src/cpu/ppc/vm/sharedRuntime_ppc.cpp

Wed, 15 Apr 2020 11:49:55 +0800

author
aoqi
date
Wed, 15 Apr 2020 11:49:55 +0800
changeset 9852
70aa912cebe5
parent 9703
2fdf635bcf28
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright (c) 2012, 2017 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_ppc.inline.hpp"
    37 #include "adfiles/ad_ppc_64.hpp"
    38 #ifdef COMPILER1
    39 #include "c1/c1_Runtime1.hpp"
    40 #endif
    41 #ifdef COMPILER2
    42 #include "opto/runtime.hpp"
    43 #endif
    45 #include <alloca.h>
    47 #define __ masm->
    49 #ifdef PRODUCT
    50 #define BLOCK_COMMENT(str) // nothing
    51 #else
    52 #define BLOCK_COMMENT(str) __ block_comment(str)
    53 #endif
    55 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    58 class RegisterSaver {
    59  // Used for saving volatile registers.
    60  public:
    62   // Support different return pc locations.
    63   enum ReturnPCLocation {
    64     return_pc_is_lr,
    65     return_pc_is_r4,
    66     return_pc_is_thread_saved_exception_pc
    67   };
    69   static OopMap* push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
    70                          int* out_frame_size_in_bytes,
    71                          bool generate_oop_map,
    72                          int return_pc_adjustment,
    73                          ReturnPCLocation return_pc_location);
    74   static void    restore_live_registers_and_pop_frame(MacroAssembler* masm,
    75                          int frame_size_in_bytes,
    76                          bool restore_ctr);
    78   static void push_frame_and_save_argument_registers(MacroAssembler* masm,
    79                          Register r_temp,
    80                          int frame_size,
    81                          int total_args,
    82                          const VMRegPair *regs, const VMRegPair *regs2 = NULL);
    83   static void restore_argument_registers_and_pop_frame(MacroAssembler*masm,
    84                          int frame_size,
    85                          int total_args,
    86                          const VMRegPair *regs, const VMRegPair *regs2 = NULL);
    88   // During deoptimization only the result registers need to be restored
    89   // all the other values have already been extracted.
    90   static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes);
    92   // Constants and data structures:
    94   typedef enum {
    95     int_reg           = 0,
    96     float_reg         = 1,
    97     special_reg       = 2
    98   } RegisterType;
   100   typedef enum {
   101     reg_size          = 8,
   102     half_reg_size     = reg_size / 2,
   103   } RegisterConstants;
   105   typedef struct {
   106     RegisterType        reg_type;
   107     int                 reg_num;
   108     VMReg               vmreg;
   109   } LiveRegType;
   110 };
   113 #define RegisterSaver_LiveSpecialReg(regname) \
   114   { RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() }
   116 #define RegisterSaver_LiveIntReg(regname) \
   117   { RegisterSaver::int_reg,     regname->encoding(), regname->as_VMReg() }
   119 #define RegisterSaver_LiveFloatReg(regname) \
   120   { RegisterSaver::float_reg,   regname->encoding(), regname->as_VMReg() }
   122 static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
   123   // Live registers which get spilled to the stack. Register
   124   // positions in this array correspond directly to the stack layout.
   126   //
   127   // live special registers:
   128   //
   129   RegisterSaver_LiveSpecialReg(SR_CTR),
   130   //
   131   // live float registers:
   132   //
   133   RegisterSaver_LiveFloatReg( F0  ),
   134   RegisterSaver_LiveFloatReg( F1  ),
   135   RegisterSaver_LiveFloatReg( F2  ),
   136   RegisterSaver_LiveFloatReg( F3  ),
   137   RegisterSaver_LiveFloatReg( F4  ),
   138   RegisterSaver_LiveFloatReg( F5  ),
   139   RegisterSaver_LiveFloatReg( F6  ),
   140   RegisterSaver_LiveFloatReg( F7  ),
   141   RegisterSaver_LiveFloatReg( F8  ),
   142   RegisterSaver_LiveFloatReg( F9  ),
   143   RegisterSaver_LiveFloatReg( F10 ),
   144   RegisterSaver_LiveFloatReg( F11 ),
   145   RegisterSaver_LiveFloatReg( F12 ),
   146   RegisterSaver_LiveFloatReg( F13 ),
   147   RegisterSaver_LiveFloatReg( F14 ),
   148   RegisterSaver_LiveFloatReg( F15 ),
   149   RegisterSaver_LiveFloatReg( F16 ),
   150   RegisterSaver_LiveFloatReg( F17 ),
   151   RegisterSaver_LiveFloatReg( F18 ),
   152   RegisterSaver_LiveFloatReg( F19 ),
   153   RegisterSaver_LiveFloatReg( F20 ),
   154   RegisterSaver_LiveFloatReg( F21 ),
   155   RegisterSaver_LiveFloatReg( F22 ),
   156   RegisterSaver_LiveFloatReg( F23 ),
   157   RegisterSaver_LiveFloatReg( F24 ),
   158   RegisterSaver_LiveFloatReg( F25 ),
   159   RegisterSaver_LiveFloatReg( F26 ),
   160   RegisterSaver_LiveFloatReg( F27 ),
   161   RegisterSaver_LiveFloatReg( F28 ),
   162   RegisterSaver_LiveFloatReg( F29 ),
   163   RegisterSaver_LiveFloatReg( F30 ),
   164   RegisterSaver_LiveFloatReg( F31 ),
   165   //
   166   // live integer registers:
   167   //
   168   RegisterSaver_LiveIntReg(   R0  ),
   169   //RegisterSaver_LiveIntReg( R1  ), // stack pointer
   170   RegisterSaver_LiveIntReg(   R2  ),
   171   RegisterSaver_LiveIntReg(   R3  ),
   172   RegisterSaver_LiveIntReg(   R4  ),
   173   RegisterSaver_LiveIntReg(   R5  ),
   174   RegisterSaver_LiveIntReg(   R6  ),
   175   RegisterSaver_LiveIntReg(   R7  ),
   176   RegisterSaver_LiveIntReg(   R8  ),
   177   RegisterSaver_LiveIntReg(   R9  ),
   178   RegisterSaver_LiveIntReg(   R10 ),
   179   RegisterSaver_LiveIntReg(   R11 ),
   180   RegisterSaver_LiveIntReg(   R12 ),
   181   //RegisterSaver_LiveIntReg( R13 ), // system thread id
   182   RegisterSaver_LiveIntReg(   R14 ),
   183   RegisterSaver_LiveIntReg(   R15 ),
   184   RegisterSaver_LiveIntReg(   R16 ),
   185   RegisterSaver_LiveIntReg(   R17 ),
   186   RegisterSaver_LiveIntReg(   R18 ),
   187   RegisterSaver_LiveIntReg(   R19 ),
   188   RegisterSaver_LiveIntReg(   R20 ),
   189   RegisterSaver_LiveIntReg(   R21 ),
   190   RegisterSaver_LiveIntReg(   R22 ),
   191   RegisterSaver_LiveIntReg(   R23 ),
   192   RegisterSaver_LiveIntReg(   R24 ),
   193   RegisterSaver_LiveIntReg(   R25 ),
   194   RegisterSaver_LiveIntReg(   R26 ),
   195   RegisterSaver_LiveIntReg(   R27 ),
   196   RegisterSaver_LiveIntReg(   R28 ),
   197   RegisterSaver_LiveIntReg(   R29 ),
   198   RegisterSaver_LiveIntReg(   R31 ),
   199   RegisterSaver_LiveIntReg(   R30 ), // r30 must be the last register
   200 };
   202 OopMap* RegisterSaver::push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
   203                          int* out_frame_size_in_bytes,
   204                          bool generate_oop_map,
   205                          int return_pc_adjustment,
   206                          ReturnPCLocation return_pc_location) {
   207   // Push an abi_reg_args-frame and store all registers which may be live.
   208   // If requested, create an OopMap: Record volatile registers as
   209   // callee-save values in an OopMap so their save locations will be
   210   // propagated to the RegisterMap of the caller frame during
   211   // StackFrameStream construction (needed for deoptimization; see
   212   // compiledVFrame::create_stack_value).
   213   // If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment.
   215   int i;
   216   int offset;
   218   // calcualte frame size
   219   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
   220                                    sizeof(RegisterSaver::LiveRegType);
   221   const int register_save_size   = regstosave_num * reg_size;
   222   const int frame_size_in_bytes  = round_to(register_save_size, frame::alignment_in_bytes)
   223                                    + frame::abi_reg_args_size;
   224   *out_frame_size_in_bytes       = frame_size_in_bytes;
   225   const int frame_size_in_slots  = frame_size_in_bytes / sizeof(jint);
   226   const int register_save_offset = frame_size_in_bytes - register_save_size;
   228   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
   229   OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : NULL;
   231   BLOCK_COMMENT("push_frame_reg_args_and_save_live_registers {");
   233   // Save r30 in the last slot of the not yet pushed frame so that we
   234   // can use it as scratch reg.
   235   __ std(R30, -reg_size, R1_SP);
   236   assert(-reg_size == register_save_offset - frame_size_in_bytes + ((regstosave_num-1)*reg_size),
   237          "consistency check");
   239   // save the flags
   240   // Do the save_LR_CR by hand and adjust the return pc if requested.
   241   __ mfcr(R30);
   242   __ std(R30, _abi(cr), R1_SP);
   243   switch (return_pc_location) {
   244     case return_pc_is_lr:    __ mflr(R30);           break;
   245     case return_pc_is_r4:    __ mr(R30, R4);     break;
   246     case return_pc_is_thread_saved_exception_pc:
   247                                  __ ld(R30, thread_(saved_exception_pc)); break;
   248     default: ShouldNotReachHere();
   249   }
   250   if (return_pc_adjustment != 0)
   251     __ addi(R30, R30, return_pc_adjustment);
   252   __ std(R30, _abi(lr), R1_SP);
   254   // push a new frame
   255   __ push_frame(frame_size_in_bytes, R30);
   257   // save all registers (ints and floats)
   258   offset = register_save_offset;
   259   for (int i = 0; i < regstosave_num; i++) {
   260     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
   261     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
   263     switch (reg_type) {
   264       case RegisterSaver::int_reg: {
   265         if (reg_num != 30) { // We spilled R30 right at the beginning.
   266           __ std(as_Register(reg_num), offset, R1_SP);
   267         }
   268         break;
   269       }
   270       case RegisterSaver::float_reg: {
   271         __ stfd(as_FloatRegister(reg_num), offset, R1_SP);
   272         break;
   273       }
   274       case RegisterSaver::special_reg: {
   275         if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
   276           __ mfctr(R30);
   277           __ std(R30, offset, R1_SP);
   278         } else {
   279           Unimplemented();
   280         }
   281         break;
   282       }
   283       default:
   284         ShouldNotReachHere();
   285     }
   287     if (generate_oop_map) {
   288       map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
   289                             RegisterSaver_LiveRegs[i].vmreg);
   290       map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2),
   291                             RegisterSaver_LiveRegs[i].vmreg->next());
   292     }
   293     offset += reg_size;
   294   }
   296   BLOCK_COMMENT("} push_frame_reg_args_and_save_live_registers");
   298   // And we're done.
   299   return map;
   300 }
   303 // Pop the current frame and restore all the registers that we
   304 // saved.
   305 void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm,
   306                                                          int frame_size_in_bytes,
   307                                                          bool restore_ctr) {
   308   int i;
   309   int offset;
   310   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
   311                                    sizeof(RegisterSaver::LiveRegType);
   312   const int register_save_size   = regstosave_num * reg_size;
   313   const int register_save_offset = frame_size_in_bytes - register_save_size;
   315   BLOCK_COMMENT("restore_live_registers_and_pop_frame {");
   317   // restore all registers (ints and floats)
   318   offset = register_save_offset;
   319   for (int i = 0; i < regstosave_num; i++) {
   320     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
   321     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
   323     switch (reg_type) {
   324       case RegisterSaver::int_reg: {
   325         if (reg_num != 30) // R30 restored at the end, it's the tmp reg!
   326           __ ld(as_Register(reg_num), offset, R1_SP);
   327         break;
   328       }
   329       case RegisterSaver::float_reg: {
   330         __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
   331         break;
   332       }
   333       case RegisterSaver::special_reg: {
   334         if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
   335           if (restore_ctr) { // Nothing to do here if ctr already contains the next address.
   336             __ ld(R30, offset, R1_SP);
   337             __ mtctr(R30);
   338           }
   339         } else {
   340           Unimplemented();
   341         }
   342         break;
   343       }
   344       default:
   345         ShouldNotReachHere();
   346     }
   347     offset += reg_size;
   348   }
   350   // pop the frame
   351   __ pop_frame();
   353   // restore the flags
   354   __ restore_LR_CR(R30);
   356   // restore scratch register's value
   357   __ ld(R30, -reg_size, R1_SP);
   359   BLOCK_COMMENT("} restore_live_registers_and_pop_frame");
   360 }
   362 void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp,
   363                                                            int frame_size,int total_args, const VMRegPair *regs,
   364                                                            const VMRegPair *regs2) {
   365   __ push_frame(frame_size, r_temp);
   366   int st_off = frame_size - wordSize;
   367   for (int i = 0; i < total_args; i++) {
   368     VMReg r_1 = regs[i].first();
   369     VMReg r_2 = regs[i].second();
   370     if (!r_1->is_valid()) {
   371       assert(!r_2->is_valid(), "");
   372       continue;
   373     }
   374     if (r_1->is_Register()) {
   375       Register r = r_1->as_Register();
   376       __ std(r, st_off, R1_SP);
   377       st_off -= wordSize;
   378     } else if (r_1->is_FloatRegister()) {
   379       FloatRegister f = r_1->as_FloatRegister();
   380       __ stfd(f, st_off, R1_SP);
   381       st_off -= wordSize;
   382     }
   383   }
   384   if (regs2 != NULL) {
   385     for (int i = 0; i < total_args; i++) {
   386       VMReg r_1 = regs2[i].first();
   387       VMReg r_2 = regs2[i].second();
   388       if (!r_1->is_valid()) {
   389         assert(!r_2->is_valid(), "");
   390         continue;
   391       }
   392       if (r_1->is_Register()) {
   393         Register r = r_1->as_Register();
   394         __ std(r, st_off, R1_SP);
   395         st_off -= wordSize;
   396       } else if (r_1->is_FloatRegister()) {
   397         FloatRegister f = r_1->as_FloatRegister();
   398         __ stfd(f, st_off, R1_SP);
   399         st_off -= wordSize;
   400       }
   401     }
   402   }
   403 }
   405 void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size,
   406                                                              int total_args, const VMRegPair *regs,
   407                                                              const VMRegPair *regs2) {
   408   int st_off = frame_size - wordSize;
   409   for (int i = 0; i < total_args; i++) {
   410     VMReg r_1 = regs[i].first();
   411     VMReg r_2 = regs[i].second();
   412     if (r_1->is_Register()) {
   413       Register r = r_1->as_Register();
   414       __ ld(r, st_off, R1_SP);
   415       st_off -= wordSize;
   416     } else if (r_1->is_FloatRegister()) {
   417       FloatRegister f = r_1->as_FloatRegister();
   418       __ lfd(f, st_off, R1_SP);
   419       st_off -= wordSize;
   420     }
   421   }
   422   if (regs2 != NULL)
   423     for (int i = 0; i < total_args; i++) {
   424       VMReg r_1 = regs2[i].first();
   425       VMReg r_2 = regs2[i].second();
   426       if (r_1->is_Register()) {
   427         Register r = r_1->as_Register();
   428         __ ld(r, st_off, R1_SP);
   429         st_off -= wordSize;
   430       } else if (r_1->is_FloatRegister()) {
   431         FloatRegister f = r_1->as_FloatRegister();
   432         __ lfd(f, st_off, R1_SP);
   433         st_off -= wordSize;
   434       }
   435     }
   436   __ pop_frame();
   437 }
   439 // Restore the registers that might be holding a result.
   440 void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) {
   441   int i;
   442   int offset;
   443   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
   444                                    sizeof(RegisterSaver::LiveRegType);
   445   const int register_save_size   = regstosave_num * reg_size;
   446   const int register_save_offset = frame_size_in_bytes - register_save_size;
   448   // restore all result registers (ints and floats)
   449   offset = register_save_offset;
   450   for (int i = 0; i < regstosave_num; i++) {
   451     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
   452     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
   453     switch (reg_type) {
   454       case RegisterSaver::int_reg: {
   455         if (as_Register(reg_num)==R3_RET) // int result_reg
   456           __ ld(as_Register(reg_num), offset, R1_SP);
   457         break;
   458       }
   459       case RegisterSaver::float_reg: {
   460         if (as_FloatRegister(reg_num)==F1_RET) // float result_reg
   461           __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
   462         break;
   463       }
   464       case RegisterSaver::special_reg: {
   465         // Special registers don't hold a result.
   466         break;
   467       }
   468       default:
   469         ShouldNotReachHere();
   470     }
   471     offset += reg_size;
   472   }
   473 }
   475 // Is vector's size (in bytes) bigger than a size saved by default?
   476 bool SharedRuntime::is_wide_vector(int size) {
   477   ResourceMark rm;
   478   // Note, MaxVectorSize == 8 on PPC64.
   479   assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
   480   return size > 8;
   481 }
   482 #ifdef COMPILER2
   483 static int reg2slot(VMReg r) {
   484   return r->reg2stack() + SharedRuntime::out_preserve_stack_slots();
   485 }
   487 static int reg2offset(VMReg r) {
   488   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   489 }
   490 #endif
   492 // ---------------------------------------------------------------------------
   493 // Read the array of BasicTypes from a signature, and compute where the
   494 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
   495 // quantities. Values less than VMRegImpl::stack0 are registers, those above
   496 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
   497 // as framesizes are fixed.
   498 // VMRegImpl::stack0 refers to the first slot 0(sp).
   499 // and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register
   500 // up to RegisterImpl::number_of_registers) are the 64-bit
   501 // integer registers.
   503 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   504 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
   505 // units regardless of build. Of course for i486 there is no 64 bit build
   507 // The Java calling convention is a "shifted" version of the C ABI.
   508 // By skipping the first C ABI register we can call non-static jni methods
   509 // with small numbers of arguments without having to shuffle the arguments
   510 // at all. Since we control the java ABI we ought to at least get some
   511 // advantage out of it.
   513 const VMReg java_iarg_reg[8] = {
   514   R3->as_VMReg(),
   515   R4->as_VMReg(),
   516   R5->as_VMReg(),
   517   R6->as_VMReg(),
   518   R7->as_VMReg(),
   519   R8->as_VMReg(),
   520   R9->as_VMReg(),
   521   R10->as_VMReg()
   522 };
   524 const VMReg java_farg_reg[13] = {
   525   F1->as_VMReg(),
   526   F2->as_VMReg(),
   527   F3->as_VMReg(),
   528   F4->as_VMReg(),
   529   F5->as_VMReg(),
   530   F6->as_VMReg(),
   531   F7->as_VMReg(),
   532   F8->as_VMReg(),
   533   F9->as_VMReg(),
   534   F10->as_VMReg(),
   535   F11->as_VMReg(),
   536   F12->as_VMReg(),
   537   F13->as_VMReg()
   538 };
   540 const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]);
   541 const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]);
   543 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   544                                            VMRegPair *regs,
   545                                            int total_args_passed,
   546                                            int is_outgoing) {
   547   // C2c calling conventions for compiled-compiled calls.
   548   // Put 8 ints/longs into registers _AND_ 13 float/doubles into
   549   // registers _AND_ put the rest on the stack.
   551   const int inc_stk_for_intfloat   = 1; // 1 slots for ints and floats
   552   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
   554   int i;
   555   VMReg reg;
   556   int stk = 0;
   557   int ireg = 0;
   558   int freg = 0;
   560   // We put the first 8 arguments into registers and the rest on the
   561   // stack, float arguments are already in their argument registers
   562   // due to c2c calling conventions (see calling_convention).
   563   for (int i = 0; i < total_args_passed; ++i) {
   564     switch(sig_bt[i]) {
   565     case T_BOOLEAN:
   566     case T_CHAR:
   567     case T_BYTE:
   568     case T_SHORT:
   569     case T_INT:
   570       if (ireg < num_java_iarg_registers) {
   571         // Put int/ptr in register
   572         reg = java_iarg_reg[ireg];
   573         ++ireg;
   574       } else {
   575         // Put int/ptr on stack.
   576         reg = VMRegImpl::stack2reg(stk);
   577         stk += inc_stk_for_intfloat;
   578       }
   579       regs[i].set1(reg);
   580       break;
   581     case T_LONG:
   582       assert(sig_bt[i+1] == T_VOID, "expecting half");
   583       if (ireg < num_java_iarg_registers) {
   584         // Put long in register.
   585         reg = java_iarg_reg[ireg];
   586         ++ireg;
   587       } else {
   588         // Put long on stack. They must be aligned to 2 slots.
   589         if (stk & 0x1) ++stk;
   590         reg = VMRegImpl::stack2reg(stk);
   591         stk += inc_stk_for_longdouble;
   592       }
   593       regs[i].set2(reg);
   594       break;
   595     case T_OBJECT:
   596     case T_ARRAY:
   597     case T_ADDRESS:
   598       if (ireg < num_java_iarg_registers) {
   599         // Put ptr in register.
   600         reg = java_iarg_reg[ireg];
   601         ++ireg;
   602       } else {
   603         // Put ptr on stack. Objects must be aligned to 2 slots too,
   604         // because "64-bit pointers record oop-ishness on 2 aligned
   605         // adjacent registers." (see OopFlow::build_oop_map).
   606         if (stk & 0x1) ++stk;
   607         reg = VMRegImpl::stack2reg(stk);
   608         stk += inc_stk_for_longdouble;
   609       }
   610       regs[i].set2(reg);
   611       break;
   612     case T_FLOAT:
   613       if (freg < num_java_farg_registers) {
   614         // Put float in register.
   615         reg = java_farg_reg[freg];
   616         ++freg;
   617       } else {
   618         // Put float on stack.
   619         reg = VMRegImpl::stack2reg(stk);
   620         stk += inc_stk_for_intfloat;
   621       }
   622       regs[i].set1(reg);
   623       break;
   624     case T_DOUBLE:
   625       assert(sig_bt[i+1] == T_VOID, "expecting half");
   626       if (freg < num_java_farg_registers) {
   627         // Put double in register.
   628         reg = java_farg_reg[freg];
   629         ++freg;
   630       } else {
   631         // Put double on stack. They must be aligned to 2 slots.
   632         if (stk & 0x1) ++stk;
   633         reg = VMRegImpl::stack2reg(stk);
   634         stk += inc_stk_for_longdouble;
   635       }
   636       regs[i].set2(reg);
   637       break;
   638     case T_VOID:
   639       // Do not count halves.
   640       regs[i].set_bad();
   641       break;
   642     default:
   643       ShouldNotReachHere();
   644     }
   645   }
   646   return round_to(stk, 2);
   647 }
   649 #ifdef COMPILER2
   650 // Calling convention for calling C code.
   651 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
   652                                         VMRegPair *regs,
   653                                         VMRegPair *regs2,
   654                                         int total_args_passed) {
   655   // Calling conventions for C runtime calls and calls to JNI native methods.
   656   //
   657   // PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8
   658   // int regs, leaving int regs undefined if the arg is flt/dbl. Hoist
   659   // the first 13 flt/dbl's in the first 13 fp regs but additionally
   660   // copy flt/dbl to the stack if they are beyond the 8th argument.
   662   const VMReg iarg_reg[8] = {
   663     R3->as_VMReg(),
   664     R4->as_VMReg(),
   665     R5->as_VMReg(),
   666     R6->as_VMReg(),
   667     R7->as_VMReg(),
   668     R8->as_VMReg(),
   669     R9->as_VMReg(),
   670     R10->as_VMReg()
   671   };
   673   const VMReg farg_reg[13] = {
   674     F1->as_VMReg(),
   675     F2->as_VMReg(),
   676     F3->as_VMReg(),
   677     F4->as_VMReg(),
   678     F5->as_VMReg(),
   679     F6->as_VMReg(),
   680     F7->as_VMReg(),
   681     F8->as_VMReg(),
   682     F9->as_VMReg(),
   683     F10->as_VMReg(),
   684     F11->as_VMReg(),
   685     F12->as_VMReg(),
   686     F13->as_VMReg()
   687   };
   689   // Check calling conventions consistency.
   690   assert(sizeof(iarg_reg) / sizeof(iarg_reg[0]) == Argument::n_int_register_parameters_c &&
   691          sizeof(farg_reg) / sizeof(farg_reg[0]) == Argument::n_float_register_parameters_c,
   692          "consistency");
   694   // `Stk' counts stack slots. Due to alignment, 32 bit values occupy
   695   // 2 such slots, like 64 bit values do.
   696   const int inc_stk_for_intfloat   = 2; // 2 slots for ints and floats
   697   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
   699   int i;
   700   VMReg reg;
   701   // Leave room for C-compatible ABI_REG_ARGS.
   702   int stk = (frame::abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size;
   703   int arg = 0;
   704   int freg = 0;
   706   // Avoid passing C arguments in the wrong stack slots.
   707 #if defined(ABI_ELFv2)
   708   assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 96,
   709          "passing C arguments in wrong stack slots");
   710 #else
   711   assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112,
   712          "passing C arguments in wrong stack slots");
   713 #endif
   714   // We fill-out regs AND regs2 if an argument must be passed in a
   715   // register AND in a stack slot. If regs2 is NULL in such a
   716   // situation, we bail-out with a fatal error.
   717   for (int i = 0; i < total_args_passed; ++i, ++arg) {
   718     // Initialize regs2 to BAD.
   719     if (regs2 != NULL) regs2[i].set_bad();
   721     switch(sig_bt[i]) {
   723     //
   724     // If arguments 0-7 are integers, they are passed in integer registers.
   725     // Argument i is placed in iarg_reg[i].
   726     //
   727     case T_BOOLEAN:
   728     case T_CHAR:
   729     case T_BYTE:
   730     case T_SHORT:
   731     case T_INT:
   732       // We must cast ints to longs and use full 64 bit stack slots
   733       // here. We do the cast in GraphKit::gen_stub() and just guard
   734       // here against loosing that change.
   735       assert(CCallingConventionRequiresIntsAsLongs,
   736              "argument of type int should be promoted to type long");
   737       guarantee(i > 0 && sig_bt[i-1] == T_LONG,
   738                 "argument of type (bt) should have been promoted to type (T_LONG,bt) for bt in "
   739                 "{T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
   740       // Do not count halves.
   741       regs[i].set_bad();
   742       --arg;
   743       break;
   744     case T_LONG:
   745       guarantee(sig_bt[i+1] == T_VOID    ||
   746                 sig_bt[i+1] == T_BOOLEAN || sig_bt[i+1] == T_CHAR  ||
   747                 sig_bt[i+1] == T_BYTE    || sig_bt[i+1] == T_SHORT ||
   748                 sig_bt[i+1] == T_INT,
   749                 "expecting type (T_LONG,half) or type (T_LONG,bt) with bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
   750     case T_OBJECT:
   751     case T_ARRAY:
   752     case T_ADDRESS:
   753     case T_METADATA:
   754       // Oops are already boxed if required (JNI).
   755       if (arg < Argument::n_int_register_parameters_c) {
   756         reg = iarg_reg[arg];
   757       } else {
   758         reg = VMRegImpl::stack2reg(stk);
   759         stk += inc_stk_for_longdouble;
   760       }
   761       regs[i].set2(reg);
   762       break;
   764     //
   765     // Floats are treated differently from int regs:  The first 13 float arguments
   766     // are passed in registers (not the float args among the first 13 args).
   767     // Thus argument i is NOT passed in farg_reg[i] if it is float.  It is passed
   768     // in farg_reg[j] if argument i is the j-th float argument of this call.
   769     //
   770     case T_FLOAT:
   771 #if defined(LINUX)
   772       // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
   773       // in the least significant word of an argument slot.
   774 #if defined(VM_LITTLE_ENDIAN)
   775 #define FLOAT_WORD_OFFSET_IN_SLOT 0
   776 #else
   777 #define FLOAT_WORD_OFFSET_IN_SLOT 1
   778 #endif
   779 #elif defined(AIX)
   780       // Although AIX runs on big endian CPU, float is in the most
   781       // significant word of an argument slot.
   782 #define FLOAT_WORD_OFFSET_IN_SLOT 0
   783 #else
   784 #error "unknown OS"
   785 #endif
   786       if (freg < Argument::n_float_register_parameters_c) {
   787         // Put float in register ...
   788         reg = farg_reg[freg];
   789         ++freg;
   791         // Argument i for i > 8 is placed on the stack even if it's
   792         // placed in a register (if it's a float arg). Aix disassembly
   793         // shows that xlC places these float args on the stack AND in
   794         // a register. This is not documented, but we follow this
   795         // convention, too.
   796         if (arg >= Argument::n_regs_not_on_stack_c) {
   797           // ... and on the stack.
   798           guarantee(regs2 != NULL, "must pass float in register and stack slot");
   799           VMReg reg2 = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
   800           regs2[i].set1(reg2);
   801           stk += inc_stk_for_intfloat;
   802         }
   804       } else {
   805         // Put float on stack.
   806         reg = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
   807         stk += inc_stk_for_intfloat;
   808       }
   809       regs[i].set1(reg);
   810       break;
   811     case T_DOUBLE:
   812       assert(sig_bt[i+1] == T_VOID, "expecting half");
   813       if (freg < Argument::n_float_register_parameters_c) {
   814         // Put double in register ...
   815         reg = farg_reg[freg];
   816         ++freg;
   818         // Argument i for i > 8 is placed on the stack even if it's
   819         // placed in a register (if it's a double arg). Aix disassembly
   820         // shows that xlC places these float args on the stack AND in
   821         // a register. This is not documented, but we follow this
   822         // convention, too.
   823         if (arg >= Argument::n_regs_not_on_stack_c) {
   824           // ... and on the stack.
   825           guarantee(regs2 != NULL, "must pass float in register and stack slot");
   826           VMReg reg2 = VMRegImpl::stack2reg(stk);
   827           regs2[i].set2(reg2);
   828           stk += inc_stk_for_longdouble;
   829         }
   830       } else {
   831         // Put double on stack.
   832         reg = VMRegImpl::stack2reg(stk);
   833         stk += inc_stk_for_longdouble;
   834       }
   835       regs[i].set2(reg);
   836       break;
   838     case T_VOID:
   839       // Do not count halves.
   840       regs[i].set_bad();
   841       --arg;
   842       break;
   843     default:
   844       ShouldNotReachHere();
   845     }
   846   }
   848   return round_to(stk, 2);
   849 }
   850 #endif // COMPILER2
   852 static address gen_c2i_adapter(MacroAssembler *masm,
   853                             int total_args_passed,
   854                             int comp_args_on_stack,
   855                             const BasicType *sig_bt,
   856                             const VMRegPair *regs,
   857                             Label& call_interpreter,
   858                             const Register& ientry) {
   860   address c2i_entrypoint;
   862   const Register sender_SP = R21_sender_SP; // == R21_tmp1
   863   const Register code      = R22_tmp2;
   864   //const Register ientry  = R23_tmp3;
   865   const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 };
   866   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
   867   int value_regs_index = 0;
   869   const Register return_pc = R27_tmp7;
   870   const Register tmp       = R28_tmp8;
   872   assert_different_registers(sender_SP, code, ientry, return_pc, tmp);
   874   // Adapter needs TOP_IJAVA_FRAME_ABI.
   875   const int adapter_size = frame::top_ijava_frame_abi_size +
   876                            round_to(total_args_passed * wordSize, frame::alignment_in_bytes);
   878   // regular (verified) c2i entry point
   879   c2i_entrypoint = __ pc();
   881   // Does compiled code exists? If yes, patch the caller's callsite.
   882   __ ld(code, method_(code));
   883   __ cmpdi(CCR0, code, 0);
   884   __ ld(ientry, method_(interpreter_entry)); // preloaded
   885   __ beq(CCR0, call_interpreter);
   888   // Patch caller's callsite, method_(code) was not NULL which means that
   889   // compiled code exists.
   890   __ mflr(return_pc);
   891   __ std(return_pc, _abi(lr), R1_SP);
   892   RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs);
   894   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc);
   896   RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs);
   897   __ ld(return_pc, _abi(lr), R1_SP);
   898   __ ld(ientry, method_(interpreter_entry)); // preloaded
   899   __ mtlr(return_pc);
   902   // Call the interpreter.
   903   __ BIND(call_interpreter);
   904   __ mtctr(ientry);
   906   // Get a copy of the current SP for loading caller's arguments.
   907   __ mr(sender_SP, R1_SP);
   909   // Add space for the adapter.
   910   __ resize_frame(-adapter_size, R12_scratch2);
   912   int st_off = adapter_size - wordSize;
   914   // Write the args into the outgoing interpreter space.
   915   for (int i = 0; i < total_args_passed; i++) {
   916     VMReg r_1 = regs[i].first();
   917     VMReg r_2 = regs[i].second();
   918     if (!r_1->is_valid()) {
   919       assert(!r_2->is_valid(), "");
   920       continue;
   921     }
   922     if (r_1->is_stack()) {
   923       Register tmp_reg = value_regs[value_regs_index];
   924       value_regs_index = (value_regs_index + 1) % num_value_regs;
   925       // The calling convention produces OptoRegs that ignore the out
   926       // preserve area (JIT's ABI). We must account for it here.
   927       int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   928       if (!r_2->is_valid()) {
   929         __ lwz(tmp_reg, ld_off, sender_SP);
   930       } else {
   931         __ ld(tmp_reg, ld_off, sender_SP);
   932       }
   933       // Pretend stack targets were loaded into tmp_reg.
   934       r_1 = tmp_reg->as_VMReg();
   935     }
   937     if (r_1->is_Register()) {
   938       Register r = r_1->as_Register();
   939       if (!r_2->is_valid()) {
   940         __ stw(r, st_off, R1_SP);
   941         st_off-=wordSize;
   942       } else {
   943         // Longs are given 2 64-bit slots in the interpreter, but the
   944         // data is passed in only 1 slot.
   945         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   946           DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
   947           st_off-=wordSize;
   948         }
   949         __ std(r, st_off, R1_SP);
   950         st_off-=wordSize;
   951       }
   952     } else {
   953       assert(r_1->is_FloatRegister(), "");
   954       FloatRegister f = r_1->as_FloatRegister();
   955       if (!r_2->is_valid()) {
   956         __ stfs(f, st_off, R1_SP);
   957         st_off-=wordSize;
   958       } else {
   959         // In 64bit, doubles are given 2 64-bit slots in the interpreter, but the
   960         // data is passed in only 1 slot.
   961         // One of these should get known junk...
   962         DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
   963         st_off-=wordSize;
   964         __ stfd(f, st_off, R1_SP);
   965         st_off-=wordSize;
   966       }
   967     }
   968   }
   970   // Jump to the interpreter just as if interpreter was doing it.
   972 #ifdef CC_INTERP
   973   const Register tos = R17_tos;
   974 #else
   975   const Register tos = R15_esp;
   976   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
   977 #endif
   979   // load TOS
   980   __ addi(tos, R1_SP, st_off);
   982   // Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1.
   983   assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register");
   984   __ bctr();
   986   return c2i_entrypoint;
   987 }
   989 static void gen_i2c_adapter(MacroAssembler *masm,
   990                             int total_args_passed,
   991                             int comp_args_on_stack,
   992                             const BasicType *sig_bt,
   993                             const VMRegPair *regs) {
   995   // Load method's entry-point from method.
   996   __ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
   997   __ mtctr(R12_scratch2);
   999   // We will only enter here from an interpreted frame and never from after
  1000   // passing thru a c2i. Azul allowed this but we do not. If we lose the
  1001   // race and use a c2i we will remain interpreted for the race loser(s).
  1002   // This removes all sorts of headaches on the x86 side and also eliminates
  1003   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
  1005   // Note: r13 contains the senderSP on entry. We must preserve it since
  1006   // we may do a i2c -> c2i transition if we lose a race where compiled
  1007   // code goes non-entrant while we get args ready.
  1008   // In addition we use r13 to locate all the interpreter args as
  1009   // we must align the stack to 16 bytes on an i2c entry else we
  1010   // lose alignment we expect in all compiled code and register
  1011   // save code can segv when fxsave instructions find improperly
  1012   // aligned stack pointer.
  1014 #ifdef CC_INTERP
  1015   const Register ld_ptr = R17_tos;
  1016 #else
  1017   const Register ld_ptr = R15_esp;
  1018 #endif
  1020   const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 };
  1021   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
  1022   int value_regs_index = 0;
  1024   int ld_offset = total_args_passed*wordSize;
  1026   // Cut-out for having no stack args. Since up to 2 int/oop args are passed
  1027   // in registers, we will occasionally have no stack args.
  1028   int comp_words_on_stack = 0;
  1029   if (comp_args_on_stack) {
  1030     // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
  1031     // registers are below. By subtracting stack0, we either get a negative
  1032     // number (all values in registers) or the maximum stack slot accessed.
  1034     // Convert 4-byte c2 stack slots to words.
  1035     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
  1036     // Round up to miminum stack alignment, in wordSize.
  1037     comp_words_on_stack = round_to(comp_words_on_stack, 2);
  1038     __ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1);
  1041   // Now generate the shuffle code.  Pick up all register args and move the
  1042   // rest through register value=Z_R12.
  1043   BLOCK_COMMENT("Shuffle arguments");
  1044   for (int i = 0; i < total_args_passed; i++) {
  1045     if (sig_bt[i] == T_VOID) {
  1046       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
  1047       continue;
  1050     // Pick up 0, 1 or 2 words from ld_ptr.
  1051     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
  1052             "scrambled load targets?");
  1053     VMReg r_1 = regs[i].first();
  1054     VMReg r_2 = regs[i].second();
  1055     if (!r_1->is_valid()) {
  1056       assert(!r_2->is_valid(), "");
  1057       continue;
  1059     if (r_1->is_FloatRegister()) {
  1060       if (!r_2->is_valid()) {
  1061         __ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr);
  1062         ld_offset-=wordSize;
  1063       } else {
  1064         // Skip the unused interpreter slot.
  1065         __ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr);
  1066         ld_offset-=2*wordSize;
  1068     } else {
  1069       Register r;
  1070       if (r_1->is_stack()) {
  1071         // Must do a memory to memory move thru "value".
  1072         r = value_regs[value_regs_index];
  1073         value_regs_index = (value_regs_index + 1) % num_value_regs;
  1074       } else {
  1075         r = r_1->as_Register();
  1077       if (!r_2->is_valid()) {
  1078         // Not sure we need to do this but it shouldn't hurt.
  1079         if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ADDRESS || sig_bt[i] == T_ARRAY) {
  1080           __ ld(r, ld_offset, ld_ptr);
  1081           ld_offset-=wordSize;
  1082         } else {
  1083           __ lwz(r, ld_offset, ld_ptr);
  1084           ld_offset-=wordSize;
  1086       } else {
  1087         // In 64bit, longs are given 2 64-bit slots in the interpreter, but the
  1088         // data is passed in only 1 slot.
  1089         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
  1090           ld_offset-=wordSize;
  1092         __ ld(r, ld_offset, ld_ptr);
  1093         ld_offset-=wordSize;
  1096       if (r_1->is_stack()) {
  1097         // Now store value where the compiler expects it
  1098         int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size;
  1100         if (sig_bt[i] == T_INT   || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN ||
  1101             sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR  || sig_bt[i] == T_BYTE) {
  1102           __ stw(r, st_off, R1_SP);
  1103         } else {
  1104           __ std(r, st_off, R1_SP);
  1110   BLOCK_COMMENT("Store method");
  1111   // Store method into thread->callee_target.
  1112   // We might end up in handle_wrong_method if the callee is
  1113   // deoptimized as we race thru here. If that happens we don't want
  1114   // to take a safepoint because the caller frame will look
  1115   // interpreted and arguments are now "compiled" so it is much better
  1116   // to make this transition invisible to the stack walking
  1117   // code. Unfortunately if we try and find the callee by normal means
  1118   // a safepoint is possible. So we stash the desired callee in the
  1119   // thread and the vm will find there should this case occur.
  1120   __ std(R19_method, thread_(callee_target));
  1122   // Jump to the compiled code just as if compiled code was doing it.
  1123   __ bctr();
  1126 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1127                                                             int total_args_passed,
  1128                                                             int comp_args_on_stack,
  1129                                                             const BasicType *sig_bt,
  1130                                                             const VMRegPair *regs,
  1131                                                             AdapterFingerPrint* fingerprint) {
  1132   address i2c_entry;
  1133   address c2i_unverified_entry;
  1134   address c2i_entry;
  1137   // entry: i2c
  1139   __ align(CodeEntryAlignment);
  1140   i2c_entry = __ pc();
  1141   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
  1144   // entry: c2i unverified
  1146   __ align(CodeEntryAlignment);
  1147   BLOCK_COMMENT("c2i unverified entry");
  1148   c2i_unverified_entry = __ pc();
  1150   // inline_cache contains a compiledICHolder
  1151   const Register ic             = R19_method;
  1152   const Register ic_klass       = R11_scratch1;
  1153   const Register receiver_klass = R12_scratch2;
  1154   const Register code           = R21_tmp1;
  1155   const Register ientry         = R23_tmp3;
  1157   assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry);
  1158   assert(R11_scratch1 == R11, "need prologue scratch register");
  1160   Label call_interpreter;
  1162   assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()),
  1163          "klass offset should reach into any page");
  1164   // Check for NULL argument if we don't have implicit null checks.
  1165   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
  1166     if (TrapBasedNullChecks) {
  1167       __ trap_null_check(R3_ARG1);
  1168     } else {
  1169       Label valid;
  1170       __ cmpdi(CCR0, R3_ARG1, 0);
  1171       __ bne_predict_taken(CCR0, valid);
  1172       // We have a null argument, branch to ic_miss_stub.
  1173       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  1174                        relocInfo::runtime_call_type);
  1175       __ BIND(valid);
  1178   // Assume argument is not NULL, load klass from receiver.
  1179   __ load_klass(receiver_klass, R3_ARG1);
  1181   __ ld(ic_klass, CompiledICHolder::holder_klass_offset(), ic);
  1183   if (TrapBasedICMissChecks) {
  1184     __ trap_ic_miss_check(receiver_klass, ic_klass);
  1185   } else {
  1186     Label valid;
  1187     __ cmpd(CCR0, receiver_klass, ic_klass);
  1188     __ beq_predict_taken(CCR0, valid);
  1189     // We have an unexpected klass, branch to ic_miss_stub.
  1190     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  1191                      relocInfo::runtime_call_type);
  1192     __ BIND(valid);
  1195   // Argument is valid and klass is as expected, continue.
  1197   // Extract method from inline cache, verified entry point needs it.
  1198   __ ld(R19_method, CompiledICHolder::holder_metadata_offset(), ic);
  1199   assert(R19_method == ic, "the inline cache register is dead here");
  1201   __ ld(code, method_(code));
  1202   __ cmpdi(CCR0, code, 0);
  1203   __ ld(ientry, method_(interpreter_entry)); // preloaded
  1204   __ beq_predict_taken(CCR0, call_interpreter);
  1206   // Branch to ic_miss_stub.
  1207   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type);
  1209   // entry: c2i
  1211   c2i_entry = gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry);
  1213   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1216 #ifdef COMPILER2
  1217 // An oop arg. Must pass a handle not the oop itself.
  1218 static void object_move(MacroAssembler* masm,
  1219                         int frame_size_in_slots,
  1220                         OopMap* oop_map, int oop_handle_offset,
  1221                         bool is_receiver, int* receiver_offset,
  1222                         VMRegPair src, VMRegPair dst,
  1223                         Register r_caller_sp, Register r_temp_1, Register r_temp_2) {
  1224   assert(!is_receiver || (is_receiver && (*receiver_offset == -1)),
  1225          "receiver has already been moved");
  1227   // We must pass a handle. First figure out the location we use as a handle.
  1229   if (src.first()->is_stack()) {
  1230     // stack to stack or reg
  1232     const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
  1233     Label skip;
  1234     const int oop_slot_in_callers_frame = reg2slot(src.first());
  1236     guarantee(!is_receiver, "expecting receiver in register");
  1237     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots));
  1239     __ addi(r_handle, r_caller_sp, reg2offset(src.first()));
  1240     __ ld(  r_temp_2, reg2offset(src.first()), r_caller_sp);
  1241     __ cmpdi(CCR0, r_temp_2, 0);
  1242     __ bne(CCR0, skip);
  1243     // Use a NULL handle if oop is NULL.
  1244     __ li(r_handle, 0);
  1245     __ bind(skip);
  1247     if (dst.first()->is_stack()) {
  1248       // stack to stack
  1249       __ std(r_handle, reg2offset(dst.first()), R1_SP);
  1250     } else {
  1251       // stack to reg
  1252       // Nothing to do, r_handle is already the dst register.
  1254   } else {
  1255     // reg to stack or reg
  1256     const Register r_oop      = src.first()->as_Register();
  1257     const Register r_handle   = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
  1258     const int oop_slot        = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word
  1259                                 + oop_handle_offset; // in slots
  1260     const int oop_offset = oop_slot * VMRegImpl::stack_slot_size;
  1261     Label skip;
  1263     if (is_receiver) {
  1264       *receiver_offset = oop_offset;
  1266     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1268     __ std( r_oop,    oop_offset, R1_SP);
  1269     __ addi(r_handle, R1_SP, oop_offset);
  1271     __ cmpdi(CCR0, r_oop, 0);
  1272     __ bne(CCR0, skip);
  1273     // Use a NULL handle if oop is NULL.
  1274     __ li(r_handle, 0);
  1275     __ bind(skip);
  1277     if (dst.first()->is_stack()) {
  1278       // reg to stack
  1279       __ std(r_handle, reg2offset(dst.first()), R1_SP);
  1280     } else {
  1281       // reg to reg
  1282       // Nothing to do, r_handle is already the dst register.
  1287 static void int_move(MacroAssembler*masm,
  1288                      VMRegPair src, VMRegPair dst,
  1289                      Register r_caller_sp, Register r_temp) {
  1290   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long-int");
  1291   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
  1293   if (src.first()->is_stack()) {
  1294     if (dst.first()->is_stack()) {
  1295       // stack to stack
  1296       __ lwa(r_temp, reg2offset(src.first()), r_caller_sp);
  1297       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1298     } else {
  1299       // stack to reg
  1300       __ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
  1302   } else if (dst.first()->is_stack()) {
  1303     // reg to stack
  1304     __ extsw(r_temp, src.first()->as_Register());
  1305     __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1306   } else {
  1307     // reg to reg
  1308     __ extsw(dst.first()->as_Register(), src.first()->as_Register());
  1312 static void long_move(MacroAssembler*masm,
  1313                       VMRegPair src, VMRegPair dst,
  1314                       Register r_caller_sp, Register r_temp) {
  1315   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long");
  1316   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
  1318   if (src.first()->is_stack()) {
  1319     if (dst.first()->is_stack()) {
  1320       // stack to stack
  1321       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
  1322       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1323     } else {
  1324       // stack to reg
  1325       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
  1327   } else if (dst.first()->is_stack()) {
  1328     // reg to stack
  1329     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
  1330   } else {
  1331     // reg to reg
  1332     if (dst.first()->as_Register() != src.first()->as_Register())
  1333       __ mr(dst.first()->as_Register(), src.first()->as_Register());
  1337 static void float_move(MacroAssembler*masm,
  1338                        VMRegPair src, VMRegPair dst,
  1339                        Register r_caller_sp, Register r_temp) {
  1340   assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float");
  1341   assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float");
  1343   if (src.first()->is_stack()) {
  1344     if (dst.first()->is_stack()) {
  1345       // stack to stack
  1346       __ lwz(r_temp, reg2offset(src.first()), r_caller_sp);
  1347       __ stw(r_temp, reg2offset(dst.first()), R1_SP);
  1348     } else {
  1349       // stack to reg
  1350       __ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
  1352   } else if (dst.first()->is_stack()) {
  1353     // reg to stack
  1354     __ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
  1355   } else {
  1356     // reg to reg
  1357     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
  1358       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
  1362 static void double_move(MacroAssembler*masm,
  1363                         VMRegPair src, VMRegPair dst,
  1364                         Register r_caller_sp, Register r_temp) {
  1365   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double");
  1366   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double");
  1368   if (src.first()->is_stack()) {
  1369     if (dst.first()->is_stack()) {
  1370       // stack to stack
  1371       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
  1372       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1373     } else {
  1374       // stack to reg
  1375       __ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
  1377   } else if (dst.first()->is_stack()) {
  1378     // reg to stack
  1379     __ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
  1380   } else {
  1381     // reg to reg
  1382     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
  1383       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
  1387 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1388   switch (ret_type) {
  1389     case T_BOOLEAN:
  1390     case T_CHAR:
  1391     case T_BYTE:
  1392     case T_SHORT:
  1393     case T_INT:
  1394       __ stw (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1395       break;
  1396     case T_ARRAY:
  1397     case T_OBJECT:
  1398     case T_LONG:
  1399       __ std (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1400       break;
  1401     case T_FLOAT:
  1402       __ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1403       break;
  1404     case T_DOUBLE:
  1405       __ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1406       break;
  1407     case T_VOID:
  1408       break;
  1409     default:
  1410       ShouldNotReachHere();
  1411       break;
  1415 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1416   switch (ret_type) {
  1417     case T_BOOLEAN:
  1418     case T_CHAR:
  1419     case T_BYTE:
  1420     case T_SHORT:
  1421     case T_INT:
  1422       __ lwz(R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1423       break;
  1424     case T_ARRAY:
  1425     case T_OBJECT:
  1426     case T_LONG:
  1427       __ ld (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1428       break;
  1429     case T_FLOAT:
  1430       __ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1431       break;
  1432     case T_DOUBLE:
  1433       __ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
  1434       break;
  1435     case T_VOID:
  1436       break;
  1437     default:
  1438       ShouldNotReachHere();
  1439       break;
  1443 static void save_or_restore_arguments(MacroAssembler* masm,
  1444                                       const int stack_slots,
  1445                                       const int total_in_args,
  1446                                       const int arg_save_area,
  1447                                       OopMap* map,
  1448                                       VMRegPair* in_regs,
  1449                                       BasicType* in_sig_bt) {
  1450   // If map is non-NULL then the code should store the values,
  1451   // otherwise it should load them.
  1452   int slot = arg_save_area;
  1453   // Save down double word first.
  1454   for (int i = 0; i < total_in_args; i++) {
  1455     if (in_regs[i].first()->is_FloatRegister() && in_sig_bt[i] == T_DOUBLE) {
  1456       int offset = slot * VMRegImpl::stack_slot_size;
  1457       slot += VMRegImpl::slots_per_word;
  1458       assert(slot <= stack_slots, "overflow (after DOUBLE stack slot)");
  1459       if (map != NULL) {
  1460         __ stfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1461       } else {
  1462         __ lfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1464     } else if (in_regs[i].first()->is_Register() &&
  1465         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
  1466       int offset = slot * VMRegImpl::stack_slot_size;
  1467       if (map != NULL) {
  1468         __ std(in_regs[i].first()->as_Register(), offset, R1_SP);
  1469         if (in_sig_bt[i] == T_ARRAY) {
  1470           map->set_oop(VMRegImpl::stack2reg(slot));
  1472       } else {
  1473         __ ld(in_regs[i].first()->as_Register(), offset, R1_SP);
  1475       slot += VMRegImpl::slots_per_word;
  1476       assert(slot <= stack_slots, "overflow (after LONG/ARRAY stack slot)");
  1479   // Save or restore single word registers.
  1480   for (int i = 0; i < total_in_args; i++) {
  1481     // PPC64: pass ints as longs: must only deal with floats here.
  1482     if (in_regs[i].first()->is_FloatRegister()) {
  1483       if (in_sig_bt[i] == T_FLOAT) {
  1484         int offset = slot * VMRegImpl::stack_slot_size;
  1485         slot++;
  1486         assert(slot <= stack_slots, "overflow (after FLOAT stack slot)");
  1487         if (map != NULL) {
  1488           __ stfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1489         } else {
  1490           __ lfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
  1493     } else if (in_regs[i].first()->is_stack()) {
  1494       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
  1495         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1496         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1502 // Check GC_locker::needs_gc and enter the runtime if it's true. This
  1503 // keeps a new JNI critical region from starting until a GC has been
  1504 // forced. Save down any oops in registers and describe them in an
  1505 // OopMap.
  1506 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1507                                                const int stack_slots,
  1508                                                const int total_in_args,
  1509                                                const int arg_save_area,
  1510                                                OopMapSet* oop_maps,
  1511                                                VMRegPair* in_regs,
  1512                                                BasicType* in_sig_bt,
  1513                                                Register tmp_reg ) {
  1514   __ block_comment("check GC_locker::needs_gc");
  1515   Label cont;
  1516   __ lbz(tmp_reg, (RegisterOrConstant)(intptr_t)GC_locker::needs_gc_address());
  1517   __ cmplwi(CCR0, tmp_reg, 0);
  1518   __ beq(CCR0, cont);
  1520   // Save down any values that are live in registers and call into the
  1521   // runtime to halt for a GC.
  1522   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1523   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1524                             arg_save_area, map, in_regs, in_sig_bt);
  1526   __ mr(R3_ARG1, R16_thread);
  1527   __ set_last_Java_frame(R1_SP, noreg);
  1529   __ block_comment("block_for_jni_critical");
  1530   address entry_point = CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical);
  1531 #if defined(ABI_ELFv2)
  1532   __ call_c(entry_point, relocInfo::runtime_call_type);
  1533 #else
  1534   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::runtime_call_type);
  1535 #endif
  1536   address start           = __ pc() - __ offset(),
  1537           calls_return_pc = __ last_calls_return_pc();
  1538   oop_maps->add_gc_map(calls_return_pc - start, map);
  1540   __ reset_last_Java_frame();
  1542   // Reload all the register arguments.
  1543   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1544                             arg_save_area, NULL, in_regs, in_sig_bt);
  1546   __ BIND(cont);
  1548 #ifdef ASSERT
  1549   if (StressCriticalJNINatives) {
  1550     // Stress register saving.
  1551     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1552     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1553                               arg_save_area, map, in_regs, in_sig_bt);
  1554     // Destroy argument registers.
  1555     for (int i = 0; i < total_in_args; i++) {
  1556       if (in_regs[i].first()->is_Register()) {
  1557         const Register reg = in_regs[i].first()->as_Register();
  1558         __ neg(reg, reg);
  1559       } else if (in_regs[i].first()->is_FloatRegister()) {
  1560         __ fneg(in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
  1564     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1565                               arg_save_area, NULL, in_regs, in_sig_bt);
  1567 #endif
  1570 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) {
  1571   if (src.first()->is_stack()) {
  1572     if (dst.first()->is_stack()) {
  1573       // stack to stack
  1574       __ ld(r_temp, reg2offset(src.first()), r_caller_sp);
  1575       __ std(r_temp, reg2offset(dst.first()), R1_SP);
  1576     } else {
  1577       // stack to reg
  1578       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
  1580   } else if (dst.first()->is_stack()) {
  1581     // reg to stack
  1582     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
  1583   } else {
  1584     if (dst.first() != src.first()) {
  1585       __ mr(dst.first()->as_Register(), src.first()->as_Register());
  1590 // Unpack an array argument into a pointer to the body and the length
  1591 // if the array is non-null, otherwise pass 0 for both.
  1592 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type,
  1593                                   VMRegPair body_arg, VMRegPair length_arg, Register r_caller_sp,
  1594                                   Register tmp_reg, Register tmp2_reg) {
  1595   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
  1596          "possible collision");
  1597   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
  1598          "possible collision");
  1600   // Pass the length, ptr pair.
  1601   Label set_out_args;
  1602   VMRegPair tmp, tmp2;
  1603   tmp.set_ptr(tmp_reg->as_VMReg());
  1604   tmp2.set_ptr(tmp2_reg->as_VMReg());
  1605   if (reg.first()->is_stack()) {
  1606     // Load the arg up from the stack.
  1607     move_ptr(masm, reg, tmp, r_caller_sp, /*unused*/ R0);
  1608     reg = tmp;
  1610   __ li(tmp2_reg, 0); // Pass zeros if Array=null.
  1611   if (tmp_reg != reg.first()->as_Register()) __ li(tmp_reg, 0);
  1612   __ cmpdi(CCR0, reg.first()->as_Register(), 0);
  1613   __ beq(CCR0, set_out_args);
  1614   __ lwa(tmp2_reg, arrayOopDesc::length_offset_in_bytes(), reg.first()->as_Register());
  1615   __ addi(tmp_reg, reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type));
  1616   __ bind(set_out_args);
  1617   move_ptr(masm, tmp, body_arg, r_caller_sp, /*unused*/ R0);
  1618   move_ptr(masm, tmp2, length_arg, r_caller_sp, /*unused*/ R0); // Same as move32_64 on PPC64.
  1621 static void verify_oop_args(MacroAssembler* masm,
  1622                             methodHandle method,
  1623                             const BasicType* sig_bt,
  1624                             const VMRegPair* regs) {
  1625   Register temp_reg = R19_method;  // not part of any compiled calling seq
  1626   if (VerifyOops) {
  1627     for (int i = 0; i < method->size_of_parameters(); i++) {
  1628       if (sig_bt[i] == T_OBJECT ||
  1629           sig_bt[i] == T_ARRAY) {
  1630         VMReg r = regs[i].first();
  1631         assert(r->is_valid(), "bad oop arg");
  1632         if (r->is_stack()) {
  1633           __ ld(temp_reg, reg2offset(r), R1_SP);
  1634           __ verify_oop(temp_reg);
  1635         } else {
  1636           __ verify_oop(r->as_Register());
  1643 static void gen_special_dispatch(MacroAssembler* masm,
  1644                                  methodHandle method,
  1645                                  const BasicType* sig_bt,
  1646                                  const VMRegPair* regs) {
  1647   verify_oop_args(masm, method, sig_bt, regs);
  1648   vmIntrinsics::ID iid = method->intrinsic_id();
  1650   // Now write the args into the outgoing interpreter space
  1651   bool     has_receiver   = false;
  1652   Register receiver_reg   = noreg;
  1653   int      member_arg_pos = -1;
  1654   Register member_reg     = noreg;
  1655   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1656   if (ref_kind != 0) {
  1657     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1658     member_reg = R19_method;  // known to be free at this point
  1659     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1660   } else if (iid == vmIntrinsics::_invokeBasic) {
  1661     has_receiver = true;
  1662   } else {
  1663     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1666   if (member_reg != noreg) {
  1667     // Load the member_arg into register, if necessary.
  1668     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1669     VMReg r = regs[member_arg_pos].first();
  1670     if (r->is_stack()) {
  1671       __ ld(member_reg, reg2offset(r), R1_SP);
  1672     } else {
  1673       // no data motion is needed
  1674       member_reg = r->as_Register();
  1678   if (has_receiver) {
  1679     // Make sure the receiver is loaded into a register.
  1680     assert(method->size_of_parameters() > 0, "oob");
  1681     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1682     VMReg r = regs[0].first();
  1683     assert(r->is_valid(), "bad receiver arg");
  1684     if (r->is_stack()) {
  1685       // Porting note:  This assumes that compiled calling conventions always
  1686       // pass the receiver oop in a register.  If this is not true on some
  1687       // platform, pick a temp and load the receiver from stack.
  1688       fatal("receiver always in a register");
  1689       receiver_reg = R11_scratch1;  // TODO (hs24): is R11_scratch1 really free at this point?
  1690       __ ld(receiver_reg, reg2offset(r), R1_SP);
  1691     } else {
  1692       // no data motion is needed
  1693       receiver_reg = r->as_Register();
  1697   // Figure out which address we are really jumping to:
  1698   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1699                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1702 #endif // COMPILER2
  1704 // ---------------------------------------------------------------------------
  1705 // Generate a native wrapper for a given method. The method takes arguments
  1706 // in the Java compiled code convention, marshals them to the native
  1707 // convention (handlizes oops, etc), transitions to native, makes the call,
  1708 // returns to java state (possibly blocking), unhandlizes any result and
  1709 // returns.
  1710 //
  1711 // Critical native functions are a shorthand for the use of
  1712 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1713 // functions.  The wrapper is expected to unpack the arguments before
  1714 // passing them to the callee and perform checks before and after the
  1715 // native call to ensure that they GC_locker
  1716 // lock_critical/unlock_critical semantics are followed.  Some other
  1717 // parts of JNI setup are skipped like the tear down of the JNI handle
  1718 // block and the check for pending exceptions it's impossible for them
  1719 // to be thrown.
  1720 //
  1721 // They are roughly structured like this:
  1722 //   if (GC_locker::needs_gc())
  1723 //     SharedRuntime::block_for_jni_critical();
  1724 //   tranistion to thread_in_native
  1725 //   unpack arrray arguments and call native entry point
  1726 //   check for safepoint in progress
  1727 //   check if any thread suspend flags are set
  1728 //     call into JVM and possible unlock the JNI critical
  1729 //     if a GC was suppressed while in the critical native.
  1730 //   transition back to thread_in_Java
  1731 //   return to caller
  1732 //
  1733 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
  1734                                                 methodHandle method,
  1735                                                 int compile_id,
  1736                                                 BasicType *in_sig_bt,
  1737                                                 VMRegPair *in_regs,
  1738                                                 BasicType ret_type) {
  1739 #ifdef COMPILER2
  1740   if (method->is_method_handle_intrinsic()) {
  1741     vmIntrinsics::ID iid = method->intrinsic_id();
  1742     intptr_t start = (intptr_t)__ pc();
  1743     int vep_offset = ((intptr_t)__ pc()) - start;
  1744     gen_special_dispatch(masm,
  1745                          method,
  1746                          in_sig_bt,
  1747                          in_regs);
  1748     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1749     __ flush();
  1750     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1751     return nmethod::new_native_nmethod(method,
  1752                                        compile_id,
  1753                                        masm->code(),
  1754                                        vep_offset,
  1755                                        frame_complete,
  1756                                        stack_slots / VMRegImpl::slots_per_word,
  1757                                        in_ByteSize(-1),
  1758                                        in_ByteSize(-1),
  1759                                        (OopMapSet*)NULL);
  1762   bool is_critical_native = true;
  1763   address native_func = method->critical_native_function();
  1764   if (native_func == NULL) {
  1765     native_func = method->native_function();
  1766     is_critical_native = false;
  1768   assert(native_func != NULL, "must have function");
  1770   // First, create signature for outgoing C call
  1771   // --------------------------------------------------------------------------
  1773   int total_in_args = method->size_of_parameters();
  1774   // We have received a description of where all the java args are located
  1775   // on entry to the wrapper. We need to convert these args to where
  1776   // the jni function will expect them. To figure out where they go
  1777   // we convert the java signature to a C signature by inserting
  1778   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1779   //
  1780   // Additionally, on ppc64 we must convert integers to longs in the C
  1781   // signature. We do this in advance in order to have no trouble with
  1782   // indexes into the bt-arrays.
  1783   // So convert the signature and registers now, and adjust the total number
  1784   // of in-arguments accordingly.
  1785   int i2l_argcnt = convert_ints_to_longints_argcnt(total_in_args, in_sig_bt); // PPC64: pass ints as longs.
  1787   // Calculate the total number of C arguments and create arrays for the
  1788   // signature and the outgoing registers.
  1789   // On ppc64, we have two arrays for the outgoing registers, because
  1790   // some floating-point arguments must be passed in registers _and_
  1791   // in stack locations.
  1792   bool method_is_static = method->is_static();
  1793   int  total_c_args     = i2l_argcnt;
  1795   if (!is_critical_native) {
  1796     int n_hidden_args = method_is_static ? 2 : 1;
  1797     total_c_args += n_hidden_args;
  1798   } else {
  1799     // No JNIEnv*, no this*, but unpacked arrays (base+length).
  1800     for (int i = 0; i < total_in_args; i++) {
  1801       if (in_sig_bt[i] == T_ARRAY) {
  1802         total_c_args += 2; // PPC64: T_LONG, T_INT, T_ADDRESS (see convert_ints_to_longints and c_calling_convention)
  1807   BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1808   VMRegPair *out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1809   VMRegPair *out_regs2  = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  1810   BasicType* in_elem_bt = NULL;
  1812   // Create the signature for the C call:
  1813   //   1) add the JNIEnv*
  1814   //   2) add the class if the method is static
  1815   //   3) copy the rest of the incoming signature (shifted by the number of
  1816   //      hidden arguments).
  1818   int argc = 0;
  1819   if (!is_critical_native) {
  1820     convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
  1822     out_sig_bt[argc++] = T_ADDRESS;
  1823     if (method->is_static()) {
  1824       out_sig_bt[argc++] = T_OBJECT;
  1827     for (int i = 0; i < total_in_args ; i++ ) {
  1828       out_sig_bt[argc++] = in_sig_bt[i];
  1830   } else {
  1831     Thread* THREAD = Thread::current();
  1832     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
  1833     SignatureStream ss(method->signature());
  1834     int o = 0;
  1835     for (int i = 0; i < total_in_args ; i++, o++) {
  1836       if (in_sig_bt[i] == T_ARRAY) {
  1837         // Arrays are passed as int, elem* pair
  1838         Symbol* atype = ss.as_symbol(CHECK_NULL);
  1839         const char* at = atype->as_C_string();
  1840         if (strlen(at) == 2) {
  1841           assert(at[0] == '[', "must be");
  1842           switch (at[1]) {
  1843             case 'B': in_elem_bt[o] = T_BYTE; break;
  1844             case 'C': in_elem_bt[o] = T_CHAR; break;
  1845             case 'D': in_elem_bt[o] = T_DOUBLE; break;
  1846             case 'F': in_elem_bt[o] = T_FLOAT; break;
  1847             case 'I': in_elem_bt[o] = T_INT; break;
  1848             case 'J': in_elem_bt[o] = T_LONG; break;
  1849             case 'S': in_elem_bt[o] = T_SHORT; break;
  1850             case 'Z': in_elem_bt[o] = T_BOOLEAN; break;
  1851             default: ShouldNotReachHere();
  1854       } else {
  1855         in_elem_bt[o] = T_VOID;
  1856         switch(in_sig_bt[i]) { // PPC64: pass ints as longs.
  1857           case T_BOOLEAN:
  1858           case T_CHAR:
  1859           case T_BYTE:
  1860           case T_SHORT:
  1861           case T_INT: in_elem_bt[++o] = T_VOID; break;
  1862           default: break;
  1865       if (in_sig_bt[i] != T_VOID) {
  1866         assert(in_sig_bt[i] == ss.type(), "must match");
  1867         ss.next();
  1870     assert(i2l_argcnt==o, "must match");
  1872     convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
  1874     for (int i = 0; i < total_in_args ; i++ ) {
  1875       if (in_sig_bt[i] == T_ARRAY) {
  1876         // Arrays are passed as int, elem* pair.
  1877         out_sig_bt[argc++] = T_LONG; // PPC64: pass ints as longs.
  1878         out_sig_bt[argc++] = T_INT;
  1879         out_sig_bt[argc++] = T_ADDRESS;
  1880       } else {
  1881         out_sig_bt[argc++] = in_sig_bt[i];
  1887   // Compute the wrapper's frame size.
  1888   // --------------------------------------------------------------------------
  1890   // Now figure out where the args must be stored and how much stack space
  1891   // they require.
  1892   //
  1893   // Compute framesize for the wrapper. We need to handlize all oops in
  1894   // incoming registers.
  1895   //
  1896   // Calculate the total number of stack slots we will need:
  1897   //   1) abi requirements
  1898   //   2) outgoing arguments
  1899   //   3) space for inbound oop handle area
  1900   //   4) space for handlizing a klass if static method
  1901   //   5) space for a lock if synchronized method
  1902   //   6) workspace for saving return values, int <-> float reg moves, etc.
  1903   //   7) alignment
  1904   //
  1905   // Layout of the native wrapper frame:
  1906   // (stack grows upwards, memory grows downwards)
  1907   //
  1908   // NW     [ABI_REG_ARGS]             <-- 1) R1_SP
  1909   //        [outgoing arguments]       <-- 2) R1_SP + out_arg_slot_offset
  1910   //        [oopHandle area]           <-- 3) R1_SP + oop_handle_offset (save area for critical natives)
  1911   //        klass                      <-- 4) R1_SP + klass_offset
  1912   //        lock                       <-- 5) R1_SP + lock_offset
  1913   //        [workspace]                <-- 6) R1_SP + workspace_offset
  1914   //        [alignment] (optional)     <-- 7)
  1915   // caller [JIT_TOP_ABI_48]           <-- r_callers_sp
  1916   //
  1917   // - *_slot_offset Indicates offset from SP in number of stack slots.
  1918   // - *_offset      Indicates offset from SP in bytes.
  1920   int stack_slots = c_calling_convention(out_sig_bt, out_regs, out_regs2, total_c_args) // 1+2)
  1921                   + SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention.
  1923   // Now the space for the inbound oop handle area.
  1924   int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word;
  1925   if (is_critical_native) {
  1926     // Critical natives may have to call out so they need a save area
  1927     // for register arguments.
  1928     int double_slots = 0;
  1929     int single_slots = 0;
  1930     for (int i = 0; i < total_in_args; i++) {
  1931       if (in_regs[i].first()->is_Register()) {
  1932         const Register reg = in_regs[i].first()->as_Register();
  1933         switch (in_sig_bt[i]) {
  1934           case T_BOOLEAN:
  1935           case T_BYTE:
  1936           case T_SHORT:
  1937           case T_CHAR:
  1938           case T_INT:  /*single_slots++;*/ break; // PPC64: pass ints as longs.
  1939           case T_ARRAY:
  1940           case T_LONG: double_slots++; break;
  1941           default:  ShouldNotReachHere();
  1943       } else if (in_regs[i].first()->is_FloatRegister()) {
  1944         switch (in_sig_bt[i]) {
  1945           case T_FLOAT:  single_slots++; break;
  1946           case T_DOUBLE: double_slots++; break;
  1947           default:  ShouldNotReachHere();
  1951     total_save_slots = double_slots * 2 + round_to(single_slots, 2); // round to even
  1954   int oop_handle_slot_offset = stack_slots;
  1955   stack_slots += total_save_slots;                                                // 3)
  1957   int klass_slot_offset = 0;
  1958   int klass_offset      = -1;
  1959   if (method_is_static && !is_critical_native) {                                  // 4)
  1960     klass_slot_offset  = stack_slots;
  1961     klass_offset       = klass_slot_offset * VMRegImpl::stack_slot_size;
  1962     stack_slots       += VMRegImpl::slots_per_word;
  1965   int lock_slot_offset = 0;
  1966   int lock_offset      = -1;
  1967   if (method->is_synchronized()) {                                                // 5)
  1968     lock_slot_offset   = stack_slots;
  1969     lock_offset        = lock_slot_offset * VMRegImpl::stack_slot_size;
  1970     stack_slots       += VMRegImpl::slots_per_word;
  1973   int workspace_slot_offset = stack_slots;                                        // 6)
  1974   stack_slots         += 2;
  1976   // Now compute actual number of stack words we need.
  1977   // Rounding to make stack properly aligned.
  1978   stack_slots = round_to(stack_slots,                                             // 7)
  1979                          frame::alignment_in_bytes / VMRegImpl::stack_slot_size);
  1980   int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size;
  1983   // Now we can start generating code.
  1984   // --------------------------------------------------------------------------
  1986   intptr_t start_pc = (intptr_t)__ pc();
  1987   intptr_t vep_start_pc;
  1988   intptr_t frame_done_pc;
  1989   intptr_t oopmap_pc;
  1991   Label    ic_miss;
  1992   Label    handle_pending_exception;
  1994   Register r_callers_sp = R21;
  1995   Register r_temp_1     = R22;
  1996   Register r_temp_2     = R23;
  1997   Register r_temp_3     = R24;
  1998   Register r_temp_4     = R25;
  1999   Register r_temp_5     = R26;
  2000   Register r_temp_6     = R27;
  2001   Register r_return_pc  = R28;
  2003   Register r_carg1_jnienv        = noreg;
  2004   Register r_carg2_classorobject = noreg;
  2005   if (!is_critical_native) {
  2006     r_carg1_jnienv        = out_regs[0].first()->as_Register();
  2007     r_carg2_classorobject = out_regs[1].first()->as_Register();
  2011   // Generate the Unverified Entry Point (UEP).
  2012   // --------------------------------------------------------------------------
  2013   assert(start_pc == (intptr_t)__ pc(), "uep must be at start");
  2015   // Check ic: object class == cached class?
  2016   if (!method_is_static) {
  2017   Register ic = as_Register(Matcher::inline_cache_reg_encode());
  2018   Register receiver_klass = r_temp_1;
  2020   __ cmpdi(CCR0, R3_ARG1, 0);
  2021   __ beq(CCR0, ic_miss);
  2022   __ verify_oop(R3_ARG1);
  2023   __ load_klass(receiver_klass, R3_ARG1);
  2025   __ cmpd(CCR0, receiver_klass, ic);
  2026   __ bne(CCR0, ic_miss);
  2030   // Generate the Verified Entry Point (VEP).
  2031   // --------------------------------------------------------------------------
  2032   vep_start_pc = (intptr_t)__ pc();
  2034   __ save_LR_CR(r_temp_1);
  2035   __ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame.
  2036   __ mr(r_callers_sp, R1_SP);                       // Remember frame pointer.
  2037   __ push_frame(frame_size_in_bytes, r_temp_1);          // Push the c2n adapter's frame.
  2038   frame_done_pc = (intptr_t)__ pc();
  2040   // Native nmethod wrappers never take possesion of the oop arguments.
  2041   // So the caller will gc the arguments.
  2042   // The only thing we need an oopMap for is if the call is static.
  2043   //
  2044   // An OopMap for lock (and class if static), and one for the VM call itself.
  2045   OopMapSet *oop_maps = new OopMapSet();
  2046   OopMap    *oop_map  = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2048   if (is_critical_native) {
  2049     check_needs_gc_for_critical_native(masm, stack_slots, total_in_args, oop_handle_slot_offset, oop_maps, in_regs, in_sig_bt, r_temp_1);
  2052   // Move arguments from register/stack to register/stack.
  2053   // --------------------------------------------------------------------------
  2054   //
  2055   // We immediately shuffle the arguments so that for any vm call we have
  2056   // to make from here on out (sync slow path, jvmti, etc.) we will have
  2057   // captured the oops from our caller and have a valid oopMap for them.
  2058   //
  2059   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  2060   // (derived from JavaThread* which is in R16_thread) and, if static,
  2061   // the class mirror instead of a receiver. This pretty much guarantees that
  2062   // register layout will not match. We ignore these extra arguments during
  2063   // the shuffle. The shuffle is described by the two calling convention
  2064   // vectors we have in our possession. We simply walk the java vector to
  2065   // get the source locations and the c vector to get the destinations.
  2067   // Record sp-based slot for receiver on stack for non-static methods.
  2068   int receiver_offset = -1;
  2070   // We move the arguments backward because the floating point registers
  2071   // destination will always be to a register with a greater or equal
  2072   // register number or the stack.
  2073   //   in  is the index of the incoming Java arguments
  2074   //   out is the index of the outgoing C arguments
  2076 #ifdef ASSERT
  2077   bool reg_destroyed[RegisterImpl::number_of_registers];
  2078   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2079   for (int r = 0 ; r < RegisterImpl::number_of_registers ; r++) {
  2080     reg_destroyed[r] = false;
  2082   for (int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++) {
  2083     freg_destroyed[f] = false;
  2085 #endif // ASSERT
  2087   for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) {
  2089 #ifdef ASSERT
  2090     if (in_regs[in].first()->is_Register()) {
  2091       assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!");
  2092     } else if (in_regs[in].first()->is_FloatRegister()) {
  2093       assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!");
  2095     if (out_regs[out].first()->is_Register()) {
  2096       reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true;
  2097     } else if (out_regs[out].first()->is_FloatRegister()) {
  2098       freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true;
  2100     if (out_regs2[out].first()->is_Register()) {
  2101       reg_destroyed[out_regs2[out].first()->as_Register()->encoding()] = true;
  2102     } else if (out_regs2[out].first()->is_FloatRegister()) {
  2103       freg_destroyed[out_regs2[out].first()->as_FloatRegister()->encoding()] = true;
  2105 #endif // ASSERT
  2107     switch (in_sig_bt[in]) {
  2108       case T_BOOLEAN:
  2109       case T_CHAR:
  2110       case T_BYTE:
  2111       case T_SHORT:
  2112       case T_INT:
  2113         guarantee(in > 0 && in_sig_bt[in-1] == T_LONG,
  2114                   "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
  2115         break;
  2116       case T_LONG:
  2117         if (in_sig_bt[in+1] == T_VOID) {
  2118           long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2119         } else {
  2120           guarantee(in_sig_bt[in+1] == T_BOOLEAN || in_sig_bt[in+1] == T_CHAR  ||
  2121                     in_sig_bt[in+1] == T_BYTE    || in_sig_bt[in+1] == T_SHORT ||
  2122                     in_sig_bt[in+1] == T_INT,
  2123                  "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
  2124           int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2126         break;
  2127       case T_ARRAY:
  2128         if (is_critical_native) {
  2129           int body_arg = out;
  2130           out -= 2; // Point to length arg. PPC64: pass ints as longs.
  2131           unpack_array_argument(masm, in_regs[in], in_elem_bt[in], out_regs[body_arg], out_regs[out],
  2132                                 r_callers_sp, r_temp_1, r_temp_2);
  2133           break;
  2135       case T_OBJECT:
  2136         assert(!is_critical_native, "no oop arguments");
  2137         object_move(masm, stack_slots,
  2138                     oop_map, oop_handle_slot_offset,
  2139                     ((in == 0) && (!method_is_static)), &receiver_offset,
  2140                     in_regs[in], out_regs[out],
  2141                     r_callers_sp, r_temp_1, r_temp_2);
  2142         break;
  2143       case T_VOID:
  2144         break;
  2145       case T_FLOAT:
  2146         float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2147         if (out_regs2[out].first()->is_valid()) {
  2148           float_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
  2150         break;
  2151       case T_DOUBLE:
  2152         double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
  2153         if (out_regs2[out].first()->is_valid()) {
  2154           double_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
  2156         break;
  2157       case T_ADDRESS:
  2158         fatal("found type (T_ADDRESS) in java args");
  2159         break;
  2160       default:
  2161         ShouldNotReachHere();
  2162         break;
  2166   // Pre-load a static method's oop into ARG2.
  2167   // Used both by locking code and the normal JNI call code.
  2168   if (method_is_static && !is_critical_native) {
  2169     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()),
  2170                         r_carg2_classorobject);
  2172     // Now handlize the static class mirror in carg2. It's known not-null.
  2173     __ std(r_carg2_classorobject, klass_offset, R1_SP);
  2174     oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2175     __ addi(r_carg2_classorobject, R1_SP, klass_offset);
  2178   // Get JNIEnv* which is first argument to native.
  2179   if (!is_critical_native) {
  2180     __ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset()));
  2183   // NOTE:
  2184   //
  2185   // We have all of the arguments setup at this point.
  2186   // We MUST NOT touch any outgoing regs from this point on.
  2187   // So if we must call out we must push a new frame.
  2189   // Get current pc for oopmap, and load it patchable relative to global toc.
  2190   oopmap_pc = (intptr_t) __ pc();
  2191   __ calculate_address_from_global_toc(r_return_pc, (address)oopmap_pc, true, true, true, true);
  2193   // We use the same pc/oopMap repeatedly when we call out.
  2194   oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map);
  2196   // r_return_pc now has the pc loaded that we will use when we finally call
  2197   // to native.
  2199   // Make sure that thread is non-volatile; it crosses a bunch of VM calls below.
  2200   assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register");
  2203 # if 0
  2204   // DTrace method entry
  2205 # endif
  2207   // Lock a synchronized method.
  2208   // --------------------------------------------------------------------------
  2210   if (method->is_synchronized()) {
  2211     assert(!is_critical_native, "unhandled");
  2212     ConditionRegister r_flag = CCR1;
  2213     Register          r_oop  = r_temp_4;
  2214     const Register    r_box  = r_temp_5;
  2215     Label             done, locked;
  2217     // Load the oop for the object or class. r_carg2_classorobject contains
  2218     // either the handlized oop from the incoming arguments or the handlized
  2219     // class mirror (if the method is static).
  2220     __ ld(r_oop, 0, r_carg2_classorobject);
  2222     // Get the lock box slot's address.
  2223     __ addi(r_box, R1_SP, lock_offset);
  2225 #   ifdef ASSERT
  2226     if (UseBiasedLocking) {
  2227       // Making the box point to itself will make it clear it went unused
  2228       // but also be obviously invalid.
  2229       __ std(r_box, 0, r_box);
  2231 #   endif // ASSERT
  2233     // Try fastpath for locking.
  2234     // fast_lock kills r_temp_1, r_temp_2, r_temp_3.
  2235     __ compiler_fast_lock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
  2236     __ beq(r_flag, locked);
  2238     // None of the above fast optimizations worked so we have to get into the
  2239     // slow case of monitor enter. Inline a special case of call_VM that
  2240     // disallows any pending_exception.
  2242     // Save argument registers and leave room for C-compatible ABI_REG_ARGS.
  2243     int frame_size = frame::abi_reg_args_size +
  2244                      round_to(total_c_args * wordSize, frame::alignment_in_bytes);
  2245     __ mr(R11_scratch1, R1_SP);
  2246     RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2);
  2248     // Do the call.
  2249     __ set_last_Java_frame(R11_scratch1, r_return_pc);
  2250     assert(r_return_pc->is_nonvolatile(), "expecting return pc to be in non-volatile register");
  2251     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread);
  2252     __ reset_last_Java_frame();
  2254     RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs, out_regs2);
  2256     __ asm_assert_mem8_is_zero(thread_(pending_exception),
  2257        "no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C", 0);
  2259     __ bind(locked);
  2263   // Publish thread state
  2264   // --------------------------------------------------------------------------
  2266   // Use that pc we placed in r_return_pc a while back as the current frame anchor.
  2267   __ set_last_Java_frame(R1_SP, r_return_pc);
  2269   // Transition from _thread_in_Java to _thread_in_native.
  2270   __ li(R0, _thread_in_native);
  2271   __ release();
  2272   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
  2273   __ stw(R0, thread_(thread_state));
  2274   if (UseMembar) {
  2275     __ fence();
  2279   // The JNI call
  2280   // --------------------------------------------------------------------------
  2281 #if defined(ABI_ELFv2)
  2282   __ call_c(native_func, relocInfo::runtime_call_type);
  2283 #else
  2284   FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func;
  2285   __ call_c(fd_native_method, relocInfo::runtime_call_type);
  2286 #endif
  2289   // Now, we are back from the native code.
  2292   // Unpack the native result.
  2293   // --------------------------------------------------------------------------
  2295   // For int-types, we do any needed sign-extension required.
  2296   // Care must be taken that the return values (R3_RET and F1_RET)
  2297   // will survive any VM calls for blocking or unlocking.
  2298   // An OOP result (handle) is done specially in the slow-path code.
  2300   switch (ret_type) {
  2301     case T_VOID:    break;        // Nothing to do!
  2302     case T_FLOAT:   break;        // Got it where we want it (unless slow-path).
  2303     case T_DOUBLE:  break;        // Got it where we want it (unless slow-path).
  2304     case T_LONG:    break;        // Got it where we want it (unless slow-path).
  2305     case T_OBJECT:  break;        // Really a handle.
  2306                                   // Cannot de-handlize until after reclaiming jvm_lock.
  2307     case T_ARRAY:   break;
  2309     case T_BOOLEAN: {             // 0 -> false(0); !0 -> true(1)
  2310       Label skip_modify;
  2311       __ cmpwi(CCR0, R3_RET, 0);
  2312       __ beq(CCR0, skip_modify);
  2313       __ li(R3_RET, 1);
  2314       __ bind(skip_modify);
  2315       break;
  2317     case T_BYTE: {                // sign extension
  2318       __ extsb(R3_RET, R3_RET);
  2319       break;
  2321     case T_CHAR: {                // unsigned result
  2322       __ andi(R3_RET, R3_RET, 0xffff);
  2323       break;
  2325     case T_SHORT: {               // sign extension
  2326       __ extsh(R3_RET, R3_RET);
  2327       break;
  2329     case T_INT:                   // nothing to do
  2330       break;
  2331     default:
  2332       ShouldNotReachHere();
  2333       break;
  2337   // Publish thread state
  2338   // --------------------------------------------------------------------------
  2340   // Switch thread to "native transition" state before reading the
  2341   // synchronization state. This additional state is necessary because reading
  2342   // and testing the synchronization state is not atomic w.r.t. GC, as this
  2343   // scenario demonstrates:
  2344   //   - Java thread A, in _thread_in_native state, loads _not_synchronized
  2345   //     and is preempted.
  2346   //   - VM thread changes sync state to synchronizing and suspends threads
  2347   //     for GC.
  2348   //   - Thread A is resumed to finish this native method, but doesn't block
  2349   //     here since it didn't see any synchronization in progress, and escapes.
  2351   // Transition from _thread_in_native to _thread_in_native_trans.
  2352   __ li(R0, _thread_in_native_trans);
  2353   __ release();
  2354   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
  2355   __ stw(R0, thread_(thread_state));
  2358   // Must we block?
  2359   // --------------------------------------------------------------------------
  2361   // Block, if necessary, before resuming in _thread_in_Java state.
  2362   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2363   Label after_transition;
  2365     Label no_block, sync;
  2367     if (os::is_MP()) {
  2368       if (UseMembar) {
  2369         // Force this write out before the read below.
  2370         __ fence();
  2371       } else {
  2372         // Write serialization page so VM thread can do a pseudo remote membar.
  2373         // We use the current thread pointer to calculate a thread specific
  2374         // offset to write to within the page. This minimizes bus traffic
  2375         // due to cache line collision.
  2376         __ serialize_memory(R16_thread, r_temp_4, r_temp_5);
  2380     Register sync_state_addr = r_temp_4;
  2381     Register sync_state      = r_temp_5;
  2382     Register suspend_flags   = r_temp_6;
  2384     __ load_const(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/ sync_state);
  2386     // TODO: PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
  2387     __ lwz(sync_state, 0, sync_state_addr);
  2389     // TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
  2390     __ lwz(suspend_flags, thread_(suspend_flags));
  2392     __ acquire();
  2394     Label do_safepoint;
  2395     // No synchronization in progress nor yet synchronized.
  2396     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
  2397     // Not suspended.
  2398     __ cmpwi(CCR1, suspend_flags, 0);
  2400     __ bne(CCR0, sync);
  2401     __ beq(CCR1, no_block);
  2403     // Block. Save any potential method result value before the operation and
  2404     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2405     // lets us share the oopMap we used when we went native rather than create
  2406     // a distinct one for this pc.
  2407     __ bind(sync);
  2409     address entry_point = is_critical_native
  2410       ? CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)
  2411       : CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans);
  2412     save_native_result(masm, ret_type, workspace_slot_offset);
  2413     __ call_VM_leaf(entry_point, R16_thread);
  2414     restore_native_result(masm, ret_type, workspace_slot_offset);
  2416     if (is_critical_native) {
  2417       __ b(after_transition); // No thread state transition here.
  2419     __ bind(no_block);
  2422   // Publish thread state.
  2423   // --------------------------------------------------------------------------
  2425   // Thread state is thread_in_native_trans. Any safepoint blocking has
  2426   // already happened so we can now change state to _thread_in_Java.
  2428   // Transition from _thread_in_native_trans to _thread_in_Java.
  2429   __ li(R0, _thread_in_Java);
  2430   __ release();
  2431   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
  2432   __ stw(R0, thread_(thread_state));
  2433   if (UseMembar) {
  2434     __ fence();
  2436   __ bind(after_transition);
  2438   // Reguard any pages if necessary.
  2439   // --------------------------------------------------------------------------
  2441   Label no_reguard;
  2442   __ lwz(r_temp_1, thread_(stack_guard_state));
  2443   __ cmpwi(CCR0, r_temp_1, JavaThread::stack_guard_yellow_disabled);
  2444   __ bne(CCR0, no_reguard);
  2446   save_native_result(masm, ret_type, workspace_slot_offset);
  2447   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2448   restore_native_result(masm, ret_type, workspace_slot_offset);
  2450   __ bind(no_reguard);
  2453   // Unlock
  2454   // --------------------------------------------------------------------------
  2456   if (method->is_synchronized()) {
  2458     ConditionRegister r_flag   = CCR1;
  2459     const Register r_oop       = r_temp_4;
  2460     const Register r_box       = r_temp_5;
  2461     const Register r_exception = r_temp_6;
  2462     Label done;
  2464     // Get oop and address of lock object box.
  2465     if (method_is_static) {
  2466       assert(klass_offset != -1, "");
  2467       __ ld(r_oop, klass_offset, R1_SP);
  2468     } else {
  2469       assert(receiver_offset != -1, "");
  2470       __ ld(r_oop, receiver_offset, R1_SP);
  2472     __ addi(r_box, R1_SP, lock_offset);
  2474     // Try fastpath for unlocking.
  2475     __ compiler_fast_unlock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
  2476     __ beq(r_flag, done);
  2478     // Save and restore any potential method result value around the unlocking operation.
  2479     save_native_result(masm, ret_type, workspace_slot_offset);
  2481     // Must save pending exception around the slow-path VM call. Since it's a
  2482     // leaf call, the pending exception (if any) can be kept in a register.
  2483     __ ld(r_exception, thread_(pending_exception));
  2484     assert(r_exception->is_nonvolatile(), "exception register must be non-volatile");
  2485     __ li(R0, 0);
  2486     __ std(R0, thread_(pending_exception));
  2488     // Slow case of monitor enter.
  2489     // Inline a special case of call_VM that disallows any pending_exception.
  2490     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box);
  2492     __ asm_assert_mem8_is_zero(thread_(pending_exception),
  2493        "no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C", 0);
  2495     restore_native_result(masm, ret_type, workspace_slot_offset);
  2497     // Check_forward_pending_exception jump to forward_exception if any pending
  2498     // exception is set. The forward_exception routine expects to see the
  2499     // exception in pending_exception and not in a register. Kind of clumsy,
  2500     // since all folks who branch to forward_exception must have tested
  2501     // pending_exception first and hence have it in a register already.
  2502     __ std(r_exception, thread_(pending_exception));
  2504     __ bind(done);
  2507 # if 0
  2508   // DTrace method exit
  2509 # endif
  2511   // Clear "last Java frame" SP and PC.
  2512   // --------------------------------------------------------------------------
  2514   __ reset_last_Java_frame();
  2516   // Unbox oop result, e.g. JNIHandles::resolve value.
  2517   // --------------------------------------------------------------------------
  2519   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2520     __ resolve_jobject(R3_RET, r_temp_1, r_temp_2, /* needs_frame */ false); // kills R31
  2524   // Reset handle block.
  2525   // --------------------------------------------------------------------------
  2526   if (!is_critical_native) {
  2527   __ ld(r_temp_1, thread_(active_handles));
  2528   // TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
  2529   __ li(r_temp_2, 0);
  2530   __ stw(r_temp_2, JNIHandleBlock::top_offset_in_bytes(), r_temp_1);
  2533   // Check for pending exceptions.
  2534   // --------------------------------------------------------------------------
  2535   __ ld(r_temp_2, thread_(pending_exception));
  2536   __ cmpdi(CCR0, r_temp_2, 0);
  2537   __ bne(CCR0, handle_pending_exception);
  2540   // Return
  2541   // --------------------------------------------------------------------------
  2543   __ pop_frame();
  2544   __ restore_LR_CR(R11);
  2545   __ blr();
  2548   // Handler for pending exceptions (out-of-line).
  2549   // --------------------------------------------------------------------------
  2551   // Since this is a native call, we know the proper exception handler
  2552   // is the empty function. We just pop this frame and then jump to
  2553   // forward_exception_entry.
  2554   if (!is_critical_native) {
  2555   __ align(InteriorEntryAlignment);
  2556   __ bind(handle_pending_exception);
  2558   __ pop_frame();
  2559   __ restore_LR_CR(R11);
  2560   __ b64_patchable((address)StubRoutines::forward_exception_entry(),
  2561                        relocInfo::runtime_call_type);
  2564   // Handler for a cache miss (out-of-line).
  2565   // --------------------------------------------------------------------------
  2567   if (!method_is_static) {
  2568   __ align(InteriorEntryAlignment);
  2569   __ bind(ic_miss);
  2571   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
  2572                        relocInfo::runtime_call_type);
  2575   // Done.
  2576   // --------------------------------------------------------------------------
  2578   __ flush();
  2580   nmethod *nm = nmethod::new_native_nmethod(method,
  2581                                             compile_id,
  2582                                             masm->code(),
  2583                                             vep_start_pc-start_pc,
  2584                                             frame_done_pc-start_pc,
  2585                                             stack_slots / VMRegImpl::slots_per_word,
  2586                                             (method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2587                                             in_ByteSize(lock_offset),
  2588                                             oop_maps);
  2590   if (is_critical_native) {
  2591     nm->set_lazy_critical_native(true);
  2594   return nm;
  2595 #else
  2596   ShouldNotReachHere();
  2597   return NULL;
  2598 #endif // COMPILER2
  2601 // This function returns the adjust size (in number of words) to a c2i adapter
  2602 // activation for use during deoptimization.
  2603 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  2604   return round_to((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::alignment_in_bytes);
  2607 uint SharedRuntime::out_preserve_stack_slots() {
  2608 #ifdef COMPILER2
  2609   return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size;
  2610 #else
  2611   return 0;
  2612 #endif
  2615 #ifdef COMPILER2
  2616 // Frame generation for deopt and uncommon trap blobs.
  2617 static void push_skeleton_frame(MacroAssembler* masm, bool deopt,
  2618                                 /* Read */
  2619                                 Register unroll_block_reg,
  2620                                 /* Update */
  2621                                 Register frame_sizes_reg,
  2622                                 Register number_of_frames_reg,
  2623                                 Register pcs_reg,
  2624                                 /* Invalidate */
  2625                                 Register frame_size_reg,
  2626                                 Register pc_reg) {
  2628   __ ld(pc_reg, 0, pcs_reg);
  2629   __ ld(frame_size_reg, 0, frame_sizes_reg);
  2630   __ std(pc_reg, _abi(lr), R1_SP);
  2631   __ push_frame(frame_size_reg, R0/*tmp*/);
  2632 #ifdef CC_INTERP
  2633   __ std(R1_SP, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
  2634 #else
  2635 #ifdef ASSERT
  2636   __ load_const_optimized(pc_reg, 0x5afe);
  2637   __ std(pc_reg, _ijava_state_neg(ijava_reserved), R1_SP);
  2638 #endif
  2639   __ std(R1_SP, _ijava_state_neg(sender_sp), R1_SP);
  2640 #endif // CC_INTERP
  2641   __ addi(number_of_frames_reg, number_of_frames_reg, -1);
  2642   __ addi(frame_sizes_reg, frame_sizes_reg, wordSize);
  2643   __ addi(pcs_reg, pcs_reg, wordSize);
  2646 // Loop through the UnrollBlock info and create new frames.
  2647 static void push_skeleton_frames(MacroAssembler* masm, bool deopt,
  2648                                  /* read */
  2649                                  Register unroll_block_reg,
  2650                                  /* invalidate */
  2651                                  Register frame_sizes_reg,
  2652                                  Register number_of_frames_reg,
  2653                                  Register pcs_reg,
  2654                                  Register frame_size_reg,
  2655                                  Register pc_reg) {
  2656   Label loop;
  2658  // _number_of_frames is of type int (deoptimization.hpp)
  2659   __ lwa(number_of_frames_reg,
  2660              Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(),
  2661              unroll_block_reg);
  2662   __ ld(pcs_reg,
  2663             Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(),
  2664             unroll_block_reg);
  2665   __ ld(frame_sizes_reg,
  2666             Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(),
  2667             unroll_block_reg);
  2669   // stack: (caller_of_deoptee, ...).
  2671   // At this point we either have an interpreter frame or a compiled
  2672   // frame on top of stack. If it is a compiled frame we push a new c2i
  2673   // adapter here
  2675   // Memorize top-frame stack-pointer.
  2676   __ mr(frame_size_reg/*old_sp*/, R1_SP);
  2678   // Resize interpreter top frame OR C2I adapter.
  2680   // At this moment, the top frame (which is the caller of the deoptee) is
  2681   // an interpreter frame or a newly pushed C2I adapter or an entry frame.
  2682   // The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the
  2683   // outgoing arguments.
  2684   //
  2685   // In order to push the interpreter frame for the deoptee, we need to
  2686   // resize the top frame such that we are able to place the deoptee's
  2687   // locals in the frame.
  2688   // Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI
  2689   // into a valid PARENT_IJAVA_FRAME_ABI.
  2691   __ lwa(R11_scratch1,
  2692              Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(),
  2693              unroll_block_reg);
  2694   __ neg(R11_scratch1, R11_scratch1);
  2696   // R11_scratch1 contains size of locals for frame resizing.
  2697   // R12_scratch2 contains top frame's lr.
  2699   // Resize frame by complete frame size prevents TOC from being
  2700   // overwritten by locals. A more stack space saving way would be
  2701   // to copy the TOC to its location in the new abi.
  2702   __ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size);
  2704   // now, resize the frame
  2705   __ resize_frame(R11_scratch1, pc_reg/*tmp*/);
  2707   // In the case where we have resized a c2i frame above, the optional
  2708   // alignment below the locals has size 32 (why?).
  2709   __ std(R12_scratch2, _abi(lr), R1_SP);
  2711   // Initialize initial_caller_sp.
  2712 #ifdef CC_INTERP
  2713   __ std(frame_size_reg/*old_sp*/, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
  2714 #else
  2715 #ifdef ASSERT
  2716  __ load_const_optimized(pc_reg, 0x5afe);
  2717  __ std(pc_reg, _ijava_state_neg(ijava_reserved), R1_SP);
  2718 #endif
  2719  __ std(frame_size_reg, _ijava_state_neg(sender_sp), R1_SP);
  2720 #endif // CC_INTERP
  2722 #ifdef ASSERT
  2723   // Make sure that there is at least one entry in the array.
  2724   __ cmpdi(CCR0, number_of_frames_reg, 0);
  2725   __ asm_assert_ne("array_size must be > 0", 0x205);
  2726 #endif
  2728   // Now push the new interpreter frames.
  2729   //
  2730   __ bind(loop);
  2731   // Allocate a new frame, fill in the pc.
  2732   push_skeleton_frame(masm, deopt,
  2733                       unroll_block_reg,
  2734                       frame_sizes_reg,
  2735                       number_of_frames_reg,
  2736                       pcs_reg,
  2737                       frame_size_reg,
  2738                       pc_reg);
  2739   __ cmpdi(CCR0, number_of_frames_reg, 0);
  2740   __ bne(CCR0, loop);
  2742   // Get the return address pointing into the frame manager.
  2743   __ ld(R0, 0, pcs_reg);
  2744   // Store it in the top interpreter frame.
  2745   __ std(R0, _abi(lr), R1_SP);
  2746   // Initialize frame_manager_lr of interpreter top frame.
  2747 #ifdef CC_INTERP
  2748   __ std(R0, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  2749 #endif
  2751 #endif
  2753 void SharedRuntime::generate_deopt_blob() {
  2754   // Allocate space for the code
  2755   ResourceMark rm;
  2756   // Setup code generation tools
  2757   CodeBuffer buffer("deopt_blob", 2048, 1024);
  2758   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
  2759   Label exec_mode_initialized;
  2760   int frame_size_in_words;
  2761   OopMap* map = NULL;
  2762   OopMapSet *oop_maps = new OopMapSet();
  2764   // size of ABI112 plus spill slots for R3_RET and F1_RET.
  2765   const int frame_size_in_bytes = frame::abi_reg_args_spill_size;
  2766   const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
  2767   int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info.
  2769   const Register exec_mode_reg = R21_tmp1;
  2771   const address start = __ pc();
  2773 #ifdef COMPILER2
  2774   // --------------------------------------------------------------------------
  2775   // Prolog for non exception case!
  2777   // We have been called from the deopt handler of the deoptee.
  2778   //
  2779   // deoptee:
  2780   //                      ...
  2781   //                      call X
  2782   //                      ...
  2783   //  deopt_handler:      call_deopt_stub
  2784   //  cur. return pc  --> ...
  2785   //
  2786   // So currently SR_LR points behind the call in the deopt handler.
  2787   // We adjust it such that it points to the start of the deopt handler.
  2788   // The return_pc has been stored in the frame of the deoptee and
  2789   // will replace the address of the deopt_handler in the call
  2790   // to Deoptimization::fetch_unroll_info below.
  2791   // We can't grab a free register here, because all registers may
  2792   // contain live values, so let the RegisterSaver do the adjustment
  2793   // of the return pc.
  2794   const int return_pc_adjustment_no_exception = -HandlerImpl::size_deopt_handler();
  2796   // Push the "unpack frame"
  2797   // Save everything in sight.
  2798   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  2799                                                                    &first_frame_size_in_bytes,
  2800                                                                    /*generate_oop_map=*/ true,
  2801                                                                    return_pc_adjustment_no_exception,
  2802                                                                    RegisterSaver::return_pc_is_lr);
  2803   assert(map != NULL, "OopMap must have been created");
  2805   __ li(exec_mode_reg, Deoptimization::Unpack_deopt);
  2806   // Save exec mode for unpack_frames.
  2807   __ b(exec_mode_initialized);
  2809   // --------------------------------------------------------------------------
  2810   // Prolog for exception case
  2812   // An exception is pending.
  2813   // We have been called with a return (interpreter) or a jump (exception blob).
  2814   //
  2815   // - R3_ARG1: exception oop
  2816   // - R4_ARG2: exception pc
  2818   int exception_offset = __ pc() - start;
  2820   BLOCK_COMMENT("Prolog for exception case");
  2822   // The RegisterSaves doesn't need to adjust the return pc for this situation.
  2823   const int return_pc_adjustment_exception = 0;
  2825   // Push the "unpack frame".
  2826   // Save everything in sight.
  2827   assert(R4 == R4_ARG2, "exception pc must be in r4");
  2828   RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  2829                                                              &first_frame_size_in_bytes,
  2830                                                              /*generate_oop_map=*/ false,
  2831                                                              return_pc_adjustment_exception,
  2832                                                              RegisterSaver::return_pc_is_r4);
  2834   // Deopt during an exception. Save exec mode for unpack_frames.
  2835   __ li(exec_mode_reg, Deoptimization::Unpack_exception);
  2837   // Store exception oop and pc in thread (location known to GC).
  2838   // This is needed since the call to "fetch_unroll_info()" may safepoint.
  2839   __ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
  2840   __ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
  2842   // fall through
  2844   // --------------------------------------------------------------------------
  2845   __ BIND(exec_mode_initialized);
  2848   const Register unroll_block_reg = R22_tmp2;
  2850   // We need to set `last_Java_frame' because `fetch_unroll_info' will
  2851   // call `last_Java_frame()'. The value of the pc in the frame is not
  2852   // particularly important. It just needs to identify this blob.
  2853   __ set_last_Java_frame(R1_SP, noreg);
  2855   // With EscapeAnalysis turned on, this call may safepoint!
  2856   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread);
  2857   address calls_return_pc = __ last_calls_return_pc();
  2858   // Set an oopmap for the call site that describes all our saved registers.
  2859   oop_maps->add_gc_map(calls_return_pc - start, map);
  2861   __ reset_last_Java_frame();
  2862   // Save the return value.
  2863   __ mr(unroll_block_reg, R3_RET);
  2865   // Restore only the result registers that have been saved
  2866   // by save_volatile_registers(...).
  2867   RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes);
  2869   // In excp_deopt_mode, restore and clear exception oop which we
  2870   // stored in the thread during exception entry above. The exception
  2871   // oop will be the return value of this stub.
  2872   Label skip_restore_excp;
  2873   __ cmpdi(CCR0, exec_mode_reg, Deoptimization::Unpack_exception);
  2874   __ bne(CCR0, skip_restore_excp);
  2875   __ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
  2876   __ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
  2877   __ li(R0, 0);
  2878   __ std(R0, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
  2879   __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
  2880   __ BIND(skip_restore_excp);
  2882   // reload narrro_oop_base
  2883   if (UseCompressedOops && Universe::narrow_oop_base() != 0) {
  2884     __ load_const_optimized(R30, Universe::narrow_oop_base());
  2887   __ pop_frame();
  2889   // stack: (deoptee, optional i2c, caller of deoptee, ...).
  2891   // pop the deoptee's frame
  2892   __ pop_frame();
  2894   // stack: (caller_of_deoptee, ...).
  2896   // Loop through the `UnrollBlock' info and create interpreter frames.
  2897   push_skeleton_frames(masm, true/*deopt*/,
  2898                        unroll_block_reg,
  2899                        R23_tmp3,
  2900                        R24_tmp4,
  2901                        R25_tmp5,
  2902                        R26_tmp6,
  2903                        R27_tmp7);
  2905   // stack: (skeletal interpreter frame, ..., optional skeletal
  2906   // interpreter frame, optional c2i, caller of deoptee, ...).
  2909   // push an `unpack_frame' taking care of float / int return values.
  2910   __ push_frame(frame_size_in_bytes, R0/*tmp*/);
  2912   // stack: (unpack frame, skeletal interpreter frame, ..., optional
  2913   // skeletal interpreter frame, optional c2i, caller of deoptee,
  2914   // ...).
  2916   // Spill live volatile registers since we'll do a call.
  2917   __ std( R3_RET, _abi_reg_args_spill(spill_ret),  R1_SP);
  2918   __ stfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
  2920   // Let the unpacker layout information in the skeletal frames just
  2921   // allocated.
  2922   __ get_PC_trash_LR(R3_RET);
  2923   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET);
  2924   // This is a call to a LEAF method, so no oop map is required.
  2925   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
  2926                   R16_thread/*thread*/, exec_mode_reg/*exec_mode*/);
  2927   __ reset_last_Java_frame();
  2929   // Restore the volatiles saved above.
  2930   __ ld( R3_RET, _abi_reg_args_spill(spill_ret),  R1_SP);
  2931   __ lfd(F1_RET, _abi_reg_args_spill(spill_fret), R1_SP);
  2933   // Pop the unpack frame.
  2934   __ pop_frame();
  2935   __ restore_LR_CR(R0);
  2937   // stack: (top interpreter frame, ..., optional interpreter frame,
  2938   // optional c2i, caller of deoptee, ...).
  2940   // Initialize R14_state.
  2941 #ifdef CC_INTERP
  2942   __ ld(R14_state, 0, R1_SP);
  2943   __ addi(R14_state, R14_state, -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
  2944   // Also inititialize R15_prev_state.
  2945   __ restore_prev_state();
  2946 #else
  2947   __ restore_interpreter_state(R11_scratch1);
  2948   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
  2949 #endif // CC_INTERP
  2952   // Return to the interpreter entry point.
  2953   __ blr();
  2954   __ flush();
  2955 #else // COMPILER2
  2956   __ unimplemented("deopt blob needed only with compiler");
  2957   int exception_offset = __ pc() - start;
  2958 #endif // COMPILER2
  2960   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, 0, first_frame_size_in_bytes / wordSize);
  2963 #ifdef COMPILER2
  2964 void SharedRuntime::generate_uncommon_trap_blob() {
  2965   // Allocate space for the code.
  2966   ResourceMark rm;
  2967   // Setup code generation tools.
  2968   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
  2969   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
  2970   address start = __ pc();
  2972   Register unroll_block_reg = R21_tmp1;
  2973   Register klass_index_reg  = R22_tmp2;
  2974   Register unc_trap_reg     = R23_tmp3;
  2976   OopMapSet* oop_maps = new OopMapSet();
  2977   int frame_size_in_bytes = frame::abi_reg_args_size;
  2978   OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
  2980   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
  2982   // Push a dummy `unpack_frame' and call
  2983   // `Deoptimization::uncommon_trap' to pack the compiled frame into a
  2984   // vframe array and return the `UnrollBlock' information.
  2986   // Save LR to compiled frame.
  2987   __ save_LR_CR(R11_scratch1);
  2989   // Push an "uncommon_trap" frame.
  2990   __ push_frame_reg_args(0, R11_scratch1);
  2992   // stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...).
  2994   // Set the `unpack_frame' as last_Java_frame.
  2995   // `Deoptimization::uncommon_trap' expects it and considers its
  2996   // sender frame as the deoptee frame.
  2997   // Remember the offset of the instruction whose address will be
  2998   // moved to R11_scratch1.
  2999   address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
  3001   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
  3003   __ mr(klass_index_reg, R3);
  3004   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap),
  3005                   R16_thread, klass_index_reg);
  3007   // Set an oopmap for the call site.
  3008   oop_maps->add_gc_map(gc_map_pc - start, map);
  3010   __ reset_last_Java_frame();
  3012   // Pop the `unpack frame'.
  3013   __ pop_frame();
  3015   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
  3017   // Save the return value.
  3018   __ mr(unroll_block_reg, R3_RET);
  3020   // Pop the uncommon_trap frame.
  3021   __ pop_frame();
  3023   // stack: (caller_of_deoptee, ...).
  3025   // Allocate new interpreter frame(s) and possibly a c2i adapter
  3026   // frame.
  3027   push_skeleton_frames(masm, false/*deopt*/,
  3028                        unroll_block_reg,
  3029                        R22_tmp2,
  3030                        R23_tmp3,
  3031                        R24_tmp4,
  3032                        R25_tmp5,
  3033                        R26_tmp6);
  3035   // stack: (skeletal interpreter frame, ..., optional skeletal
  3036   // interpreter frame, optional c2i, caller of deoptee, ...).
  3038   // Push a dummy `unpack_frame' taking care of float return values.
  3039   // Call `Deoptimization::unpack_frames' to layout information in the
  3040   // interpreter frames just created.
  3042   // Push a simple "unpack frame" here.
  3043   __ push_frame_reg_args(0, R11_scratch1);
  3045   // stack: (unpack frame, skeletal interpreter frame, ..., optional
  3046   // skeletal interpreter frame, optional c2i, caller of deoptee,
  3047   // ...).
  3049   // Set the "unpack_frame" as last_Java_frame.
  3050   __ get_PC_trash_LR(R11_scratch1);
  3051   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
  3053   // Indicate it is the uncommon trap case.
  3054   __ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap);
  3055   // Let the unpacker layout information in the skeletal frames just
  3056   // allocated.
  3057   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
  3058                   R16_thread, unc_trap_reg);
  3060   __ reset_last_Java_frame();
  3061   // Pop the `unpack frame'.
  3062   __ pop_frame();
  3063   // Restore LR from top interpreter frame.
  3064   __ restore_LR_CR(R11_scratch1);
  3066   // stack: (top interpreter frame, ..., optional interpreter frame,
  3067   // optional c2i, caller of deoptee, ...).
  3069 #ifdef CC_INTERP
  3070   // Initialize R14_state, ...
  3071   __ ld(R11_scratch1, 0, R1_SP);
  3072   __ addi(R14_state, R11_scratch1, -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
  3073   // also initialize R15_prev_state.
  3074   __ restore_prev_state();
  3075 #else
  3076   __ restore_interpreter_state(R11_scratch1);
  3077   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
  3078 #endif // CC_INTERP
  3080   // Return to the interpreter entry point.
  3081   __ blr();
  3083   masm->flush();
  3085   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize);
  3087 #endif // COMPILER2
  3089 // Generate a special Compile2Runtime blob that saves all registers, and setup oopmap.
  3090 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  3091   assert(StubRoutines::forward_exception_entry() != NULL,
  3092          "must be generated before");
  3094   ResourceMark rm;
  3095   OopMapSet *oop_maps = new OopMapSet();
  3096   OopMap* map;
  3098   // Allocate space for the code. Setup code generation tools.
  3099   CodeBuffer buffer("handler_blob", 2048, 1024);
  3100   MacroAssembler* masm = new MacroAssembler(&buffer);
  3102   address start = __ pc();
  3103   int frame_size_in_bytes = 0;
  3105   RegisterSaver::ReturnPCLocation return_pc_location;
  3106   bool cause_return = (poll_type == POLL_AT_RETURN);
  3107   if (cause_return) {
  3108     // Nothing to do here. The frame has already been popped in MachEpilogNode.
  3109     // Register LR already contains the return pc.
  3110     return_pc_location = RegisterSaver::return_pc_is_lr;
  3111   } else {
  3112     // Use thread()->saved_exception_pc() as return pc.
  3113     return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc;
  3116   // Save registers, fpu state, and flags.
  3117   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  3118                                                                    &frame_size_in_bytes,
  3119                                                                    /*generate_oop_map=*/ true,
  3120                                                                    /*return_pc_adjustment=*/0,
  3121                                                                    return_pc_location);
  3123   // The following is basically a call_VM. However, we need the precise
  3124   // address of the call in order to generate an oopmap. Hence, we do all the
  3125   // work outselves.
  3126   __ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg);
  3128   // The return address must always be correct so that the frame constructor
  3129   // never sees an invalid pc.
  3131   // Do the call
  3132   __ call_VM_leaf(call_ptr, R16_thread);
  3133   address calls_return_pc = __ last_calls_return_pc();
  3135   // Set an oopmap for the call site. This oopmap will map all
  3136   // oop-registers and debug-info registers as callee-saved. This
  3137   // will allow deoptimization at this safepoint to find all possible
  3138   // debug-info recordings, as well as let GC find all oops.
  3139   oop_maps->add_gc_map(calls_return_pc - start, map);
  3141   Label noException;
  3143   // Clear the last Java frame.
  3144   __ reset_last_Java_frame();
  3146   BLOCK_COMMENT("  Check pending exception.");
  3147   const Register pending_exception = R0;
  3148   __ ld(pending_exception, thread_(pending_exception));
  3149   __ cmpdi(CCR0, pending_exception, 0);
  3150   __ beq(CCR0, noException);
  3152   // Exception pending
  3153   RegisterSaver::restore_live_registers_and_pop_frame(masm,
  3154                                                       frame_size_in_bytes,
  3155                                                       /*restore_ctr=*/true);
  3157   BLOCK_COMMENT("  Jump to forward_exception_entry.");
  3158   // Jump to forward_exception_entry, with the issuing PC in LR
  3159   // so it looks like the original nmethod called forward_exception_entry.
  3160   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  3162   // No exception case.
  3163   __ BIND(noException);
  3166   // Normal exit, restore registers and exit.
  3167   RegisterSaver::restore_live_registers_and_pop_frame(masm,
  3168                                                       frame_size_in_bytes,
  3169                                                       /*restore_ctr=*/true);
  3171   __ blr();
  3173   // Make sure all code is generated
  3174   masm->flush();
  3176   // Fill-out other meta info
  3177   // CodeBlob frame size is in words.
  3178   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize);
  3181 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss)
  3182 //
  3183 // Generate a stub that calls into the vm to find out the proper destination
  3184 // of a java call. All the argument registers are live at this point
  3185 // but since this is generic code we don't know what they are and the caller
  3186 // must do any gc of the args.
  3187 //
  3188 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3190   // allocate space for the code
  3191   ResourceMark rm;
  3193   CodeBuffer buffer(name, 1000, 512);
  3194   MacroAssembler* masm = new MacroAssembler(&buffer);
  3196   int frame_size_in_bytes;
  3198   OopMapSet *oop_maps = new OopMapSet();
  3199   OopMap* map = NULL;
  3201   address start = __ pc();
  3203   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
  3204                                                                    &frame_size_in_bytes,
  3205                                                                    /*generate_oop_map*/ true,
  3206                                                                    /*return_pc_adjustment*/ 0,
  3207                                                                    RegisterSaver::return_pc_is_lr);
  3209   // Use noreg as last_Java_pc, the return pc will be reconstructed
  3210   // from the physical frame.
  3211   __ set_last_Java_frame(/*sp*/R1_SP, noreg);
  3213   int frame_complete = __ offset();
  3215   // Pass R19_method as 2nd (optional) argument, used by
  3216   // counter_overflow_stub.
  3217   __ call_VM_leaf(destination, R16_thread, R19_method);
  3218   address calls_return_pc = __ last_calls_return_pc();
  3219   // Set an oopmap for the call site.
  3220   // We need this not only for callee-saved registers, but also for volatile
  3221   // registers that the compiler might be keeping live across a safepoint.
  3222   // Create the oopmap for the call's return pc.
  3223   oop_maps->add_gc_map(calls_return_pc - start, map);
  3225   // R3_RET contains the address we are going to jump to assuming no exception got installed.
  3227   // clear last_Java_sp
  3228   __ reset_last_Java_frame();
  3230   // Check for pending exceptions.
  3231   BLOCK_COMMENT("Check for pending exceptions.");
  3232   Label pending;
  3233   __ ld(R11_scratch1, thread_(pending_exception));
  3234   __ cmpdi(CCR0, R11_scratch1, 0);
  3235   __ bne(CCR0, pending);
  3237   __ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame.
  3239   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false);
  3241   // Get the returned method.
  3242   __ get_vm_result_2(R19_method);
  3244   __ bctr();
  3247   // Pending exception after the safepoint.
  3248   __ BIND(pending);
  3250   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true);
  3252   // exception pending => remove activation and forward to exception handler
  3254   __ li(R11_scratch1, 0);
  3255   __ ld(R3_ARG1, thread_(pending_exception));
  3256   __ std(R11_scratch1, in_bytes(JavaThread::vm_result_offset()), R16_thread);
  3257   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  3259   // -------------
  3260   // Make sure all code is generated.
  3261   masm->flush();
  3263   // return the blob
  3264   // frame_size_words or bytes??
  3265   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize,
  3266                                        oop_maps, true);
  3270 //------------------------------Montgomery multiplication------------------------
  3271 //
  3273 // Subtract 0:b from carry:a. Return carry.
  3274 static unsigned long
  3275 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
  3276   long i = 0;
  3277   unsigned long tmp, tmp2;
  3278   __asm__ __volatile__ (
  3279     "subfc  %[tmp], %[tmp], %[tmp]   \n" // pre-set CA
  3280     "mtctr  %[len]                   \n"
  3281     "0:                              \n"
  3282     "ldx    %[tmp], %[i], %[a]       \n"
  3283     "ldx    %[tmp2], %[i], %[b]      \n"
  3284     "subfe  %[tmp], %[tmp2], %[tmp]  \n" // subtract extended
  3285     "stdx   %[tmp], %[i], %[a]       \n"
  3286     "addi   %[i], %[i], 8            \n"
  3287     "bdnz   0b                       \n"
  3288     "addme  %[tmp], %[carry]         \n" // carry + CA - 1
  3289     : [i]"+b"(i), [tmp]"=&r"(tmp), [tmp2]"=&r"(tmp2)
  3290     : [a]"r"(a), [b]"r"(b), [carry]"r"(carry), [len]"r"(len)
  3291     : "ctr", "xer", "memory"
  3292   );
  3293   return tmp;
  3296 // Multiply (unsigned) Long A by Long B, accumulating the double-
  3297 // length result into the accumulator formed of T0, T1, and T2.
  3298 inline void MACC(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) {
  3299   unsigned long hi, lo;
  3300   __asm__ __volatile__ (
  3301     "mulld  %[lo], %[A], %[B]    \n"
  3302     "mulhdu %[hi], %[A], %[B]    \n"
  3303     "addc   %[T0], %[T0], %[lo]  \n"
  3304     "adde   %[T1], %[T1], %[hi]  \n"
  3305     "addze  %[T2], %[T2]         \n"
  3306     : [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
  3307     : [A]"r"(A), [B]"r"(B)
  3308     : "xer"
  3309   );
  3312 // As above, but add twice the double-length result into the
  3313 // accumulator.
  3314 inline void MACC2(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) {
  3315   unsigned long hi, lo;
  3316   __asm__ __volatile__ (
  3317     "mulld  %[lo], %[A], %[B]    \n"
  3318     "mulhdu %[hi], %[A], %[B]    \n"
  3319     "addc   %[T0], %[T0], %[lo]  \n"
  3320     "adde   %[T1], %[T1], %[hi]  \n"
  3321     "addze  %[T2], %[T2]         \n"
  3322     "addc   %[T0], %[T0], %[lo]  \n"
  3323     "adde   %[T1], %[T1], %[hi]  \n"
  3324     "addze  %[T2], %[T2]         \n"
  3325     : [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
  3326     : [A]"r"(A), [B]"r"(B)
  3327     : "xer"
  3328   );
  3331 // Fast Montgomery multiplication. The derivation of the algorithm is
  3332 // in "A Cryptographic Library for the Motorola DSP56000,
  3333 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237".
  3334 static void
  3335 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
  3336                     unsigned long m[], unsigned long inv, int len) {
  3337   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
  3338   int i;
  3340   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
  3342   for (i = 0; i < len; i++) {
  3343     int j;
  3344     for (j = 0; j < i; j++) {
  3345       MACC(a[j], b[i-j], t0, t1, t2);
  3346       MACC(m[j], n[i-j], t0, t1, t2);
  3348     MACC(a[i], b[0], t0, t1, t2);
  3349     m[i] = t0 * inv;
  3350     MACC(m[i], n[0], t0, t1, t2);
  3352     assert(t0 == 0, "broken Montgomery multiply");
  3354     t0 = t1; t1 = t2; t2 = 0;
  3357   for (i = len; i < 2*len; i++) {
  3358     int j;
  3359     for (j = i-len+1; j < len; j++) {
  3360       MACC(a[j], b[i-j], t0, t1, t2);
  3361       MACC(m[j], n[i-j], t0, t1, t2);
  3363     m[i-len] = t0;
  3364     t0 = t1; t1 = t2; t2 = 0;
  3367   while (t0) {
  3368     t0 = sub(m, n, t0, len);
  3372 // Fast Montgomery squaring. This uses asymptotically 25% fewer
  3373 // multiplies so it should be up to 25% faster than Montgomery
  3374 // multiplication. However, its loop control is more complex and it
  3375 // may actually run slower on some machines.
  3376 static void
  3377 montgomery_square(unsigned long a[], unsigned long n[],
  3378                   unsigned long m[], unsigned long inv, int len) {
  3379   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
  3380   int i;
  3382   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
  3384   for (i = 0; i < len; i++) {
  3385     int j;
  3386     int end = (i+1)/2;
  3387     for (j = 0; j < end; j++) {
  3388       MACC2(a[j], a[i-j], t0, t1, t2);
  3389       MACC(m[j], n[i-j], t0, t1, t2);
  3391     if ((i & 1) == 0) {
  3392       MACC(a[j], a[j], t0, t1, t2);
  3394     for (; j < i; j++) {
  3395       MACC(m[j], n[i-j], t0, t1, t2);
  3397     m[i] = t0 * inv;
  3398     MACC(m[i], n[0], t0, t1, t2);
  3400     assert(t0 == 0, "broken Montgomery square");
  3402     t0 = t1; t1 = t2; t2 = 0;
  3405   for (i = len; i < 2*len; i++) {
  3406     int start = i-len+1;
  3407     int end = start + (len - start)/2;
  3408     int j;
  3409     for (j = start; j < end; j++) {
  3410       MACC2(a[j], a[i-j], t0, t1, t2);
  3411       MACC(m[j], n[i-j], t0, t1, t2);
  3413     if ((i & 1) == 0) {
  3414       MACC(a[j], a[j], t0, t1, t2);
  3416     for (; j < len; j++) {
  3417       MACC(m[j], n[i-j], t0, t1, t2);
  3419     m[i-len] = t0;
  3420     t0 = t1; t1 = t2; t2 = 0;
  3423   while (t0) {
  3424     t0 = sub(m, n, t0, len);
  3428 // The threshold at which squaring is advantageous was determined
  3429 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
  3430 // Doesn't seem to be relevant for Power8 so we use the same value.
  3431 #define MONTGOMERY_SQUARING_THRESHOLD 64
  3433 // Copy len longwords from s to d, word-swapping as we go. The
  3434 // destination array is reversed.
  3435 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
  3436   d += len;
  3437   while(len-- > 0) {
  3438     d--;
  3439     unsigned long s_val = *s;
  3440     // Swap words in a longword on little endian machines.
  3441 #ifdef VM_LITTLE_ENDIAN
  3442      s_val = (s_val << 32) | (s_val >> 32);
  3443 #endif
  3444     *d = s_val;
  3445     s++;
  3449 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
  3450                                         jint len, jlong inv,
  3451                                         jint *m_ints) {
  3452   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
  3453   int longwords = len/2;
  3454   assert(longwords > 0, "unsupported");
  3456   // Make very sure we don't use so much space that the stack might
  3457   // overflow. 512 jints corresponds to an 16384-bit integer and
  3458   // will use here a total of 8k bytes of stack space.
  3459   int total_allocation = longwords * sizeof (unsigned long) * 4;
  3460   guarantee(total_allocation <= 8192, "must be");
  3461   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
  3463   // Local scratch arrays
  3464   unsigned long
  3465     *a = scratch + 0 * longwords,
  3466     *b = scratch + 1 * longwords,
  3467     *n = scratch + 2 * longwords,
  3468     *m = scratch + 3 * longwords;
  3470   reverse_words((unsigned long *)a_ints, a, longwords);
  3471   reverse_words((unsigned long *)b_ints, b, longwords);
  3472   reverse_words((unsigned long *)n_ints, n, longwords);
  3474   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
  3476   reverse_words(m, (unsigned long *)m_ints, longwords);
  3479 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
  3480                                       jint len, jlong inv,
  3481                                       jint *m_ints) {
  3482   assert(len % 2 == 0, "array length in montgomery_square must be even");
  3483   int longwords = len/2;
  3484   assert(longwords > 0, "unsupported");
  3486   // Make very sure we don't use so much space that the stack might
  3487   // overflow. 512 jints corresponds to an 16384-bit integer and
  3488   // will use here a total of 6k bytes of stack space.
  3489   int total_allocation = longwords * sizeof (unsigned long) * 3;
  3490   guarantee(total_allocation <= 8192, "must be");
  3491   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
  3493   // Local scratch arrays
  3494   unsigned long
  3495     *a = scratch + 0 * longwords,
  3496     *n = scratch + 1 * longwords,
  3497     *m = scratch + 2 * longwords;
  3499   reverse_words((unsigned long *)a_ints, a, longwords);
  3500   reverse_words((unsigned long *)n_ints, n, longwords);
  3502   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
  3503     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
  3504   } else {
  3505     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
  3508   reverse_words(m, (unsigned long *)m_ints, longwords);

mercurial