src/cpu/ppc/vm/templateInterpreter_ppc.cpp

Wed, 15 Apr 2020 11:49:55 +0800

author
aoqi
date
Wed, 15 Apr 2020 11:49:55 +0800
changeset 9852
70aa912cebe5
parent 9572
624a0741915c
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2013, 2014 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #ifndef CC_INTERP
    28 #include "asm/macroAssembler.inline.hpp"
    29 #include "interpreter/bytecodeHistogram.hpp"
    30 #include "interpreter/interpreter.hpp"
    31 #include "interpreter/interpreterGenerator.hpp"
    32 #include "interpreter/interpreterRuntime.hpp"
    33 #include "interpreter/templateTable.hpp"
    34 #include "oops/arrayOop.hpp"
    35 #include "oops/methodData.hpp"
    36 #include "oops/method.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "prims/jvmtiExport.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/arguments.hpp"
    41 #include "runtime/deoptimization.hpp"
    42 #include "runtime/frame.inline.hpp"
    43 #include "runtime/sharedRuntime.hpp"
    44 #include "runtime/stubRoutines.hpp"
    45 #include "runtime/synchronizer.hpp"
    46 #include "runtime/timer.hpp"
    47 #include "runtime/vframeArray.hpp"
    48 #include "utilities/debug.hpp"
    49 #include "utilities/macros.hpp"
    51 #undef __
    52 #define __ _masm->
    54 #ifdef PRODUCT
    55 #define BLOCK_COMMENT(str) /* nothing */
    56 #else
    57 #define BLOCK_COMMENT(str) __ block_comment(str)
    58 #endif
    60 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
    62 //-----------------------------------------------------------------------------
    64 // Actually we should never reach here since we do stack overflow checks before pushing any frame.
    65 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    66   address entry = __ pc();
    67   __ unimplemented("generate_StackOverflowError_handler");
    68   return entry;
    69 }
    71 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
    72   address entry = __ pc();
    73   __ empty_expression_stack();
    74   __ load_const_optimized(R4_ARG2, (address) name);
    75   // Index is in R17_tos.
    76   __ mr(R5_ARG3, R17_tos);
    77   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
    78   return entry;
    79 }
    81 #if 0
    82 // Call special ClassCastException constructor taking object to cast
    83 // and target class as arguments.
    84 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
    85   address entry = __ pc();
    87   // Expression stack must be empty before entering the VM if an
    88   // exception happened.
    89   __ empty_expression_stack();
    91   // Thread will be loaded to R3_ARG1.
    92   // Target class oop is in register R5_ARG3 by convention!
    93   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
    94   // Above call must not return here since exception pending.
    95   DEBUG_ONLY(__ should_not_reach_here();)
    96   return entry;
    97 }
    98 #endif
   100 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
   101   address entry = __ pc();
   102   // Expression stack must be empty before entering the VM if an
   103   // exception happened.
   104   __ empty_expression_stack();
   106   // Load exception object.
   107   // Thread will be loaded to R3_ARG1.
   108   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
   109 #ifdef ASSERT
   110   // Above call must not return here since exception pending.
   111   __ should_not_reach_here();
   112 #endif
   113   return entry;
   114 }
   116 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
   117   address entry = __ pc();
   118   //__ untested("generate_exception_handler_common");
   119   Register Rexception = R17_tos;
   121   // Expression stack must be empty before entering the VM if an exception happened.
   122   __ empty_expression_stack();
   124   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
   125   if (pass_oop) {
   126     __ mr(R5_ARG3, Rexception);
   127     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
   128   } else {
   129     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
   130     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
   131   }
   133   // Throw exception.
   134   __ mr(R3_ARG1, Rexception);
   135   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
   136   __ mtctr(R11_scratch1);
   137   __ bctr();
   139   return entry;
   140 }
   142 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
   143   address entry = __ pc();
   144   __ unimplemented("generate_continuation_for");
   145   return entry;
   146 }
   148 // This entry is returned to when a call returns to the interpreter.
   149 // When we arrive here, we expect that the callee stack frame is already popped.
   150 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
   151   address entry = __ pc();
   153   // Move the value out of the return register back to the TOS cache of current frame.
   154   switch (state) {
   155     case ltos:
   156     case btos:
   157     case ztos:
   158     case ctos:
   159     case stos:
   160     case atos:
   161     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
   162     case ftos:
   163     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
   164     case vtos: break;                           // Nothing to do, this was a void return.
   165     default  : ShouldNotReachHere();
   166   }
   168   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
   169   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
   170   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
   172   // Compiled code destroys templateTableBase, reload.
   173   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
   175   if (state == atos) {
   176     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
   177   }
   179   const Register cache = R11_scratch1;
   180   const Register size  = R12_scratch2;
   181   __ get_cache_and_index_at_bcp(cache, 1, index_size);
   183   // Get least significant byte of 64 bit value:
   184 #if defined(VM_LITTLE_ENDIAN)
   185   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
   186 #else
   187   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
   188 #endif
   189   __ sldi(size, size, Interpreter::logStackElementSize);
   190   __ add(R15_esp, R15_esp, size);
   191   __ dispatch_next(state, step);
   192   return entry;
   193 }
   195 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
   196   address entry = __ pc();
   197   // If state != vtos, we're returning from a native method, which put it's result
   198   // into the result register. So move the value out of the return register back
   199   // to the TOS cache of current frame.
   201   switch (state) {
   202     case ltos:
   203     case btos:
   204     case ztos:
   205     case ctos:
   206     case stos:
   207     case atos:
   208     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
   209     case ftos:
   210     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
   211     case vtos: break;                           // Nothing to do, this was a void return.
   212     default  : ShouldNotReachHere();
   213   }
   215   // Load LcpoolCache @@@ should be already set!
   216   __ get_constant_pool_cache(R27_constPoolCache);
   218   // Handle a pending exception, fall through if none.
   219   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
   221   // Start executing bytecodes.
   222   __ dispatch_next(state, step);
   224   return entry;
   225 }
   227 // A result handler converts the native result into java format.
   228 // Use the shared code between c++ and template interpreter.
   229 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
   230   return AbstractInterpreterGenerator::generate_result_handler_for(type);
   231 }
   233 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
   234   address entry = __ pc();
   236   __ push(state);
   237   __ call_VM(noreg, runtime_entry);
   238   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
   240   return entry;
   241 }
   243 // Helpers for commoning out cases in the various type of method entries.
   245 // Increment invocation count & check for overflow.
   246 //
   247 // Note: checking for negative value instead of overflow
   248 //       so we have a 'sticky' overflow test.
   249 //
   250 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   251   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
   252   Register Rscratch1   = R11_scratch1;
   253   Register Rscratch2   = R12_scratch2;
   254   Register R3_counters = R3_ARG1;
   255   Label done;
   257   if (TieredCompilation) {
   258     const int increment = InvocationCounter::count_increment;
   259     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
   260     Label no_mdo;
   261     if (ProfileInterpreter) {
   262       const Register Rmdo = Rscratch1;
   263       // If no method data exists, go to profile_continue.
   264       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
   265       __ cmpdi(CCR0, Rmdo, 0);
   266       __ beq(CCR0, no_mdo);
   268       // Increment invocation counter in the MDO.
   269       const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
   270       __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
   271       __ addi(Rscratch2, Rscratch2, increment);
   272       __ stw(Rscratch2, mdo_bc_offs, Rmdo);
   273       __ load_const_optimized(Rscratch1, mask, R0);
   274       __ and_(Rscratch1, Rscratch2, Rscratch1);
   275       __ bne(CCR0, done);
   276       __ b(*overflow);
   277     }
   279     // Increment counter in MethodCounters*.
   280     const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
   281     __ bind(no_mdo);
   282     __ get_method_counters(R19_method, R3_counters, done);
   283     __ lwz(Rscratch2, mo_ic_offs, R3_counters);
   284     __ addi(Rscratch2, Rscratch2, increment);
   285     __ stw(Rscratch2, mo_ic_offs, R3_counters);
   286     __ load_const_optimized(Rscratch1, mask, R0);
   287     __ and_(Rscratch1, Rscratch2, Rscratch1);
   288     __ beq(CCR0, *overflow);
   290     __ bind(done);
   292   } else {
   294     // Update standard invocation counters.
   295     Register Rsum_ivc_bec = R4_ARG2;
   296     __ get_method_counters(R19_method, R3_counters, done);
   297     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
   298     // Increment interpreter invocation counter.
   299     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
   300       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
   301       __ addi(R12_scratch2, R12_scratch2, 1);
   302       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
   303     }
   304     // Check if we must create a method data obj.
   305     if (ProfileInterpreter && profile_method != NULL) {
   306       const Register profile_limit = Rscratch1;
   307       int pl_offs = __ load_const_optimized(profile_limit, &InvocationCounter::InterpreterProfileLimit, R0, true);
   308       __ lwz(profile_limit, pl_offs, profile_limit);
   309       // Test to see if we should create a method data oop.
   310       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
   311       __ blt(CCR0, *profile_method_continue);
   312       // If no method data exists, go to profile_method.
   313       __ test_method_data_pointer(*profile_method);
   314     }
   315     // Finally check for counter overflow.
   316     if (overflow) {
   317       const Register invocation_limit = Rscratch1;
   318       int il_offs = __ load_const_optimized(invocation_limit, &InvocationCounter::InterpreterInvocationLimit, R0, true);
   319       __ lwz(invocation_limit, il_offs, invocation_limit);
   320       assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit), "unexpected field size");
   321       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
   322       __ bge(CCR0, *overflow);
   323     }
   325     __ bind(done);
   326   }
   327 }
   329 // Generate code to initiate compilation on invocation counter overflow.
   330 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
   331   // Generate code to initiate compilation on the counter overflow.
   333   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
   334   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
   335   // We pass zero in.
   336   // The call returns the address of the verified entry point for the method or NULL
   337   // if the compilation did not complete (either went background or bailed out).
   338   //
   339   // Unlike the C++ interpreter above: Check exceptions!
   340   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
   341   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
   343   __ li(R4_ARG2, 0);
   344   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
   346   // Returns verified_entry_point or NULL.
   347   // We ignore it in any case.
   348   __ b(continue_entry);
   349 }
   351 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
   352   assert_different_registers(Rmem_frame_size, Rscratch1);
   353   __ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1);
   354 }
   356 void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) {
   357   __ unlock_object(R26_monitor, check_exceptions);
   358 }
   360 // Lock the current method, interpreter register window must be set up!
   361 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
   362   const Register Robj_to_lock = Rscratch2;
   364   {
   365     if (!flags_preloaded) {
   366       __ lwz(Rflags, method_(access_flags));
   367     }
   369 #ifdef ASSERT
   370     // Check if methods needs synchronization.
   371     {
   372       Label Lok;
   373       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
   374       __ btrue(CCR0,Lok);
   375       __ stop("method doesn't need synchronization");
   376       __ bind(Lok);
   377     }
   378 #endif // ASSERT
   379   }
   381   // Get synchronization object to Rscratch2.
   382   {
   383     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   384     Label Lstatic;
   385     Label Ldone;
   387     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
   388     __ btrue(CCR0, Lstatic);
   390     // Non-static case: load receiver obj from stack and we're done.
   391     __ ld(Robj_to_lock, R18_locals);
   392     __ b(Ldone);
   394     __ bind(Lstatic); // Static case: Lock the java mirror
   395     __ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method);
   396     __ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock);
   397     __ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock);
   398     __ ld(Robj_to_lock, mirror_offset, Robj_to_lock);
   400     __ bind(Ldone);
   401     __ verify_oop(Robj_to_lock);
   402   }
   404   // Got the oop to lock => execute!
   405   __ add_monitor_to_stack(true, Rscratch1, R0);
   407   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
   408   __ lock_object(R26_monitor, Robj_to_lock);
   409 }
   411 // Generate a fixed interpreter frame for pure interpreter
   412 // and I2N native transition frames.
   413 //
   414 // Before (stack grows downwards):
   415 //
   416 //         |  ...         |
   417 //         |------------- |
   418 //         |  java arg0   |
   419 //         |  ...         |
   420 //         |  java argn   |
   421 //         |              |   <-   R15_esp
   422 //         |              |
   423 //         |--------------|
   424 //         | abi_112      |
   425 //         |              |   <-   R1_SP
   426 //         |==============|
   427 //
   428 //
   429 // After:
   430 //
   431 //         |  ...         |
   432 //         |  java arg0   |<-   R18_locals
   433 //         |  ...         |
   434 //         |  java argn   |
   435 //         |--------------|
   436 //         |              |
   437 //         |  java locals |
   438 //         |              |
   439 //         |--------------|
   440 //         |  abi_48      |
   441 //         |==============|
   442 //         |              |
   443 //         |   istate     |
   444 //         |              |
   445 //         |--------------|
   446 //         |   monitor    |<-   R26_monitor
   447 //         |--------------|
   448 //         |              |<-   R15_esp
   449 //         | expression   |
   450 //         | stack        |
   451 //         |              |
   452 //         |--------------|
   453 //         |              |
   454 //         | abi_112      |<-   R1_SP
   455 //         |==============|
   456 //
   457 // The top most frame needs an abi space of 112 bytes. This space is needed,
   458 // since we call to c. The c function may spill their arguments to the caller
   459 // frame. When we call to java, we don't need these spill slots. In order to save
   460 // space on the stack, we resize the caller. However, java local reside in
   461 // the caller frame and the frame has to be increased. The frame_size for the
   462 // current frame was calculated based on max_stack as size for the expression
   463 // stack. At the call, just a part of the expression stack might be used.
   464 // We don't want to waste this space and cut the frame back accordingly.
   465 // The resulting amount for resizing is calculated as follows:
   466 // resize =   (number_of_locals - number_of_arguments) * slot_size
   467 //          + (R1_SP - R15_esp) + 48
   468 //
   469 // The size for the callee frame is calculated:
   470 // framesize = 112 + max_stack + monitor + state_size
   471 //
   472 // maxstack:   Max number of slots on the expression stack, loaded from the method.
   473 // monitor:    We statically reserve room for one monitor object.
   474 // state_size: We save the current state of the interpreter to this area.
   475 //
   476 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
   477   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
   478            top_frame_size      = R7_ARG5,
   479            Rconst_method       = R8_ARG6;
   481   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
   483   __ ld(Rconst_method, method_(const));
   484   __ lhz(Rsize_of_parameters /* number of params */,
   485          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
   486   if (native_call) {
   487     // If we're calling a native method, we reserve space for the worst-case signature
   488     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
   489     // We add two slots to the parameter_count, one for the jni
   490     // environment and one for a possible native mirror.
   491     Label skip_native_calculate_max_stack;
   492     __ addi(top_frame_size, Rsize_of_parameters, 2);
   493     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
   494     __ bge(CCR0, skip_native_calculate_max_stack);
   495     __ li(top_frame_size, Argument::n_register_parameters);
   496     __ bind(skip_native_calculate_max_stack);
   497     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
   498     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
   499     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
   500     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
   501   } else {
   502     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
   503     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
   504     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
   505     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
   506     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
   507     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
   508     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
   509     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
   510   }
   512   // Compute top frame size.
   513   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
   515   // Cut back area between esp and max_stack.
   516   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
   518   __ round_to(top_frame_size, frame::alignment_in_bytes);
   519   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
   520   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
   521   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
   523   {
   524     // --------------------------------------------------------------------------
   525     // Stack overflow check
   527     Label cont;
   528     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
   529     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
   530   }
   532   // Set up interpreter state registers.
   534   __ add(R18_locals, R15_esp, Rsize_of_parameters);
   535   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
   536   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
   538   // Set method data pointer.
   539   if (ProfileInterpreter) {
   540     Label zero_continue;
   541     __ ld(R28_mdx, method_(method_data));
   542     __ cmpdi(CCR0, R28_mdx, 0);
   543     __ beq(CCR0, zero_continue);
   544     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
   545     __ bind(zero_continue);
   546   }
   548   if (native_call) {
   549     __ li(R14_bcp, 0); // Must initialize.
   550   } else {
   551     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
   552   }
   554   // Resize parent frame.
   555   __ mflr(R12_scratch2);
   556   __ neg(parent_frame_resize, parent_frame_resize);
   557   __ resize_frame(parent_frame_resize, R11_scratch1);
   558   __ std(R12_scratch2, _abi(lr), R1_SP);
   560   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
   561   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
   563   // Store values.
   564   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
   565   // in InterpreterMacroAssembler::call_from_interpreter.
   566   __ std(R19_method, _ijava_state_neg(method), R1_SP);
   567   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
   568   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
   569   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
   571   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
   572   // be found in the frame after save_interpreter_state is done. This is always true
   573   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
   574   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
   575   // (Enhanced Stack Trace).
   576   // The signal handler does not save the interpreter state into the frame.
   577   __ li(R0, 0);
   578 #ifdef ASSERT
   579   // Fill remaining slots with constants.
   580   __ load_const_optimized(R11_scratch1, 0x5afe);
   581   __ load_const_optimized(R12_scratch2, 0xdead);
   582 #endif
   583   // We have to initialize some frame slots for native calls (accessed by GC).
   584   if (native_call) {
   585     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
   586     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
   587     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
   588   }
   589 #ifdef ASSERT
   590   else {
   591     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
   592     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
   593     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
   594   }
   595   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
   596   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
   597   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
   598   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
   599 #endif
   600   __ subf(R12_scratch2, top_frame_size, R1_SP);
   601   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
   602   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
   604   // Push top frame.
   605   __ push_frame(top_frame_size, R11_scratch1);
   606 }
   608 // End of helpers
   610 // ============================================================================
   611 // Various method entries
   612 //
   614 // Empty method, generate a very fast return. We must skip this entry if
   615 // someone's debugging, indicated by the flag
   616 // "interp_mode" in the Thread obj.
   617 // Note: empty methods are generated mostly methods that do assertions, which are
   618 // disabled in the "java opt build".
   619 address TemplateInterpreterGenerator::generate_empty_entry(void) {
   620   if (!UseFastEmptyMethods) {
   621     NOT_PRODUCT(__ should_not_reach_here();)
   622     return Interpreter::entry_for_kind(Interpreter::zerolocals);
   623   }
   625   Label Lslow_path;
   626   const Register Rjvmti_mode = R11_scratch1;
   627   address entry = __ pc();
   629   __ lwz(Rjvmti_mode, thread_(interp_only_mode));
   630   __ cmpwi(CCR0, Rjvmti_mode, 0);
   631   __ bne(CCR0, Lslow_path); // jvmti_mode!=0
   633   // Noone's debuggin: Simply return.
   634   // Pop c2i arguments (if any) off when we return.
   635 #ifdef ASSERT
   636     __ ld(R9_ARG7, 0, R1_SP);
   637     __ ld(R10_ARG8, 0, R21_sender_SP);
   638     __ cmpd(CCR0, R9_ARG7, R10_ARG8);
   639     __ asm_assert_eq("backlink", 0x545);
   640 #endif // ASSERT
   641   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
   643   // And we're done.
   644   __ blr();
   646   __ bind(Lslow_path);
   647   __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
   648   __ flush();
   650   return entry;
   651 }
   653 // Support abs and sqrt like in compiler.
   654 // For others we can use a normal (native) entry.
   656 inline bool math_entry_available(AbstractInterpreter::MethodKind kind) {
   657   // Provide math entry with debugging on demand.
   658   // Note: Debugging changes which code will get executed:
   659   // Debugging or disabled InlineIntrinsics: java method will get interpreted and performs a native call.
   660   // Not debugging and enabled InlineIntrinics: processor instruction will get used.
   661   // Result might differ slightly due to rounding etc.
   662   if (!InlineIntrinsics && (!FLAG_IS_ERGO(InlineIntrinsics))) return false; // Generate a vanilla entry.
   664   return ((kind==Interpreter::java_lang_math_sqrt && VM_Version::has_fsqrt()) ||
   665           (kind==Interpreter::java_lang_math_abs));
   666 }
   668 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
   669   if (!math_entry_available(kind)) {
   670     NOT_PRODUCT(__ should_not_reach_here();)
   671     return Interpreter::entry_for_kind(Interpreter::zerolocals);
   672   }
   674   Label Lslow_path;
   675   const Register Rjvmti_mode = R11_scratch1;
   676   address entry = __ pc();
   678   // Provide math entry with debugging on demand.
   679   __ lwz(Rjvmti_mode, thread_(interp_only_mode));
   680   __ cmpwi(CCR0, Rjvmti_mode, 0);
   681   __ bne(CCR0, Lslow_path); // jvmti_mode!=0
   683   __ lfd(F1_RET, Interpreter::stackElementSize, R15_esp);
   685   // Pop c2i arguments (if any) off when we return.
   686 #ifdef ASSERT
   687   __ ld(R9_ARG7, 0, R1_SP);
   688   __ ld(R10_ARG8, 0, R21_sender_SP);
   689   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
   690   __ asm_assert_eq("backlink", 0x545);
   691 #endif // ASSERT
   692   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
   694   if (kind == Interpreter::java_lang_math_sqrt) {
   695     __ fsqrt(F1_RET, F1_RET);
   696   } else if (kind == Interpreter::java_lang_math_abs) {
   697     __ fabs(F1_RET, F1_RET);
   698   } else {
   699     ShouldNotReachHere();
   700   }
   702   // And we're done.
   703   __ blr();
   705   // Provide slow path for JVMTI case.
   706   __ bind(Lslow_path);
   707   __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R12_scratch2);
   708   __ flush();
   710   return entry;
   711 }
   713 // Interpreter stub for calling a native method. (asm interpreter)
   714 // This sets up a somewhat different looking stack for calling the
   715 // native method than the typical interpreter frame setup.
   716 //
   717 // On entry:
   718 //   R19_method    - method
   719 //   R16_thread    - JavaThread*
   720 //   R15_esp       - intptr_t* sender tos
   721 //
   722 //   abstract stack (grows up)
   723 //     [  IJava (caller of JNI callee)  ]  <-- ASP
   724 //        ...
   725 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
   727   address entry = __ pc();
   729   const bool inc_counter = UseCompiler || CountCompiledCalls;
   731   // -----------------------------------------------------------------------------
   732   // Allocate a new frame that represents the native callee (i2n frame).
   733   // This is not a full-blown interpreter frame, but in particular, the
   734   // following registers are valid after this:
   735   // - R19_method
   736   // - R18_local (points to start of argumuments to native function)
   737   //
   738   //   abstract stack (grows up)
   739   //     [  IJava (caller of JNI callee)  ]  <-- ASP
   740   //        ...
   742   const Register signature_handler_fd = R11_scratch1;
   743   const Register pending_exception    = R0;
   744   const Register result_handler_addr  = R31;
   745   const Register native_method_fd     = R11_scratch1;
   746   const Register access_flags         = R22_tmp2;
   747   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
   748   const Register sync_state           = R12_scratch2;
   749   const Register sync_state_addr      = sync_state;   // Address is dead after use.
   750   const Register suspend_flags        = R11_scratch1;
   752   //=============================================================================
   753   // Allocate new frame and initialize interpreter state.
   755   Label exception_return;
   756   Label exception_return_sync_check;
   757   Label stack_overflow_return;
   759   // Generate new interpreter state and jump to stack_overflow_return in case of
   760   // a stack overflow.
   761   //generate_compute_interpreter_state(stack_overflow_return);
   763   Register size_of_parameters = R22_tmp2;
   765   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
   767   //=============================================================================
   768   // Increment invocation counter. On overflow, entry to JNI method
   769   // will be compiled.
   770   Label invocation_counter_overflow, continue_after_compile;
   771   if (inc_counter) {
   772     if (synchronized) {
   773       // Since at this point in the method invocation the exception handler
   774       // would try to exit the monitor of synchronized methods which hasn't
   775       // been entered yet, we set the thread local variable
   776       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   777       // runtime, exception handling i.e. unlock_if_synchronized_method will
   778       // check this thread local flag.
   779       // This flag has two effects, one is to force an unwind in the topmost
   780       // interpreter frame and not perform an unlock while doing so.
   781       __ li(R0, 1);
   782       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
   783     }
   784     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   786     BIND(continue_after_compile);
   787     // Reset the _do_not_unlock_if_synchronized flag.
   788     if (synchronized) {
   789       __ li(R0, 0);
   790       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
   791     }
   792   }
   794   // access_flags = method->access_flags();
   795   // Load access flags.
   796   assert(access_flags->is_nonvolatile(),
   797          "access_flags must be in a non-volatile register");
   798   // Type check.
   799   assert(4 == sizeof(AccessFlags), "unexpected field size");
   800   __ lwz(access_flags, method_(access_flags));
   802   // We don't want to reload R19_method and access_flags after calls
   803   // to some helper functions.
   804   assert(R19_method->is_nonvolatile(),
   805          "R19_method must be a non-volatile register");
   807   // Check for synchronized methods. Must happen AFTER invocation counter
   808   // check, so method is not locked if counter overflows.
   810   if (synchronized) {
   811     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
   813     // Update monitor in state.
   814     __ ld(R11_scratch1, 0, R1_SP);
   815     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
   816   }
   818   // jvmti/jvmpi support
   819   __ notify_method_entry();
   821   //=============================================================================
   822   // Get and call the signature handler.
   824   __ ld(signature_handler_fd, method_(signature_handler));
   825   Label call_signature_handler;
   827   __ cmpdi(CCR0, signature_handler_fd, 0);
   828   __ bne(CCR0, call_signature_handler);
   830   // Method has never been called. Either generate a specialized
   831   // handler or point to the slow one.
   832   //
   833   // Pass parameter 'false' to avoid exception check in call_VM.
   834   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
   836   // Check for an exception while looking up the target method. If we
   837   // incurred one, bail.
   838   __ ld(pending_exception, thread_(pending_exception));
   839   __ cmpdi(CCR0, pending_exception, 0);
   840   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
   842   // Reload signature handler, it may have been created/assigned in the meanwhile.
   843   __ ld(signature_handler_fd, method_(signature_handler));
   844   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
   846   BIND(call_signature_handler);
   848   // Before we call the signature handler we push a new frame to
   849   // protect the interpreter frame volatile registers when we return
   850   // from jni but before we can get back to Java.
   852   // First set the frame anchor while the SP/FP registers are
   853   // convenient and the slow signature handler can use this same frame
   854   // anchor.
   856   // We have a TOP_IJAVA_FRAME here, which belongs to us.
   857   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
   859   // Now the interpreter frame (and its call chain) have been
   860   // invalidated and flushed. We are now protected against eager
   861   // being enabled in native code. Even if it goes eager the
   862   // registers will be reloaded as clean and we will invalidate after
   863   // the call so no spurious flush should be possible.
   865   // Call signature handler and pass locals address.
   866   //
   867   // Our signature handlers copy required arguments to the C stack
   868   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
   869   __ mr(R3_ARG1, R18_locals);
   870 #if !defined(ABI_ELFv2)
   871   __ ld(signature_handler_fd, 0, signature_handler_fd);
   872 #endif
   874   __ call_stub(signature_handler_fd);
   876   // Remove the register parameter varargs slots we allocated in
   877   // compute_interpreter_state. SP+16 ends up pointing to the ABI
   878   // outgoing argument area.
   879   //
   880   // Not needed on PPC64.
   881   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
   883   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
   884   // Save across call to native method.
   885   __ mr(result_handler_addr, R3_RET);
   887   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
   889   // Set up fixed parameters and call the native method.
   890   // If the method is static, get mirror into R4_ARG2.
   891   {
   892     Label method_is_not_static;
   893     // Access_flags is non-volatile and still, no need to restore it.
   895     // Restore access flags.
   896     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
   897     __ bfalse(CCR0, method_is_not_static);
   899     // constants = method->constants();
   900     __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
   901     __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
   902     // pool_holder = method->constants()->pool_holder();
   903     __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
   904           R11_scratch1/*constants*/);
   906     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
   908     // mirror = pool_holder->klass_part()->java_mirror();
   909     __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
   910     // state->_native_mirror = mirror;
   912     __ ld(R11_scratch1, 0, R1_SP);
   913     __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
   914     // R4_ARG2 = &state->_oop_temp;
   915     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
   916     BIND(method_is_not_static);
   917   }
   919   // At this point, arguments have been copied off the stack into
   920   // their JNI positions. Oops are boxed in-place on the stack, with
   921   // handles copied to arguments. The result handler address is in a
   922   // register.
   924   // Pass JNIEnv address as first parameter.
   925   __ addir(R3_ARG1, thread_(jni_environment));
   927   // Load the native_method entry before we change the thread state.
   928   __ ld(native_method_fd, method_(native_function));
   930   //=============================================================================
   931   // Transition from _thread_in_Java to _thread_in_native. As soon as
   932   // we make this change the safepoint code needs to be certain that
   933   // the last Java frame we established is good. The pc in that frame
   934   // just needs to be near here not an actual return address.
   936   // We use release_store_fence to update values like the thread state, where
   937   // we don't want the current thread to continue until all our prior memory
   938   // accesses (including the new thread state) are visible to other threads.
   939   __ li(R0, _thread_in_native);
   940   __ release();
   942   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
   943   __ stw(R0, thread_(thread_state));
   945   if (UseMembar) {
   946     __ fence();
   947   }
   949   //=============================================================================
   950   // Call the native method. Argument registers must not have been
   951   // overwritten since "__ call_stub(signature_handler);" (except for
   952   // ARG1 and ARG2 for static methods).
   953   __ call_c(native_method_fd);
   955   __ li(R0, 0);
   956   __ ld(R11_scratch1, 0, R1_SP);
   957   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
   958   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
   959   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
   961   // Note: C++ interpreter needs the following here:
   962   // The frame_manager_lr field, which we use for setting the last
   963   // java frame, gets overwritten by the signature handler. Restore
   964   // it now.
   965   //__ get_PC_trash_LR(R11_scratch1);
   966   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
   968   // Because of GC R19_method may no longer be valid.
   970   // Block, if necessary, before resuming in _thread_in_Java state.
   971   // In order for GC to work, don't clear the last_Java_sp until after
   972   // blocking.
   974   //=============================================================================
   975   // Switch thread to "native transition" state before reading the
   976   // synchronization state. This additional state is necessary
   977   // because reading and testing the synchronization state is not
   978   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
   979   // in _thread_in_native state, loads _not_synchronized and is
   980   // preempted. VM thread changes sync state to synchronizing and
   981   // suspends threads for GC. Thread A is resumed to finish this
   982   // native method, but doesn't block here since it didn't see any
   983   // synchronization in progress, and escapes.
   985   // We use release_store_fence to update values like the thread state, where
   986   // we don't want the current thread to continue until all our prior memory
   987   // accesses (including the new thread state) are visible to other threads.
   988   __ li(R0/*thread_state*/, _thread_in_native_trans);
   989   __ release();
   990   __ stw(R0/*thread_state*/, thread_(thread_state));
   991   if (UseMembar) {
   992     __ fence();
   993   }
   994   // Write serialization page so that the VM thread can do a pseudo remote
   995   // membar. We use the current thread pointer to calculate a thread
   996   // specific offset to write to within the page. This minimizes bus
   997   // traffic due to cache line collision.
   998   else {
   999     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
  1002   // Now before we return to java we must look for a current safepoint
  1003   // (a new safepoint can not start since we entered native_trans).
  1004   // We must check here because a current safepoint could be modifying
  1005   // the callers registers right this moment.
  1007   // Acquire isn't strictly necessary here because of the fence, but
  1008   // sync_state is declared to be volatile, so we do it anyway
  1009   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
  1010   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
  1012   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
  1013   __ lwz(sync_state, sync_state_offs, sync_state_addr);
  1015   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
  1016   __ lwz(suspend_flags, thread_(suspend_flags));
  1018   Label sync_check_done;
  1019   Label do_safepoint;
  1020   // No synchronization in progress nor yet synchronized.
  1021   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
  1022   // Not suspended.
  1023   __ cmpwi(CCR1, suspend_flags, 0);
  1025   __ bne(CCR0, do_safepoint);
  1026   __ beq(CCR1, sync_check_done);
  1027   __ bind(do_safepoint);
  1028   __ isync();
  1029   // Block. We do the call directly and leave the current
  1030   // last_Java_frame setup undisturbed. We must save any possible
  1031   // native result across the call. No oop is present.
  1033   __ mr(R3_ARG1, R16_thread);
  1034 #if defined(ABI_ELFv2)
  1035   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  1036             relocInfo::none);
  1037 #else
  1038   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
  1039             relocInfo::none);
  1040 #endif
  1042   __ bind(sync_check_done);
  1044   //=============================================================================
  1045   // <<<<<< Back in Interpreter Frame >>>>>
  1047   // We are in thread_in_native_trans here and back in the normal
  1048   // interpreter frame. We don't have to do anything special about
  1049   // safepoints and we can switch to Java mode anytime we are ready.
  1051   // Note: frame::interpreter_frame_result has a dependency on how the
  1052   // method result is saved across the call to post_method_exit. For
  1053   // native methods it assumes that the non-FPU/non-void result is
  1054   // saved in _native_lresult and a FPU result in _native_fresult. If
  1055   // this changes then the interpreter_frame_result implementation
  1056   // will need to be updated too.
  1058   // On PPC64, we have stored the result directly after the native call.
  1060   //=============================================================================
  1061   // Back in Java
  1063   // We use release_store_fence to update values like the thread state, where
  1064   // we don't want the current thread to continue until all our prior memory
  1065   // accesses (including the new thread state) are visible to other threads.
  1066   __ li(R0/*thread_state*/, _thread_in_Java);
  1067   __ release();
  1068   __ stw(R0/*thread_state*/, thread_(thread_state));
  1069   if (UseMembar) {
  1070     __ fence();
  1073   __ reset_last_Java_frame();
  1075   // Jvmdi/jvmpi support. Whether we've got an exception pending or
  1076   // not, and whether unlocking throws an exception or not, we notify
  1077   // on native method exit. If we do have an exception, we'll end up
  1078   // in the caller's context to handle it, so if we don't do the
  1079   // notify here, we'll drop it on the floor.
  1080   __ notify_method_exit(true/*native method*/,
  1081                         ilgl /*illegal state (not used for native methods)*/,
  1082                         InterpreterMacroAssembler::NotifyJVMTI,
  1083                         false /*check_exceptions*/);
  1085   //=============================================================================
  1086   // Handle exceptions
  1088   if (synchronized) {
  1089     // Don't check for exceptions since we're still in the i2n frame. Do that
  1090     // manually afterwards.
  1091     unlock_method(false);
  1094   // Reset active handles after returning from native.
  1095   // thread->active_handles()->clear();
  1096   __ ld(active_handles, thread_(active_handles));
  1097   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
  1098   __ li(R0, 0);
  1099   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
  1101   Label exception_return_sync_check_already_unlocked;
  1102   __ ld(R0/*pending_exception*/, thread_(pending_exception));
  1103   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
  1104   __ bne(CCR0, exception_return_sync_check_already_unlocked);
  1106   //-----------------------------------------------------------------------------
  1107   // No exception pending.
  1109   // Move native method result back into proper registers and return.
  1110   // Invoke result handler (may unbox/promote).
  1111   __ ld(R11_scratch1, 0, R1_SP);
  1112   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
  1113   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
  1114   __ call_stub(result_handler_addr);
  1116   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
  1118   // Must use the return pc which was loaded from the caller's frame
  1119   // as the VM uses return-pc-patching for deoptimization.
  1120   __ mtlr(R0);
  1121   __ blr();
  1123   //-----------------------------------------------------------------------------
  1124   // An exception is pending. We call into the runtime only if the
  1125   // caller was not interpreted. If it was interpreted the
  1126   // interpreter will do the correct thing. If it isn't interpreted
  1127   // (call stub/compiled code) we will change our return and continue.
  1129   BIND(exception_return_sync_check);
  1131   if (synchronized) {
  1132     // Don't check for exceptions since we're still in the i2n frame. Do that
  1133     // manually afterwards.
  1134     unlock_method(false);
  1136   BIND(exception_return_sync_check_already_unlocked);
  1138   const Register return_pc = R31;
  1140   __ ld(return_pc, 0, R1_SP);
  1141   __ ld(return_pc, _abi(lr), return_pc);
  1143   // Get the address of the exception handler.
  1144   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
  1145                   R16_thread,
  1146                   return_pc /* return pc */);
  1147   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
  1149   // Load the PC of the the exception handler into LR.
  1150   __ mtlr(R3_RET);
  1152   // Load exception into R3_ARG1 and clear pending exception in thread.
  1153   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
  1154   __ li(R4_ARG2, 0);
  1155   __ std(R4_ARG2, thread_(pending_exception));
  1157   // Load the original return pc into R4_ARG2.
  1158   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
  1160   // Return to exception handler.
  1161   __ blr();
  1163   //=============================================================================
  1164   // Counter overflow.
  1166   if (inc_counter) {
  1167     // Handle invocation counter overflow.
  1168     __ bind(invocation_counter_overflow);
  1170     generate_counter_overflow(continue_after_compile);
  1173   return entry;
  1176 // Generic interpreted method entry to (asm) interpreter.
  1177 //
  1178 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
  1179   bool inc_counter = UseCompiler || CountCompiledCalls;
  1180   address entry = __ pc();
  1181   // Generate the code to allocate the interpreter stack frame.
  1182   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
  1183            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
  1185   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
  1187 #ifdef FAST_DISPATCH
  1188   __ unimplemented("Fast dispatch in generate_normal_entry");
  1189 #if 0
  1190   __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
  1191   // Set bytecode dispatch table base.
  1192 #endif
  1193 #endif
  1195   // --------------------------------------------------------------------------
  1196   // Zero out non-parameter locals.
  1197   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
  1198   // worth to ask the flag, just do it.
  1199   Register Rslot_addr = R6_ARG4,
  1200            Rnum       = R7_ARG5;
  1201   Label Lno_locals, Lzero_loop;
  1203   // Set up the zeroing loop.
  1204   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
  1205   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
  1206   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
  1207   __ beq(CCR0, Lno_locals);
  1208   __ li(R0, 0);
  1209   __ mtctr(Rnum);
  1211   // The zero locals loop.
  1212   __ bind(Lzero_loop);
  1213   __ std(R0, 0, Rslot_addr);
  1214   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
  1215   __ bdnz(Lzero_loop);
  1217   __ bind(Lno_locals);
  1219   // --------------------------------------------------------------------------
  1220   // Counter increment and overflow check.
  1221   Label invocation_counter_overflow,
  1222         profile_method,
  1223         profile_method_continue;
  1224   if (inc_counter || ProfileInterpreter) {
  1226     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
  1227     if (synchronized) {
  1228       // Since at this point in the method invocation the exception handler
  1229       // would try to exit the monitor of synchronized methods which hasn't
  1230       // been entered yet, we set the thread local variable
  1231       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
  1232       // runtime, exception handling i.e. unlock_if_synchronized_method will
  1233       // check this thread local flag.
  1234       // This flag has two effects, one is to force an unwind in the topmost
  1235       // interpreter frame and not perform an unlock while doing so.
  1236       __ li(R0, 1);
  1237       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
  1240     // Argument and return type profiling.
  1241     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
  1243     // Increment invocation counter and check for overflow.
  1244     if (inc_counter) {
  1245       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
  1248     __ bind(profile_method_continue);
  1250     // Reset the _do_not_unlock_if_synchronized flag.
  1251     if (synchronized) {
  1252       __ li(R0, 0);
  1253       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
  1257   // --------------------------------------------------------------------------
  1258   // Locking of synchronized methods. Must happen AFTER invocation_counter
  1259   // check and stack overflow check, so method is not locked if overflows.
  1260   if (synchronized) {
  1261     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
  1263 #ifdef ASSERT
  1264   else {
  1265     Label Lok;
  1266     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
  1267     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
  1268     __ asm_assert_eq("method needs synchronization", 0x8521);
  1269     __ bind(Lok);
  1271 #endif // ASSERT
  1273   __ verify_thread();
  1275   // --------------------------------------------------------------------------
  1276   // JVMTI support
  1277   __ notify_method_entry();
  1279   // --------------------------------------------------------------------------
  1280   // Start executing instructions.
  1281   __ dispatch_next(vtos);
  1283   // --------------------------------------------------------------------------
  1284   // Out of line counter overflow and MDO creation code.
  1285   if (ProfileInterpreter) {
  1286     // We have decided to profile this method in the interpreter.
  1287     __ bind(profile_method);
  1288     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1289     __ set_method_data_pointer_for_bcp();
  1290     __ b(profile_method_continue);
  1293   if (inc_counter) {
  1294     // Handle invocation counter overflow.
  1295     __ bind(invocation_counter_overflow);
  1296     generate_counter_overflow(profile_method_continue);
  1298   return entry;
  1301 // =============================================================================
  1302 // Entry points
  1304 address AbstractInterpreterGenerator::generate_method_entry(
  1305                                         AbstractInterpreter::MethodKind kind) {
  1306   // Determine code generation flags.
  1307   bool synchronized = false;
  1308   address entry_point = NULL;
  1310   switch (kind) {
  1311   case Interpreter::zerolocals             :                                                                             break;
  1312   case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
  1313   case Interpreter::native                 : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break;
  1314   case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true);  break;
  1315   case Interpreter::empty                  : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry();       break;
  1316   case Interpreter::accessor               : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry();    break;
  1317   case Interpreter::abstract               : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry();    break;
  1319   case Interpreter::java_lang_math_sin     : // fall thru
  1320   case Interpreter::java_lang_math_cos     : // fall thru
  1321   case Interpreter::java_lang_math_tan     : // fall thru
  1322   case Interpreter::java_lang_math_abs     : // fall thru
  1323   case Interpreter::java_lang_math_log     : // fall thru
  1324   case Interpreter::java_lang_math_log10   : // fall thru
  1325   case Interpreter::java_lang_math_sqrt    : // fall thru
  1326   case Interpreter::java_lang_math_pow     : // fall thru
  1327   case Interpreter::java_lang_math_exp     : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind);    break;
  1328   case Interpreter::java_lang_ref_reference_get
  1329                                            : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
  1330   case Interpreter::java_util_zip_CRC32_update
  1331                                            : entry_point = ((InterpreterGenerator*)this)->generate_CRC32_update_entry(); break;
  1332   case Interpreter::java_util_zip_CRC32_updateBytes
  1333                                            : // fall thru
  1334   case Interpreter::java_util_zip_CRC32_updateByteBuffer
  1335                                            : entry_point = ((InterpreterGenerator*)this)->generate_CRC32_updateBytes_entry(kind); break;
  1336   default                                  : ShouldNotReachHere();                                                       break;
  1339   if (entry_point) {
  1340     return entry_point;
  1343   return ((InterpreterGenerator*) this)->generate_normal_entry(synchronized);
  1346 // CRC32 Intrinsics.
  1347 //
  1348 // Contract on scratch and work registers.
  1349 // =======================================
  1350 //
  1351 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
  1352 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
  1353 // You can't rely on these registers across calls.
  1354 //
  1355 // The generators for CRC32_update and for CRC32_updateBytes use the
  1356 // scratch/work register set internally, passing the work registers
  1357 // as arguments to the MacroAssembler emitters as required.
  1358 //
  1359 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
  1360 // Their contents is not constant but may change according to the requirements
  1361 // of the emitted code.
  1362 //
  1363 // All other registers from the scratch/work register set are used "internally"
  1364 // and contain garbage (i.e. unpredictable values) once blr() is reached.
  1365 // Basically, only R3_RET contains a defined value which is the function result.
  1366 //
  1367 /**
  1368  * Method entry for static native methods:
  1369  *   int java.util.zip.CRC32.update(int crc, int b)
  1370  */
  1371 address InterpreterGenerator::generate_CRC32_update_entry() {
  1372   address start = __ pc();  // Remember stub start address (is rtn value).
  1374   if (UseCRC32Intrinsics) {
  1375     Label slow_path;
  1377     // Safepoint check
  1378     const Register sync_state = R11_scratch1;
  1379     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
  1380     __ lwz(sync_state, sync_state_offs, sync_state);
  1381     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
  1382     __ bne(CCR0, slow_path);
  1384     // We don't generate local frame and don't align stack because
  1385     // we not even call stub code (we generate the code inline)
  1386     // and there is no safepoint on this path.
  1388     // Load java parameters.
  1389     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
  1390     const Register argP    = R15_esp;
  1391     const Register crc     = R3_ARG1;  // crc value
  1392     const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
  1393     const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
  1394     const Register table   = R6_ARG4;  // address of crc32 table
  1395     const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
  1397     BLOCK_COMMENT("CRC32_update {");
  1399     // Arguments are reversed on java expression stack
  1400 #ifdef VM_LITTLE_ENDIAN
  1401     __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
  1402                                        // Being passed as an int, the single byte is at offset +0.
  1403 #else
  1404     __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
  1405                                        // Being passed from java as an int, the single byte is at offset +3.
  1406 #endif
  1407     __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
  1409     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
  1410     __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp);
  1412     // Restore caller sp for c2i case and return.
  1413     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
  1414     __ blr();
  1416     // Generate a vanilla native entry as the slow path.
  1417     BLOCK_COMMENT("} CRC32_update");
  1418     BIND(slow_path);
  1421   (void) generate_native_entry(false);
  1423   return start;
  1426 // CRC32 Intrinsics.
  1427 /**
  1428  * Method entry for static native methods:
  1429  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
  1430  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
  1431  */
  1432 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
  1433   address start = __ pc();  // Remember stub start address (is rtn value).
  1435   if (UseCRC32Intrinsics) {
  1436     Label slow_path;
  1438     // Safepoint check
  1439     const Register sync_state = R11_scratch1;
  1440     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
  1441     __ lwz(sync_state, sync_state_offs, sync_state);
  1442     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
  1443     __ bne(CCR0, slow_path);
  1445     // We don't generate local frame and don't align stack because
  1446     // we not even call stub code (we generate the code inline)
  1447     // and there is no safepoint on this path.
  1449     // Load parameters.
  1450     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
  1451     const Register argP    = R15_esp;
  1452     const Register crc     = R3_ARG1;  // crc value
  1453     const Register data    = R4_ARG2;  // address of java byte array
  1454     const Register dataLen = R5_ARG3;  // source data len
  1455     const Register table   = R6_ARG4;  // address of crc32 table
  1457     const Register t0      = R9;       // scratch registers for crc calculation
  1458     const Register t1      = R10;
  1459     const Register t2      = R11;
  1460     const Register t3      = R12;
  1462     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
  1463     const Register tc1     = R7;
  1464     const Register tc2     = R8;
  1465     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
  1467     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
  1469     // Arguments are reversed on java expression stack.
  1470     // Calculate address of start element.
  1471     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
  1472       BLOCK_COMMENT("CRC32_updateByteBuffer {");
  1473       // crc     @ (SP + 5W) (32bit)
  1474       // buf     @ (SP + 3W) (64bit ptr to long array)
  1475       // off     @ (SP + 2W) (32bit)
  1476       // dataLen @ (SP + 1W) (32bit)
  1477       // data = buf + off
  1478       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
  1479       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
  1480       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
  1481       __ lwz( crc,     5*wordSize, argP);  // current crc state
  1482       __ add( data, data, tmp);            // Add byte buffer offset.
  1483     } else {                                                         // Used for "updateBytes update".
  1484       BLOCK_COMMENT("CRC32_updateBytes {");
  1485       // crc     @ (SP + 4W) (32bit)
  1486       // buf     @ (SP + 3W) (64bit ptr to byte array)
  1487       // off     @ (SP + 2W) (32bit)
  1488       // dataLen @ (SP + 1W) (32bit)
  1489       // data = buf + off + base_offset
  1490       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
  1491       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
  1492       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
  1493       __ add( data, data, tmp);            // add byte buffer offset
  1494       __ lwz( crc,     4*wordSize, argP);  // current crc state
  1495       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
  1498     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
  1500     // Performance measurements show the 1word and 2word variants to be almost equivalent,
  1501     // with very light advantages for the 1word variant. We chose the 1word variant for
  1502     // code compactness.
  1503     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3);
  1505     // Restore caller sp for c2i case and return.
  1506     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
  1507     __ blr();
  1509     // Generate a vanilla native entry as the slow path.
  1510     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
  1511     BIND(slow_path);
  1514   (void) generate_native_entry(false);
  1516   return start;
  1519 // These should never be compiled since the interpreter will prefer
  1520 // the compiled version to the intrinsic version.
  1521 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1522   return !math_entry_available(method_kind(m));
  1525 // How much stack a method activation needs in stack slots.
  1526 // We must calc this exactly like in generate_fixed_frame.
  1527 // Note: This returns the conservative size assuming maximum alignment.
  1528 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  1529   const int max_alignment_size = 2;
  1530   const int abi_scratch = frame::abi_reg_args_size;
  1531   return method->max_locals() + method->max_stack() +
  1532          frame::interpreter_frame_monitor_size() + max_alignment_size + abi_scratch;
  1535 // Returns number of stackElementWords needed for the interpreter frame with the
  1536 // given sections.
  1537 // This overestimates the stack by one slot in case of alignments.
  1538 int AbstractInterpreter::size_activation(int max_stack,
  1539                                          int temps,
  1540                                          int extra_args,
  1541                                          int monitors,
  1542                                          int callee_params,
  1543                                          int callee_locals,
  1544                                          bool is_top_frame) {
  1545   // Note: This calculation must exactly parallel the frame setup
  1546   // in AbstractInterpreterGenerator::generate_method_entry.
  1547   assert(Interpreter::stackElementWords == 1, "sanity");
  1548   const int max_alignment_space = StackAlignmentInBytes / Interpreter::stackElementSize;
  1549   const int abi_scratch = is_top_frame ? (frame::abi_reg_args_size / Interpreter::stackElementSize) :
  1550                                          (frame::abi_minframe_size / Interpreter::stackElementSize);
  1551   const int size =
  1552     max_stack                                                +
  1553     (callee_locals - callee_params)                          +
  1554     monitors * frame::interpreter_frame_monitor_size()       +
  1555     max_alignment_space                                      +
  1556     abi_scratch                                              +
  1557     frame::ijava_state_size / Interpreter::stackElementSize;
  1559   // Fixed size of an interpreter frame, align to 16-byte.
  1560   return (size & -2);
  1563 // Fills a sceletal interpreter frame generated during deoptimizations.
  1564 //
  1565 // Parameters:
  1566 //
  1567 // interpreter_frame != NULL:
  1568 //   set up the method, locals, and monitors.
  1569 //   The frame interpreter_frame, if not NULL, is guaranteed to be the
  1570 //   right size, as determined by a previous call to this method.
  1571 //   It is also guaranteed to be walkable even though it is in a skeletal state
  1572 //
  1573 // is_top_frame == true:
  1574 //   We're processing the *oldest* interpreter frame!
  1575 //
  1576 // pop_frame_extra_args:
  1577 //   If this is != 0 we are returning to a deoptimized frame by popping
  1578 //   off the callee frame. We want to re-execute the call that called the
  1579 //   callee interpreted, but since the return to the interpreter would pop
  1580 //   the arguments off advance the esp by dummy popframe_extra_args slots.
  1581 //   Popping off those will establish the stack layout as it was before the call.
  1582 //
  1583 void AbstractInterpreter::layout_activation(Method* method,
  1584                                             int tempcount,
  1585                                             int popframe_extra_args,
  1586                                             int moncount,
  1587                                             int caller_actual_parameters,
  1588                                             int callee_param_count,
  1589                                             int callee_locals_count,
  1590                                             frame* caller,
  1591                                             frame* interpreter_frame,
  1592                                             bool is_top_frame,
  1593                                             bool is_bottom_frame) {
  1595   const int abi_scratch = is_top_frame ? (frame::abi_reg_args_size / Interpreter::stackElementSize) :
  1596                                          (frame::abi_minframe_size / Interpreter::stackElementSize);
  1598   intptr_t* locals_base  = (caller->is_interpreted_frame()) ?
  1599     caller->interpreter_frame_esp() + caller_actual_parameters :
  1600     caller->sp() + method->max_locals() - 1 + (frame::abi_minframe_size / Interpreter::stackElementSize) ;
  1602   intptr_t* monitor_base = caller->sp() - frame::ijava_state_size / Interpreter::stackElementSize ;
  1603   intptr_t* monitor      = monitor_base - (moncount * frame::interpreter_frame_monitor_size());
  1604   intptr_t* esp_base     = monitor - 1;
  1605   intptr_t* esp          = esp_base - tempcount - popframe_extra_args;
  1606   intptr_t* sp           = (intptr_t *) (((intptr_t) (esp_base - callee_locals_count + callee_param_count - method->max_stack()- abi_scratch)) & -StackAlignmentInBytes);
  1607   intptr_t* sender_sp    = caller->sp() + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
  1608   intptr_t* top_frame_sp = is_top_frame ? sp : sp + (frame::abi_minframe_size - frame::abi_reg_args_size) / Interpreter::stackElementSize;
  1610   interpreter_frame->interpreter_frame_set_method(method);
  1611   interpreter_frame->interpreter_frame_set_locals(locals_base);
  1612   interpreter_frame->interpreter_frame_set_cpcache(method->constants()->cache());
  1613   interpreter_frame->interpreter_frame_set_esp(esp);
  1614   interpreter_frame->interpreter_frame_set_monitor_end((BasicObjectLock *)monitor);
  1615   interpreter_frame->interpreter_frame_set_top_frame_sp(top_frame_sp);
  1616   if (!is_bottom_frame) {
  1617     interpreter_frame->interpreter_frame_set_sender_sp(sender_sp);
  1621 // =============================================================================
  1622 // Exceptions
  1624 void TemplateInterpreterGenerator::generate_throw_exception() {
  1625   Register Rexception    = R17_tos,
  1626            Rcontinuation = R3_RET;
  1628   // --------------------------------------------------------------------------
  1629   // Entry point if an method returns with a pending exception (rethrow).
  1630   Interpreter::_rethrow_exception_entry = __ pc();
  1632     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
  1633     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
  1634     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
  1636     // Compiled code destroys templateTableBase, reload.
  1637     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
  1640   // Entry point if a interpreted method throws an exception (throw).
  1641   Interpreter::_throw_exception_entry = __ pc();
  1643     __ mr(Rexception, R3_RET);
  1645     __ verify_thread();
  1646     __ verify_oop(Rexception);
  1648     // Expression stack must be empty before entering the VM in case of an exception.
  1649     __ empty_expression_stack();
  1650     // Find exception handler address and preserve exception oop.
  1651     // Call C routine to find handler and jump to it.
  1652     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
  1653     __ mtctr(Rcontinuation);
  1654     // Push exception for exception handler bytecodes.
  1655     __ push_ptr(Rexception);
  1657     // Jump to exception handler (may be remove activation entry!).
  1658     __ bctr();
  1661   // If the exception is not handled in the current frame the frame is
  1662   // removed and the exception is rethrown (i.e. exception
  1663   // continuation is _rethrow_exception).
  1664   //
  1665   // Note: At this point the bci is still the bxi for the instruction
  1666   // which caused the exception and the expression stack is
  1667   // empty. Thus, for any VM calls at this point, GC will find a legal
  1668   // oop map (with empty expression stack).
  1670   // In current activation
  1671   // tos: exception
  1672   // bcp: exception bcp
  1674   // --------------------------------------------------------------------------
  1675   // JVMTI PopFrame support
  1677   Interpreter::_remove_activation_preserving_args_entry = __ pc();
  1679     // Set the popframe_processing bit in popframe_condition indicating that we are
  1680     // currently handling popframe, so that call_VMs that may happen later do not
  1681     // trigger new popframe handling cycles.
  1682     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
  1683     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
  1684     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
  1686     // Empty the expression stack, as in normal exception handling.
  1687     __ empty_expression_stack();
  1688     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
  1690     // Check to see whether we are returning to a deoptimized frame.
  1691     // (The PopFrame call ensures that the caller of the popped frame is
  1692     // either interpreted or compiled and deoptimizes it if compiled.)
  1693     // Note that we don't compare the return PC against the
  1694     // deoptimization blob's unpack entry because of the presence of
  1695     // adapter frames in C2.
  1696     Label Lcaller_not_deoptimized;
  1697     Register return_pc = R3_ARG1;
  1698     __ ld(return_pc, 0, R1_SP);
  1699     __ ld(return_pc, _abi(lr), return_pc);
  1700     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
  1701     __ cmpdi(CCR0, R3_RET, 0);
  1702     __ bne(CCR0, Lcaller_not_deoptimized);
  1704     // The deoptimized case.
  1705     // In this case, we can't call dispatch_next() after the frame is
  1706     // popped, but instead must save the incoming arguments and restore
  1707     // them after deoptimization has occurred.
  1708     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
  1709     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
  1710     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
  1711     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
  1712     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
  1713     // Save these arguments.
  1714     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
  1716     // Inform deoptimization that it is responsible for restoring these arguments.
  1717     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
  1718     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
  1720     // Return from the current method into the deoptimization blob. Will eventually
  1721     // end up in the deopt interpeter entry, deoptimization prepared everything that
  1722     // we will reexecute the call that called us.
  1723     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
  1724     __ mtlr(return_pc);
  1725     __ blr();
  1727     // The non-deoptimized case.
  1728     __ bind(Lcaller_not_deoptimized);
  1730     // Clear the popframe condition flag.
  1731     __ li(R0, 0);
  1732     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
  1734     // Get out of the current method and re-execute the call that called us.
  1735     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
  1736     __ restore_interpreter_state(R11_scratch1);
  1737     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
  1738     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
  1739     if (ProfileInterpreter) {
  1740       __ set_method_data_pointer_for_bcp();
  1741       __ ld(R11_scratch1, 0, R1_SP);
  1742       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
  1744 #if INCLUDE_JVMTI
  1745     Label L_done;
  1747     __ lbz(R11_scratch1, 0, R14_bcp);
  1748     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
  1749     __ bne(CCR0, L_done);
  1751     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
  1752     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
  1753     __ ld(R4_ARG2, 0, R18_locals);
  1754     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
  1755     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
  1756     __ cmpdi(CCR0, R4_ARG2, 0);
  1757     __ beq(CCR0, L_done);
  1758     __ std(R4_ARG2, wordSize, R15_esp);
  1759     __ bind(L_done);
  1760 #endif // INCLUDE_JVMTI
  1761     __ dispatch_next(vtos);
  1763   // end of JVMTI PopFrame support
  1765   // --------------------------------------------------------------------------
  1766   // Remove activation exception entry.
  1767   // This is jumped to if an interpreted method can't handle an exception itself
  1768   // (we come from the throw/rethrow exception entry above). We're going to call
  1769   // into the VM to find the exception handler in the caller, pop the current
  1770   // frame and return the handler we calculated.
  1771   Interpreter::_remove_activation_entry = __ pc();
  1773     __ pop_ptr(Rexception);
  1774     __ verify_thread();
  1775     __ verify_oop(Rexception);
  1776     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
  1778     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
  1779     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
  1781     __ get_vm_result(Rexception);
  1783     // We are done with this activation frame; find out where to go next.
  1784     // The continuation point will be an exception handler, which expects
  1785     // the following registers set up:
  1786     //
  1787     // RET:  exception oop
  1788     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
  1790     Register return_pc = R31; // Needs to survive the runtime call.
  1791     __ ld(return_pc, 0, R1_SP);
  1792     __ ld(return_pc, _abi(lr), return_pc);
  1793     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
  1795     // Remove the current activation.
  1796     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
  1798     __ mr(R4_ARG2, return_pc);
  1799     __ mtlr(R3_RET);
  1800     __ mr(R3_RET, Rexception);
  1801     __ blr();
  1805 // JVMTI ForceEarlyReturn support.
  1806 // Returns "in the middle" of a method with a "fake" return value.
  1807 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
  1809   Register Rscratch1 = R11_scratch1,
  1810            Rscratch2 = R12_scratch2;
  1812   address entry = __ pc();
  1813   __ empty_expression_stack();
  1815   __ load_earlyret_value(state, Rscratch1);
  1817   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
  1818   // Clear the earlyret state.
  1819   __ li(R0, 0);
  1820   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
  1822   __ remove_activation(state, false, false);
  1823   // Copied from TemplateTable::_return.
  1824   // Restoration of lr done by remove_activation.
  1825   switch (state) {
  1826     // Narrow result if state is itos but result type is smaller.
  1827     case itos: __ narrow(R17_tos); /* fall through */
  1828     case ltos:
  1829     case btos:
  1830     case ztos:
  1831     case ctos:
  1832     case stos:
  1833     case atos: __ mr(R3_RET, R17_tos); break;
  1834     case ftos:
  1835     case dtos: __ fmr(F1_RET, F15_ftos); break;
  1836     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
  1837                // to get visible before the reference to the object gets stored anywhere.
  1838                __ membar(Assembler::StoreStore); break;
  1839     default  : ShouldNotReachHere();
  1841   __ blr();
  1843   return entry;
  1844 } // end of ForceEarlyReturn support
  1846 //-----------------------------------------------------------------------------
  1847 // Helper for vtos entry point generation
  1849 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
  1850                                                          address& bep,
  1851                                                          address& cep,
  1852                                                          address& sep,
  1853                                                          address& aep,
  1854                                                          address& iep,
  1855                                                          address& lep,
  1856                                                          address& fep,
  1857                                                          address& dep,
  1858                                                          address& vep) {
  1859   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
  1860   Label L;
  1862   aep = __ pc();  __ push_ptr();  __ b(L);
  1863   fep = __ pc();  __ push_f();    __ b(L);
  1864   dep = __ pc();  __ push_d();    __ b(L);
  1865   lep = __ pc();  __ push_l();    __ b(L);
  1866   __ align(32, 12, 24); // align L
  1867   bep = cep = sep =
  1868   iep = __ pc();  __ push_i();
  1869   vep = __ pc();
  1870   __ bind(L);
  1871   generate_and_dispatch(t);
  1874 //-----------------------------------------------------------------------------
  1875 // Generation of individual instructions
  1877 // helpers for generate_and_dispatch
  1879 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1880   : TemplateInterpreterGenerator(code) {
  1881   generate_all(); // Down here so it can be "virtual".
  1884 //-----------------------------------------------------------------------------
  1886 // Non-product code
  1887 #ifndef PRODUCT
  1888 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
  1889   //__ flush_bundle();
  1890   address entry = __ pc();
  1892   const char *bname = NULL;
  1893   uint tsize = 0;
  1894   switch(state) {
  1895   case ftos:
  1896     bname = "trace_code_ftos {";
  1897     tsize = 2;
  1898     break;
  1899   case btos:
  1900     bname = "trace_code_btos {";
  1901     tsize = 2;
  1902     break;
  1903   case ztos:
  1904     bname = "trace_code_ztos {";
  1905     tsize = 2;
  1906     break;
  1907   case ctos:
  1908     bname = "trace_code_ctos {";
  1909     tsize = 2;
  1910     break;
  1911   case stos:
  1912     bname = "trace_code_stos {";
  1913     tsize = 2;
  1914     break;
  1915   case itos:
  1916     bname = "trace_code_itos {";
  1917     tsize = 2;
  1918     break;
  1919   case ltos:
  1920     bname = "trace_code_ltos {";
  1921     tsize = 3;
  1922     break;
  1923   case atos:
  1924     bname = "trace_code_atos {";
  1925     tsize = 2;
  1926     break;
  1927   case vtos:
  1928     // Note: In case of vtos, the topmost of stack value could be a int or doubl
  1929     // In case of a double (2 slots) we won't see the 2nd stack value.
  1930     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
  1931     bname = "trace_code_vtos {";
  1932     tsize = 2;
  1934     break;
  1935   case dtos:
  1936     bname = "trace_code_dtos {";
  1937     tsize = 3;
  1938     break;
  1939   default:
  1940     ShouldNotReachHere();
  1942   BLOCK_COMMENT(bname);
  1944   // Support short-cut for TraceBytecodesAt.
  1945   // Don't call into the VM if we don't want to trace to speed up things.
  1946   Label Lskip_vm_call;
  1947   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
  1948     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
  1949     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
  1950     __ ld(R11_scratch1, offs1, R11_scratch1);
  1951     __ lwa(R12_scratch2, offs2, R12_scratch2);
  1952     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
  1953     __ blt(CCR0, Lskip_vm_call);
  1956   __ push(state);
  1957   // Load 2 topmost expression stack values.
  1958   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
  1959   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
  1960   __ mflr(R31);
  1961   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
  1962   __ mtlr(R31);
  1963   __ pop(state);
  1965   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
  1966     __ bind(Lskip_vm_call);
  1968   __ blr();
  1969   BLOCK_COMMENT("} trace_code");
  1970   return entry;
  1973 void TemplateInterpreterGenerator::count_bytecode() {
  1974   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
  1975   __ lwz(R12_scratch2, offs, R11_scratch1);
  1976   __ addi(R12_scratch2, R12_scratch2, 1);
  1977   __ stw(R12_scratch2, offs, R11_scratch1);
  1980 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
  1981   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
  1982   __ lwz(R12_scratch2, offs, R11_scratch1);
  1983   __ addi(R12_scratch2, R12_scratch2, 1);
  1984   __ stw(R12_scratch2, offs, R11_scratch1);
  1987 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
  1988   const Register addr = R11_scratch1,
  1989                  tmp  = R12_scratch2;
  1990   // Get index, shift out old bytecode, bring in new bytecode, and store it.
  1991   // _index = (_index >> log2_number_of_codes) |
  1992   //          (bytecode << log2_number_of_codes);
  1993   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
  1994   __ lwz(tmp, offs1, addr);
  1995   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
  1996   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
  1997   __ stw(tmp, offs1, addr);
  1999   // Bump bucket contents.
  2000   // _counters[_index] ++;
  2001   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
  2002   __ sldi(tmp, tmp, LogBytesPerInt);
  2003   __ add(addr, tmp, addr);
  2004   __ lwz(tmp, offs2, addr);
  2005   __ addi(tmp, tmp, 1);
  2006   __ stw(tmp, offs2, addr);
  2009 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
  2010   // Call a little run-time stub to avoid blow-up for each bytecode.
  2011   // The run-time runtime saves the right registers, depending on
  2012   // the tosca in-state for the given template.
  2014   assert(Interpreter::trace_code(t->tos_in()) != NULL,
  2015          "entry must have been generated");
  2017   // Note: we destroy LR here.
  2018   __ bl(Interpreter::trace_code(t->tos_in()));
  2021 void TemplateInterpreterGenerator::stop_interpreter_at() {
  2022   Label L;
  2023   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
  2024   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
  2025   __ ld(R11_scratch1, offs1, R11_scratch1);
  2026   __ lwa(R12_scratch2, offs2, R12_scratch2);
  2027   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
  2028   __ bne(CCR0, L);
  2029   __ illtrap();
  2030   __ bind(L);
  2033 #endif // !PRODUCT
  2034 #endif // !CC_INTERP

mercurial