src/cpu/ppc/vm/interpreter_ppc.cpp

Wed, 15 Apr 2020 11:49:55 +0800

author
aoqi
date
Wed, 15 Apr 2020 11:49:55 +0800
changeset 9852
70aa912cebe5
parent 9703
2fdf635bcf28
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright (c) 2012, 2017 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    26 #include "precompiled.hpp"
    27 #include "asm/macroAssembler.inline.hpp"
    28 #include "interpreter/bytecodeHistogram.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "interpreter/interpreterGenerator.hpp"
    31 #include "interpreter/interpreterRuntime.hpp"
    32 #include "interpreter/templateTable.hpp"
    33 #include "oops/arrayOop.hpp"
    34 #include "oops/methodData.hpp"
    35 #include "oops/method.hpp"
    36 #include "oops/oop.inline.hpp"
    37 #include "prims/jvmtiExport.hpp"
    38 #include "prims/jvmtiThreadState.hpp"
    39 #include "prims/methodHandles.hpp"
    40 #include "runtime/arguments.hpp"
    41 #include "runtime/deoptimization.hpp"
    42 #include "runtime/frame.inline.hpp"
    43 #include "runtime/sharedRuntime.hpp"
    44 #include "runtime/stubRoutines.hpp"
    45 #include "runtime/synchronizer.hpp"
    46 #include "runtime/timer.hpp"
    47 #include "runtime/vframeArray.hpp"
    48 #include "utilities/debug.hpp"
    49 #ifdef COMPILER1
    50 #include "c1/c1_Runtime1.hpp"
    51 #endif
    53 #define __ _masm->
    55 #ifdef PRODUCT
    56 #define BLOCK_COMMENT(str) // nothing
    57 #else
    58 #define BLOCK_COMMENT(str) __ block_comment(str)
    59 #endif
    61 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    63 int AbstractInterpreter::BasicType_as_index(BasicType type) {
    64   int i = 0;
    65   switch (type) {
    66     case T_BOOLEAN: i = 0; break;
    67     case T_CHAR   : i = 1; break;
    68     case T_BYTE   : i = 2; break;
    69     case T_SHORT  : i = 3; break;
    70     case T_INT    : i = 4; break;
    71     case T_LONG   : i = 5; break;
    72     case T_VOID   : i = 6; break;
    73     case T_FLOAT  : i = 7; break;
    74     case T_DOUBLE : i = 8; break;
    75     case T_OBJECT : i = 9; break;
    76     case T_ARRAY  : i = 9; break;
    77     default       : ShouldNotReachHere();
    78   }
    79   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
    80   return i;
    81 }
    83 address AbstractInterpreterGenerator::generate_slow_signature_handler() {
    84   // Slow_signature handler that respects the PPC C calling conventions.
    85   //
    86   // We get called by the native entry code with our output register
    87   // area == 8. First we call InterpreterRuntime::get_result_handler
    88   // to copy the pointer to the signature string temporarily to the
    89   // first C-argument and to return the result_handler in
    90   // R3_RET. Since native_entry will copy the jni-pointer to the
    91   // first C-argument slot later on, it is OK to occupy this slot
    92   // temporarilly. Then we copy the argument list on the java
    93   // expression stack into native varargs format on the native stack
    94   // and load arguments into argument registers. Integer arguments in
    95   // the varargs vector will be sign-extended to 8 bytes.
    96   //
    97   // On entry:
    98   //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
    99   //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
   100   //     this method
   101   //   R19_method
   102   //
   103   // On exit (just before return instruction):
   104   //   R3_RET            - contains the address of the result_handler.
   105   //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
   106   //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
   107   //                       ARGi contains this argument. Otherwise, ARGi is not updated.
   108   //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
   110   const int LogSizeOfTwoInstructions = 3;
   112   // FIXME: use Argument:: GL: Argument names different numbers!
   113   const int max_fp_register_arguments  = 13;
   114   const int max_int_register_arguments = 6;  // first 2 are reserved
   116   const Register arg_java       = R21_tmp1;
   117   const Register arg_c          = R22_tmp2;
   118   const Register signature      = R23_tmp3;  // is string
   119   const Register sig_byte       = R24_tmp4;
   120   const Register fpcnt          = R25_tmp5;
   121   const Register argcnt         = R26_tmp6;
   122   const Register intSlot        = R27_tmp7;
   123   const Register target_sp      = R28_tmp8;
   124   const FloatRegister floatSlot = F0;
   126   address entry = __ function_entry();
   128   __ save_LR_CR(R0);
   129   __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
   130   // We use target_sp for storing arguments in the C frame.
   131   __ mr(target_sp, R1_SP);
   132   __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
   134   __ mr(arg_java, R3_ARG1);
   136   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
   138   // Signature is in R3_RET. Signature is callee saved.
   139   __ mr(signature, R3_RET);
   141   // Get the result handler.
   142   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
   144   {
   145     Label L;
   146     // test if static
   147     // _access_flags._flags must be at offset 0.
   148     // TODO PPC port: requires change in shared code.
   149     //assert(in_bytes(AccessFlags::flags_offset()) == 0,
   150     //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
   151     // _access_flags must be a 32 bit value.
   152     assert(sizeof(AccessFlags) == 4, "wrong size");
   153     __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
   154     // testbit with condition register.
   155     __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
   156     __ btrue(CCR0, L);
   157     // For non-static functions, pass "this" in R4_ARG2 and copy it
   158     // to 2nd C-arg slot.
   159     // We need to box the Java object here, so we use arg_java
   160     // (address of current Java stack slot) as argument and don't
   161     // dereference it as in case of ints, floats, etc.
   162     __ mr(R4_ARG2, arg_java);
   163     __ addi(arg_java, arg_java, -BytesPerWord);
   164     __ std(R4_ARG2, _abi(carg_2), target_sp);
   165     __ bind(L);
   166   }
   168   // Will be incremented directly after loop_start. argcnt=0
   169   // corresponds to 3rd C argument.
   170   __ li(argcnt, -1);
   171   // arg_c points to 3rd C argument
   172   __ addi(arg_c, target_sp, _abi(carg_3));
   173   // no floating-point args parsed so far
   174   __ li(fpcnt, 0);
   176   Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
   177   Label loop_start, loop_end;
   178   Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
   180   // signature points to '(' at entry
   181 #ifdef ASSERT
   182   __ lbz(sig_byte, 0, signature);
   183   __ cmplwi(CCR0, sig_byte, '(');
   184   __ bne(CCR0, do_dontreachhere);
   185 #endif
   187   __ bind(loop_start);
   189   __ addi(argcnt, argcnt, 1);
   190   __ lbzu(sig_byte, 1, signature);
   192   __ cmplwi(CCR0, sig_byte, ')'); // end of signature
   193   __ beq(CCR0, loop_end);
   195   __ cmplwi(CCR0, sig_byte, 'B'); // byte
   196   __ beq(CCR0, do_int);
   198   __ cmplwi(CCR0, sig_byte, 'C'); // char
   199   __ beq(CCR0, do_int);
   201   __ cmplwi(CCR0, sig_byte, 'D'); // double
   202   __ beq(CCR0, do_double);
   204   __ cmplwi(CCR0, sig_byte, 'F'); // float
   205   __ beq(CCR0, do_float);
   207   __ cmplwi(CCR0, sig_byte, 'I'); // int
   208   __ beq(CCR0, do_int);
   210   __ cmplwi(CCR0, sig_byte, 'J'); // long
   211   __ beq(CCR0, do_long);
   213   __ cmplwi(CCR0, sig_byte, 'S'); // short
   214   __ beq(CCR0, do_int);
   216   __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
   217   __ beq(CCR0, do_int);
   219   __ cmplwi(CCR0, sig_byte, 'L'); // object
   220   __ beq(CCR0, do_object);
   222   __ cmplwi(CCR0, sig_byte, '['); // array
   223   __ beq(CCR0, do_array);
   225   //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
   226   //  __ beq(CCR0, do_void);
   228   __ bind(do_dontreachhere);
   230   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
   232   __ bind(do_array);
   234   {
   235     Label start_skip, end_skip;
   237     __ bind(start_skip);
   238     __ lbzu(sig_byte, 1, signature);
   239     __ cmplwi(CCR0, sig_byte, '[');
   240     __ beq(CCR0, start_skip); // skip further brackets
   241     __ cmplwi(CCR0, sig_byte, '9');
   242     __ bgt(CCR0, end_skip);   // no optional size
   243     __ cmplwi(CCR0, sig_byte, '0');
   244     __ bge(CCR0, start_skip); // skip optional size
   245     __ bind(end_skip);
   247     __ cmplwi(CCR0, sig_byte, 'L');
   248     __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
   249     __ b(do_boxed);          // otherwise, go directly to do_boxed
   250   }
   252   __ bind(do_object);
   253   {
   254     Label L;
   255     __ bind(L);
   256     __ lbzu(sig_byte, 1, signature);
   257     __ cmplwi(CCR0, sig_byte, ';');
   258     __ bne(CCR0, L);
   259    }
   260   // Need to box the Java object here, so we use arg_java (address of
   261   // current Java stack slot) as argument and don't dereference it as
   262   // in case of ints, floats, etc.
   263   Label do_null;
   264   __ bind(do_boxed);
   265   __ ld(R0,0, arg_java);
   266   __ cmpdi(CCR0, R0, 0);
   267   __ li(intSlot,0);
   268   __ beq(CCR0, do_null);
   269   __ mr(intSlot, arg_java);
   270   __ bind(do_null);
   271   __ std(intSlot, 0, arg_c);
   272   __ addi(arg_java, arg_java, -BytesPerWord);
   273   __ addi(arg_c, arg_c, BytesPerWord);
   274   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
   275   __ blt(CCR0, move_intSlot_to_ARG);
   276   __ b(loop_start);
   278   __ bind(do_int);
   279   __ lwa(intSlot, 0, arg_java);
   280   __ std(intSlot, 0, arg_c);
   281   __ addi(arg_java, arg_java, -BytesPerWord);
   282   __ addi(arg_c, arg_c, BytesPerWord);
   283   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
   284   __ blt(CCR0, move_intSlot_to_ARG);
   285   __ b(loop_start);
   287   __ bind(do_long);
   288   __ ld(intSlot, -BytesPerWord, arg_java);
   289   __ std(intSlot, 0, arg_c);
   290   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
   291   __ addi(arg_c, arg_c, BytesPerWord);
   292   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
   293   __ blt(CCR0, move_intSlot_to_ARG);
   294   __ b(loop_start);
   296   __ bind(do_float);
   297   __ lfs(floatSlot, 0, arg_java);
   298 #if defined(LINUX)
   299   // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
   300   // in the least significant word of an argument slot.
   301 #if defined(VM_LITTLE_ENDIAN)
   302   __ stfs(floatSlot, 0, arg_c);
   303 #else
   304   __ stfs(floatSlot, 4, arg_c);
   305 #endif
   306 #elif defined(AIX)
   307   // Although AIX runs on big endian CPU, float is in most significant
   308   // word of an argument slot.
   309   __ stfs(floatSlot, 0, arg_c);
   310 #else
   311 #error "unknown OS"
   312 #endif
   313   __ addi(arg_java, arg_java, -BytesPerWord);
   314   __ addi(arg_c, arg_c, BytesPerWord);
   315   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
   316   __ blt(CCR0, move_floatSlot_to_FARG);
   317   __ b(loop_start);
   319   __ bind(do_double);
   320   __ lfd(floatSlot, - BytesPerWord, arg_java);
   321   __ stfd(floatSlot, 0, arg_c);
   322   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
   323   __ addi(arg_c, arg_c, BytesPerWord);
   324   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
   325   __ blt(CCR0, move_floatSlot_to_FARG);
   326   __ b(loop_start);
   328   __ bind(loop_end);
   330   __ pop_frame();
   331   __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
   332   __ restore_LR_CR(R0);
   334   __ blr();
   336   Label move_int_arg, move_float_arg;
   337   __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
   338   __ mr(R5_ARG3, intSlot);  __ b(loop_start);
   339   __ mr(R6_ARG4, intSlot);  __ b(loop_start);
   340   __ mr(R7_ARG5, intSlot);  __ b(loop_start);
   341   __ mr(R8_ARG6, intSlot);  __ b(loop_start);
   342   __ mr(R9_ARG7, intSlot);  __ b(loop_start);
   343   __ mr(R10_ARG8, intSlot); __ b(loop_start);
   345   __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
   346   __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
   347   __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
   348   __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
   349   __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
   350   __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
   351   __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
   352   __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
   353   __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
   354   __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
   355   __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
   356   __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
   357   __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
   358   __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
   360   __ bind(move_intSlot_to_ARG);
   361   __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
   362   __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
   363   __ add(R11_scratch1, R0, R11_scratch1);
   364   __ mtctr(R11_scratch1/*branch_target*/);
   365   __ bctr();
   366   __ bind(move_floatSlot_to_FARG);
   367   __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
   368   __ addi(fpcnt, fpcnt, 1);
   369   __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
   370   __ add(R11_scratch1, R0, R11_scratch1);
   371   __ mtctr(R11_scratch1/*branch_target*/);
   372   __ bctr();
   374   return entry;
   375 }
   377 address AbstractInterpreterGenerator::generate_result_handler_for(BasicType type) {
   378   //
   379   // Registers alive
   380   //   R3_RET
   381   //   LR
   382   //
   383   // Registers updated
   384   //   R3_RET
   385   //
   387   Label done;
   388   address entry = __ pc();
   390   switch (type) {
   391   case T_BOOLEAN:
   392     // convert !=0 to 1
   393     __ neg(R0, R3_RET);
   394     __ orr(R0, R3_RET, R0);
   395     __ srwi(R3_RET, R0, 31);
   396     break;
   397   case T_BYTE:
   398      // sign extend 8 bits
   399      __ extsb(R3_RET, R3_RET);
   400      break;
   401   case T_CHAR:
   402      // zero extend 16 bits
   403      __ clrldi(R3_RET, R3_RET, 48);
   404      break;
   405   case T_SHORT:
   406      // sign extend 16 bits
   407      __ extsh(R3_RET, R3_RET);
   408      break;
   409   case T_INT:
   410      // sign extend 32 bits
   411      __ extsw(R3_RET, R3_RET);
   412      break;
   413   case T_LONG:
   414      break;
   415   case T_OBJECT:
   416     // JNIHandles::resolve result.
   417     __ resolve_jobject(R3_RET, R11_scratch1, R12_scratch2, /* needs_frame */ true); // kills R31
   418     break;
   419   case T_FLOAT:
   420      break;
   421   case T_DOUBLE:
   422      break;
   423   case T_VOID:
   424      break;
   425   default: ShouldNotReachHere();
   426   }
   428   __ BIND(done);
   429   __ blr();
   431   return entry;
   432 }
   434 // Abstract method entry.
   435 //
   436 address InterpreterGenerator::generate_abstract_entry(void) {
   437   address entry = __ pc();
   439   //
   440   // Registers alive
   441   //   R16_thread     - JavaThread*
   442   //   R19_method     - callee's method (method to be invoked)
   443   //   R1_SP          - SP prepared such that caller's outgoing args are near top
   444   //   LR             - return address to caller
   445   //
   446   // Stack layout at this point:
   447   //
   448   //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
   449   //           alignment (optional)
   450   //           [outgoing Java arguments]
   451   //           ...
   452   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
   453   //            ...
   454   //
   456   // Can't use call_VM here because we have not set up a new
   457   // interpreter state. Make the call to the vm and make it look like
   458   // our caller set up the JavaFrameAnchor.
   459   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
   461   // Push a new C frame and save LR.
   462   __ save_LR_CR(R0);
   463   __ push_frame_reg_args(0, R11_scratch1);
   465   // This is not a leaf but we have a JavaFrameAnchor now and we will
   466   // check (create) exceptions afterward so this is ok.
   467   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
   468                   R16_thread);
   470   // Pop the C frame and restore LR.
   471   __ pop_frame();
   472   __ restore_LR_CR(R0);
   474   // Reset JavaFrameAnchor from call_VM_leaf above.
   475   __ reset_last_Java_frame();
   477 #ifdef CC_INTERP
   478   // Return to frame manager, it will handle the pending exception.
   479   __ blr();
   480 #else
   481   // We don't know our caller, so jump to the general forward exception stub,
   482   // which will also pop our full frame off. Satisfy the interface of
   483   // SharedRuntime::generate_forward_exception()
   484   __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
   485   __ mtctr(R11_scratch1);
   486   __ bctr();
   487 #endif
   489   return entry;
   490 }
   492 // Call an accessor method (assuming it is resolved, otherwise drop into
   493 // vanilla (slow path) entry.
   494 address InterpreterGenerator::generate_accessor_entry(void) {
   495   if (!UseFastAccessorMethods && (!FLAG_IS_ERGO(UseFastAccessorMethods))) {
   496     return NULL;
   497   }
   499   Label Lslow_path, Lacquire;
   501   const Register
   502          Rclass_or_obj = R3_ARG1,
   503          Rconst_method = R4_ARG2,
   504          Rcodes        = Rconst_method,
   505          Rcpool_cache  = R5_ARG3,
   506          Rscratch      = R11_scratch1,
   507          Rjvmti_mode   = Rscratch,
   508          Roffset       = R12_scratch2,
   509          Rflags        = R6_ARG4,
   510          Rbtable       = R7_ARG5;
   512   static address branch_table[number_of_states];
   514   address entry = __ pc();
   516   // Check for safepoint:
   517   // Ditch this, real man don't need safepoint checks.
   519   // Also check for JVMTI mode
   520   // Check for null obj, take slow path if so.
   521   __ ld(Rclass_or_obj, Interpreter::stackElementSize, CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp));
   522   __ lwz(Rjvmti_mode, thread_(interp_only_mode));
   523   __ cmpdi(CCR1, Rclass_or_obj, 0);
   524   __ cmpwi(CCR0, Rjvmti_mode, 0);
   525   __ crorc(/*CCR0 eq*/2, /*CCR1 eq*/4+2, /*CCR0 eq*/2);
   526   __ beq(CCR0, Lslow_path); // this==null or jvmti_mode!=0
   528   // Do 2 things in parallel:
   529   // 1. Load the index out of the first instruction word, which looks like this:
   530   //    <0x2a><0xb4><index (2 byte, native endianess)>.
   531   // 2. Load constant pool cache base.
   532   __ ld(Rconst_method, in_bytes(Method::const_offset()), R19_method);
   533   __ ld(Rcpool_cache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
   535   __ lhz(Rcodes, in_bytes(ConstMethod::codes_offset()) + 2, Rconst_method); // Lower half of 32 bit field.
   536   __ ld(Rcpool_cache, ConstantPool::cache_offset_in_bytes(), Rcpool_cache);
   538   // Get the const pool entry by means of <index>.
   539   const int codes_shift = exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord);
   540   __ slwi(Rscratch, Rcodes, codes_shift); // (codes&0xFFFF)<<codes_shift
   541   __ add(Rcpool_cache, Rscratch, Rcpool_cache);
   543   // Check if cpool cache entry is resolved.
   544   // We are resolved if the indices offset contains the current bytecode.
   545   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
   546   // Big Endian:
   547   __ lbz(Rscratch, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::indices_offset()) + 7 - 2, Rcpool_cache);
   548   __ cmpwi(CCR0, Rscratch, Bytecodes::_getfield);
   549   __ bne(CCR0, Lslow_path);
   550   __ isync(); // Order succeeding loads wrt. load of _indices field from cpool_cache.
   552   // Finally, start loading the value: Get cp cache entry into regs.
   553   __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcpool_cache);
   554   __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcpool_cache);
   556   // Following code is from templateTable::getfield_or_static
   557   // Load pointer to branch table
   558   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
   560   // Get volatile flag
   561   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // extract volatile bit
   562   // note: sync is needed before volatile load on PPC64
   564   // Check field type
   565   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
   567 #ifdef ASSERT
   568   Label LFlagInvalid;
   569   __ cmpldi(CCR0, Rflags, number_of_states);
   570   __ bge(CCR0, LFlagInvalid);
   572   __ ld(R9_ARG7, 0, R1_SP);
   573   __ ld(R10_ARG8, 0, R21_sender_SP);
   574   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
   575   __ asm_assert_eq("backlink", 0x543);
   576 #endif // ASSERT
   577   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
   579   // Load from branch table and dispatch (volatile case: one instruction ahead)
   580   __ sldi(Rflags, Rflags, LogBytesPerWord);
   581   __ cmpwi(CCR6, Rscratch, 1); // volatile?
   582   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
   583     __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // volatile ? size of 1 instruction : 0
   584   }
   585   __ ldx(Rbtable, Rbtable, Rflags);
   587   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
   588     __ subf(Rbtable, Rscratch, Rbtable); // point to volatile/non-volatile entry point
   589   }
   590   __ mtctr(Rbtable);
   591   __ bctr();
   593 #ifdef ASSERT
   594   __ bind(LFlagInvalid);
   595   __ stop("got invalid flag", 0x6541);
   597   bool all_uninitialized = true,
   598        all_initialized   = true;
   599   for (int i = 0; i<number_of_states; ++i) {
   600     all_uninitialized = all_uninitialized && (branch_table[i] == NULL);
   601     all_initialized   = all_initialized   && (branch_table[i] != NULL);
   602   }
   603   assert(all_uninitialized != all_initialized, "consistency"); // either or
   605   __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
   606   if (branch_table[vtos] == 0) branch_table[vtos] = __ pc(); // non-volatile_entry point
   607   if (branch_table[dtos] == 0) branch_table[dtos] = __ pc(); // non-volatile_entry point
   608   if (branch_table[ftos] == 0) branch_table[ftos] = __ pc(); // non-volatile_entry point
   609   __ stop("unexpected type", 0x6551);
   610 #endif
   612   if (branch_table[itos] == 0) { // generate only once
   613     __ align(32, 28, 28); // align load
   614     __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
   615     branch_table[itos] = __ pc(); // non-volatile_entry point
   616     __ lwax(R3_RET, Rclass_or_obj, Roffset);
   617     __ beq(CCR6, Lacquire);
   618     __ blr();
   619   }
   621   if (branch_table[ltos] == 0) { // generate only once
   622     __ align(32, 28, 28); // align load
   623     __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
   624     branch_table[ltos] = __ pc(); // non-volatile_entry point
   625     __ ldx(R3_RET, Rclass_or_obj, Roffset);
   626     __ beq(CCR6, Lacquire);
   627     __ blr();
   628   }
   630   if (branch_table[btos] == 0) { // generate only once
   631     __ align(32, 28, 28); // align load
   632     __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
   633     branch_table[btos] = __ pc(); // non-volatile_entry point
   634     __ lbzx(R3_RET, Rclass_or_obj, Roffset);
   635     __ extsb(R3_RET, R3_RET);
   636     __ beq(CCR6, Lacquire);
   637     __ blr();
   638   }
   640   if (branch_table[ztos] == 0) { // generate only once
   641     __ align(32, 28, 28); // align load
   642     __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
   643     branch_table[ztos] = __ pc(); // non-volatile_entry point
   644     __ lbzx(R3_RET, Rclass_or_obj, Roffset);
   645     __ extsb(R3_RET, R3_RET);
   646     __ beq(CCR6, Lacquire);
   647     __ blr();
   648   }
   650   if (branch_table[ctos] == 0) { // generate only once
   651     __ align(32, 28, 28); // align load
   652     __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
   653     branch_table[ctos] = __ pc(); // non-volatile_entry point
   654     __ lhzx(R3_RET, Rclass_or_obj, Roffset);
   655     __ beq(CCR6, Lacquire);
   656     __ blr();
   657   }
   659   if (branch_table[stos] == 0) { // generate only once
   660     __ align(32, 28, 28); // align load
   661     __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
   662     branch_table[stos] = __ pc(); // non-volatile_entry point
   663     __ lhax(R3_RET, Rclass_or_obj, Roffset);
   664     __ beq(CCR6, Lacquire);
   665     __ blr();
   666   }
   668   if (branch_table[atos] == 0) { // generate only once
   669     __ align(32, 28, 28); // align load
   670     __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
   671     branch_table[atos] = __ pc(); // non-volatile_entry point
   672     __ load_heap_oop(R3_RET, (RegisterOrConstant)Roffset, Rclass_or_obj);
   673     __ verify_oop(R3_RET);
   674     //__ dcbt(R3_RET); // prefetch
   675     __ beq(CCR6, Lacquire);
   676     __ blr();
   677   }
   679   __ align(32, 12);
   680   __ bind(Lacquire);
   681   __ twi_0(R3_RET);
   682   __ isync(); // acquire
   683   __ blr();
   685 #ifdef ASSERT
   686   for (int i = 0; i<number_of_states; ++i) {
   687     assert(branch_table[i], "accessor_entry initialization");
   688     //tty->print_cr("accessor_entry: branch_table[%d] = 0x%llx (opcode 0x%llx)", i, branch_table[i], *((unsigned int*)branch_table[i]));
   689   }
   690 #endif
   692   __ bind(Lslow_path);
   693   __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), Rscratch);
   694   __ flush();
   696   return entry;
   697 }
   699 // Interpreter intrinsic for WeakReference.get().
   700 // 1. Don't push a full blown frame and go on dispatching, but fetch the value
   701 //    into R8 and return quickly
   702 // 2. If G1 is active we *must* execute this intrinsic for corrrectness:
   703 //    It contains a GC barrier which puts the reference into the satb buffer
   704 //    to indicate that someone holds a strong reference to the object the
   705 //    weak ref points to!
   706 address InterpreterGenerator::generate_Reference_get_entry(void) {
   707   // Code: _aload_0, _getfield, _areturn
   708   // parameter size = 1
   709   //
   710   // The code that gets generated by this routine is split into 2 parts:
   711   //    1. the "intrinsified" code for G1 (or any SATB based GC),
   712   //    2. the slow path - which is an expansion of the regular method entry.
   713   //
   714   // Notes:
   715   // * In the G1 code we do not check whether we need to block for
   716   //   a safepoint. If G1 is enabled then we must execute the specialized
   717   //   code for Reference.get (except when the Reference object is null)
   718   //   so that we can log the value in the referent field with an SATB
   719   //   update buffer.
   720   //   If the code for the getfield template is modified so that the
   721   //   G1 pre-barrier code is executed when the current method is
   722   //   Reference.get() then going through the normal method entry
   723   //   will be fine.
   724   // * The G1 code can, however, check the receiver object (the instance
   725   //   of java.lang.Reference) and jump to the slow path if null. If the
   726   //   Reference object is null then we obviously cannot fetch the referent
   727   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
   728   //   regular method entry code to generate the NPE.
   729   //
   730   // This code is based on generate_accessor_enty.
   732   address entry = __ pc();
   734   const int referent_offset = java_lang_ref_Reference::referent_offset;
   735   guarantee(referent_offset > 0, "referent offset not initialized");
   737   if (UseG1GC) {
   738      Label slow_path;
   740     // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
   742     // In the G1 code we don't check if we need to reach a safepoint. We
   743     // continue and the thread will safepoint at the next bytecode dispatch.
   745     // If the receiver is null then it is OK to jump to the slow path.
   746     __ ld(R3_RET, Interpreter::stackElementSize, CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp)); // get receiver
   748     // Check if receiver == NULL and go the slow path.
   749     __ cmpdi(CCR0, R3_RET, 0);
   750     __ beq(CCR0, slow_path);
   752     // Load the value of the referent field.
   753     __ load_heap_oop(R3_RET, referent_offset, R3_RET);
   755     // Generate the G1 pre-barrier code to log the value of
   756     // the referent field in an SATB buffer. Note with
   757     // these parameters the pre-barrier does not generate
   758     // the load of the previous value.
   760     // Restore caller sp for c2i case.
   761 #ifdef ASSERT
   762       __ ld(R9_ARG7, 0, R1_SP);
   763       __ ld(R10_ARG8, 0, R21_sender_SP);
   764       __ cmpd(CCR0, R9_ARG7, R10_ARG8);
   765       __ asm_assert_eq("backlink", 0x544);
   766 #endif // ASSERT
   767     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
   769     __ g1_write_barrier_pre(noreg,         // obj
   770                             noreg,         // offset
   771                             R3_RET,        // pre_val
   772                             R11_scratch1,  // tmp
   773                             R12_scratch2,  // tmp
   774                             true);         // needs_frame
   776     __ blr();
   778     // Generate regular method entry.
   779     __ bind(slow_path);
   780     __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
   781     __ flush();
   783     return entry;
   784   } else {
   785     return generate_accessor_entry();
   786   }
   787 }
   789 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
   790   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
   791   // the days we had adapter frames. When we deoptimize a situation where a
   792   // compiled caller calls a compiled caller will have registers it expects
   793   // to survive the call to the callee. If we deoptimize the callee the only
   794   // way we can restore these registers is to have the oldest interpreter
   795   // frame that we create restore these values. That is what this routine
   796   // will accomplish.
   798   // At the moment we have modified c2 to not have any callee save registers
   799   // so this problem does not exist and this routine is just a place holder.
   801   assert(f->is_interpreted_frame(), "must be interpreted");
   802 }

mercurial