optimize load-acquire.
   910 //
   911 // Check if acquire is unnecessary due to following operation that does
   912 // acquire anyways.
   913 // Walk the pattern:
   914 //
   915 //      n: Load.acq
   916 //           |
   917 //      MemBarAcquire
   918 //       |         |
   919 //  Proj(ctrl)  Proj(mem)
   920 //       |         |
   921 //   MemBarRelease/Volatile
   922 //
   923 bool followed_by_acquire(const Node *load) {
   924   assert(load->is_Load(), "So far implemented only for loads.");
   926   // Find MemBarAcquire.
   927   const Node *mba = NULL;
   928   for (DUIterator_Fast imax, i = load->fast_outs(imax); i < imax; i++) {
   929     const Node *out = load->fast_out(i);
   930     if (out->Opcode() == Op_MemBarAcquire) {
   931       if (out->in(0) == load) continue; // Skip control edge, membar should be found via precedence edge.
   932       mba = out;
   933       break;
   934     }
   935   }
   936   if (!mba) return false;
   938   // Find following MemBar node.
   939   //
   940   // The following node must be reachable by control AND memory
   941   // edge to assure no other operations are in between the two nodes.
   942   //
   943   // So first get the Proj node, mem_proj, to use it to iterate forward.
   944   Node *mem_proj = NULL;
   945   for (DUIterator_Fast imax, i = mba->fast_outs(imax); i < imax; i++) {
   946     mem_proj = mba->fast_out(i);      // Throw out-of-bounds if proj not found
   947     assert(mem_proj->is_Proj(), "only projections here");
   948     ProjNode *proj = mem_proj->as_Proj();
   949     if (proj->_con == TypeFunc::Memory &&
   950         !Compile::current()->node_arena()->contains(mem_proj)) // Unmatched old-space only
   951       break;
   952   }
   953   assert(mem_proj->as_Proj()->_con == TypeFunc::Memory, "Graph broken");
   955   // Search MemBar behind Proj. If there are other memory operations
   956   // behind the Proj we lost.
   957   for (DUIterator_Fast jmax, j = mem_proj->fast_outs(jmax); j < jmax; j++) {
   958     Node *x = mem_proj->fast_out(j);
   959     // Proj might have an edge to a store or load node which precedes the membar.
   960     if (x->is_Mem()) return false;
   962     // On PPC64 release and volatile are implemented by an instruction
   963     // that also has acquire semantics. I.e. there is no need for an
   964     // acquire before these.
   965     int xop = x->Opcode();
   966     if (xop == Op_MemBarRelease || xop == Op_MemBarVolatile) {
   967       // Make sure we're not missing Call/Phi/MergeMem by checking
   968       // control edges. The control edge must directly lead back
   969       // to the MemBarAcquire
   970       Node *ctrl_proj = x->in(0);
   971       if (ctrl_proj->is_Proj() && ctrl_proj->in(0) == mba) {
   972         return true;
   973       }
   974     }
   975   }
   977   return false;
   978 }
   980 #define __ _masm.
   982 // Tertiary op of a LoadP or StoreP encoding.
   983 #define REGP_OP true
   985 // ****************************************************************************
   987 // REQUIRED FUNCTIONALITY
   989 // !!!!! Special hack to get all type of calls to specify the byte offset
   990 //       from the start of the call to the point where the return address
   991 //       will point.
   993 // PPC port: Removed use of lazy constant construct.
   995 int MachCallStaticJavaNode::ret_addr_offset() {
   996   // It's only a single branch-and-link instruction.
   997   return 4;
   998 }
  1000 int MachCallDynamicJavaNode::ret_addr_offset() {
  1001   // Offset is 4 with postalloc expanded calls (bl is one instruction). We use
  1002   // postalloc expanded calls if we use inline caches and do not update method data.
  1003   if (UseInlineCaches)
  1004     return 4;
  1006   int vtable_index = this->_vtable_index;
  1007   if (vtable_index < 0) {
  1008     // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  1009     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  1010     return 12;
  1011   } else {
  1012     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  1013     return 24;
  1017 int MachCallRuntimeNode::ret_addr_offset() {
  1018 #if defined(ABI_ELFv2)
  1019   return 28;
  1020 #else
  1021   return 40;
  1022 #endif
  1025 //=============================================================================
  1027 // condition code conversions
  1029 static int cc_to_boint(int cc) {
  1030   return Assembler::bcondCRbiIs0 | (cc & 8);
  1033 static int cc_to_inverse_boint(int cc) {
  1034   return Assembler::bcondCRbiIs0 | (8-(cc & 8));
  1037 static int cc_to_biint(int cc, int flags_reg) {
  1038   return (flags_reg << 2) | (cc & 3);
  1041 //=============================================================================
  1043 // Compute padding required for nodes which need alignment. The padding
  1044 // is the number of bytes (not instructions) which will be inserted before
  1045 // the instruction. The padding must match the size of a NOP instruction.
  1047 int string_indexOf_imm1_charNode::compute_padding(int current_offset) const {
  1048   return (3*4-current_offset)&31;
  1051 int string_indexOf_imm1Node::compute_padding(int current_offset) const {
  1052   return (2*4-current_offset)&31;
  1055 int string_indexOf_immNode::compute_padding(int current_offset) const {
  1056   return (3*4-current_offset)&31;
  1059 int string_indexOfNode::compute_padding(int current_offset) const {
  1060   return (1*4-current_offset)&31;
  1063 int string_compareNode::compute_padding(int current_offset) const {
  1064   return (4*4-current_offset)&31;
  1067 int string_equals_immNode::compute_padding(int current_offset) const {
  1068   if (opnd_array(3)->constant() < 16) return 0; // Don't insert nops for short version (loop completely unrolled).
  1069   return (2*4-current_offset)&31;
  1072 int string_equalsNode::compute_padding(int current_offset) const {
  1073   return (7*4-current_offset)&31;
  1076 int inlineCallClearArrayNode::compute_padding(int current_offset) const {
  1077   return (2*4-current_offset)&31;
  1080 //=============================================================================
  1082 // Indicate if the safepoint node needs the polling page as an input.
  1083 bool SafePointNode::needs_polling_address_input() {
  1084   // The address is loaded from thread by a seperate node.
  1085   return true;
  1088 //=============================================================================
  1090 // Emit an interrupt that is caught by the debugger (for debugging compiler).
  1091 void emit_break(CodeBuffer &cbuf) {
  1092   MacroAssembler _masm(&cbuf);
  1093   __ illtrap();
  1096 #ifndef PRODUCT
  1097 void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1098   st->print("BREAKPOINT");
  1100 #endif
  1102 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1103   emit_break(cbuf);
  1106 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
  1107   return MachNode::size(ra_);
  1110 //=============================================================================
  1112 void emit_nop(CodeBuffer &cbuf) {
  1113   MacroAssembler _masm(&cbuf);
  1114   __ nop();
  1117 static inline void emit_long(CodeBuffer &cbuf, int value) {
  1118   *((int*)(cbuf.insts_end())) = value;
  1119   cbuf.set_insts_end(cbuf.insts_end() + BytesPerInstWord);
  1122 //=============================================================================
  1124 %} // interrupt source
  1126 source_hpp %{ // Header information of the source block.
  1128 //--------------------------------------------------------------
  1129 //---<  Used for optimization in Compile::Shorten_branches  >---
  1130 //--------------------------------------------------------------
  1132 const uint trampoline_stub_size     =  6 * BytesPerInstWord;
  1134 class CallStubImpl {
  1136  public:
  1138   // Emit call stub, compiled java to interpreter.
  1139   static void emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset);
  1141   // Size of call trampoline stub.
  1142   // This doesn't need to be accurate to the byte, but it
  1143   // must be larger than or equal to the real size of the stub.
  1144   static uint size_call_trampoline() {
  1145     return trampoline_stub_size;
  1148   // number of relocations needed by a call trampoline stub
  1149   static uint reloc_call_trampoline() {
  1150     return 5;
  1153 };
  1155 %} // end source_hpp
  1157 source %{
  1159 // Emit a trampoline stub for a call to a target which is too far away.
  1160 //
  1161 // code sequences:
  1162 //
  1163 // call-site:
  1164 //   branch-and-link to <destination> or <trampoline stub>
  1165 //
  1166 // Related trampoline stub for this call-site in the stub section:
  1167 //   load the call target from the constant pool
  1168 //   branch via CTR (LR/link still points to the call-site above)
  1170 void CallStubImpl::emit_trampoline_stub(MacroAssembler &_masm, int destination_toc_offset, int insts_call_instruction_offset) {
  1171   // Start the stub.
  1172   address stub = __ start_a_stub(Compile::MAX_stubs_size/2);
  1173   if (stub == NULL) {
  1174     Compile::current()->env()->record_out_of_memory_failure();
  1175     return;
  1178   // For java_to_interp stubs we use R11_scratch1 as scratch register
  1179   // and in call trampoline stubs we use R12_scratch2. This way we
  1180   // can distinguish them (see is_NativeCallTrampolineStub_at()).
  1181   Register reg_scratch = R12_scratch2;
  1183   // Create a trampoline stub relocation which relates this trampoline stub
  1184   // with the call instruction at insts_call_instruction_offset in the
  1185   // instructions code-section.
  1186   __ relocate(trampoline_stub_Relocation::spec(__ code()->insts()->start() + insts_call_instruction_offset));
  1187   const int stub_start_offset = __ offset();
  1189   // Now, create the trampoline stub's code:
  1190   // - load the TOC
  1191   // - load the call target from the constant pool
  1192   // - call
  1193   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
  1194   __ ld_largeoffset_unchecked(reg_scratch, destination_toc_offset, reg_scratch, false);
  1195   __ mtctr(reg_scratch);
  1196   __ bctr();
  1198   const address stub_start_addr = __ addr_at(stub_start_offset);
  1200   // FIXME: Assert that the trampoline stub can be identified and patched.
  1202   // Assert that the encoded destination_toc_offset can be identified and that it is correct.
  1203   assert(destination_toc_offset == NativeCallTrampolineStub_at(stub_start_addr)->destination_toc_offset(),
  1204          "encoded offset into the constant pool must match");
  1205   // Trampoline_stub_size should be good.
  1206   assert((uint)(__ offset() - stub_start_offset) <= trampoline_stub_size, "should be good size");
  1207   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
  1209   // End the stub.
  1210   __ end_a_stub();
  1213 //=============================================================================
  1215 // Emit an inline branch-and-link call and a related trampoline stub.
  1216 //
  1217 // code sequences:
  1218 //
  1219 // call-site:
  1220 //   branch-and-link to <destination> or <trampoline stub>
  1221 //
  1222 // Related trampoline stub for this call-site in the stub section:
  1223 //   load the call target from the constant pool
  1224 //   branch via CTR (LR/link still points to the call-site above)
  1225 //
  1227 typedef struct {
  1228   int insts_call_instruction_offset;
  1229   int ret_addr_offset;
  1230 } EmitCallOffsets;
  1232 // Emit a branch-and-link instruction that branches to a trampoline.
  1233 // - Remember the offset of the branch-and-link instruction.
  1234 // - Add a relocation at the branch-and-link instruction.
  1235 // - Emit a branch-and-link.
  1236 // - Remember the return pc offset.
  1237 EmitCallOffsets emit_call_with_trampoline_stub(MacroAssembler &_masm, address entry_point, relocInfo::relocType rtype) {
  1238   EmitCallOffsets offsets = { -1, -1 };
  1239   const int start_offset = __ offset();
  1240   offsets.insts_call_instruction_offset = __ offset();
  1242   // No entry point given, use the current pc.
  1243   if (entry_point == NULL) entry_point = __ pc();
  1245   if (!Compile::current()->in_scratch_emit_size()) {
  1246     // Put the entry point as a constant into the constant pool.
  1247     const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  1248     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  1250     // Emit the trampoline stub which will be related to the branch-and-link below.
  1251     CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, offsets.insts_call_instruction_offset);
  1252     __ relocate(rtype);
  1255   // Note: At this point we do not have the address of the trampoline
  1256   // stub, and the entry point might be too far away for bl, so __ pc()
  1257   // serves as dummy and the bl will be patched later.
  1258   __ bl((address) __ pc());
  1260   offsets.ret_addr_offset = __ offset() - start_offset;
  1262   return offsets;
  1265 //=============================================================================
  1267 // Factory for creating loadConL* nodes for large/small constant pool.
  1269 static inline jlong replicate_immF(float con) {
  1270   // Replicate float con 2 times and pack into vector.
  1271   int val = *((int*)&con);
  1272   jlong lval = val;
  1273   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
  1274   return lval;
  1277 //=============================================================================
  1279 const RegMask& MachConstantBaseNode::_out_RegMask = BITS64_CONSTANT_TABLE_BASE_mask();
  1280 int Compile::ConstantTable::calculate_table_base_offset() const {
  1281   return 0;  // absolute addressing, no offset
  1284 bool MachConstantBaseNode::requires_postalloc_expand() const { return true; }
  1285 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
  1286   Compile *C = ra_->C;
  1288   iRegPdstOper *op_dst = new (C) iRegPdstOper();
  1289   MachNode *m1 = new (C) loadToc_hiNode();
  1290   MachNode *m2 = new (C) loadToc_loNode();
  1292   m1->add_req(NULL);
  1293   m2->add_req(NULL, m1);
  1294   m1->_opnds[0] = op_dst;
  1295   m2->_opnds[0] = op_dst;
  1296   m2->_opnds[1] = op_dst;
  1297   ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1298   ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  1299   nodes->push(m1);
  1300   nodes->push(m2);
  1303 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1304   // Is postalloc expanded.
  1305   ShouldNotReachHere();
  1308 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
  1309   return 0;
  1312 #ifndef PRODUCT
  1313 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1314   st->print("-- \t// MachConstantBaseNode (empty encoding)");
  1316 #endif
  1318 //=============================================================================
  1320 #ifndef PRODUCT
  1321 void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1322   Compile* C = ra_->C;
  1323   const long framesize = C->frame_slots() << LogBytesPerInt;
  1325   st->print("PROLOG\n\t");
  1326   if (C->need_stack_bang(framesize)) {
  1327     st->print("stack_overflow_check\n\t");
  1330   if (!false /* TODO: PPC port C->is_frameless_method()*/) {
  1331     st->print("save return pc\n\t");
  1332     st->print("push frame %d\n\t", -framesize);
  1335 #endif
  1337 // Macro used instead of the common __ to emulate the pipes of PPC.
  1338 // Instead of e.g. __ ld(...) one hase to write ___(ld) ld(...) This enables the
  1339 // micro scheduler to cope with "hand written" assembler like in the prolog. Though
  1340 // still no scheduling of this code is possible, the micro scheduler is aware of the
  1341 // code and can update its internal data. The following mechanism is used to achieve this:
  1342 // The micro scheduler calls size() of each compound node during scheduling. size() does a
  1343 // dummy emit and only during this dummy emit C->hb_scheduling() is not NULL.
  1344 #if 0 // TODO: PPC port
  1345 #define ___(op) if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1346                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(ppc64Opcode_##op); \
  1347                 _masm.
  1348 #define ___stop if (UsePower6SchedulerPPC64 && C->hb_scheduling())                    \
  1349                   C->hb_scheduling()->_pdScheduling->PdEmulatePipe(archOpcode_none)
  1350 #define ___advance if (UsePower6SchedulerPPC64 && C->hb_scheduling())                 \
  1351                   C->hb_scheduling()->_pdScheduling->advance_offset
  1352 #else
  1353 #define ___(op) if (UsePower6SchedulerPPC64)                                          \
  1354                   Unimplemented();                                                    \
  1355                 _masm.
  1356 #define ___stop if (UsePower6SchedulerPPC64)                                          \
  1357                   Unimplemented()
  1358 #define ___advance if (UsePower6SchedulerPPC64)                                       \
  1359                   Unimplemented()
  1360 #endif
  1362 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1363   Compile* C = ra_->C;
  1364   MacroAssembler _masm(&cbuf);
  1366   const long framesize = C->frame_size_in_bytes();
  1367   assert(framesize % (2 * wordSize) == 0, "must preserve 2*wordSize alignment");
  1369   const bool method_is_frameless      = false /* TODO: PPC port C->is_frameless_method()*/;
  1371   const Register return_pc            = R20; // Must match return_addr() in frame section.
  1372   const Register callers_sp           = R21;
  1373   const Register push_frame_temp      = R22;
  1374   const Register toc_temp             = R23;
  1375   assert_different_registers(R11, return_pc, callers_sp, push_frame_temp, toc_temp);
  1377   if (method_is_frameless) {
  1378     // Add nop at beginning of all frameless methods to prevent any
  1379     // oop instructions from getting overwritten by make_not_entrant
  1380     // (patching attempt would fail).
  1381     ___(nop) nop();
  1382   } else {
  1383     // Get return pc.
  1384     ___(mflr) mflr(return_pc);
  1387   // Calls to C2R adapters often do not accept exceptional returns.
  1388   // We require that their callers must bang for them. But be
  1389   // careful, because some VM calls (such as call site linkage) can
  1390   // use several kilobytes of stack. But the stack safety zone should
  1391   // account for that. See bugs 4446381, 4468289, 4497237.
  1393   int bangsize = C->bang_size_in_bytes();
  1394   assert(bangsize >= framesize || bangsize <= 0, "stack bang size incorrect");
  1395   if (C->need_stack_bang(bangsize) && UseStackBanging) {
  1396     // Unfortunately we cannot use the function provided in
  1397     // assembler.cpp as we have to emulate the pipes. So I had to
  1398     // insert the code of generate_stack_overflow_check(), see
  1399     // assembler.cpp for some illuminative comments.
  1400     const int page_size = os::vm_page_size();
  1401     int bang_end = StackShadowPages * page_size;
  1403     // This is how far the previous frame's stack banging extended.
  1404     const int bang_end_safe = bang_end;
  1406     if (bangsize > page_size) {
  1407       bang_end += bangsize;
  1410     int bang_offset = bang_end_safe;
  1412     while (bang_offset <= bang_end) {
  1413       // Need at least one stack bang at end of shadow zone.
  1415       // Again I had to copy code, this time from assembler_ppc64.cpp,
  1416       // bang_stack_with_offset - see there for comments.
  1418       // Stack grows down, caller passes positive offset.
  1419       assert(bang_offset > 0, "must bang with positive offset");
  1421       long stdoffset = -bang_offset;
  1423       if (Assembler::is_simm(stdoffset, 16)) {
  1424         // Signed 16 bit offset, a simple std is ok.
  1425         if (UseLoadInstructionsForStackBangingPPC64) {
  1426           ___(ld) ld(R0,  (int)(signed short)stdoffset, R1_SP);
  1427         } else {
  1428           ___(std) std(R0, (int)(signed short)stdoffset, R1_SP);
  1430       } else if (Assembler::is_simm(stdoffset, 31)) {
  1431         // Use largeoffset calculations for addis & ld/std.
  1432         const int hi = MacroAssembler::largeoffset_si16_si16_hi(stdoffset);
  1433         const int lo = MacroAssembler::largeoffset_si16_si16_lo(stdoffset);
  1435         Register tmp = R11;
  1436         ___(addis) addis(tmp, R1_SP, hi);
  1437         if (UseLoadInstructionsForStackBangingPPC64) {
  1438           ___(ld) ld(R0, lo, tmp);
  1439         } else {
  1440           ___(std) std(R0, lo, tmp);
  1442       } else {
  1443         ShouldNotReachHere();
  1446       bang_offset += page_size;
  1448     // R11 trashed
  1449   } // C->need_stack_bang(framesize) && UseStackBanging
  1451   unsigned int bytes = (unsigned int)framesize;
  1452   long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  1453   ciMethod *currMethod = C->method();
  1455   // Optimized version for most common case.
  1456   if (UsePower6SchedulerPPC64 &&
  1457       !method_is_frameless && Assembler::is_simm((int)(-offset), 16) &&
  1458       !(false /* ConstantsALot TODO: PPC port*/)) {
  1459     ___(or) mr(callers_sp, R1_SP);
  1460     ___(std) std(return_pc, _abi(lr), R1_SP);
  1461     ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1462     return;
  1465   if (!method_is_frameless) {
  1466     // Get callers sp.
  1467     ___(or) mr(callers_sp, R1_SP);
  1469     // Push method's frame, modifies SP.
  1470     assert(Assembler::is_uimm(framesize, 32U), "wrong type");
  1471     // The ABI is already accounted for in 'framesize' via the
  1472     // 'out_preserve' area.
  1473     Register tmp = push_frame_temp;
  1474     // Had to insert code of push_frame((unsigned int)framesize, push_frame_temp).
  1475     if (Assembler::is_simm(-offset, 16)) {
  1476       ___(stdu) stdu(R1_SP, -offset, R1_SP);
  1477     } else {
  1478       long x = -offset;
  1479       // Had to insert load_const(tmp, -offset).
  1480       ___(addis)  lis( tmp, (int)((signed short)(((x >> 32) & 0xffff0000) >> 16)));
  1481       ___(ori)    ori( tmp, tmp, ((x >> 32) & 0x0000ffff));
  1482       ___(rldicr) sldi(tmp, tmp, 32);
  1483       ___(oris)   oris(tmp, tmp, (x & 0xffff0000) >> 16);
  1484       ___(ori)    ori( tmp, tmp, (x & 0x0000ffff));
  1486       ___(stdux) stdux(R1_SP, R1_SP, tmp);
  1489 #if 0 // TODO: PPC port
  1490   // For testing large constant pools, emit a lot of constants to constant pool.
  1491   // "Randomize" const_size.
  1492   if (ConstantsALot) {
  1493     const int num_consts = const_size();
  1494     for (int i = 0; i < num_consts; i++) {
  1495       __ long_constant(0xB0B5B00BBABE);
  1498 #endif
  1499   if (!method_is_frameless) {
  1500     // Save return pc.
  1501     ___(std) std(return_pc, _abi(lr), callers_sp);
  1504 #undef ___
  1505 #undef ___stop
  1506 #undef ___advance
  1508 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
  1509   // Variable size. determine dynamically.
  1510   return MachNode::size(ra_);
  1513 int MachPrologNode::reloc() const {
  1514   // Return number of relocatable values contained in this instruction.
  1515   return 1; // 1 reloc entry for load_const(toc).
  1518 //=============================================================================
  1520 #ifndef PRODUCT
  1521 void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1522   Compile* C = ra_->C;
  1524   st->print("EPILOG\n\t");
  1525   st->print("restore return pc\n\t");
  1526   st->print("pop frame\n\t");
  1528   if (do_polling() && C->is_method_compilation()) {
  1529     st->print("touch polling page\n\t");
  1532 #endif
  1534 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1535   Compile* C = ra_->C;
  1536   MacroAssembler _masm(&cbuf);
  1538   const long framesize = ((long)C->frame_slots()) << LogBytesPerInt;
  1539   assert(framesize >= 0, "negative frame-size?");
  1541   const bool method_needs_polling = do_polling() && C->is_method_compilation();
  1542   const bool method_is_frameless  = false /* TODO: PPC port C->is_frameless_method()*/;
  1543   const Register return_pc        = R11;
  1544   const Register polling_page     = R12;
  1546   if (!method_is_frameless) {
  1547     // Restore return pc relative to callers' sp.
  1548     __ ld(return_pc, ((int)framesize) + _abi(lr), R1_SP);
  1551   if (method_needs_polling) {
  1552     if (LoadPollAddressFromThread) {
  1553       // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1554       Unimplemented();
  1555     } else {
  1556       __ load_const_optimized(polling_page, (long)(address) os::get_polling_page()); // TODO: PPC port: get_standard_polling_page()
  1560   if (!method_is_frameless) {
  1561     // Move return pc to LR.
  1562     __ mtlr(return_pc);
  1563     // Pop frame (fixed frame-size).
  1564     __ addi(R1_SP, R1_SP, (int)framesize);
  1567   if (method_needs_polling) {
  1568     // We need to mark the code position where the load from the safepoint
  1569     // polling page was emitted as relocInfo::poll_return_type here.
  1570     __ relocate(relocInfo::poll_return_type);
  1571     __ load_from_polling_page(polling_page);
  1575 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
  1576   // Variable size. Determine dynamically.
  1577   return MachNode::size(ra_);
  1580 int MachEpilogNode::reloc() const {
  1581   // Return number of relocatable values contained in this instruction.
  1582   return 1; // 1 for load_from_polling_page.
  1585 const Pipeline * MachEpilogNode::pipeline() const {
  1586   return MachNode::pipeline_class();
  1589 // This method seems to be obsolete. It is declared in machnode.hpp
  1590 // and defined in all *.ad files, but it is never called. Should we
  1591 // get rid of it?
  1592 int MachEpilogNode::safepoint_offset() const {
  1593   assert(do_polling(), "no return for this epilog node");
  1594   return 0;
  1597 #if 0 // TODO: PPC port
  1598 void MachLoadPollAddrLateNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
  1599   MacroAssembler _masm(&cbuf);
  1600   if (LoadPollAddressFromThread) {
  1601     _masm.ld(R11, in_bytes(JavaThread::poll_address_offset()), R16_thread);
  1602   } else {
  1603     _masm.nop();
  1607 uint MachLoadPollAddrLateNode::size(PhaseRegAlloc* ra_) const {
  1608   if (LoadPollAddressFromThread) {
  1609     return 4;
  1610   } else {
  1611     return 4;
  1615 #ifndef PRODUCT
  1616 void MachLoadPollAddrLateNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
  1617   st->print_cr(" LD R11, PollAddressOffset, R16_thread \t// LoadPollAddressFromThread");
  1619 #endif
  1621 const RegMask &MachLoadPollAddrLateNode::out_RegMask() const {
  1622   return RSCRATCH1_BITS64_REG_mask();
  1624 #endif // PPC port
  1626 // =============================================================================
  1628 // Figure out which register class each belongs in: rc_int, rc_float or
  1629 // rc_stack.
  1630 enum RC { rc_bad, rc_int, rc_float, rc_stack };
  1632 static enum RC rc_class(OptoReg::Name reg) {
  1633   // Return the register class for the given register. The given register
  1634   // reg is a <register>_num value, which is an index into the MachRegisterNumbers
  1635   // enumeration in adGlobals_ppc64.hpp.
  1637   if (reg == OptoReg::Bad) return rc_bad;
  1639   // We have 64 integer register halves, starting at index 0.
  1640   if (reg < 64) return rc_int;
  1642   // We have 64 floating-point register halves, starting at index 64.
  1643   if (reg < 64+64) return rc_float;
  1645   // Between float regs & stack are the flags regs.
  1646   assert(OptoReg::is_stack(reg), "blow up if spilling flags");
  1648   return rc_stack;
  1651 static int ld_st_helper(CodeBuffer *cbuf, const char *op_str, uint opcode, int reg, int offset,
  1652                         bool do_print, Compile* C, outputStream *st) {
  1654   assert(opcode == Assembler::LD_OPCODE   ||
  1655          opcode == Assembler::STD_OPCODE  ||
  1656          opcode == Assembler::LWZ_OPCODE  ||
  1657          opcode == Assembler::STW_OPCODE  ||
  1658          opcode == Assembler::LFD_OPCODE  ||
  1659          opcode == Assembler::STFD_OPCODE ||
  1660          opcode == Assembler::LFS_OPCODE  ||
  1661          opcode == Assembler::STFS_OPCODE,
  1662          "opcode not supported");
  1664   if (cbuf) {
  1665     int d =
  1666       (Assembler::LD_OPCODE == opcode || Assembler::STD_OPCODE == opcode) ?
  1667         Assembler::ds(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/)
  1668       : Assembler::d1(offset+0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/); // Makes no difference in opt build.
  1669     emit_long(*cbuf, opcode | Assembler::rt(Matcher::_regEncode[reg]) | d | Assembler::ra(R1_SP));
  1671 #ifndef PRODUCT
  1672   else if (do_print) {
  1673     st->print("%-7s %s, [R1_SP + #%d+%d] \t// spill copy",
  1674               op_str,
  1675               Matcher::regName[reg],
  1676               offset, 0 /* TODO: PPC port C->frame_slots_sp_bias_in_bytes()*/);
  1678 #endif
  1679   return 4; // size
  1682 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
  1683   Compile* C = ra_->C;
  1685   // Get registers to move.
  1686   OptoReg::Name src_hi = ra_->get_reg_second(in(1));
  1687   OptoReg::Name src_lo = ra_->get_reg_first(in(1));
  1688   OptoReg::Name dst_hi = ra_->get_reg_second(this);
  1689   OptoReg::Name dst_lo = ra_->get_reg_first(this);
  1691   enum RC src_hi_rc = rc_class(src_hi);
  1692   enum RC src_lo_rc = rc_class(src_lo);
  1693   enum RC dst_hi_rc = rc_class(dst_hi);
  1694   enum RC dst_lo_rc = rc_class(dst_lo);
  1696   assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
  1697   if (src_hi != OptoReg::Bad)
  1698     assert((src_lo&1)==0 && src_lo+1==src_hi &&
  1699            (dst_lo&1)==0 && dst_lo+1==dst_hi,
  1700            "expected aligned-adjacent pairs");
  1701   // Generate spill code!
  1702   int size = 0;
  1704   if (src_lo == dst_lo && src_hi == dst_hi)
  1705     return size;            // Self copy, no move.
  1707   // --------------------------------------
  1708   // Memory->Memory Spill. Use R0 to hold the value.
  1709   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1710     int src_offset = ra_->reg2offset(src_lo);
  1711     int dst_offset = ra_->reg2offset(dst_lo);
  1712     if (src_hi != OptoReg::Bad) {
  1713       assert(src_hi_rc==rc_stack && dst_hi_rc==rc_stack,
  1714              "expected same type of move for high parts");
  1715       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE,  R0_num, src_offset, !do_size, C, st);
  1716       if (!cbuf && !do_size) st->print("\n\t");
  1717       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1718     } else {
  1719       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, R0_num, src_offset, !do_size, C, st);
  1720       if (!cbuf && !do_size) st->print("\n\t");
  1721       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, R0_num, dst_offset, !do_size, C, st);
  1723     return size;
  1726   // --------------------------------------
  1727   // Check for float->int copy; requires a trip through memory.
  1728   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1729     Unimplemented();
  1732   // --------------------------------------
  1733   // Check for integer reg-reg copy.
  1734   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1735       Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1736       Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1737       size = (Rsrc != Rdst) ? 4 : 0;
  1739       if (cbuf) {
  1740         MacroAssembler _masm(cbuf);
  1741         if (size) {
  1742           __ mr(Rdst, Rsrc);
  1745 #ifndef PRODUCT
  1746       else if (!do_size) {
  1747         if (size) {
  1748           st->print("%-7s %s, %s \t// spill copy", "MR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1749         } else {
  1750           st->print("%-7s %s, %s \t// spill copy", "MR-NOP", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1753 #endif
  1754       return size;
  1757   // Check for integer store.
  1758   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1759     int dst_offset = ra_->reg2offset(dst_lo);
  1760     if (src_hi != OptoReg::Bad) {
  1761       assert(src_hi_rc==rc_int && dst_hi_rc==rc_stack,
  1762              "expected same type of move for high parts");
  1763       size += ld_st_helper(cbuf, "STD ", Assembler::STD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1764     } else {
  1765       size += ld_st_helper(cbuf, "STW ", Assembler::STW_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1767     return size;
  1770   // Check for integer load.
  1771   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1772     int src_offset = ra_->reg2offset(src_lo);
  1773     if (src_hi != OptoReg::Bad) {
  1774       assert(dst_hi_rc==rc_int && src_hi_rc==rc_stack,
  1775              "expected same type of move for high parts");
  1776       size += ld_st_helper(cbuf, "LD  ", Assembler::LD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1777     } else {
  1778       size += ld_st_helper(cbuf, "LWZ ", Assembler::LWZ_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1780     return size;
  1783   // Check for float reg-reg copy.
  1784   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1785     if (cbuf) {
  1786       MacroAssembler _masm(cbuf);
  1787       FloatRegister Rsrc = as_FloatRegister(Matcher::_regEncode[src_lo]);
  1788       FloatRegister Rdst = as_FloatRegister(Matcher::_regEncode[dst_lo]);
  1789       __ fmr(Rdst, Rsrc);
  1791 #ifndef PRODUCT
  1792     else if (!do_size) {
  1793       st->print("%-7s %s, %s \t// spill copy", "FMR", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
  1795 #endif
  1796     return 4;
  1799   // Check for float store.
  1800   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1801     int dst_offset = ra_->reg2offset(dst_lo);
  1802     if (src_hi != OptoReg::Bad) {
  1803       assert(src_hi_rc==rc_float && dst_hi_rc==rc_stack,
  1804              "expected same type of move for high parts");
  1805       size += ld_st_helper(cbuf, "STFD", Assembler::STFD_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1806     } else {
  1807       size += ld_st_helper(cbuf, "STFS", Assembler::STFS_OPCODE, src_lo, dst_offset, !do_size, C, st);
  1809     return size;
  1812   // Check for float load.
  1813   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1814     int src_offset = ra_->reg2offset(src_lo);
  1815     if (src_hi != OptoReg::Bad) {
  1816       assert(dst_hi_rc==rc_float && src_hi_rc==rc_stack,
  1817              "expected same type of move for high parts");
  1818       size += ld_st_helper(cbuf, "LFD ", Assembler::LFD_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1819     } else {
  1820       size += ld_st_helper(cbuf, "LFS ", Assembler::LFS_OPCODE, dst_lo, src_offset, !do_size, C, st);
  1822     return size;
  1825   // --------------------------------------------------------------------
  1826   // Check for hi bits still needing moving. Only happens for misaligned
  1827   // arguments to native calls.
  1828   if (src_hi == dst_hi)
  1829     return size;               // Self copy; no move.
  1831   assert(src_hi_rc != rc_bad && dst_hi_rc != rc_bad, "src_hi & dst_hi cannot be Bad");
  1832   ShouldNotReachHere(); // Unimplemented
  1833   return 0;
  1836 #ifndef PRODUCT
  1837 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1838   if (!ra_)
  1839     st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
  1840   else
  1841     implementation(NULL, ra_, false, st);
  1843 #endif
  1845 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1846   implementation(&cbuf, ra_, false, NULL);
  1849 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
  1850   return implementation(NULL, ra_, true, NULL);
  1853 #if 0 // TODO: PPC port
  1854 ArchOpcode MachSpillCopyNode_archOpcode(MachSpillCopyNode *n, PhaseRegAlloc *ra_) {
  1855 #ifndef PRODUCT
  1856   if (ra_->node_regs_max_index() == 0) return archOpcode_undefined;
  1857 #endif
  1858   assert(ra_->node_regs_max_index() != 0, "");
  1860   // Get registers to move.
  1861   OptoReg::Name src_hi = ra_->get_reg_second(n->in(1));
  1862   OptoReg::Name src_lo = ra_->get_reg_first(n->in(1));
  1863   OptoReg::Name dst_hi = ra_->get_reg_second(n);
  1864   OptoReg::Name dst_lo = ra_->get_reg_first(n);
  1866   enum RC src_lo_rc = rc_class(src_lo);
  1867   enum RC dst_lo_rc = rc_class(dst_lo);
  1869   if (src_lo == dst_lo && src_hi == dst_hi)
  1870     return ppc64Opcode_none;            // Self copy, no move.
  1872   // --------------------------------------
  1873   // Memory->Memory Spill. Use R0 to hold the value.
  1874   if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
  1875     return ppc64Opcode_compound;
  1878   // --------------------------------------
  1879   // Check for float->int copy; requires a trip through memory.
  1880   if (src_lo_rc == rc_float && dst_lo_rc == rc_int) {
  1881     Unimplemented();
  1884   // --------------------------------------
  1885   // Check for integer reg-reg copy.
  1886   if (src_lo_rc == rc_int && dst_lo_rc == rc_int) {
  1887     Register Rsrc = as_Register(Matcher::_regEncode[src_lo]);
  1888     Register Rdst = as_Register(Matcher::_regEncode[dst_lo]);
  1889     if (Rsrc == Rdst) {
  1890       return ppc64Opcode_none;
  1891     } else {
  1892       return ppc64Opcode_or;
  1896   // Check for integer store.
  1897   if (src_lo_rc == rc_int && dst_lo_rc == rc_stack) {
  1898     if (src_hi != OptoReg::Bad) {
  1899       return ppc64Opcode_std;
  1900     } else {
  1901       return ppc64Opcode_stw;
  1905   // Check for integer load.
  1906   if (dst_lo_rc == rc_int && src_lo_rc == rc_stack) {
  1907     if (src_hi != OptoReg::Bad) {
  1908       return ppc64Opcode_ld;
  1909     } else {
  1910       return ppc64Opcode_lwz;
  1914   // Check for float reg-reg copy.
  1915   if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
  1916     return ppc64Opcode_fmr;
  1919   // Check for float store.
  1920   if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
  1921     if (src_hi != OptoReg::Bad) {
  1922       return ppc64Opcode_stfd;
  1923     } else {
  1924       return ppc64Opcode_stfs;
  1928   // Check for float load.
  1929   if (dst_lo_rc == rc_float && src_lo_rc == rc_stack) {
  1930     if (src_hi != OptoReg::Bad) {
  1931       return ppc64Opcode_lfd;
  1932     } else {
  1933       return ppc64Opcode_lfs;
  1937   // --------------------------------------------------------------------
  1938   // Check for hi bits still needing moving. Only happens for misaligned
  1939   // arguments to native calls.
  1940   if (src_hi == dst_hi)
  1941     return ppc64Opcode_none;               // Self copy; no move.
  1943   ShouldNotReachHere();
  1944   return ppc64Opcode_undefined;
  1946 #endif // PPC port
  1948 #ifndef PRODUCT
  1949 void MachNopNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1950   st->print("NOP \t// %d nops to pad for loops.", _count);
  1952 #endif
  1954 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
  1955   MacroAssembler _masm(&cbuf);
  1956   // _count contains the number of nops needed for padding.
  1957   for (int i = 0; i < _count; i++) {
  1958     __ nop();
  1962 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
  1963    return _count * 4;
  1966 #ifndef PRODUCT
  1967 void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1968   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1969   int reg = ra_->get_reg_first(this);
  1970   st->print("ADDI %s, SP, %d \t// box node", Matcher::regName[reg], offset);
  1972 #endif
  1974 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  1975   MacroAssembler _masm(&cbuf);
  1977   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
  1978   int reg    = ra_->get_encode(this);
  1980   if (Assembler::is_simm(offset, 16)) {
  1981     __ addi(as_Register(reg), R1, offset);
  1982   } else {
  1983     ShouldNotReachHere();
  1987 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
  1988   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
  1989   return 4;
  1992 #ifndef PRODUCT
  1993 void MachUEPNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
  1994   st->print_cr("---- MachUEPNode ----");
  1995   st->print_cr("...");
  1997 #endif
  1999 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
  2000   // This is the unverified entry point.
  2001   MacroAssembler _masm(&cbuf);
  2003   // Inline_cache contains a klass.
  2004   Register ic_klass       = as_Register(Matcher::inline_cache_reg_encode());
  2005   Register receiver_klass = R0;  // tmp
  2007   assert_different_registers(ic_klass, receiver_klass, R11_scratch1, R3_ARG1);
  2008   assert(R11_scratch1 == R11, "need prologue scratch register");
  2010   // Check for NULL argument if we don't have implicit null checks.
  2011   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
  2012     if (TrapBasedNullChecks) {
  2013       __ trap_null_check(R3_ARG1);
  2014     } else {
  2015       Label valid;
  2016       __ cmpdi(CCR0, R3_ARG1, 0);
  2017       __ bne_predict_taken(CCR0, valid);
  2018       // We have a null argument, branch to ic_miss_stub.
  2019       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2020                            relocInfo::runtime_call_type);
  2021       __ bind(valid);
  2024   // Assume argument is not NULL, load klass from receiver.
  2025   __ load_klass(receiver_klass, R3_ARG1);
  2027   if (TrapBasedICMissChecks) {
  2028     __ trap_ic_miss_check(receiver_klass, ic_klass);
  2029   } else {
  2030     Label valid;
  2031     __ cmpd(CCR0, receiver_klass, ic_klass);
  2032     __ beq_predict_taken(CCR0, valid);
  2033     // We have an unexpected klass, branch to ic_miss_stub.
  2034     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2035                          relocInfo::runtime_call_type);
  2036     __ bind(valid);
  2039   // Argument is valid and klass is as expected, continue.
  2042 #if 0 // TODO: PPC port
  2043 // Optimize UEP code on z (save a load_const() call in main path).
  2044 int MachUEPNode::ep_offset() {
  2045   return 0;
  2047 #endif
  2049 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
  2050   // Variable size. Determine dynamically.
  2051   return MachNode::size(ra_);
  2054 //=============================================================================
  2056 %} // interrupt source
  2058 source_hpp %{ // Header information of the source block.
  2060 class HandlerImpl {
  2062  public:
  2064   static int emit_exception_handler(CodeBuffer &cbuf);
  2065   static int emit_deopt_handler(CodeBuffer& cbuf);
  2067   static uint size_exception_handler() {
  2068     // The exception_handler is a b64_patchable.
  2069     return MacroAssembler::b64_patchable_size;
  2072   static uint size_deopt_handler() {
  2073     // The deopt_handler is a bl64_patchable.
  2074     return MacroAssembler::bl64_patchable_size;
  2077 };
  2079 %} // end source_hpp
  2081 source %{
  2083 int HandlerImpl::emit_exception_handler(CodeBuffer &cbuf) {
  2084   MacroAssembler _masm(&cbuf);
  2086   address base = __ start_a_stub(size_exception_handler());
  2087   if (base == NULL) return 0; // CodeBuffer::expand failed
  2089   int offset = __ offset();
  2090   __ b64_patchable((address)OptoRuntime::exception_blob()->content_begin(),
  2091                        relocInfo::runtime_call_type);
  2092   assert(__ offset() - offset == (int)size_exception_handler(), "must be fixed size");
  2093   __ end_a_stub();
  2095   return offset;
  2098 // The deopt_handler is like the exception handler, but it calls to
  2099 // the deoptimization blob instead of jumping to the exception blob.
  2100 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
  2101   MacroAssembler _masm(&cbuf);
  2103   address base = __ start_a_stub(size_deopt_handler());
  2104   if (base == NULL) return 0; // CodeBuffer::expand failed
  2106   int offset = __ offset();
  2107   __ bl64_patchable((address)SharedRuntime::deopt_blob()->unpack(),
  2108                         relocInfo::runtime_call_type);
  2109   assert(__ offset() - offset == (int) size_deopt_handler(), "must be fixed size");
  2110   __ end_a_stub();
  2112   return offset;
  2115 //=============================================================================
  2117 // Use a frame slots bias for frameless methods if accessing the stack.
  2118 static int frame_slots_bias(int reg_enc, PhaseRegAlloc* ra_) {
  2119   if (as_Register(reg_enc) == R1_SP) {
  2120     return 0; // TODO: PPC port ra_->C->frame_slots_sp_bias_in_bytes();
  2122   return 0;
  2125 const bool Matcher::match_rule_supported(int opcode) {
  2126   if (!has_match_rule(opcode))
  2127     return false;
  2129   switch (opcode) {
  2130   case Op_SqrtD:
  2131     return VM_Version::has_fsqrt();
  2132   case Op_CountLeadingZerosI:
  2133   case Op_CountLeadingZerosL:
  2134   case Op_CountTrailingZerosI:
  2135   case Op_CountTrailingZerosL:
  2136     if (!UseCountLeadingZerosInstructionsPPC64)
  2137       return false;
  2138     break;
  2140   case Op_PopCountI:
  2141   case Op_PopCountL:
  2142     return (UsePopCountInstruction && VM_Version::has_popcntw());
  2144   case Op_StrComp:
  2145     return SpecialStringCompareTo;
  2146   case Op_StrEquals:
  2147     return SpecialStringEquals;
  2148   case Op_StrIndexOf:
  2149     return SpecialStringIndexOf;
  2152   return true;  // Per default match rules are supported.
  2155 int Matcher::regnum_to_fpu_offset(int regnum) {
  2156   // No user for this method?
  2157   Unimplemented();
  2158   return 999;
  2161 const bool Matcher::convL2FSupported(void) {
  2162   // fcfids can do the conversion (>= Power7).
  2163   // fcfid + frsp showed rounding problem when result should be 0x3f800001.
  2164   return VM_Version::has_fcfids(); // False means that conversion is done by runtime call.
  2167 // Vector width in bytes.
  2168 const int Matcher::vector_width_in_bytes(BasicType bt) {
  2169   assert(MaxVectorSize == 8, "");
  2170   return 8;
  2173 // Vector ideal reg.
  2174 const int Matcher::vector_ideal_reg(int size) {
  2175   assert(MaxVectorSize == 8 && size == 8, "");
  2176   return Op_RegL;
  2179 const int Matcher::vector_shift_count_ideal_reg(int size) {
  2180   fatal("vector shift is not supported");
  2181   return Node::NotAMachineReg;
  2184 // Limits on vector size (number of elements) loaded into vector.
  2185 const int Matcher::max_vector_size(const BasicType bt) {
  2186   assert(is_java_primitive(bt), "only primitive type vectors");
  2187   return vector_width_in_bytes(bt)/type2aelembytes(bt);
  2190 const int Matcher::min_vector_size(const BasicType bt) {
  2191   return max_vector_size(bt); // Same as max.
  2194 // PPC doesn't support misaligned vectors store/load.
  2195 const bool Matcher::misaligned_vectors_ok() {
  2196   return false;
  2199 // PPC AES support not yet implemented
  2200 const bool Matcher::pass_original_key_for_aes() {
  2201   return false;
  2204 // RETURNS: whether this branch offset is short enough that a short
  2205 // branch can be used.
  2206 //
  2207 // If the platform does not provide any short branch variants, then
  2208 // this method should return `false' for offset 0.
  2209 //
  2210 // `Compile::Fill_buffer' will decide on basis of this information
  2211 // whether to do the pass `Compile::Shorten_branches' at all.
  2212 //
  2213 // And `Compile::Shorten_branches' will decide on basis of this
  2214 // information whether to replace particular branch sites by short
  2215 // ones.
  2216 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
  2217   // Is the offset within the range of a ppc64 pc relative branch?
  2218   bool b;
  2220   const int safety_zone = 3 * BytesPerInstWord;
  2221   b = Assembler::is_simm((offset<0 ? offset-safety_zone : offset+safety_zone),
  2222                          29 - 16 + 1 + 2);
  2223   return b;
  2226 const bool Matcher::isSimpleConstant64(jlong value) {
  2227   // Probably always true, even if a temp register is required.
  2228   return true;
  2230 /* TODO: PPC port
  2231 // Make a new machine dependent decode node (with its operands).
  2232 MachTypeNode *Matcher::make_decode_node(Compile *C) {
  2233   assert(Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0,
  2234          "This method is only implemented for unscaled cOops mode so far");
  2235   MachTypeNode *decode = new (C) decodeN_unscaledNode();
  2236   decode->set_opnd_array(0, new (C) iRegPdstOper());
  2237   decode->set_opnd_array(1, new (C) iRegNsrcOper());
  2238   return decode;
  2240 */
  2241 // Threshold size for cleararray.
  2242 const int Matcher::init_array_short_size = 8 * BytesPerLong;
  2244 // false => size gets scaled to BytesPerLong, ok.
  2245 const bool Matcher::init_array_count_is_in_bytes = false;
  2247 // Use conditional move (CMOVL) on Power7.
  2248 const int Matcher::long_cmove_cost() { return 0; } // this only makes long cmoves more expensive than int cmoves
  2250 // Suppress CMOVF. Conditional move available (sort of) on PPC64 only from P7 onwards. Not exploited yet.
  2251 // fsel doesn't accept a condition register as input, so this would be slightly different.
  2252 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
  2254 // Power6 requires postalloc expand (see block.cpp for description of postalloc expand).
  2255 const bool Matcher::require_postalloc_expand = true;
  2257 // Should the Matcher clone shifts on addressing modes, expecting them to
  2258 // be subsumed into complex addressing expressions or compute them into
  2259 // registers? True for Intel but false for most RISCs.
  2260 const bool Matcher::clone_shift_expressions = false;
  2262 // Do we need to mask the count passed to shift instructions or does
  2263 // the cpu only look at the lower 5/6 bits anyway?
  2264 // Off, as masks are generated in expand rules where required.
  2265 // Constant shift counts are handled in Ideal phase.
  2266 const bool Matcher::need_masked_shift_count = false;
  2268 // This affects two different things:
  2269 //  - how Decode nodes are matched
  2270 //  - how ImplicitNullCheck opportunities are recognized
  2271 // If true, the matcher will try to remove all Decodes and match them
  2272 // (as operands) into nodes. NullChecks are not prepared to deal with
  2273 // Decodes by final_graph_reshaping().
  2274 // If false, final_graph_reshaping() forces the decode behind the Cmp
  2275 // for a NullCheck. The matcher matches the Decode node into a register.
  2276 // Implicit_null_check optimization moves the Decode along with the
  2277 // memory operation back up before the NullCheck.
  2278 bool Matcher::narrow_oop_use_complex_address() {
  2279   // TODO: PPC port if (MatchDecodeNodes) return true;
  2280   return false;
  2283 bool Matcher::narrow_klass_use_complex_address() {
  2284   NOT_LP64(ShouldNotCallThis());
  2285   assert(UseCompressedClassPointers, "only for compressed klass code");
  2286   // TODO: PPC port if (MatchDecodeNodes) return true;
  2287   return false;
  2290 // Is it better to copy float constants, or load them directly from memory?
  2291 // Intel can load a float constant from a direct address, requiring no
  2292 // extra registers. Most RISCs will have to materialize an address into a
  2293 // register first, so they would do better to copy the constant from stack.
  2294 const bool Matcher::rematerialize_float_constants = false;
  2296 // If CPU can load and store mis-aligned doubles directly then no fixup is
  2297 // needed. Else we split the double into 2 integer pieces and move it
  2298 // piece-by-piece. Only happens when passing doubles into C code as the
  2299 // Java calling convention forces doubles to be aligned.
  2300 const bool Matcher::misaligned_doubles_ok = true;
  2302 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
  2303  Unimplemented();
  2306 // Advertise here if the CPU requires explicit rounding operations
  2307 // to implement the UseStrictFP mode.
  2308 const bool Matcher::strict_fp_requires_explicit_rounding = false;
  2310 // Do floats take an entire double register or just half?
  2311 //
  2312 // A float occupies a ppc64 double register. For the allocator, a
  2313 // ppc64 double register appears as a pair of float registers.
  2314 bool Matcher::float_in_double() { return true; }
  2316 // Do ints take an entire long register or just half?
  2317 // The relevant question is how the int is callee-saved:
  2318 // the whole long is written but de-opt'ing will have to extract
  2319 // the relevant 32 bits.
  2320 const bool Matcher::int_in_long = true;
  2322 // Constants for c2c and c calling conventions.
  2324 const MachRegisterNumbers iarg_reg[8] = {
  2325   R3_num, R4_num, R5_num, R6_num,
  2326   R7_num, R8_num, R9_num, R10_num
  2327 };
  2329 const MachRegisterNumbers farg_reg[13] = {
  2330   F1_num, F2_num, F3_num, F4_num,
  2331   F5_num, F6_num, F7_num, F8_num,
  2332   F9_num, F10_num, F11_num, F12_num,
  2333   F13_num
  2334 };
  2336 const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
  2338 const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
  2340 // Return whether or not this register is ever used as an argument. This
  2341 // function is used on startup to build the trampoline stubs in generateOptoStub.
  2342 // Registers not mentioned will be killed by the VM call in the trampoline, and
  2343 // arguments in those registers not be available to the callee.
  2344 bool Matcher::can_be_java_arg(int reg) {
  2345   // We return true for all registers contained in iarg_reg[] and
  2346   // farg_reg[] and their virtual halves.
  2347   // We must include the virtual halves in order to get STDs and LDs
  2348   // instead of STWs and LWs in the trampoline stubs.
  2350   if (   reg == R3_num  || reg == R3_H_num
  2351       || reg == R4_num  || reg == R4_H_num
  2352       || reg == R5_num  || reg == R5_H_num
  2353       || reg == R6_num  || reg == R6_H_num
  2354       || reg == R7_num  || reg == R7_H_num
  2355       || reg == R8_num  || reg == R8_H_num
  2356       || reg == R9_num  || reg == R9_H_num
  2357       || reg == R10_num || reg == R10_H_num)
  2358     return true;
  2360   if (   reg == F1_num  || reg == F1_H_num
  2361       || reg == F2_num  || reg == F2_H_num
  2362       || reg == F3_num  || reg == F3_H_num
  2363       || reg == F4_num  || reg == F4_H_num
  2364       || reg == F5_num  || reg == F5_H_num
  2365       || reg == F6_num  || reg == F6_H_num
  2366       || reg == F7_num  || reg == F7_H_num
  2367       || reg == F8_num  || reg == F8_H_num
  2368       || reg == F9_num  || reg == F9_H_num
  2369       || reg == F10_num || reg == F10_H_num
  2370       || reg == F11_num || reg == F11_H_num
  2371       || reg == F12_num || reg == F12_H_num
  2372       || reg == F13_num || reg == F13_H_num)
  2373     return true;
  2375   return false;
  2378 bool Matcher::is_spillable_arg(int reg) {
  2379   return can_be_java_arg(reg);
  2382 bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
  2383   return false;
  2386 // Register for DIVI projection of divmodI.
  2387 RegMask Matcher::divI_proj_mask() {
  2388   ShouldNotReachHere();
  2389   return RegMask();
  2392 // Register for MODI projection of divmodI.
  2393 RegMask Matcher::modI_proj_mask() {
  2394   ShouldNotReachHere();
  2395   return RegMask();
  2398 // Register for DIVL projection of divmodL.
  2399 RegMask Matcher::divL_proj_mask() {
  2400   ShouldNotReachHere();
  2401   return RegMask();
  2404 // Register for MODL projection of divmodL.
  2405 RegMask Matcher::modL_proj_mask() {
  2406   ShouldNotReachHere();
  2407   return RegMask();
  2410 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
  2411   return RegMask();
  2414 %}
  2416 //----------ENCODING BLOCK-----------------------------------------------------
  2417 // This block specifies the encoding classes used by the compiler to output
  2418 // byte streams. Encoding classes are parameterized macros used by
  2419 // Machine Instruction Nodes in order to generate the bit encoding of the
  2420 // instruction. Operands specify their base encoding interface with the
  2421 // interface keyword. There are currently supported four interfaces,
  2422 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER. REG_INTER causes an
  2423 // operand to generate a function which returns its register number when
  2424 // queried. CONST_INTER causes an operand to generate a function which
  2425 // returns the value of the constant when queried. MEMORY_INTER causes an
  2426 // operand to generate four functions which return the Base Register, the
  2427 // Index Register, the Scale Value, and the Offset Value of the operand when
  2428 // queried. COND_INTER causes an operand to generate six functions which
  2429 // return the encoding code (ie - encoding bits for the instruction)
  2430 // associated with each basic boolean condition for a conditional instruction.
  2431 //
  2432 // Instructions specify two basic values for encoding. Again, a function
  2433 // is available to check if the constant displacement is an oop. They use the
  2434 // ins_encode keyword to specify their encoding classes (which must be
  2435 // a sequence of enc_class names, and their parameters, specified in
  2436 // the encoding block), and they use the
  2437 // opcode keyword to specify, in order, their primary, secondary, and
  2438 // tertiary opcode. Only the opcode sections which a particular instruction
  2439 // needs for encoding need to be specified.
  2440 encode %{
  2441   enc_class enc_unimplemented %{
  2442     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2443     MacroAssembler _masm(&cbuf);
  2444     __ unimplemented("Unimplemented mach node encoding in AD file.", 13);
  2445   %}
  2447   enc_class enc_untested %{
  2448 #ifdef ASSERT
  2449     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2450     MacroAssembler _masm(&cbuf);
  2451     __ untested("Untested mach node encoding in AD file.");
  2452 #else
  2453     // TODO: PPC port $archOpcode(ppc64Opcode_none);
  2454 #endif
  2455   %}
  2457   enc_class enc_lbz(iRegIdst dst, memory mem) %{
  2458     // TODO: PPC port $archOpcode(ppc64Opcode_lbz);
  2459     MacroAssembler _masm(&cbuf);
  2460     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2461     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2462   %}
  2464   // Load acquire.
  2465   enc_class enc_lbz_ac(iRegIdst dst, memory mem) %{
  2466     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2467     MacroAssembler _masm(&cbuf);
  2468     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2469     __ lbz($dst$$Register, Idisp, $mem$$base$$Register);
  2470     __ twi_0($dst$$Register);
  2471     __ isync();
  2472   %}
  2474   enc_class enc_lhz(iRegIdst dst, memory mem) %{
  2475     // TODO: PPC port $archOpcode(ppc64Opcode_lhz);
  2477     MacroAssembler _masm(&cbuf);
  2478     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2479     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2480   %}
  2482   // Load acquire.
  2483   enc_class enc_lhz_ac(iRegIdst dst, memory mem) %{
  2484     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2486     MacroAssembler _masm(&cbuf);
  2487     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2488     __ lhz($dst$$Register, Idisp, $mem$$base$$Register);
  2489     __ twi_0($dst$$Register);
  2490     __ isync();
  2491   %}
  2493   enc_class enc_lwz(iRegIdst dst, memory mem) %{
  2494     // TODO: PPC port $archOpcode(ppc64Opcode_lwz);
  2496     MacroAssembler _masm(&cbuf);
  2497     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2498     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2499   %}
  2501   // Load acquire.
  2502   enc_class enc_lwz_ac(iRegIdst dst, memory mem) %{
  2503     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2505     MacroAssembler _masm(&cbuf);
  2506     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2507     __ lwz($dst$$Register, Idisp, $mem$$base$$Register);
  2508     __ twi_0($dst$$Register);
  2509     __ isync();
  2510   %}
  2512   enc_class enc_ld(iRegLdst dst, memoryAlg4 mem) %{
  2513     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2514     MacroAssembler _masm(&cbuf);
  2515     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2516     // Operand 'ds' requires 4-alignment.
  2517     assert((Idisp & 0x3) == 0, "unaligned offset");
  2518     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2519   %}
  2521   // Load acquire.
  2522   enc_class enc_ld_ac(iRegLdst dst, memoryAlg4 mem) %{
  2523     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2524     MacroAssembler _masm(&cbuf);
  2525     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2526     // Operand 'ds' requires 4-alignment.
  2527     assert((Idisp & 0x3) == 0, "unaligned offset");
  2528     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  2529     __ twi_0($dst$$Register);
  2530     __ isync();
  2531   %}
  2533   enc_class enc_lfd(RegF dst, memory mem) %{
  2534     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  2535     MacroAssembler _masm(&cbuf);
  2536     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2537     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  2538   %}
  2540   enc_class enc_load_long_constL(iRegLdst dst, immL src, iRegLdst toc) %{
  2541     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2543     MacroAssembler _masm(&cbuf);
  2544     int toc_offset = 0;
  2546     if (!ra_->C->in_scratch_emit_size()) {
  2547       address const_toc_addr;
  2548       // Create a non-oop constant, no relocation needed.
  2549       // If it is an IC, it has a virtual_call_Relocation.
  2550       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2552       // Get the constant's TOC offset.
  2553       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2555       // Keep the current instruction offset in mind.
  2556       ((loadConLNode*)this)->_cbuf_insts_offset = __ offset();
  2559     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2560   %}
  2562   enc_class enc_load_long_constL_hi(iRegLdst dst, iRegLdst toc, immL src) %{
  2563     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2565     MacroAssembler _masm(&cbuf);
  2567     if (!ra_->C->in_scratch_emit_size()) {
  2568       address const_toc_addr;
  2569       // Create a non-oop constant, no relocation needed.
  2570       // If it is an IC, it has a virtual_call_Relocation.
  2571       const_toc_addr = __ long_constant((jlong)$src$$constant);
  2573       // Get the constant's TOC offset.
  2574       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2575       // Store the toc offset of the constant.
  2576       ((loadConL_hiNode*)this)->_const_toc_offset = toc_offset;
  2578       // Also keep the current instruction offset in mind.
  2579       ((loadConL_hiNode*)this)->_cbuf_insts_offset = __ offset();
  2582     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2583   %}
  2585 %} // encode
  2587 source %{
  2589 typedef struct {
  2590   loadConL_hiNode *_large_hi;
  2591   loadConL_loNode *_large_lo;
  2592   loadConLNode    *_small;
  2593   MachNode        *_last;
  2594 } loadConLNodesTuple;
  2596 loadConLNodesTuple loadConLNodesTuple_create(Compile *C, PhaseRegAlloc *ra_, Node *toc, immLOper *immSrc,
  2597                                              OptoReg::Name reg_second, OptoReg::Name reg_first) {
  2598   loadConLNodesTuple nodes;
  2600   const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2601   if (large_constant_pool) {
  2602     // Create new nodes.
  2603     loadConL_hiNode *m1 = new (C) loadConL_hiNode();
  2604     loadConL_loNode *m2 = new (C) loadConL_loNode();
  2606     // inputs for new nodes
  2607     m1->add_req(NULL, toc);
  2608     m2->add_req(NULL, m1);
  2610     // operands for new nodes
  2611     m1->_opnds[0] = new (C) iRegLdstOper(); // dst
  2612     m1->_opnds[1] = immSrc;                 // src
  2613     m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2614     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2615     m2->_opnds[1] = immSrc;                 // src
  2616     m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2618     // Initialize ins_attrib TOC fields.
  2619     m1->_const_toc_offset = -1;
  2620     m2->_const_toc_offset_hi_node = m1;
  2622     // Initialize ins_attrib instruction offset.
  2623     m1->_cbuf_insts_offset = -1;
  2625     // register allocation for new nodes
  2626     ra_->set_pair(m1->_idx, reg_second, reg_first);
  2627     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2629     // Create result.
  2630     nodes._large_hi = m1;
  2631     nodes._large_lo = m2;
  2632     nodes._small = NULL;
  2633     nodes._last = nodes._large_lo;
  2634     assert(m2->bottom_type()->isa_long(), "must be long");
  2635   } else {
  2636     loadConLNode *m2 = new (C) loadConLNode();
  2638     // inputs for new nodes
  2639     m2->add_req(NULL, toc);
  2641     // operands for new nodes
  2642     m2->_opnds[0] = new (C) iRegLdstOper(); // dst
  2643     m2->_opnds[1] = immSrc;                 // src
  2644     m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2646     // Initialize ins_attrib instruction offset.
  2647     m2->_cbuf_insts_offset = -1;
  2649     // register allocation for new nodes
  2650     ra_->set_pair(m2->_idx, reg_second, reg_first);
  2652     // Create result.
  2653     nodes._large_hi = NULL;
  2654     nodes._large_lo = NULL;
  2655     nodes._small = m2;
  2656     nodes._last = nodes._small;
  2657     assert(m2->bottom_type()->isa_long(), "must be long");
  2660   return nodes;
  2663 %} // source
  2665 encode %{
  2666   // Postalloc expand emitter for loading a long constant from the method's TOC.
  2667   // Enc_class needed as consttanttablebase is not supported by postalloc
  2668   // expand.
  2669   enc_class postalloc_expand_load_long_constant(iRegLdst dst, immL src, iRegLdst toc) %{
  2670     // Create new nodes.
  2671     loadConLNodesTuple loadConLNodes =
  2672       loadConLNodesTuple_create(C, ra_, n_toc, op_src,
  2673                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  2675     // Push new nodes.
  2676     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  2677     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  2679     // some asserts
  2680     assert(nodes->length() >= 1, "must have created at least 1 node");
  2681     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  2682   %}
  2684   enc_class enc_load_long_constP(iRegLdst dst, immP src, iRegLdst toc) %{
  2685     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  2687     MacroAssembler _masm(&cbuf);
  2688     int toc_offset = 0;
  2690     if (!ra_->C->in_scratch_emit_size()) {
  2691       intptr_t val = $src$$constant;
  2692       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2693       address const_toc_addr;
  2694       if (constant_reloc == relocInfo::oop_type) {
  2695         // Create an oop constant and a corresponding relocation.
  2696         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2697         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2698         __ relocate(a.rspec());
  2699       } else if (constant_reloc == relocInfo::metadata_type) {
  2700         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2701         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2702         __ relocate(a.rspec());
  2703       } else {
  2704         // Create a non-oop constant, no relocation needed.
  2705         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2708       // Get the constant's TOC offset.
  2709       toc_offset = __ offset_to_method_toc(const_toc_addr);
  2712     __ ld($dst$$Register, toc_offset, $toc$$Register);
  2713   %}
  2715   enc_class enc_load_long_constP_hi(iRegLdst dst, immP src, iRegLdst toc) %{
  2716     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  2718     MacroAssembler _masm(&cbuf);
  2719     if (!ra_->C->in_scratch_emit_size()) {
  2720       intptr_t val = $src$$constant;
  2721       relocInfo::relocType constant_reloc = $src->constant_reloc();  // src
  2722       address const_toc_addr;
  2723       if (constant_reloc == relocInfo::oop_type) {
  2724         // Create an oop constant and a corresponding relocation.
  2725         AddressLiteral a = __ allocate_oop_address((jobject)val);
  2726         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2727         __ relocate(a.rspec());
  2728       } else if (constant_reloc == relocInfo::metadata_type) {
  2729         AddressLiteral a = __ allocate_metadata_address((Metadata *)val);
  2730         const_toc_addr = __ address_constant((address)a.value(), RelocationHolder::none);
  2731         __ relocate(a.rspec());
  2732       } else {  // non-oop pointers, e.g. card mark base, heap top
  2733         // Create a non-oop constant, no relocation needed.
  2734         const_toc_addr = __ long_constant((jlong)$src$$constant);
  2737       // Get the constant's TOC offset.
  2738       const int toc_offset = __ offset_to_method_toc(const_toc_addr);
  2739       // Store the toc offset of the constant.
  2740       ((loadConP_hiNode*)this)->_const_toc_offset = toc_offset;
  2743     __ addis($dst$$Register, $toc$$Register, MacroAssembler::largeoffset_si16_si16_hi(_const_toc_offset));
  2744   %}
  2746   // Postalloc expand emitter for loading a ptr constant from the method's TOC.
  2747   // Enc_class needed as consttanttablebase is not supported by postalloc
  2748   // expand.
  2749   enc_class postalloc_expand_load_ptr_constant(iRegPdst dst, immP src, iRegLdst toc) %{
  2750     const bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2751     if (large_constant_pool) {
  2752       // Create new nodes.
  2753       loadConP_hiNode *m1 = new (C) loadConP_hiNode();
  2754       loadConP_loNode *m2 = new (C) loadConP_loNode();
  2756       // inputs for new nodes
  2757       m1->add_req(NULL, n_toc);
  2758       m2->add_req(NULL, m1);
  2760       // operands for new nodes
  2761       m1->_opnds[0] = new (C) iRegPdstOper(); // dst
  2762       m1->_opnds[1] = op_src;                 // src
  2763       m1->_opnds[2] = new (C) iRegPdstOper(); // toc
  2764       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2765       m2->_opnds[1] = op_src;                 // src
  2766       m2->_opnds[2] = new (C) iRegLdstOper(); // base
  2768       // Initialize ins_attrib TOC fields.
  2769       m1->_const_toc_offset = -1;
  2770       m2->_const_toc_offset_hi_node = m1;
  2772       // Register allocation for new nodes.
  2773       ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2774       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2776       nodes->push(m1);
  2777       nodes->push(m2);
  2778       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2779     } else {
  2780       loadConPNode *m2 = new (C) loadConPNode();
  2782       // inputs for new nodes
  2783       m2->add_req(NULL, n_toc);
  2785       // operands for new nodes
  2786       m2->_opnds[0] = new (C) iRegPdstOper(); // dst
  2787       m2->_opnds[1] = op_src;                 // src
  2788       m2->_opnds[2] = new (C) iRegPdstOper(); // toc
  2790       // Register allocation for new nodes.
  2791       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2793       nodes->push(m2);
  2794       assert(m2->bottom_type()->isa_ptr(), "must be ptr");
  2796   %}
  2798   // Enc_class needed as consttanttablebase is not supported by postalloc
  2799   // expand.
  2800   enc_class postalloc_expand_load_float_constant(regF dst, immF src, iRegLdst toc) %{
  2801     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2803     MachNode *m2;
  2804     if (large_constant_pool) {
  2805       m2 = new (C) loadConFCompNode();
  2806     } else {
  2807       m2 = new (C) loadConFNode();
  2809     // inputs for new nodes
  2810     m2->add_req(NULL, n_toc);
  2812     // operands for new nodes
  2813     m2->_opnds[0] = op_dst;
  2814     m2->_opnds[1] = op_src;
  2815     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2817     // register allocation for new nodes
  2818     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2819     nodes->push(m2);
  2820   %}
  2822   // Enc_class needed as consttanttablebase is not supported by postalloc
  2823   // expand.
  2824   enc_class postalloc_expand_load_double_constant(regD dst, immD src, iRegLdst toc) %{
  2825     bool large_constant_pool = true; // TODO: PPC port C->cfg()->_consts_size > 4000;
  2827     MachNode *m2;
  2828     if (large_constant_pool) {
  2829       m2 = new (C) loadConDCompNode();
  2830     } else {
  2831       m2 = new (C) loadConDNode();
  2833     // inputs for new nodes
  2834     m2->add_req(NULL, n_toc);
  2836     // operands for new nodes
  2837     m2->_opnds[0] = op_dst;
  2838     m2->_opnds[1] = op_src;
  2839     m2->_opnds[2] = new (C) iRegPdstOper(); // constanttablebase
  2841     // register allocation for new nodes
  2842     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2843     nodes->push(m2);
  2844   %}
  2846   enc_class enc_stw(iRegIsrc src, memory mem) %{
  2847     // TODO: PPC port $archOpcode(ppc64Opcode_stw);
  2848     MacroAssembler _masm(&cbuf);
  2849     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2850     __ stw($src$$Register, Idisp, $mem$$base$$Register);
  2851   %}
  2853   enc_class enc_std(iRegIsrc src, memoryAlg4 mem) %{
  2854     // TODO: PPC port $archOpcode(ppc64Opcode_std);
  2855     MacroAssembler _masm(&cbuf);
  2856     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2857     // Operand 'ds' requires 4-alignment.
  2858     assert((Idisp & 0x3) == 0, "unaligned offset");
  2859     __ std($src$$Register, Idisp, $mem$$base$$Register);
  2860   %}
  2862   enc_class enc_stfs(RegF src, memory mem) %{
  2863     // TODO: PPC port $archOpcode(ppc64Opcode_stfs);
  2864     MacroAssembler _masm(&cbuf);
  2865     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2866     __ stfs($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2867   %}
  2869   enc_class enc_stfd(RegF src, memory mem) %{
  2870     // TODO: PPC port $archOpcode(ppc64Opcode_stfd);
  2871     MacroAssembler _masm(&cbuf);
  2872     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  2873     __ stfd($src$$FloatRegister, Idisp, $mem$$base$$Register);
  2874   %}
  2876   // Use release_store for card-marking to ensure that previous
  2877   // oop-stores are visible before the card-mark change.
  2878   enc_class enc_cms_card_mark(memory mem, iRegLdst releaseFieldAddr) %{
  2879     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  2880     // FIXME: Implement this as a cmove and use a fixed condition code
  2881     // register which is written on every transition to compiled code,
  2882     // e.g. in call-stub and when returning from runtime stubs.
  2883     //
  2884     // Proposed code sequence for the cmove implementation:
  2885     //
  2886     // Label skip_release;
  2887     // __ beq(CCRfixed, skip_release);
  2888     // __ release();
  2889     // __ bind(skip_release);
  2890     // __ stb(card mark);
  2892     MacroAssembler _masm(&cbuf);
  2893     Label skip_storestore;
  2895 #if 0 // TODO: PPC port
  2896     // Check CMSCollectorCardTableModRefBSExt::_requires_release and do the
  2897     // StoreStore barrier conditionally.
  2898     __ lwz(R0, 0, $releaseFieldAddr$$Register);
  2899     __ cmpwi(CCR0, R0, 0);
  2900     __ beq_predict_taken(CCR0, skip_storestore);
  2901 #endif
  2902     __ li(R0, 0);
  2903     __ membar(Assembler::StoreStore);
  2904 #if 0 // TODO: PPC port
  2905     __ bind(skip_storestore);
  2906 #endif
  2908     // Do the store.
  2909     if ($mem$$index == 0) {
  2910       __ stb(R0, $mem$$disp, $mem$$base$$Register);
  2911     } else {
  2912       assert(0 == $mem$$disp, "no displacement possible with indexed load/stores on ppc");
  2913       __ stbx(R0, $mem$$base$$Register, $mem$$index$$Register);
  2915   %}
  2917   enc_class postalloc_expand_encode_oop(iRegNdst dst, iRegPdst src, flagsReg crx) %{
  2919     if (VM_Version::has_isel()) {
  2920       // use isel instruction with Power 7
  2921       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2922       encodeP_subNode    *n_sub_base = new (C) encodeP_subNode();
  2923       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2924       cond_set_0_oopNode *n_cond_set = new (C) cond_set_0_oopNode();
  2926       n_compare->add_req(n_region, n_src);
  2927       n_compare->_opnds[0] = op_crx;
  2928       n_compare->_opnds[1] = op_src;
  2929       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2931       n_sub_base->add_req(n_region, n_src);
  2932       n_sub_base->_opnds[0] = op_dst;
  2933       n_sub_base->_opnds[1] = op_src;
  2934       n_sub_base->_bottom_type = _bottom_type;
  2936       n_shift->add_req(n_region, n_sub_base);
  2937       n_shift->_opnds[0] = op_dst;
  2938       n_shift->_opnds[1] = op_dst;
  2939       n_shift->_bottom_type = _bottom_type;
  2941       n_cond_set->add_req(n_region, n_compare, n_shift);
  2942       n_cond_set->_opnds[0] = op_dst;
  2943       n_cond_set->_opnds[1] = op_crx;
  2944       n_cond_set->_opnds[2] = op_dst;
  2945       n_cond_set->_bottom_type = _bottom_type;
  2947       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2948       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2949       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2950       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2952       nodes->push(n_compare);
  2953       nodes->push(n_sub_base);
  2954       nodes->push(n_shift);
  2955       nodes->push(n_cond_set);
  2957     } else {
  2958       // before Power 7
  2959       moveRegNode        *n_move     = new (C) moveRegNode();
  2960       cmpP_reg_imm16Node *n_compare  = new (C) cmpP_reg_imm16Node();
  2961       encodeP_shiftNode  *n_shift    = new (C) encodeP_shiftNode();
  2962       cond_sub_baseNode  *n_sub_base = new (C) cond_sub_baseNode();
  2964       n_move->add_req(n_region, n_src);
  2965       n_move->_opnds[0] = op_dst;
  2966       n_move->_opnds[1] = op_src;
  2967       ra_->set_oop(n_move, true); // Until here, 'n_move' still produces an oop.
  2969       n_compare->add_req(n_region, n_src);
  2970       n_compare->add_prec(n_move);
  2972       n_compare->_opnds[0] = op_crx;
  2973       n_compare->_opnds[1] = op_src;
  2974       n_compare->_opnds[2] = new (C) immL16Oper(0);
  2976       n_sub_base->add_req(n_region, n_compare, n_src);
  2977       n_sub_base->_opnds[0] = op_dst;
  2978       n_sub_base->_opnds[1] = op_crx;
  2979       n_sub_base->_opnds[2] = op_src;
  2980       n_sub_base->_bottom_type = _bottom_type;
  2982       n_shift->add_req(n_region, n_sub_base);
  2983       n_shift->_opnds[0] = op_dst;
  2984       n_shift->_opnds[1] = op_dst;
  2985       n_shift->_bottom_type = _bottom_type;
  2987       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2988       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  2989       ra_->set_pair(n_sub_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2990       ra_->set_pair(n_move->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  2992       nodes->push(n_move);
  2993       nodes->push(n_compare);
  2994       nodes->push(n_sub_base);
  2995       nodes->push(n_shift);
  2998     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  2999   %}
  3001   enc_class postalloc_expand_encode_oop_not_null(iRegNdst dst, iRegPdst src) %{
  3003     encodeP_subNode *n1 = new (C) encodeP_subNode();
  3004     n1->add_req(n_region, n_src);
  3005     n1->_opnds[0] = op_dst;
  3006     n1->_opnds[1] = op_src;
  3007     n1->_bottom_type = _bottom_type;
  3009     encodeP_shiftNode *n2 = new (C) encodeP_shiftNode();
  3010     n2->add_req(n_region, n1);
  3011     n2->_opnds[0] = op_dst;
  3012     n2->_opnds[1] = op_dst;
  3013     n2->_bottom_type = _bottom_type;
  3014     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3015     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3017     nodes->push(n1);
  3018     nodes->push(n2);
  3019     assert(!(ra_->is_oop(this)), "sanity"); // This is not supposed to be GC'ed.
  3020   %}
  3022   enc_class postalloc_expand_decode_oop(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  3023     decodeN_shiftNode *n_shift    = new (C) decodeN_shiftNode();
  3024     cmpN_reg_imm0Node *n_compare  = new (C) cmpN_reg_imm0Node();
  3026     n_compare->add_req(n_region, n_src);
  3027     n_compare->_opnds[0] = op_crx;
  3028     n_compare->_opnds[1] = op_src;
  3029     n_compare->_opnds[2] = new (C) immN_0Oper(TypeNarrowOop::NULL_PTR);
  3031     n_shift->add_req(n_region, n_src);
  3032     n_shift->_opnds[0] = op_dst;
  3033     n_shift->_opnds[1] = op_src;
  3034     n_shift->_bottom_type = _bottom_type;
  3036     if (VM_Version::has_isel()) {
  3037       // use isel instruction with Power 7
  3039       decodeN_addNode *n_add_base = new (C) decodeN_addNode();
  3040       n_add_base->add_req(n_region, n_shift);
  3041       n_add_base->_opnds[0] = op_dst;
  3042       n_add_base->_opnds[1] = op_dst;
  3043       n_add_base->_bottom_type = _bottom_type;
  3045       cond_set_0_ptrNode *n_cond_set = new (C) cond_set_0_ptrNode();
  3046       n_cond_set->add_req(n_region, n_compare, n_add_base);
  3047       n_cond_set->_opnds[0] = op_dst;
  3048       n_cond_set->_opnds[1] = op_crx;
  3049       n_cond_set->_opnds[2] = op_dst;
  3050       n_cond_set->_bottom_type = _bottom_type;
  3052       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3053       ra_->set_oop(n_cond_set, true);
  3055       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3056       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3057       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3058       ra_->set_pair(n_cond_set->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3060       nodes->push(n_compare);
  3061       nodes->push(n_shift);
  3062       nodes->push(n_add_base);
  3063       nodes->push(n_cond_set);
  3065     } else {
  3066       // before Power 7
  3067       cond_add_baseNode *n_add_base = new (C) cond_add_baseNode();
  3069       n_add_base->add_req(n_region, n_compare, n_shift);
  3070       n_add_base->_opnds[0] = op_dst;
  3071       n_add_base->_opnds[1] = op_crx;
  3072       n_add_base->_opnds[2] = op_dst;
  3073       n_add_base->_bottom_type = _bottom_type;
  3075       assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3076       ra_->set_oop(n_add_base, true);
  3078       ra_->set_pair(n_shift->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3079       ra_->set_pair(n_compare->_idx, ra_->get_reg_second(n_crx), ra_->get_reg_first(n_crx));
  3080       ra_->set_pair(n_add_base->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3082       nodes->push(n_compare);
  3083       nodes->push(n_shift);
  3084       nodes->push(n_add_base);
  3086   %}
  3088   enc_class postalloc_expand_decode_oop_not_null(iRegPdst dst, iRegNsrc src) %{
  3089     decodeN_shiftNode *n1 = new (C) decodeN_shiftNode();
  3090     n1->add_req(n_region, n_src);
  3091     n1->_opnds[0] = op_dst;
  3092     n1->_opnds[1] = op_src;
  3093     n1->_bottom_type = _bottom_type;
  3095     decodeN_addNode *n2 = new (C) decodeN_addNode();
  3096     n2->add_req(n_region, n1);
  3097     n2->_opnds[0] = op_dst;
  3098     n2->_opnds[1] = op_dst;
  3099     n2->_bottom_type = _bottom_type;
  3100     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3101     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  3103     assert(ra_->is_oop(this) == true, "A decodeN node must produce an oop!");
  3104     ra_->set_oop(n2, true);
  3106     nodes->push(n1);
  3107     nodes->push(n2);
  3108   %}
  3110   enc_class enc_cmove_reg(iRegIdst dst, flagsReg crx, iRegIsrc src, cmpOp cmp) %{
  3111     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3113     MacroAssembler _masm(&cbuf);
  3114     int cc        = $cmp$$cmpcode;
  3115     int flags_reg = $crx$$reg;
  3116     Label done;
  3117     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3118     // Branch if not (cmp crx).
  3119     __ bc(cc_to_inverse_boint(cc), cc_to_biint(cc, flags_reg), done);
  3120     __ mr($dst$$Register, $src$$Register);
  3121     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3122     __ bind(done);
  3123   %}
  3125   enc_class enc_cmove_imm(iRegIdst dst, flagsReg crx, immI16 src, cmpOp cmp) %{
  3126     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3128     MacroAssembler _masm(&cbuf);
  3129     Label done;
  3130     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3131     // Branch if not (cmp crx).
  3132     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  3133     __ li($dst$$Register, $src$$constant);
  3134     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3135     __ bind(done);
  3136   %}
  3138   // New atomics.
  3139   enc_class enc_GetAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3140     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3142     MacroAssembler _masm(&cbuf);
  3143     Register Rtmp   = R0;
  3144     Register Rres   = $res$$Register;
  3145     Register Rsrc   = $src$$Register;
  3146     Register Rptr   = $mem_ptr$$Register;
  3147     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3148     Register Rold   = RegCollision ? Rtmp : Rres;
  3150     Label Lretry;
  3151     __ bind(Lretry);
  3152     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3153     __ add(Rtmp, Rsrc, Rold);
  3154     __ stwcx_(Rtmp, Rptr);
  3155     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3156       __ bne_predict_not_taken(CCR0, Lretry);
  3157     } else {
  3158       __ bne(                  CCR0, Lretry);
  3160     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3161     __ fence();
  3162   %}
  3164   enc_class enc_GetAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3165     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3167     MacroAssembler _masm(&cbuf);
  3168     Register Rtmp   = R0;
  3169     Register Rres   = $res$$Register;
  3170     Register Rsrc   = $src$$Register;
  3171     Register Rptr   = $mem_ptr$$Register;
  3172     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3173     Register Rold   = RegCollision ? Rtmp : Rres;
  3175     Label Lretry;
  3176     __ bind(Lretry);
  3177     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3178     __ add(Rtmp, Rsrc, Rold);
  3179     __ stdcx_(Rtmp, Rptr);
  3180     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3181       __ bne_predict_not_taken(CCR0, Lretry);
  3182     } else {
  3183       __ bne(                  CCR0, Lretry);
  3185     if (RegCollision) __ subf(Rres, Rsrc, Rtmp);
  3186     __ fence();
  3187   %}
  3189   enc_class enc_GetAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  3190     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3192     MacroAssembler _masm(&cbuf);
  3193     Register Rtmp   = R0;
  3194     Register Rres   = $res$$Register;
  3195     Register Rsrc   = $src$$Register;
  3196     Register Rptr   = $mem_ptr$$Register;
  3197     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3198     Register Rold   = RegCollision ? Rtmp : Rres;
  3200     Label Lretry;
  3201     __ bind(Lretry);
  3202     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3203     __ stwcx_(Rsrc, Rptr);
  3204     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3205       __ bne_predict_not_taken(CCR0, Lretry);
  3206     } else {
  3207       __ bne(                  CCR0, Lretry);
  3209     if (RegCollision) __ mr(Rres, Rtmp);
  3210     __ fence();
  3211   %}
  3213   enc_class enc_GetAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  3214     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3216     MacroAssembler _masm(&cbuf);
  3217     Register Rtmp   = R0;
  3218     Register Rres   = $res$$Register;
  3219     Register Rsrc   = $src$$Register;
  3220     Register Rptr   = $mem_ptr$$Register;
  3221     bool RegCollision = (Rres == Rsrc) || (Rres == Rptr);
  3222     Register Rold   = RegCollision ? Rtmp : Rres;
  3224     Label Lretry;
  3225     __ bind(Lretry);
  3226     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
  3227     __ stdcx_(Rsrc, Rptr);
  3228     if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
  3229       __ bne_predict_not_taken(CCR0, Lretry);
  3230     } else {
  3231       __ bne(                  CCR0, Lretry);
  3233     if (RegCollision) __ mr(Rres, Rtmp);
  3234     __ fence();
  3235   %}
  3237   // This enc_class is needed so that scheduler gets proper
  3238   // input mapping for latency computation.
  3239   enc_class enc_andc(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  3240     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  3241     MacroAssembler _masm(&cbuf);
  3242     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  3243   %}
  3245   enc_class enc_convI2B_regI__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3246     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3248     MacroAssembler _masm(&cbuf);
  3250     Label done;
  3251     __ cmpwi($crx$$CondRegister, $src$$Register, 0);
  3252     __ li($dst$$Register, $zero$$constant);
  3253     __ beq($crx$$CondRegister, done);
  3254     __ li($dst$$Register, $notzero$$constant);
  3255     __ bind(done);
  3256   %}
  3258   enc_class enc_convP2B_regP__cmove(iRegIdst dst, iRegPsrc src, flagsReg crx, immI16 zero, immI16 notzero) %{
  3259     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3261     MacroAssembler _masm(&cbuf);
  3263     Label done;
  3264     __ cmpdi($crx$$CondRegister, $src$$Register, 0);
  3265     __ li($dst$$Register, $zero$$constant);
  3266     __ beq($crx$$CondRegister, done);
  3267     __ li($dst$$Register, $notzero$$constant);
  3268     __ bind(done);
  3269   %}
  3271   enc_class enc_cmove_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL mem ) %{
  3272     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  3274     MacroAssembler _masm(&cbuf);
  3275     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  3276     Label done;
  3277     __ bso($crx$$CondRegister, done);
  3278     __ ld($dst$$Register, Idisp, $mem$$base$$Register);
  3279     // TODO PPC port __ endgroup_if_needed(_size == 12);
  3280     __ bind(done);
  3281   %}
  3283   enc_class enc_bc(flagsReg crx, cmpOp cmp, Label lbl) %{
  3284     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3286     MacroAssembler _masm(&cbuf);
  3287     Label d;   // dummy
  3288     __ bind(d);
  3289     Label* p = ($lbl$$label);
  3290     // `p' is `NULL' when this encoding class is used only to
  3291     // determine the size of the encoded instruction.
  3292     Label& l = (NULL == p)? d : *(p);
  3293     int cc = $cmp$$cmpcode;
  3294     int flags_reg = $crx$$reg;
  3295     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  3296     int bhint = Assembler::bhintNoHint;
  3298     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3299       if (_prob <= PROB_NEVER) {
  3300         bhint = Assembler::bhintIsNotTaken;
  3301       } else if (_prob >= PROB_ALWAYS) {
  3302         bhint = Assembler::bhintIsTaken;
  3306     __ bc(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3307           cc_to_biint(cc, flags_reg),
  3308           l);
  3309   %}
  3311   enc_class enc_bc_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3312     // The scheduler doesn't know about branch shortening, so we set the opcode
  3313     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3314     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3316     MacroAssembler _masm(&cbuf);
  3317     Label d;    // dummy
  3318     __ bind(d);
  3319     Label* p = ($lbl$$label);
  3320     // `p' is `NULL' when this encoding class is used only to
  3321     // determine the size of the encoded instruction.
  3322     Label& l = (NULL == p)? d : *(p);
  3323     int cc = $cmp$$cmpcode;
  3324     int flags_reg = $crx$$reg;
  3325     int bhint = Assembler::bhintNoHint;
  3327     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3328       if (_prob <= PROB_NEVER) {
  3329         bhint = Assembler::bhintIsNotTaken;
  3330       } else if (_prob >= PROB_ALWAYS) {
  3331         bhint = Assembler::bhintIsTaken;
  3335     // Tell the conditional far branch to optimize itself when being relocated.
  3336     __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3337                   cc_to_biint(cc, flags_reg),
  3338                   l,
  3339                   MacroAssembler::bc_far_optimize_on_relocate);
  3340   %}
  3342   // Branch used with Power6 scheduling (can be shortened without changing the node).
  3343   enc_class enc_bc_short_far(flagsReg crx, cmpOp cmp, Label lbl) %{
  3344     // The scheduler doesn't know about branch shortening, so we set the opcode
  3345     // to ppc64Opcode_bc in order to hide this detail from the scheduler.
  3346     // TODO: PPC port $archOpcode(ppc64Opcode_bc);
  3348     MacroAssembler _masm(&cbuf);
  3349     Label d;   // dummy
  3350     __ bind(d);
  3351     Label* p = ($lbl$$label);
  3352     // `p' is `NULL' when this encoding class is used only to
  3353     // determine the size of the encoded instruction.
  3354     Label& l = (NULL == p)? d : *(p);
  3355     int cc = $cmp$$cmpcode;
  3356     int flags_reg = $crx$$reg;
  3357     int bhint = Assembler::bhintNoHint;
  3359     if (UseStaticBranchPredictionForUncommonPathsPPC64) {
  3360       if (_prob <= PROB_NEVER) {
  3361         bhint = Assembler::bhintIsNotTaken;
  3362       } else if (_prob >= PROB_ALWAYS) {
  3363         bhint = Assembler::bhintIsTaken;
  3367 #if 0 // TODO: PPC port
  3368     if (_size == 8) {
  3369       // Tell the conditional far branch to optimize itself when being relocated.
  3370       __ bc_far(Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3371                     cc_to_biint(cc, flags_reg),
  3372                     l,
  3373                     MacroAssembler::bc_far_optimize_on_relocate);
  3374     } else {
  3375       __ bc    (Assembler::add_bhint_to_boint(bhint, cc_to_boint(cc)),
  3376                     cc_to_biint(cc, flags_reg),
  3377                     l);
  3379 #endif
  3380     Unimplemented();
  3381   %}
  3383   // Postalloc expand emitter for loading a replicatef float constant from
  3384   // the method's TOC.
  3385   // Enc_class needed as consttanttablebase is not supported by postalloc
  3386   // expand.
  3387   enc_class postalloc_expand_load_replF_constant(iRegLdst dst, immF src, iRegLdst toc) %{
  3388     // Create new nodes.
  3390     // Make an operand with the bit pattern to load as float.
  3391     immLOper *op_repl = new (C) immLOper((jlong)replicate_immF(op_src->constantF()));
  3393     loadConLNodesTuple loadConLNodes =
  3394       loadConLNodesTuple_create(C, ra_, n_toc, op_repl,
  3395                                 ra_->get_reg_second(this), ra_->get_reg_first(this));
  3397     // Push new nodes.
  3398     if (loadConLNodes._large_hi) nodes->push(loadConLNodes._large_hi);
  3399     if (loadConLNodes._last)     nodes->push(loadConLNodes._last);
  3401     assert(nodes->length() >= 1, "must have created at least 1 node");
  3402     assert(loadConLNodes._last->bottom_type()->isa_long(), "must be long");
  3403   %}
  3405   // This enc_class is needed so that scheduler gets proper
  3406   // input mapping for latency computation.
  3407   enc_class enc_poll(immI dst, iRegLdst poll) %{
  3408     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  3409     // Fake operand dst needed for PPC scheduler.
  3410     assert($dst$$constant == 0x0, "dst must be 0x0");
  3412     MacroAssembler _masm(&cbuf);
  3413     // Mark the code position where the load from the safepoint
  3414     // polling page was emitted as relocInfo::poll_type.
  3415     __ relocate(relocInfo::poll_type);
  3416     __ load_from_polling_page($poll$$Register);
  3417   %}
  3419   // A Java static call or a runtime call.
  3420   //
  3421   // Branch-and-link relative to a trampoline.
  3422   // The trampoline loads the target address and does a long branch to there.
  3423   // In case we call java, the trampoline branches to a interpreter_stub
  3424   // which loads the inline cache and the real call target from the constant pool.
  3425   //
  3426   // This basically looks like this:
  3427   //
  3428   // >>>> consts      -+  -+
  3429   //                   |   |- offset1
  3430   // [call target1]    | <-+
  3431   // [IC cache]        |- offset2
  3432   // [call target2] <--+
  3433   //
  3434   // <<<< consts
  3435   // >>>> insts
  3436   //
  3437   // bl offset16               -+  -+             ??? // How many bits available?
  3438   //                            |   |
  3439   // <<<< insts                 |   |
  3440   // >>>> stubs                 |   |
  3441   //                            |   |- trampoline_stub_Reloc
  3442   // trampoline stub:           | <-+
  3443   //   r2 = toc                 |
  3444   //   r2 = [r2 + offset1]      |       // Load call target1 from const section
  3445   //   mtctr r2                 |
  3446   //   bctr                     |- static_stub_Reloc
  3447   // comp_to_interp_stub:   <---+
  3448   //   r1 = toc
  3449   //   ICreg = [r1 + IC_offset]         // Load IC from const section
  3450   //   r1    = [r1 + offset2]           // Load call target2 from const section
  3451   //   mtctr r1
  3452   //   bctr
  3453   //
  3454   // <<<< stubs
  3455   //
  3456   // The call instruction in the code either
  3457   // - Branches directly to a compiled method if the offset is encodable in instruction.
  3458   // - Branches to the trampoline stub if the offset to the compiled method is not encodable.
  3459   // - Branches to the compiled_to_interp stub if the target is interpreted.
  3460   //
  3461   // Further there are three relocations from the loads to the constants in
  3462   // the constant section.
  3463   //
  3464   // Usage of r1 and r2 in the stubs allows to distinguish them.
  3465   enc_class enc_java_static_call(method meth) %{
  3466     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3468     MacroAssembler _masm(&cbuf);
  3469     address entry_point = (address)$meth$$method;
  3471     if (!_method) {
  3472       // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
  3473       emit_call_with_trampoline_stub(_masm, entry_point, relocInfo::runtime_call_type);
  3474     } else {
  3475       // Remember the offset not the address.
  3476       const int start_offset = __ offset();
  3477       // The trampoline stub.
  3478       if (!Compile::current()->in_scratch_emit_size()) {
  3479         // No entry point given, use the current pc.
  3480         // Make sure branch fits into
  3481         if (entry_point == 0) entry_point = __ pc();
  3483         // Put the entry point as a constant into the constant pool.
  3484         const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3485         const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3487         // Emit the trampoline stub which will be related to the branch-and-link below.
  3488         CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3489         __ relocate(_optimized_virtual ?
  3490                     relocInfo::opt_virtual_call_type : relocInfo::static_call_type);
  3493       // The real call.
  3494       // Note: At this point we do not have the address of the trampoline
  3495       // stub, and the entry point might be too far away for bl, so __ pc()
  3496       // serves as dummy and the bl will be patched later.
  3497       cbuf.set_insts_mark();
  3498       __ bl(__ pc());  // Emits a relocation.
  3500       // The stub for call to interpreter.
  3501       CompiledStaticCall::emit_to_interp_stub(cbuf);
  3503   %}
  3505   // Emit a method handle call.
  3506   //
  3507   // Method handle calls from compiled to compiled are going thru a
  3508   // c2i -> i2c adapter, extending the frame for their arguments. The
  3509   // caller however, returns directly to the compiled callee, that has
  3510   // to cope with the extended frame. We restore the original frame by
  3511   // loading the callers sp and adding the calculated framesize.
  3512   enc_class enc_java_handle_call(method meth) %{
  3513     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3515     MacroAssembler _masm(&cbuf);
  3516     address entry_point = (address)$meth$$method;
  3518     // Remember the offset not the address.
  3519     const int start_offset = __ offset();
  3520     // The trampoline stub.
  3521     if (!ra_->C->in_scratch_emit_size()) {
  3522       // No entry point given, use the current pc.
  3523       // Make sure branch fits into
  3524       if (entry_point == 0) entry_point = __ pc();
  3526       // Put the entry point as a constant into the constant pool.
  3527       const address entry_point_toc_addr   = __ address_constant(entry_point, RelocationHolder::none);
  3528       const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
  3530       // Emit the trampoline stub which will be related to the branch-and-link below.
  3531       CallStubImpl::emit_trampoline_stub(_masm, entry_point_toc_offset, start_offset);
  3532       assert(_optimized_virtual, "methodHandle call should be a virtual call");
  3533       __ relocate(relocInfo::opt_virtual_call_type);
  3536     // The real call.
  3537     // Note: At this point we do not have the address of the trampoline
  3538     // stub, and the entry point might be too far away for bl, so __ pc()
  3539     // serves as dummy and the bl will be patched later.
  3540     cbuf.set_insts_mark();
  3541     __ bl(__ pc());  // Emits a relocation.
  3543     assert(_method, "execute next statement conditionally");
  3544     // The stub for call to interpreter.
  3545     CompiledStaticCall::emit_to_interp_stub(cbuf);
  3547     // Restore original sp.
  3548     __ ld(R11_scratch1, 0, R1_SP); // Load caller sp.
  3549     const long framesize = ra_->C->frame_slots() << LogBytesPerInt;
  3550     unsigned int bytes = (unsigned int)framesize;
  3551     long offset = Assembler::align_addr(bytes, frame::alignment_in_bytes);
  3552     if (Assembler::is_simm(-offset, 16)) {
  3553       __ addi(R1_SP, R11_scratch1, -offset);
  3554     } else {
  3555       __ load_const_optimized(R12_scratch2, -offset);
  3556       __ add(R1_SP, R11_scratch1, R12_scratch2);
  3558 #ifdef ASSERT
  3559   __ ld(R12_scratch2, 0, R1_SP); // Load from unextended_sp.
  3560   __ cmpd(CCR0, R11_scratch1, R12_scratch2);
  3561   __ asm_assert_eq("backlink changed", 0x8000);
  3562 #endif
  3563     // If fails should store backlink before unextending.
  3565     if (ra_->C->env()->failing()) {
  3566       return;
  3568   %}
  3570   // Second node of expanded dynamic call - the call.
  3571   enc_class enc_java_dynamic_call_sched(method meth) %{
  3572     // TODO: PPC port $archOpcode(ppc64Opcode_bl);
  3574     MacroAssembler _masm(&cbuf);
  3576     if (!ra_->C->in_scratch_emit_size()) {
  3577       // Create a call trampoline stub for the given method.
  3578       const address entry_point = !($meth$$method) ? 0 : (address)$meth$$method;
  3579       const address entry_point_const = __ address_constant(entry_point, RelocationHolder::none);
  3580       const int entry_point_const_toc_offset = __ offset_to_method_toc(entry_point_const);
  3581       CallStubImpl::emit_trampoline_stub(_masm, entry_point_const_toc_offset, __ offset());
  3583       if (ra_->C->env()->failing())
  3584         return;
  3586       // Build relocation at call site with ic position as data.
  3587       assert((_load_ic_hi_node != NULL && _load_ic_node == NULL) ||
  3588              (_load_ic_hi_node == NULL && _load_ic_node != NULL),
  3589              "must have one, but can't have both");
  3590       assert((_load_ic_hi_node != NULL && _load_ic_hi_node->_cbuf_insts_offset != -1) ||
  3591              (_load_ic_node != NULL    && _load_ic_node->_cbuf_insts_offset != -1),
  3592              "must contain instruction offset");
  3593       const int virtual_call_oop_addr_offset = _load_ic_hi_node != NULL
  3594         ? _load_ic_hi_node->_cbuf_insts_offset
  3595         : _load_ic_node->_cbuf_insts_offset;
  3596       const address virtual_call_oop_addr = __ addr_at(virtual_call_oop_addr_offset);
  3597       assert(MacroAssembler::is_load_const_from_method_toc_at(virtual_call_oop_addr),
  3598              "should be load from TOC");
  3600       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
  3603     // At this point I do not have the address of the trampoline stub,
  3604     // and the entry point might be too far away for bl. Pc() serves
  3605     // as dummy and bl will be patched later.
  3606     __ bl((address) __ pc());
  3607   %}
  3609   // postalloc expand emitter for virtual calls.
  3610   enc_class postalloc_expand_java_dynamic_call_sched(method meth, iRegLdst toc) %{
  3612     // Create the nodes for loading the IC from the TOC.
  3613     loadConLNodesTuple loadConLNodes_IC =
  3614       loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong)Universe::non_oop_word()),
  3615                                 OptoReg::Name(R19_H_num), OptoReg::Name(R19_num));
  3617     // Create the call node.
  3618     CallDynamicJavaDirectSchedNode *call = new (C) CallDynamicJavaDirectSchedNode();
  3619     call->_method_handle_invoke = _method_handle_invoke;
  3620     call->_vtable_index      = _vtable_index;
  3621     call->_method            = _method;
  3622     call->_bci               = _bci;
  3623     call->_optimized_virtual = _optimized_virtual;
  3624     call->_tf                = _tf;
  3625     call->_entry_point       = _entry_point;
  3626     call->_cnt               = _cnt;
  3627     call->_argsize           = _argsize;
  3628     call->_oop_map           = _oop_map;
  3629     call->_jvms              = _jvms;
  3630     call->_jvmadj            = _jvmadj;
  3631     call->_in_rms            = _in_rms;
  3632     call->_nesting           = _nesting;
  3634     // New call needs all inputs of old call.
  3635     // Req...
  3636     for (uint i = 0; i < req(); ++i) {
  3637       // The expanded node does not need toc any more.
  3638       // Add the inline cache constant here instead. This expresses the
  3639       // register of the inline cache must be live at the call.
  3640       // Else we would have to adapt JVMState by -1.
  3641       if (i == mach_constant_base_node_input()) {
  3642         call->add_req(loadConLNodes_IC._last);
  3643       } else {
  3644         call->add_req(in(i));
  3647     // ...as well as prec
  3648     for (uint i = req(); i < len(); ++i) {
  3649       call->add_prec(in(i));
  3652     // Remember nodes loading the inline cache into r19.
  3653     call->_load_ic_hi_node = loadConLNodes_IC._large_hi;
  3654     call->_load_ic_node    = loadConLNodes_IC._small;
  3656     // Operands for new nodes.
  3657     call->_opnds[0] = _opnds[0];
  3658     call->_opnds[1] = _opnds[1];
  3660     // Only the inline cache is associated with a register.
  3661     assert(Matcher::inline_cache_reg() == OptoReg::Name(R19_num), "ic reg should be R19");
  3663     // Push new nodes.
  3664     if (loadConLNodes_IC._large_hi) nodes->push(loadConLNodes_IC._large_hi);
  3665     if (loadConLNodes_IC._last)     nodes->push(loadConLNodes_IC._last);
  3666     nodes->push(call);
  3667   %}
  3669   // Compound version of call dynamic
  3670   // Toc is only passed so that it can be used in ins_encode statement.
  3671   // In the code we have to use $constanttablebase.
  3672   enc_class enc_java_dynamic_call(method meth, iRegLdst toc) %{
  3673     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3674     MacroAssembler _masm(&cbuf);
  3675     int start_offset = __ offset();
  3677     Register Rtoc = (ra_) ? $constanttablebase : R2_TOC;
  3678 #if 0
  3679     int vtable_index = this->_vtable_index;
  3680     if (_vtable_index < 0) {
  3681       // Must be invalid_vtable_index, not nonvirtual_vtable_index.
  3682       assert(_vtable_index == Method::invalid_vtable_index, "correct sentinel value");
  3683       Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
  3685       // Virtual call relocation will point to ic load.
  3686       address virtual_call_meta_addr = __ pc();
  3687       // Load a clear inline cache.
  3688       AddressLiteral empty_ic((address) Universe::non_oop_word());
  3689       __ load_const_from_method_toc(ic_reg, empty_ic, Rtoc);
  3690       // CALL to fixup routine.  Fixup routine uses ScopeDesc info
  3691       // to determine who we intended to call.
  3692       __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
  3693       emit_call_with_trampoline_stub(_masm, (address)$meth$$method, relocInfo::none);
  3694       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3695              "Fix constant in ret_addr_offset()");
  3696     } else {
  3697       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
  3698       // Go thru the vtable. Get receiver klass. Receiver already
  3699       // checked for non-null. If we'll go thru a C2I adapter, the
  3700       // interpreter expects method in R19_method.
  3702       __ load_klass(R11_scratch1, R3);
  3704       int entry_offset = InstanceKlass::vtable_start_offset() + _vtable_index * vtableEntry::size();
  3705       int v_off = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
  3706       __ li(R19_method, v_off);
  3707       __ ldx(R19_method/*method oop*/, R19_method/*method offset*/, R11_scratch1/*class*/);
  3708       // NOTE: for vtable dispatches, the vtable entry will never be
  3709       // null. However it may very well end up in handle_wrong_method
  3710       // if the method is abstract for the particular class.
  3711       __ ld(R11_scratch1, in_bytes(Method::from_compiled_offset()), R19_method);
  3712       // Call target. Either compiled code or C2I adapter.
  3713       __ mtctr(R11_scratch1);
  3714       __ bctrl();
  3715       if (((MachCallDynamicJavaNode*)this)->ret_addr_offset() != __ offset() - start_offset) {
  3716         tty->print(" %d, %d\n", ((MachCallDynamicJavaNode*)this)->ret_addr_offset(),__ offset() - start_offset);
  3718       assert(((MachCallDynamicJavaNode*)this)->ret_addr_offset() == __ offset() - start_offset,
  3719              "Fix constant in ret_addr_offset()");
  3721 #endif
  3722     Unimplemented();  // ret_addr_offset not yet fixed. Depends on compressed oops (load klass!).
  3723   %}
  3725   // a runtime call
  3726   enc_class enc_java_to_runtime_call (method meth) %{
  3727     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  3729     MacroAssembler _masm(&cbuf);
  3730     const address start_pc = __ pc();
  3732 #if defined(ABI_ELFv2)
  3733     address entry= !($meth$$method) ? NULL : (address)$meth$$method;
  3734     __ call_c(entry, relocInfo::runtime_call_type);
  3735 #else
  3736     // The function we're going to call.
  3737     FunctionDescriptor fdtemp;
  3738     const FunctionDescriptor* fd = !($meth$$method) ? &fdtemp : (FunctionDescriptor*)$meth$$method;
  3740     Register Rtoc = R12_scratch2;
  3741     // Calculate the method's TOC.
  3742     __ calculate_address_from_global_toc(Rtoc, __ method_toc());
  3743     // Put entry, env, toc into the constant pool, this needs up to 3 constant
  3744     // pool entries; call_c_using_toc will optimize the call.
  3745     __ call_c_using_toc(fd, relocInfo::runtime_call_type, Rtoc);
  3746 #endif
  3748     // Check the ret_addr_offset.
  3749     assert(((MachCallRuntimeNode*)this)->ret_addr_offset() ==  __ last_calls_return_pc() - start_pc,
  3750            "Fix constant in ret_addr_offset()");
  3751   %}
  3753   // Move to ctr for leaf call.
  3754   // This enc_class is needed so that scheduler gets proper
  3755   // input mapping for latency computation.
  3756   enc_class enc_leaf_call_mtctr(iRegLsrc src) %{
  3757     // TODO: PPC port $archOpcode(ppc64Opcode_mtctr);
  3758     MacroAssembler _masm(&cbuf);
  3759     __ mtctr($src$$Register);
  3760   %}
  3762   // Postalloc expand emitter for runtime leaf calls.
  3763   enc_class postalloc_expand_java_to_runtime_call(method meth, iRegLdst toc) %{
  3764     loadConLNodesTuple loadConLNodes_Entry;
  3765 #if defined(ABI_ELFv2)
  3766     jlong entry_address = (jlong) this->entry_point();
  3767     assert(entry_address, "need address here");
  3768     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  3769                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  3770 #else
  3771     // Get the struct that describes the function we are about to call.
  3772     FunctionDescriptor* fd = (FunctionDescriptor*) this->entry_point();
  3773     assert(fd, "need fd here");
  3774     jlong entry_address = (jlong) fd->entry();
  3775     // new nodes
  3776     loadConLNodesTuple loadConLNodes_Env;
  3777     loadConLNodesTuple loadConLNodes_Toc;
  3779     // Create nodes and operands for loading the entry point.
  3780     loadConLNodes_Entry = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper(entry_address),
  3781                                                     OptoReg::Name(R12_H_num), OptoReg::Name(R12_num));
  3784     // Create nodes and operands for loading the env pointer.
  3785     if (fd->env() != NULL) {
  3786       loadConLNodes_Env = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->env()),
  3787                                                     OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3788     } else {
  3789       loadConLNodes_Env._large_hi = NULL;
  3790       loadConLNodes_Env._large_lo = NULL;
  3791       loadConLNodes_Env._small    = NULL;
  3792       loadConLNodes_Env._last = new (C) loadConL16Node();
  3793       loadConLNodes_Env._last->_opnds[0] = new (C) iRegLdstOper();
  3794       loadConLNodes_Env._last->_opnds[1] = new (C) immL16Oper(0);
  3795       ra_->set_pair(loadConLNodes_Env._last->_idx, OptoReg::Name(R11_H_num), OptoReg::Name(R11_num));
  3798     // Create nodes and operands for loading the Toc point.
  3799     loadConLNodes_Toc = loadConLNodesTuple_create(C, ra_, n_toc, new (C) immLOper((jlong) fd->toc()),
  3800                                                   OptoReg::Name(R2_H_num), OptoReg::Name(R2_num));
  3801 #endif // ABI_ELFv2
  3802     // mtctr node
  3803     MachNode *mtctr = new (C) CallLeafDirect_mtctrNode();
  3805     assert(loadConLNodes_Entry._last != NULL, "entry must exist");
  3806     mtctr->add_req(0, loadConLNodes_Entry._last);
  3808     mtctr->_opnds[0] = new (C) iRegLdstOper();
  3809     mtctr->_opnds[1] = new (C) iRegLdstOper();
  3811     // call node
  3812     MachCallLeafNode *call = new (C) CallLeafDirectNode();
  3814     call->_opnds[0] = _opnds[0];
  3815     call->_opnds[1] = new (C) methodOper((intptr_t) entry_address); // May get set later.
  3817     // Make the new call node look like the old one.
  3818     call->_name        = _name;
  3819     call->_tf          = _tf;
  3820     call->_entry_point = _entry_point;
  3821     call->_cnt         = _cnt;
  3822     call->_argsize     = _argsize;
  3823     call->_oop_map     = _oop_map;
  3824     guarantee(!_jvms, "You must clone the jvms and adapt the offsets by fix_jvms().");
  3825     call->_jvms        = NULL;
  3826     call->_jvmadj      = _jvmadj;
  3827     call->_in_rms      = _in_rms;
  3828     call->_nesting     = _nesting;
  3831     // New call needs all inputs of old call.
  3832     // Req...
  3833     for (uint i = 0; i < req(); ++i) {
  3834       if (i != mach_constant_base_node_input()) {
  3835         call->add_req(in(i));
  3839     // These must be reqired edges, as the registers are live up to
  3840     // the call. Else the constants are handled as kills.
  3841     call->add_req(mtctr);
  3842 #if !defined(ABI_ELFv2)
  3843     call->add_req(loadConLNodes_Env._last);
  3844     call->add_req(loadConLNodes_Toc._last);
  3845 #endif
  3847     // ...as well as prec
  3848     for (uint i = req(); i < len(); ++i) {
  3849       call->add_prec(in(i));
  3852     // registers
  3853     ra_->set1(mtctr->_idx, OptoReg::Name(SR_CTR_num));
  3855     // Insert the new nodes.
  3856     if (loadConLNodes_Entry._large_hi) nodes->push(loadConLNodes_Entry._large_hi);
  3857     if (loadConLNodes_Entry._last)     nodes->push(loadConLNodes_Entry._last);
  3858 #if !defined(ABI_ELFv2)
  3859     if (loadConLNodes_Env._large_hi)   nodes->push(loadConLNodes_Env._large_hi);
  3860     if (loadConLNodes_Env._last)       nodes->push(loadConLNodes_Env._last);
  3861     if (loadConLNodes_Toc._large_hi)   nodes->push(loadConLNodes_Toc._large_hi);
  3862     if (loadConLNodes_Toc._last)       nodes->push(loadConLNodes_Toc._last);
  3863 #endif
  3864     nodes->push(mtctr);
  3865     nodes->push(call);
  3866   %}
  3867 %}
  3869 //----------FRAME--------------------------------------------------------------
  3870 // Definition of frame structure and management information.
  3872 frame %{
  3873   // What direction does stack grow in (assumed to be same for native & Java).
  3874   stack_direction(TOWARDS_LOW);
  3876   // These two registers define part of the calling convention between
  3877   // compiled code and the interpreter.
  3879   // Inline Cache Register or method for I2C.
  3880   inline_cache_reg(R19); // R19_method
  3882   // Method Oop Register when calling interpreter.
  3883   interpreter_method_oop_reg(R19); // R19_method
  3885   // Optional: name the operand used by cisc-spilling to access
  3886   // [stack_pointer + offset].
  3887   cisc_spilling_operand_name(indOffset);
  3889   // Number of stack slots consumed by a Monitor enter.
  3890   sync_stack_slots((frame::jit_monitor_size / VMRegImpl::stack_slot_size));
  3892   // Compiled code's Frame Pointer.
  3893   frame_pointer(R1); // R1_SP
  3895   // Interpreter stores its frame pointer in a register which is
  3896   // stored to the stack by I2CAdaptors. I2CAdaptors convert from
  3897   // interpreted java to compiled java.
  3898   //
  3899   // R14_state holds pointer to caller's cInterpreter.
  3900   interpreter_frame_pointer(R14); // R14_state
  3902   stack_alignment(frame::alignment_in_bytes);
  3904   in_preserve_stack_slots((frame::jit_in_preserve_size / VMRegImpl::stack_slot_size));
  3906   // Number of outgoing stack slots killed above the
  3907   // out_preserve_stack_slots for calls to C. Supports the var-args
  3908   // backing area for register parms.
  3909   //
  3910   varargs_C_out_slots_killed(((frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size));
  3912   // The after-PROLOG location of the return address. Location of
  3913   // return address specifies a type (REG or STACK) and a number
  3914   // representing the register number (i.e. - use a register name) or
  3915   // stack slot.
  3916   //
  3917   // A: Link register is stored in stack slot ...
  3918   // M:  ... but it's in the caller's frame according to PPC-64 ABI.
  3919   // J: Therefore, we make sure that the link register is also in R11_scratch1
  3920   //    at the end of the prolog.
  3921   // B: We use R20, now.
  3922   //return_addr(REG R20);
  3924   // G: After reading the comments made by all the luminaries on their
  3925   //    failure to tell the compiler where the return address really is,
  3926   //    I hardly dare to try myself.  However, I'm convinced it's in slot
  3927   //    4 what apparently works and saves us some spills.
  3928   return_addr(STACK 4);
  3930   // This is the body of the function
  3931   //
  3932   // void Matcher::calling_convention(OptoRegPair* sig, // array of ideal regs
  3933   //                                  uint length,      // length of array
  3934   //                                  bool is_outgoing)
  3935   //
  3936   // The `sig' array is to be updated. sig[j] represents the location
  3937   // of the j-th argument, either a register or a stack slot.
  3939   // Comment taken from i486.ad:
  3940   // Body of function which returns an integer array locating
  3941   // arguments either in registers or in stack slots. Passed an array
  3942   // of ideal registers called "sig" and a "length" count. Stack-slot
  3943   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3944   // arguments for a CALLEE. Incoming stack arguments are
  3945   // automatically biased by the preserve_stack_slots field above.
  3946   calling_convention %{
  3947     // No difference between ingoing/outgoing. Just pass false.
  3948     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
  3949   %}
  3951   // Comment taken from i486.ad:
  3952   // Body of function which returns an integer array locating
  3953   // arguments either in registers or in stack slots. Passed an array
  3954   // of ideal registers called "sig" and a "length" count. Stack-slot
  3955   // offsets are based on outgoing arguments, i.e. a CALLER setting up
  3956   // arguments for a CALLEE. Incoming stack arguments are
  3957   // automatically biased by the preserve_stack_slots field above.
  3958   c_calling_convention %{
  3959     // This is obviously always outgoing.
  3960     // C argument in register AND stack slot.
  3961     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
  3962   %}
  3964   // Location of native (C/C++) and interpreter return values. This
  3965   // is specified to be the same as Java. In the 32-bit VM, long
  3966   // values are actually returned from native calls in O0:O1 and
  3967   // returned to the interpreter in I0:I1. The copying to and from
  3968   // the register pairs is done by the appropriate call and epilog
  3969   // opcodes. This simplifies the register allocator.
  3970   c_return_value %{
  3971     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3972             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3973             "only return normal values");
  3974     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3975     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3976     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3977     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3978   %}
  3980   // Location of compiled Java return values.  Same as C
  3981   return_value %{
  3982     assert((ideal_reg >= Op_RegI && ideal_reg <= Op_RegL) ||
  3983             (ideal_reg == Op_RegN && Universe::narrow_oop_base() == NULL && Universe::narrow_oop_shift() == 0),
  3984             "only return normal values");
  3985     // enum names from opcodes.hpp:    Op_Node Op_Set Op_RegN       Op_RegI       Op_RegP       Op_RegF       Op_RegD       Op_RegL
  3986     static int typeToRegLo[Op_RegL+1] = { 0,   0,     R3_num,   R3_num,   R3_num,   F1_num,   F1_num,   R3_num };
  3987     static int typeToRegHi[Op_RegL+1] = { 0,   0,     OptoReg::Bad, R3_H_num, R3_H_num, OptoReg::Bad, F1_H_num, R3_H_num };
  3988     return OptoRegPair(typeToRegHi[ideal_reg], typeToRegLo[ideal_reg]);
  3989   %}
  3990 %}
  3993 //----------ATTRIBUTES---------------------------------------------------------
  3995 //----------Operand Attributes-------------------------------------------------
  3996 op_attrib op_cost(1);          // Required cost attribute.
  3998 //----------Instruction Attributes---------------------------------------------
  4000 // Cost attribute. required.
  4001 ins_attrib ins_cost(DEFAULT_COST);
  4003 // Is this instruction a non-matching short branch variant of some
  4004 // long branch? Not required.
  4005 ins_attrib ins_short_branch(0);
  4007 ins_attrib ins_is_TrapBasedCheckNode(true);
  4009 // Number of constants.
  4010 // This instruction uses the given number of constants
  4011 // (optional attribute).
  4012 // This is needed to determine in time whether the constant pool will
  4013 // exceed 4000 entries. Before postalloc_expand the overall number of constants
  4014 // is determined. It's also used to compute the constant pool size
  4015 // in Output().
  4016 ins_attrib ins_num_consts(0);
  4018 // Required alignment attribute (must be a power of 2) specifies the
  4019 // alignment that some part of the instruction (not necessarily the
  4020 // start) requires. If > 1, a compute_padding() function must be
  4021 // provided for the instruction.
  4022 ins_attrib ins_alignment(1);
  4024 // Enforce/prohibit rematerializations.
  4025 // - If an instruction is attributed with 'ins_cannot_rematerialize(true)'
  4026 //   then rematerialization of that instruction is prohibited and the
  4027 //   instruction's value will be spilled if necessary.
  4028 //   Causes that MachNode::rematerialize() returns false.
  4029 // - If an instruction is attributed with 'ins_should_rematerialize(true)'
  4030 //   then rematerialization should be enforced and a copy of the instruction
  4031 //   should be inserted if possible; rematerialization is not guaranteed.
  4032 //   Note: this may result in rematerializations in front of every use.
  4033 //   Causes that MachNode::rematerialize() can return true.
  4034 // (optional attribute)
  4035 ins_attrib ins_cannot_rematerialize(false);
  4036 ins_attrib ins_should_rematerialize(false);
  4038 // Instruction has variable size depending on alignment.
  4039 ins_attrib ins_variable_size_depending_on_alignment(false);
  4041 // Instruction is a nop.
  4042 ins_attrib ins_is_nop(false);
  4044 // Instruction is mapped to a MachIfFastLock node (instead of MachFastLock).
  4045 ins_attrib ins_use_mach_if_fast_lock_node(false);
  4047 // Field for the toc offset of a constant.
  4048 //
  4049 // This is needed if the toc offset is not encodable as an immediate in
  4050 // the PPC load instruction. If so, the upper (hi) bits of the offset are
  4051 // added to the toc, and from this a load with immediate is performed.
  4052 // With postalloc expand, we get two nodes that require the same offset
  4053 // but which don't know about each other. The offset is only known
  4054 // when the constant is added to the constant pool during emitting.
  4055 // It is generated in the 'hi'-node adding the upper bits, and saved
  4056 // in this node.  The 'lo'-node has a link to the 'hi'-node and reads
  4057 // the offset from there when it gets encoded.
  4058 ins_attrib ins_field_const_toc_offset(0);
  4059 ins_attrib ins_field_const_toc_offset_hi_node(0);
  4061 // A field that can hold the instructions offset in the code buffer.
  4062 // Set in the nodes emitter.
  4063 ins_attrib ins_field_cbuf_insts_offset(-1);
  4065 // Fields for referencing a call's load-IC-node.
  4066 // If the toc offset can not be encoded as an immediate in a load, we
  4067 // use two nodes.
  4068 ins_attrib ins_field_load_ic_hi_node(0);
  4069 ins_attrib ins_field_load_ic_node(0);
  4071 //----------OPERANDS-----------------------------------------------------------
  4072 // Operand definitions must precede instruction definitions for correct
  4073 // parsing in the ADLC because operands constitute user defined types
  4074 // which are used in instruction definitions.
  4075 //
  4076 // Formats are generated automatically for constants and base registers.
  4078 //----------Simple Operands----------------------------------------------------
  4079 // Immediate Operands
  4081 // Integer Immediate: 32-bit
  4082 operand immI() %{
  4083   match(ConI);
  4084   op_cost(40);
  4085   format %{ %}
  4086   interface(CONST_INTER);
  4087 %}
  4089 operand immI8() %{
  4090   predicate(Assembler::is_simm(n->get_int(), 8));
  4091   op_cost(0);
  4092   match(ConI);
  4093   format %{ %}
  4094   interface(CONST_INTER);
  4095 %}
  4097 // Integer Immediate: 16-bit
  4098 operand immI16() %{
  4099   predicate(Assembler::is_simm(n->get_int(), 16));
  4100   op_cost(0);
  4101   match(ConI);
  4102   format %{ %}
  4103   interface(CONST_INTER);
  4104 %}
  4106 // Integer Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4107 operand immIhi16() %{
  4108   predicate(((n->get_int() & 0xffff0000) != 0) && ((n->get_int() & 0xffff) == 0));
  4109   match(ConI);
  4110   op_cost(0);
  4111   format %{ %}
  4112   interface(CONST_INTER);
  4113 %}
  4115 operand immInegpow2() %{
  4116   predicate(is_power_of_2_long((jlong) (julong) (juint) (-(n->get_int()))));
  4117   match(ConI);
  4118   op_cost(0);
  4119   format %{ %}
  4120   interface(CONST_INTER);
  4121 %}
  4123 operand immIpow2minus1() %{
  4124   predicate(is_power_of_2_long((((jlong) (n->get_int()))+1)));
  4125   match(ConI);
  4126   op_cost(0);
  4127   format %{ %}
  4128   interface(CONST_INTER);
  4129 %}
  4131 operand immIpowerOf2() %{
  4132   predicate(is_power_of_2_long((((jlong) (julong) (juint) (n->get_int())))));
  4133   match(ConI);
  4134   op_cost(0);
  4135   format %{ %}
  4136   interface(CONST_INTER);
  4137 %}
  4139 // Unsigned Integer Immediate: the values 0-31
  4140 operand uimmI5() %{
  4141   predicate(Assembler::is_uimm(n->get_int(), 5));
  4142   match(ConI);
  4143   op_cost(0);
  4144   format %{ %}
  4145   interface(CONST_INTER);
  4146 %}
  4148 // Unsigned Integer Immediate: 6-bit
  4149 operand uimmI6() %{
  4150   predicate(Assembler::is_uimm(n->get_int(), 6));
  4151   match(ConI);
  4152   op_cost(0);
  4153   format %{ %}
  4154   interface(CONST_INTER);
  4155 %}
  4157 // Unsigned Integer Immediate:  6-bit int, greater than 32
  4158 operand uimmI6_ge32() %{
  4159   predicate(Assembler::is_uimm(n->get_int(), 6) && n->get_int() >= 32);
  4160   match(ConI);
  4161   op_cost(0);
  4162   format %{ %}
  4163   interface(CONST_INTER);
  4164 %}
  4166 // Unsigned Integer Immediate: 15-bit
  4167 operand uimmI15() %{
  4168   predicate(Assembler::is_uimm(n->get_int(), 15));
  4169   match(ConI);
  4170   op_cost(0);
  4171   format %{ %}
  4172   interface(CONST_INTER);
  4173 %}
  4175 // Unsigned Integer Immediate: 16-bit
  4176 operand uimmI16() %{
  4177   predicate(Assembler::is_uimm(n->get_int(), 16));
  4178   match(ConI);
  4179   op_cost(0);
  4180   format %{ %}
  4181   interface(CONST_INTER);
  4182 %}
  4184 // constant 'int 0'.
  4185 operand immI_0() %{
  4186   predicate(n->get_int() == 0);
  4187   match(ConI);
  4188   op_cost(0);
  4189   format %{ %}
  4190   interface(CONST_INTER);
  4191 %}
  4193 // constant 'int 1'.
  4194 operand immI_1() %{
  4195   predicate(n->get_int() == 1);
  4196   match(ConI);
  4197   op_cost(0);
  4198   format %{ %}
  4199   interface(CONST_INTER);
  4200 %}
  4202 // constant 'int -1'.
  4203 operand immI_minus1() %{
  4204   predicate(n->get_int() == -1);
  4205   match(ConI);
  4206   op_cost(0);
  4207   format %{ %}
  4208   interface(CONST_INTER);
  4209 %}
  4211 // int value 16.
  4212 operand immI_16() %{
  4213   predicate(n->get_int() == 16);
  4214   match(ConI);
  4215   op_cost(0);
  4216   format %{ %}
  4217   interface(CONST_INTER);
  4218 %}
  4220 // int value 24.
  4221 operand immI_24() %{
  4222   predicate(n->get_int() == 24);
  4223   match(ConI);
  4224   op_cost(0);
  4225   format %{ %}
  4226   interface(CONST_INTER);
  4227 %}
  4229 // Compressed oops constants
  4230 // Pointer Immediate
  4231 operand immN() %{
  4232   match(ConN);
  4234   op_cost(10);
  4235   format %{ %}
  4236   interface(CONST_INTER);
  4237 %}
  4239 // NULL Pointer Immediate
  4240 operand immN_0() %{
  4241   predicate(n->get_narrowcon() == 0);
  4242   match(ConN);
  4244   op_cost(0);
  4245   format %{ %}
  4246   interface(CONST_INTER);
  4247 %}
  4249 // Compressed klass constants
  4250 operand immNKlass() %{
  4251   match(ConNKlass);
  4253   op_cost(0);
  4254   format %{ %}
  4255   interface(CONST_INTER);
  4256 %}
  4258 // This operand can be used to avoid matching of an instruct
  4259 // with chain rule.
  4260 operand immNKlass_NM() %{
  4261   match(ConNKlass);
  4262   predicate(false);
  4263   op_cost(0);
  4264   format %{ %}
  4265   interface(CONST_INTER);
  4266 %}
  4268 // Pointer Immediate: 64-bit
  4269 operand immP() %{
  4270   match(ConP);
  4271   op_cost(0);
  4272   format %{ %}
  4273   interface(CONST_INTER);
  4274 %}
  4276 // Operand to avoid match of loadConP.
  4277 // This operand can be used to avoid matching of an instruct
  4278 // with chain rule.
  4279 operand immP_NM() %{
  4280   match(ConP);
  4281   predicate(false);
  4282   op_cost(0);
  4283   format %{ %}
  4284   interface(CONST_INTER);
  4285 %}
  4287 // costant 'pointer 0'.
  4288 operand immP_0() %{
  4289   predicate(n->get_ptr() == 0);
  4290   match(ConP);
  4291   op_cost(0);
  4292   format %{ %}
  4293   interface(CONST_INTER);
  4294 %}
  4296 // pointer 0x0 or 0x1
  4297 operand immP_0or1() %{
  4298   predicate((n->get_ptr() == 0) || (n->get_ptr() == 1));
  4299   match(ConP);
  4300   op_cost(0);
  4301   format %{ %}
  4302   interface(CONST_INTER);
  4303 %}
  4305 operand immL() %{
  4306   match(ConL);
  4307   op_cost(40);
  4308   format %{ %}
  4309   interface(CONST_INTER);
  4310 %}
  4312 // Long Immediate: 16-bit
  4313 operand immL16() %{
  4314   predicate(Assembler::is_simm(n->get_long(), 16));
  4315   match(ConL);
  4316   op_cost(0);
  4317   format %{ %}
  4318   interface(CONST_INTER);
  4319 %}
  4321 // Long Immediate: 16-bit, 4-aligned
  4322 operand immL16Alg4() %{
  4323   predicate(Assembler::is_simm(n->get_long(), 16) && ((n->get_long() & 0x3) == 0));
  4324   match(ConL);
  4325   op_cost(0);
  4326   format %{ %}
  4327   interface(CONST_INTER);
  4328 %}
  4330 // Long Immediate: 32-bit, where lowest 16 bits are 0x0000.
  4331 operand immL32hi16() %{
  4332   predicate(Assembler::is_simm(n->get_long(), 32) && ((n->get_long() & 0xffffL) == 0L));
  4333   match(ConL);
  4334   op_cost(0);
  4335   format %{ %}
  4336   interface(CONST_INTER);
  4337 %}
  4339 // Long Immediate: 32-bit
  4340 operand immL32() %{
  4341   predicate(Assembler::is_simm(n->get_long(), 32));
  4342   match(ConL);
  4343   op_cost(0);
  4344   format %{ %}
  4345   interface(CONST_INTER);
  4346 %}
  4348 // Long Immediate: 64-bit, where highest 16 bits are not 0x0000.
  4349 operand immLhighest16() %{
  4350   predicate((n->get_long() & 0xffff000000000000L) != 0L && (n->get_long() & 0x0000ffffffffffffL) == 0L);
  4351   match(ConL);
  4352   op_cost(0);
  4353   format %{ %}
  4354   interface(CONST_INTER);
  4355 %}
  4357 operand immLnegpow2() %{
  4358   predicate(is_power_of_2_long((jlong)-(n->get_long())));
  4359   match(ConL);
  4360   op_cost(0);
  4361   format %{ %}
  4362   interface(CONST_INTER);
  4363 %}
  4365 operand immLpow2minus1() %{
  4366   predicate(is_power_of_2_long((((jlong) (n->get_long()))+1)) &&
  4367             (n->get_long() != (jlong)0xffffffffffffffffL));
  4368   match(ConL);
  4369   op_cost(0);
  4370   format %{ %}
  4371   interface(CONST_INTER);
  4372 %}
  4374 // constant 'long 0'.
  4375 operand immL_0() %{
  4376   predicate(n->get_long() == 0L);
  4377   match(ConL);
  4378   op_cost(0);
  4379   format %{ %}
  4380   interface(CONST_INTER);
  4381 %}
  4383 // constat ' long -1'.
  4384 operand immL_minus1() %{
  4385   predicate(n->get_long() == -1L);
  4386   match(ConL);
  4387   op_cost(0);
  4388   format %{ %}
  4389   interface(CONST_INTER);
  4390 %}
  4392 // Long Immediate: low 32-bit mask
  4393 operand immL_32bits() %{
  4394   predicate(n->get_long() == 0xFFFFFFFFL);
  4395   match(ConL);
  4396   op_cost(0);
  4397   format %{ %}
  4398   interface(CONST_INTER);
  4399 %}
  4401 // Unsigned Long Immediate: 16-bit
  4402 operand uimmL16() %{
  4403   predicate(Assembler::is_uimm(n->get_long(), 16));
  4404   match(ConL);
  4405   op_cost(0);
  4406   format %{ %}
  4407   interface(CONST_INTER);
  4408 %}
  4410 // Float Immediate
  4411 operand immF() %{
  4412   match(ConF);
  4413   op_cost(40);
  4414   format %{ %}
  4415   interface(CONST_INTER);
  4416 %}
  4418 // constant 'float +0.0'.
  4419 operand immF_0() %{
  4420   predicate((n->getf() == 0) &&
  4421             (fpclassify(n->getf()) == FP_ZERO) && (signbit(n->getf()) == 0));
  4422   match(ConF);
  4423   op_cost(0);
  4424   format %{ %}
  4425   interface(CONST_INTER);
  4426 %}
  4428 // Double Immediate
  4429 operand immD() %{
  4430   match(ConD);
  4431   op_cost(40);
  4432   format %{ %}
  4433   interface(CONST_INTER);
  4434 %}
  4436 // Integer Register Operands
  4437 // Integer Destination Register
  4438 // See definition of reg_class bits32_reg_rw.
  4439 operand iRegIdst() %{
  4440   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4441   match(RegI);
  4442   match(rscratch1RegI);
  4443   match(rscratch2RegI);
  4444   match(rarg1RegI);
  4445   match(rarg2RegI);
  4446   match(rarg3RegI);
  4447   match(rarg4RegI);
  4448   format %{ %}
  4449   interface(REG_INTER);
  4450 %}
  4452 // Integer Source Register
  4453 // See definition of reg_class bits32_reg_ro.
  4454 operand iRegIsrc() %{
  4455   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4456   match(RegI);
  4457   match(rscratch1RegI);
  4458   match(rscratch2RegI);
  4459   match(rarg1RegI);
  4460   match(rarg2RegI);
  4461   match(rarg3RegI);
  4462   match(rarg4RegI);
  4463   format %{ %}
  4464   interface(REG_INTER);
  4465 %}
  4467 operand rscratch1RegI() %{
  4468   constraint(ALLOC_IN_RC(rscratch1_bits32_reg));
  4469   match(iRegIdst);
  4470   format %{ %}
  4471   interface(REG_INTER);
  4472 %}
  4474 operand rscratch2RegI() %{
  4475   constraint(ALLOC_IN_RC(rscratch2_bits32_reg));
  4476   match(iRegIdst);
  4477   format %{ %}
  4478   interface(REG_INTER);
  4479 %}
  4481 operand rarg1RegI() %{
  4482   constraint(ALLOC_IN_RC(rarg1_bits32_reg));
  4483   match(iRegIdst);
  4484   format %{ %}
  4485   interface(REG_INTER);
  4486 %}
  4488 operand rarg2RegI() %{
  4489   constraint(ALLOC_IN_RC(rarg2_bits32_reg));
  4490   match(iRegIdst);
  4491   format %{ %}
  4492   interface(REG_INTER);
  4493 %}
  4495 operand rarg3RegI() %{
  4496   constraint(ALLOC_IN_RC(rarg3_bits32_reg));
  4497   match(iRegIdst);
  4498   format %{ %}
  4499   interface(REG_INTER);
  4500 %}
  4502 operand rarg4RegI() %{
  4503   constraint(ALLOC_IN_RC(rarg4_bits32_reg));
  4504   match(iRegIdst);
  4505   format %{ %}
  4506   interface(REG_INTER);
  4507 %}
  4509 operand rarg1RegL() %{
  4510   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4511   match(iRegLdst);
  4512   format %{ %}
  4513   interface(REG_INTER);
  4514 %}
  4516 operand rarg2RegL() %{
  4517   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4518   match(iRegLdst);
  4519   format %{ %}
  4520   interface(REG_INTER);
  4521 %}
  4523 operand rarg3RegL() %{
  4524   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4525   match(iRegLdst);
  4526   format %{ %}
  4527   interface(REG_INTER);
  4528 %}
  4530 operand rarg4RegL() %{
  4531   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4532   match(iRegLdst);
  4533   format %{ %}
  4534   interface(REG_INTER);
  4535 %}
  4537 // Pointer Destination Register
  4538 // See definition of reg_class bits64_reg_rw.
  4539 operand iRegPdst() %{
  4540   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4541   match(RegP);
  4542   match(rscratch1RegP);
  4543   match(rscratch2RegP);
  4544   match(rarg1RegP);
  4545   match(rarg2RegP);
  4546   match(rarg3RegP);
  4547   match(rarg4RegP);
  4548   format %{ %}
  4549   interface(REG_INTER);
  4550 %}
  4552 // Pointer Destination Register
  4553 // Operand not using r11 and r12 (killed in epilog).
  4554 operand iRegPdstNoScratch() %{
  4555   constraint(ALLOC_IN_RC(bits64_reg_leaf_call));
  4556   match(RegP);
  4557   match(rarg1RegP);
  4558   match(rarg2RegP);
  4559   match(rarg3RegP);
  4560   match(rarg4RegP);
  4561   format %{ %}
  4562   interface(REG_INTER);
  4563 %}
  4565 // Pointer Source Register
  4566 // See definition of reg_class bits64_reg_ro.
  4567 operand iRegPsrc() %{
  4568   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4569   match(RegP);
  4570   match(iRegPdst);
  4571   match(rscratch1RegP);
  4572   match(rscratch2RegP);
  4573   match(rarg1RegP);
  4574   match(rarg2RegP);
  4575   match(rarg3RegP);
  4576   match(rarg4RegP);
  4577   match(threadRegP);
  4578   format %{ %}
  4579   interface(REG_INTER);
  4580 %}
  4582 // Thread operand.
  4583 operand threadRegP() %{
  4584   constraint(ALLOC_IN_RC(thread_bits64_reg));
  4585   match(iRegPdst);
  4586   format %{ "R16" %}
  4587   interface(REG_INTER);
  4588 %}
  4590 operand rscratch1RegP() %{
  4591   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4592   match(iRegPdst);
  4593   format %{ "R11" %}
  4594   interface(REG_INTER);
  4595 %}
  4597 operand rscratch2RegP() %{
  4598   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4599   match(iRegPdst);
  4600   format %{ %}
  4601   interface(REG_INTER);
  4602 %}
  4604 operand rarg1RegP() %{
  4605   constraint(ALLOC_IN_RC(rarg1_bits64_reg));
  4606   match(iRegPdst);
  4607   format %{ %}
  4608   interface(REG_INTER);
  4609 %}
  4611 operand rarg2RegP() %{
  4612   constraint(ALLOC_IN_RC(rarg2_bits64_reg));
  4613   match(iRegPdst);
  4614   format %{ %}
  4615   interface(REG_INTER);
  4616 %}
  4618 operand rarg3RegP() %{
  4619   constraint(ALLOC_IN_RC(rarg3_bits64_reg));
  4620   match(iRegPdst);
  4621   format %{ %}
  4622   interface(REG_INTER);
  4623 %}
  4625 operand rarg4RegP() %{
  4626   constraint(ALLOC_IN_RC(rarg4_bits64_reg));
  4627   match(iRegPdst);
  4628   format %{ %}
  4629   interface(REG_INTER);
  4630 %}
  4632 operand iRegNsrc() %{
  4633   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4634   match(RegN);
  4635   match(iRegNdst);
  4637   format %{ %}
  4638   interface(REG_INTER);
  4639 %}
  4641 operand iRegNdst() %{
  4642   constraint(ALLOC_IN_RC(bits32_reg_rw));
  4643   match(RegN);
  4645   format %{ %}
  4646   interface(REG_INTER);
  4647 %}
  4649 // Long Destination Register
  4650 // See definition of reg_class bits64_reg_rw.
  4651 operand iRegLdst() %{
  4652   constraint(ALLOC_IN_RC(bits64_reg_rw));
  4653   match(RegL);
  4654   match(rscratch1RegL);
  4655   match(rscratch2RegL);
  4656   format %{ %}
  4657   interface(REG_INTER);
  4658 %}
  4660 // Long Source Register
  4661 // See definition of reg_class bits64_reg_ro.
  4662 operand iRegLsrc() %{
  4663   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4664   match(RegL);
  4665   match(iRegLdst);
  4666   match(rscratch1RegL);
  4667   match(rscratch2RegL);
  4668   format %{ %}
  4669   interface(REG_INTER);
  4670 %}
  4672 // Special operand for ConvL2I.
  4673 operand iRegL2Isrc(iRegLsrc reg) %{
  4674   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4675   match(ConvL2I reg);
  4676   format %{ "ConvL2I($reg)" %}
  4677   interface(REG_INTER)
  4678 %}
  4680 operand rscratch1RegL() %{
  4681   constraint(ALLOC_IN_RC(rscratch1_bits64_reg));
  4682   match(RegL);
  4683   format %{ %}
  4684   interface(REG_INTER);
  4685 %}
  4687 operand rscratch2RegL() %{
  4688   constraint(ALLOC_IN_RC(rscratch2_bits64_reg));
  4689   match(RegL);
  4690   format %{ %}
  4691   interface(REG_INTER);
  4692 %}
  4694 // Condition Code Flag Registers
  4695 operand flagsReg() %{
  4696   constraint(ALLOC_IN_RC(int_flags));
  4697   match(RegFlags);
  4698   format %{ %}
  4699   interface(REG_INTER);
  4700 %}
  4702 // Condition Code Flag Register CR0
  4703 operand flagsRegCR0() %{
  4704   constraint(ALLOC_IN_RC(int_flags_CR0));
  4705   match(RegFlags);
  4706   format %{ "CR0" %}
  4707   interface(REG_INTER);
  4708 %}
  4710 operand flagsRegCR1() %{
  4711   constraint(ALLOC_IN_RC(int_flags_CR1));
  4712   match(RegFlags);
  4713   format %{ "CR1" %}
  4714   interface(REG_INTER);
  4715 %}
  4717 operand flagsRegCR6() %{
  4718   constraint(ALLOC_IN_RC(int_flags_CR6));
  4719   match(RegFlags);
  4720   format %{ "CR6" %}
  4721   interface(REG_INTER);
  4722 %}
  4724 operand regCTR() %{
  4725   constraint(ALLOC_IN_RC(ctr_reg));
  4726   // RegFlags should work. Introducing a RegSpecial type would cause a
  4727   // lot of changes.
  4728   match(RegFlags);
  4729   format %{"SR_CTR" %}
  4730   interface(REG_INTER);
  4731 %}
  4733 operand regD() %{
  4734   constraint(ALLOC_IN_RC(dbl_reg));
  4735   match(RegD);
  4736   format %{ %}
  4737   interface(REG_INTER);
  4738 %}
  4740 operand regF() %{
  4741   constraint(ALLOC_IN_RC(flt_reg));
  4742   match(RegF);
  4743   format %{ %}
  4744   interface(REG_INTER);
  4745 %}
  4747 // Special Registers
  4749 // Method Register
  4750 operand inline_cache_regP(iRegPdst reg) %{
  4751   constraint(ALLOC_IN_RC(r19_bits64_reg)); // inline_cache_reg
  4752   match(reg);
  4753   format %{ %}
  4754   interface(REG_INTER);
  4755 %}
  4757 operand compiler_method_oop_regP(iRegPdst reg) %{
  4758   constraint(ALLOC_IN_RC(rscratch1_bits64_reg)); // compiler_method_oop_reg
  4759   match(reg);
  4760   format %{ %}
  4761   interface(REG_INTER);
  4762 %}
  4764 operand interpreter_method_oop_regP(iRegPdst reg) %{
  4765   constraint(ALLOC_IN_RC(r19_bits64_reg)); // interpreter_method_oop_reg
  4766   match(reg);
  4767   format %{ %}
  4768   interface(REG_INTER);
  4769 %}
  4771 // Operands to remove register moves in unscaled mode.
  4772 // Match read/write registers with an EncodeP node if neither shift nor add are required.
  4773 operand iRegP2N(iRegPsrc reg) %{
  4774   predicate(false /* TODO: PPC port MatchDecodeNodes*/&& Universe::narrow_oop_shift() == 0);
  4775   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4776   match(EncodeP reg);
  4777   format %{ "$reg" %}
  4778   interface(REG_INTER)
  4779 %}
  4781 operand iRegN2P(iRegNsrc reg) %{
  4782   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4783   constraint(ALLOC_IN_RC(bits32_reg_ro));
  4784   match(DecodeN reg);
  4785   match(DecodeNKlass reg);
  4786   format %{ "$reg" %}
  4787   interface(REG_INTER)
  4788 %}
  4790 //----------Complex Operands---------------------------------------------------
  4791 // Indirect Memory Reference
  4792 operand indirect(iRegPsrc reg) %{
  4793   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4794   match(reg);
  4795   op_cost(100);
  4796   format %{ "[$reg]" %}
  4797   interface(MEMORY_INTER) %{
  4798     base($reg);
  4799     index(0x0);
  4800     scale(0x0);
  4801     disp(0x0);
  4802   %}
  4803 %}
  4805 // Indirect with Offset
  4806 operand indOffset16(iRegPsrc reg, immL16 offset) %{
  4807   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4808   match(AddP reg offset);
  4809   op_cost(100);
  4810   format %{ "[$reg + $offset]" %}
  4811   interface(MEMORY_INTER) %{
  4812     base($reg);
  4813     index(0x0);
  4814     scale(0x0);
  4815     disp($offset);
  4816   %}
  4817 %}
  4819 // Indirect with 4-aligned Offset
  4820 operand indOffset16Alg4(iRegPsrc reg, immL16Alg4 offset) %{
  4821   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4822   match(AddP reg offset);
  4823   op_cost(100);
  4824   format %{ "[$reg + $offset]" %}
  4825   interface(MEMORY_INTER) %{
  4826     base($reg);
  4827     index(0x0);
  4828     scale(0x0);
  4829     disp($offset);
  4830   %}
  4831 %}
  4833 //----------Complex Operands for Compressed OOPs-------------------------------
  4834 // Compressed OOPs with narrow_oop_shift == 0.
  4836 // Indirect Memory Reference, compressed OOP
  4837 operand indirectNarrow(iRegNsrc reg) %{
  4838   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4839   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4840   match(DecodeN reg);
  4841   match(DecodeNKlass reg);
  4842   op_cost(100);
  4843   format %{ "[$reg]" %}
  4844   interface(MEMORY_INTER) %{
  4845     base($reg);
  4846     index(0x0);
  4847     scale(0x0);
  4848     disp(0x0);
  4849   %}
  4850 %}
  4852 // Indirect with Offset, compressed OOP
  4853 operand indOffset16Narrow(iRegNsrc reg, immL16 offset) %{
  4854   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4855   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4856   match(AddP (DecodeN reg) offset);
  4857   match(AddP (DecodeNKlass reg) offset);
  4858   op_cost(100);
  4859   format %{ "[$reg + $offset]" %}
  4860   interface(MEMORY_INTER) %{
  4861     base($reg);
  4862     index(0x0);
  4863     scale(0x0);
  4864     disp($offset);
  4865   %}
  4866 %}
  4868 // Indirect with 4-aligned Offset, compressed OOP
  4869 operand indOffset16NarrowAlg4(iRegNsrc reg, immL16Alg4 offset) %{
  4870   predicate(false /* TODO: PPC port MatchDecodeNodes*/);
  4871   constraint(ALLOC_IN_RC(bits64_reg_ro));
  4872   match(AddP (DecodeN reg) offset);
  4873   match(AddP (DecodeNKlass reg) offset);
  4874   op_cost(100);
  4875   format %{ "[$reg + $offset]" %}
  4876   interface(MEMORY_INTER) %{
  4877     base($reg);
  4878     index(0x0);
  4879     scale(0x0);
  4880     disp($offset);
  4881   %}
  4882 %}
  4884 //----------Special Memory Operands--------------------------------------------
  4885 // Stack Slot Operand
  4886 //
  4887 // This operand is used for loading and storing temporary values on
  4888 // the stack where a match requires a value to flow through memory.
  4889 operand stackSlotI(sRegI reg) %{
  4890   constraint(ALLOC_IN_RC(stack_slots));
  4891   op_cost(100);
  4892   //match(RegI);
  4893   format %{ "[sp+$reg]" %}
  4894   interface(MEMORY_INTER) %{
  4895     base(0x1);   // R1_SP
  4896     index(0x0);
  4897     scale(0x0);
  4898     disp($reg);  // Stack Offset
  4899   %}
  4900 %}
  4902 operand stackSlotL(sRegL reg) %{
  4903   constraint(ALLOC_IN_RC(stack_slots));
  4904   op_cost(100);
  4905   //match(RegL);
  4906   format %{ "[sp+$reg]" %}
  4907   interface(MEMORY_INTER) %{
  4908     base(0x1);   // R1_SP
  4909     index(0x0);
  4910     scale(0x0);
  4911     disp($reg);  // Stack Offset
  4912   %}
  4913 %}
  4915 operand stackSlotP(sRegP reg) %{
  4916   constraint(ALLOC_IN_RC(stack_slots));
  4917   op_cost(100);
  4918   //match(RegP);
  4919   format %{ "[sp+$reg]" %}
  4920   interface(MEMORY_INTER) %{
  4921     base(0x1);   // R1_SP
  4922     index(0x0);
  4923     scale(0x0);
  4924     disp($reg);  // Stack Offset
  4925   %}
  4926 %}
  4928 operand stackSlotF(sRegF reg) %{
  4929   constraint(ALLOC_IN_RC(stack_slots));
  4930   op_cost(100);
  4931   //match(RegF);
  4932   format %{ "[sp+$reg]" %}
  4933   interface(MEMORY_INTER) %{
  4934     base(0x1);   // R1_SP
  4935     index(0x0);
  4936     scale(0x0);
  4937     disp($reg);  // Stack Offset
  4938   %}
  4939 %}
  4941 operand stackSlotD(sRegD reg) %{
  4942   constraint(ALLOC_IN_RC(stack_slots));
  4943   op_cost(100);
  4944   //match(RegD);
  4945   format %{ "[sp+$reg]" %}
  4946   interface(MEMORY_INTER) %{
  4947     base(0x1);   // R1_SP
  4948     index(0x0);
  4949     scale(0x0);
  4950     disp($reg);  // Stack Offset
  4951   %}
  4952 %}
  4954 // Operands for expressing Control Flow
  4955 // NOTE: Label is a predefined operand which should not be redefined in
  4956 //       the AD file. It is generically handled within the ADLC.
  4958 //----------Conditional Branch Operands----------------------------------------
  4959 // Comparison Op
  4960 //
  4961 // This is the operation of the comparison, and is limited to the
  4962 // following set of codes: L (<), LE (<=), G (>), GE (>=), E (==), NE
  4963 // (!=).
  4964 //
  4965 // Other attributes of the comparison, such as unsignedness, are specified
  4966 // by the comparison instruction that sets a condition code flags register.
  4967 // That result is represented by a flags operand whose subtype is appropriate
  4968 // to the unsignedness (etc.) of the comparison.
  4969 //
  4970 // Later, the instruction which matches both the Comparison Op (a Bool) and
  4971 // the flags (produced by the Cmp) specifies the coding of the comparison op
  4972 // by matching a specific subtype of Bool operand below.
  4974 // When used for floating point comparisons: unordered same as less.
  4975 operand cmpOp() %{
  4976   match(Bool);
  4977   format %{ "" %}
  4978   interface(COND_INTER) %{
  4979                            // BO only encodes bit 4 of bcondCRbiIsX, as bits 1-3 are always '100'.
  4980                            //           BO          &  BI
  4981     equal(0xA);            // 10 10:   bcondCRbiIs1 & Condition::equal
  4982     not_equal(0x2);        // 00 10:   bcondCRbiIs0 & Condition::equal
  4983     less(0x8);             // 10 00:   bcondCRbiIs1 & Condition::less
  4984     greater_equal(0x0);    // 00 00:   bcondCRbiIs0 & Condition::less
  4985     less_equal(0x1);       // 00 01:   bcondCRbiIs0 & Condition::greater
  4986     greater(0x9);          // 10 01:   bcondCRbiIs1 & Condition::greater
  4987     overflow(0xB);         // 10 11:   bcondCRbiIs1 & Condition::summary_overflow
  4988     no_overflow(0x3);      // 00 11:   bcondCRbiIs0 & Condition::summary_overflow
  4989   %}
  4990 %}
  4992 //----------OPERAND CLASSES----------------------------------------------------
  4993 // Operand Classes are groups of operands that are used to simplify
  4994 // instruction definitions by not requiring the AD writer to specify
  4995 // seperate instructions for every form of operand when the
  4996 // instruction accepts multiple operand types with the same basic
  4997 // encoding and format. The classic case of this is memory operands.
  4998 // Indirect is not included since its use is limited to Compare & Swap.
  5000 opclass memory(indirect, indOffset16 /*, indIndex, tlsReference*/, indirectNarrow, indOffset16Narrow);
  5001 // Memory operand where offsets are 4-aligned. Required for ld, std.
  5002 opclass memoryAlg4(indirect, indOffset16Alg4, indirectNarrow, indOffset16NarrowAlg4);
  5003 opclass indirectMemory(indirect, indirectNarrow);
  5005 // Special opclass for I and ConvL2I.
  5006 opclass iRegIsrc_iRegL2Isrc(iRegIsrc, iRegL2Isrc);
  5008 // Operand classes to match encode and decode. iRegN_P2N is only used
  5009 // for storeN. I have never seen an encode node elsewhere.
  5010 opclass iRegN_P2N(iRegNsrc, iRegP2N);
  5011 opclass iRegP_N2P(iRegPsrc, iRegN2P);
  5013 //----------PIPELINE-----------------------------------------------------------
  5015 pipeline %{
  5017 // See J.M.Tendler et al. "Power4 system microarchitecture", IBM
  5018 // J. Res. & Dev., No. 1, Jan. 2002.
  5020 //----------ATTRIBUTES---------------------------------------------------------
  5021 attributes %{
  5023   // Power4 instructions are of fixed length.
  5024   fixed_size_instructions;
  5026   // TODO: if `bundle' means number of instructions fetched
  5027   // per cycle, this is 8. If `bundle' means Power4 `group', that is
  5028   // max instructions issued per cycle, this is 5.
  5029   max_instructions_per_bundle = 8;
  5031   // A Power4 instruction is 4 bytes long.
  5032   instruction_unit_size = 4;
  5034   // The Power4 processor fetches 64 bytes...
  5035   instruction_fetch_unit_size = 64;
  5037   // ...in one line
  5038   instruction_fetch_units = 1
  5040   // Unused, list one so that array generated by adlc is not empty.
  5041   // Aix compiler chokes if _nop_count = 0.
  5042   nops(fxNop);
  5043 %}
  5045 //----------RESOURCES----------------------------------------------------------
  5046 // Resources are the functional units available to the machine
  5047 resources(
  5048    PPC_BR,         // branch unit
  5049    PPC_CR,         // condition unit
  5050    PPC_FX1,        // integer arithmetic unit 1
  5051    PPC_FX2,        // integer arithmetic unit 2
  5052    PPC_LDST1,      // load/store unit 1
  5053    PPC_LDST2,      // load/store unit 2
  5054    PPC_FP1,        // float arithmetic unit 1
  5055    PPC_FP2,        // float arithmetic unit 2
  5056    PPC_LDST = PPC_LDST1 | PPC_LDST2,
  5057    PPC_FX = PPC_FX1 | PPC_FX2,
  5058    PPC_FP = PPC_FP1 | PPC_FP2
  5059  );
  5061 //----------PIPELINE DESCRIPTION-----------------------------------------------
  5062 // Pipeline Description specifies the stages in the machine's pipeline
  5063 pipe_desc(
  5064    // Power4 longest pipeline path
  5065    PPC_IF,   // instruction fetch
  5066    PPC_IC,
  5067    //PPC_BP, // branch prediction
  5068    PPC_D0,   // decode
  5069    PPC_D1,   // decode
  5070    PPC_D2,   // decode
  5071    PPC_D3,   // decode
  5072    PPC_Xfer1,
  5073    PPC_GD,   // group definition
  5074    PPC_MP,   // map
  5075    PPC_ISS,  // issue
  5076    PPC_RF,   // resource fetch
  5077    PPC_EX1,  // execute (all units)
  5078    PPC_EX2,  // execute (FP, LDST)
  5079    PPC_EX3,  // execute (FP, LDST)
  5080    PPC_EX4,  // execute (FP)
  5081    PPC_EX5,  // execute (FP)
  5082    PPC_EX6,  // execute (FP)
  5083    PPC_WB,   // write back
  5084    PPC_Xfer2,
  5085    PPC_CP
  5086  );
  5088 //----------PIPELINE CLASSES---------------------------------------------------
  5089 // Pipeline Classes describe the stages in which input and output are
  5090 // referenced by the hardware pipeline.
  5092 // Simple pipeline classes.
  5094 // Default pipeline class.
  5095 pipe_class pipe_class_default() %{
  5096   single_instruction;
  5097   fixed_latency(2);
  5098 %}
  5100 // Pipeline class for empty instructions.
  5101 pipe_class pipe_class_empty() %{
  5102   single_instruction;
  5103   fixed_latency(0);
  5104 %}
  5106 // Pipeline class for compares.
  5107 pipe_class pipe_class_compare() %{
  5108   single_instruction;
  5109   fixed_latency(16);
  5110 %}
  5112 // Pipeline class for traps.
  5113 pipe_class pipe_class_trap() %{
  5114   single_instruction;
  5115   fixed_latency(100);
  5116 %}
  5118 // Pipeline class for memory operations.
  5119 pipe_class pipe_class_memory() %{
  5120   single_instruction;
  5121   fixed_latency(16);
  5122 %}
  5124 // Pipeline class for call.
  5125 pipe_class pipe_class_call() %{
  5126   single_instruction;
  5127   fixed_latency(100);
  5128 %}
  5130 // Define the class for the Nop node.
  5131 define %{
  5132    MachNop = pipe_class_default;
  5133 %}
  5135 %}
  5137 //----------INSTRUCTIONS-------------------------------------------------------
  5139 // Naming of instructions:
  5140 //   opA_operB / opA_operB_operC:
  5141 //     Operation 'op' with one or two source operands 'oper'. Result
  5142 //     type is A, source operand types are B and C.
  5143 //     Iff A == B == C, B and C are left out.
  5144 //
  5145 // The instructions are ordered according to the following scheme:
  5146 //  - loads
  5147 //  - load constants
  5148 //  - prefetch
  5149 //  - store
  5150 //  - encode/decode
  5151 //  - membar
  5152 //  - conditional moves
  5153 //  - compare & swap
  5154 //  - arithmetic and logic operations
  5155 //    * int: Add, Sub, Mul, Div, Mod
  5156 //    * int: lShift, arShift, urShift, rot
  5157 //    * float: Add, Sub, Mul, Div
  5158 //    * and, or, xor ...
  5159 //  - register moves: float <-> int, reg <-> stack, repl
  5160 //  - cast (high level type cast, XtoP, castPP, castII, not_null etc.
  5161 //  - conv (low level type cast requiring bit changes (sign extend etc)
  5162 //  - compares, range & zero checks.
  5163 //  - branches
  5164 //  - complex operations, intrinsics, min, max, replicate
  5165 //  - lock
  5166 //  - Calls
  5167 //
  5168 // If there are similar instructions with different types they are sorted:
  5169 // int before float
  5170 // small before big
  5171 // signed before unsigned
  5172 // e.g., loadS before loadUS before loadI before loadF.
  5175 //----------Load/Store Instructions--------------------------------------------
  5177 //----------Load Instructions--------------------------------------------------
  5179 // Converts byte to int.
  5180 // As convB2I_reg, but without match rule.  The match rule of convB2I_reg
  5181 // reuses the 'amount' operand, but adlc expects that operand specification
  5182 // and operands in match rule are equivalent.
  5183 instruct convB2I_reg_2(iRegIdst dst, iRegIsrc src) %{
  5184   effect(DEF dst, USE src);
  5185   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  5186   size(4);
  5187   ins_encode %{
  5188     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  5189     __ extsb($dst$$Register, $src$$Register);
  5190   %}
  5191   ins_pipe(pipe_class_default);
  5192 %}
  5194 instruct loadUB_indirect(iRegIdst dst, indirectMemory mem) %{
  5195   // match-rule, false predicate
  5196   match(Set dst (LoadB mem));
  5197   predicate(false);
  5199   format %{ "LBZ     $dst, $mem" %}
  5200   size(4);
  5201   ins_encode( enc_lbz(dst, mem) );
  5202   ins_pipe(pipe_class_memory);
  5203 %}
  5205 instruct loadUB_indirect_ac(iRegIdst dst, indirectMemory mem) %{
  5206   // match-rule, false predicate
  5207   match(Set dst (LoadB mem));
  5208   predicate(false);
  5210   format %{ "LBZ     $dst, $mem\n\t"
  5211             "TWI     $dst\n\t"
  5212             "ISYNC" %}
  5213   size(12);
  5214   ins_encode( enc_lbz_ac(dst, mem) );
  5215   ins_pipe(pipe_class_memory);
  5216 %}
  5218 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5219 instruct loadB_indirect_Ex(iRegIdst dst, indirectMemory mem) %{
  5220   match(Set dst (LoadB mem));
  5221   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5222   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5223   expand %{
  5224     iRegIdst tmp;
  5225     loadUB_indirect(tmp, mem);
  5226     convB2I_reg_2(dst, tmp);
  5227   %}
  5228 %}
  5230 instruct loadB_indirect_ac_Ex(iRegIdst dst, indirectMemory mem) %{
  5231   match(Set dst (LoadB mem));
  5232   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5233   expand %{
  5234     iRegIdst tmp;
  5235     loadUB_indirect_ac(tmp, mem);
  5236     convB2I_reg_2(dst, tmp);
  5237   %}
  5238 %}
  5240 instruct loadUB_indOffset16(iRegIdst dst, indOffset16 mem) %{
  5241   // match-rule, false predicate
  5242   match(Set dst (LoadB mem));
  5243   predicate(false);
  5245   format %{ "LBZ     $dst, $mem" %}
  5246   size(4);
  5247   ins_encode( enc_lbz(dst, mem) );
  5248   ins_pipe(pipe_class_memory);
  5249 %}
  5251 instruct loadUB_indOffset16_ac(iRegIdst dst, indOffset16 mem) %{
  5252   // match-rule, false predicate
  5253   match(Set dst (LoadB mem));
  5254   predicate(false);
  5256   format %{ "LBZ     $dst, $mem\n\t"
  5257             "TWI     $dst\n\t"
  5258             "ISYNC" %}
  5259   size(12);
  5260   ins_encode( enc_lbz_ac(dst, mem) );
  5261   ins_pipe(pipe_class_memory);
  5262 %}
  5264 // Load Byte (8bit signed). LoadB = LoadUB + ConvUB2B.
  5265 instruct loadB_indOffset16_Ex(iRegIdst dst, indOffset16 mem) %{
  5266   match(Set dst (LoadB mem));
  5267   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5268   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
  5270   expand %{
  5271     iRegIdst tmp;
  5272     loadUB_indOffset16(tmp, mem);
  5273     convB2I_reg_2(dst, tmp);
  5274   %}
  5275 %}
  5277 instruct loadB_indOffset16_ac_Ex(iRegIdst dst, indOffset16 mem) %{
  5278   match(Set dst (LoadB mem));
  5279   ins_cost(3*MEMORY_REF_COST + DEFAULT_COST);
  5281   expand %{
  5282     iRegIdst tmp;
  5283     loadUB_indOffset16_ac(tmp, mem);
  5284     convB2I_reg_2(dst, tmp);
  5285   %}
  5286 %}
  5288 // Load Unsigned Byte (8bit UNsigned) into an int reg.
  5289 instruct loadUB(iRegIdst dst, memory mem) %{
  5290   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5291   match(Set dst (LoadUB mem));
  5292   ins_cost(MEMORY_REF_COST);
  5294   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int" %}
  5295   size(4);
  5296   ins_encode( enc_lbz(dst, mem) );
  5297   ins_pipe(pipe_class_memory);
  5298 %}
  5300 // Load  Unsigned Byte (8bit UNsigned) acquire.
  5301 instruct loadUB_ac(iRegIdst dst, memory mem) %{
  5302   match(Set dst (LoadUB mem));
  5303   ins_cost(3*MEMORY_REF_COST);
  5305   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to int, acquire\n\t"
  5306             "TWI     $dst\n\t"
  5307             "ISYNC" %}
  5308   size(12);
  5309   ins_encode( enc_lbz_ac(dst, mem) );
  5310   ins_pipe(pipe_class_memory);
  5311 %}
  5313 // Load Unsigned Byte (8bit UNsigned) into a Long Register.
  5314 instruct loadUB2L(iRegLdst dst, memory mem) %{
  5315   match(Set dst (ConvI2L (LoadUB mem)));
  5316   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5317   ins_cost(MEMORY_REF_COST);
  5319   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long" %}
  5320   size(4);
  5321   ins_encode( enc_lbz(dst, mem) );
  5322   ins_pipe(pipe_class_memory);
  5323 %}
  5325 instruct loadUB2L_ac(iRegLdst dst, memory mem) %{
  5326   match(Set dst (ConvI2L (LoadUB mem)));
  5327   ins_cost(3*MEMORY_REF_COST);
  5329   format %{ "LBZ     $dst, $mem \t// byte, zero-extend to long, acquire\n\t"
  5330             "TWI     $dst\n\t"
  5331             "ISYNC" %}
  5332   size(12);
  5333   ins_encode( enc_lbz_ac(dst, mem) );
  5334   ins_pipe(pipe_class_memory);
  5335 %}
  5337 // Load Short (16bit signed)
  5338 instruct loadS(iRegIdst dst, memory mem) %{
  5339   match(Set dst (LoadS mem));
  5340   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5341   ins_cost(MEMORY_REF_COST);
  5343   format %{ "LHA     $dst, $mem" %}
  5344   size(4);
  5345   ins_encode %{
  5346     // TODO: PPC port $archOpcode(ppc64Opcode_lha);
  5347     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5348     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5349   %}
  5350   ins_pipe(pipe_class_memory);
  5351 %}
  5353 // Load Short (16bit signed) acquire.
  5354 instruct loadS_ac(iRegIdst dst, memory mem) %{
  5355   match(Set dst (LoadS mem));
  5356   ins_cost(3*MEMORY_REF_COST);
  5358   format %{ "LHA     $dst, $mem\t acquire\n\t"
  5359             "TWI     $dst\n\t"
  5360             "ISYNC" %}
  5361   size(12);
  5362   ins_encode %{
  5363     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5364     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5365     __ lha($dst$$Register, Idisp, $mem$$base$$Register);
  5366     __ twi_0($dst$$Register);
  5367     __ isync();
  5368   %}
  5369   ins_pipe(pipe_class_memory);
  5370 %}
  5372 // Load Char (16bit unsigned)
  5373 instruct loadUS(iRegIdst dst, memory mem) %{
  5374   match(Set dst (LoadUS mem));
  5375   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5376   ins_cost(MEMORY_REF_COST);
  5378   format %{ "LHZ     $dst, $mem" %}
  5379   size(4);
  5380   ins_encode( enc_lhz(dst, mem) );
  5381   ins_pipe(pipe_class_memory);
  5382 %}
  5384 // Load Char (16bit unsigned) acquire.
  5385 instruct loadUS_ac(iRegIdst dst, memory mem) %{
  5386   match(Set dst (LoadUS mem));
  5387   ins_cost(3*MEMORY_REF_COST);
  5389   format %{ "LHZ     $dst, $mem \t// acquire\n\t"
  5390             "TWI     $dst\n\t"
  5391             "ISYNC" %}
  5392   size(12);
  5393   ins_encode( enc_lhz_ac(dst, mem) );
  5394   ins_pipe(pipe_class_memory);
  5395 %}
  5397 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register.
  5398 instruct loadUS2L(iRegLdst dst, memory mem) %{
  5399   match(Set dst (ConvI2L (LoadUS mem)));
  5400   predicate(_kids[0]->_leaf->as_Load()->is_unordered() || followed_by_acquire(_kids[0]->_leaf));
  5401   ins_cost(MEMORY_REF_COST);
  5403   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long" %}
  5404   size(4);
  5405   ins_encode( enc_lhz(dst, mem) );
  5406   ins_pipe(pipe_class_memory);
  5407 %}
  5409 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register acquire.
  5410 instruct loadUS2L_ac(iRegLdst dst, memory mem) %{
  5411   match(Set dst (ConvI2L (LoadUS mem)));
  5412   ins_cost(3*MEMORY_REF_COST);
  5414   format %{ "LHZ     $dst, $mem \t// short, zero-extend to long, acquire\n\t"
  5415             "TWI     $dst\n\t"
  5416             "ISYNC" %}
  5417   size(12);
  5418   ins_encode( enc_lhz_ac(dst, mem) );
  5419   ins_pipe(pipe_class_memory);
  5420 %}
  5422 // Load Integer.
  5423 instruct loadI(iRegIdst dst, memory mem) %{
  5424   match(Set dst (LoadI mem));
  5425   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5426   ins_cost(MEMORY_REF_COST);
  5428   format %{ "LWZ     $dst, $mem" %}
  5429   size(4);
  5430   ins_encode( enc_lwz(dst, mem) );
  5431   ins_pipe(pipe_class_memory);
  5432 %}
  5434 // Load Integer acquire.
  5435 instruct loadI_ac(iRegIdst dst, memory mem) %{
  5436   match(Set dst (LoadI mem));
  5437   ins_cost(3*MEMORY_REF_COST);
  5439   format %{ "LWZ     $dst, $mem \t// load acquire\n\t"
  5440             "TWI     $dst\n\t"
  5441             "ISYNC" %}
  5442   size(12);
  5443   ins_encode( enc_lwz_ac(dst, mem) );
  5444   ins_pipe(pipe_class_memory);
  5445 %}
  5447 // Match loading integer and casting it to unsigned int in
  5448 // long register.
  5449 // LoadI + ConvI2L + AndL 0xffffffff.
  5450 instruct loadUI2L(iRegLdst dst, memory mem, immL_32bits mask) %{
  5451   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
  5452   predicate(_kids[0]->_kids[0]->_leaf->as_Load()->is_unordered());
  5453   ins_cost(MEMORY_REF_COST);
  5455   format %{ "LWZ     $dst, $mem \t// zero-extend to long" %}
  5456   size(4);
  5457   ins_encode( enc_lwz(dst, mem) );
  5458   ins_pipe(pipe_class_memory);
  5459 %}
  5461 // Match loading integer and casting it to long.
  5462 instruct loadI2L(iRegLdst dst, memory mem) %{
  5463   match(Set dst (ConvI2L (LoadI mem)));
  5464   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5465   ins_cost(MEMORY_REF_COST);
  5467   format %{ "LWA     $dst, $mem \t// loadI2L" %}
  5468   size(4);
  5469   ins_encode %{
  5470     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5471     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5472     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5473   %}
  5474   ins_pipe(pipe_class_memory);
  5475 %}
  5477 // Match loading integer and casting it to long - acquire.
  5478 instruct loadI2L_ac(iRegLdst dst, memory mem) %{
  5479   match(Set dst (ConvI2L (LoadI mem)));
  5480   ins_cost(3*MEMORY_REF_COST);
  5482   format %{ "LWA     $dst, $mem \t// loadI2L acquire"
  5483             "TWI     $dst\n\t"
  5484             "ISYNC" %}
  5485   size(12);
  5486   ins_encode %{
  5487     // TODO: PPC port $archOpcode(ppc64Opcode_lwa);
  5488     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5489     __ lwa($dst$$Register, Idisp, $mem$$base$$Register);
  5490     __ twi_0($dst$$Register);
  5491     __ isync();
  5492   %}
  5493   ins_pipe(pipe_class_memory);
  5494 %}
  5496 // Load Long - aligned
  5497 instruct loadL(iRegLdst dst, memoryAlg4 mem) %{
  5498   match(Set dst (LoadL mem));
  5499   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5500   ins_cost(MEMORY_REF_COST);
  5502   format %{ "LD      $dst, $mem \t// long" %}
  5503   size(4);
  5504   ins_encode( enc_ld(dst, mem) );
  5505   ins_pipe(pipe_class_memory);
  5506 %}
  5508 // Load Long - aligned acquire.
  5509 instruct loadL_ac(iRegLdst dst, memoryAlg4 mem) %{
  5510   match(Set dst (LoadL mem));
  5511   ins_cost(3*MEMORY_REF_COST);
  5513   format %{ "LD      $dst, $mem \t// long acquire\n\t"
  5514             "TWI     $dst\n\t"
  5515             "ISYNC" %}
  5516   size(12);
  5517   ins_encode( enc_ld_ac(dst, mem) );
  5518   ins_pipe(pipe_class_memory);
  5519 %}
  5521 // Load Long - UNaligned
  5522 instruct loadL_unaligned(iRegLdst dst, memoryAlg4 mem) %{
  5523   match(Set dst (LoadL_unaligned mem));
  5524   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5525   ins_cost(MEMORY_REF_COST);
  5527   format %{ "LD      $dst, $mem \t// unaligned long" %}
  5528   size(4);
  5529   ins_encode( enc_ld(dst, mem) );
  5530   ins_pipe(pipe_class_memory);
  5531 %}
  5533 // Load nodes for superwords
  5535 // Load Aligned Packed Byte
  5536 instruct loadV8(iRegLdst dst, memoryAlg4 mem) %{
  5537   predicate(n->as_LoadVector()->memory_size() == 8);
  5538   match(Set dst (LoadVector mem));
  5539   ins_cost(MEMORY_REF_COST);
  5541   format %{ "LD      $dst, $mem \t// load 8-byte Vector" %}
  5542   size(4);
  5543   ins_encode( enc_ld(dst, mem) );
  5544   ins_pipe(pipe_class_memory);
  5545 %}
  5547 // Load Range, range = array length (=jint)
  5548 instruct loadRange(iRegIdst dst, memory mem) %{
  5549   match(Set dst (LoadRange mem));
  5550   ins_cost(MEMORY_REF_COST);
  5552   format %{ "LWZ     $dst, $mem \t// range" %}
  5553   size(4);
  5554   ins_encode( enc_lwz(dst, mem) );
  5555   ins_pipe(pipe_class_memory);
  5556 %}
  5558 // Load Compressed Pointer
  5559 instruct loadN(iRegNdst dst, memory mem) %{
  5560   match(Set dst (LoadN mem));
  5561   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5562   ins_cost(MEMORY_REF_COST);
  5564   format %{ "LWZ     $dst, $mem \t// load compressed ptr" %}
  5565   size(4);
  5566   ins_encode( enc_lwz(dst, mem) );
  5567   ins_pipe(pipe_class_memory);
  5568 %}
  5570 // Load Compressed Pointer acquire.
  5571 instruct loadN_ac(iRegNdst dst, memory mem) %{
  5572   match(Set dst (LoadN mem));
  5573   ins_cost(3*MEMORY_REF_COST);
  5575   format %{ "LWZ     $dst, $mem \t// load acquire compressed ptr\n\t"
  5576             "TWI     $dst\n\t"
  5577             "ISYNC" %}
  5578   size(12);
  5579   ins_encode( enc_lwz_ac(dst, mem) );
  5580   ins_pipe(pipe_class_memory);
  5581 %}
  5583 // Load Compressed Pointer and decode it if narrow_oop_shift == 0.
  5584 instruct loadN2P_unscaled(iRegPdst dst, memory mem) %{
  5585   match(Set dst (DecodeN (LoadN mem)));
  5586   predicate(_kids[0]->_leaf->as_Load()->is_unordered() && Universe::narrow_oop_shift() == 0);
  5587   ins_cost(MEMORY_REF_COST);
  5589   format %{ "LWZ     $dst, $mem \t// DecodeN (unscaled)" %}
  5590   size(4);
  5591   ins_encode( enc_lwz(dst, mem) );
  5592   ins_pipe(pipe_class_memory);
  5593 %}
  5595 // Load Pointer
  5596 instruct loadP(iRegPdst dst, memoryAlg4 mem) %{
  5597   match(Set dst (LoadP mem));
  5598   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5599   ins_cost(MEMORY_REF_COST);
  5601   format %{ "LD      $dst, $mem \t// ptr" %}
  5602   size(4);
  5603   ins_encode( enc_ld(dst, mem) );
  5604   ins_pipe(pipe_class_memory);
  5605 %}
  5607 // Load Pointer acquire.
  5608 instruct loadP_ac(iRegPdst dst, memoryAlg4 mem) %{
  5609   match(Set dst (LoadP mem));
  5610   ins_cost(3*MEMORY_REF_COST);
  5612   format %{ "LD      $dst, $mem \t// ptr acquire\n\t"
  5613             "TWI     $dst\n\t"
  5614             "ISYNC" %}
  5615   size(12);
  5616   ins_encode( enc_ld_ac(dst, mem) );
  5617   ins_pipe(pipe_class_memory);
  5618 %}
  5620 // LoadP + CastP2L
  5621 instruct loadP2X(iRegLdst dst, memoryAlg4 mem) %{
  5622   match(Set dst (CastP2X (LoadP mem)));
  5623   predicate(_kids[0]->_leaf->as_Load()->is_unordered());
  5624   ins_cost(MEMORY_REF_COST);
  5626   format %{ "LD      $dst, $mem \t// ptr + p2x" %}
  5627   size(4);
  5628   ins_encode( enc_ld(dst, mem) );
  5629   ins_pipe(pipe_class_memory);
  5630 %}
  5632 // Load compressed klass pointer.
  5633 instruct loadNKlass(iRegNdst dst, memory mem) %{
  5634   match(Set dst (LoadNKlass mem));
  5635   ins_cost(MEMORY_REF_COST);
  5637   format %{ "LWZ     $dst, $mem \t// compressed klass ptr" %}
  5638   size(4);
  5639   ins_encode( enc_lwz(dst, mem) );
  5640   ins_pipe(pipe_class_memory);
  5641 %}
  5643 //// Load compressed klass and decode it if narrow_klass_shift == 0.
  5644 //// TODO: will narrow_klass_shift ever be 0?
  5645 //instruct decodeNKlass2Klass(iRegPdst dst, memory mem) %{
  5646 //  match(Set dst (DecodeNKlass (LoadNKlass mem)));
  5647 //  predicate(false /* TODO: PPC port Universe::narrow_klass_shift() == 0*);
  5648 //  ins_cost(MEMORY_REF_COST);
  5649 //
  5650 //  format %{ "LWZ     $dst, $mem \t// DecodeNKlass (unscaled)" %}
  5651 //  size(4);
  5652 //  ins_encode( enc_lwz(dst, mem) );
  5653 //  ins_pipe(pipe_class_memory);
  5654 //%}
  5656 // Load Klass Pointer
  5657 instruct loadKlass(iRegPdst dst, memoryAlg4 mem) %{
  5658   match(Set dst (LoadKlass mem));
  5659   ins_cost(MEMORY_REF_COST);
  5661   format %{ "LD      $dst, $mem \t// klass ptr" %}
  5662   size(4);
  5663   ins_encode( enc_ld(dst, mem) );
  5664   ins_pipe(pipe_class_memory);
  5665 %}
  5667 // Load Float
  5668 instruct loadF(regF dst, memory mem) %{
  5669   match(Set dst (LoadF mem));
  5670   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5671   ins_cost(MEMORY_REF_COST);
  5673   format %{ "LFS     $dst, $mem" %}
  5674   size(4);
  5675   ins_encode %{
  5676     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  5677     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5678     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5679   %}
  5680   ins_pipe(pipe_class_memory);
  5681 %}
  5683 // Load Float acquire.
  5684 instruct loadF_ac(regF dst, memory mem) %{
  5685   match(Set dst (LoadF mem));
  5686   ins_cost(3*MEMORY_REF_COST);
  5688   format %{ "LFS     $dst, $mem \t// acquire\n\t"
  5689             "FCMPU   cr0, $dst, $dst\n\t"
  5690             "BNE     cr0, next\n"
  5691             "next:\n\t"
  5692             "ISYNC" %}
  5693   size(16);
  5694   ins_encode %{
  5695     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5696     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5697     Label next;
  5698     __ lfs($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5699     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5700     __ bne(CCR0, next);
  5701     __ bind(next);
  5702     __ isync();
  5703   %}
  5704   ins_pipe(pipe_class_memory);
  5705 %}
  5707 // Load Double - aligned
  5708 instruct loadD(regD dst, memory mem) %{
  5709   match(Set dst (LoadD mem));
  5710   predicate(n->as_Load()->is_unordered() || followed_by_acquire(n));
  5711   ins_cost(MEMORY_REF_COST);
  5713   format %{ "LFD     $dst, $mem" %}
  5714   size(4);
  5715   ins_encode( enc_lfd(dst, mem) );
  5716   ins_pipe(pipe_class_memory);
  5717 %}
  5719 // Load Double - aligned acquire.
  5720 instruct loadD_ac(regD dst, memory mem) %{
  5721   match(Set dst (LoadD mem));
  5722   ins_cost(3*MEMORY_REF_COST);
  5724   format %{ "LFD     $dst, $mem \t// acquire\n\t"
  5725             "FCMPU   cr0, $dst, $dst\n\t"
  5726             "BNE     cr0, next\n"
  5727             "next:\n\t"
  5728             "ISYNC" %}
  5729   size(16);
  5730   ins_encode %{
  5731     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  5732     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  5733     Label next;
  5734     __ lfd($dst$$FloatRegister, Idisp, $mem$$base$$Register);
  5735     __ fcmpu(CCR0, $dst$$FloatRegister, $dst$$FloatRegister);
  5736     __ bne(CCR0, next);
  5737     __ bind(next);
  5738     __ isync();
  5739   %}
  5740   ins_pipe(pipe_class_memory);
  5741 %}
  5743 // Load Double - UNaligned
  5744 instruct loadD_unaligned(regD dst, memory mem) %{
  5745   match(Set dst (LoadD_unaligned mem));
  5746   // predicate(...) // Unaligned_ac is not needed (and wouldn't make sense).
  5747   ins_cost(MEMORY_REF_COST);
  5749   format %{ "LFD     $dst, $mem" %}
  5750   size(4);
  5751   ins_encode( enc_lfd(dst, mem) );
  5752   ins_pipe(pipe_class_memory);
  5753 %}
  5755 //----------Constants--------------------------------------------------------
  5757 // Load MachConstantTableBase: add hi offset to global toc.
  5758 // TODO: Handle hidden register r29 in bundler!
  5759 instruct loadToc_hi(iRegLdst dst) %{
  5760   effect(DEF dst);
  5761   ins_cost(DEFAULT_COST);
  5763   format %{ "ADDIS   $dst, R29, DISP.hi \t// load TOC hi" %}
  5764   size(4);
  5765   ins_encode %{
  5766     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5767     __ calculate_address_from_global_toc_hi16only($dst$$Register, __ method_toc());
  5768   %}
  5769   ins_pipe(pipe_class_default);
  5770 %}
  5772 // Load MachConstantTableBase: add lo offset to global toc.
  5773 instruct loadToc_lo(iRegLdst dst, iRegLdst src) %{
  5774   effect(DEF dst, USE src);
  5775   ins_cost(DEFAULT_COST);
  5777   format %{ "ADDI    $dst, $src, DISP.lo \t// load TOC lo" %}
  5778   size(4);
  5779   ins_encode %{
  5780     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5781     __ calculate_address_from_global_toc_lo16only($dst$$Register, __ method_toc());
  5782   %}
  5783   ins_pipe(pipe_class_default);
  5784 %}
  5786 // Load 16-bit integer constant 0xssss????
  5787 instruct loadConI16(iRegIdst dst, immI16 src) %{
  5788   match(Set dst src);
  5790   format %{ "LI      $dst, $src" %}
  5791   size(4);
  5792   ins_encode %{
  5793     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5794     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  5795   %}
  5796   ins_pipe(pipe_class_default);
  5797 %}
  5799 // Load integer constant 0x????0000
  5800 instruct loadConIhi16(iRegIdst dst, immIhi16 src) %{
  5801   match(Set dst src);
  5802   ins_cost(DEFAULT_COST);
  5804   format %{ "LIS     $dst, $src.hi" %}
  5805   size(4);
  5806   ins_encode %{
  5807     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5808     // Lis sign extends 16-bit src then shifts it 16 bit to the left.
  5809     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5810   %}
  5811   ins_pipe(pipe_class_default);
  5812 %}
  5814 // Part 2 of loading 32 bit constant: hi16 is is src1 (properly shifted
  5815 // and sign extended), this adds the low 16 bits.
  5816 instruct loadConI32_lo16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  5817   // no match-rule, false predicate
  5818   effect(DEF dst, USE src1, USE src2);
  5819   predicate(false);
  5821   format %{ "ORI     $dst, $src1.hi, $src2.lo" %}
  5822   size(4);
  5823   ins_encode %{
  5824     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5825     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5826   %}
  5827   ins_pipe(pipe_class_default);
  5828 %}
  5830 instruct loadConI_Ex(iRegIdst dst, immI src) %{
  5831   match(Set dst src);
  5832   ins_cost(DEFAULT_COST*2);
  5834   expand %{
  5835     // Would like to use $src$$constant.
  5836     immI16 srcLo %{ _opnds[1]->constant() %}
  5837     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5838     immIhi16 srcHi %{ _opnds[1]->constant() %}
  5839     iRegIdst tmpI;
  5840     loadConIhi16(tmpI, srcHi);
  5841     loadConI32_lo16(dst, tmpI, srcLo);
  5842   %}
  5843 %}
  5845 // No constant pool entries required.
  5846 instruct loadConL16(iRegLdst dst, immL16 src) %{
  5847   match(Set dst src);
  5849   format %{ "LI      $dst, $src \t// long" %}
  5850   size(4);
  5851   ins_encode %{
  5852     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5853     __ li($dst$$Register, (int)((short) ($src$$constant & 0xFFFF)));
  5854   %}
  5855   ins_pipe(pipe_class_default);
  5856 %}
  5858 // Load long constant 0xssssssss????0000
  5859 instruct loadConL32hi16(iRegLdst dst, immL32hi16 src) %{
  5860   match(Set dst src);
  5861   ins_cost(DEFAULT_COST);
  5863   format %{ "LIS     $dst, $src.hi \t// long" %}
  5864   size(4);
  5865   ins_encode %{
  5866     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  5867     __ lis($dst$$Register, (int)((short)(($src$$constant & 0xFFFF0000) >> 16)));
  5868   %}
  5869   ins_pipe(pipe_class_default);
  5870 %}
  5872 // To load a 32 bit constant: merge lower 16 bits into already loaded
  5873 // high 16 bits.
  5874 instruct loadConL32_lo16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  5875   // no match-rule, false predicate
  5876   effect(DEF dst, USE src1, USE src2);
  5877   predicate(false);
  5879   format %{ "ORI     $dst, $src1, $src2.lo" %}
  5880   size(4);
  5881   ins_encode %{
  5882     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  5883     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  5884   %}
  5885   ins_pipe(pipe_class_default);
  5886 %}
  5888 // Load 32-bit long constant
  5889 instruct loadConL32_Ex(iRegLdst dst, immL32 src) %{
  5890   match(Set dst src);
  5891   ins_cost(DEFAULT_COST*2);
  5893   expand %{
  5894     // Would like to use $src$$constant.
  5895     immL16     srcLo %{ _opnds[1]->constant() /*& 0x0000FFFFL */%}
  5896     // srcHi can be 0000 if srcLo sign-extends to a negative number.
  5897     immL32hi16 srcHi %{ _opnds[1]->constant() /*& 0xFFFF0000L */%}
  5898     iRegLdst tmpL;
  5899     loadConL32hi16(tmpL, srcHi);
  5900     loadConL32_lo16(dst, tmpL, srcLo);
  5901   %}
  5902 %}
  5904 // Load long constant 0x????000000000000.
  5905 instruct loadConLhighest16_Ex(iRegLdst dst, immLhighest16 src) %{
  5906   match(Set dst src);
  5907   ins_cost(DEFAULT_COST);
  5909   expand %{
  5910     immL32hi16 srcHi %{ _opnds[1]->constant() >> 32 /*& 0xFFFF0000L */%}
  5911     immI shift32 %{ 32 %}
  5912     iRegLdst tmpL;
  5913     loadConL32hi16(tmpL, srcHi);
  5914     lshiftL_regL_immI(dst, tmpL, shift32);
  5915   %}
  5916 %}
  5918 // Expand node for constant pool load: small offset.
  5919 instruct loadConL(iRegLdst dst, immL src, iRegLdst toc) %{
  5920   effect(DEF dst, USE src, USE toc);
  5921   ins_cost(MEMORY_REF_COST);
  5923   ins_num_consts(1);
  5924   // Needed so that CallDynamicJavaDirect can compute the address of this
  5925   // instruction for relocation.
  5926   ins_field_cbuf_insts_offset(int);
  5928   format %{ "LD      $dst, offset, $toc \t// load long $src from TOC" %}
  5929   size(4);
  5930   ins_encode( enc_load_long_constL(dst, src, toc) );
  5931   ins_pipe(pipe_class_memory);
  5932 %}
  5934 // Expand node for constant pool load: large offset.
  5935 instruct loadConL_hi(iRegLdst dst, immL src, iRegLdst toc) %{
  5936   effect(DEF dst, USE src, USE toc);
  5937   predicate(false);
  5939   ins_num_consts(1);
  5940   ins_field_const_toc_offset(int);
  5941   // Needed so that CallDynamicJavaDirect can compute the address of this
  5942   // instruction for relocation.
  5943   ins_field_cbuf_insts_offset(int);
  5945   format %{ "ADDIS   $dst, $toc, offset \t// load long $src from TOC (hi)" %}
  5946   size(4);
  5947   ins_encode( enc_load_long_constL_hi(dst, toc, src) );
  5948   ins_pipe(pipe_class_default);
  5949 %}
  5951 // Expand node for constant pool load: large offset.
  5952 // No constant pool entries required.
  5953 instruct loadConL_lo(iRegLdst dst, immL src, iRegLdst base) %{
  5954   effect(DEF dst, USE src, USE base);
  5955   predicate(false);
  5957   ins_field_const_toc_offset_hi_node(loadConL_hiNode*);
  5959   format %{ "LD      $dst, offset, $base \t// load long $src from TOC (lo)" %}
  5960   size(4);
  5961   ins_encode %{
  5962     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  5963     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  5964     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  5965   %}
  5966   ins_pipe(pipe_class_memory);
  5967 %}
  5969 // Load long constant from constant table. Expand in case of
  5970 // offset > 16 bit is needed.
  5971 // Adlc adds toc node MachConstantTableBase.
  5972 instruct loadConL_Ex(iRegLdst dst, immL src) %{
  5973   match(Set dst src);
  5974   ins_cost(MEMORY_REF_COST);
  5976   format %{ "LD      $dst, offset, $constanttablebase\t// load long $src from table, postalloc expanded" %}
  5977   // We can not inline the enc_class for the expand as that does not support constanttablebase.
  5978   postalloc_expand( postalloc_expand_load_long_constant(dst, src, constanttablebase) );
  5979 %}
  5981 // Load NULL as compressed oop.
  5982 instruct loadConN0(iRegNdst dst, immN_0 src) %{
  5983   match(Set dst src);
  5984   ins_cost(DEFAULT_COST);
  5986   format %{ "LI      $dst, $src \t// compressed ptr" %}
  5987   size(4);
  5988   ins_encode %{
  5989     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  5990     __ li($dst$$Register, 0);
  5991   %}
  5992   ins_pipe(pipe_class_default);
  5993 %}
  5995 // Load hi part of compressed oop constant.
  5996 instruct loadConN_hi(iRegNdst dst, immN src) %{
  5997   effect(DEF dst, USE src);
  5998   ins_cost(DEFAULT_COST);
  6000   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  6001   size(4);
  6002   ins_encode %{
  6003     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  6004     __ lis($dst$$Register, (int)(short)(($src$$constant >> 16) & 0xffff));
  6005   %}
  6006   ins_pipe(pipe_class_default);
  6007 %}
  6009 // Add lo part of compressed oop constant to already loaded hi part.
  6010 instruct loadConN_lo(iRegNdst dst, iRegNsrc src1, immN src2) %{
  6011   effect(DEF dst, USE src1, USE src2);
  6012   ins_cost(DEFAULT_COST);
  6014   format %{ "ORI     $dst, $src1, $src2 \t// narrow oop lo" %}
  6015   size(4);
  6016   ins_encode %{
  6017     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6018     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6019     int oop_index = __ oop_recorder()->find_index((jobject)$src2$$constant);
  6020     RelocationHolder rspec = oop_Relocation::spec(oop_index);
  6021     __ relocate(rspec, 1);
  6022     __ ori($dst$$Register, $src1$$Register, $src2$$constant & 0xffff);
  6023   %}
  6024   ins_pipe(pipe_class_default);
  6025 %}
  6027 // Needed to postalloc expand loadConN: ConN is loaded as ConI
  6028 // leaving the upper 32 bits with sign-extension bits.
  6029 // This clears these bits: dst = src & 0xFFFFFFFF.
  6030 // TODO: Eventually call this maskN_regN_FFFFFFFF.
  6031 instruct clearMs32b(iRegNdst dst, iRegNsrc src) %{
  6032   effect(DEF dst, USE src);
  6033   predicate(false);
  6035   format %{ "MASK    $dst, $src, 0xFFFFFFFF" %} // mask
  6036   size(4);
  6037   ins_encode %{
  6038     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6039     __ clrldi($dst$$Register, $src$$Register, 0x20);
  6040   %}
  6041   ins_pipe(pipe_class_default);
  6042 %}
  6044 // Loading ConN must be postalloc expanded so that edges between
  6045 // the nodes are safe. They may not interfere with a safepoint.
  6046 // GL TODO: This needs three instructions: better put this into the constant pool.
  6047 instruct loadConN_Ex(iRegNdst dst, immN src) %{
  6048   match(Set dst src);
  6049   ins_cost(DEFAULT_COST*2);
  6051   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  6052   postalloc_expand %{
  6053     MachNode *m1 = new (C) loadConN_hiNode();
  6054     MachNode *m2 = new (C) loadConN_loNode();
  6055     MachNode *m3 = new (C) clearMs32bNode();
  6056     m1->add_req(NULL);
  6057     m2->add_req(NULL, m1);
  6058     m3->add_req(NULL, m2);
  6059     m1->_opnds[0] = op_dst;
  6060     m1->_opnds[1] = op_src;
  6061     m2->_opnds[0] = op_dst;
  6062     m2->_opnds[1] = op_dst;
  6063     m2->_opnds[2] = op_src;
  6064     m3->_opnds[0] = op_dst;
  6065     m3->_opnds[1] = op_dst;
  6066     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6067     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6068     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6069     nodes->push(m1);
  6070     nodes->push(m2);
  6071     nodes->push(m3);
  6072   %}
  6073 %}
  6075 instruct loadConNKlass_hi(iRegNdst dst, immNKlass src) %{
  6076   effect(DEF dst, USE src);
  6077   ins_cost(DEFAULT_COST);
  6079   format %{ "LIS     $dst, $src \t// narrow oop hi" %}
  6080   size(4);
  6081   ins_encode %{
  6082     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  6083     intptr_t Csrc = Klass::encode_klass((Klass *)$src$$constant);
  6084     __ lis($dst$$Register, (int)(short)((Csrc >> 16) & 0xffff));
  6085   %}
  6086   ins_pipe(pipe_class_default);
  6087 %}
  6089 // This needs a match rule so that build_oop_map knows this is
  6090 // not a narrow oop.
  6091 instruct loadConNKlass_lo(iRegNdst dst, immNKlass_NM src1, iRegNsrc src2) %{
  6092   match(Set dst src1);
  6093   effect(TEMP src2);
  6094   ins_cost(DEFAULT_COST);
  6096   format %{ "ADDI    $dst, $src1, $src2 \t// narrow oop lo" %}
  6097   size(4);
  6098   ins_encode %{
  6099     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6100     intptr_t Csrc = Klass::encode_klass((Klass *)$src1$$constant);
  6101     assert(__ oop_recorder() != NULL, "this assembler needs an OopRecorder");
  6102     int klass_index = __ oop_recorder()->find_index((Klass *)$src1$$constant);
  6103     RelocationHolder rspec = metadata_Relocation::spec(klass_index);
  6105     __ relocate(rspec, 1);
  6106     __ ori($dst$$Register, $src2$$Register, Csrc & 0xffff);
  6107   %}
  6108   ins_pipe(pipe_class_default);
  6109 %}
  6111 // Loading ConNKlass must be postalloc expanded so that edges between
  6112 // the nodes are safe. They may not interfere with a safepoint.
  6113 instruct loadConNKlass_Ex(iRegNdst dst, immNKlass src) %{
  6114   match(Set dst src);
  6115   ins_cost(DEFAULT_COST*2);
  6117   format %{ "LoadN   $dst, $src \t// postalloc expanded" %} // mask
  6118   postalloc_expand %{
  6119     // Load high bits into register. Sign extended.
  6120     MachNode *m1 = new (C) loadConNKlass_hiNode();
  6121     m1->add_req(NULL);
  6122     m1->_opnds[0] = op_dst;
  6123     m1->_opnds[1] = op_src;
  6124     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6125     nodes->push(m1);
  6127     MachNode *m2 = m1;
  6128     if (!Assembler::is_uimm((jlong)Klass::encode_klass((Klass *)op_src->constant()), 31)) {
  6129       // Value might be 1-extended. Mask out these bits.
  6130       m2 = new (C) clearMs32bNode();
  6131       m2->add_req(NULL, m1);
  6132       m2->_opnds[0] = op_dst;
  6133       m2->_opnds[1] = op_dst;
  6134       ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6135       nodes->push(m2);
  6138     MachNode *m3 = new (C) loadConNKlass_loNode();
  6139     m3->add_req(NULL, m2);
  6140     m3->_opnds[0] = op_dst;
  6141     m3->_opnds[1] = op_src;
  6142     m3->_opnds[2] = op_dst;
  6143     ra_->set_pair(m3->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  6144     nodes->push(m3);
  6145   %}
  6146 %}
  6148 // 0x1 is used in object initialization (initial object header).
  6149 // No constant pool entries required.
  6150 instruct loadConP0or1(iRegPdst dst, immP_0or1 src) %{
  6151   match(Set dst src);
  6153   format %{ "LI      $dst, $src \t// ptr" %}
  6154   size(4);
  6155   ins_encode %{
  6156     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  6157     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
  6158   %}
  6159   ins_pipe(pipe_class_default);
  6160 %}
  6162 // Expand node for constant pool load: small offset.
  6163 // The match rule is needed to generate the correct bottom_type(),
  6164 // however this node should never match. The use of predicate is not
  6165 // possible since ADLC forbids predicates for chain rules. The higher
  6166 // costs do not prevent matching in this case. For that reason the
  6167 // operand immP_NM with predicate(false) is used.
  6168 instruct loadConP(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6169   match(Set dst src);
  6170   effect(TEMP toc);
  6172   ins_num_consts(1);
  6174   format %{ "LD      $dst, offset, $toc \t// load ptr $src from TOC" %}
  6175   size(4);
  6176   ins_encode( enc_load_long_constP(dst, src, toc) );
  6177   ins_pipe(pipe_class_memory);
  6178 %}
  6180 // Expand node for constant pool load: large offset.
  6181 instruct loadConP_hi(iRegPdst dst, immP_NM src, iRegLdst toc) %{
  6182   effect(DEF dst, USE src, USE toc);
  6183   predicate(false);
  6185   ins_num_consts(1);
  6186   ins_field_const_toc_offset(int);
  6188   format %{ "ADDIS   $dst, $toc, offset \t// load ptr $src from TOC (hi)" %}
  6189   size(4);
  6190   ins_encode( enc_load_long_constP_hi(dst, src, toc) );
  6191   ins_pipe(pipe_class_default);
  6192 %}
  6194 // Expand node for constant pool load: large offset.
  6195 instruct loadConP_lo(iRegPdst dst, immP_NM src, iRegLdst base) %{
  6196   match(Set dst src);
  6197   effect(TEMP base);
  6199   ins_field_const_toc_offset_hi_node(loadConP_hiNode*);
  6201   format %{ "LD      $dst, offset, $base \t// load ptr $src from TOC (lo)" %}
  6202   size(4);
  6203   ins_encode %{
  6204     // TODO: PPC port $archOpcode(ppc64Opcode_ld);
  6205     int offset = ra_->C->in_scratch_emit_size() ? 0 : _const_toc_offset_hi_node->_const_toc_offset;
  6206     __ ld($dst$$Register, MacroAssembler::largeoffset_si16_si16_lo(offset), $base$$Register);
  6207   %}
  6208   ins_pipe(pipe_class_memory);
  6209 %}
  6211 // Load pointer constant from constant table. Expand in case an
  6212 // offset > 16 bit is needed.
  6213 // Adlc adds toc node MachConstantTableBase.
  6214 instruct loadConP_Ex(iRegPdst dst, immP src) %{
  6215   match(Set dst src);
  6216   ins_cost(MEMORY_REF_COST);
  6218   // This rule does not use "expand" because then
  6219   // the result type is not known to be an Oop.  An ADLC
  6220   // enhancement will be needed to make that work - not worth it!
  6222   // If this instruction rematerializes, it prolongs the live range
  6223   // of the toc node, causing illegal graphs.
  6224   // assert(edge_from_to(_reg_node[reg_lo],def)) fails in verify_good_schedule().
  6225   ins_cannot_rematerialize(true);
  6227   format %{ "LD    $dst, offset, $constanttablebase \t//  load ptr $src from table, postalloc expanded" %}
  6228   postalloc_expand( postalloc_expand_load_ptr_constant(dst, src, constanttablebase) );
  6229 %}
  6231 // Expand node for constant pool load: small offset.
  6232 instruct loadConF(regF dst, immF src, iRegLdst toc) %{
  6233   effect(DEF dst, USE src, USE toc);
  6234   ins_cost(MEMORY_REF_COST);
  6236   ins_num_consts(1);
  6238   format %{ "LFS     $dst, offset, $toc \t// load float $src from TOC" %}
  6239   size(4);
  6240   ins_encode %{
  6241     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  6242     address float_address = __ float_constant($src$$constant);
  6243     __ lfs($dst$$FloatRegister, __ offset_to_method_toc(float_address), $toc$$Register);
  6244   %}
  6245   ins_pipe(pipe_class_memory);
  6246 %}
  6248 // Expand node for constant pool load: large offset.
  6249 instruct loadConFComp(regF dst, immF src, iRegLdst toc) %{
  6250   effect(DEF dst, USE src, USE toc);
  6251   ins_cost(MEMORY_REF_COST);
  6253   ins_num_consts(1);
  6255   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6256             "LFS     $dst, offset_lo, $toc \t// load float $src from TOC (hi/lo)\n\t"
  6257             "ADDIS   $toc, $toc, -offset_hi"%}
  6258   size(12);
  6259   ins_encode %{
  6260     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6261     FloatRegister Rdst    = $dst$$FloatRegister;
  6262     Register Rtoc         = $toc$$Register;
  6263     address float_address = __ float_constant($src$$constant);
  6264     int offset            = __ offset_to_method_toc(float_address);
  6265     int hi = (offset + (1<<15))>>16;
  6266     int lo = offset - hi * (1<<16);
  6268     __ addis(Rtoc, Rtoc, hi);
  6269     __ lfs(Rdst, lo, Rtoc);
  6270     __ addis(Rtoc, Rtoc, -hi);
  6271   %}
  6272   ins_pipe(pipe_class_memory);
  6273 %}
  6275 // Adlc adds toc node MachConstantTableBase.
  6276 instruct loadConF_Ex(regF dst, immF src) %{
  6277   match(Set dst src);
  6278   ins_cost(MEMORY_REF_COST);
  6280   // See loadConP.
  6281   ins_cannot_rematerialize(true);
  6283   format %{ "LFS     $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6284   postalloc_expand( postalloc_expand_load_float_constant(dst, src, constanttablebase) );
  6285 %}
  6287 // Expand node for constant pool load: small offset.
  6288 instruct loadConD(regD dst, immD src, iRegLdst toc) %{
  6289   effect(DEF dst, USE src, USE toc);
  6290   ins_cost(MEMORY_REF_COST);
  6292   ins_num_consts(1);
  6294   format %{ "LFD     $dst, offset, $toc \t// load double $src from TOC" %}
  6295   size(4);
  6296   ins_encode %{
  6297     // TODO: PPC port $archOpcode(ppc64Opcode_lfd);
  6298     int offset =  __ offset_to_method_toc(__ double_constant($src$$constant));
  6299     __ lfd($dst$$FloatRegister, offset, $toc$$Register);
  6300   %}
  6301   ins_pipe(pipe_class_memory);
  6302 %}
  6304 // Expand node for constant pool load: large offset.
  6305 instruct loadConDComp(regD dst, immD src, iRegLdst toc) %{
  6306   effect(DEF dst, USE src, USE toc);
  6307   ins_cost(MEMORY_REF_COST);
  6309   ins_num_consts(1);
  6311   format %{ "ADDIS   $toc, $toc, offset_hi\n\t"
  6312             "LFD     $dst, offset_lo, $toc \t// load double $src from TOC (hi/lo)\n\t"
  6313             "ADDIS   $toc, $toc, -offset_hi" %}
  6314   size(12);
  6315   ins_encode %{
  6316     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6317     FloatRegister Rdst    = $dst$$FloatRegister;
  6318     Register      Rtoc    = $toc$$Register;
  6319     address float_address = __ double_constant($src$$constant);
  6320     int offset            = __ offset_to_method_toc(float_address);
  6321     int hi = (offset + (1<<15))>>16;
  6322     int lo = offset - hi * (1<<16);
  6324     __ addis(Rtoc, Rtoc, hi);
  6325     __ lfd(Rdst, lo, Rtoc);
  6326     __ addis(Rtoc, Rtoc, -hi);
  6327   %}
  6328   ins_pipe(pipe_class_memory);
  6329 %}
  6331 // Adlc adds toc node MachConstantTableBase.
  6332 instruct loadConD_Ex(regD dst, immD src) %{
  6333   match(Set dst src);
  6334   ins_cost(MEMORY_REF_COST);
  6336   // See loadConP.
  6337   ins_cannot_rematerialize(true);
  6339   format %{ "ConD    $dst, offset, $constanttablebase \t// load $src from table, postalloc expanded" %}
  6340   postalloc_expand( postalloc_expand_load_double_constant(dst, src, constanttablebase) );
  6341 %}
  6343 // Prefetch instructions.
  6344 // Must be safe to execute with invalid address (cannot fault).
  6346 instruct prefetchr(indirectMemory mem, iRegLsrc src) %{
  6347   match(PrefetchRead (AddP mem src));
  6348   ins_cost(MEMORY_REF_COST);
  6350   format %{ "PREFETCH $mem, 0, $src \t// Prefetch read-many" %}
  6351   size(4);
  6352   ins_encode %{
  6353     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6354     __ dcbt($src$$Register, $mem$$base$$Register);
  6355   %}
  6356   ins_pipe(pipe_class_memory);
  6357 %}
  6359 instruct prefetchr_no_offset(indirectMemory mem) %{
  6360   match(PrefetchRead mem);
  6361   ins_cost(MEMORY_REF_COST);
  6363   format %{ "PREFETCH $mem" %}
  6364   size(4);
  6365   ins_encode %{
  6366     // TODO: PPC port $archOpcode(ppc64Opcode_dcbt);
  6367     __ dcbt($mem$$base$$Register);
  6368   %}
  6369   ins_pipe(pipe_class_memory);
  6370 %}
  6372 instruct prefetchw(indirectMemory mem, iRegLsrc src) %{
  6373   match(PrefetchWrite (AddP mem src));
  6374   ins_cost(MEMORY_REF_COST);
  6376   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many (and read)" %}
  6377   size(4);
  6378   ins_encode %{
  6379     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6380     __ dcbtst($src$$Register, $mem$$base$$Register);
  6381   %}
  6382   ins_pipe(pipe_class_memory);
  6383 %}
  6385 instruct prefetchw_no_offset(indirectMemory mem) %{
  6386   match(PrefetchWrite mem);
  6387   ins_cost(MEMORY_REF_COST);
  6389   format %{ "PREFETCH $mem" %}
  6390   size(4);
  6391   ins_encode %{
  6392     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6393     __ dcbtst($mem$$base$$Register);
  6394   %}
  6395   ins_pipe(pipe_class_memory);
  6396 %}
  6398 // Special prefetch versions which use the dcbz instruction.
  6399 instruct prefetch_alloc_zero(indirectMemory mem, iRegLsrc src) %{
  6400   match(PrefetchAllocation (AddP mem src));
  6401   predicate(AllocatePrefetchStyle == 3);
  6402   ins_cost(MEMORY_REF_COST);
  6404   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many with zero" %}
  6405   size(4);
  6406   ins_encode %{
  6407     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6408     __ dcbz($src$$Register, $mem$$base$$Register);
  6409   %}
  6410   ins_pipe(pipe_class_memory);
  6411 %}
  6413 instruct prefetch_alloc_zero_no_offset(indirectMemory mem) %{
  6414   match(PrefetchAllocation mem);
  6415   predicate(AllocatePrefetchStyle == 3);
  6416   ins_cost(MEMORY_REF_COST);
  6418   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many with zero" %}
  6419   size(4);
  6420   ins_encode %{
  6421     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6422     __ dcbz($mem$$base$$Register);
  6423   %}
  6424   ins_pipe(pipe_class_memory);
  6425 %}
  6427 instruct prefetch_alloc(indirectMemory mem, iRegLsrc src) %{
  6428   match(PrefetchAllocation (AddP mem src));
  6429   predicate(AllocatePrefetchStyle != 3);
  6430   ins_cost(MEMORY_REF_COST);
  6432   format %{ "PREFETCH $mem, 2, $src \t// Prefetch write-many" %}
  6433   size(4);
  6434   ins_encode %{
  6435     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6436     __ dcbtst($src$$Register, $mem$$base$$Register);
  6437   %}
  6438   ins_pipe(pipe_class_memory);
  6439 %}
  6441 instruct prefetch_alloc_no_offset(indirectMemory mem) %{
  6442   match(PrefetchAllocation mem);
  6443   predicate(AllocatePrefetchStyle != 3);
  6444   ins_cost(MEMORY_REF_COST);
  6446   format %{ "PREFETCH $mem, 2 \t// Prefetch write-many" %}
  6447   size(4);
  6448   ins_encode %{
  6449     // TODO: PPC port $archOpcode(ppc64Opcode_dcbtst);
  6450     __ dcbtst($mem$$base$$Register);
  6451   %}
  6452   ins_pipe(pipe_class_memory);
  6453 %}
  6455 //----------Store Instructions-------------------------------------------------
  6457 // Store Byte
  6458 instruct storeB(memory mem, iRegIsrc src) %{
  6459   match(Set mem (StoreB mem src));
  6460   ins_cost(MEMORY_REF_COST);
  6462   format %{ "STB     $src, $mem \t// byte" %}
  6463   size(4);
  6464   ins_encode %{
  6465     // TODO: PPC port $archOpcode(ppc64Opcode_stb);
  6466     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6467     __ stb($src$$Register, Idisp, $mem$$base$$Register);
  6468   %}
  6469   ins_pipe(pipe_class_memory);
  6470 %}
  6472 // Store Char/Short
  6473 instruct storeC(memory mem, iRegIsrc src) %{
  6474   match(Set mem (StoreC mem src));
  6475   ins_cost(MEMORY_REF_COST);
  6477   format %{ "STH     $src, $mem \t// short" %}
  6478   size(4);
  6479   ins_encode %{
  6480     // TODO: PPC port $archOpcode(ppc64Opcode_sth);
  6481     int Idisp = $mem$$disp + frame_slots_bias($mem$$base, ra_);
  6482     __ sth($src$$Register, Idisp, $mem$$base$$Register);
  6483   %}
  6484   ins_pipe(pipe_class_memory);
  6485 %}
  6487 // Store Integer
  6488 instruct storeI(memory mem, iRegIsrc src) %{
  6489   match(Set mem (StoreI mem src));
  6490   ins_cost(MEMORY_REF_COST);
  6492   format %{ "STW     $src, $mem" %}
  6493   size(4);
  6494   ins_encode( enc_stw(src, mem) );
  6495   ins_pipe(pipe_class_memory);
  6496 %}
  6498 // ConvL2I + StoreI.
  6499 instruct storeI_convL2I(memory mem, iRegLsrc src) %{
  6500   match(Set mem (StoreI mem (ConvL2I src)));
  6501   ins_cost(MEMORY_REF_COST);
  6503   format %{ "STW     l2i($src), $mem" %}
  6504   size(4);
  6505   ins_encode( enc_stw(src, mem) );
  6506   ins_pipe(pipe_class_memory);
  6507 %}
  6509 // Store Long
  6510 instruct storeL(memoryAlg4 mem, iRegLsrc src) %{
  6511   match(Set mem (StoreL mem src));
  6512   ins_cost(MEMORY_REF_COST);
  6514   format %{ "STD     $src, $mem \t// long" %}
  6515   size(4);
  6516   ins_encode( enc_std(src, mem) );
  6517   ins_pipe(pipe_class_memory);
  6518 %}
  6520 // Store super word nodes.
  6522 // Store Aligned Packed Byte long register to memory
  6523 instruct storeA8B(memoryAlg4 mem, iRegLsrc src) %{
  6524   predicate(n->as_StoreVector()->memory_size() == 8);
  6525   match(Set mem (StoreVector mem src));
  6526   ins_cost(MEMORY_REF_COST);
  6528   format %{ "STD     $mem, $src \t// packed8B" %}
  6529   size(4);
  6530   ins_encode( enc_std(src, mem) );
  6531   ins_pipe(pipe_class_memory);
  6532 %}
  6534 // Store Compressed Oop
  6535 instruct storeN(memory dst, iRegN_P2N src) %{
  6536   match(Set dst (StoreN dst src));
  6537   ins_cost(MEMORY_REF_COST);
  6539   format %{ "STW     $src, $dst \t// compressed oop" %}
  6540   size(4);
  6541   ins_encode( enc_stw(src, dst) );
  6542   ins_pipe(pipe_class_memory);
  6543 %}
  6545 // Store Compressed KLass
  6546 instruct storeNKlass(memory dst, iRegN_P2N src) %{
  6547   match(Set dst (StoreNKlass dst src));
  6548   ins_cost(MEMORY_REF_COST);
  6550   format %{ "STW     $src, $dst \t// compressed klass" %}
  6551   size(4);
  6552   ins_encode( enc_stw(src, dst) );
  6553   ins_pipe(pipe_class_memory);
  6554 %}
  6556 // Store Pointer
  6557 instruct storeP(memoryAlg4 dst, iRegPsrc src) %{
  6558   match(Set dst (StoreP dst src));
  6559   ins_cost(MEMORY_REF_COST);
  6561   format %{ "STD     $src, $dst \t// ptr" %}
  6562   size(4);
  6563   ins_encode( enc_std(src, dst) );
  6564   ins_pipe(pipe_class_memory);
  6565 %}
  6567 // Store Float
  6568 instruct storeF(memory mem, regF src) %{
  6569   match(Set mem (StoreF mem src));
  6570   ins_cost(MEMORY_REF_COST);
  6572   format %{ "STFS    $src, $mem" %}
  6573   size(4);
  6574   ins_encode( enc_stfs(src, mem) );
  6575   ins_pipe(pipe_class_memory);
  6576 %}
  6578 // Store Double
  6579 instruct storeD(memory mem, regD src) %{
  6580   match(Set mem (StoreD mem src));
  6581   ins_cost(MEMORY_REF_COST);
  6583   format %{ "STFD    $src, $mem" %}
  6584   size(4);
  6585   ins_encode( enc_stfd(src, mem) );
  6586   ins_pipe(pipe_class_memory);
  6587 %}
  6589 //----------Store Instructions With Zeros--------------------------------------
  6591 // Card-mark for CMS garbage collection.
  6592 // This cardmark does an optimization so that it must not always
  6593 // do a releasing store. For this, it gets the address of
  6594 // CMSCollectorCardTableModRefBSExt::_requires_release as input.
  6595 // (Using releaseFieldAddr in the match rule is a hack.)
  6596 instruct storeCM_CMS(memory mem, iRegLdst releaseFieldAddr) %{
  6597   match(Set mem (StoreCM mem releaseFieldAddr));
  6598   predicate(false);
  6599   ins_cost(MEMORY_REF_COST);
  6601   // See loadConP.
  6602   ins_cannot_rematerialize(true);
  6604   format %{ "STB     #0, $mem \t// CMS card-mark byte (must be 0!), checking requires_release in [$releaseFieldAddr]" %}
  6605   ins_encode( enc_cms_card_mark(mem, releaseFieldAddr) );
  6606   ins_pipe(pipe_class_memory);
  6607 %}
  6609 // Card-mark for CMS garbage collection.
  6610 // This cardmark does an optimization so that it must not always
  6611 // do a releasing store. For this, it needs the constant address of
  6612 // CMSCollectorCardTableModRefBSExt::_requires_release.
  6613 // This constant address is split off here by expand so we can use
  6614 // adlc / matcher functionality to load it from the constant section.
  6615 instruct storeCM_CMS_ExEx(memory mem, immI_0 zero) %{
  6616   match(Set mem (StoreCM mem zero));
  6617   predicate(UseConcMarkSweepGC);
  6619   expand %{
  6620     immL baseImm %{ 0 /* TODO: PPC port (jlong)CMSCollectorCardTableModRefBSExt::requires_release_address() */ %}
  6621     iRegLdst releaseFieldAddress;
  6622     loadConL_Ex(releaseFieldAddress, baseImm);
  6623     storeCM_CMS(mem, releaseFieldAddress);
  6624   %}
  6625 %}
  6627 instruct storeCM_G1(memory mem, immI_0 zero) %{
  6628   match(Set mem (StoreCM mem zero));
  6629   predicate(UseG1GC);
  6630   ins_cost(MEMORY_REF_COST);
  6632   ins_cannot_rematerialize(true);
  6634   format %{ "STB     #0, $mem \t// CMS card-mark byte store (G1)" %}
  6635   size(8);
  6636   ins_encode %{
  6637     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6638     __ li(R0, 0);
  6639     //__ release(); // G1: oops are allowed to get visible after dirty marking
  6640     guarantee($mem$$base$$Register != R1_SP, "use frame_slots_bias");
  6641     __ stb(R0, $mem$$disp, $mem$$base$$Register);
  6642   %}
  6643   ins_pipe(pipe_class_memory);
  6644 %}
  6646 // Convert oop pointer into compressed form.
  6648 // Nodes for postalloc expand.
  6650 // Shift node for expand.
  6651 instruct encodeP_shift(iRegNdst dst, iRegNsrc src) %{
  6652   // The match rule is needed to make it a 'MachTypeNode'!
  6653   match(Set dst (EncodeP src));
  6654   predicate(false);
  6656   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6657   size(4);
  6658   ins_encode %{
  6659     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6660     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6661   %}
  6662   ins_pipe(pipe_class_default);
  6663 %}
  6665 // Add node for expand.
  6666 instruct encodeP_sub(iRegPdst dst, iRegPdst src) %{
  6667   // The match rule is needed to make it a 'MachTypeNode'!
  6668   match(Set dst (EncodeP src));
  6669   predicate(false);
  6671   format %{ "SUB     $dst, $src, oop_base \t// encode" %}
  6672   size(4);
  6673   ins_encode %{
  6674     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6675     __ subf($dst$$Register, R30, $src$$Register);
  6676   %}
  6677   ins_pipe(pipe_class_default);
  6678 %}
  6680 // Conditional sub base.
  6681 instruct cond_sub_base(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6682   // The match rule is needed to make it a 'MachTypeNode'!
  6683   match(Set dst (EncodeP (Binary crx src1)));
  6684   predicate(false);
  6686   ins_variable_size_depending_on_alignment(true);
  6688   format %{ "BEQ     $crx, done\n\t"
  6689             "SUB     $dst, $src1, R30 \t// encode: subtract base if != NULL\n"
  6690             "done:" %}
  6691   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  6692   ins_encode %{
  6693     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6694     Label done;
  6695     __ beq($crx$$CondRegister, done);
  6696     __ subf($dst$$Register, R30, $src1$$Register);
  6697     // TODO PPC port __ endgroup_if_needed(_size == 12);
  6698     __ bind(done);
  6699   %}
  6700   ins_pipe(pipe_class_default);
  6701 %}
  6703 // Power 7 can use isel instruction
  6704 instruct cond_set_0_oop(iRegNdst dst, flagsReg crx, iRegPsrc src1) %{
  6705   // The match rule is needed to make it a 'MachTypeNode'!
  6706   match(Set dst (EncodeP (Binary crx src1)));
  6707   predicate(false);
  6709   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// encode: preserve 0" %}
  6710   size(4);
  6711   ins_encode %{
  6712     // This is a Power7 instruction for which no machine description exists.
  6713     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6714     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6715   %}
  6716   ins_pipe(pipe_class_default);
  6717 %}
  6719 // base != 0
  6720 // 32G aligned narrow oop base.
  6721 instruct encodeP_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6722   match(Set dst (EncodeP src));
  6723   predicate(false /* TODO: PPC port Universe::narrow_oop_base_disjoint()*/);
  6725   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6726   size(4);
  6727   ins_encode %{
  6728     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6729     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  6730   %}
  6731   ins_pipe(pipe_class_default);
  6732 %}
  6734 // shift != 0, base != 0
  6735 instruct encodeP_Ex(iRegNdst dst, flagsReg crx, iRegPsrc src) %{
  6736   match(Set dst (EncodeP src));
  6737   effect(TEMP crx);
  6738   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull &&
  6739             Universe::narrow_oop_shift() != 0 &&
  6740             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6742   format %{ "EncodeP $dst, $crx, $src \t// postalloc expanded" %}
  6743   postalloc_expand( postalloc_expand_encode_oop(dst, src, crx));
  6744 %}
  6746 // shift != 0, base != 0
  6747 instruct encodeP_not_null_Ex(iRegNdst dst, iRegPsrc src) %{
  6748   match(Set dst (EncodeP src));
  6749   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull &&
  6750             Universe::narrow_oop_shift() != 0 &&
  6751             true /* TODO: PPC port Universe::narrow_oop_base_overlaps()*/);
  6753   format %{ "EncodeP $dst, $src\t// $src != Null, postalloc expanded" %}
  6754   postalloc_expand( postalloc_expand_encode_oop_not_null(dst, src) );
  6755 %}
  6757 // shift != 0, base == 0
  6758 // TODO: This is the same as encodeP_shift. Merge!
  6759 instruct encodeP_not_null_base_null(iRegNdst dst, iRegPsrc src) %{
  6760   match(Set dst (EncodeP src));
  6761   predicate(Universe::narrow_oop_shift() != 0 &&
  6762             Universe::narrow_oop_base() ==0);
  6764   format %{ "SRDI    $dst, $src, #3 \t// encodeP, $src != NULL" %}
  6765   size(4);
  6766   ins_encode %{
  6767     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6768     __ srdi($dst$$Register, $src$$Register, Universe::narrow_oop_shift() & 0x3f);
  6769   %}
  6770   ins_pipe(pipe_class_default);
  6771 %}
  6773 // Compressed OOPs with narrow_oop_shift == 0.
  6774 // shift == 0, base == 0
  6775 instruct encodeP_narrow_oop_shift_0(iRegNdst dst, iRegPsrc src) %{
  6776   match(Set dst (EncodeP src));
  6777   predicate(Universe::narrow_oop_shift() == 0);
  6779   format %{ "MR      $dst, $src \t// Ptr->Narrow" %}
  6780   // variable size, 0 or 4.
  6781   ins_encode %{
  6782     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6783     __ mr_if_needed($dst$$Register, $src$$Register);
  6784   %}
  6785   ins_pipe(pipe_class_default);
  6786 %}
  6788 // Decode nodes.
  6790 // Shift node for expand.
  6791 instruct decodeN_shift(iRegPdst dst, iRegPsrc src) %{
  6792   // The match rule is needed to make it a 'MachTypeNode'!
  6793   match(Set dst (DecodeN src));
  6794   predicate(false);
  6796   format %{ "SLDI    $dst, $src, #3 \t// DecodeN" %}
  6797   size(4);
  6798   ins_encode %{
  6799     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6800     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6801   %}
  6802   ins_pipe(pipe_class_default);
  6803 %}
  6805 // Add node for expand.
  6806 instruct decodeN_add(iRegPdst dst, iRegPdst src) %{
  6807   // The match rule is needed to make it a 'MachTypeNode'!
  6808   match(Set dst (DecodeN src));
  6809   predicate(false);
  6811   format %{ "ADD     $dst, $src, R30 \t// DecodeN, add oop base" %}
  6812   size(4);
  6813   ins_encode %{
  6814     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  6815     __ add($dst$$Register, $src$$Register, R30);
  6816   %}
  6817   ins_pipe(pipe_class_default);
  6818 %}
  6820 // conditianal add base for expand
  6821 instruct cond_add_base(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6822   // The match rule is needed to make it a 'MachTypeNode'!
  6823   // NOTICE that the rule is nonsense - we just have to make sure that:
  6824   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6825   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6826   match(Set dst (DecodeN (Binary crx src1)));
  6827   predicate(false);
  6829   ins_variable_size_depending_on_alignment(true);
  6831   format %{ "BEQ     $crx, done\n\t"
  6832             "ADD     $dst, $src1, R30 \t// DecodeN: add oop base if $src1 != NULL\n"
  6833             "done:" %}
  6834   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling()) */? 12 : 8);
  6835   ins_encode %{
  6836     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  6837     Label done;
  6838     __ beq($crx$$CondRegister, done);
  6839     __ add($dst$$Register, $src1$$Register, R30);
  6840     // TODO PPC port  __ endgroup_if_needed(_size == 12);
  6841     __ bind(done);
  6842   %}
  6843   ins_pipe(pipe_class_default);
  6844 %}
  6846 instruct cond_set_0_ptr(iRegPdst dst, flagsReg crx, iRegPsrc src1) %{
  6847   // The match rule is needed to make it a 'MachTypeNode'!
  6848   // NOTICE that the rule is nonsense - we just have to make sure that:
  6849   //  - _matrule->_rChild->_opType == "DecodeN" (see InstructForm::captures_bottom_type() in formssel.cpp)
  6850   //  - we have to match 'crx' to avoid an "illegal USE of non-input: flagsReg crx" error in ADLC.
  6851   match(Set dst (DecodeN (Binary crx src1)));
  6852   predicate(false);
  6854   format %{ "CMOVE   $dst, $crx eq, 0, $src1 \t// decode: preserve 0" %}
  6855   size(4);
  6856   ins_encode %{
  6857     // This is a Power7 instruction for which no machine description exists.
  6858     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  6859     __ isel_0($dst$$Register, $crx$$CondRegister, Assembler::equal, $src1$$Register);
  6860   %}
  6861   ins_pipe(pipe_class_default);
  6862 %}
  6864 //  shift != 0, base != 0
  6865 instruct decodeN_Ex(iRegPdst dst, iRegNsrc src, flagsReg crx) %{
  6866   match(Set dst (DecodeN src));
  6867   predicate((n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
  6868              n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant) &&
  6869             Universe::narrow_oop_shift() != 0 &&
  6870             Universe::narrow_oop_base() != 0);
  6871   effect(TEMP crx);
  6873   format %{ "DecodeN $dst, $src \t// Kills $crx, postalloc expanded" %}
  6874   postalloc_expand( postalloc_expand_decode_oop(dst, src, crx) );
  6875 %}
  6877 // shift != 0, base == 0
  6878 instruct decodeN_nullBase(iRegPdst dst, iRegNsrc src) %{
  6879   match(Set dst (DecodeN src));
  6880   predicate(Universe::narrow_oop_shift() != 0 &&
  6881             Universe::narrow_oop_base() == 0);
  6883   format %{ "SLDI    $dst, $src, #3 \t// DecodeN (zerobased)" %}
  6884   size(4);
  6885   ins_encode %{
  6886     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  6887     __ sldi($dst$$Register, $src$$Register, Universe::narrow_oop_shift());
  6888   %}
  6889   ins_pipe(pipe_class_default);
  6890 %}
  6892 // src != 0, shift != 0, base != 0
  6893 instruct decodeN_notNull_addBase_Ex(iRegPdst dst, iRegNsrc src) %{
  6894   match(Set dst (DecodeN src));
  6895   predicate((n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
  6896              n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant) &&
  6897             Universe::narrow_oop_shift() != 0 &&
  6898             Universe::narrow_oop_base() != 0);
  6900   format %{ "DecodeN $dst, $src \t// $src != NULL, postalloc expanded" %}
  6901   postalloc_expand( postalloc_expand_decode_oop_not_null(dst, src));
  6902 %}
  6904 // Compressed OOPs with narrow_oop_shift == 0.
  6905 instruct decodeN_unscaled(iRegPdst dst, iRegNsrc src) %{
  6906   match(Set dst (DecodeN src));
  6907   predicate(Universe::narrow_oop_shift() == 0);
  6908   ins_cost(DEFAULT_COST);
  6910   format %{ "MR      $dst, $src \t// DecodeN (unscaled)" %}
  6911   // variable size, 0 or 4.
  6912   ins_encode %{
  6913     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6914     __ mr_if_needed($dst$$Register, $src$$Register);
  6915   %}
  6916   ins_pipe(pipe_class_default);
  6917 %}
  6919 // Convert compressed oop into int for vectors alignment masking.
  6920 instruct decodeN2I_unscaled(iRegIdst dst, iRegNsrc src) %{
  6921   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
  6922   predicate(Universe::narrow_oop_shift() == 0);
  6923   ins_cost(DEFAULT_COST);
  6925   format %{ "MR      $dst, $src \t// (int)DecodeN (unscaled)" %}
  6926   // variable size, 0 or 4.
  6927   ins_encode %{
  6928     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  6929     __ mr_if_needed($dst$$Register, $src$$Register);
  6930   %}
  6931   ins_pipe(pipe_class_default);
  6932 %}
  6934 // Convert klass pointer into compressed form.
  6936 // Nodes for postalloc expand.
  6938 // Shift node for expand.
  6939 instruct encodePKlass_shift(iRegNdst dst, iRegNsrc src) %{
  6940   // The match rule is needed to make it a 'MachTypeNode'!
  6941   match(Set dst (EncodePKlass src));
  6942   predicate(false);
  6944   format %{ "SRDI    $dst, $src, 3 \t// encode" %}
  6945   size(4);
  6946   ins_encode %{
  6947     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6948     __ srdi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  6949   %}
  6950   ins_pipe(pipe_class_default);
  6951 %}
  6953 // Add node for expand.
  6954 instruct encodePKlass_sub_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  6955   // The match rule is needed to make it a 'MachTypeNode'!
  6956   match(Set dst (EncodePKlass (Binary base src)));
  6957   predicate(false);
  6959   format %{ "SUB     $dst, $base, $src \t// encode" %}
  6960   size(4);
  6961   ins_encode %{
  6962     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  6963     __ subf($dst$$Register, $base$$Register, $src$$Register);
  6964   %}
  6965   ins_pipe(pipe_class_default);
  6966 %}
  6968 // base != 0
  6969 // 32G aligned narrow oop base.
  6970 instruct encodePKlass_32GAligned(iRegNdst dst, iRegPsrc src) %{
  6971   match(Set dst (EncodePKlass src));
  6972   predicate(false /* TODO: PPC port Universe::narrow_klass_base_disjoint()*/);
  6974   format %{ "EXTRDI  $dst, $src, #32, #3 \t// encode with 32G aligned base" %}
  6975   size(4);
  6976   ins_encode %{
  6977     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  6978     __ rldicl($dst$$Register, $src$$Register, 64-Universe::narrow_oop_shift(), 32);
  6979   %}
  6980   ins_pipe(pipe_class_default);
  6981 %}
  6983 // shift != 0, base != 0
  6984 instruct encodePKlass_not_null_Ex(iRegNdst dst, iRegLsrc base, iRegPsrc src) %{
  6985   match(Set dst (EncodePKlass (Binary base src)));
  6986   predicate(false);
  6988   format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  6989   postalloc_expand %{
  6990     encodePKlass_sub_baseNode *n1 = new (C) encodePKlass_sub_baseNode();
  6991     n1->add_req(n_region, n_base, n_src);
  6992     n1->_opnds[0] = op_dst;
  6993     n1->_opnds[1] = op_base;
  6994     n1->_opnds[2] = op_src;
  6995     n1->_bottom_type = _bottom_type;
  6997     encodePKlass_shiftNode *n2 = new (C) encodePKlass_shiftNode();
  6998     n2->add_req(n_region, n1);
  6999     n2->_opnds[0] = op_dst;
  7000     n2->_opnds[1] = op_dst;
  7001     n2->_bottom_type = _bottom_type;
  7002     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7003     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7005     nodes->push(n1);
  7006     nodes->push(n2);
  7007   %}
  7008 %}
  7010 // shift != 0, base != 0
  7011 instruct encodePKlass_not_null_ExEx(iRegNdst dst, iRegPsrc src) %{
  7012   match(Set dst (EncodePKlass src));
  7013   //predicate(Universe::narrow_klass_shift() != 0 &&
  7014   //          true /* TODO: PPC port Universe::narrow_klass_base_overlaps()*/);
  7016   //format %{ "EncodePKlass $dst, $src\t// $src != Null, postalloc expanded" %}
  7017   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  7018   expand %{
  7019     immL baseImm %{ (jlong)(intptr_t)Universe::narrow_klass_base() %}
  7020     iRegLdst base;
  7021     loadConL_Ex(base, baseImm);
  7022     encodePKlass_not_null_Ex(dst, base, src);
  7023   %}
  7024 %}
  7026 // Decode nodes.
  7028 // Shift node for expand.
  7029 instruct decodeNKlass_shift(iRegPdst dst, iRegPsrc src) %{
  7030   // The match rule is needed to make it a 'MachTypeNode'!
  7031   match(Set dst (DecodeNKlass src));
  7032   predicate(false);
  7034   format %{ "SLDI    $dst, $src, #3 \t// DecodeNKlass" %}
  7035   size(4);
  7036   ins_encode %{
  7037     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  7038     __ sldi($dst$$Register, $src$$Register, Universe::narrow_klass_shift());
  7039   %}
  7040   ins_pipe(pipe_class_default);
  7041 %}
  7043 // Add node for expand.
  7045 instruct decodeNKlass_add_base(iRegPdst dst, iRegLsrc base, iRegPdst src) %{
  7046   // The match rule is needed to make it a 'MachTypeNode'!
  7047   match(Set dst (DecodeNKlass (Binary base src)));
  7048   predicate(false);
  7050   format %{ "ADD     $dst, $base, $src \t// DecodeNKlass, add klass base" %}
  7051   size(4);
  7052   ins_encode %{
  7053     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7054     __ add($dst$$Register, $base$$Register, $src$$Register);
  7055   %}
  7056   ins_pipe(pipe_class_default);
  7057 %}
  7059 // src != 0, shift != 0, base != 0
  7060 instruct decodeNKlass_notNull_addBase_Ex(iRegPdst dst, iRegLsrc base, iRegNsrc src) %{
  7061   match(Set dst (DecodeNKlass (Binary base src)));
  7062   //effect(kill src); // We need a register for the immediate result after shifting.
  7063   predicate(false);
  7065   format %{ "DecodeNKlass $dst =  $base + ($src << 3) \t// $src != NULL, postalloc expanded" %}
  7066   postalloc_expand %{
  7067     decodeNKlass_add_baseNode *n1 = new (C) decodeNKlass_add_baseNode();
  7068     n1->add_req(n_region, n_base, n_src);
  7069     n1->_opnds[0] = op_dst;
  7070     n1->_opnds[1] = op_base;
  7071     n1->_opnds[2] = op_src;
  7072     n1->_bottom_type = _bottom_type;
  7074     decodeNKlass_shiftNode *n2 = new (C) decodeNKlass_shiftNode();
  7075     n2->add_req(n_region, n1);
  7076     n2->_opnds[0] = op_dst;
  7077     n2->_opnds[1] = op_dst;
  7078     n2->_bottom_type = _bottom_type;
  7080     ra_->set_pair(n1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7081     ra_->set_pair(n2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this));
  7083     nodes->push(n1);
  7084     nodes->push(n2);
  7085   %}
  7086 %}
  7088 // src != 0, shift != 0, base != 0
  7089 instruct decodeNKlass_notNull_addBase_ExEx(iRegPdst dst, iRegNsrc src) %{
  7090   match(Set dst (DecodeNKlass src));
  7091   // predicate(Universe::narrow_klass_shift() != 0 &&
  7092   //           Universe::narrow_klass_base() != 0);
  7094   //format %{ "DecodeNKlass $dst, $src \t// $src != NULL, expanded" %}
  7096   ins_cost(DEFAULT_COST*2);  // Don't count constant.
  7097   expand %{
  7098     // We add first, then we shift. Like this, we can get along with one register less.
  7099     // But we have to load the base pre-shifted.
  7100     immL baseImm %{ (jlong)((intptr_t)Universe::narrow_klass_base() >> Universe::narrow_klass_shift()) %}
  7101     iRegLdst base;
  7102     loadConL_Ex(base, baseImm);
  7103     decodeNKlass_notNull_addBase_Ex(dst, base, src);
  7104   %}
  7105 %}
  7107 //----------MemBar Instructions-----------------------------------------------
  7108 // Memory barrier flavors
  7110 instruct membar_acquire() %{
  7111   match(LoadFence);
  7112   ins_cost(4*MEMORY_REF_COST);
  7114   format %{ "MEMBAR-acquire" %}
  7115   size(4);
  7116   ins_encode %{
  7117     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7118     __ acquire();
  7119   %}
  7120   ins_pipe(pipe_class_default);
  7121 %}
  7123 instruct unnecessary_membar_acquire() %{
  7124   match(MemBarAcquire);
  7125   ins_cost(0);
  7127   format %{ " -- \t// redundant MEMBAR-acquire - empty" %}
  7128   size(0);
  7129   ins_encode( /*empty*/ );
  7130   ins_pipe(pipe_class_default);
  7131 %}
  7133 instruct membar_acquire_lock() %{
  7134   match(MemBarAcquireLock);
  7135   ins_cost(0);
  7137   format %{ " -- \t// redundant MEMBAR-acquire - empty (acquire as part of CAS in prior FastLock)" %}
  7138   size(0);
  7139   ins_encode( /*empty*/ );
  7140   ins_pipe(pipe_class_default);
  7141 %}
  7143 instruct membar_release() %{
  7144   match(MemBarRelease);
  7145   match(StoreFence);
  7146   ins_cost(4*MEMORY_REF_COST);
  7148   format %{ "MEMBAR-release" %}
  7149   size(4);
  7150   ins_encode %{
  7151     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7152     __ release();
  7153   %}
  7154   ins_pipe(pipe_class_default);
  7155 %}
  7157 instruct membar_storestore() %{
  7158   match(MemBarStoreStore);
  7159   ins_cost(4*MEMORY_REF_COST);
  7161   format %{ "MEMBAR-store-store" %}
  7162   size(4);
  7163   ins_encode %{
  7164     // TODO: PPC port $archOpcode(ppc64Opcode_lwsync);
  7165     __ membar(Assembler::StoreStore);
  7166   %}
  7167   ins_pipe(pipe_class_default);
  7168 %}
  7170 instruct membar_release_lock() %{
  7171   match(MemBarReleaseLock);
  7172   ins_cost(0);
  7174   format %{ " -- \t// redundant MEMBAR-release - empty (release in FastUnlock)" %}
  7175   size(0);
  7176   ins_encode( /*empty*/ );
  7177   ins_pipe(pipe_class_default);
  7178 %}
  7180 instruct membar_volatile() %{
  7181   match(MemBarVolatile);
  7182   ins_cost(4*MEMORY_REF_COST);
  7184   format %{ "MEMBAR-volatile" %}
  7185   size(4);
  7186   ins_encode %{
  7187     // TODO: PPC port $archOpcode(ppc64Opcode_sync);
  7188     __ fence();
  7189   %}
  7190   ins_pipe(pipe_class_default);
  7191 %}
  7193 // This optimization is wrong on PPC. The following pattern is not supported:
  7194 //  MemBarVolatile
  7195 //   ^        ^
  7196 //   |        |
  7197 //  CtrlProj MemProj
  7198 //   ^        ^
  7199 //   |        |
  7200 //   |       Load
  7201 //   |
  7202 //  MemBarVolatile
  7203 //
  7204 //  The first MemBarVolatile could get optimized out! According to
  7205 //  Vladimir, this pattern can not occur on Oracle platforms.
  7206 //  However, it does occur on PPC64 (because of membars in
  7207 //  inline_unsafe_load_store).
  7208 //
  7209 // Add this node again if we found a good solution for inline_unsafe_load_store().
  7210 // Don't forget to look at the implementation of post_store_load_barrier again,
  7211 // we did other fixes in that method.
  7212 //instruct unnecessary_membar_volatile() %{
  7213 //  match(MemBarVolatile);
  7214 //  predicate(Matcher::post_store_load_barrier(n));
  7215 //  ins_cost(0);
  7216 //
  7217 //  format %{ " -- \t// redundant MEMBAR-volatile - empty" %}
  7218 //  size(0);
  7219 //  ins_encode( /*empty*/ );
  7220 //  ins_pipe(pipe_class_default);
  7221 //%}
  7223 instruct membar_CPUOrder() %{
  7224   match(MemBarCPUOrder);
  7225   ins_cost(0);
  7227   format %{ " -- \t// MEMBAR-CPUOrder - empty: PPC64 processors are self-consistent." %}
  7228   size(0);
  7229   ins_encode( /*empty*/ );
  7230   ins_pipe(pipe_class_default);
  7231 %}
  7233 //----------Conditional Move---------------------------------------------------
  7235 // Cmove using isel.
  7236 instruct cmovI_reg_isel(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7237   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7238   predicate(VM_Version::has_isel());
  7239   ins_cost(DEFAULT_COST);
  7241   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7242   size(4);
  7243   ins_encode %{
  7244     // This is a Power7 instruction for which no machine description
  7245     // exists. Anyways, the scheduler should be off on Power7.
  7246     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7247     int cc        = $cmp$$cmpcode;
  7248     __ isel($dst$$Register, $crx$$CondRegister,
  7249             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7250   %}
  7251   ins_pipe(pipe_class_default);
  7252 %}
  7254 instruct cmovI_reg(cmpOp cmp, flagsReg crx, iRegIdst dst, iRegIsrc src) %{
  7255   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7256   predicate(!VM_Version::has_isel());
  7257   ins_cost(DEFAULT_COST+BRANCH_COST);
  7259   ins_variable_size_depending_on_alignment(true);
  7261   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7262   // Worst case is branch + move + stop, no stop without scheduler
  7263   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7264   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7265   ins_pipe(pipe_class_default);
  7266 %}
  7268 instruct cmovI_imm(cmpOp cmp, flagsReg crx, iRegIdst dst, immI16 src) %{
  7269   match(Set dst (CMoveI (Binary cmp crx) (Binary dst src)));
  7270   ins_cost(DEFAULT_COST+BRANCH_COST);
  7272   ins_variable_size_depending_on_alignment(true);
  7274   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7275   // Worst case is branch + move + stop, no stop without scheduler
  7276   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7277   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7278   ins_pipe(pipe_class_default);
  7279 %}
  7281 // Cmove using isel.
  7282 instruct cmovL_reg_isel(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7283   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7284   predicate(VM_Version::has_isel());
  7285   ins_cost(DEFAULT_COST);
  7287   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7288   size(4);
  7289   ins_encode %{
  7290     // This is a Power7 instruction for which no machine description
  7291     // exists. Anyways, the scheduler should be off on Power7.
  7292     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7293     int cc        = $cmp$$cmpcode;
  7294     __ isel($dst$$Register, $crx$$CondRegister,
  7295             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7296   %}
  7297   ins_pipe(pipe_class_default);
  7298 %}
  7300 instruct cmovL_reg(cmpOp cmp, flagsReg crx, iRegLdst dst, iRegLsrc src) %{
  7301   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7302   predicate(!VM_Version::has_isel());
  7303   ins_cost(DEFAULT_COST+BRANCH_COST);
  7305   ins_variable_size_depending_on_alignment(true);
  7307   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7308   // Worst case is branch + move + stop, no stop without scheduler.
  7309   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7310   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7311   ins_pipe(pipe_class_default);
  7312 %}
  7314 instruct cmovL_imm(cmpOp cmp, flagsReg crx, iRegLdst dst, immL16 src) %{
  7315   match(Set dst (CMoveL (Binary cmp crx) (Binary dst src)));
  7316   ins_cost(DEFAULT_COST+BRANCH_COST);
  7318   ins_variable_size_depending_on_alignment(true);
  7320   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7321   // Worst case is branch + move + stop, no stop without scheduler.
  7322   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7323   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7324   ins_pipe(pipe_class_default);
  7325 %}
  7327 // Cmove using isel.
  7328 instruct cmovN_reg_isel(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7329   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7330   predicate(VM_Version::has_isel());
  7331   ins_cost(DEFAULT_COST);
  7333   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7334   size(4);
  7335   ins_encode %{
  7336     // This is a Power7 instruction for which no machine description
  7337     // exists. Anyways, the scheduler should be off on Power7.
  7338     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7339     int cc        = $cmp$$cmpcode;
  7340     __ isel($dst$$Register, $crx$$CondRegister,
  7341             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7342   %}
  7343   ins_pipe(pipe_class_default);
  7344 %}
  7346 // Conditional move for RegN. Only cmov(reg, reg).
  7347 instruct cmovN_reg(cmpOp cmp, flagsReg crx, iRegNdst dst, iRegNsrc src) %{
  7348   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7349   predicate(!VM_Version::has_isel());
  7350   ins_cost(DEFAULT_COST+BRANCH_COST);
  7352   ins_variable_size_depending_on_alignment(true);
  7354   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7355   // Worst case is branch + move + stop, no stop without scheduler.
  7356   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7357   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7358   ins_pipe(pipe_class_default);
  7359 %}
  7361 instruct cmovN_imm(cmpOp cmp, flagsReg crx, iRegNdst dst, immN_0 src) %{
  7362   match(Set dst (CMoveN (Binary cmp crx) (Binary dst src)));
  7363   ins_cost(DEFAULT_COST+BRANCH_COST);
  7365   ins_variable_size_depending_on_alignment(true);
  7367   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7368   // Worst case is branch + move + stop, no stop without scheduler.
  7369   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7370   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7371   ins_pipe(pipe_class_default);
  7372 %}
  7374 // Cmove using isel.
  7375 instruct cmovP_reg_isel(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegPsrc src) %{
  7376   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7377   predicate(VM_Version::has_isel());
  7378   ins_cost(DEFAULT_COST);
  7380   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7381   size(4);
  7382   ins_encode %{
  7383     // This is a Power7 instruction for which no machine description
  7384     // exists. Anyways, the scheduler should be off on Power7.
  7385     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7386     int cc        = $cmp$$cmpcode;
  7387     __ isel($dst$$Register, $crx$$CondRegister,
  7388             (Assembler::Condition)(cc & 3), /*invert*/((~cc) & 8), $src$$Register);
  7389   %}
  7390   ins_pipe(pipe_class_default);
  7391 %}
  7393 instruct cmovP_reg(cmpOp cmp, flagsReg crx, iRegPdst dst, iRegP_N2P src) %{
  7394   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7395   predicate(!VM_Version::has_isel());
  7396   ins_cost(DEFAULT_COST+BRANCH_COST);
  7398   ins_variable_size_depending_on_alignment(true);
  7400   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7401   // Worst case is branch + move + stop, no stop without scheduler.
  7402   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7403   ins_encode( enc_cmove_reg(dst, crx, src, cmp) );
  7404   ins_pipe(pipe_class_default);
  7405 %}
  7407 instruct cmovP_imm(cmpOp cmp, flagsReg crx, iRegPdst dst, immP_0 src) %{
  7408   match(Set dst (CMoveP (Binary cmp crx) (Binary dst src)));
  7409   ins_cost(DEFAULT_COST+BRANCH_COST);
  7411   ins_variable_size_depending_on_alignment(true);
  7413   format %{ "CMOVE   $cmp, $crx, $dst, $src\n\t" %}
  7414   // Worst case is branch + move + stop, no stop without scheduler.
  7415   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  7416   ins_encode( enc_cmove_imm(dst, crx, src, cmp) );
  7417   ins_pipe(pipe_class_default);
  7418 %}
  7420 instruct cmovF_reg(cmpOp cmp, flagsReg crx, regF dst, regF src) %{
  7421   match(Set dst (CMoveF (Binary cmp crx) (Binary dst src)));
  7422   ins_cost(DEFAULT_COST+BRANCH_COST);
  7424   ins_variable_size_depending_on_alignment(true);
  7426   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7427   // Worst case is branch + move + stop, no stop without scheduler.
  7428   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7429   ins_encode %{
  7430     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7431     Label done;
  7432     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7433     // Branch if not (cmp crx).
  7434     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7435     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7436     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7437     __ bind(done);
  7438   %}
  7439   ins_pipe(pipe_class_default);
  7440 %}
  7442 instruct cmovD_reg(cmpOp cmp, flagsReg crx, regD dst, regD src) %{
  7443   match(Set dst (CMoveD (Binary cmp crx) (Binary dst src)));
  7444   ins_cost(DEFAULT_COST+BRANCH_COST);
  7446   ins_variable_size_depending_on_alignment(true);
  7448   format %{ "CMOVEF  $cmp, $crx, $dst, $src\n\t" %}
  7449   // Worst case is branch + move + stop, no stop without scheduler.
  7450   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  7451   ins_encode %{
  7452     // TODO: PPC port $archOpcode(ppc64Opcode_cmovef);
  7453     Label done;
  7454     assert((Assembler::bcondCRbiIs1 & ~Assembler::bcondCRbiIs0) == 8, "check encoding");
  7455     // Branch if not (cmp crx).
  7456     __ bc(cc_to_inverse_boint($cmp$$cmpcode), cc_to_biint($cmp$$cmpcode, $crx$$reg), done);
  7457     __ fmr($dst$$FloatRegister, $src$$FloatRegister);
  7458     // TODO PPC port __ endgroup_if_needed(_size == 12);
  7459     __ bind(done);
  7460   %}
  7461   ins_pipe(pipe_class_default);
  7462 %}
  7464 //----------Conditional_store--------------------------------------------------
  7465 // Conditional-store of the updated heap-top.
  7466 // Used during allocation of the shared heap.
  7467 // Sets flags (EQ) on success. Implemented with a CASA on Sparc.
  7469 // As compareAndSwapL, but return flag register instead of boolean value in
  7470 // int register.
  7471 // Used by sun/misc/AtomicLongCSImpl.java.
  7472 // Mem_ptr must be a memory operand, else this node does not get
  7473 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7474 // can be rematerialized which leads to errors.
  7475 instruct storeLConditional_regP_regL_regL(flagsReg crx, indirect mem_ptr, iRegLsrc oldVal, iRegLsrc newVal) %{
  7476   match(Set crx (StoreLConditional mem_ptr (Binary oldVal newVal)));
  7477   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7478   ins_encode %{
  7479     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7480     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7481                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7482                 noreg, NULL, true);
  7483   %}
  7484   ins_pipe(pipe_class_default);
  7485 %}
  7487 // As compareAndSwapP, but return flag register instead of boolean value in
  7488 // int register.
  7489 // This instruction is matched if UseTLAB is off.
  7490 // Mem_ptr must be a memory operand, else this node does not get
  7491 // Flag_needs_anti_dependence_check set by adlc. If this is not set this node
  7492 // can be rematerialized which leads to errors.
  7493 instruct storePConditional_regP_regP_regP(flagsReg crx, indirect mem_ptr, iRegPsrc oldVal, iRegPsrc newVal) %{
  7494   match(Set crx (StorePConditional mem_ptr (Binary oldVal newVal)));
  7495   format %{ "CMPXCHGD if ($crx = ($oldVal == *$mem_ptr)) *mem_ptr = $newVal; as bool" %}
  7496   ins_encode %{
  7497     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7498     __ cmpxchgd($crx$$CondRegister, R0, $oldVal$$Register, $newVal$$Register, $mem_ptr$$Register,
  7499                 MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7500                 noreg, NULL, true);
  7501   %}
  7502   ins_pipe(pipe_class_default);
  7503 %}
  7505 // Implement LoadPLocked. Must be ordered against changes of the memory location
  7506 // by storePConditional.
  7507 // Don't know whether this is ever used.
  7508 instruct loadPLocked(iRegPdst dst, memory mem) %{
  7509   match(Set dst (LoadPLocked mem));
  7510   ins_cost(MEMORY_REF_COST);
  7512   format %{ "LD      $dst, $mem \t// loadPLocked\n\t"
  7513             "TWI     $dst\n\t"
  7514             "ISYNC" %}
  7515   size(12);
  7516   ins_encode( enc_ld_ac(dst, mem) );
  7517   ins_pipe(pipe_class_memory);
  7518 %}
  7520 //----------Compare-And-Swap---------------------------------------------------
  7522 // CompareAndSwap{P,I,L} have more than one output, therefore "CmpI
  7523 // (CompareAndSwap ...)" or "If (CmpI (CompareAndSwap ..))"  cannot be
  7524 // matched.
  7526 instruct compareAndSwapI_regP_regI_regI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src1, iRegIsrc src2) %{
  7527   match(Set res (CompareAndSwapI mem_ptr (Binary src1 src2)));
  7528   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7529   // Variable size: instruction count smaller if regs are disjoint.
  7530   ins_encode %{
  7531     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7532     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7533     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7534                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7535                 $res$$Register, true);
  7536   %}
  7537   ins_pipe(pipe_class_default);
  7538 %}
  7540 instruct compareAndSwapN_regP_regN_regN(iRegIdst res, iRegPdst mem_ptr, iRegNsrc src1, iRegNsrc src2) %{
  7541   match(Set res (CompareAndSwapN mem_ptr (Binary src1 src2)));
  7542   format %{ "CMPXCHGW $res, $mem_ptr, $src1, $src2; as bool" %}
  7543   // Variable size: instruction count smaller if regs are disjoint.
  7544   ins_encode %{
  7545     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7546     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7547     __ cmpxchgw(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7548                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7549                 $res$$Register, true);
  7550   %}
  7551   ins_pipe(pipe_class_default);
  7552 %}
  7554 instruct compareAndSwapL_regP_regL_regL(iRegIdst res, iRegPdst mem_ptr, iRegLsrc src1, iRegLsrc src2) %{
  7555   match(Set res (CompareAndSwapL mem_ptr (Binary src1 src2)));
  7556   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool" %}
  7557   // Variable size: instruction count smaller if regs are disjoint.
  7558   ins_encode %{
  7559     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7560     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7561     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7562                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7563                 $res$$Register, NULL, true);
  7564   %}
  7565   ins_pipe(pipe_class_default);
  7566 %}
  7568 instruct compareAndSwapP_regP_regP_regP(iRegIdst res, iRegPdst mem_ptr, iRegPsrc src1, iRegPsrc src2) %{
  7569   match(Set res (CompareAndSwapP mem_ptr (Binary src1 src2)));
  7570   format %{ "CMPXCHGD $res, $mem_ptr, $src1, $src2; as bool; ptr" %}
  7571   // Variable size: instruction count smaller if regs are disjoint.
  7572   ins_encode %{
  7573     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
  7574     // CmpxchgX sets CCR0 to cmpX(src1, src2) and Rres to 'true'/'false'.
  7575     __ cmpxchgd(CCR0, R0, $src1$$Register, $src2$$Register, $mem_ptr$$Register,
  7576                 MacroAssembler::MemBarFenceAfter, MacroAssembler::cmpxchgx_hint_atomic_update(),
  7577                 $res$$Register, NULL, true);
  7578   %}
  7579   ins_pipe(pipe_class_default);
  7580 %}
  7582 instruct getAndAddI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7583   match(Set res (GetAndAddI mem_ptr src));
  7584   format %{ "GetAndAddI $res, $mem_ptr, $src" %}
  7585   // Variable size: instruction count smaller if regs are disjoint.
  7586   ins_encode( enc_GetAndAddI(res, mem_ptr, src) );
  7587   ins_pipe(pipe_class_default);
  7588 %}
  7590 instruct getAndAddL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7591   match(Set res (GetAndAddL mem_ptr src));
  7592   format %{ "GetAndAddL $res, $mem_ptr, $src" %}
  7593   // Variable size: instruction count smaller if regs are disjoint.
  7594   ins_encode( enc_GetAndAddL(res, mem_ptr, src) );
  7595   ins_pipe(pipe_class_default);
  7596 %}
  7598 instruct getAndSetI(iRegIdst res, iRegPdst mem_ptr, iRegIsrc src) %{
  7599   match(Set res (GetAndSetI mem_ptr src));
  7600   format %{ "GetAndSetI $res, $mem_ptr, $src" %}
  7601   // Variable size: instruction count smaller if regs are disjoint.
  7602   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7603   ins_pipe(pipe_class_default);
  7604 %}
  7606 instruct getAndSetL(iRegLdst res, iRegPdst mem_ptr, iRegLsrc src) %{
  7607   match(Set res (GetAndSetL mem_ptr src));
  7608   format %{ "GetAndSetL $res, $mem_ptr, $src" %}
  7609   // Variable size: instruction count smaller if regs are disjoint.
  7610   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7611   ins_pipe(pipe_class_default);
  7612 %}
  7614 instruct getAndSetP(iRegPdst res, iRegPdst mem_ptr, iRegPsrc src) %{
  7615   match(Set res (GetAndSetP mem_ptr src));
  7616   format %{ "GetAndSetP $res, $mem_ptr, $src" %}
  7617   // Variable size: instruction count smaller if regs are disjoint.
  7618   ins_encode( enc_GetAndSetL(res, mem_ptr, src) );
  7619   ins_pipe(pipe_class_default);
  7620 %}
  7622 instruct getAndSetN(iRegNdst res, iRegPdst mem_ptr, iRegNsrc src) %{
  7623   match(Set res (GetAndSetN mem_ptr src));
  7624   format %{ "GetAndSetN $res, $mem_ptr, $src" %}
  7625   // Variable size: instruction count smaller if regs are disjoint.
  7626   ins_encode( enc_GetAndSetI(res, mem_ptr, src) );
  7627   ins_pipe(pipe_class_default);
  7628 %}
  7630 //----------Arithmetic Instructions--------------------------------------------
  7631 // Addition Instructions
  7633 // Register Addition
  7634 instruct addI_reg_reg(iRegIdst dst, iRegIsrc_iRegL2Isrc src1, iRegIsrc_iRegL2Isrc src2) %{
  7635   match(Set dst (AddI src1 src2));
  7636   format %{ "ADD     $dst, $src1, $src2" %}
  7637   size(4);
  7638   ins_encode %{
  7639     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7640     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7641   %}
  7642   ins_pipe(pipe_class_default);
  7643 %}
  7645 // Expand does not work with above instruct. (??)
  7646 instruct addI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7647   // no match-rule
  7648   effect(DEF dst, USE src1, USE src2);
  7649   format %{ "ADD     $dst, $src1, $src2" %}
  7650   size(4);
  7651   ins_encode %{
  7652     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7653     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7654   %}
  7655   ins_pipe(pipe_class_default);
  7656 %}
  7658 instruct tree_addI_addI_addI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  7659   match(Set dst (AddI (AddI (AddI src1 src2) src3) src4));
  7660   ins_cost(DEFAULT_COST*3);
  7662   expand %{
  7663     // FIXME: we should do this in the ideal world.
  7664     iRegIdst tmp1;
  7665     iRegIdst tmp2;
  7666     addI_reg_reg(tmp1, src1, src2);
  7667     addI_reg_reg_2(tmp2, src3, src4); // Adlc complains about addI_reg_reg.
  7668     addI_reg_reg(dst, tmp1, tmp2);
  7669   %}
  7670 %}
  7672 // Immediate Addition
  7673 instruct addI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7674   match(Set dst (AddI src1 src2));
  7675   format %{ "ADDI    $dst, $src1, $src2" %}
  7676   size(4);
  7677   ins_encode %{
  7678     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7679     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7680   %}
  7681   ins_pipe(pipe_class_default);
  7682 %}
  7684 // Immediate Addition with 16-bit shifted operand
  7685 instruct addI_reg_immhi16(iRegIdst dst, iRegIsrc src1, immIhi16 src2) %{
  7686   match(Set dst (AddI src1 src2));
  7687   format %{ "ADDIS   $dst, $src1, $src2" %}
  7688   size(4);
  7689   ins_encode %{
  7690     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7691     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7692   %}
  7693   ins_pipe(pipe_class_default);
  7694 %}
  7696 // Long Addition
  7697 instruct addL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7698   match(Set dst (AddL src1 src2));
  7699   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7700   size(4);
  7701   ins_encode %{
  7702     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7703     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7704   %}
  7705   ins_pipe(pipe_class_default);
  7706 %}
  7708 // Expand does not work with above instruct. (??)
  7709 instruct addL_reg_reg_2(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7710   // no match-rule
  7711   effect(DEF dst, USE src1, USE src2);
  7712   format %{ "ADD     $dst, $src1, $src2 \t// long" %}
  7713   size(4);
  7714   ins_encode %{
  7715     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7716     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7717   %}
  7718   ins_pipe(pipe_class_default);
  7719 %}
  7721 instruct tree_addL_addL_addL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, iRegLsrc src3, iRegLsrc src4) %{
  7722   match(Set dst (AddL (AddL (AddL src1 src2) src3) src4));
  7723   ins_cost(DEFAULT_COST*3);
  7725   expand %{
  7726     // FIXME: we should do this in the ideal world.
  7727     iRegLdst tmp1;
  7728     iRegLdst tmp2;
  7729     addL_reg_reg(tmp1, src1, src2);
  7730     addL_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  7731     addL_reg_reg(dst, tmp1, tmp2);
  7732   %}
  7733 %}
  7735 // AddL + ConvL2I.
  7736 instruct addI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7737   match(Set dst (ConvL2I (AddL src1 src2)));
  7739   format %{ "ADD     $dst, $src1, $src2 \t// long + l2i" %}
  7740   size(4);
  7741   ins_encode %{
  7742     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7743     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7744   %}
  7745   ins_pipe(pipe_class_default);
  7746 %}
  7748 // No constant pool entries required.
  7749 instruct addL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7750   match(Set dst (AddL src1 src2));
  7752   format %{ "ADDI    $dst, $src1, $src2" %}
  7753   size(4);
  7754   ins_encode %{
  7755     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7756     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7757   %}
  7758   ins_pipe(pipe_class_default);
  7759 %}
  7761 // Long Immediate Addition with 16-bit shifted operand.
  7762 // No constant pool entries required.
  7763 instruct addL_reg_immhi16(iRegLdst dst, iRegLsrc src1, immL32hi16 src2) %{
  7764   match(Set dst (AddL src1 src2));
  7766   format %{ "ADDIS   $dst, $src1, $src2" %}
  7767   size(4);
  7768   ins_encode %{
  7769     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7770     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7771   %}
  7772   ins_pipe(pipe_class_default);
  7773 %}
  7775 // Pointer Register Addition
  7776 instruct addP_reg_reg(iRegPdst dst, iRegP_N2P src1, iRegLsrc src2) %{
  7777   match(Set dst (AddP src1 src2));
  7778   format %{ "ADD     $dst, $src1, $src2" %}
  7779   size(4);
  7780   ins_encode %{
  7781     // TODO: PPC port $archOpcode(ppc64Opcode_add);
  7782     __ add($dst$$Register, $src1$$Register, $src2$$Register);
  7783   %}
  7784   ins_pipe(pipe_class_default);
  7785 %}
  7787 // Pointer Immediate Addition
  7788 // No constant pool entries required.
  7789 instruct addP_reg_imm16(iRegPdst dst, iRegP_N2P src1, immL16 src2) %{
  7790   match(Set dst (AddP src1 src2));
  7792   format %{ "ADDI    $dst, $src1, $src2" %}
  7793   size(4);
  7794   ins_encode %{
  7795     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7796     __ addi($dst$$Register, $src1$$Register, $src2$$constant);
  7797   %}
  7798   ins_pipe(pipe_class_default);
  7799 %}
  7801 // Pointer Immediate Addition with 16-bit shifted operand.
  7802 // No constant pool entries required.
  7803 instruct addP_reg_immhi16(iRegPdst dst, iRegP_N2P src1, immL32hi16 src2) %{
  7804   match(Set dst (AddP src1 src2));
  7806   format %{ "ADDIS   $dst, $src1, $src2" %}
  7807   size(4);
  7808   ins_encode %{
  7809     // TODO: PPC port $archOpcode(ppc64Opcode_addis);
  7810     __ addis($dst$$Register, $src1$$Register, ($src2$$constant)>>16);
  7811   %}
  7812   ins_pipe(pipe_class_default);
  7813 %}
  7815 //---------------------
  7816 // Subtraction Instructions
  7818 // Register Subtraction
  7819 instruct subI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  7820   match(Set dst (SubI src1 src2));
  7821   format %{ "SUBF    $dst, $src2, $src1" %}
  7822   size(4);
  7823   ins_encode %{
  7824     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7825     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7826   %}
  7827   ins_pipe(pipe_class_default);
  7828 %}
  7830 // Immediate Subtraction
  7831 // The compiler converts "x-c0" into "x+ -c0" (see SubINode::Ideal),
  7832 // so this rule seems to be unused.
  7833 instruct subI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  7834   match(Set dst (SubI src1 src2));
  7835   format %{ "SUBI    $dst, $src1, $src2" %}
  7836   size(4);
  7837   ins_encode %{
  7838     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7839     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7840   %}
  7841   ins_pipe(pipe_class_default);
  7842 %}
  7844 // SubI from constant (using subfic).
  7845 instruct subI_imm16_reg(iRegIdst dst, immI16 src1, iRegIsrc src2) %{
  7846   match(Set dst (SubI src1 src2));
  7847   format %{ "SUBI    $dst, $src1, $src2" %}
  7849   size(4);
  7850   ins_encode %{
  7851     // TODO: PPC port $archOpcode(ppc64Opcode_subfic);
  7852     __ subfic($dst$$Register, $src2$$Register, $src1$$constant);
  7853   %}
  7854   ins_pipe(pipe_class_default);
  7855 %}
  7857 // Turn the sign-bit of an integer into a 32-bit mask, 0x0...0 for
  7858 // positive integers and 0xF...F for negative ones.
  7859 instruct signmask32I_regI(iRegIdst dst, iRegIsrc src) %{
  7860   // no match-rule, false predicate
  7861   effect(DEF dst, USE src);
  7862   predicate(false);
  7864   format %{ "SRAWI   $dst, $src, #31" %}
  7865   size(4);
  7866   ins_encode %{
  7867     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  7868     __ srawi($dst$$Register, $src$$Register, 0x1f);
  7869   %}
  7870   ins_pipe(pipe_class_default);
  7871 %}
  7873 instruct absI_reg_Ex(iRegIdst dst, iRegIsrc src) %{
  7874   match(Set dst (AbsI src));
  7875   ins_cost(DEFAULT_COST*3);
  7877   expand %{
  7878     iRegIdst tmp1;
  7879     iRegIdst tmp2;
  7880     signmask32I_regI(tmp1, src);
  7881     xorI_reg_reg(tmp2, tmp1, src);
  7882     subI_reg_reg(dst, tmp2, tmp1);
  7883   %}
  7884 %}
  7886 instruct negI_regI(iRegIdst dst, immI_0 zero, iRegIsrc src2) %{
  7887   match(Set dst (SubI zero src2));
  7888   format %{ "NEG     $dst, $src2" %}
  7889   size(4);
  7890   ins_encode %{
  7891     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7892     __ neg($dst$$Register, $src2$$Register);
  7893   %}
  7894   ins_pipe(pipe_class_default);
  7895 %}
  7897 // Long subtraction
  7898 instruct subL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7899   match(Set dst (SubL src1 src2));
  7900   format %{ "SUBF    $dst, $src2, $src1 \t// long" %}
  7901   size(4);
  7902   ins_encode %{
  7903     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7904     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7905   %}
  7906   ins_pipe(pipe_class_default);
  7907 %}
  7909 // SubL + convL2I.
  7910 instruct subI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  7911   match(Set dst (ConvL2I (SubL src1 src2)));
  7913   format %{ "SUBF    $dst, $src2, $src1 \t// long + l2i" %}
  7914   size(4);
  7915   ins_encode %{
  7916     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
  7917     __ subf($dst$$Register, $src2$$Register, $src1$$Register);
  7918   %}
  7919   ins_pipe(pipe_class_default);
  7920 %}
  7922 // Immediate Subtraction
  7923 // The compiler converts "x-c0" into "x+ -c0" (see SubLNode::Ideal),
  7924 // so this rule seems to be unused.
  7925 // No constant pool entries required.
  7926 instruct subL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  7927   match(Set dst (SubL src1 src2));
  7929   format %{ "SUBI    $dst, $src1, $src2 \t// long" %}
  7930   size(4);
  7931   ins_encode %{
  7932     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
  7933     __ addi($dst$$Register, $src1$$Register, ($src2$$constant) * (-1));
  7934   %}
  7935   ins_pipe(pipe_class_default);
  7936 %}
  7938 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  7939 // positive longs and 0xF...F for negative ones.
  7940 instruct signmask64I_regL(iRegIdst dst, iRegLsrc src) %{
  7941   // no match-rule, false predicate
  7942   effect(DEF dst, USE src);
  7943   predicate(false);
  7945   format %{ "SRADI   $dst, $src, #63" %}
  7946   size(4);
  7947   ins_encode %{
  7948     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  7949     __ sradi($dst$$Register, $src$$Register, 0x3f);
  7950   %}
  7951   ins_pipe(pipe_class_default);
  7952 %}
  7954 // Turn the sign-bit of a long into a 64-bit mask, 0x0...0 for
  7955 // positive longs and 0xF...F for negative ones.
  7956 instruct signmask64L_regL(iRegLdst dst, iRegLsrc src) %{
  7957   // no match-rule, false predicate
  7958   effect(DEF dst, USE src);
  7959   predicate(false);
  7961   format %{ "SRADI   $dst, $src, #63" %}
  7962   size(4);
  7963   ins_encode %{
  7964     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  7965     __ sradi($dst$$Register, $src$$Register, 0x3f);
  7966   %}
  7967   ins_pipe(pipe_class_default);
  7968 %}
  7970 // Long negation
  7971 instruct negL_reg_reg(iRegLdst dst, immL_0 zero, iRegLsrc src2) %{
  7972   match(Set dst (SubL zero src2));
  7973   format %{ "NEG     $dst, $src2 \t// long" %}
  7974   size(4);
  7975   ins_encode %{
  7976     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7977     __ neg($dst$$Register, $src2$$Register);
  7978   %}
  7979   ins_pipe(pipe_class_default);
  7980 %}
  7982 // NegL + ConvL2I.
  7983 instruct negI_con0_regL(iRegIdst dst, immL_0 zero, iRegLsrc src2) %{
  7984   match(Set dst (ConvL2I (SubL zero src2)));
  7986   format %{ "NEG     $dst, $src2 \t// long + l2i" %}
  7987   size(4);
  7988   ins_encode %{
  7989     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  7990     __ neg($dst$$Register, $src2$$Register);
  7991   %}
  7992   ins_pipe(pipe_class_default);
  7993 %}
  7995 // Multiplication Instructions
  7996 // Integer Multiplication
  7998 // Register Multiplication
  7999 instruct mulI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8000   match(Set dst (MulI src1 src2));
  8001   ins_cost(DEFAULT_COST);
  8003   format %{ "MULLW   $dst, $src1, $src2" %}
  8004   size(4);
  8005   ins_encode %{
  8006     // TODO: PPC port $archOpcode(ppc64Opcode_mullw);
  8007     __ mullw($dst$$Register, $src1$$Register, $src2$$Register);
  8008   %}
  8009   ins_pipe(pipe_class_default);
  8010 %}
  8012 // Immediate Multiplication
  8013 instruct mulI_reg_imm16(iRegIdst dst, iRegIsrc src1, immI16 src2) %{
  8014   match(Set dst (MulI src1 src2));
  8015   ins_cost(DEFAULT_COST);
  8017   format %{ "MULLI   $dst, $src1, $src2" %}
  8018   size(4);
  8019   ins_encode %{
  8020     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  8021     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  8022   %}
  8023   ins_pipe(pipe_class_default);
  8024 %}
  8026 instruct mulL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8027   match(Set dst (MulL src1 src2));
  8028   ins_cost(DEFAULT_COST);
  8030   format %{ "MULLD   $dst $src1, $src2 \t// long" %}
  8031   size(4);
  8032   ins_encode %{
  8033     // TODO: PPC port $archOpcode(ppc64Opcode_mulld);
  8034     __ mulld($dst$$Register, $src1$$Register, $src2$$Register);
  8035   %}
  8036   ins_pipe(pipe_class_default);
  8037 %}
  8039 // Multiply high for optimized long division by constant.
  8040 instruct mulHighL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8041   match(Set dst (MulHiL src1 src2));
  8042   ins_cost(DEFAULT_COST);
  8044   format %{ "MULHD   $dst $src1, $src2 \t// long" %}
  8045   size(4);
  8046   ins_encode %{
  8047     // TODO: PPC port $archOpcode(ppc64Opcode_mulhd);
  8048     __ mulhd($dst$$Register, $src1$$Register, $src2$$Register);
  8049   %}
  8050   ins_pipe(pipe_class_default);
  8051 %}
  8053 // Immediate Multiplication
  8054 instruct mulL_reg_imm16(iRegLdst dst, iRegLsrc src1, immL16 src2) %{
  8055   match(Set dst (MulL src1 src2));
  8056   ins_cost(DEFAULT_COST);
  8058   format %{ "MULLI   $dst, $src1, $src2" %}
  8059   size(4);
  8060   ins_encode %{
  8061     // TODO: PPC port $archOpcode(ppc64Opcode_mulli);
  8062     __ mulli($dst$$Register, $src1$$Register, $src2$$constant);
  8063   %}
  8064   ins_pipe(pipe_class_default);
  8065 %}
  8067 // Integer Division with Immediate -1: Negate.
  8068 instruct divI_reg_immIvalueMinus1(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  8069   match(Set dst (DivI src1 src2));
  8070   ins_cost(DEFAULT_COST);
  8072   format %{ "NEG     $dst, $src1 \t// /-1" %}
  8073   size(4);
  8074   ins_encode %{
  8075     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8076     __ neg($dst$$Register, $src1$$Register);
  8077   %}
  8078   ins_pipe(pipe_class_default);
  8079 %}
  8081 // Integer Division with constant, but not -1.
  8082 // We should be able to improve this by checking the type of src2.
  8083 // It might well be that src2 is known to be positive.
  8084 instruct divI_reg_regnotMinus1(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8085   match(Set dst (DivI src1 src2));
  8086   predicate(n->in(2)->find_int_con(-1) != -1); // src2 is a constant, but not -1
  8087   ins_cost(2*DEFAULT_COST);
  8089   format %{ "DIVW    $dst, $src1, $src2 \t// /not-1" %}
  8090   size(4);
  8091   ins_encode %{
  8092     // TODO: PPC port $archOpcode(ppc64Opcode_divw);
  8093     __ divw($dst$$Register, $src1$$Register, $src2$$Register);
  8094   %}
  8095   ins_pipe(pipe_class_default);
  8096 %}
  8098 instruct cmovI_bne_negI_reg(iRegIdst dst, flagsReg crx, iRegIsrc src1) %{
  8099   effect(USE_DEF dst, USE src1, USE crx);
  8100   predicate(false);
  8102   ins_variable_size_depending_on_alignment(true);
  8104   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8105   // Worst case is branch + move + stop, no stop without scheduler.
  8106   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8107   ins_encode %{
  8108     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8109     Label done;
  8110     __ bne($crx$$CondRegister, done);
  8111     __ neg($dst$$Register, $src1$$Register);
  8112     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8113     __ bind(done);
  8114   %}
  8115   ins_pipe(pipe_class_default);
  8116 %}
  8118 // Integer Division with Registers not containing constants.
  8119 instruct divI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8120   match(Set dst (DivI src1 src2));
  8121   ins_cost(10*DEFAULT_COST);
  8123   expand %{
  8124     immI16 imm %{ (int)-1 %}
  8125     flagsReg tmp1;
  8126     cmpI_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8127     divI_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8128     cmovI_bne_negI_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8129   %}
  8130 %}
  8132 // Long Division with Immediate -1: Negate.
  8133 instruct divL_reg_immLvalueMinus1(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  8134   match(Set dst (DivL src1 src2));
  8135   ins_cost(DEFAULT_COST);
  8137   format %{ "NEG     $dst, $src1 \t// /-1, long" %}
  8138   size(4);
  8139   ins_encode %{
  8140     // TODO: PPC port $archOpcode(ppc64Opcode_neg);
  8141     __ neg($dst$$Register, $src1$$Register);
  8142   %}
  8143   ins_pipe(pipe_class_default);
  8144 %}
  8146 // Long Division with constant, but not -1.
  8147 instruct divL_reg_regnotMinus1(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8148   match(Set dst (DivL src1 src2));
  8149   predicate(n->in(2)->find_long_con(-1L) != -1L); // Src2 is a constant, but not -1.
  8150   ins_cost(2*DEFAULT_COST);
  8152   format %{ "DIVD    $dst, $src1, $src2 \t// /not-1, long" %}
  8153   size(4);
  8154   ins_encode %{
  8155     // TODO: PPC port $archOpcode(ppc64Opcode_divd);
  8156     __ divd($dst$$Register, $src1$$Register, $src2$$Register);
  8157   %}
  8158   ins_pipe(pipe_class_default);
  8159 %}
  8161 instruct cmovL_bne_negL_reg(iRegLdst dst, flagsReg crx, iRegLsrc src1) %{
  8162   effect(USE_DEF dst, USE src1, USE crx);
  8163   predicate(false);
  8165   ins_variable_size_depending_on_alignment(true);
  8167   format %{ "CMOVE   $dst, neg($src1), $crx" %}
  8168   // Worst case is branch + move + stop, no stop without scheduler.
  8169   size(false /* TODO: PPC PORT (InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  8170   ins_encode %{
  8171     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
  8172     Label done;
  8173     __ bne($crx$$CondRegister, done);
  8174     __ neg($dst$$Register, $src1$$Register);
  8175     // TODO PPC port __ endgroup_if_needed(_size == 12);
  8176     __ bind(done);
  8177   %}
  8178   ins_pipe(pipe_class_default);
  8179 %}
  8181 // Long Division with Registers not containing constants.
  8182 instruct divL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8183   match(Set dst (DivL src1 src2));
  8184   ins_cost(10*DEFAULT_COST);
  8186   expand %{
  8187     immL16 imm %{ (int)-1 %}
  8188     flagsReg tmp1;
  8189     cmpL_reg_imm16(tmp1, src2, imm);          // check src2 == -1
  8190     divL_reg_regnotMinus1(dst, src1, src2);   // dst = src1 / src2
  8191     cmovL_bne_negL_reg(dst, tmp1, src1);      // cmove dst = neg(src1) if src2 == -1
  8192   %}
  8193 %}
  8195 // Integer Remainder with registers.
  8196 instruct modI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8197   match(Set dst (ModI src1 src2));
  8198   ins_cost(10*DEFAULT_COST);
  8200   expand %{
  8201     immI16 imm %{ (int)-1 %}
  8202     flagsReg tmp1;
  8203     iRegIdst tmp2;
  8204     iRegIdst tmp3;
  8205     cmpI_reg_imm16(tmp1, src2, imm);           // check src2 == -1
  8206     divI_reg_regnotMinus1(tmp2, src1, src2);   // tmp2 = src1 / src2
  8207     cmovI_bne_negI_reg(tmp2, tmp1, src1);      // cmove tmp2 = neg(src1) if src2 == -1
  8208     mulI_reg_reg(tmp3, src2, tmp2);            // tmp3 = src2 * tmp2
  8209     subI_reg_reg(dst, src1, tmp3);             // dst = src1 - tmp3
  8210   %}
  8211 %}
  8213 // Long Remainder with registers
  8214 instruct modL_reg_reg_Ex(iRegLdst dst, iRegLsrc src1, iRegLsrc src2, flagsRegCR0 cr0) %{
  8215   match(Set dst (ModL src1 src2));
  8216   ins_cost(10*DEFAULT_COST);
  8218   expand %{
  8219     immL16 imm %{ (int)-1 %}
  8220     flagsReg tmp1;
  8221     iRegLdst tmp2;
  8222     iRegLdst tmp3;
  8223     cmpL_reg_imm16(tmp1, src2, imm);             // check src2 == -1
  8224     divL_reg_regnotMinus1(tmp2, src1, src2);     // tmp2 = src1 / src2
  8225     cmovL_bne_negL_reg(tmp2, tmp1, src1);        // cmove tmp2 = neg(src1) if src2 == -1
  8226     mulL_reg_reg(tmp3, src2, tmp2);              // tmp3 = src2 * tmp2
  8227     subL_reg_reg(dst, src1, tmp3);               // dst = src1 - tmp3
  8228   %}
  8229 %}
  8231 // Integer Shift Instructions
  8233 // Register Shift Left
  8235 // Clear all but the lowest #mask bits.
  8236 // Used to normalize shift amounts in registers.
  8237 instruct maskI_reg_imm(iRegIdst dst, iRegIsrc src, uimmI6 mask) %{
  8238   // no match-rule, false predicate
  8239   effect(DEF dst, USE src, USE mask);
  8240   predicate(false);
  8242   format %{ "MASK    $dst, $src, $mask \t// clear $mask upper bits" %}
  8243   size(4);
  8244   ins_encode %{
  8245     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8246     __ clrldi($dst$$Register, $src$$Register, $mask$$constant);
  8247   %}
  8248   ins_pipe(pipe_class_default);
  8249 %}
  8251 instruct lShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8252   // no match-rule, false predicate
  8253   effect(DEF dst, USE src1, USE src2);
  8254   predicate(false);
  8256   format %{ "SLW     $dst, $src1, $src2" %}
  8257   size(4);
  8258   ins_encode %{
  8259     // TODO: PPC port $archOpcode(ppc64Opcode_slw);
  8260     __ slw($dst$$Register, $src1$$Register, $src2$$Register);
  8261   %}
  8262   ins_pipe(pipe_class_default);
  8263 %}
  8265 instruct lShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8266   match(Set dst (LShiftI src1 src2));
  8267   ins_cost(DEFAULT_COST*2);
  8268   expand %{
  8269     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8270     iRegIdst tmpI;
  8271     maskI_reg_imm(tmpI, src2, mask);
  8272     lShiftI_reg_reg(dst, src1, tmpI);
  8273   %}
  8274 %}
  8276 // Register Shift Left Immediate
  8277 instruct lShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8278   match(Set dst (LShiftI src1 src2));
  8280   format %{ "SLWI    $dst, $src1, ($src2 & 0x1f)" %}
  8281   size(4);
  8282   ins_encode %{
  8283     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8284     __ slwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8285   %}
  8286   ins_pipe(pipe_class_default);
  8287 %}
  8289 // AndI with negpow2-constant + LShiftI
  8290 instruct lShiftI_andI_immInegpow2_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8291   match(Set dst (LShiftI (AndI src1 src2) src3));
  8292   predicate(UseRotateAndMaskInstructionsPPC64);
  8294   format %{ "RLWINM  $dst, lShiftI(AndI($src1, $src2), $src3)" %}
  8295   size(4);
  8296   ins_encode %{
  8297     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8298     long src2      = $src2$$constant;
  8299     long src3      = $src3$$constant;
  8300     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8301     if (maskbits >= 32) {
  8302       __ li($dst$$Register, 0); // addi
  8303     } else {
  8304       __ rlwinm($dst$$Register, $src1$$Register, src3 & 0x1f, 0, (31-maskbits) & 0x1f);
  8306   %}
  8307   ins_pipe(pipe_class_default);
  8308 %}
  8310 // RShiftI + AndI with negpow2-constant + LShiftI
  8311 instruct lShiftI_andI_immInegpow2_rShiftI_imm5(iRegIdst dst, iRegIsrc src1, immInegpow2 src2, uimmI5 src3) %{
  8312   match(Set dst (LShiftI (AndI (RShiftI src1 src3) src2) src3));
  8313   predicate(UseRotateAndMaskInstructionsPPC64);
  8315   format %{ "RLWINM  $dst, lShiftI(AndI(RShiftI($src1, $src3), $src2), $src3)" %}
  8316   size(4);
  8317   ins_encode %{
  8318     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm); // FIXME: assert that rlwinm is equal to addi
  8319     long src2      = $src2$$constant;
  8320     long src3      = $src3$$constant;
  8321     long maskbits  = src3 + log2_long((jlong) (julong) (juint) -src2);
  8322     if (maskbits >= 32) {
  8323       __ li($dst$$Register, 0); // addi
  8324     } else {
  8325       __ rlwinm($dst$$Register, $src1$$Register, 0, 0, (31-maskbits) & 0x1f);
  8327   %}
  8328   ins_pipe(pipe_class_default);
  8329 %}
  8331 instruct lShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8332   // no match-rule, false predicate
  8333   effect(DEF dst, USE src1, USE src2);
  8334   predicate(false);
  8336   format %{ "SLD     $dst, $src1, $src2" %}
  8337   size(4);
  8338   ins_encode %{
  8339     // TODO: PPC port $archOpcode(ppc64Opcode_sld);
  8340     __ sld($dst$$Register, $src1$$Register, $src2$$Register);
  8341   %}
  8342   ins_pipe(pipe_class_default);
  8343 %}
  8345 // Register Shift Left
  8346 instruct lShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8347   match(Set dst (LShiftL src1 src2));
  8348   ins_cost(DEFAULT_COST*2);
  8349   expand %{
  8350     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8351     iRegIdst tmpI;
  8352     maskI_reg_imm(tmpI, src2, mask);
  8353     lShiftL_regL_regI(dst, src1, tmpI);
  8354   %}
  8355 %}
  8357 // Register Shift Left Immediate
  8358 instruct lshiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8359   match(Set dst (LShiftL src1 src2));
  8360   format %{ "SLDI    $dst, $src1, ($src2 & 0x3f)" %}
  8361   size(4);
  8362   ins_encode %{
  8363     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8364     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8365   %}
  8366   ins_pipe(pipe_class_default);
  8367 %}
  8369 // If we shift more than 32 bits, we need not convert I2L.
  8370 instruct lShiftL_regI_immGE32(iRegLdst dst, iRegIsrc src1, uimmI6_ge32 src2) %{
  8371   match(Set dst (LShiftL (ConvI2L src1) src2));
  8372   ins_cost(DEFAULT_COST);
  8374   size(4);
  8375   format %{ "SLDI    $dst, i2l($src1), $src2" %}
  8376   ins_encode %{
  8377     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8378     __ sldi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8379   %}
  8380   ins_pipe(pipe_class_default);
  8381 %}
  8383 // Shift a postivie int to the left.
  8384 // Clrlsldi clears the upper 32 bits and shifts.
  8385 instruct scaledPositiveI2L_lShiftL_convI2L_reg_imm6(iRegLdst dst, iRegIsrc src1, uimmI6 src2) %{
  8386   match(Set dst (LShiftL (ConvI2L src1) src2));
  8387   predicate(((ConvI2LNode*)(_kids[0]->_leaf))->type()->is_long()->is_positive_int());
  8389   format %{ "SLDI    $dst, i2l(positive_int($src1)), $src2" %}
  8390   size(4);
  8391   ins_encode %{
  8392     // TODO: PPC port $archOpcode(ppc64Opcode_rldic);
  8393     __ clrlsldi($dst$$Register, $src1$$Register, 0x20, $src2$$constant);
  8394   %}
  8395   ins_pipe(pipe_class_default);
  8396 %}
  8398 instruct arShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8399   // no match-rule, false predicate
  8400   effect(DEF dst, USE src1, USE src2);
  8401   predicate(false);
  8403   format %{ "SRAW    $dst, $src1, $src2" %}
  8404   size(4);
  8405   ins_encode %{
  8406     // TODO: PPC port $archOpcode(ppc64Opcode_sraw);
  8407     __ sraw($dst$$Register, $src1$$Register, $src2$$Register);
  8408   %}
  8409   ins_pipe(pipe_class_default);
  8410 %}
  8412 // Register Arithmetic Shift Right
  8413 instruct arShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8414   match(Set dst (RShiftI src1 src2));
  8415   ins_cost(DEFAULT_COST*2);
  8416   expand %{
  8417     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8418     iRegIdst tmpI;
  8419     maskI_reg_imm(tmpI, src2, mask);
  8420     arShiftI_reg_reg(dst, src1, tmpI);
  8421   %}
  8422 %}
  8424 // Register Arithmetic Shift Right Immediate
  8425 instruct arShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8426   match(Set dst (RShiftI src1 src2));
  8428   format %{ "SRAWI   $dst, $src1, ($src2 & 0x1f)" %}
  8429   size(4);
  8430   ins_encode %{
  8431     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  8432     __ srawi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8433   %}
  8434   ins_pipe(pipe_class_default);
  8435 %}
  8437 instruct arShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8438   // no match-rule, false predicate
  8439   effect(DEF dst, USE src1, USE src2);
  8440   predicate(false);
  8442   format %{ "SRAD    $dst, $src1, $src2" %}
  8443   size(4);
  8444   ins_encode %{
  8445     // TODO: PPC port $archOpcode(ppc64Opcode_srad);
  8446     __ srad($dst$$Register, $src1$$Register, $src2$$Register);
  8447   %}
  8448   ins_pipe(pipe_class_default);
  8449 %}
  8451 // Register Shift Right Arithmetic Long
  8452 instruct arShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8453   match(Set dst (RShiftL src1 src2));
  8454   ins_cost(DEFAULT_COST*2);
  8456   expand %{
  8457     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8458     iRegIdst tmpI;
  8459     maskI_reg_imm(tmpI, src2, mask);
  8460     arShiftL_regL_regI(dst, src1, tmpI);
  8461   %}
  8462 %}
  8464 // Register Shift Right Immediate
  8465 instruct arShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8466   match(Set dst (RShiftL src1 src2));
  8468   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f)" %}
  8469   size(4);
  8470   ins_encode %{
  8471     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8472     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8473   %}
  8474   ins_pipe(pipe_class_default);
  8475 %}
  8477 // RShiftL + ConvL2I
  8478 instruct convL2I_arShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8479   match(Set dst (ConvL2I (RShiftL src1 src2)));
  8481   format %{ "SRADI   $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8482   size(4);
  8483   ins_encode %{
  8484     // TODO: PPC port $archOpcode(ppc64Opcode_sradi);
  8485     __ sradi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8486   %}
  8487   ins_pipe(pipe_class_default);
  8488 %}
  8490 instruct urShiftI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8491   // no match-rule, false predicate
  8492   effect(DEF dst, USE src1, USE src2);
  8493   predicate(false);
  8495   format %{ "SRW     $dst, $src1, $src2" %}
  8496   size(4);
  8497   ins_encode %{
  8498     // TODO: PPC port $archOpcode(ppc64Opcode_srw);
  8499     __ srw($dst$$Register, $src1$$Register, $src2$$Register);
  8500   %}
  8501   ins_pipe(pipe_class_default);
  8502 %}
  8504 // Register Shift Right
  8505 instruct urShiftI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8506   match(Set dst (URShiftI src1 src2));
  8507   ins_cost(DEFAULT_COST*2);
  8509   expand %{
  8510     uimmI6 mask %{ 0x3b /* clear 59 bits, keep 5 */ %}
  8511     iRegIdst tmpI;
  8512     maskI_reg_imm(tmpI, src2, mask);
  8513     urShiftI_reg_reg(dst, src1, tmpI);
  8514   %}
  8515 %}
  8517 // Register Shift Right Immediate
  8518 instruct urShiftI_reg_imm(iRegIdst dst, iRegIsrc src1, immI src2) %{
  8519   match(Set dst (URShiftI src1 src2));
  8521   format %{ "SRWI    $dst, $src1, ($src2 & 0x1f)" %}
  8522   size(4);
  8523   ins_encode %{
  8524     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8525     __ srwi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x1f);
  8526   %}
  8527   ins_pipe(pipe_class_default);
  8528 %}
  8530 instruct urShiftL_regL_regI(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8531   // no match-rule, false predicate
  8532   effect(DEF dst, USE src1, USE src2);
  8533   predicate(false);
  8535   format %{ "SRD     $dst, $src1, $src2" %}
  8536   size(4);
  8537   ins_encode %{
  8538     // TODO: PPC port $archOpcode(ppc64Opcode_srd);
  8539     __ srd($dst$$Register, $src1$$Register, $src2$$Register);
  8540   %}
  8541   ins_pipe(pipe_class_default);
  8542 %}
  8544 // Register Shift Right
  8545 instruct urShiftL_regL_regI_Ex(iRegLdst dst, iRegLsrc src1, iRegIsrc src2) %{
  8546   match(Set dst (URShiftL src1 src2));
  8547   ins_cost(DEFAULT_COST*2);
  8549   expand %{
  8550     uimmI6 mask %{ 0x3a /* clear 58 bits, keep 6 */ %}
  8551     iRegIdst tmpI;
  8552     maskI_reg_imm(tmpI, src2, mask);
  8553     urShiftL_regL_regI(dst, src1, tmpI);
  8554   %}
  8555 %}
  8557 // Register Shift Right Immediate
  8558 instruct urShiftL_regL_immI(iRegLdst dst, iRegLsrc src1, immI src2) %{
  8559   match(Set dst (URShiftL src1 src2));
  8561   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f)" %}
  8562   size(4);
  8563   ins_encode %{
  8564     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8565     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8566   %}
  8567   ins_pipe(pipe_class_default);
  8568 %}
  8570 // URShiftL + ConvL2I.
  8571 instruct convL2I_urShiftL_regL_immI(iRegIdst dst, iRegLsrc src1, immI src2) %{
  8572   match(Set dst (ConvL2I (URShiftL src1 src2)));
  8574   format %{ "SRDI    $dst, $src1, ($src2 & 0x3f) \t// long + l2i" %}
  8575   size(4);
  8576   ins_encode %{
  8577     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8578     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8579   %}
  8580   ins_pipe(pipe_class_default);
  8581 %}
  8583 // Register Shift Right Immediate with a CastP2X
  8584 instruct shrP_convP2X_reg_imm6(iRegLdst dst, iRegP_N2P src1, uimmI6 src2) %{
  8585   match(Set dst (URShiftL (CastP2X src1) src2));
  8587   format %{ "SRDI    $dst, $src1, $src2 \t// Cast ptr $src1 to long and shift" %}
  8588   size(4);
  8589   ins_encode %{
  8590     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8591     __ srdi($dst$$Register, $src1$$Register, ($src2$$constant) & 0x3f);
  8592   %}
  8593   ins_pipe(pipe_class_default);
  8594 %}
  8596 instruct sxtI_reg(iRegIdst dst, iRegIsrc src) %{
  8597   match(Set dst (ConvL2I (ConvI2L src)));
  8599   format %{ "EXTSW   $dst, $src \t// int->int" %}
  8600   size(4);
  8601   ins_encode %{
  8602     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  8603     __ extsw($dst$$Register, $src$$Register);
  8604   %}
  8605   ins_pipe(pipe_class_default);
  8606 %}
  8608 //----------Rotate Instructions------------------------------------------------
  8610 // Rotate Left by 8-bit immediate
  8611 instruct rotlI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 lshift, immI8 rshift) %{
  8612   match(Set dst (OrI (LShiftI src lshift) (URShiftI src rshift)));
  8613   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8615   format %{ "ROTLWI  $dst, $src, $lshift" %}
  8616   size(4);
  8617   ins_encode %{
  8618     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8619     __ rotlwi($dst$$Register, $src$$Register, $lshift$$constant);
  8620   %}
  8621   ins_pipe(pipe_class_default);
  8622 %}
  8624 // Rotate Right by 8-bit immediate
  8625 instruct rotrI_reg_immi8(iRegIdst dst, iRegIsrc src, immI8 rshift, immI8 lshift) %{
  8626   match(Set dst (OrI (URShiftI src rshift) (LShiftI src lshift)));
  8627   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
  8629   format %{ "ROTRWI  $dst, $rshift" %}
  8630   size(4);
  8631   ins_encode %{
  8632     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8633     __ rotrwi($dst$$Register, $src$$Register, $rshift$$constant);
  8634   %}
  8635   ins_pipe(pipe_class_default);
  8636 %}
  8638 //----------Floating Point Arithmetic Instructions-----------------------------
  8640 // Add float single precision
  8641 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
  8642   match(Set dst (AddF src1 src2));
  8644   format %{ "FADDS   $dst, $src1, $src2" %}
  8645   size(4);
  8646   ins_encode %{
  8647     // TODO: PPC port $archOpcode(ppc64Opcode_fadds);
  8648     __ fadds($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8649   %}
  8650   ins_pipe(pipe_class_default);
  8651 %}
  8653 // Add float double precision
  8654 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
  8655   match(Set dst (AddD src1 src2));
  8657   format %{ "FADD    $dst, $src1, $src2" %}
  8658   size(4);
  8659   ins_encode %{
  8660     // TODO: PPC port $archOpcode(ppc64Opcode_fadd);
  8661     __ fadd($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8662   %}
  8663   ins_pipe(pipe_class_default);
  8664 %}
  8666 // Sub float single precision
  8667 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
  8668   match(Set dst (SubF src1 src2));
  8670   format %{ "FSUBS   $dst, $src1, $src2" %}
  8671   size(4);
  8672   ins_encode %{
  8673     // TODO: PPC port $archOpcode(ppc64Opcode_fsubs);
  8674     __ fsubs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8675   %}
  8676   ins_pipe(pipe_class_default);
  8677 %}
  8679 // Sub float double precision
  8680 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
  8681   match(Set dst (SubD src1 src2));
  8682   format %{ "FSUB    $dst, $src1, $src2" %}
  8683   size(4);
  8684   ins_encode %{
  8685     // TODO: PPC port $archOpcode(ppc64Opcode_fsub);
  8686     __ fsub($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8687   %}
  8688   ins_pipe(pipe_class_default);
  8689 %}
  8691 // Mul float single precision
  8692 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
  8693   match(Set dst (MulF src1 src2));
  8694   format %{ "FMULS   $dst, $src1, $src2" %}
  8695   size(4);
  8696   ins_encode %{
  8697     // TODO: PPC port $archOpcode(ppc64Opcode_fmuls);
  8698     __ fmuls($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8699   %}
  8700   ins_pipe(pipe_class_default);
  8701 %}
  8703 // Mul float double precision
  8704 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
  8705   match(Set dst (MulD src1 src2));
  8706   format %{ "FMUL    $dst, $src1, $src2" %}
  8707   size(4);
  8708   ins_encode %{
  8709     // TODO: PPC port $archOpcode(ppc64Opcode_fmul);
  8710     __ fmul($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8711   %}
  8712   ins_pipe(pipe_class_default);
  8713 %}
  8715 // Div float single precision
  8716 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
  8717   match(Set dst (DivF src1 src2));
  8718   format %{ "FDIVS   $dst, $src1, $src2" %}
  8719   size(4);
  8720   ins_encode %{
  8721     // TODO: PPC port $archOpcode(ppc64Opcode_fdivs);
  8722     __ fdivs($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8723   %}
  8724   ins_pipe(pipe_class_default);
  8725 %}
  8727 // Div float double precision
  8728 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
  8729   match(Set dst (DivD src1 src2));
  8730   format %{ "FDIV    $dst, $src1, $src2" %}
  8731   size(4);
  8732   ins_encode %{
  8733     // TODO: PPC port $archOpcode(ppc64Opcode_fdiv);
  8734     __ fdiv($dst$$FloatRegister, $src1$$FloatRegister, $src2$$FloatRegister);
  8735   %}
  8736   ins_pipe(pipe_class_default);
  8737 %}
  8739 // Absolute float single precision
  8740 instruct absF_reg(regF dst, regF src) %{
  8741   match(Set dst (AbsF src));
  8742   format %{ "FABS    $dst, $src \t// float" %}
  8743   size(4);
  8744   ins_encode %{
  8745     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8746     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8747   %}
  8748   ins_pipe(pipe_class_default);
  8749 %}
  8751 // Absolute float double precision
  8752 instruct absD_reg(regD dst, regD src) %{
  8753   match(Set dst (AbsD src));
  8754   format %{ "FABS    $dst, $src \t// double" %}
  8755   size(4);
  8756   ins_encode %{
  8757     // TODO: PPC port $archOpcode(ppc64Opcode_fabs);
  8758     __ fabs($dst$$FloatRegister, $src$$FloatRegister);
  8759   %}
  8760   ins_pipe(pipe_class_default);
  8761 %}
  8763 instruct negF_reg(regF dst, regF src) %{
  8764   match(Set dst (NegF src));
  8765   format %{ "FNEG    $dst, $src \t// float" %}
  8766   size(4);
  8767   ins_encode %{
  8768     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8769     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8770   %}
  8771   ins_pipe(pipe_class_default);
  8772 %}
  8774 instruct negD_reg(regD dst, regD src) %{
  8775   match(Set dst (NegD src));
  8776   format %{ "FNEG    $dst, $src \t// double" %}
  8777   size(4);
  8778   ins_encode %{
  8779     // TODO: PPC port $archOpcode(ppc64Opcode_fneg);
  8780     __ fneg($dst$$FloatRegister, $src$$FloatRegister);
  8781   %}
  8782   ins_pipe(pipe_class_default);
  8783 %}
  8785 // AbsF + NegF.
  8786 instruct negF_absF_reg(regF dst, regF src) %{
  8787   match(Set dst (NegF (AbsF src)));
  8788   format %{ "FNABS   $dst, $src \t// float" %}
  8789   size(4);
  8790   ins_encode %{
  8791     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8792     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8793   %}
  8794   ins_pipe(pipe_class_default);
  8795 %}
  8797 // AbsD + NegD.
  8798 instruct negD_absD_reg(regD dst, regD src) %{
  8799   match(Set dst (NegD (AbsD src)));
  8800   format %{ "FNABS   $dst, $src \t// double" %}
  8801   size(4);
  8802   ins_encode %{
  8803     // TODO: PPC port $archOpcode(ppc64Opcode_fnabs);
  8804     __ fnabs($dst$$FloatRegister, $src$$FloatRegister);
  8805   %}
  8806   ins_pipe(pipe_class_default);
  8807 %}
  8809 // VM_Version::has_fsqrt() decides if this node will be used.
  8810 // Sqrt float double precision
  8811 instruct sqrtD_reg(regD dst, regD src) %{
  8812   match(Set dst (SqrtD src));
  8813   format %{ "FSQRT   $dst, $src" %}
  8814   size(4);
  8815   ins_encode %{
  8816     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrt);
  8817     __ fsqrt($dst$$FloatRegister, $src$$FloatRegister);
  8818   %}
  8819   ins_pipe(pipe_class_default);
  8820 %}
  8822 // Single-precision sqrt.
  8823 instruct sqrtF_reg(regF dst, regF src) %{
  8824   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
  8825   predicate(VM_Version::has_fsqrts());
  8826   ins_cost(DEFAULT_COST);
  8828   format %{ "FSQRTS  $dst, $src" %}
  8829   size(4);
  8830   ins_encode %{
  8831     // TODO: PPC port $archOpcode(ppc64Opcode_fsqrts);
  8832     __ fsqrts($dst$$FloatRegister, $src$$FloatRegister);
  8833   %}
  8834   ins_pipe(pipe_class_default);
  8835 %}
  8837 instruct roundDouble_nop(regD dst) %{
  8838   match(Set dst (RoundDouble dst));
  8839   ins_cost(0);
  8841   format %{ " -- \t// RoundDouble not needed - empty" %}
  8842   size(0);
  8843   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8844   ins_encode( /*empty*/ );
  8845   ins_pipe(pipe_class_default);
  8846 %}
  8848 instruct roundFloat_nop(regF dst) %{
  8849   match(Set dst (RoundFloat dst));
  8850   ins_cost(0);
  8852   format %{ " -- \t// RoundFloat not needed - empty" %}
  8853   size(0);
  8854   // PPC results are already "rounded" (i.e., normal-format IEEE).
  8855   ins_encode( /*empty*/ );
  8856   ins_pipe(pipe_class_default);
  8857 %}
  8859 //----------Logical Instructions-----------------------------------------------
  8861 // And Instructions
  8863 // Register And
  8864 instruct andI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8865   match(Set dst (AndI src1 src2));
  8866   format %{ "AND     $dst, $src1, $src2" %}
  8867   size(4);
  8868   ins_encode %{
  8869     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8870     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8871   %}
  8872   ins_pipe(pipe_class_default);
  8873 %}
  8875 // Immediate And
  8876 instruct andI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2, flagsRegCR0 cr0) %{
  8877   match(Set dst (AndI src1 src2));
  8878   effect(KILL cr0);
  8880   format %{ "ANDI    $dst, $src1, $src2" %}
  8881   size(4);
  8882   ins_encode %{
  8883     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8884     // FIXME: avoid andi_ ?
  8885     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8886   %}
  8887   ins_pipe(pipe_class_default);
  8888 %}
  8890 // Immediate And where the immediate is a negative power of 2.
  8891 instruct andI_reg_immInegpow2(iRegIdst dst, iRegIsrc src1, immInegpow2 src2) %{
  8892   match(Set dst (AndI src1 src2));
  8893   format %{ "ANDWI   $dst, $src1, $src2" %}
  8894   size(4);
  8895   ins_encode %{
  8896     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8897     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)(julong)(juint)-($src2$$constant)));
  8898   %}
  8899   ins_pipe(pipe_class_default);
  8900 %}
  8902 instruct andI_reg_immIpow2minus1(iRegIdst dst, iRegIsrc src1, immIpow2minus1 src2) %{
  8903   match(Set dst (AndI src1 src2));
  8904   format %{ "ANDWI   $dst, $src1, $src2" %}
  8905   size(4);
  8906   ins_encode %{
  8907     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8908     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8909   %}
  8910   ins_pipe(pipe_class_default);
  8911 %}
  8913 instruct andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src1, immIpowerOf2 src2) %{
  8914   match(Set dst (AndI src1 src2));
  8915   predicate(UseRotateAndMaskInstructionsPPC64);
  8916   format %{ "ANDWI   $dst, $src1, $src2" %}
  8917   size(4);
  8918   ins_encode %{
  8919     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  8920     __ rlwinm($dst$$Register, $src1$$Register, 0,
  8921               (31-log2_long((jlong) $src2$$constant)) & 0x1f, (31-log2_long((jlong) $src2$$constant)) & 0x1f);
  8922   %}
  8923   ins_pipe(pipe_class_default);
  8924 %}
  8926 // Register And Long
  8927 instruct andL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  8928   match(Set dst (AndL src1 src2));
  8929   ins_cost(DEFAULT_COST);
  8931   format %{ "AND     $dst, $src1, $src2 \t// long" %}
  8932   size(4);
  8933   ins_encode %{
  8934     // TODO: PPC port $archOpcode(ppc64Opcode_and);
  8935     __ andr($dst$$Register, $src1$$Register, $src2$$Register);
  8936   %}
  8937   ins_pipe(pipe_class_default);
  8938 %}
  8940 // Immediate And long
  8941 instruct andL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2, flagsRegCR0 cr0) %{
  8942   match(Set dst (AndL src1 src2));
  8943   effect(KILL cr0);
  8944   ins_cost(DEFAULT_COST);
  8946   format %{ "ANDI    $dst, $src1, $src2 \t// long" %}
  8947   size(4);
  8948   ins_encode %{
  8949     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
  8950     // FIXME: avoid andi_ ?
  8951     __ andi_($dst$$Register, $src1$$Register, $src2$$constant);
  8952   %}
  8953   ins_pipe(pipe_class_default);
  8954 %}
  8956 // Immediate And Long where the immediate is a negative power of 2.
  8957 instruct andL_reg_immLnegpow2(iRegLdst dst, iRegLsrc src1, immLnegpow2 src2) %{
  8958   match(Set dst (AndL src1 src2));
  8959   format %{ "ANDDI   $dst, $src1, $src2" %}
  8960   size(4);
  8961   ins_encode %{
  8962     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
  8963     __ clrrdi($dst$$Register, $src1$$Register, log2_long((jlong)-$src2$$constant));
  8964   %}
  8965   ins_pipe(pipe_class_default);
  8966 %}
  8968 instruct andL_reg_immLpow2minus1(iRegLdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8969   match(Set dst (AndL src1 src2));
  8970   format %{ "ANDDI   $dst, $src1, $src2" %}
  8971   size(4);
  8972   ins_encode %{
  8973     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8974     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8975   %}
  8976   ins_pipe(pipe_class_default);
  8977 %}
  8979 // AndL + ConvL2I.
  8980 instruct convL2I_andL_reg_immLpow2minus1(iRegIdst dst, iRegLsrc src1, immLpow2minus1 src2) %{
  8981   match(Set dst (ConvL2I (AndL src1 src2)));
  8982   ins_cost(DEFAULT_COST);
  8984   format %{ "ANDDI   $dst, $src1, $src2 \t// long + l2i" %}
  8985   size(4);
  8986   ins_encode %{
  8987     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  8988     __ clrldi($dst$$Register, $src1$$Register, 64-log2_long((((jlong) $src2$$constant)+1)));
  8989   %}
  8990   ins_pipe(pipe_class_default);
  8991 %}
  8993 // Or Instructions
  8995 // Register Or
  8996 instruct orI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  8997   match(Set dst (OrI src1 src2));
  8998   format %{ "OR      $dst, $src1, $src2" %}
  8999   size(4);
  9000   ins_encode %{
  9001     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9002     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9003   %}
  9004   ins_pipe(pipe_class_default);
  9005 %}
  9007 // Expand does not work with above instruct. (??)
  9008 instruct orI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9009   // no match-rule
  9010   effect(DEF dst, USE src1, USE src2);
  9011   format %{ "OR      $dst, $src1, $src2" %}
  9012   size(4);
  9013   ins_encode %{
  9014     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9015     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9016   %}
  9017   ins_pipe(pipe_class_default);
  9018 %}
  9020 instruct tree_orI_orI_orI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  9021   match(Set dst (OrI (OrI (OrI src1 src2) src3) src4));
  9022   ins_cost(DEFAULT_COST*3);
  9024   expand %{
  9025     // FIXME: we should do this in the ideal world.
  9026     iRegIdst tmp1;
  9027     iRegIdst tmp2;
  9028     orI_reg_reg(tmp1, src1, src2);
  9029     orI_reg_reg_2(tmp2, src3, src4); // Adlc complains about orI_reg_reg.
  9030     orI_reg_reg(dst, tmp1, tmp2);
  9031   %}
  9032 %}
  9034 // Immediate Or
  9035 instruct orI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  9036   match(Set dst (OrI src1 src2));
  9037   format %{ "ORI     $dst, $src1, $src2" %}
  9038   size(4);
  9039   ins_encode %{
  9040     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  9041     __ ori($dst$$Register, $src1$$Register, ($src2$$constant) & 0xFFFF);
  9042   %}
  9043   ins_pipe(pipe_class_default);
  9044 %}
  9046 // Register Or Long
  9047 instruct orL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9048   match(Set dst (OrL src1 src2));
  9049   ins_cost(DEFAULT_COST);
  9051   size(4);
  9052   format %{ "OR      $dst, $src1, $src2 \t// long" %}
  9053   ins_encode %{
  9054     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9055     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9056   %}
  9057   ins_pipe(pipe_class_default);
  9058 %}
  9060 // OrL + ConvL2I.
  9061 instruct orI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9062   match(Set dst (ConvL2I (OrL src1 src2)));
  9063   ins_cost(DEFAULT_COST);
  9065   format %{ "OR      $dst, $src1, $src2 \t// long + l2i" %}
  9066   size(4);
  9067   ins_encode %{
  9068     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9069     __ or_unchecked($dst$$Register, $src1$$Register, $src2$$Register);
  9070   %}
  9071   ins_pipe(pipe_class_default);
  9072 %}
  9074 // Immediate Or long
  9075 instruct orL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 con) %{
  9076   match(Set dst (OrL src1 con));
  9077   ins_cost(DEFAULT_COST);
  9079   format %{ "ORI     $dst, $src1, $con \t// long" %}
  9080   size(4);
  9081   ins_encode %{
  9082     // TODO: PPC port $archOpcode(ppc64Opcode_ori);
  9083     __ ori($dst$$Register, $src1$$Register, ($con$$constant) & 0xFFFF);
  9084   %}
  9085   ins_pipe(pipe_class_default);
  9086 %}
  9088 // Xor Instructions
  9090 // Register Xor
  9091 instruct xorI_reg_reg(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9092   match(Set dst (XorI src1 src2));
  9093   format %{ "XOR     $dst, $src1, $src2" %}
  9094   size(4);
  9095   ins_encode %{
  9096     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9097     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9098   %}
  9099   ins_pipe(pipe_class_default);
  9100 %}
  9102 // Expand does not work with above instruct. (??)
  9103 instruct xorI_reg_reg_2(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9104   // no match-rule
  9105   effect(DEF dst, USE src1, USE src2);
  9106   format %{ "XOR     $dst, $src1, $src2" %}
  9107   size(4);
  9108   ins_encode %{
  9109     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9110     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9111   %}
  9112   ins_pipe(pipe_class_default);
  9113 %}
  9115 instruct tree_xorI_xorI_xorI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2, iRegIsrc src3, iRegIsrc src4) %{
  9116   match(Set dst (XorI (XorI (XorI src1 src2) src3) src4));
  9117   ins_cost(DEFAULT_COST*3);
  9119   expand %{
  9120     // FIXME: we should do this in the ideal world.
  9121     iRegIdst tmp1;
  9122     iRegIdst tmp2;
  9123     xorI_reg_reg(tmp1, src1, src2);
  9124     xorI_reg_reg_2(tmp2, src3, src4); // Adlc complains about xorI_reg_reg.
  9125     xorI_reg_reg(dst, tmp1, tmp2);
  9126   %}
  9127 %}
  9129 // Immediate Xor
  9130 instruct xorI_reg_uimm16(iRegIdst dst, iRegIsrc src1, uimmI16 src2) %{
  9131   match(Set dst (XorI src1 src2));
  9132   format %{ "XORI    $dst, $src1, $src2" %}
  9133   size(4);
  9134   ins_encode %{
  9135     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9136     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9137   %}
  9138   ins_pipe(pipe_class_default);
  9139 %}
  9141 // Register Xor Long
  9142 instruct xorL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9143   match(Set dst (XorL src1 src2));
  9144   ins_cost(DEFAULT_COST);
  9146   format %{ "XOR     $dst, $src1, $src2 \t// long" %}
  9147   size(4);
  9148   ins_encode %{
  9149     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9150     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9151   %}
  9152   ins_pipe(pipe_class_default);
  9153 %}
  9155 // XorL + ConvL2I.
  9156 instruct xorI_regL_regL(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9157   match(Set dst (ConvL2I (XorL src1 src2)));
  9158   ins_cost(DEFAULT_COST);
  9160   format %{ "XOR     $dst, $src1, $src2 \t// long + l2i" %}
  9161   size(4);
  9162   ins_encode %{
  9163     // TODO: PPC port $archOpcode(ppc64Opcode_xor);
  9164     __ xorr($dst$$Register, $src1$$Register, $src2$$Register);
  9165   %}
  9166   ins_pipe(pipe_class_default);
  9167 %}
  9169 // Immediate Xor Long
  9170 instruct xorL_reg_uimm16(iRegLdst dst, iRegLsrc src1, uimmL16 src2) %{
  9171   match(Set dst (XorL src1 src2));
  9172   ins_cost(DEFAULT_COST);
  9174   format %{ "XORI    $dst, $src1, $src2 \t// long" %}
  9175   size(4);
  9176   ins_encode %{
  9177     // TODO: PPC port $archOpcode(ppc64Opcode_xori);
  9178     __ xori($dst$$Register, $src1$$Register, $src2$$constant);
  9179   %}
  9180   ins_pipe(pipe_class_default);
  9181 %}
  9183 instruct notI_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2) %{
  9184   match(Set dst (XorI src1 src2));
  9185   ins_cost(DEFAULT_COST);
  9187   format %{ "NOT     $dst, $src1 ($src2)" %}
  9188   size(4);
  9189   ins_encode %{
  9190     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9191     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9192   %}
  9193   ins_pipe(pipe_class_default);
  9194 %}
  9196 instruct notL_reg(iRegLdst dst, iRegLsrc src1, immL_minus1 src2) %{
  9197   match(Set dst (XorL src1 src2));
  9198   ins_cost(DEFAULT_COST);
  9200   format %{ "NOT     $dst, $src1 ($src2) \t// long" %}
  9201   size(4);
  9202   ins_encode %{
  9203     // TODO: PPC port $archOpcode(ppc64Opcode_nor);
  9204     __ nor($dst$$Register, $src1$$Register, $src1$$Register);
  9205   %}
  9206   ins_pipe(pipe_class_default);
  9207 %}
  9209 // And-complement
  9210 instruct andcI_reg_reg(iRegIdst dst, iRegIsrc src1, immI_minus1 src2, iRegIsrc src3) %{
  9211   match(Set dst (AndI (XorI src1 src2) src3));
  9212   ins_cost(DEFAULT_COST);
  9214   format %{ "ANDW    $dst, xori($src1, $src2), $src3" %}
  9215   size(4);
  9216   ins_encode( enc_andc(dst, src3, src1) );
  9217   ins_pipe(pipe_class_default);
  9218 %}
  9220 // And-complement
  9221 instruct andcL_reg_reg(iRegLdst dst, iRegLsrc src1, iRegLsrc src2) %{
  9222   // no match-rule, false predicate
  9223   effect(DEF dst, USE src1, USE src2);
  9224   predicate(false);
  9226   format %{ "ANDC    $dst, $src1, $src2" %}
  9227   size(4);
  9228   ins_encode %{
  9229     // TODO: PPC port $archOpcode(ppc64Opcode_andc);
  9230     __ andc($dst$$Register, $src1$$Register, $src2$$Register);
  9231   %}
  9232   ins_pipe(pipe_class_default);
  9233 %}
  9235 //----------Moves between int/long and float/double----------------------------
  9236 //
  9237 // The following rules move values from int/long registers/stack-locations
  9238 // to float/double registers/stack-locations and vice versa, without doing any
  9239 // conversions. These rules are used to implement the bit-conversion methods
  9240 // of java.lang.Float etc., e.g.
  9241 //   int   floatToIntBits(float value)
  9242 //   float intBitsToFloat(int bits)
  9243 //
  9244 // Notes on the implementation on ppc64:
  9245 // We only provide rules which move between a register and a stack-location,
  9246 // because we always have to go through memory when moving between a float
  9247 // register and an integer register.
  9249 //---------- Chain stack slots between similar types --------
  9251 // These are needed so that the rules below can match.
  9253 // Load integer from stack slot
  9254 instruct stkI_to_regI(iRegIdst dst, stackSlotI src) %{
  9255   match(Set dst src);
  9256   ins_cost(MEMORY_REF_COST);
  9258   format %{ "LWZ     $dst, $src" %}
  9259   size(4);
  9260   ins_encode( enc_lwz(dst, src) );
  9261   ins_pipe(pipe_class_memory);
  9262 %}
  9264 // Store integer to stack slot
  9265 instruct regI_to_stkI(stackSlotI dst, iRegIsrc src) %{
  9266   match(Set dst src);
  9267   ins_cost(MEMORY_REF_COST);
  9269   format %{ "STW     $src, $dst \t// stk" %}
  9270   size(4);
  9271   ins_encode( enc_stw(src, dst) ); // rs=rt
  9272   ins_pipe(pipe_class_memory);
  9273 %}
  9275 // Load long from stack slot
  9276 instruct stkL_to_regL(iRegLdst dst, stackSlotL src) %{
  9277   match(Set dst src);
  9278   ins_cost(MEMORY_REF_COST);
  9280   format %{ "LD      $dst, $src \t// long" %}
  9281   size(4);
  9282   ins_encode( enc_ld(dst, src) );
  9283   ins_pipe(pipe_class_memory);
  9284 %}
  9286 // Store long to stack slot
  9287 instruct regL_to_stkL(stackSlotL dst, iRegLsrc src) %{
  9288   match(Set dst src);
  9289   ins_cost(MEMORY_REF_COST);
  9291   format %{ "STD     $src, $dst \t// long" %}
  9292   size(4);
  9293   ins_encode( enc_std(src, dst) ); // rs=rt
  9294   ins_pipe(pipe_class_memory);
  9295 %}
  9297 //----------Moves between int and float
  9299 // Move float value from float stack-location to integer register.
  9300 instruct moveF2I_stack_reg(iRegIdst dst, stackSlotF src) %{
  9301   match(Set dst (MoveF2I src));
  9302   ins_cost(MEMORY_REF_COST);
  9304   format %{ "LWZ     $dst, $src \t// MoveF2I" %}
  9305   size(4);
  9306   ins_encode( enc_lwz(dst, src) );
  9307   ins_pipe(pipe_class_memory);
  9308 %}
  9310 // Move float value from float register to integer stack-location.
  9311 instruct moveF2I_reg_stack(stackSlotI dst, regF src) %{
  9312   match(Set dst (MoveF2I src));
  9313   ins_cost(MEMORY_REF_COST);
  9315   format %{ "STFS    $src, $dst \t// MoveF2I" %}
  9316   size(4);
  9317   ins_encode( enc_stfs(src, dst) );
  9318   ins_pipe(pipe_class_memory);
  9319 %}
  9321 // Move integer value from integer stack-location to float register.
  9322 instruct moveI2F_stack_reg(regF dst, stackSlotI src) %{
  9323   match(Set dst (MoveI2F src));
  9324   ins_cost(MEMORY_REF_COST);
  9326   format %{ "LFS     $dst, $src \t// MoveI2F" %}
  9327   size(4);
  9328   ins_encode %{
  9329     // TODO: PPC port $archOpcode(ppc64Opcode_lfs);
  9330     int Idisp = $src$$disp + frame_slots_bias($src$$base, ra_);
  9331     __ lfs($dst$$FloatRegister, Idisp, $src$$base$$Register);
  9332   %}
  9333   ins_pipe(pipe_class_memory);
  9334 %}
  9336 // Move integer value from integer register to float stack-location.
  9337 instruct moveI2F_reg_stack(stackSlotF dst, iRegIsrc src) %{
  9338   match(Set dst (MoveI2F src));
  9339   ins_cost(MEMORY_REF_COST);
  9341   format %{ "STW     $src, $dst \t// MoveI2F" %}
  9342   size(4);
  9343   ins_encode( enc_stw(src, dst) );
  9344   ins_pipe(pipe_class_memory);
  9345 %}
  9347 //----------Moves between long and float
  9349 instruct moveF2L_reg_stack(stackSlotL dst, regF src) %{
  9350   // no match-rule, false predicate
  9351   effect(DEF dst, USE src);
  9352   predicate(false);
  9354   format %{ "storeD  $src, $dst \t// STACK" %}
  9355   size(4);
  9356   ins_encode( enc_stfd(src, dst) );
  9357   ins_pipe(pipe_class_default);
  9358 %}
  9360 //----------Moves between long and double
  9362 // Move double value from double stack-location to long register.
  9363 instruct moveD2L_stack_reg(iRegLdst dst, stackSlotD src) %{
  9364   match(Set dst (MoveD2L src));
  9365   ins_cost(MEMORY_REF_COST);
  9366   size(4);
  9367   format %{ "LD      $dst, $src \t// MoveD2L" %}
  9368   ins_encode( enc_ld(dst, src) );
  9369   ins_pipe(pipe_class_memory);
  9370 %}
  9372 // Move double value from double register to long stack-location.
  9373 instruct moveD2L_reg_stack(stackSlotL dst, regD src) %{
  9374   match(Set dst (MoveD2L src));
  9375   effect(DEF dst, USE src);
  9376   ins_cost(MEMORY_REF_COST);
  9378   format %{ "STFD    $src, $dst \t// MoveD2L" %}
  9379   size(4);
  9380   ins_encode( enc_stfd(src, dst) );
  9381   ins_pipe(pipe_class_memory);
  9382 %}
  9384 // Move long value from long stack-location to double register.
  9385 instruct moveL2D_stack_reg(regD dst, stackSlotL src) %{
  9386   match(Set dst (MoveL2D src));
  9387   ins_cost(MEMORY_REF_COST);
  9389   format %{ "LFD     $dst, $src \t// MoveL2D" %}
  9390   size(4);
  9391   ins_encode( enc_lfd(dst, src) );
  9392   ins_pipe(pipe_class_memory);
  9393 %}
  9395 // Move long value from long register to double stack-location.
  9396 instruct moveL2D_reg_stack(stackSlotD dst, iRegLsrc src) %{
  9397   match(Set dst (MoveL2D src));
  9398   ins_cost(MEMORY_REF_COST);
  9400   format %{ "STD     $src, $dst \t// MoveL2D" %}
  9401   size(4);
  9402   ins_encode( enc_std(src, dst) );
  9403   ins_pipe(pipe_class_memory);
  9404 %}
  9406 //----------Register Move Instructions-----------------------------------------
  9408 // Replicate for Superword
  9410 instruct moveReg(iRegLdst dst, iRegIsrc src) %{
  9411   predicate(false);
  9412   effect(DEF dst, USE src);
  9414   format %{ "MR      $dst, $src \t// replicate " %}
  9415   // variable size, 0 or 4.
  9416   ins_encode %{
  9417     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9418     __ mr_if_needed($dst$$Register, $src$$Register);
  9419   %}
  9420   ins_pipe(pipe_class_default);
  9421 %}
  9423 //----------Cast instructions (Java-level type cast)---------------------------
  9425 // Cast Long to Pointer for unsafe natives.
  9426 instruct castX2P(iRegPdst dst, iRegLsrc src) %{
  9427   match(Set dst (CastX2P src));
  9429   format %{ "MR      $dst, $src \t// Long->Ptr" %}
  9430   // variable size, 0 or 4.
  9431   ins_encode %{
  9432     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9433     __ mr_if_needed($dst$$Register, $src$$Register);
  9434   %}
  9435  ins_pipe(pipe_class_default);
  9436 %}
  9438 // Cast Pointer to Long for unsafe natives.
  9439 instruct castP2X(iRegLdst dst, iRegP_N2P src) %{
  9440   match(Set dst (CastP2X src));
  9442   format %{ "MR      $dst, $src \t// Ptr->Long" %}
  9443   // variable size, 0 or 4.
  9444   ins_encode %{
  9445     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9446     __ mr_if_needed($dst$$Register, $src$$Register);
  9447   %}
  9448   ins_pipe(pipe_class_default);
  9449 %}
  9451 instruct castPP(iRegPdst dst) %{
  9452   match(Set dst (CastPP dst));
  9453   format %{ " -- \t// castPP of $dst" %}
  9454   size(0);
  9455   ins_encode( /*empty*/ );
  9456   ins_pipe(pipe_class_default);
  9457 %}
  9459 instruct castII(iRegIdst dst) %{
  9460   match(Set dst (CastII dst));
  9461   format %{ " -- \t// castII of $dst" %}
  9462   size(0);
  9463   ins_encode( /*empty*/ );
  9464   ins_pipe(pipe_class_default);
  9465 %}
  9467 instruct checkCastPP(iRegPdst dst) %{
  9468   match(Set dst (CheckCastPP dst));
  9469   format %{ " -- \t// checkcastPP of $dst" %}
  9470   size(0);
  9471   ins_encode( /*empty*/ );
  9472   ins_pipe(pipe_class_default);
  9473 %}
  9475 //----------Convert instructions-----------------------------------------------
  9477 // Convert to boolean.
  9479 // int_to_bool(src) : { 1   if src != 0
  9480 //                    { 0   else
  9481 //
  9482 // strategy:
  9483 // 1) Count leading zeros of 32 bit-value src,
  9484 //    this returns 32 (0b10.0000) iff src == 0 and <32 otherwise.
  9485 // 2) Shift 5 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9486 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9488 // convI2Bool
  9489 instruct convI2Bool_reg__cntlz_Ex(iRegIdst dst, iRegIsrc src) %{
  9490   match(Set dst (Conv2B src));
  9491   predicate(UseCountLeadingZerosInstructionsPPC64);
  9492   ins_cost(DEFAULT_COST);
  9494   expand %{
  9495     immI shiftAmount %{ 0x5 %}
  9496     uimmI16 mask %{ 0x1 %}
  9497     iRegIdst tmp1;
  9498     iRegIdst tmp2;
  9499     countLeadingZerosI(tmp1, src);
  9500     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9501     xorI_reg_uimm16(dst, tmp2, mask);
  9502   %}
  9503 %}
  9505 instruct convI2Bool_reg__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx) %{
  9506   match(Set dst (Conv2B src));
  9507   effect(TEMP crx);
  9508   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9509   ins_cost(DEFAULT_COST);
  9511   format %{ "CMPWI   $crx, $src, #0 \t// convI2B"
  9512             "LI      $dst, #0\n\t"
  9513             "BEQ     $crx, done\n\t"
  9514             "LI      $dst, #1\n"
  9515             "done:" %}
  9516   size(16);
  9517   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x0, 0x1) );
  9518   ins_pipe(pipe_class_compare);
  9519 %}
  9521 // ConvI2B + XorI
  9522 instruct xorI_convI2Bool_reg_immIvalue1__cntlz_Ex(iRegIdst dst, iRegIsrc src, immI_1 mask) %{
  9523   match(Set dst (XorI (Conv2B src) mask));
  9524   predicate(UseCountLeadingZerosInstructionsPPC64);
  9525   ins_cost(DEFAULT_COST);
  9527   expand %{
  9528     immI shiftAmount %{ 0x5 %}
  9529     iRegIdst tmp1;
  9530     countLeadingZerosI(tmp1, src);
  9531     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9532   %}
  9533 %}
  9535 instruct xorI_convI2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegIsrc src, flagsReg crx, immI_1 mask) %{
  9536   match(Set dst (XorI (Conv2B src) mask));
  9537   effect(TEMP crx);
  9538   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9539   ins_cost(DEFAULT_COST);
  9541   format %{ "CMPWI   $crx, $src, #0 \t// Xor(convI2B($src), $mask)"
  9542             "LI      $dst, #1\n\t"
  9543             "BEQ     $crx, done\n\t"
  9544             "LI      $dst, #0\n"
  9545             "done:" %}
  9546   size(16);
  9547   ins_encode( enc_convI2B_regI__cmove(dst, src, crx, 0x1, 0x0) );
  9548   ins_pipe(pipe_class_compare);
  9549 %}
  9551 // AndI 0b0..010..0 + ConvI2B
  9552 instruct convI2Bool_andI_reg_immIpowerOf2(iRegIdst dst, iRegIsrc src, immIpowerOf2 mask) %{
  9553   match(Set dst (Conv2B (AndI src mask)));
  9554   predicate(UseRotateAndMaskInstructionsPPC64);
  9555   ins_cost(DEFAULT_COST);
  9557   format %{ "RLWINM  $dst, $src, $mask \t// convI2B(AndI($src, $mask))" %}
  9558   size(4);
  9559   ins_encode %{
  9560     // TODO: PPC port $archOpcode(ppc64Opcode_rlwinm);
  9561     __ rlwinm($dst$$Register, $src$$Register, (32-log2_long((jlong)$mask$$constant)) & 0x1f, 31, 31);
  9562   %}
  9563   ins_pipe(pipe_class_default);
  9564 %}
  9566 // Convert pointer to boolean.
  9567 //
  9568 // ptr_to_bool(src) : { 1   if src != 0
  9569 //                    { 0   else
  9570 //
  9571 // strategy:
  9572 // 1) Count leading zeros of 64 bit-value src,
  9573 //    this returns 64 (0b100.0000) iff src == 0 and <64 otherwise.
  9574 // 2) Shift 6 bits to the right, result is 0b1 iff src == 0, 0b0 otherwise.
  9575 // 3) Xori the result to get 0b1 if src != 0 and 0b0 if src == 0.
  9577 // ConvP2B
  9578 instruct convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src) %{
  9579   match(Set dst (Conv2B src));
  9580   predicate(UseCountLeadingZerosInstructionsPPC64);
  9581   ins_cost(DEFAULT_COST);
  9583   expand %{
  9584     immI shiftAmount %{ 0x6 %}
  9585     uimmI16 mask %{ 0x1 %}
  9586     iRegIdst tmp1;
  9587     iRegIdst tmp2;
  9588     countLeadingZerosP(tmp1, src);
  9589     urShiftI_reg_imm(tmp2, tmp1, shiftAmount);
  9590     xorI_reg_uimm16(dst, tmp2, mask);
  9591   %}
  9592 %}
  9594 instruct convP2Bool_reg__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx) %{
  9595   match(Set dst (Conv2B src));
  9596   effect(TEMP crx);
  9597   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9598   ins_cost(DEFAULT_COST);
  9600   format %{ "CMPDI   $crx, $src, #0 \t// convP2B"
  9601             "LI      $dst, #0\n\t"
  9602             "BEQ     $crx, done\n\t"
  9603             "LI      $dst, #1\n"
  9604             "done:" %}
  9605   size(16);
  9606   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x0, 0x1) );
  9607   ins_pipe(pipe_class_compare);
  9608 %}
  9610 // ConvP2B + XorI
  9611 instruct xorI_convP2Bool_reg__cntlz_Ex(iRegIdst dst, iRegP_N2P src, immI_1 mask) %{
  9612   match(Set dst (XorI (Conv2B src) mask));
  9613   predicate(UseCountLeadingZerosInstructionsPPC64);
  9614   ins_cost(DEFAULT_COST);
  9616   expand %{
  9617     immI shiftAmount %{ 0x6 %}
  9618     iRegIdst tmp1;
  9619     countLeadingZerosP(tmp1, src);
  9620     urShiftI_reg_imm(dst, tmp1, shiftAmount);
  9621   %}
  9622 %}
  9624 instruct xorI_convP2Bool_reg_immIvalue1__cmove(iRegIdst dst, iRegP_N2P src, flagsReg crx, immI_1 mask) %{
  9625   match(Set dst (XorI (Conv2B src) mask));
  9626   effect(TEMP crx);
  9627   predicate(!UseCountLeadingZerosInstructionsPPC64);
  9628   ins_cost(DEFAULT_COST);
  9630   format %{ "CMPDI   $crx, $src, #0 \t// XorI(convP2B($src), $mask)"
  9631             "LI      $dst, #1\n\t"
  9632             "BEQ     $crx, done\n\t"
  9633             "LI      $dst, #0\n"
  9634             "done:" %}
  9635   size(16);
  9636   ins_encode( enc_convP2B_regP__cmove(dst, src, crx, 0x1, 0x0) );
  9637   ins_pipe(pipe_class_compare);
  9638 %}
  9640 // if src1 < src2, return -1 else return 0
  9641 instruct cmpLTMask_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
  9642   match(Set dst (CmpLTMask src1 src2));
  9643   ins_cost(DEFAULT_COST*4);
  9645   expand %{
  9646     iRegLdst src1s;
  9647     iRegLdst src2s;
  9648     iRegLdst diff;
  9649     convI2L_reg(src1s, src1); // Ensure proper sign extension.
  9650     convI2L_reg(src2s, src2); // Ensure proper sign extension.
  9651     subL_reg_reg(diff, src1s, src2s);
  9652     // Need to consider >=33 bit result, therefore we need signmaskL.
  9653     signmask64I_regL(dst, diff);
  9654   %}
  9655 %}
  9657 instruct cmpLTMask_reg_immI0(iRegIdst dst, iRegIsrc src1, immI_0 src2) %{
  9658   match(Set dst (CmpLTMask src1 src2)); // if src1 < src2, return -1 else return 0
  9659   format %{ "SRAWI   $dst, $src1, $src2 \t// CmpLTMask" %}
  9660   size(4);
  9661   ins_encode %{
  9662     // TODO: PPC port $archOpcode(ppc64Opcode_srawi);
  9663     __ srawi($dst$$Register, $src1$$Register, 0x1f);
  9664   %}
  9665   ins_pipe(pipe_class_default);
  9666 %}
  9668 //----------Arithmetic Conversion Instructions---------------------------------
  9670 // Convert to Byte  -- nop
  9671 // Convert to Short -- nop
  9673 // Convert to Int
  9675 instruct convB2I_reg(iRegIdst dst, iRegIsrc src, immI_24 amount) %{
  9676   match(Set dst (RShiftI (LShiftI src amount) amount));
  9677   format %{ "EXTSB   $dst, $src \t// byte->int" %}
  9678   size(4);
  9679   ins_encode %{
  9680     // TODO: PPC port $archOpcode(ppc64Opcode_extsb);
  9681     __ extsb($dst$$Register, $src$$Register);
  9682   %}
  9683   ins_pipe(pipe_class_default);
  9684 %}
  9686 // LShiftI 16 + RShiftI 16 converts short to int.
  9687 instruct convS2I_reg(iRegIdst dst, iRegIsrc src, immI_16 amount) %{
  9688   match(Set dst (RShiftI (LShiftI src amount) amount));
  9689   format %{ "EXTSH   $dst, $src \t// short->int" %}
  9690   size(4);
  9691   ins_encode %{
  9692     // TODO: PPC port $archOpcode(ppc64Opcode_extsh);
  9693     __ extsh($dst$$Register, $src$$Register);
  9694   %}
  9695   ins_pipe(pipe_class_default);
  9696 %}
  9698 // ConvL2I + ConvI2L: Sign extend int in long register.
  9699 instruct sxtI_L2L_reg(iRegLdst dst, iRegLsrc src) %{
  9700   match(Set dst (ConvI2L (ConvL2I src)));
  9702   format %{ "EXTSW   $dst, $src \t// long->long" %}
  9703   size(4);
  9704   ins_encode %{
  9705     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9706     __ extsw($dst$$Register, $src$$Register);
  9707   %}
  9708   ins_pipe(pipe_class_default);
  9709 %}
  9711 instruct convL2I_reg(iRegIdst dst, iRegLsrc src) %{
  9712   match(Set dst (ConvL2I src));
  9713   format %{ "MR      $dst, $src \t// long->int" %}
  9714   // variable size, 0 or 4
  9715   ins_encode %{
  9716     // TODO: PPC port $archOpcode(ppc64Opcode_or);
  9717     __ mr_if_needed($dst$$Register, $src$$Register);
  9718   %}
  9719   ins_pipe(pipe_class_default);
  9720 %}
  9722 instruct convD2IRaw_regD(regD dst, regD src) %{
  9723   // no match-rule, false predicate
  9724   effect(DEF dst, USE src);
  9725   predicate(false);
  9727   format %{ "FCTIWZ $dst, $src \t// convD2I, $src != NaN" %}
  9728   size(4);
  9729   ins_encode %{
  9730     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);;
  9731     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9732   %}
  9733   ins_pipe(pipe_class_default);
  9734 %}
  9736 instruct cmovI_bso_stackSlotL(iRegIdst dst, flagsReg crx, stackSlotL src) %{
  9737   // no match-rule, false predicate
  9738   effect(DEF dst, USE crx, USE src);
  9739   predicate(false);
  9741   ins_variable_size_depending_on_alignment(true);
  9743   format %{ "cmovI   $crx, $dst, $src" %}
  9744   // Worst case is branch + move + stop, no stop without scheduler.
  9745   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 12 : 8);
  9746   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9747   ins_pipe(pipe_class_default);
  9748 %}
  9750 instruct cmovI_bso_stackSlotL_conLvalue0_Ex(iRegIdst dst, flagsReg crx, stackSlotL mem) %{
  9751   // no match-rule, false predicate
  9752   effect(DEF dst, USE crx, USE mem);
  9753   predicate(false);
  9755   format %{ "CmovI   $dst, $crx, $mem \t// postalloc expanded" %}
  9756   postalloc_expand %{
  9757     //
  9758     // replaces
  9759     //
  9760     //   region  dst  crx  mem
  9761     //    \       |    |   /
  9762     //     dst=cmovI_bso_stackSlotL_conLvalue0
  9763     //
  9764     // with
  9765     //
  9766     //   region  dst
  9767     //    \       /
  9768     //     dst=loadConI16(0)
  9769     //      |
  9770     //      ^  region  dst  crx  mem
  9771     //      |   \       |    |    /
  9772     //      dst=cmovI_bso_stackSlotL
  9773     //
  9775     // Create new nodes.
  9776     MachNode *m1 = new (C) loadConI16Node();
  9777     MachNode *m2 = new (C) cmovI_bso_stackSlotLNode();
  9779     // inputs for new nodes
  9780     m1->add_req(n_region);
  9781     m2->add_req(n_region, n_crx, n_mem);
  9783     // precedences for new nodes
  9784     m2->add_prec(m1);
  9786     // operands for new nodes
  9787     m1->_opnds[0] = op_dst;
  9788     m1->_opnds[1] = new (C) immI16Oper(0);
  9790     m2->_opnds[0] = op_dst;
  9791     m2->_opnds[1] = op_crx;
  9792     m2->_opnds[2] = op_mem;
  9794     // registers for new nodes
  9795     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9796     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9798     // Insert new nodes.
  9799     nodes->push(m1);
  9800     nodes->push(m2);
  9801   %}
  9802 %}
  9804 // Double to Int conversion, NaN is mapped to 0.
  9805 instruct convD2I_reg_ExEx(iRegIdst dst, regD src) %{
  9806   match(Set dst (ConvD2I src));
  9807   ins_cost(DEFAULT_COST);
  9809   expand %{
  9810     regD tmpD;
  9811     stackSlotL tmpS;
  9812     flagsReg crx;
  9813     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9814     convD2IRaw_regD(tmpD, src);                         // Convert float to int (speculated).
  9815     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
  9816     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9817   %}
  9818 %}
  9820 instruct convF2IRaw_regF(regF dst, regF src) %{
  9821   // no match-rule, false predicate
  9822   effect(DEF dst, USE src);
  9823   predicate(false);
  9825   format %{ "FCTIWZ $dst, $src \t// convF2I, $src != NaN" %}
  9826   size(4);
  9827   ins_encode %{
  9828     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9829     __ fctiwz($dst$$FloatRegister, $src$$FloatRegister);
  9830   %}
  9831   ins_pipe(pipe_class_default);
  9832 %}
  9834 // Float to Int conversion, NaN is mapped to 0.
  9835 instruct convF2I_regF_ExEx(iRegIdst dst, regF src) %{
  9836   match(Set dst (ConvF2I src));
  9837   ins_cost(DEFAULT_COST);
  9839   expand %{
  9840     regF tmpF;
  9841     stackSlotL tmpS;
  9842     flagsReg crx;
  9843     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9844     convF2IRaw_regF(tmpF, src);                         // Convert float to int (speculated).
  9845     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9846     cmovI_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9847   %}
  9848 %}
  9850 // Convert to Long
  9852 instruct convI2L_reg(iRegLdst dst, iRegIsrc src) %{
  9853   match(Set dst (ConvI2L src));
  9854   format %{ "EXTSW   $dst, $src \t// int->long" %}
  9855   size(4);
  9856   ins_encode %{
  9857     // TODO: PPC port $archOpcode(ppc64Opcode_extsw);
  9858     __ extsw($dst$$Register, $src$$Register);
  9859   %}
  9860   ins_pipe(pipe_class_default);
  9861 %}
  9863 // Zero-extend: convert unsigned int to long (convUI2L).
  9864 instruct zeroExtendL_regI(iRegLdst dst, iRegIsrc src, immL_32bits mask) %{
  9865   match(Set dst (AndL (ConvI2L src) mask));
  9866   ins_cost(DEFAULT_COST);
  9868   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9869   size(4);
  9870   ins_encode %{
  9871     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9872     __ clrldi($dst$$Register, $src$$Register, 32);
  9873   %}
  9874   ins_pipe(pipe_class_default);
  9875 %}
  9877 // Zero-extend: convert unsigned int to long in long register.
  9878 instruct zeroExtendL_regL(iRegLdst dst, iRegLsrc src, immL_32bits mask) %{
  9879   match(Set dst (AndL src mask));
  9880   ins_cost(DEFAULT_COST);
  9882   format %{ "CLRLDI  $dst, $src, #32 \t// zero-extend int to long" %}
  9883   size(4);
  9884   ins_encode %{
  9885     // TODO: PPC port $archOpcode(ppc64Opcode_rldicl);
  9886     __ clrldi($dst$$Register, $src$$Register, 32);
  9887   %}
  9888   ins_pipe(pipe_class_default);
  9889 %}
  9891 instruct convF2LRaw_regF(regF dst, regF src) %{
  9892   // no match-rule, false predicate
  9893   effect(DEF dst, USE src);
  9894   predicate(false);
  9896   format %{ "FCTIDZ $dst, $src \t// convF2L, $src != NaN" %}
  9897   size(4);
  9898   ins_encode %{
  9899     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9900     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  9901   %}
  9902   ins_pipe(pipe_class_default);
  9903 %}
  9905 instruct cmovL_bso_stackSlotL(iRegLdst dst, flagsReg crx, stackSlotL src) %{
  9906   // no match-rule, false predicate
  9907   effect(DEF dst, USE crx, USE src);
  9908   predicate(false);
  9910   ins_variable_size_depending_on_alignment(true);
  9912   format %{ "cmovL   $crx, $dst, $src" %}
  9913   // Worst case is branch + move + stop, no stop without scheduler.
  9914   size(false /* TODO: PPC PORT Compile::current()->do_hb_scheduling()*/ ? 12 : 8);
  9915   ins_encode( enc_cmove_bso_stackSlotL(dst, crx, src) );
  9916   ins_pipe(pipe_class_default);
  9917 %}
  9919 instruct cmovL_bso_stackSlotL_conLvalue0_Ex(iRegLdst dst, flagsReg crx, stackSlotL mem) %{
  9920   // no match-rule, false predicate
  9921   effect(DEF dst, USE crx, USE mem);
  9922   predicate(false);
  9924   format %{ "CmovL   $dst, $crx, $mem \t// postalloc expanded" %}
  9925   postalloc_expand %{
  9926     //
  9927     // replaces
  9928     //
  9929     //   region  dst  crx  mem
  9930     //    \       |    |   /
  9931     //     dst=cmovL_bso_stackSlotL_conLvalue0
  9932     //
  9933     // with
  9934     //
  9935     //   region  dst
  9936     //    \       /
  9937     //     dst=loadConL16(0)
  9938     //      |
  9939     //      ^  region  dst  crx  mem
  9940     //      |   \       |    |    /
  9941     //      dst=cmovL_bso_stackSlotL
  9942     //
  9944     // Create new nodes.
  9945     MachNode *m1 = new (C) loadConL16Node();
  9946     MachNode *m2 = new (C) cmovL_bso_stackSlotLNode();
  9948     // inputs for new nodes
  9949     m1->add_req(n_region);
  9950     m2->add_req(n_region, n_crx, n_mem);
  9951     m2->add_prec(m1);
  9953     // operands for new nodes
  9954     m1->_opnds[0] = op_dst;
  9955     m1->_opnds[1] = new (C) immL16Oper(0);
  9956     m2->_opnds[0] = op_dst;
  9957     m2->_opnds[1] = op_crx;
  9958     m2->_opnds[2] = op_mem;
  9960     // registers for new nodes
  9961     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9962     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
  9964     // Insert new nodes.
  9965     nodes->push(m1);
  9966     nodes->push(m2);
  9967   %}
  9968 %}
  9970 // Float to Long conversion, NaN is mapped to 0.
  9971 instruct convF2L_reg_ExEx(iRegLdst dst, regF src) %{
  9972   match(Set dst (ConvF2L src));
  9973   ins_cost(DEFAULT_COST);
  9975   expand %{
  9976     regF tmpF;
  9977     stackSlotL tmpS;
  9978     flagsReg crx;
  9979     cmpFUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
  9980     convF2LRaw_regF(tmpF, src);                         // Convert float to long (speculated).
  9981     moveF2L_reg_stack(tmpS, tmpF);                      // Store float to stack (speculated).
  9982     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
  9983   %}
  9984 %}
  9986 instruct convD2LRaw_regD(regD dst, regD src) %{
  9987   // no match-rule, false predicate
  9988   effect(DEF dst, USE src);
  9989   predicate(false);
  9991   format %{ "FCTIDZ $dst, $src \t// convD2L $src != NaN" %}
  9992   size(4);
  9993   ins_encode %{
  9994     // TODO: PPC port $archOpcode(ppc64Opcode_fctiwz);
  9995     __ fctidz($dst$$FloatRegister, $src$$FloatRegister);
  9996   %}
  9997   ins_pipe(pipe_class_default);
  9998 %}
 10000 // Double to Long conversion, NaN is mapped to 0.
 10001 instruct convD2L_reg_ExEx(iRegLdst dst, regD src) %{
 10002   match(Set dst (ConvD2L src));
 10003   ins_cost(DEFAULT_COST);
 10005   expand %{
 10006     regD tmpD;
 10007     stackSlotL tmpS;
 10008     flagsReg crx;
 10009     cmpDUnordered_reg_reg(crx, src, src);               // Check whether src is NaN.
 10010     convD2LRaw_regD(tmpD, src);                         // Convert float to long (speculated).
 10011     moveD2L_reg_stack(tmpS, tmpD);                      // Store float to stack (speculated).
 10012     cmovL_bso_stackSlotL_conLvalue0_Ex(dst, crx, tmpS); // Cmove based on NaN check.
 10013   %}
 10014 %}
 10016 // Convert to Float
 10018 // Placed here as needed in expand.
 10019 instruct convL2DRaw_regD(regD dst, regD src) %{
 10020   // no match-rule, false predicate
 10021   effect(DEF dst, USE src);
 10022   predicate(false);
 10024   format %{ "FCFID $dst, $src \t// convL2D" %}
 10025   size(4);
 10026   ins_encode %{
 10027     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 10028     __ fcfid($dst$$FloatRegister, $src$$FloatRegister);
 10029   %}
 10030   ins_pipe(pipe_class_default);
 10031 %}
 10033 // Placed here as needed in expand.
 10034 instruct convD2F_reg(regF dst, regD src) %{
 10035   match(Set dst (ConvD2F src));
 10036   format %{ "FRSP    $dst, $src \t// convD2F" %}
 10037   size(4);
 10038   ins_encode %{
 10039     // TODO: PPC port $archOpcode(ppc64Opcode_frsp);
 10040     __ frsp($dst$$FloatRegister, $src$$FloatRegister);
 10041   %}
 10042   ins_pipe(pipe_class_default);
 10043 %}
 10045 // Integer to Float conversion.
 10046 instruct convI2F_ireg_Ex(regF dst, iRegIsrc src) %{
 10047   match(Set dst (ConvI2F src));
 10048   predicate(!VM_Version::has_fcfids());
 10049   ins_cost(DEFAULT_COST);
 10051   expand %{
 10052     iRegLdst tmpL;
 10053     stackSlotL tmpS;
 10054     regD tmpD;
 10055     regD tmpD2;
 10056     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10057     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10058     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10059     convL2DRaw_regD(tmpD2, tmpD);        // Convert to double.
 10060     convD2F_reg(dst, tmpD2);             // Convert double to float.
 10061   %}
 10062 %}
 10064 instruct convL2FRaw_regF(regF dst, regD src) %{
 10065   // no match-rule, false predicate
 10066   effect(DEF dst, USE src);
 10067   predicate(false);
 10069   format %{ "FCFIDS $dst, $src \t// convL2F" %}
 10070   size(4);
 10071   ins_encode %{
 10072     // TODO: PPC port $archOpcode(ppc64Opcode_fcfid);
 10073     __ fcfids($dst$$FloatRegister, $src$$FloatRegister);
 10074   %}
 10075   ins_pipe(pipe_class_default);
 10076 %}
 10078 // Integer to Float conversion. Special version for Power7.
 10079 instruct convI2F_ireg_fcfids_Ex(regF dst, iRegIsrc src) %{
 10080   match(Set dst (ConvI2F src));
 10081   predicate(VM_Version::has_fcfids());
 10082   ins_cost(DEFAULT_COST);
 10084   expand %{
 10085     iRegLdst tmpL;
 10086     stackSlotL tmpS;
 10087     regD tmpD;
 10088     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10089     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10090     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10091     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10092   %}
 10093 %}
 10095 // L2F to avoid runtime call.
 10096 instruct convL2F_ireg_fcfids_Ex(regF dst, iRegLsrc src) %{
 10097   match(Set dst (ConvL2F src));
 10098   predicate(VM_Version::has_fcfids());
 10099   ins_cost(DEFAULT_COST);
 10101   expand %{
 10102     stackSlotL tmpS;
 10103     regD tmpD;
 10104     regL_to_stkL(tmpS, src);             // Store long to stack.
 10105     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10106     convL2FRaw_regF(dst, tmpD);          // Convert to float.
 10107   %}
 10108 %}
 10110 // Moved up as used in expand.
 10111 //instruct convD2F_reg(regF dst, regD src) %{%}
 10113 // Convert to Double
 10115 // Integer to Double conversion.
 10116 instruct convI2D_reg_Ex(regD dst, iRegIsrc src) %{
 10117   match(Set dst (ConvI2D src));
 10118   ins_cost(DEFAULT_COST);
 10120   expand %{
 10121     iRegLdst tmpL;
 10122     stackSlotL tmpS;
 10123     regD tmpD;
 10124     convI2L_reg(tmpL, src);              // Sign-extension int to long.
 10125     regL_to_stkL(tmpS, tmpL);            // Store long to stack.
 10126     moveL2D_stack_reg(tmpD, tmpS);       // Load long into double register.
 10127     convL2DRaw_regD(dst, tmpD);          // Convert to double.
 10128   %}
 10129 %}
 10131 // Long to Double conversion
 10132 instruct convL2D_reg_Ex(regD dst, stackSlotL src) %{
 10133   match(Set dst (ConvL2D src));
 10134   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
 10136   expand %{
 10137     regD tmpD;
 10138     moveL2D_stack_reg(tmpD, src);
 10139     convL2DRaw_regD(dst, tmpD);
 10140   %}
 10141 %}
 10143 instruct convF2D_reg(regD dst, regF src) %{
 10144   match(Set dst (ConvF2D src));
 10145   format %{ "FMR     $dst, $src \t// float->double" %}
 10146   // variable size, 0 or 4
 10147   ins_encode %{
 10148     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 10149     __ fmr_if_needed($dst$$FloatRegister, $src$$FloatRegister);
 10150   %}
 10151   ins_pipe(pipe_class_default);
 10152 %}
 10154 //----------Control Flow Instructions------------------------------------------
 10155 // Compare Instructions
 10157 // Compare Integers
 10158 instruct cmpI_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10159   match(Set crx (CmpI src1 src2));
 10160   size(4);
 10161   format %{ "CMPW    $crx, $src1, $src2" %}
 10162   ins_encode %{
 10163     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10164     __ cmpw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10165   %}
 10166   ins_pipe(pipe_class_compare);
 10167 %}
 10169 instruct cmpI_reg_imm16(flagsReg crx, iRegIsrc src1, immI16 src2) %{
 10170   match(Set crx (CmpI src1 src2));
 10171   format %{ "CMPWI   $crx, $src1, $src2" %}
 10172   size(4);
 10173   ins_encode %{
 10174     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10175     __ cmpwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10176   %}
 10177   ins_pipe(pipe_class_compare);
 10178 %}
 10180 // (src1 & src2) == 0?
 10181 instruct testI_reg_imm(flagsRegCR0 cr0, iRegIsrc src1, uimmI16 src2, immI_0 zero) %{
 10182   match(Set cr0 (CmpI (AndI src1 src2) zero));
 10183   // r0 is killed
 10184   format %{ "ANDI    R0, $src1, $src2 \t// BTST int" %}
 10185   size(4);
 10186   ins_encode %{
 10187     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10188     // FIXME: avoid andi_ ?
 10189     __ andi_(R0, $src1$$Register, $src2$$constant);
 10190   %}
 10191   ins_pipe(pipe_class_compare);
 10192 %}
 10194 instruct cmpL_reg_reg(flagsReg crx, iRegLsrc src1, iRegLsrc src2) %{
 10195   match(Set crx (CmpL src1 src2));
 10196   format %{ "CMPD    $crx, $src1, $src2" %}
 10197   size(4);
 10198   ins_encode %{
 10199     // TODO: PPC port $archOpcode(ppc64Opcode_cmp);
 10200     __ cmpd($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10201   %}
 10202   ins_pipe(pipe_class_compare);
 10203 %}
 10205 instruct cmpL_reg_imm16(flagsReg crx, iRegLsrc src1, immL16 src2) %{
 10206   match(Set crx (CmpL src1 src2));
 10207   format %{ "CMPDI   $crx, $src1, $src2" %}
 10208   size(4);
 10209   ins_encode %{
 10210     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10211     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10212   %}
 10213   ins_pipe(pipe_class_compare);
 10214 %}
 10216 instruct testL_reg_reg(flagsRegCR0 cr0, iRegLsrc src1, iRegLsrc src2, immL_0 zero) %{
 10217   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10218   // r0 is killed
 10219   format %{ "AND     R0, $src1, $src2 \t// BTST long" %}
 10220   size(4);
 10221   ins_encode %{
 10222     // TODO: PPC port $archOpcode(ppc64Opcode_and_);
 10223     __ and_(R0, $src1$$Register, $src2$$Register);
 10224   %}
 10225   ins_pipe(pipe_class_compare);
 10226 %}
 10228 instruct testL_reg_imm(flagsRegCR0 cr0, iRegLsrc src1, uimmL16 src2, immL_0 zero) %{
 10229   match(Set cr0 (CmpL (AndL src1 src2) zero));
 10230   // r0 is killed
 10231   format %{ "ANDI    R0, $src1, $src2 \t// BTST long" %}
 10232   size(4);
 10233   ins_encode %{
 10234     // TODO: PPC port $archOpcode(ppc64Opcode_andi_);
 10235     // FIXME: avoid andi_ ?
 10236     __ andi_(R0, $src1$$Register, $src2$$constant);
 10237   %}
 10238   ins_pipe(pipe_class_compare);
 10239 %}
 10241 instruct cmovI_conIvalueMinus1_conIvalue1(iRegIdst dst, flagsReg crx) %{
 10242   // no match-rule, false predicate
 10243   effect(DEF dst, USE crx);
 10244   predicate(false);
 10246   ins_variable_size_depending_on_alignment(true);
 10248   format %{ "cmovI   $crx, $dst, -1, 0, +1" %}
 10249   // Worst case is branch + move + branch + move + stop, no stop without scheduler.
 10250   size(false /* TODO: PPC PORTInsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 20 : 16);
 10251   ins_encode %{
 10252     // TODO: PPC port $archOpcode(ppc64Opcode_cmove);
 10253     Label done;
 10254     // li(Rdst, 0);              // equal -> 0
 10255     __ beq($crx$$CondRegister, done);
 10256     __ li($dst$$Register, 1);    // greater -> +1
 10257     __ bgt($crx$$CondRegister, done);
 10258     __ li($dst$$Register, -1);   // unordered or less -> -1
 10259     // TODO: PPC port__ endgroup_if_needed(_size == 20);
 10260     __ bind(done);
 10261   %}
 10262   ins_pipe(pipe_class_compare);
 10263 %}
 10265 instruct cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(iRegIdst dst, flagsReg crx) %{
 10266   // no match-rule, false predicate
 10267   effect(DEF dst, USE crx);
 10268   predicate(false);
 10270   format %{ "CmovI    $crx, $dst, -1, 0, +1 \t// postalloc expanded" %}
 10271   postalloc_expand %{
 10272     //
 10273     // replaces
 10274     //
 10275     //   region  crx
 10276     //    \       |
 10277     //     dst=cmovI_conIvalueMinus1_conIvalue0_conIvalue1
 10278     //
 10279     // with
 10280     //
 10281     //   region
 10282     //    \
 10283     //     dst=loadConI16(0)
 10284     //      |
 10285     //      ^  region  crx
 10286     //      |   \       |
 10287     //      dst=cmovI_conIvalueMinus1_conIvalue1
 10288     //
 10290     // Create new nodes.
 10291     MachNode *m1 = new (C) loadConI16Node();
 10292     MachNode *m2 = new (C) cmovI_conIvalueMinus1_conIvalue1Node();
 10294     // inputs for new nodes
 10295     m1->add_req(n_region);
 10296     m2->add_req(n_region, n_crx);
 10297     m2->add_prec(m1);
 10299     // operands for new nodes
 10300     m1->_opnds[0] = op_dst;
 10301     m1->_opnds[1] = new (C) immI16Oper(0);
 10302     m2->_opnds[0] = op_dst;
 10303     m2->_opnds[1] = op_crx;
 10305     // registers for new nodes
 10306     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10307     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // dst
 10309     // Insert new nodes.
 10310     nodes->push(m1);
 10311     nodes->push(m2);
 10312   %}
 10313 %}
 10315 // Manifest a CmpL3 result in an integer register. Very painful.
 10316 // This is the test to avoid.
 10317 // (src1 < src2) ? -1 : ((src1 > src2) ? 1 : 0)
 10318 instruct cmpL3_reg_reg_ExEx(iRegIdst dst, iRegLsrc src1, iRegLsrc src2) %{
 10319   match(Set dst (CmpL3 src1 src2));
 10320   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10322   expand %{
 10323     flagsReg tmp1;
 10324     cmpL_reg_reg(tmp1, src1, src2);
 10325     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10326   %}
 10327 %}
 10329 // Implicit range checks.
 10330 // A range check in the ideal world has one of the following shapes:
 10331 //  - (If le (CmpU length index)), (IfTrue  throw exception)
 10332 //  - (If lt (CmpU index length)), (IfFalse throw exception)
 10333 //
 10334 // Match range check 'If le (CmpU length index)'.
 10335 instruct rangeCheck_iReg_uimm15(cmpOp cmp, iRegIsrc src_length, uimmI15 index, label labl) %{
 10336   match(If cmp (CmpU src_length index));
 10337   effect(USE labl);
 10338   predicate(TrapBasedRangeChecks &&
 10339             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le &&
 10340             PROB_UNLIKELY(_leaf->as_If()->_prob) >= PROB_ALWAYS &&
 10341             (Matcher::branches_to_uncommon_trap(_leaf)));
 10343   ins_is_TrapBasedCheckNode(true);
 10345   format %{ "TWI     $index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10346   size(4);
 10347   ins_encode %{
 10348     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10349     if ($cmp$$cmpcode == 0x1 /* less_equal */) {
 10350       __ trap_range_check_le($src_length$$Register, $index$$constant);
 10351     } else {
 10352       // Both successors are uncommon traps, probability is 0.
 10353       // Node got flipped during fixup flow.
 10354       assert($cmp$$cmpcode == 0x9, "must be greater");
 10355       __ trap_range_check_g($src_length$$Register, $index$$constant);
 10357   %}
 10358   ins_pipe(pipe_class_trap);
 10359 %}
 10361 // Match range check 'If lt (CmpU index length)'.
 10362 instruct rangeCheck_iReg_iReg(cmpOp cmp, iRegIsrc src_index, iRegIsrc src_length, label labl) %{
 10363   match(If cmp (CmpU src_index src_length));
 10364   effect(USE labl);
 10365   predicate(TrapBasedRangeChecks &&
 10366             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10367             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10368             (Matcher::branches_to_uncommon_trap(_leaf)));
 10370   ins_is_TrapBasedCheckNode(true);
 10372   format %{ "TW      $src_index $cmp $src_length \t// RangeCheck => trap $labl" %}
 10373   size(4);
 10374   ins_encode %{
 10375     // TODO: PPC port $archOpcode(ppc64Opcode_tw);
 10376     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10377       __ trap_range_check_ge($src_index$$Register, $src_length$$Register);
 10378     } else {
 10379       // Both successors are uncommon traps, probability is 0.
 10380       // Node got flipped during fixup flow.
 10381       assert($cmp$$cmpcode == 0x8, "must be less");
 10382       __ trap_range_check_l($src_index$$Register, $src_length$$Register);
 10384   %}
 10385   ins_pipe(pipe_class_trap);
 10386 %}
 10388 // Match range check 'If lt (CmpU index length)'.
 10389 instruct rangeCheck_uimm15_iReg(cmpOp cmp, iRegIsrc src_index, uimmI15 length, label labl) %{
 10390   match(If cmp (CmpU src_index length));
 10391   effect(USE labl);
 10392   predicate(TrapBasedRangeChecks &&
 10393             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt &&
 10394             _leaf->as_If()->_prob >= PROB_ALWAYS &&
 10395             (Matcher::branches_to_uncommon_trap(_leaf)));
 10397   ins_is_TrapBasedCheckNode(true);
 10399   format %{ "TWI     $src_index $cmp $length \t// RangeCheck => trap $labl" %}
 10400   size(4);
 10401   ins_encode %{
 10402     // TODO: PPC port $archOpcode(ppc64Opcode_twi);
 10403     if ($cmp$$cmpcode == 0x0 /* greater_equal */) {
 10404       __ trap_range_check_ge($src_index$$Register, $length$$constant);
 10405     } else {
 10406       // Both successors are uncommon traps, probability is 0.
 10407       // Node got flipped during fixup flow.
 10408       assert($cmp$$cmpcode == 0x8, "must be less");
 10409       __ trap_range_check_l($src_index$$Register, $length$$constant);
 10411   %}
 10412   ins_pipe(pipe_class_trap);
 10413 %}
 10415 instruct compU_reg_reg(flagsReg crx, iRegIsrc src1, iRegIsrc src2) %{
 10416   match(Set crx (CmpU src1 src2));
 10417   format %{ "CMPLW   $crx, $src1, $src2 \t// unsigned" %}
 10418   size(4);
 10419   ins_encode %{
 10420     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10421     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10422   %}
 10423   ins_pipe(pipe_class_compare);
 10424 %}
 10426 instruct compU_reg_uimm16(flagsReg crx, iRegIsrc src1, uimmI16 src2) %{
 10427   match(Set crx (CmpU src1 src2));
 10428   size(4);
 10429   format %{ "CMPLWI  $crx, $src1, $src2" %}
 10430   ins_encode %{
 10431     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10432     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10433   %}
 10434   ins_pipe(pipe_class_compare);
 10435 %}
 10437 // Implicit zero checks (more implicit null checks).
 10438 // No constant pool entries required.
 10439 instruct zeroCheckN_iReg_imm0(cmpOp cmp, iRegNsrc value, immN_0 zero, label labl) %{
 10440   match(If cmp (CmpN value zero));
 10441   effect(USE labl);
 10442   predicate(TrapBasedNullChecks &&
 10443             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10444             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10445             Matcher::branches_to_uncommon_trap(_leaf));
 10446   ins_cost(1);
 10448   ins_is_TrapBasedCheckNode(true);
 10450   format %{ "TDI     $value $cmp $zero \t// ZeroCheckN => trap $labl" %}
 10451   size(4);
 10452   ins_encode %{
 10453     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10454     if ($cmp$$cmpcode == 0xA) {
 10455       __ trap_null_check($value$$Register);
 10456     } else {
 10457       // Both successors are uncommon traps, probability is 0.
 10458       // Node got flipped during fixup flow.
 10459       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10460       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10462   %}
 10463   ins_pipe(pipe_class_trap);
 10464 %}
 10466 // Compare narrow oops.
 10467 instruct cmpN_reg_reg(flagsReg crx, iRegNsrc src1, iRegNsrc src2) %{
 10468   match(Set crx (CmpN src1 src2));
 10470   size(4);
 10471   ins_cost(DEFAULT_COST);
 10472   format %{ "CMPLW   $crx, $src1, $src2 \t// compressed ptr" %}
 10473   ins_encode %{
 10474     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10475     __ cmplw($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10476   %}
 10477   ins_pipe(pipe_class_compare);
 10478 %}
 10480 instruct cmpN_reg_imm0(flagsReg crx, iRegNsrc src1, immN_0 src2) %{
 10481   match(Set crx (CmpN src1 src2));
 10482   // Make this more expensive than zeroCheckN_iReg_imm0.
 10483   ins_cost(DEFAULT_COST);
 10485   format %{ "CMPLWI  $crx, $src1, $src2 \t// compressed ptr" %}
 10486   size(4);
 10487   ins_encode %{
 10488     // TODO: PPC port $archOpcode(ppc64Opcode_cmpli);
 10489     __ cmplwi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10490   %}
 10491   ins_pipe(pipe_class_compare);
 10492 %}
 10494 // Implicit zero checks (more implicit null checks).
 10495 // No constant pool entries required.
 10496 instruct zeroCheckP_reg_imm0(cmpOp cmp, iRegP_N2P value, immP_0 zero, label labl) %{
 10497   match(If cmp (CmpP value zero));
 10498   effect(USE labl);
 10499   predicate(TrapBasedNullChecks &&
 10500             _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne &&
 10501             _leaf->as_If()->_prob >= PROB_LIKELY_MAG(4) &&
 10502             Matcher::branches_to_uncommon_trap(_leaf));
 10504   ins_is_TrapBasedCheckNode(true);
 10506   format %{ "TDI     $value $cmp $zero \t// ZeroCheckP => trap $labl" %}
 10507   size(4);
 10508   ins_encode %{
 10509     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 10510     if ($cmp$$cmpcode == 0xA) {
 10511       __ trap_null_check($value$$Register);
 10512     } else {
 10513       // Both successors are uncommon traps, probability is 0.
 10514       // Node got flipped during fixup flow.
 10515       assert($cmp$$cmpcode == 0x2 , "must be equal(0xA) or notEqual(0x2)");
 10516       __ trap_null_check($value$$Register, Assembler::traptoGreaterThanUnsigned);
 10518   %}
 10519   ins_pipe(pipe_class_trap);
 10520 %}
 10522 // Compare Pointers
 10523 instruct cmpP_reg_reg(flagsReg crx, iRegP_N2P src1, iRegP_N2P src2) %{
 10524   match(Set crx (CmpP src1 src2));
 10525   format %{ "CMPLD   $crx, $src1, $src2 \t// ptr" %}
 10526   size(4);
 10527   ins_encode %{
 10528     // TODO: PPC port $archOpcode(ppc64Opcode_cmpl);
 10529     __ cmpld($crx$$CondRegister, $src1$$Register, $src2$$Register);
 10530   %}
 10531   ins_pipe(pipe_class_compare);
 10532 %}
 10534 // Used in postalloc expand.
 10535 instruct cmpP_reg_imm16(flagsReg crx, iRegPsrc src1, immL16 src2) %{
 10536   // This match rule prevents reordering of node before a safepoint.
 10537   // This only makes sense if this instructions is used exclusively
 10538   // for the expansion of EncodeP!
 10539   match(Set crx (CmpP src1 src2));
 10540   predicate(false);
 10542   format %{ "CMPDI   $crx, $src1, $src2" %}
 10543   size(4);
 10544   ins_encode %{
 10545     // TODO: PPC port $archOpcode(ppc64Opcode_cmpi);
 10546     __ cmpdi($crx$$CondRegister, $src1$$Register, $src2$$constant);
 10547   %}
 10548   ins_pipe(pipe_class_compare);
 10549 %}
 10551 //----------Float Compares----------------------------------------------------
 10553 instruct cmpFUnordered_reg_reg(flagsReg crx, regF src1, regF src2) %{
 10554   // no match-rule, false predicate
 10555   effect(DEF crx, USE src1, USE src2);
 10556   predicate(false);
 10558   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10559   size(4);
 10560   ins_encode %{
 10561     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10562     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10563   %}
 10564   ins_pipe(pipe_class_default);
 10565 %}
 10567 instruct cmov_bns_less(flagsReg crx) %{
 10568   // no match-rule, false predicate
 10569   effect(DEF crx);
 10570   predicate(false);
 10572   ins_variable_size_depending_on_alignment(true);
 10574   format %{ "cmov    $crx" %}
 10575   // Worst case is branch + move + stop, no stop without scheduler.
 10576   size(false /* TODO: PPC PORT(InsertEndGroupPPC64 && Compile::current()->do_hb_scheduling())*/ ? 16 : 12);
 10577   ins_encode %{
 10578     // TODO: PPC port $archOpcode(ppc64Opcode_cmovecr);
 10579     Label done;
 10580     __ bns($crx$$CondRegister, done);        // not unordered -> keep crx
 10581     __ li(R0, 0);
 10582     __ cmpwi($crx$$CondRegister, R0, 1);     // unordered -> set crx to 'less'
 10583     // TODO PPC port __ endgroup_if_needed(_size == 16);
 10584     __ bind(done);
 10585   %}
 10586   ins_pipe(pipe_class_default);
 10587 %}
 10589 // Compare floating, generate condition code.
 10590 instruct cmpF_reg_reg_Ex(flagsReg crx, regF src1, regF src2) %{
 10591   // FIXME: should we match 'If cmp (CmpF src1 src2))' ??
 10592   //
 10593   // The following code sequence occurs a lot in mpegaudio:
 10594   //
 10595   // block BXX:
 10596   // 0: instruct cmpFUnordered_reg_reg (cmpF_reg_reg-0):
 10597   //    cmpFUrd CCR6, F11, F9
 10598   // 4: instruct cmov_bns_less (cmpF_reg_reg-1):
 10599   //    cmov CCR6
 10600   // 8: instruct branchConSched:
 10601   //    B_FARle CCR6, B56  P=0.500000 C=-1.000000
 10602   match(Set crx (CmpF src1 src2));
 10603   ins_cost(DEFAULT_COST+BRANCH_COST);
 10605   format %{ "CmpF    $crx, $src1, $src2 \t// postalloc expanded" %}
 10606   postalloc_expand %{
 10607     //
 10608     // replaces
 10609     //
 10610     //   region  src1  src2
 10611     //    \       |     |
 10612     //     crx=cmpF_reg_reg
 10613     //
 10614     // with
 10615     //
 10616     //   region  src1  src2
 10617     //    \       |     |
 10618     //     crx=cmpFUnordered_reg_reg
 10619     //      |
 10620     //      ^  region
 10621     //      |   \
 10622     //      crx=cmov_bns_less
 10623     //
 10625     // Create new nodes.
 10626     MachNode *m1 = new (C) cmpFUnordered_reg_regNode();
 10627     MachNode *m2 = new (C) cmov_bns_lessNode();
 10629     // inputs for new nodes
 10630     m1->add_req(n_region, n_src1, n_src2);
 10631     m2->add_req(n_region);
 10632     m2->add_prec(m1);
 10634     // operands for new nodes
 10635     m1->_opnds[0] = op_crx;
 10636     m1->_opnds[1] = op_src1;
 10637     m1->_opnds[2] = op_src2;
 10638     m2->_opnds[0] = op_crx;
 10640     // registers for new nodes
 10641     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10642     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10644     // Insert new nodes.
 10645     nodes->push(m1);
 10646     nodes->push(m2);
 10647   %}
 10648 %}
 10650 // Compare float, generate -1,0,1
 10651 instruct cmpF3_reg_reg_ExEx(iRegIdst dst, regF src1, regF src2) %{
 10652   match(Set dst (CmpF3 src1 src2));
 10653   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10655   expand %{
 10656     flagsReg tmp1;
 10657     cmpFUnordered_reg_reg(tmp1, src1, src2);
 10658     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10659   %}
 10660 %}
 10662 instruct cmpDUnordered_reg_reg(flagsReg crx, regD src1, regD src2) %{
 10663   // no match-rule, false predicate
 10664   effect(DEF crx, USE src1, USE src2);
 10665   predicate(false);
 10667   format %{ "cmpFUrd $crx, $src1, $src2" %}
 10668   size(4);
 10669   ins_encode %{
 10670     // TODO: PPC port $archOpcode(ppc64Opcode_fcmpu);
 10671     __ fcmpu($crx$$CondRegister, $src1$$FloatRegister, $src2$$FloatRegister);
 10672   %}
 10673   ins_pipe(pipe_class_default);
 10674 %}
 10676 instruct cmpD_reg_reg_Ex(flagsReg crx, regD src1, regD src2) %{
 10677   match(Set crx (CmpD src1 src2));
 10678   ins_cost(DEFAULT_COST+BRANCH_COST);
 10680   format %{ "CmpD    $crx, $src1, $src2 \t// postalloc expanded" %}
 10681   postalloc_expand %{
 10682     //
 10683     // replaces
 10684     //
 10685     //   region  src1  src2
 10686     //    \       |     |
 10687     //     crx=cmpD_reg_reg
 10688     //
 10689     // with
 10690     //
 10691     //   region  src1  src2
 10692     //    \       |     |
 10693     //     crx=cmpDUnordered_reg_reg
 10694     //      |
 10695     //      ^  region
 10696     //      |   \
 10697     //      crx=cmov_bns_less
 10698     //
 10700     // create new nodes
 10701     MachNode *m1 = new (C) cmpDUnordered_reg_regNode();
 10702     MachNode *m2 = new (C) cmov_bns_lessNode();
 10704     // inputs for new nodes
 10705     m1->add_req(n_region, n_src1, n_src2);
 10706     m2->add_req(n_region);
 10707     m2->add_prec(m1);
 10709     // operands for new nodes
 10710     m1->_opnds[0] = op_crx;
 10711     m1->_opnds[1] = op_src1;
 10712     m1->_opnds[2] = op_src2;
 10713     m2->_opnds[0] = op_crx;
 10715     // registers for new nodes
 10716     ra_->set_pair(m1->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10717     ra_->set_pair(m2->_idx, ra_->get_reg_second(this), ra_->get_reg_first(this)); // crx
 10719     // Insert new nodes.
 10720     nodes->push(m1);
 10721     nodes->push(m2);
 10722   %}
 10723 %}
 10725 // Compare double, generate -1,0,1
 10726 instruct cmpD3_reg_reg_ExEx(iRegIdst dst, regD src1, regD src2) %{
 10727   match(Set dst (CmpD3 src1 src2));
 10728   ins_cost(DEFAULT_COST*5+BRANCH_COST);
 10730   expand %{
 10731     flagsReg tmp1;
 10732     cmpDUnordered_reg_reg(tmp1, src1, src2);
 10733     cmovI_conIvalueMinus1_conIvalue0_conIvalue1_Ex(dst, tmp1);
 10734   %}
 10735 %}
 10737 //----------Branches---------------------------------------------------------
 10738 // Jump
 10740 // Direct Branch.
 10741 instruct branch(label labl) %{
 10742   match(Goto);
 10743   effect(USE labl);
 10744   ins_cost(BRANCH_COST);
 10746   format %{ "B       $labl" %}
 10747   size(4);
 10748   ins_encode %{
 10749     // TODO: PPC port $archOpcode(ppc64Opcode_b);
 10750      Label d;    // dummy
 10751      __ bind(d);
 10752      Label* p = $labl$$label;
 10753      // `p' is `NULL' when this encoding class is used only to
 10754      // determine the size of the encoded instruction.
 10755      Label& l = (NULL == p)? d : *(p);
 10756      __ b(l);
 10757   %}
 10758   ins_pipe(pipe_class_default);
 10759 %}
 10761 // Conditional Near Branch
 10762 instruct branchCon(cmpOp cmp, flagsReg crx, label lbl) %{
 10763   // Same match rule as `branchConFar'.
 10764   match(If cmp crx);
 10765   effect(USE lbl);
 10766   ins_cost(BRANCH_COST);
 10768   // If set to 1 this indicates that the current instruction is a
 10769   // short variant of a long branch. This avoids using this
 10770   // instruction in first-pass matching. It will then only be used in
 10771   // the `Shorten_branches' pass.
 10772   ins_short_branch(1);
 10774   format %{ "B$cmp     $crx, $lbl" %}
 10775   size(4);
 10776   ins_encode( enc_bc(crx, cmp, lbl) );
 10777   ins_pipe(pipe_class_default);
 10778 %}
 10780 // This is for cases when the ppc64 `bc' instruction does not
 10781 // reach far enough. So we emit a far branch here, which is more
 10782 // expensive.
 10783 //
 10784 // Conditional Far Branch
 10785 instruct branchConFar(cmpOp cmp, flagsReg crx, label lbl) %{
 10786   // Same match rule as `branchCon'.
 10787   match(If cmp crx);
 10788   effect(USE crx, USE lbl);
 10789   predicate(!false /* TODO: PPC port HB_Schedule*/);
 10790   // Higher cost than `branchCon'.
 10791   ins_cost(5*BRANCH_COST);
 10793   // This is not a short variant of a branch, but the long variant.
 10794   ins_short_branch(0);
 10796   format %{ "B_FAR$cmp $crx, $lbl" %}
 10797   size(8);
 10798   ins_encode( enc_bc_far(crx, cmp, lbl) );
 10799   ins_pipe(pipe_class_default);
 10800 %}
 10802 // Conditional Branch used with Power6 scheduler (can be far or short).
 10803 instruct branchConSched(cmpOp cmp, flagsReg crx, label lbl) %{
 10804   // Same match rule as `branchCon'.
 10805   match(If cmp crx);
 10806   effect(USE crx, USE lbl);
 10807   predicate(false /* TODO: PPC port HB_Schedule*/);
 10808   // Higher cost than `branchCon'.
 10809   ins_cost(5*BRANCH_COST);
 10811   // Actually size doesn't depend on alignment but on shortening.
 10812   ins_variable_size_depending_on_alignment(true);
 10813   // long variant.
 10814   ins_short_branch(0);
 10816   format %{ "B_FAR$cmp $crx, $lbl" %}
 10817   size(8); // worst case
 10818   ins_encode( enc_bc_short_far(crx, cmp, lbl) );
 10819   ins_pipe(pipe_class_default);
 10820 %}
 10822 instruct branchLoopEnd(cmpOp cmp, flagsReg crx, label labl) %{
 10823   match(CountedLoopEnd cmp crx);
 10824   effect(USE labl);
 10825   ins_cost(BRANCH_COST);
 10827   // short variant.
 10828   ins_short_branch(1);
 10830   format %{ "B$cmp     $crx, $labl \t// counted loop end" %}
 10831   size(4);
 10832   ins_encode( enc_bc(crx, cmp, labl) );
 10833   ins_pipe(pipe_class_default);
 10834 %}
 10836 instruct branchLoopEndFar(cmpOp cmp, flagsReg crx, label labl) %{
 10837   match(CountedLoopEnd cmp crx);
 10838   effect(USE labl);
 10839   predicate(!false /* TODO: PPC port HB_Schedule */);
 10840   ins_cost(BRANCH_COST);
 10842   // Long variant.
 10843   ins_short_branch(0);
 10845   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10846   size(8);
 10847   ins_encode( enc_bc_far(crx, cmp, labl) );
 10848   ins_pipe(pipe_class_default);
 10849 %}
 10851 // Conditional Branch used with Power6 scheduler (can be far or short).
 10852 instruct branchLoopEndSched(cmpOp cmp, flagsReg crx, label labl) %{
 10853   match(CountedLoopEnd cmp crx);
 10854   effect(USE labl);
 10855   predicate(false /* TODO: PPC port HB_Schedule */);
 10856   // Higher cost than `branchCon'.
 10857   ins_cost(5*BRANCH_COST);
 10859   // Actually size doesn't depend on alignment but on shortening.
 10860   ins_variable_size_depending_on_alignment(true);
 10861   // Long variant.
 10862   ins_short_branch(0);
 10864   format %{ "B_FAR$cmp $crx, $labl \t// counted loop end" %}
 10865   size(8); // worst case
 10866   ins_encode( enc_bc_short_far(crx, cmp, labl) );
 10867   ins_pipe(pipe_class_default);
 10868 %}
 10870 // ============================================================================
 10871 // Java runtime operations, intrinsics and other complex operations.
 10873 // The 2nd slow-half of a subtype check. Scan the subklass's 2ndary superklass
 10874 // array for an instance of the superklass. Set a hidden internal cache on a
 10875 // hit (cache is checked with exposed code in gen_subtype_check()). Return
 10876 // not zero for a miss or zero for a hit. The encoding ALSO sets flags.
 10877 //
 10878 // GL TODO: Improve this.
 10879 // - result should not be a TEMP
 10880 // - Add match rule as on sparc avoiding additional Cmp.
 10881 instruct partialSubtypeCheck(iRegPdst result, iRegP_N2P subklass, iRegP_N2P superklass,
 10882                              iRegPdst tmp_klass, iRegPdst tmp_arrayptr) %{
 10883   match(Set result (PartialSubtypeCheck subklass superklass));
 10884   effect(TEMP result, TEMP tmp_klass, TEMP tmp_arrayptr);
 10885   ins_cost(DEFAULT_COST*10);
 10887   format %{ "PartialSubtypeCheck $result = ($subklass instanceOf $superklass) tmp: $tmp_klass, $tmp_arrayptr" %}
 10888   ins_encode %{
 10889     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10890     __ check_klass_subtype_slow_path($subklass$$Register, $superklass$$Register, $tmp_arrayptr$$Register,
 10891                                      $tmp_klass$$Register, NULL, $result$$Register);
 10892   %}
 10893   ins_pipe(pipe_class_default);
 10894 %}
 10896 // inlined locking and unlocking
 10898 instruct cmpFastLock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10899   match(Set crx (FastLock oop box));
 10900   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10901   // TODO PPC port predicate(!UseNewFastLockPPC64 || UseBiasedLocking);
 10903   format %{ "FASTLOCK  $oop, $box, $tmp1, $tmp2, $tmp3" %}
 10904   ins_encode %{
 10905     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10906     __ compiler_fast_lock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10907                                  $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10908     // If locking was successfull, crx should indicate 'EQ'.
 10909     // The compiler generates a branch to the runtime call to
 10910     // _complete_monitor_locking_Java for the case where crx is 'NE'.
 10911   %}
 10912   ins_pipe(pipe_class_compare);
 10913 %}
 10915 instruct cmpFastUnlock(flagsReg crx, iRegPdst oop, iRegPdst box, iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3) %{
 10916   match(Set crx (FastUnlock oop box));
 10917   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3);
 10919   format %{ "FASTUNLOCK  $oop, $box, $tmp1, $tmp2" %}
 10920   ins_encode %{
 10921     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10922     __ compiler_fast_unlock_object($crx$$CondRegister, $oop$$Register, $box$$Register,
 10923                                    $tmp3$$Register, $tmp1$$Register, $tmp2$$Register);
 10924     // If unlocking was successfull, crx should indicate 'EQ'.
 10925     // The compiler generates a branch to the runtime call to
 10926     // _complete_monitor_unlocking_Java for the case where crx is 'NE'.
 10927   %}
 10928   ins_pipe(pipe_class_compare);
 10929 %}
 10931 // Align address.
 10932 instruct align_addr(iRegPdst dst, iRegPsrc src, immLnegpow2 mask) %{
 10933   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
 10935   format %{ "ANDDI   $dst, $src, $mask \t// next aligned address" %}
 10936   size(4);
 10937   ins_encode %{
 10938     // TODO: PPC port $archOpcode(ppc64Opcode_rldicr);
 10939     __ clrrdi($dst$$Register, $src$$Register, log2_long((jlong)-$mask$$constant));
 10940   %}
 10941   ins_pipe(pipe_class_default);
 10942 %}
 10944 // Array size computation.
 10945 instruct array_size(iRegLdst dst, iRegPsrc end, iRegPsrc start) %{
 10946   match(Set dst (SubL (CastP2X end) (CastP2X start)));
 10948   format %{ "SUB     $dst, $end, $start \t// array size in bytes" %}
 10949   size(4);
 10950   ins_encode %{
 10951     // TODO: PPC port $archOpcode(ppc64Opcode_subf);
 10952     __ subf($dst$$Register, $start$$Register, $end$$Register);
 10953   %}
 10954   ins_pipe(pipe_class_default);
 10955 %}
 10957 // Clear-array with dynamic array-size.
 10958 instruct inlineCallClearArray(rarg1RegL cnt, rarg2RegP base, Universe dummy, regCTR ctr) %{
 10959   match(Set dummy (ClearArray cnt base));
 10960   effect(USE_KILL cnt, USE_KILL base, KILL ctr);
 10961   ins_cost(MEMORY_REF_COST);
 10963   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 10965   format %{ "ClearArray $cnt, $base" %}
 10966   ins_encode %{
 10967     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 10968     __ clear_memory_doubleword($base$$Register, $cnt$$Register); // kills cnt, base, R0
 10969   %}
 10970   ins_pipe(pipe_class_default);
 10971 %}
 10973 // String_IndexOf for needle of length 1.
 10974 //
 10975 // Match needle into immediate operands: no loadConP node needed. Saves one
 10976 // register and two instructions over string_indexOf_imm1Node.
 10977 //
 10978 // Assumes register result differs from all input registers.
 10979 //
 10980 // Preserves registers haystack, haycnt
 10981 // Kills     registers tmp1, tmp2
 10982 // Defines   registers result
 10983 //
 10984 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 10985 //
 10986 // Unfortunately this does not match too often. In many situations the AddP is used
 10987 // by several nodes, even several StrIndexOf nodes, breaking the match tree.
 10988 instruct string_indexOf_imm1_char(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 10989                                   immP needleImm, immL offsetImm, immI_1 needlecntImm,
 10990                                   iRegIdst tmp1, iRegIdst tmp2,
 10991                                   flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 10992   predicate(SpecialStringIndexOf);  // type check implicit by parameter type, See Matcher::match_rule_supported
 10993   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary (AddP needleImm offsetImm) needlecntImm)));
 10995   effect(TEMP result, TEMP tmp1, TEMP tmp2, KILL cr0, KILL cr1);
 10997   ins_cost(150);
 10998   format %{ "String IndexOf CSCL1 $haystack[0..$haycnt], $needleImm+$offsetImm[0..$needlecntImm]"
 10999             "-> $result \t// KILL $haycnt, $tmp1, $tmp2, $cr0, $cr1" %}
 11001   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted
 11002   ins_encode %{
 11003     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11004     immPOper *needleOper = (immPOper *)$needleImm;
 11005     const TypeOopPtr *t = needleOper->type()->isa_oopptr();
 11006     ciTypeArray* needle_values = t->const_oop()->as_type_array();  // Pointer to live char *
 11008     __ string_indexof_1($result$$Register,
 11009                         $haystack$$Register, $haycnt$$Register,
 11010                         R0, needle_values->char_at(0),
 11011                         $tmp1$$Register, $tmp2$$Register);
 11012   %}
 11013   ins_pipe(pipe_class_compare);
 11014 %}
 11016 // String_IndexOf for needle of length 1.
 11017 //
 11018 // Special case requires less registers and emits less instructions.
 11019 //
 11020 // Assumes register result differs from all input registers.
 11021 //
 11022 // Preserves registers haystack, haycnt
 11023 // Kills     registers tmp1, tmp2, needle
 11024 // Defines   registers result
 11025 //
 11026 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11027 instruct string_indexOf_imm1(iRegIdst result, iRegPsrc haystack, iRegIsrc haycnt,
 11028                              rscratch2RegP needle, immI_1 needlecntImm,
 11029                              iRegIdst tmp1, iRegIdst tmp2,
 11030                              flagsRegCR0 cr0, flagsRegCR1 cr1) %{
 11031   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 11032   effect(USE_KILL needle, /* TDEF needle, */ TEMP result,
 11033          TEMP tmp1, TEMP tmp2);
 11034   // Required for EA: check if it is still a type_array.
 11035   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 11036             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 11037   ins_cost(180);
 11039   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11041   format %{ "String IndexOf SCL1 $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 11042             " -> $result \t// KILL $haycnt, $needle, $tmp1, $tmp2, $cr0, $cr1" %}
 11043   ins_encode %{
 11044     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11045     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 11046     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 11047     guarantee(needle_values, "sanity");
 11048     if (needle_values != NULL) {
 11049       __ string_indexof_1($result$$Register,
 11050                           $haystack$$Register, $haycnt$$Register,
 11051                           R0, needle_values->char_at(0),
 11052                           $tmp1$$Register, $tmp2$$Register);
 11053     } else {
 11054       __ string_indexof_1($result$$Register,
 11055                           $haystack$$Register, $haycnt$$Register,
 11056                           $needle$$Register, 0,
 11057                           $tmp1$$Register, $tmp2$$Register);
 11059   %}
 11060   ins_pipe(pipe_class_compare);
 11061 %}
 11063 // String_IndexOf.
 11064 //
 11065 // Length of needle as immediate. This saves instruction loading constant needle
 11066 // length.
 11067 // @@@ TODO Specify rules for length < 8 or so, and roll out comparison of needle
 11068 // completely or do it in vector instruction. This should save registers for
 11069 // needlecnt and needle.
 11070 //
 11071 // Assumes register result differs from all input registers.
 11072 // Overwrites haycnt, needlecnt.
 11073 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11074 instruct string_indexOf_imm(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt,
 11075                             iRegPsrc needle, uimmI15 needlecntImm,
 11076                             iRegIdst tmp1, iRegIdst tmp2, iRegIdst tmp3, iRegIdst tmp4, iRegIdst tmp5,
 11077                             flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11078   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecntImm)));
 11079   effect(USE_KILL haycnt, /* better: TDEF haycnt, */ TEMP result,
 11080          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, KILL cr0, KILL cr1, KILL cr6);
 11081   // Required for EA: check if it is still a type_array.
 11082   predicate(SpecialStringIndexOf && n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop() &&
 11083             n->in(3)->in(1)->bottom_type()->is_aryptr()->const_oop()->is_type_array());
 11084   ins_cost(250);
 11086   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11088   format %{ "String IndexOf SCL $haystack[0..$haycnt], $needle[0..$needlecntImm]"
 11089             " -> $result \t// KILL $haycnt, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5, $cr0, $cr1" %}
 11090   ins_encode %{
 11091     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11092     Node *ndl = in(operand_index($needle));  // The node that defines needle.
 11093     ciTypeArray* needle_values = ndl->bottom_type()->is_aryptr()->const_oop()->as_type_array();
 11095     __ string_indexof($result$$Register,
 11096                       $haystack$$Register, $haycnt$$Register,
 11097                       $needle$$Register, needle_values, $tmp5$$Register, $needlecntImm$$constant,
 11098                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11099   %}
 11100   ins_pipe(pipe_class_compare);
 11101 %}
 11103 // StrIndexOf node.
 11104 //
 11105 // Assumes register result differs from all input registers.
 11106 // Overwrites haycnt, needlecnt.
 11107 // Use dst register classes if register gets killed, as it is the case for tmp registers!
 11108 instruct string_indexOf(iRegIdst result, iRegPsrc haystack, rscratch1RegI haycnt, iRegPsrc needle, rscratch2RegI needlecnt,
 11109                         iRegLdst tmp1, iRegLdst tmp2, iRegLdst tmp3, iRegLdst tmp4,
 11110                         flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6) %{
 11111   match(Set result (StrIndexOf (Binary haystack haycnt) (Binary needle needlecnt)));
 11112   effect(USE_KILL haycnt, USE_KILL needlecnt, /*better: TDEF haycnt, TDEF needlecnt,*/
 11113          TEMP result,
 11114          TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr0, KILL cr1, KILL cr6);
 11115   predicate(SpecialStringIndexOf);  // See Matcher::match_rule_supported.
 11116   ins_cost(300);
 11118   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11120   format %{ "String IndexOf $haystack[0..$haycnt], $needle[0..$needlecnt]"
 11121              " -> $result \t// KILL $haycnt, $needlecnt, $tmp1, $tmp2, $tmp3, $tmp4, $cr0, $cr1" %}
 11122   ins_encode %{
 11123     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11124     __ string_indexof($result$$Register,
 11125                       $haystack$$Register, $haycnt$$Register,
 11126                       $needle$$Register, NULL, $needlecnt$$Register, 0,  // needlecnt not constant.
 11127                       $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register);
 11128   %}
 11129   ins_pipe(pipe_class_compare);
 11130 %}
 11132 // String equals with immediate.
 11133 instruct string_equals_imm(iRegPsrc str1, iRegPsrc str2, uimmI15 cntImm, iRegIdst result,
 11134                            iRegPdst tmp1, iRegPdst tmp2,
 11135                            flagsRegCR0 cr0, flagsRegCR6 cr6, regCTR ctr) %{
 11136   match(Set result (StrEquals (Binary str1 str2) cntImm));
 11137   effect(TEMP result, TEMP tmp1, TEMP tmp2,
 11138          KILL cr0, KILL cr6, KILL ctr);
 11139   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11140   ins_cost(250);
 11142   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11144   format %{ "String Equals SCL [0..$cntImm]($str1),[0..$cntImm]($str2)"
 11145             " -> $result \t// KILL $cr0, $cr6, $ctr, TEMP $result, $tmp1, $tmp2" %}
 11146   ins_encode %{
 11147     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11148     __ char_arrays_equalsImm($str1$$Register, $str2$$Register, $cntImm$$constant,
 11149                              $result$$Register, $tmp1$$Register, $tmp2$$Register);
 11150   %}
 11151   ins_pipe(pipe_class_compare);
 11152 %}
 11154 // String equals.
 11155 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11156 instruct string_equals(iRegPsrc str1, iRegPsrc str2, iRegIsrc cnt, iRegIdst result,
 11157                        iRegPdst tmp1, iRegPdst tmp2, iRegPdst tmp3, iRegPdst tmp4, iRegPdst tmp5,
 11158                        flagsRegCR0 cr0, flagsRegCR1 cr1, flagsRegCR6 cr6, regCTR ctr) %{
 11159   match(Set result (StrEquals (Binary str1 str2) cnt));
 11160   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5,
 11161          KILL cr0, KILL cr1, KILL cr6, KILL ctr);
 11162   predicate(SpecialStringEquals);  // See Matcher::match_rule_supported.
 11163   ins_cost(300);
 11165   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11167   format %{ "String Equals [0..$cnt]($str1),[0..$cnt]($str2) -> $result"
 11168             " \t// KILL $cr0, $cr1, $cr6, $ctr, TEMP $result, $tmp1, $tmp2, $tmp3, $tmp4, $tmp5" %}
 11169   ins_encode %{
 11170     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11171     __ char_arrays_equals($str1$$Register, $str2$$Register, $cnt$$Register, $result$$Register,
 11172                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register, $tmp5$$Register);
 11173   %}
 11174   ins_pipe(pipe_class_compare);
 11175 %}
 11177 // String compare.
 11178 // Char[] pointers are passed in.
 11179 // Use dst register classes if register gets killed, as it is the case for TEMP operands!
 11180 instruct string_compare(rarg1RegP str1, rarg2RegP str2, rarg3RegI cnt1, rarg4RegI cnt2, iRegIdst result,
 11181                         iRegPdst tmp, flagsRegCR0 cr0, regCTR ctr) %{
 11182   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
 11183   effect(USE_KILL cnt1, USE_KILL cnt2, USE_KILL str1, USE_KILL str2, TEMP result, TEMP tmp, KILL cr0, KILL ctr);
 11184   ins_cost(300);
 11186   ins_alignment(8); // 'compute_padding()' gets called, up to this number-1 nops will get inserted.
 11188   format %{ "String Compare $str1[0..$cnt1], $str2[0..$cnt2] -> $result"
 11189             " \t// TEMP $tmp, $result KILLs $str1, $cnt1, $str2, $cnt2, $cr0, $ctr" %}
 11190   ins_encode %{
 11191     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11192     __ string_compare($str1$$Register, $str2$$Register, $cnt1$$Register, $cnt2$$Register,
 11193                       $result$$Register, $tmp$$Register);
 11194   %}
 11195   ins_pipe(pipe_class_compare);
 11196 %}
 11198 //---------- Min/Max Instructions ---------------------------------------------
 11200 instruct minI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11201   match(Set dst (MinI src1 src2));
 11202   ins_cost(DEFAULT_COST*6);
 11204   expand %{
 11205     iRegLdst src1s;
 11206     iRegLdst src2s;
 11207     iRegLdst diff;
 11208     iRegLdst sm;
 11209     iRegLdst doz; // difference or zero
 11210     convI2L_reg(src1s, src1); // Ensure proper sign extension.
 11211     convI2L_reg(src2s, src2); // Ensure proper sign extension.
 11212     subL_reg_reg(diff, src2s, src1s);
 11213     // Need to consider >=33 bit result, therefore we need signmaskL.
 11214     signmask64L_regL(sm, diff);
 11215     andL_reg_reg(doz, diff, sm); // <=0
 11216     addI_regL_regL(dst, doz, src1s);
 11217   %}
 11218 %}
 11220 instruct maxI_reg_reg_Ex(iRegIdst dst, iRegIsrc src1, iRegIsrc src2) %{
 11221   match(Set dst (MaxI src1 src2));
 11222   ins_cost(DEFAULT_COST*6);
 11224   expand %{
 11225     iRegLdst src1s;
 11226     iRegLdst src2s;
 11227     iRegLdst diff;
 11228     iRegLdst sm;
 11229     iRegLdst doz; // difference or zero
 11230     convI2L_reg(src1s, src1); // Ensure proper sign extension.
 11231     convI2L_reg(src2s, src2); // Ensure proper sign extension.
 11232     subL_reg_reg(diff, src2s, src1s);
 11233     // Need to consider >=33 bit result, therefore we need signmaskL.
 11234     signmask64L_regL(sm, diff);
 11235     andcL_reg_reg(doz, diff, sm); // >=0
 11236     addI_regL_regL(dst, doz, src1s);
 11237   %}
 11238 %}
 11240 //---------- Population Count Instructions ------------------------------------
 11242 // Popcnt for Power7.
 11243 instruct popCountI(iRegIdst dst, iRegIsrc src) %{
 11244   match(Set dst (PopCountI src));
 11245   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11246   ins_cost(DEFAULT_COST);
 11248   format %{ "POPCNTW $dst, $src" %}
 11249   size(4);
 11250   ins_encode %{
 11251     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11252     __ popcntw($dst$$Register, $src$$Register);
 11253   %}
 11254   ins_pipe(pipe_class_default);
 11255 %}
 11257 // Popcnt for Power7.
 11258 instruct popCountL(iRegIdst dst, iRegLsrc src) %{
 11259   predicate(UsePopCountInstruction && VM_Version::has_popcntw());
 11260   match(Set dst (PopCountL src));
 11261   ins_cost(DEFAULT_COST);
 11263   format %{ "POPCNTD $dst, $src" %}
 11264   size(4);
 11265   ins_encode %{
 11266     // TODO: PPC port $archOpcode(ppc64Opcode_popcntb);
 11267     __ popcntd($dst$$Register, $src$$Register);
 11268   %}
 11269   ins_pipe(pipe_class_default);
 11270 %}
 11272 instruct countLeadingZerosI(iRegIdst dst, iRegIsrc src) %{
 11273   match(Set dst (CountLeadingZerosI src));
 11274   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11275   ins_cost(DEFAULT_COST);
 11277   format %{ "CNTLZW  $dst, $src" %}
 11278   size(4);
 11279   ins_encode %{
 11280     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzw);
 11281     __ cntlzw($dst$$Register, $src$$Register);
 11282   %}
 11283   ins_pipe(pipe_class_default);
 11284 %}
 11286 instruct countLeadingZerosL(iRegIdst dst, iRegLsrc src) %{
 11287   match(Set dst (CountLeadingZerosL src));
 11288   predicate(UseCountLeadingZerosInstructionsPPC64);  // See Matcher::match_rule_supported.
 11289   ins_cost(DEFAULT_COST);
 11291   format %{ "CNTLZD  $dst, $src" %}
 11292   size(4);
 11293   ins_encode %{
 11294     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11295     __ cntlzd($dst$$Register, $src$$Register);
 11296   %}
 11297   ins_pipe(pipe_class_default);
 11298 %}
 11300 instruct countLeadingZerosP(iRegIdst dst, iRegPsrc src) %{
 11301   // no match-rule, false predicate
 11302   effect(DEF dst, USE src);
 11303   predicate(false);
 11305   format %{ "CNTLZD  $dst, $src" %}
 11306   size(4);
 11307   ins_encode %{
 11308     // TODO: PPC port $archOpcode(ppc64Opcode_cntlzd);
 11309     __ cntlzd($dst$$Register, $src$$Register);
 11310   %}
 11311   ins_pipe(pipe_class_default);
 11312 %}
 11314 instruct countTrailingZerosI_Ex(iRegIdst dst, iRegIsrc src) %{
 11315   match(Set dst (CountTrailingZerosI src));
 11316   predicate(UseCountLeadingZerosInstructionsPPC64);
 11317   ins_cost(DEFAULT_COST);
 11319   expand %{
 11320     immI16 imm1 %{ (int)-1 %}
 11321     immI16 imm2 %{ (int)32 %}
 11322     immI_minus1 m1 %{ -1 %}
 11323     iRegIdst tmpI1;
 11324     iRegIdst tmpI2;
 11325     iRegIdst tmpI3;
 11326     addI_reg_imm16(tmpI1, src, imm1);
 11327     andcI_reg_reg(tmpI2, src, m1, tmpI1);
 11328     countLeadingZerosI(tmpI3, tmpI2);
 11329     subI_imm16_reg(dst, imm2, tmpI3);
 11330   %}
 11331 %}
 11333 instruct countTrailingZerosL_Ex(iRegIdst dst, iRegLsrc src) %{
 11334   match(Set dst (CountTrailingZerosL src));
 11335   predicate(UseCountLeadingZerosInstructionsPPC64);
 11336   ins_cost(DEFAULT_COST);
 11338   expand %{
 11339     immL16 imm1 %{ (long)-1 %}
 11340     immI16 imm2 %{ (int)64 %}
 11341     iRegLdst tmpL1;
 11342     iRegLdst tmpL2;
 11343     iRegIdst tmpL3;
 11344     addL_reg_imm16(tmpL1, src, imm1);
 11345     andcL_reg_reg(tmpL2, tmpL1, src);
 11346     countLeadingZerosL(tmpL3, tmpL2);
 11347     subI_imm16_reg(dst, imm2, tmpL3);
 11348  %}
 11349 %}
 11351 // Expand nodes for byte_reverse_int.
 11352 instruct insrwi_a(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11353   effect(DEF dst, USE src, USE pos, USE shift);
 11354   predicate(false);
 11356   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11357   size(4);
 11358   ins_encode %{
 11359     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11360     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11361   %}
 11362   ins_pipe(pipe_class_default);
 11363 %}
 11365 // As insrwi_a, but with USE_DEF.
 11366 instruct insrwi(iRegIdst dst, iRegIsrc src, immI16 pos, immI16 shift) %{
 11367   effect(USE_DEF dst, USE src, USE pos, USE shift);
 11368   predicate(false);
 11370   format %{ "INSRWI  $dst, $src, $pos, $shift" %}
 11371   size(4);
 11372   ins_encode %{
 11373     // TODO: PPC port $archOpcode(ppc64Opcode_rlwimi);
 11374     __ insrwi($dst$$Register, $src$$Register, $shift$$constant, $pos$$constant);
 11375   %}
 11376   ins_pipe(pipe_class_default);
 11377 %}
 11379 // Just slightly faster than java implementation.
 11380 instruct bytes_reverse_int_Ex(iRegIdst dst, iRegIsrc src) %{
 11381   match(Set dst (ReverseBytesI src));
 11382   predicate(UseCountLeadingZerosInstructionsPPC64);
 11383   ins_cost(DEFAULT_COST);
 11385   expand %{
 11386     immI16 imm24 %{ (int) 24 %}
 11387     immI16 imm16 %{ (int) 16 %}
 11388     immI16  imm8 %{ (int)  8 %}
 11389     immI16  imm4 %{ (int)  4 %}
 11390     immI16  imm0 %{ (int)  0 %}
 11391     iRegLdst tmpI1;
 11392     iRegLdst tmpI2;
 11393     iRegLdst tmpI3;
 11395     urShiftI_reg_imm(tmpI1, src, imm24);
 11396     insrwi_a(dst, tmpI1, imm24, imm8);
 11397     urShiftI_reg_imm(tmpI2, src, imm16);
 11398     insrwi(dst, tmpI2, imm8, imm16);
 11399     urShiftI_reg_imm(tmpI3, src, imm8);
 11400     insrwi(dst, tmpI3, imm8, imm8);
 11401     insrwi(dst, src, imm0, imm8);
 11402   %}
 11403 %}
 11405 //---------- Replicate Vector Instructions ------------------------------------
 11407 // Insrdi does replicate if src == dst.
 11408 instruct repl32(iRegLdst dst) %{
 11409   predicate(false);
 11410   effect(USE_DEF dst);
 11412   format %{ "INSRDI  $dst, #0, $dst, #32 \t// replicate" %}
 11413   size(4);
 11414   ins_encode %{
 11415     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11416     __ insrdi($dst$$Register, $dst$$Register, 32, 0);
 11417   %}
 11418   ins_pipe(pipe_class_default);
 11419 %}
 11421 // Insrdi does replicate if src == dst.
 11422 instruct repl48(iRegLdst dst) %{
 11423   predicate(false);
 11424   effect(USE_DEF dst);
 11426   format %{ "INSRDI  $dst, #0, $dst, #48 \t// replicate" %}
 11427   size(4);
 11428   ins_encode %{
 11429     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11430     __ insrdi($dst$$Register, $dst$$Register, 48, 0);
 11431   %}
 11432   ins_pipe(pipe_class_default);
 11433 %}
 11435 // Insrdi does replicate if src == dst.
 11436 instruct repl56(iRegLdst dst) %{
 11437   predicate(false);
 11438   effect(USE_DEF dst);
 11440   format %{ "INSRDI  $dst, #0, $dst, #56 \t// replicate" %}
 11441   size(4);
 11442   ins_encode %{
 11443     // TODO: PPC port $archOpcode(ppc64Opcode_rldimi);
 11444     __ insrdi($dst$$Register, $dst$$Register, 56, 0);
 11445   %}
 11446   ins_pipe(pipe_class_default);
 11447 %}
 11449 instruct repl8B_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11450   match(Set dst (ReplicateB src));
 11451   predicate(n->as_Vector()->length() == 8);
 11452   expand %{
 11453     moveReg(dst, src);
 11454     repl56(dst);
 11455     repl48(dst);
 11456     repl32(dst);
 11457   %}
 11458 %}
 11460 instruct repl8B_immI0(iRegLdst dst, immI_0 zero) %{
 11461   match(Set dst (ReplicateB zero));
 11462   predicate(n->as_Vector()->length() == 8);
 11463   format %{ "LI      $dst, #0 \t// replicate8B" %}
 11464   size(4);
 11465   ins_encode %{
 11466     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11467     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11468   %}
 11469   ins_pipe(pipe_class_default);
 11470 %}
 11472 instruct repl8B_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11473   match(Set dst (ReplicateB src));
 11474   predicate(n->as_Vector()->length() == 8);
 11475   format %{ "LI      $dst, #-1 \t// replicate8B" %}
 11476   size(4);
 11477   ins_encode %{
 11478     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11479     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11480   %}
 11481   ins_pipe(pipe_class_default);
 11482 %}
 11484 instruct repl4S_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11485   match(Set dst (ReplicateS src));
 11486   predicate(n->as_Vector()->length() == 4);
 11487   expand %{
 11488     moveReg(dst, src);
 11489     repl48(dst);
 11490     repl32(dst);
 11491   %}
 11492 %}
 11494 instruct repl4S_immI0(iRegLdst dst, immI_0 zero) %{
 11495   match(Set dst (ReplicateS zero));
 11496   predicate(n->as_Vector()->length() == 4);
 11497   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11498   size(4);
 11499   ins_encode %{
 11500     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11501     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11502   %}
 11503   ins_pipe(pipe_class_default);
 11504 %}
 11506 instruct repl4S_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11507   match(Set dst (ReplicateS src));
 11508   predicate(n->as_Vector()->length() == 4);
 11509   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11510   size(4);
 11511   ins_encode %{
 11512     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11513     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11514   %}
 11515   ins_pipe(pipe_class_default);
 11516 %}
 11518 instruct repl2I_reg_Ex(iRegLdst dst, iRegIsrc src) %{
 11519   match(Set dst (ReplicateI src));
 11520   predicate(n->as_Vector()->length() == 2);
 11521   ins_cost(2 * DEFAULT_COST);
 11522   expand %{
 11523     moveReg(dst, src);
 11524     repl32(dst);
 11525   %}
 11526 %}
 11528 instruct repl2I_immI0(iRegLdst dst, immI_0 zero) %{
 11529   match(Set dst (ReplicateI zero));
 11530   predicate(n->as_Vector()->length() == 2);
 11531   format %{ "LI      $dst, #0 \t// replicate4C" %}
 11532   size(4);
 11533   ins_encode %{
 11534     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11535     __ li($dst$$Register, (int)((short)($zero$$constant & 0xFFFF)));
 11536   %}
 11537   ins_pipe(pipe_class_default);
 11538 %}
 11540 instruct repl2I_immIminus1(iRegLdst dst, immI_minus1 src) %{
 11541   match(Set dst (ReplicateI src));
 11542   predicate(n->as_Vector()->length() == 2);
 11543   format %{ "LI      $dst, -1 \t// replicate4C" %}
 11544   size(4);
 11545   ins_encode %{
 11546     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11547     __ li($dst$$Register, (int)((short)($src$$constant & 0xFFFF)));
 11548   %}
 11549   ins_pipe(pipe_class_default);
 11550 %}
 11552 // Move float to int register via stack, replicate.
 11553 instruct repl2F_reg_Ex(iRegLdst dst, regF src) %{
 11554   match(Set dst (ReplicateF src));
 11555   predicate(n->as_Vector()->length() == 2);
 11556   ins_cost(2 * MEMORY_REF_COST + DEFAULT_COST);
 11557   expand %{
 11558     stackSlotL tmpS;
 11559     iRegIdst tmpI;
 11560     moveF2I_reg_stack(tmpS, src);   // Move float to stack.
 11561     moveF2I_stack_reg(tmpI, tmpS);  // Move stack to int reg.
 11562     moveReg(dst, tmpI);             // Move int to long reg.
 11563     repl32(dst);                    // Replicate bitpattern.
 11564   %}
 11565 %}
 11567 // Replicate scalar constant to packed float values in Double register
 11568 instruct repl2F_immF_Ex(iRegLdst dst, immF src) %{
 11569   match(Set dst (ReplicateF src));
 11570   predicate(n->as_Vector()->length() == 2);
 11571   ins_cost(5 * DEFAULT_COST);
 11573   format %{ "LD      $dst, offset, $constanttablebase\t// load replicated float $src $src from table, postalloc expanded" %}
 11574   postalloc_expand( postalloc_expand_load_replF_constant(dst, src, constanttablebase) );
 11575 %}
 11577 // Replicate scalar zero constant to packed float values in Double register
 11578 instruct repl2F_immF0(iRegLdst dst, immF_0 zero) %{
 11579   match(Set dst (ReplicateF zero));
 11580   predicate(n->as_Vector()->length() == 2);
 11582   format %{ "LI      $dst, #0 \t// replicate2F" %}
 11583   ins_encode %{
 11584     // TODO: PPC port $archOpcode(ppc64Opcode_addi);
 11585     __ li($dst$$Register, 0x0);
 11586   %}
 11587   ins_pipe(pipe_class_default);
 11588 %}
 11590 // ============================================================================
 11591 // Safepoint Instruction
 11593 instruct safePoint_poll(iRegPdst poll) %{
 11594   match(SafePoint poll);
 11595   predicate(LoadPollAddressFromThread);
 11597   // It caused problems to add the effect that r0 is killed, but this
 11598   // effect no longer needs to be mentioned, since r0 is not contained
 11599   // in a reg_class.
 11601   format %{ "LD      R0, #0, $poll \t// Safepoint poll for GC" %}
 11602   size(4);
 11603   ins_encode( enc_poll(0x0, poll) );
 11604   ins_pipe(pipe_class_default);
 11605 %}
 11607 // Safepoint without per-thread support. Load address of page to poll
 11608 // as constant.
 11609 // Rscratch2RegP is R12.
 11610 // LoadConPollAddr node is added in pd_post_matching_hook(). It must be
 11611 // a seperate node so that the oop map is at the right location.
 11612 instruct safePoint_poll_conPollAddr(rscratch2RegP poll) %{
 11613   match(SafePoint poll);
 11614   predicate(!LoadPollAddressFromThread);
 11616   // It caused problems to add the effect that r0 is killed, but this
 11617   // effect no longer needs to be mentioned, since r0 is not contained
 11618   // in a reg_class.
 11620   format %{ "LD      R0, #0, R12 \t// Safepoint poll for GC" %}
 11621   ins_encode( enc_poll(0x0, poll) );
 11622   ins_pipe(pipe_class_default);
 11623 %}
 11625 // ============================================================================
 11626 // Call Instructions
 11628 // Call Java Static Instruction
 11630 // Schedulable version of call static node.
 11631 instruct CallStaticJavaDirect(method meth) %{
 11632   match(CallStaticJava);
 11633   effect(USE meth);
 11634   predicate(!((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11635   ins_cost(CALL_COST);
 11637   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11639   format %{ "CALL,static $meth \t// ==> " %}
 11640   size(4);
 11641   ins_encode( enc_java_static_call(meth) );
 11642   ins_pipe(pipe_class_call);
 11643 %}
 11645 // Schedulable version of call static node.
 11646 instruct CallStaticJavaDirectHandle(method meth) %{
 11647   match(CallStaticJava);
 11648   effect(USE meth);
 11649   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
 11650   ins_cost(CALL_COST);
 11652   ins_num_consts(3 /* up to 3 patchable constants: inline cache, 2 call targets. */);
 11654   format %{ "CALL,static $meth \t// ==> " %}
 11655   ins_encode( enc_java_handle_call(meth) );
 11656   ins_pipe(pipe_class_call);
 11657 %}
 11659 // Call Java Dynamic Instruction
 11661 // Used by postalloc expand of CallDynamicJavaDirectSchedEx (actual call).
 11662 // Loading of IC was postalloc expanded. The nodes loading the IC are reachable
 11663 // via fields ins_field_load_ic_hi_node and ins_field_load_ic_node.
 11664 // The call destination must still be placed in the constant pool.
 11665 instruct CallDynamicJavaDirectSched(method meth) %{
 11666   match(CallDynamicJava); // To get all the data fields we need ...
 11667   effect(USE meth);
 11668   predicate(false);       // ... but never match.
 11670   ins_field_load_ic_hi_node(loadConL_hiNode*);
 11671   ins_field_load_ic_node(loadConLNode*);
 11672   ins_num_consts(1 /* 1 patchable constant: call destination */);
 11674   format %{ "BL        \t// dynamic $meth ==> " %}
 11675   size(4);
 11676   ins_encode( enc_java_dynamic_call_sched(meth) );
 11677   ins_pipe(pipe_class_call);
 11678 %}
 11680 // Schedulable (i.e. postalloc expanded) version of call dynamic java.
 11681 // We use postalloc expanded calls if we use inline caches
 11682 // and do not update method data.
 11683 //
 11684 // This instruction has two constants: inline cache (IC) and call destination.
 11685 // Loading the inline cache will be postalloc expanded, thus leaving a call with
 11686 // one constant.
 11687 instruct CallDynamicJavaDirectSched_Ex(method meth) %{
 11688   match(CallDynamicJava);
 11689   effect(USE meth);
 11690   predicate(UseInlineCaches);
 11691   ins_cost(CALL_COST);
 11693   ins_num_consts(2 /* 2 patchable constants: inline cache, call destination. */);
 11695   format %{ "CALL,dynamic $meth \t// postalloc expanded" %}
 11696   postalloc_expand( postalloc_expand_java_dynamic_call_sched(meth, constanttablebase) );
 11697 %}
 11699 // Compound version of call dynamic java
 11700 // We use postalloc expanded calls if we use inline caches
 11701 // and do not update method data.
 11702 instruct CallDynamicJavaDirect(method meth) %{
 11703   match(CallDynamicJava);
 11704   effect(USE meth);
 11705   predicate(!UseInlineCaches);
 11706   ins_cost(CALL_COST);
 11708   // Enc_java_to_runtime_call needs up to 4 constants (method data oop).
 11709   ins_num_consts(4);
 11711   format %{ "CALL,dynamic $meth \t// ==> " %}
 11712   ins_encode( enc_java_dynamic_call(meth, constanttablebase) );
 11713   ins_pipe(pipe_class_call);
 11714 %}
 11716 // Call Runtime Instruction
 11718 instruct CallRuntimeDirect(method meth) %{
 11719   match(CallRuntime);
 11720   effect(USE meth);
 11721   ins_cost(CALL_COST);
 11723   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11724   // env for callee, C-toc.
 11725   ins_num_consts(3);
 11727   format %{ "CALL,runtime" %}
 11728   ins_encode( enc_java_to_runtime_call(meth) );
 11729   ins_pipe(pipe_class_call);
 11730 %}
 11732 // Call Leaf
 11734 // Used by postalloc expand of CallLeafDirect_Ex (mtctr).
 11735 instruct CallLeafDirect_mtctr(iRegLdst dst, iRegLsrc src) %{
 11736   effect(DEF dst, USE src);
 11738   ins_num_consts(1);
 11740   format %{ "MTCTR   $src" %}
 11741   size(4);
 11742   ins_encode( enc_leaf_call_mtctr(src) );
 11743   ins_pipe(pipe_class_default);
 11744 %}
 11746 // Used by postalloc expand of CallLeafDirect_Ex (actual call).
 11747 instruct CallLeafDirect(method meth) %{
 11748   match(CallLeaf);   // To get the data all the data fields we need ...
 11749   effect(USE meth);
 11750   predicate(false);  // but never match.
 11752   format %{ "BCTRL     \t// leaf call $meth ==> " %}
 11753   size(4);
 11754   ins_encode %{
 11755     // TODO: PPC port $archOpcode(ppc64Opcode_bctrl);
 11756     __ bctrl();
 11757   %}
 11758   ins_pipe(pipe_class_call);
 11759 %}
 11761 // postalloc expand of CallLeafDirect.
 11762 // Load adress to call from TOC, then bl to it.
 11763 instruct CallLeafDirect_Ex(method meth) %{
 11764   match(CallLeaf);
 11765   effect(USE meth);
 11766   ins_cost(CALL_COST);
 11768   // Postalloc_expand_java_to_runtime_call needs up to 3 constants: call target,
 11769   // env for callee, C-toc.
 11770   ins_num_consts(3);
 11772   format %{ "CALL,runtime leaf $meth \t// postalloc expanded" %}
 11773   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11774 %}
 11776 // Call runtime without safepoint - same as CallLeaf.
 11777 // postalloc expand of CallLeafNoFPDirect.
 11778 // Load adress to call from TOC, then bl to it.
 11779 instruct CallLeafNoFPDirect_Ex(method meth) %{
 11780   match(CallLeafNoFP);
 11781   effect(USE meth);
 11782   ins_cost(CALL_COST);
 11784   // Enc_java_to_runtime_call needs up to 3 constants: call target,
 11785   // env for callee, C-toc.
 11786   ins_num_consts(3);
 11788   format %{ "CALL,runtime leaf nofp $meth \t// postalloc expanded" %}
 11789   postalloc_expand( postalloc_expand_java_to_runtime_call(meth, constanttablebase) );
 11790 %}
 11792 // Tail Call; Jump from runtime stub to Java code.
 11793 // Also known as an 'interprocedural jump'.
 11794 // Target of jump will eventually return to caller.
 11795 // TailJump below removes the return address.
 11796 instruct TailCalljmpInd(iRegPdstNoScratch jump_target, inline_cache_regP method_oop) %{
 11797   match(TailCall jump_target method_oop);
 11798   ins_cost(CALL_COST);
 11800   format %{ "MTCTR   $jump_target \t// $method_oop holds method oop\n\t"
 11801             "BCTR         \t// tail call" %}
 11802   size(8);
 11803   ins_encode %{
 11804     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11805     __ mtctr($jump_target$$Register);
 11806     __ bctr();
 11807   %}
 11808   ins_pipe(pipe_class_call);
 11809 %}
 11811 // Return Instruction
 11812 instruct Ret() %{
 11813   match(Return);
 11814   format %{ "BLR      \t// branch to link register" %}
 11815   size(4);
 11816   ins_encode %{
 11817     // TODO: PPC port $archOpcode(ppc64Opcode_blr);
 11818     // LR is restored in MachEpilogNode. Just do the RET here.
 11819     __ blr();
 11820   %}
 11821   ins_pipe(pipe_class_default);
 11822 %}
 11824 // Tail Jump; remove the return address; jump to target.
 11825 // TailCall above leaves the return address around.
 11826 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
 11827 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
 11828 // "restore" before this instruction (in Epilogue), we need to materialize it
 11829 // in %i0.
 11830 instruct tailjmpInd(iRegPdstNoScratch jump_target, rarg1RegP ex_oop) %{
 11831   match(TailJump jump_target ex_oop);
 11832   ins_cost(CALL_COST);
 11834   format %{ "LD      R4_ARG2 = LR\n\t"
 11835             "MTCTR   $jump_target\n\t"
 11836             "BCTR     \t// TailJump, exception oop: $ex_oop" %}
 11837   size(12);
 11838   ins_encode %{
 11839     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11840     __ ld(R4_ARG2/* issuing pc */, _abi(lr), R1_SP);
 11841     __ mtctr($jump_target$$Register);
 11842     __ bctr();
 11843   %}
 11844   ins_pipe(pipe_class_call);
 11845 %}
 11847 // Create exception oop: created by stack-crawling runtime code.
 11848 // Created exception is now available to this handler, and is setup
 11849 // just prior to jumping to this handler. No code emitted.
 11850 instruct CreateException(rarg1RegP ex_oop) %{
 11851   match(Set ex_oop (CreateEx));
 11852   ins_cost(0);
 11854   format %{ " -- \t// exception oop; no code emitted" %}
 11855   size(0);
 11856   ins_encode( /*empty*/ );
 11857   ins_pipe(pipe_class_default);
 11858 %}
 11860 // Rethrow exception: The exception oop will come in the first
 11861 // argument position. Then JUMP (not call) to the rethrow stub code.
 11862 instruct RethrowException() %{
 11863   match(Rethrow);
 11864   ins_cost(CALL_COST);
 11866   format %{ "Jmp     rethrow_stub" %}
 11867   ins_encode %{
 11868     // TODO: PPC port $archOpcode(ppc64Opcode_compound);
 11869     cbuf.set_insts_mark();
 11870     __ b64_patchable((address)OptoRuntime::rethrow_stub(), relocInfo::runtime_call_type);
 11871   %}
 11872   ins_pipe(pipe_class_call);
 11873 %}
 11875 // Die now.
 11876 instruct ShouldNotReachHere() %{
 11877   match(Halt);
 11878   ins_cost(CALL_COST);
 11880   format %{ "ShouldNotReachHere" %}
 11881   size(4);
 11882   ins_encode %{
 11883     // TODO: PPC port $archOpcode(ppc64Opcode_tdi);
 11884     __ trap_should_not_reach_here();
 11885   %}
 11886   ins_pipe(pipe_class_default);
 11887 %}
 11889 // This name is KNOWN by the ADLC and cannot be changed.  The ADLC
 11890 // forces a 'TypeRawPtr::BOTTOM' output type for this guy.
 11891 // Get a DEF on threadRegP, no costs, no encoding, use
 11892 // 'ins_should_rematerialize(true)' to avoid spilling.
 11893 instruct tlsLoadP(threadRegP dst) %{
 11894   match(Set dst (ThreadLocal));
 11895   ins_cost(0);
 11897   ins_should_rematerialize(true);
 11899   format %{ " -- \t// $dst=Thread::current(), empty" %}
 11900   size(0);
 11901   ins_encode( /*empty*/ );
 11902   ins_pipe(pipe_class_empty);
 11903 %}
 11905 //---Some PPC specific nodes---------------------------------------------------
 11907 // Stop a group.
 11908 instruct endGroup() %{
 11909   ins_cost(0);
 11911   ins_is_nop(true);
 11913   format %{ "End Bundle (ori r1, r1, 0)" %}
 11914   size(4);
 11915   ins_encode %{
 11916     // TODO: PPC port $archOpcode(ppc64Opcode_endgroup);
 11917     __ endgroup();
 11918   %}
 11919   ins_pipe(pipe_class_default);
 11920 %}
 11922 // Nop instructions
 11924 instruct fxNop() %{
 11925   ins_cost(0);
 11927   ins_is_nop(true);
 11929   format %{ "fxNop" %}
 11930   size(4);
 11931   ins_encode %{
 11932     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11933     __ nop();
 11934   %}
 11935   ins_pipe(pipe_class_default);
 11936 %}
 11938 instruct fpNop0() %{
 11939   ins_cost(0);
 11941   ins_is_nop(true);
 11943   format %{ "fpNop0" %}
 11944   size(4);
 11945   ins_encode %{
 11946     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11947     __ fpnop0();
 11948   %}
 11949   ins_pipe(pipe_class_default);
 11950 %}
 11952 instruct fpNop1() %{
 11953   ins_cost(0);
 11955   ins_is_nop(true);
 11957   format %{ "fpNop1" %}
 11958   size(4);
 11959   ins_encode %{
 11960     // TODO: PPC port $archOpcode(ppc64Opcode_fmr);
 11961     __ fpnop1();
 11962   %}
 11963   ins_pipe(pipe_class_default);
 11964 %}
 11966 instruct brNop0() %{
 11967   ins_cost(0);
 11968   size(4);
 11969   format %{ "brNop0" %}
 11970   ins_encode %{
 11971     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11972     __ brnop0();
 11973   %}
 11974   ins_is_nop(true);
 11975   ins_pipe(pipe_class_default);
 11976 %}
 11978 instruct brNop1() %{
 11979   ins_cost(0);
 11981   ins_is_nop(true);
 11983   format %{ "brNop1" %}
 11984   size(4);
 11985   ins_encode %{
 11986     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 11987     __ brnop1();
 11988   %}
 11989   ins_pipe(pipe_class_default);
 11990 %}
 11992 instruct brNop2() %{
 11993   ins_cost(0);
 11995   ins_is_nop(true);
 11997   format %{ "brNop2" %}
 11998   size(4);
 11999   ins_encode %{
 12000     // TODO: PPC port $archOpcode(ppc64Opcode_mcrf);
 12001     __ brnop2();
 12002   %}
 12003   ins_pipe(pipe_class_default);
 12004 %}
 12006 //----------PEEPHOLE RULES-----------------------------------------------------
 12007 // These must follow all instruction definitions as they use the names
 12008 // defined in the instructions definitions.
 12009 //
 12010 // peepmatch ( root_instr_name [preceeding_instruction]* );
 12011 //
 12012 // peepconstraint %{
 12013 // (instruction_number.operand_name relational_op instruction_number.operand_name
 12014 //  [, ...] );
 12015 // // instruction numbers are zero-based using left to right order in peepmatch
 12016 //
 12017 // peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
 12018 // // provide an instruction_number.operand_name for each operand that appears
 12019 // // in the replacement instruction's match rule
 12020 //
 12021 // ---------VM FLAGS---------------------------------------------------------
 12022 //
 12023 // All peephole optimizations can be turned off using -XX:-OptoPeephole
 12024 //
 12025 // Each peephole rule is given an identifying number starting with zero and
 12026 // increasing by one in the order seen by the parser. An individual peephole
 12027 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
 12028 // on the command-line.
 12029 //
 12030 // ---------CURRENT LIMITATIONS----------------------------------------------
 12031 //
 12032 // Only match adjacent instructions in same basic block
 12033 // Only equality constraints
 12034 // Only constraints between operands, not (0.dest_reg == EAX_enc)
 12035 // Only one replacement instruction
 12036 //
 12037 // ---------EXAMPLE----------------------------------------------------------
 12038 //
 12039 // // pertinent parts of existing instructions in architecture description
 12040 // instruct movI(eRegI dst, eRegI src) %{
 12041 //   match(Set dst (CopyI src));
 12042 // %}
 12043 //
 12044 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
 12045 //   match(Set dst (AddI dst src));
 12046 //   effect(KILL cr);
 12047 // %}
 12048 //
 12049 // // Change (inc mov) to lea
 12050 // peephole %{
 12051 //   // increment preceeded by register-register move
 12052 //   peepmatch ( incI_eReg movI );
 12053 //   // require that the destination register of the increment
 12054 //   // match the destination register of the move
 12055 //   peepconstraint ( 0.dst == 1.dst );
 12056 //   // construct a replacement instruction that sets
 12057 //   // the destination to ( move's source register + one )
 12058 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12059 // %}
 12060 //
 12061 // Implementation no longer uses movX instructions since
 12062 // machine-independent system no longer uses CopyX nodes.
 12063 //
 12064 // peephole %{
 12065 //   peepmatch ( incI_eReg movI );
 12066 //   peepconstraint ( 0.dst == 1.dst );
 12067 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12068 // %}
 12069 //
 12070 // peephole %{
 12071 //   peepmatch ( decI_eReg movI );
 12072 //   peepconstraint ( 0.dst == 1.dst );
 12073 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12074 // %}
 12075 //
 12076 // peephole %{
 12077 //   peepmatch ( addI_eReg_imm movI );
 12078 //   peepconstraint ( 0.dst == 1.dst );
 12079 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
 12080 // %}
 12081 //
 12082 // peephole %{
 12083 //   peepmatch ( addP_eReg_imm movP );
 12084 //   peepconstraint ( 0.dst == 1.dst );
 12085 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
 12086 // %}
 12088 // // Change load of spilled value to only a spill
 12089 // instruct storeI(memory mem, eRegI src) %{
 12090 //   match(Set mem (StoreI mem src));
 12091 // %}
 12092 //
 12093 // instruct loadI(eRegI dst, memory mem) %{
 12094 //   match(Set dst (LoadI mem));
 12095 // %}
 12096 //
 12097 peephole %{
 12098   peepmatch ( loadI storeI );
 12099   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12100   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
 12101 %}
 12103 peephole %{
 12104   peepmatch ( loadL storeL );
 12105   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
 12106   peepreplace ( storeL( 1.mem 1.mem 1.src ) );
 12107 %}
 12109 peephole %{
 12110   peepmatch ( loadP storeP );
 12111   peepconstraint ( 1.src == 0.dst, 1.dst == 0.mem );
 12112   peepreplace ( storeP( 1.dst 1.dst 1.src ) );
 12113 %}
 12115 //----------SMARTSPILL RULES---------------------------------------------------
 12116 // These must follow all instruction definitions as they use the names
 12117 // defined in the instructions definitions.

mercurial