src/cpu/ppc/vm/interp_masm_ppc_64.cpp

Wed, 15 Apr 2020 11:49:55 +0800

author
aoqi
date
Wed, 15 Apr 2020 11:49:55 +0800
changeset 9852
70aa912cebe5
parent 8604
04d83ba48607
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2012, 2014 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     9  *
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    13  * version 2 for more details (a copy is included in the LICENSE file that
    14  * accompanied this code).
    15  *
    16  * You should have received a copy of the GNU General Public License version
    17  * 2 along with this work; if not, write to the Free Software Foundation,
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    19  *
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    21  * or visit www.oracle.com if you need additional information or have any
    22  * questions.
    23  *
    24  */
    27 #include "precompiled.hpp"
    28 #include "asm/macroAssembler.inline.hpp"
    29 #include "interp_masm_ppc_64.hpp"
    30 #include "interpreter/interpreterRuntime.hpp"
    31 #include "prims/jvmtiThreadState.hpp"
    33 #ifdef PRODUCT
    34 #define BLOCK_COMMENT(str) // nothing
    35 #else
    36 #define BLOCK_COMMENT(str) block_comment(str)
    37 #endif
    39 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
    40 #ifdef CC_INTERP
    41   address exception_entry = StubRoutines::throw_NullPointerException_at_call_entry();
    42 #else
    43   address exception_entry = Interpreter::throw_NullPointerException_entry();
    44 #endif
    45   MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
    46 }
    48 void InterpreterMacroAssembler::branch_to_entry(address entry, Register Rscratch) {
    49   assert(entry, "Entry must have been generated by now");
    50   if (is_within_range_of_b(entry, pc())) {
    51     b(entry);
    52   } else {
    53     load_const_optimized(Rscratch, entry, R0);
    54     mtctr(Rscratch);
    55     bctr();
    56   }
    57 }
    59 #ifndef CC_INTERP
    61 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
    62   Register bytecode = R12_scratch2;
    63   if (bcp_incr != 0) {
    64     lbzu(bytecode, bcp_incr, R14_bcp);
    65   } else {
    66     lbz(bytecode, 0, R14_bcp);
    67   }
    69   dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state));
    70 }
    72 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
    73   // Load current bytecode.
    74   Register bytecode = R12_scratch2;
    75   lbz(bytecode, 0, R14_bcp);
    76   dispatch_Lbyte_code(state, bytecode, table);
    77 }
    79 // Dispatch code executed in the prolog of a bytecode which does not do it's
    80 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
    81 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
    82   Register bytecode = R12_scratch2;
    83   lbz(bytecode, bcp_incr, R14_bcp);
    85   load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
    87   sldi(bytecode, bytecode, LogBytesPerWord);
    88   ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
    89 }
    91 // Dispatch code executed in the epilog of a bytecode which does not do it's
    92 // own dispatch. The dispatch address in R24_dispatch_addr is used for the
    93 // dispatch.
    94 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
    95   mtctr(R24_dispatch_addr);
    96   addi(R14_bcp, R14_bcp, bcp_incr);
    97   bctr();
    98 }
   100 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   101   assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
   102   if (JvmtiExport::can_pop_frame()) {
   103     Label L;
   105     // Check the "pending popframe condition" flag in the current thread.
   106     lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
   108     // Initiate popframe handling only if it is not already being
   109     // processed. If the flag has the popframe_processing bit set, it
   110     // means that this code is called *during* popframe handling - we
   111     // don't want to reenter.
   112     andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
   113     beq(CCR0, L);
   115     andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
   116     bne(CCR0, L);
   118     // Call the Interpreter::remove_activation_preserving_args_entry()
   119     // func to get the address of the same-named entrypoint in the
   120     // generated interpreter code.
   121 #if defined(ABI_ELFv2)
   122     call_c(CAST_FROM_FN_PTR(address,
   123                             Interpreter::remove_activation_preserving_args_entry),
   124            relocInfo::none);
   125 #else
   126     call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
   127                             Interpreter::remove_activation_preserving_args_entry),
   128            relocInfo::none);
   129 #endif
   131     // Jump to Interpreter::_remove_activation_preserving_args_entry.
   132     mtctr(R3_RET);
   133     bctr();
   135     align(32, 12);
   136     bind(L);
   137   }
   138 }
   140 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   141   const Register Rthr_state_addr = scratch_reg;
   142   if (JvmtiExport::can_force_early_return()) {
   143     Label Lno_early_ret;
   144     ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
   145     cmpdi(CCR0, Rthr_state_addr, 0);
   146     beq(CCR0, Lno_early_ret);
   148     lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
   149     cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
   150     bne(CCR0, Lno_early_ret);
   152     // Jump to Interpreter::_earlyret_entry.
   153     lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
   154     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
   155     mtlr(R3_RET);
   156     blr();
   158     align(32, 12);
   159     bind(Lno_early_ret);
   160   }
   161 }
   163 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
   164   const Register RjvmtiState = Rscratch1;
   165   const Register Rscratch2   = R0;
   167   ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
   168   li(Rscratch2, 0);
   170   switch (state) {
   171     case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
   172                std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
   173                break;
   174     case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
   175                break;
   176     case btos: // fall through
   177     case ztos: // fall through
   178     case ctos: // fall through
   179     case stos: // fall through
   180     case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
   181                break;
   182     case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
   183                break;
   184     case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
   185                break;
   186     case vtos: break;
   187     default  : ShouldNotReachHere();
   188   }
   190   // Clean up tos value in the jvmti thread state.
   191   std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
   192   // Set tos state field to illegal value.
   193   li(Rscratch2, ilgl);
   194   stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
   195 }
   197 // Common code to dispatch and dispatch_only.
   198 // Dispatch value in Lbyte_code and increment Lbcp.
   200 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
   201   address table_base = (address)Interpreter::dispatch_table((TosState)0);
   202   intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
   203   if (is_simm16(table_offs)) {
   204     addi(dst, R25_templateTableBase, (int)table_offs);
   205   } else {
   206     load_const_optimized(dst, table, R0);
   207   }
   208 }
   210 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, address* table, bool verify) {
   211   if (verify) {
   212     unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this
   213   }
   215 #ifdef FAST_DISPATCH
   216   unimplemented("dispatch_Lbyte_code FAST_DISPATCH");
   217 #else
   218   assert_different_registers(bytecode, R11_scratch1);
   220   // Calc dispatch table address.
   221   load_dispatch_table(R11_scratch1, table);
   223   sldi(R12_scratch2, bytecode, LogBytesPerWord);
   224   ldx(R11_scratch1, R11_scratch1, R12_scratch2);
   226   // Jump off!
   227   mtctr(R11_scratch1);
   228   bctr();
   229 #endif
   230 }
   232 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
   233   sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
   234   ldx(Rrecv_dst, Rrecv_dst, R15_esp);
   235 }
   237 // helpers for expression stack
   239 void InterpreterMacroAssembler::pop_i(Register r) {
   240   lwzu(r, Interpreter::stackElementSize, R15_esp);
   241 }
   243 void InterpreterMacroAssembler::pop_ptr(Register r) {
   244   ldu(r, Interpreter::stackElementSize, R15_esp);
   245 }
   247 void InterpreterMacroAssembler::pop_l(Register r) {
   248   ld(r, Interpreter::stackElementSize, R15_esp);
   249   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
   250 }
   252 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
   253   lfsu(f, Interpreter::stackElementSize, R15_esp);
   254 }
   256 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
   257   lfd(f, Interpreter::stackElementSize, R15_esp);
   258   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
   259 }
   261 void InterpreterMacroAssembler::push_i(Register r) {
   262   stw(r, 0, R15_esp);
   263   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
   264 }
   266 void InterpreterMacroAssembler::push_ptr(Register r) {
   267   std(r, 0, R15_esp);
   268   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
   269 }
   271 void InterpreterMacroAssembler::push_l(Register r) {
   272   std(r, - Interpreter::stackElementSize, R15_esp);
   273   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
   274 }
   276 void InterpreterMacroAssembler::push_f(FloatRegister f) {
   277   stfs(f, 0, R15_esp);
   278   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
   279 }
   281 void InterpreterMacroAssembler::push_d(FloatRegister f)   {
   282   stfd(f, - Interpreter::stackElementSize, R15_esp);
   283   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
   284 }
   286 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
   287   std(first, 0, R15_esp);
   288   std(second, -Interpreter::stackElementSize, R15_esp);
   289   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
   290 }
   292 void InterpreterMacroAssembler::push_l_pop_d(Register l, FloatRegister d) {
   293   std(l, 0, R15_esp);
   294   lfd(d, 0, R15_esp);
   295 }
   297 void InterpreterMacroAssembler::push_d_pop_l(FloatRegister d, Register l) {
   298   stfd(d, 0, R15_esp);
   299   ld(l, 0, R15_esp);
   300 }
   302 void InterpreterMacroAssembler::push(TosState state) {
   303   switch (state) {
   304     case atos: push_ptr();                break;
   305     case btos:
   306     case ztos:
   307     case ctos:
   308     case stos:
   309     case itos: push_i();                  break;
   310     case ltos: push_l();                  break;
   311     case ftos: push_f();                  break;
   312     case dtos: push_d();                  break;
   313     case vtos: /* nothing to do */        break;
   314     default  : ShouldNotReachHere();
   315   }
   316 }
   318 void InterpreterMacroAssembler::pop(TosState state) {
   319   switch (state) {
   320     case atos: pop_ptr();            break;
   321     case btos:
   322     case ztos:
   323     case ctos:
   324     case stos:
   325     case itos: pop_i();              break;
   326     case ltos: pop_l();              break;
   327     case ftos: pop_f();              break;
   328     case dtos: pop_d();              break;
   329     case vtos: /* nothing to do */   break;
   330     default  : ShouldNotReachHere();
   331   }
   332   verify_oop(R17_tos, state);
   333 }
   335 void InterpreterMacroAssembler::empty_expression_stack() {
   336   addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
   337 }
   339 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int         bcp_offset,
   340                                                           Register    Rdst,
   341                                                           signedOrNot is_signed) {
   342 #if defined(VM_LITTLE_ENDIAN)
   343   if (bcp_offset) {
   344     load_const_optimized(Rdst, bcp_offset);
   345     lhbrx(Rdst, R14_bcp, Rdst);
   346   } else {
   347     lhbrx(Rdst, R14_bcp);
   348   }
   349   if (is_signed == Signed) {
   350     extsh(Rdst, Rdst);
   351   }
   352 #else
   353   // Read Java big endian format.
   354   if (is_signed == Signed) {
   355     lha(Rdst, bcp_offset, R14_bcp);
   356   } else {
   357     lhz(Rdst, bcp_offset, R14_bcp);
   358   }
   359 #endif
   360 }
   362 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int         bcp_offset,
   363                                                           Register    Rdst,
   364                                                           signedOrNot is_signed) {
   365 #if defined(VM_LITTLE_ENDIAN)
   366   if (bcp_offset) {
   367     load_const_optimized(Rdst, bcp_offset);
   368     lwbrx(Rdst, R14_bcp, Rdst);
   369   } else {
   370     lwbrx(Rdst, R14_bcp);
   371   }
   372   if (is_signed == Signed) {
   373     extsw(Rdst, Rdst);
   374   }
   375 #else
   376   // Read Java big endian format.
   377   if (bcp_offset & 3) { // Offset unaligned?
   378     load_const_optimized(Rdst, bcp_offset);
   379     if (is_signed == Signed) {
   380       lwax(Rdst, R14_bcp, Rdst);
   381     } else {
   382       lwzx(Rdst, R14_bcp, Rdst);
   383     }
   384   } else {
   385     if (is_signed == Signed) {
   386       lwa(Rdst, bcp_offset, R14_bcp);
   387     } else {
   388       lwz(Rdst, bcp_offset, R14_bcp);
   389     }
   390   }
   391 #endif
   392 }
   395 // Load the constant pool cache index from the bytecode stream.
   396 //
   397 // Kills / writes:
   398 //   - Rdst, Rscratch
   399 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, size_t index_size) {
   400   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   401   // Cache index is always in the native format, courtesy of Rewriter.
   402   if (index_size == sizeof(u2)) {
   403     lhz(Rdst, bcp_offset, R14_bcp);
   404   } else if (index_size == sizeof(u4)) {
   405     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
   406     if (bcp_offset & 3) {
   407       load_const_optimized(Rdst, bcp_offset);
   408       lwax(Rdst, R14_bcp, Rdst);
   409     } else {
   410       lwa(Rdst, bcp_offset, R14_bcp);
   411     }
   412     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
   413     nand(Rdst, Rdst, Rdst); // convert to plain index
   414   } else if (index_size == sizeof(u1)) {
   415     lbz(Rdst, bcp_offset, R14_bcp);
   416   } else {
   417     ShouldNotReachHere();
   418   }
   419   // Rdst now contains cp cache index.
   420 }
   422 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset, size_t index_size) {
   423   get_cache_index_at_bcp(cache, bcp_offset, index_size);
   424   sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
   425   add(cache, R27_constPoolCache, cache);
   426 }
   428 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
   429 // from (Rsrc)+offset.
   430 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
   431                                        signedOrNot is_signed) {
   432 #if defined(VM_LITTLE_ENDIAN)
   433   if (offset) {
   434     load_const_optimized(Rdst, offset);
   435     lwbrx(Rdst, Rdst, Rsrc);
   436   } else {
   437     lwbrx(Rdst, Rsrc);
   438   }
   439   if (is_signed == Signed) {
   440     extsw(Rdst, Rdst);
   441   }
   442 #else
   443   if (is_signed == Signed) {
   444     lwa(Rdst, offset, Rsrc);
   445   } else {
   446     lwz(Rdst, offset, Rsrc);
   447   }
   448 #endif
   449 }
   451 // Load object from cpool->resolved_references(index).
   452 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
   453   assert_different_registers(result, index);
   454   get_constant_pool(result);
   456   // Convert from field index to resolved_references() index and from
   457   // word index to byte offset. Since this is a java object, it can be compressed.
   458   Register tmp = index;  // reuse
   459   sldi(tmp, index, LogBytesPerHeapOop);
   460   // Load pointer for resolved_references[] objArray.
   461   ld(result, ConstantPool::resolved_references_offset_in_bytes(), result);
   462   // JNIHandles::resolve(result)
   463   ld(result, 0, result);
   464 #ifdef ASSERT
   465   Label index_ok;
   466   lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
   467   sldi(R0, R0, LogBytesPerHeapOop);
   468   cmpd(CCR0, tmp, R0);
   469   blt(CCR0, index_ok);
   470   stop("resolved reference index out of bounds", 0x09256);
   471   bind(index_ok);
   472 #endif
   473   // Add in the index.
   474   add(result, tmp, result);
   475   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
   476 }
   478 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   479 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
   480 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
   481                                                   Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
   482   // Profile the not-null value's klass.
   483   profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
   484   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
   485   profile_typecheck_failed(Rtmp1, Rtmp2);
   486 }
   488 void InterpreterMacroAssembler::generate_stack_overflow_check_with_compare_and_throw(Register Rmem_frame_size, Register Rscratch1) {
   489   Label done;
   490   sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
   491   ld(Rscratch1, thread_(stack_overflow_limit));
   492   cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
   493   bgt(CCR0/*is_stack_overflow*/, done);
   495   // Load target address of the runtime stub.
   496   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
   497   load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
   498   mtctr(Rscratch1);
   499   // Restore caller_sp.
   500 #ifdef ASSERT
   501   ld(Rscratch1, 0, R1_SP);
   502   ld(R0, 0, R21_sender_SP);
   503   cmpd(CCR0, R0, Rscratch1);
   504   asm_assert_eq("backlink", 0x547);
   505 #endif // ASSERT
   506   mr(R1_SP, R21_sender_SP);
   507   bctr();
   509   align(32, 12);
   510   bind(done);
   511 }
   513 // Separate these two to allow for delay slot in middle.
   514 // These are used to do a test and full jump to exception-throwing code.
   516 // Check that index is in range for array, then shift index by index_shift,
   517 // and put arrayOop + shifted_index into res.
   518 // Note: res is still shy of address by array offset into object.
   520 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, int index_shift, Register Rtmp, Register Rres) {
   521   // Check that index is in range for array, then shift index by index_shift,
   522   // and put arrayOop + shifted_index into res.
   523   // Note: res is still shy of address by array offset into object.
   524   // Kills:
   525   //   - Rindex
   526   // Writes:
   527   //   - Rres: Address that corresponds to the array index if check was successful.
   528   verify_oop(Rarray);
   529   const Register Rlength   = R0;
   530   const Register RsxtIndex = Rtmp;
   531   Label LisNull, LnotOOR;
   533   // Array nullcheck
   534   if (!ImplicitNullChecks) {
   535     cmpdi(CCR0, Rarray, 0);
   536     beq(CCR0, LisNull);
   537   } else {
   538     null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
   539   }
   541   // Rindex might contain garbage in upper bits (remember that we don't sign extend
   542   // during integer arithmetic operations). So kill them and put value into same register
   543   // where ArrayIndexOutOfBounds would expect the index in.
   544   rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
   546   // Index check
   547   lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
   548   cmplw(CCR0, Rindex, Rlength);
   549   sldi(RsxtIndex, RsxtIndex, index_shift);
   550   blt(CCR0, LnotOOR);
   551   // Index should be in R17_tos, array should be in R4_ARG2.
   552   mr(R17_tos, Rindex);
   553   mr(R4_ARG2, Rarray);
   554   load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
   555   mtctr(Rtmp);
   556   bctr();
   558   if (!ImplicitNullChecks) {
   559     bind(LisNull);
   560     load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
   561     mtctr(Rtmp);
   562     bctr();
   563   }
   565   align(32, 16);
   566   bind(LnotOOR);
   568   // Calc address
   569   add(Rres, RsxtIndex, Rarray);
   570 }
   572 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
   573   // pop array
   574   pop_ptr(array);
   576   // check array
   577   index_check_without_pop(array, index, index_shift, tmp, res);
   578 }
   580 void InterpreterMacroAssembler::get_const(Register Rdst) {
   581   ld(Rdst, in_bytes(Method::const_offset()), R19_method);
   582 }
   584 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
   585   get_const(Rdst);
   586   ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
   587 }
   589 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
   590   get_constant_pool(Rdst);
   591   ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
   592 }
   594 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
   595   get_constant_pool(Rcpool);
   596   ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
   597 }
   599 // Unlock if synchronized method.
   600 //
   601 // Unlock the receiver if this is a synchronized method.
   602 // Unlock any Java monitors from synchronized blocks.
   603 //
   604 // If there are locked Java monitors
   605 //   If throw_monitor_exception
   606 //     throws IllegalMonitorStateException
   607 //   Else if install_monitor_exception
   608 //     installs IllegalMonitorStateException
   609 //   Else
   610 //     no error processing
   611 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
   612                                                               bool throw_monitor_exception,
   613                                                               bool install_monitor_exception) {
   614   Label Lunlocked, Lno_unlock;
   615   {
   616     Register Rdo_not_unlock_flag = R11_scratch1;
   617     Register Raccess_flags       = R12_scratch2;
   619     // Check if synchronized method or unlocking prevented by
   620     // JavaThread::do_not_unlock_if_synchronized flag.
   621     lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
   622     lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
   623     li(R0, 0);
   624     stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
   626     push(state);
   628     // Skip if we don't have to unlock.
   629     rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
   630     beq(CCR0, Lunlocked);
   632     cmpwi(CCR0, Rdo_not_unlock_flag, 0);
   633     bne(CCR0, Lno_unlock);
   634   }
   636   // Unlock
   637   {
   638     Register Rmonitor_base = R11_scratch1;
   640     Label Lunlock;
   641     // If it's still locked, everything is ok, unlock it.
   642     ld(Rmonitor_base, 0, R1_SP);
   643     addi(Rmonitor_base, Rmonitor_base, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
   645     ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
   646     cmpdi(CCR0, R0, 0);
   647     bne(CCR0, Lunlock);
   649     // If it's already unlocked, throw exception.
   650     if (throw_monitor_exception) {
   651       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   652       should_not_reach_here();
   653     } else {
   654       if (install_monitor_exception) {
   655         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   656         b(Lunlocked);
   657       }
   658     }
   660     bind(Lunlock);
   661     unlock_object(Rmonitor_base);
   662   }
   664   // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
   665   bind(Lunlocked);
   666   {
   667     Label Lexception, Lrestart;
   668     Register Rcurrent_obj_addr = R11_scratch1;
   669     const int delta = frame::interpreter_frame_monitor_size_in_bytes();
   670     assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
   672     bind(Lrestart);
   673     // Set up search loop: Calc num of iterations.
   674     {
   675       Register Riterations = R12_scratch2;
   676       Register Rmonitor_base = Rcurrent_obj_addr;
   677       ld(Rmonitor_base, 0, R1_SP);
   678       addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size);  // Monitor base
   680       subf_(Riterations, R26_monitor, Rmonitor_base);
   681       ble(CCR0, Lno_unlock);
   683       addi(Rcurrent_obj_addr, Rmonitor_base, BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
   684       // Check if any monitor is on stack, bail out if not
   685       srdi(Riterations, Riterations, exact_log2(delta));
   686       mtctr(Riterations);
   687     }
   689     // The search loop: Look for locked monitors.
   690     {
   691       const Register Rcurrent_obj = R0;
   692       Label Lloop;
   694       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
   695       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
   696       bind(Lloop);
   698       // Check if current entry is used.
   699       cmpdi(CCR0, Rcurrent_obj, 0);
   700       bne(CCR0, Lexception);
   701       // Preload next iteration's compare value.
   702       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
   703       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
   704       bdnz(Lloop);
   705     }
   706     // Fell through: Everything's unlocked => finish.
   707     b(Lno_unlock);
   709     // An object is still locked => need to throw exception.
   710     bind(Lexception);
   711     if (throw_monitor_exception) {
   712       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   713       should_not_reach_here();
   714     } else {
   715       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
   716       // Unlock does not block, so don't have to worry about the frame.
   717       Register Rmonitor_addr = R11_scratch1;
   718       addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
   719       unlock_object(Rmonitor_addr);
   720       if (install_monitor_exception) {
   721         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
   722       }
   723       b(Lrestart);
   724     }
   725   }
   727   align(32, 12);
   728   bind(Lno_unlock);
   729   pop(state);
   730 }
   732 // Support function for remove_activation & Co.
   733 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, Register Rscratch1, Register Rscratch2) {
   734   // Pop interpreter frame.
   735   ld(Rscratch1, 0, R1_SP); // *SP
   736   ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
   737   ld(Rscratch2, 0, Rscratch1); // **SP
   738 #ifdef ASSERT
   739   {
   740     Label Lok;
   741     ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1);
   742     cmpdi(CCR0, R0, 0x5afe);
   743     beq(CCR0, Lok);
   744     stop("frame corrupted (remove activation)", 0x5afe);
   745     bind(Lok);
   746   }
   747 #endif
   748   if (return_pc!=noreg) {
   749     ld(return_pc, _abi(lr), Rscratch1); // LR
   750   }
   752   // Merge top frames.
   753   subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
   754   stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
   755 }
   757 void InterpreterMacroAssembler::narrow(Register result) {
   758   Register ret_type = R11_scratch1;
   759   ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
   760   lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1);
   762   Label notBool, notByte, notChar, done;
   764   // common case first
   765   cmpwi(CCR0, ret_type, T_INT);
   766   beq(CCR0, done);
   768   cmpwi(CCR0, ret_type, T_BOOLEAN);
   769   bne(CCR0, notBool);
   770   andi(result, result, 0x1);
   771   b(done);
   773   bind(notBool);
   774   cmpwi(CCR0, ret_type, T_BYTE);
   775   bne(CCR0, notByte);
   776   extsb(result, result);
   777   b(done);
   779   bind(notByte);
   780   cmpwi(CCR0, ret_type, T_CHAR);
   781   bne(CCR0, notChar);
   782   andi(result, result, 0xffff);
   783   b(done);
   785   bind(notChar);
   786   // cmpwi(CCR0, ret_type, T_SHORT);  // all that's left
   787   // bne(CCR0, done);
   788   extsh(result, result);
   790   // Nothing to do for T_INT
   791   bind(done);
   792 }
   794 // Remove activation.
   795 //
   796 // Unlock the receiver if this is a synchronized method.
   797 // Unlock any Java monitors from synchronized blocks.
   798 // Remove the activation from the stack.
   799 //
   800 // If there are locked Java monitors
   801 //    If throw_monitor_exception
   802 //       throws IllegalMonitorStateException
   803 //    Else if install_monitor_exception
   804 //       installs IllegalMonitorStateException
   805 //    Else
   806 //       no error processing
   807 void InterpreterMacroAssembler::remove_activation(TosState state,
   808                                                   bool throw_monitor_exception,
   809                                                   bool install_monitor_exception) {
   810   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
   812   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
   813   notify_method_exit(false, state, NotifyJVMTI, true);
   815   verify_oop(R17_tos, state);
   816   verify_thread();
   818   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
   819   mtlr(R0);
   820 }
   822 #endif // !CC_INTERP
   824 // Lock object
   825 //
   826 // Registers alive
   827 //   monitor - Address of the BasicObjectLock to be used for locking,
   828 //             which must be initialized with the object to lock.
   829 //   object  - Address of the object to be locked.
   830 //
   831 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
   832   if (UseHeavyMonitors) {
   833     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   834             monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
   835   } else {
   836     // template code:
   837     //
   838     // markOop displaced_header = obj->mark().set_unlocked();
   839     // monitor->lock()->set_displaced_header(displaced_header);
   840     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
   841     //   // We stored the monitor address into the object's mark word.
   842     // } else if (THREAD->is_lock_owned((address)displaced_header))
   843     //   // Simple recursive case.
   844     //   monitor->lock()->set_displaced_header(NULL);
   845     // } else {
   846     //   // Slow path.
   847     //   InterpreterRuntime::monitorenter(THREAD, monitor);
   848     // }
   850     const Register displaced_header = R7_ARG5;
   851     const Register object_mark_addr = R8_ARG6;
   852     const Register current_header   = R9_ARG7;
   853     const Register tmp              = R10_ARG8;
   855     Label done;
   856     Label cas_failed, slow_case;
   858     assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
   860     // markOop displaced_header = obj->mark().set_unlocked();
   862     // Load markOop from object into displaced_header.
   863     ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
   865     if (UseBiasedLocking) {
   866       biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
   867     }
   869     // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
   870     ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
   872     // monitor->lock()->set_displaced_header(displaced_header);
   874     // Initialize the box (Must happen before we update the object mark!).
   875     std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
   876         BasicLock::displaced_header_offset_in_bytes(), monitor);
   878     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
   880     // Store stack address of the BasicObjectLock (this is monitor) into object.
   881     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
   883     // Must fence, otherwise, preceding store(s) may float below cmpxchg.
   884     // CmpxchgX sets CCR0 to cmpX(current, displaced).
   885     fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
   886     cmpxchgd(/*flag=*/CCR0,
   887              /*current_value=*/current_header,
   888              /*compare_value=*/displaced_header, /*exchange_value=*/monitor,
   889              /*where=*/object_mark_addr,
   890              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
   891              MacroAssembler::cmpxchgx_hint_acquire_lock(),
   892              noreg,
   893              &cas_failed);
   895     // If the compare-and-exchange succeeded, then we found an unlocked
   896     // object and we have now locked it.
   897     b(done);
   898     bind(cas_failed);
   900     // } else if (THREAD->is_lock_owned((address)displaced_header))
   901     //   // Simple recursive case.
   902     //   monitor->lock()->set_displaced_header(NULL);
   904     // We did not see an unlocked object so try the fast recursive case.
   906     // Check if owner is self by comparing the value in the markOop of object
   907     // (current_header) with the stack pointer.
   908     sub(current_header, current_header, R1_SP);
   910     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
   911     load_const_optimized(tmp,
   912                          (address) (~(os::vm_page_size()-1) |
   913                                     markOopDesc::lock_mask_in_place));
   915     and_(R0/*==0?*/, current_header, tmp);
   916     // If condition is true we are done and hence we can store 0 in the displaced
   917     // header indicating it is a recursive lock.
   918     bne(CCR0, slow_case);
   919     release();
   920     std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
   921         BasicLock::displaced_header_offset_in_bytes(), monitor);
   922     b(done);
   924     // } else {
   925     //   // Slow path.
   926     //   InterpreterRuntime::monitorenter(THREAD, monitor);
   928     // None of the above fast optimizations worked so we have to get into the
   929     // slow case of monitor enter.
   930     bind(slow_case);
   931     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   932             monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
   933     // }
   934     align(32, 12);
   935     bind(done);
   936   }
   937 }
   939 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
   940 //
   941 // Registers alive
   942 //   monitor - Address of the BasicObjectLock to be used for locking,
   943 //             which must be initialized with the object to lock.
   944 //
   945 // Throw IllegalMonitorException if object is not locked by current thread.
   946 void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
   947   if (UseHeavyMonitors) {
   948     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   949             monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
   950   } else {
   952     // template code:
   953     //
   954     // if ((displaced_header = monitor->displaced_header()) == NULL) {
   955     //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
   956     //   monitor->set_obj(NULL);
   957     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
   958     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
   959     //   monitor->set_obj(NULL);
   960     // } else {
   961     //   // Slow path.
   962     //   InterpreterRuntime::monitorexit(THREAD, monitor);
   963     // }
   965     const Register object           = R7_ARG5;
   966     const Register displaced_header = R8_ARG6;
   967     const Register object_mark_addr = R9_ARG7;
   968     const Register current_header   = R10_ARG8;
   970     Label free_slot;
   971     Label slow_case;
   973     assert_different_registers(object, displaced_header, object_mark_addr, current_header);
   975     if (UseBiasedLocking) {
   976       // The object address from the monitor is in object.
   977       ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);
   978       assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
   979       biased_locking_exit(CCR0, object, displaced_header, free_slot);
   980     }
   982     // Test first if we are in the fast recursive case.
   983     ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
   984            BasicLock::displaced_header_offset_in_bytes(), monitor);
   986     // If the displaced header is zero, we have a recursive unlock.
   987     cmpdi(CCR0, displaced_header, 0);
   988     beq(CCR0, free_slot); // recursive unlock
   990     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
   991     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
   992     //   monitor->set_obj(NULL);
   994     // If we still have a lightweight lock, unlock the object and be done.
   996     // The object address from the monitor is in object.
   997     if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
   998     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
  1000     // We have the displaced header in displaced_header. If the lock is still
  1001     // lightweight, it will contain the monitor address and we'll store the
  1002     // displaced header back into the object's mark word.
  1003     // CmpxchgX sets CCR0 to cmpX(current, monitor).
  1004     cmpxchgd(/*flag=*/CCR0,
  1005              /*current_value=*/current_header,
  1006              /*compare_value=*/monitor, /*exchange_value=*/displaced_header,
  1007              /*where=*/object_mark_addr,
  1008              MacroAssembler::MemBarRel,
  1009              MacroAssembler::cmpxchgx_hint_release_lock(),
  1010              noreg,
  1011              &slow_case);
  1012     b(free_slot);
  1014     // } else {
  1015     //   // Slow path.
  1016     //   InterpreterRuntime::monitorexit(THREAD, monitor);
  1018     // The lock has been converted into a heavy lock and hence
  1019     // we need to get into the slow case.
  1020     bind(slow_case);
  1021     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
  1022             monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
  1023     // }
  1025     Label done;
  1026     b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
  1028     // Exchange worked, do monitor->set_obj(NULL);
  1029     align(32, 12);
  1030     bind(free_slot);
  1031     li(R0, 0);
  1032     std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
  1033     bind(done);
  1037 #ifndef CC_INTERP
  1039 // Load compiled (i2c) or interpreter entry when calling from interpreted and
  1040 // do the call. Centralized so that all interpreter calls will do the same actions.
  1041 // If jvmti single stepping is on for a thread we must not call compiled code.
  1042 //
  1043 // Input:
  1044 //   - Rtarget_method: method to call
  1045 //   - Rret_addr:      return address
  1046 //   - 2 scratch regs
  1047 //
  1048 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, Register Rscratch1, Register Rscratch2) {
  1049   assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
  1050   // Assume we want to go compiled if available.
  1051   const Register Rtarget_addr = Rscratch1;
  1052   const Register Rinterp_only = Rscratch2;
  1054   ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
  1056   if (JvmtiExport::can_post_interpreter_events()) {
  1057     lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
  1059     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
  1060     // compiled code in threads for which the event is enabled. Check here for
  1061     // interp_only_mode if these events CAN be enabled.
  1062     Label done;
  1063     verify_thread();
  1064     cmpwi(CCR0, Rinterp_only, 0);
  1065     beq(CCR0, done);
  1066     ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
  1067     align(32, 12);
  1068     bind(done);
  1071 #ifdef ASSERT
  1073     Label Lok;
  1074     cmpdi(CCR0, Rtarget_addr, 0);
  1075     bne(CCR0, Lok);
  1076     stop("null entry point");
  1077     bind(Lok);
  1079 #endif // ASSERT
  1081   mr(R21_sender_SP, R1_SP);
  1083   // Calc a precise SP for the call. The SP value we calculated in
  1084   // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
  1085   // if esp is not max. Also, the i2c adapter extends the stack space without restoring
  1086   // our pre-calced value, so repeating calls via i2c would result in stack overflow.
  1087   // Since esp already points to an empty slot, we just have to sub 1 additional slot
  1088   // to meet the abi scratch requirements.
  1089   // The max_stack pointer will get restored by means of the GR_Lmax_stack local in
  1090   // the return entry of the interpreter.
  1091   addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
  1092   clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
  1093   resize_frame_absolute(Rscratch2, Rscratch2, R0);
  1095   mr_if_needed(R19_method, Rtarget_method);
  1096   mtctr(Rtarget_addr);
  1097   mtlr(Rret_addr);
  1099   save_interpreter_state(Rscratch2);
  1100 #ifdef ASSERT
  1101   ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
  1102   cmpd(CCR0, R21_sender_SP, Rscratch1);
  1103   asm_assert_eq("top_frame_sp incorrect", 0x951);
  1104 #endif
  1106   bctr();
  1109 // Set the method data pointer for the current bcp.
  1110 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1111   assert(ProfileInterpreter, "must be profiling interpreter");
  1112   Label get_continue;
  1113   ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
  1114   test_method_data_pointer(get_continue);
  1115   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
  1117   addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
  1118   add(R28_mdx, R28_mdx, R3_RET);
  1119   bind(get_continue);
  1122 // Test ImethodDataPtr. If it is null, continue at the specified label.
  1123 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
  1124   assert(ProfileInterpreter, "must be profiling interpreter");
  1125   cmpdi(CCR0, R28_mdx, 0);
  1126   beq(CCR0, zero_continue);
  1129 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1130   assert(ProfileInterpreter, "must be profiling interpreter");
  1131 #ifdef ASSERT
  1132   Label verify_continue;
  1133   test_method_data_pointer(verify_continue);
  1135   // If the mdp is valid, it will point to a DataLayout header which is
  1136   // consistent with the bcp. The converse is highly probable also.
  1137   lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
  1138   ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
  1139   addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
  1140   add(R11_scratch1, R12_scratch2, R12_scratch2);
  1141   cmpd(CCR0, R11_scratch1, R14_bcp);
  1142   beq(CCR0, verify_continue);
  1144   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
  1146   bind(verify_continue);
  1147 #endif
  1150 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
  1151                                                                 Register Rscratch,
  1152                                                                 Label &profile_continue) {
  1153   assert(ProfileInterpreter, "must be profiling interpreter");
  1154   // Control will flow to "profile_continue" if the counter is less than the
  1155   // limit or if we call profile_method().
  1156   Label done;
  1158   // If no method data exists, and the counter is high enough, make one.
  1159   int ipl_offs = load_const_optimized(Rscratch, &InvocationCounter::InterpreterProfileLimit, R0, true);
  1160   lwz(Rscratch, ipl_offs, Rscratch);
  1162   cmpdi(CCR0, R28_mdx, 0);
  1163   // Test to see if we should create a method data oop.
  1164   cmpd(CCR1, Rscratch /* InterpreterProfileLimit */, invocation_count);
  1165   bne(CCR0, done);
  1166   bge(CCR1, profile_continue);
  1168   // Build it now.
  1169   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1170   set_method_data_pointer_for_bcp();
  1171   b(profile_continue);
  1173   align(32, 12);
  1174   bind(done);
  1177 void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register branch_bcp, Register Rtmp) {
  1178   assert_different_registers(backedge_count, Rtmp, branch_bcp);
  1179   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
  1181   Label did_not_overflow;
  1182   Label overflow_with_error;
  1184   int ibbl_offs = load_const_optimized(Rtmp, &InvocationCounter::InterpreterBackwardBranchLimit, R0, true);
  1185   lwz(Rtmp, ibbl_offs, Rtmp);
  1186   cmpw(CCR0, backedge_count, Rtmp);
  1188   blt(CCR0, did_not_overflow);
  1190   // When ProfileInterpreter is on, the backedge_count comes from the
  1191   // methodDataOop, which value does not get reset on the call to
  1192   // frequency_counter_overflow(). To avoid excessive calls to the overflow
  1193   // routine while the method is being compiled, add a second test to make sure
  1194   // the overflow function is called only once every overflow_frequency.
  1195   if (ProfileInterpreter) {
  1196     const int overflow_frequency = 1024;
  1197     li(Rtmp, overflow_frequency-1);
  1198     andr(Rtmp, Rtmp, backedge_count);
  1199     cmpwi(CCR0, Rtmp, 0);
  1200     bne(CCR0, did_not_overflow);
  1203   // Overflow in loop, pass branch bytecode.
  1204   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, true);
  1206   // Was an OSR adapter generated?
  1207   // O0 = osr nmethod
  1208   cmpdi(CCR0, R3_RET, 0);
  1209   beq(CCR0, overflow_with_error);
  1211   // Has the nmethod been invalidated already?
  1212   lwz(Rtmp, nmethod::entry_bci_offset(), R3_RET);
  1213   cmpwi(CCR0, Rtmp, InvalidOSREntryBci);
  1214   beq(CCR0, overflow_with_error);
  1216   // Migrate the interpreter frame off of the stack.
  1217   // We can use all registers because we will not return to interpreter from this point.
  1219   // Save nmethod.
  1220   const Register osr_nmethod = R31;
  1221   mr(osr_nmethod, R3_RET);
  1222   set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
  1223   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
  1224   reset_last_Java_frame();
  1225   // OSR buffer is in ARG1
  1227   // Remove the interpreter frame.
  1228   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
  1230   // Jump to the osr code.
  1231   ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
  1232   mtlr(R0);
  1233   mtctr(R11_scratch1);
  1234   bctr();
  1236   align(32, 12);
  1237   bind(overflow_with_error);
  1238   bind(did_not_overflow);
  1241 // Store a value at some constant offset from the method data pointer.
  1242 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
  1243   assert(ProfileInterpreter, "must be profiling interpreter");
  1245   std(value, constant, R28_mdx);
  1248 // Increment the value at some constant offset from the method data pointer.
  1249 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
  1250                                                       Register counter_addr,
  1251                                                       Register Rbumped_count,
  1252                                                       bool decrement) {
  1253   // Locate the counter at a fixed offset from the mdp:
  1254   addi(counter_addr, R28_mdx, constant);
  1255   increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
  1258 // Increment the value at some non-fixed (reg + constant) offset from
  1259 // the method data pointer.
  1260 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
  1261                                                       int constant,
  1262                                                       Register scratch,
  1263                                                       Register Rbumped_count,
  1264                                                       bool decrement) {
  1265   // Add the constant to reg to get the offset.
  1266   add(scratch, R28_mdx, reg);
  1267   // Then calculate the counter address.
  1268   addi(scratch, scratch, constant);
  1269   increment_mdp_data_at(scratch, Rbumped_count, decrement);
  1272 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
  1273                                                       Register Rbumped_count,
  1274                                                       bool decrement) {
  1275   assert(ProfileInterpreter, "must be profiling interpreter");
  1277   // Load the counter.
  1278   ld(Rbumped_count, 0, counter_addr);
  1280   if (decrement) {
  1281     // Decrement the register. Set condition codes.
  1282     addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
  1283     // Store the decremented counter, if it is still negative.
  1284     std(Rbumped_count, 0, counter_addr);
  1285     // Note: add/sub overflow check are not ported, since 64 bit
  1286     // calculation should never overflow.
  1287   } else {
  1288     // Increment the register. Set carry flag.
  1289     addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
  1290     // Store the incremented counter.
  1291     std(Rbumped_count, 0, counter_addr);
  1295 // Set a flag value at the current method data pointer position.
  1296 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
  1297                                                 Register scratch) {
  1298   assert(ProfileInterpreter, "must be profiling interpreter");
  1299   // Load the data header.
  1300   lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
  1301   // Set the flag.
  1302   ori(scratch, scratch, flag_constant);
  1303   // Store the modified header.
  1304   stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
  1307 // Test the location at some offset from the method data pointer.
  1308 // If it is not equal to value, branch to the not_equal_continue Label.
  1309 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
  1310                                                  Register value,
  1311                                                  Label& not_equal_continue,
  1312                                                  Register test_out) {
  1313   assert(ProfileInterpreter, "must be profiling interpreter");
  1315   ld(test_out, offset, R28_mdx);
  1316   cmpd(CCR0,  value, test_out);
  1317   bne(CCR0, not_equal_continue);
  1320 // Update the method data pointer by the displacement located at some fixed
  1321 // offset from the method data pointer.
  1322 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
  1323                                                      Register scratch) {
  1324   assert(ProfileInterpreter, "must be profiling interpreter");
  1326   ld(scratch, offset_of_disp, R28_mdx);
  1327   add(R28_mdx, scratch, R28_mdx);
  1330 // Update the method data pointer by the displacement located at the
  1331 // offset (reg + offset_of_disp).
  1332 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
  1333                                                      int offset_of_disp,
  1334                                                      Register scratch) {
  1335   assert(ProfileInterpreter, "must be profiling interpreter");
  1337   add(scratch, reg, R28_mdx);
  1338   ld(scratch, offset_of_disp, scratch);
  1339   add(R28_mdx, scratch, R28_mdx);
  1342 // Update the method data pointer by a simple constant displacement.
  1343 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
  1344   assert(ProfileInterpreter, "must be profiling interpreter");
  1345   addi(R28_mdx, R28_mdx, constant);
  1348 // Update the method data pointer for a _ret bytecode whose target
  1349 // was not among our cached targets.
  1350 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
  1351                                                    Register return_bci) {
  1352   assert(ProfileInterpreter, "must be profiling interpreter");
  1354   push(state);
  1355   assert(return_bci->is_nonvolatile(), "need to protect return_bci");
  1356   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1357   pop(state);
  1360 // Increments the backedge counter.
  1361 // Returns backedge counter + invocation counter in Rdst.
  1362 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
  1363                                                            const Register Rtmp1, Register Rscratch) {
  1364   assert(UseCompiler, "incrementing must be useful");
  1365   assert_different_registers(Rdst, Rtmp1);
  1366   const Register invocation_counter = Rtmp1;
  1367   const Register counter = Rdst;
  1368   // TODO ppc port assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
  1370   // Load backedge counter.
  1371   lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
  1372                in_bytes(InvocationCounter::counter_offset()), Rcounters);
  1373   // Load invocation counter.
  1374   lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
  1375                           in_bytes(InvocationCounter::counter_offset()), Rcounters);
  1377   // Add the delta to the backedge counter.
  1378   addi(counter, counter, InvocationCounter::count_increment);
  1380   // Mask the invocation counter.
  1381   li(Rscratch, InvocationCounter::count_mask_value);
  1382   andr(invocation_counter, invocation_counter, Rscratch);
  1384   // Store new counter value.
  1385   stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
  1386                in_bytes(InvocationCounter::counter_offset()), Rcounters);
  1387   // Return invocation counter + backedge counter.
  1388   add(counter, counter, invocation_counter);
  1391 // Count a taken branch in the bytecodes.
  1392 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
  1393   if (ProfileInterpreter) {
  1394     Label profile_continue;
  1396     // If no method data exists, go to profile_continue.
  1397     test_method_data_pointer(profile_continue);
  1399     // We are taking a branch. Increment the taken count.
  1400     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
  1402     // The method data pointer needs to be updated to reflect the new target.
  1403     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
  1404     bind (profile_continue);
  1408 // Count a not-taken branch in the bytecodes.
  1409 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
  1410   if (ProfileInterpreter) {
  1411     Label profile_continue;
  1413     // If no method data exists, go to profile_continue.
  1414     test_method_data_pointer(profile_continue);
  1416     // We are taking a branch. Increment the not taken count.
  1417     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
  1419     // The method data pointer needs to be updated to correspond to the
  1420     // next bytecode.
  1421     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
  1422     bind (profile_continue);
  1426 // Count a non-virtual call in the bytecodes.
  1427 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
  1428   if (ProfileInterpreter) {
  1429     Label profile_continue;
  1431     // If no method data exists, go to profile_continue.
  1432     test_method_data_pointer(profile_continue);
  1434     // We are making a call. Increment the count.
  1435     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
  1437     // The method data pointer needs to be updated to reflect the new target.
  1438     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
  1439     bind (profile_continue);
  1443 // Count a final call in the bytecodes.
  1444 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
  1445   if (ProfileInterpreter) {
  1446     Label profile_continue;
  1448     // If no method data exists, go to profile_continue.
  1449     test_method_data_pointer(profile_continue);
  1451     // We are making a call. Increment the count.
  1452     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
  1454     // The method data pointer needs to be updated to reflect the new target.
  1455     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1456     bind (profile_continue);
  1460 // Count a virtual call in the bytecodes.
  1461 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
  1462                                                      Register Rscratch1,
  1463                                                      Register Rscratch2,
  1464                                                      bool receiver_can_be_null) {
  1465   if (!ProfileInterpreter) { return; }
  1466   Label profile_continue;
  1468   // If no method data exists, go to profile_continue.
  1469   test_method_data_pointer(profile_continue);
  1471   Label skip_receiver_profile;
  1472   if (receiver_can_be_null) {
  1473     Label not_null;
  1474     cmpdi(CCR0, Rreceiver, 0);
  1475     bne(CCR0, not_null);
  1476     // We are making a call. Increment the count for null receiver.
  1477     increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
  1478     b(skip_receiver_profile);
  1479     bind(not_null);
  1482   // Record the receiver type.
  1483   record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
  1484   bind(skip_receiver_profile);
  1486   // The method data pointer needs to be updated to reflect the new target.
  1487   update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1488   bind (profile_continue);
  1491 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
  1492   if (ProfileInterpreter) {
  1493     Label profile_continue;
  1495     // If no method data exists, go to profile_continue.
  1496     test_method_data_pointer(profile_continue);
  1498     int mdp_delta = in_bytes(BitData::bit_data_size());
  1499     if (TypeProfileCasts) {
  1500       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1502       // Record the object type.
  1503       record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
  1506     // The method data pointer needs to be updated.
  1507     update_mdp_by_constant(mdp_delta);
  1509     bind (profile_continue);
  1513 void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
  1514   if (ProfileInterpreter && TypeProfileCasts) {
  1515     Label profile_continue;
  1517     // If no method data exists, go to profile_continue.
  1518     test_method_data_pointer(profile_continue);
  1520     int count_offset = in_bytes(CounterData::count_offset());
  1521     // Back up the address, since we have already bumped the mdp.
  1522     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1524     // *Decrement* the counter. We expect to see zero or small negatives.
  1525     increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
  1527     bind (profile_continue);
  1531 // Count a ret in the bytecodes.
  1532 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, Register scratch1, Register scratch2) {
  1533   if (ProfileInterpreter) {
  1534     Label profile_continue;
  1535     uint row;
  1537     // If no method data exists, go to profile_continue.
  1538     test_method_data_pointer(profile_continue);
  1540     // Update the total ret count.
  1541     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
  1543     for (row = 0; row < RetData::row_limit(); row++) {
  1544       Label next_test;
  1546       // See if return_bci is equal to bci[n]:
  1547       test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
  1549       // return_bci is equal to bci[n]. Increment the count.
  1550       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
  1552       // The method data pointer needs to be updated to reflect the new target.
  1553       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
  1554       b(profile_continue);
  1555       bind(next_test);
  1558     update_mdp_for_ret(state, return_bci);
  1560     bind (profile_continue);
  1564 // Count the default case of a switch construct.
  1565 void InterpreterMacroAssembler::profile_switch_default(Register scratch1,  Register scratch2) {
  1566   if (ProfileInterpreter) {
  1567     Label profile_continue;
  1569     // If no method data exists, go to profile_continue.
  1570     test_method_data_pointer(profile_continue);
  1572     // Update the default case count
  1573     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
  1574                           scratch1, scratch2);
  1576     // The method data pointer needs to be updated.
  1577     update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
  1578                          scratch1);
  1580     bind (profile_continue);
  1584 // Count the index'th case of a switch construct.
  1585 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1586                                                     Register scratch1,
  1587                                                     Register scratch2,
  1588                                                     Register scratch3) {
  1589   if (ProfileInterpreter) {
  1590     assert_different_registers(index, scratch1, scratch2, scratch3);
  1591     Label profile_continue;
  1593     // If no method data exists, go to profile_continue.
  1594     test_method_data_pointer(profile_continue);
  1596     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
  1597     li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
  1599     assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
  1600     sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
  1601     add(scratch1, scratch1, scratch3);
  1603     // Update the case count.
  1604     increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
  1606     // The method data pointer needs to be updated.
  1607     update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
  1609     bind (profile_continue);
  1613 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
  1614   if (ProfileInterpreter) {
  1615     assert_different_registers(Rscratch1, Rscratch2);
  1616     Label profile_continue;
  1618     // If no method data exists, go to profile_continue.
  1619     test_method_data_pointer(profile_continue);
  1621     set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
  1623     // The method data pointer needs to be updated.
  1624     int mdp_delta = in_bytes(BitData::bit_data_size());
  1625     if (TypeProfileCasts) {
  1626       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1628     update_mdp_by_constant(mdp_delta);
  1630     bind (profile_continue);
  1634 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
  1635                                                         Register Rscratch1, Register Rscratch2,
  1636                                                         bool is_virtual_call) {
  1637   assert(ProfileInterpreter, "must be profiling");
  1638   assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
  1640   Label done;
  1641   record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
  1642   bind (done);
  1645 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1646                                         Register receiver, Register scratch1, Register scratch2,
  1647                                         int start_row, Label& done, bool is_virtual_call) {
  1648   if (TypeProfileWidth == 0) {
  1649     if (is_virtual_call) {
  1650       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
  1652     return;
  1655   int last_row = VirtualCallData::row_limit() - 1;
  1656   assert(start_row <= last_row, "must be work left to do");
  1657   // Test this row for both the receiver and for null.
  1658   // Take any of three different outcomes:
  1659   //   1. found receiver => increment count and goto done
  1660   //   2. found null => keep looking for case 1, maybe allocate this cell
  1661   //   3. found something else => keep looking for cases 1 and 2
  1662   // Case 3 is handled by a recursive call.
  1663   for (int row = start_row; row <= last_row; row++) {
  1664     Label next_test;
  1665     bool test_for_null_also = (row == start_row);
  1667     // See if the receiver is receiver[n].
  1668     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1669     test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
  1670     // delayed()->tst(scratch);
  1672     // The receiver is receiver[n]. Increment count[n].
  1673     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1674     increment_mdp_data_at(count_offset, scratch1, scratch2);
  1675     b(done);
  1676     bind(next_test);
  1678     if (test_for_null_also) {
  1679       Label found_null;
  1680       // Failed the equality check on receiver[n]... Test for null.
  1681       if (start_row == last_row) {
  1682         // The only thing left to do is handle the null case.
  1683         if (is_virtual_call) {
  1684           // Scratch1 contains test_out from test_mdp_data_at.
  1685           cmpdi(CCR0, scratch1, 0);
  1686           beq(CCR0, found_null);
  1687           // Receiver did not match any saved receiver and there is no empty row for it.
  1688           // Increment total counter to indicate polymorphic case.
  1689           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
  1690           b(done);
  1691           bind(found_null);
  1692         } else {
  1693           cmpdi(CCR0, scratch1, 0);
  1694           bne(CCR0, done);
  1696         break;
  1698       // Since null is rare, make it be the branch-taken case.
  1699       cmpdi(CCR0, scratch1, 0);
  1700       beq(CCR0, found_null);
  1702       // Put all the "Case 3" tests here.
  1703       record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
  1705       // Found a null. Keep searching for a matching receiver,
  1706       // but remember that this is an empty (unused) slot.
  1707       bind(found_null);
  1711   // In the fall-through case, we found no matching receiver, but we
  1712   // observed the receiver[start_row] is NULL.
  1714   // Fill in the receiver field and increment the count.
  1715   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1716   set_mdp_data_at(recvr_offset, receiver);
  1717   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1718   li(scratch1, DataLayout::counter_increment);
  1719   set_mdp_data_at(count_offset, scratch1);
  1720   if (start_row > 0) {
  1721     b(done);
  1725 // Argument and return type profilig.
  1726 // kills: tmp, tmp2, R0, CR0, CR1
  1727 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base,
  1728                                                  RegisterOrConstant mdo_addr_offs, Register tmp, Register tmp2) {
  1729   Label do_nothing, do_update;
  1731   // tmp2 = obj is allowed
  1732   assert_different_registers(obj, mdo_addr_base, tmp, R0);
  1733   assert_different_registers(tmp2, mdo_addr_base, tmp, R0);
  1734   const Register klass = tmp2;
  1736   verify_oop(obj);
  1738   ld(tmp, mdo_addr_offs, mdo_addr_base);
  1740   // Set null_seen if obj is 0.
  1741   cmpdi(CCR0, obj, 0);
  1742   ori(R0, tmp, TypeEntries::null_seen);
  1743   beq(CCR0, do_update);
  1745   load_klass(klass, obj);
  1747   clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
  1748   // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
  1749   cmpd(CCR1, R0, klass);
  1750   // Klass seen before, nothing to do (regardless of unknown bit).
  1751   //beq(CCR1, do_nothing);
  1753   andi_(R0, klass, TypeEntries::type_unknown);
  1754   // Already unknown. Nothing to do anymore.
  1755   //bne(CCR0, do_nothing);
  1756   crorc(/*CCR0 eq*/2, /*CCR1 eq*/4+2, /*CCR0 eq*/2); // cr0 eq = cr1 eq or cr0 ne
  1757   beq(CCR0, do_nothing);
  1759   clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
  1760   orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
  1761   beq(CCR0, do_update); // First time here. Set profile type.
  1763   // Different than before. Cannot keep accurate profile.
  1764   ori(R0, tmp, TypeEntries::type_unknown);
  1766   bind(do_update);
  1767   // update profile
  1768   std(R0, mdo_addr_offs, mdo_addr_base);
  1770   align(32, 12);
  1771   bind(do_nothing);
  1774 void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
  1775   if (!ProfileInterpreter) {
  1776     return;
  1779   assert_different_registers(callee, tmp1, tmp2, R28_mdx);
  1781   if (MethodData::profile_arguments() || MethodData::profile_return()) {
  1782     Label profile_continue;
  1784     test_method_data_pointer(profile_continue);
  1786     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
  1788     lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx);
  1789     cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
  1790     bne(CCR0, profile_continue);
  1792     if (MethodData::profile_arguments()) {
  1793       Label done;
  1794       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
  1795       add(R28_mdx, off_to_args, R28_mdx);
  1797       for (int i = 0; i < TypeProfileArgsLimit; i++) {
  1798         if (i > 0 || MethodData::profile_return()) {
  1799           // If return value type is profiled we may have no argument to profile.
  1800           ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
  1801           cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count());
  1802           addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count());
  1803           blt(CCR0, done);
  1805         ld(tmp1, in_bytes(Method::const_offset()), callee);
  1806         lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1);
  1807         // Stack offset o (zero based) from the start of the argument
  1808         // list, for n arguments translates into offset n - o - 1 from
  1809         // the end of the argument list. But there's an extra slot at
  1810         // the top of the stack. So the offset is n - o from Lesp.
  1811         ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx);
  1812         subf(tmp1, tmp2, tmp1);
  1814         sldi(tmp1, tmp1, Interpreter::logStackElementSize);
  1815         ldx(tmp1, tmp1, R15_esp);
  1817         profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1);
  1819         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
  1820         addi(R28_mdx, R28_mdx, to_add);
  1821         off_to_args += to_add;
  1824       if (MethodData::profile_return()) {
  1825         ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
  1826         addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
  1829       bind(done);
  1831       if (MethodData::profile_return()) {
  1832         // We're right after the type profile for the last
  1833         // argument. tmp1 is the number of cells left in the
  1834         // CallTypeData/VirtualCallTypeData to reach its end. Non null
  1835         // if there's a return to profile.
  1836         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
  1837         sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size));
  1838         add(R28_mdx, tmp1, R28_mdx);
  1840     } else {
  1841       assert(MethodData::profile_return(), "either profile call args or call ret");
  1842       update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
  1845     // Mdp points right after the end of the
  1846     // CallTypeData/VirtualCallTypeData, right after the cells for the
  1847     // return value type if there's one.
  1848     align(32, 12);
  1849     bind(profile_continue);
  1853 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
  1854   assert_different_registers(ret, tmp1, tmp2);
  1855   if (ProfileInterpreter && MethodData::profile_return()) {
  1856     Label profile_continue;
  1858     test_method_data_pointer(profile_continue);
  1860     if (MethodData::profile_return_jsr292_only()) {
  1861       // If we don't profile all invoke bytecodes we must make sure
  1862       // it's a bytecode we indeed profile. We can't go back to the
  1863       // begining of the ProfileData we intend to update to check its
  1864       // type because we're right after it and we don't known its
  1865       // length.
  1866       lbz(tmp1, 0, R14_bcp);
  1867       lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method);
  1868       cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic);
  1869       cmpwi(CCR1, tmp1, Bytecodes::_invokehandle);
  1870       cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
  1871       cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm);
  1872       cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
  1873       bne(CCR0, profile_continue);
  1876     profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2);
  1878     align(32, 12);
  1879     bind(profile_continue);
  1883 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
  1884   if (ProfileInterpreter && MethodData::profile_parameters()) {
  1885     Label profile_continue, done;
  1887     test_method_data_pointer(profile_continue);
  1889     // Load the offset of the area within the MDO used for
  1890     // parameters. If it's negative we're not profiling any parameters.
  1891     lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx);
  1892     cmpwi(CCR0, tmp1, 0);
  1893     blt(CCR0, profile_continue);
  1895     // Compute a pointer to the area for parameters from the offset
  1896     // and move the pointer to the slot for the last
  1897     // parameters. Collect profiling from last parameter down.
  1898     // mdo start + parameters offset + array length - 1
  1900     // Pointer to the parameter area in the MDO.
  1901     const Register mdp = tmp1;
  1902     add(mdp, tmp1, R28_mdx);
  1904     // Pffset of the current profile entry to update.
  1905     const Register entry_offset = tmp2;
  1906     // entry_offset = array len in number of cells
  1907     ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp);
  1909     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
  1910     assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
  1912     // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
  1913     addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size));
  1914     // entry_offset in bytes
  1915     sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
  1917     Label loop;
  1918     align(32, 12);
  1919     bind(loop);
  1921     // Load offset on the stack from the slot for this parameter.
  1922     ld(tmp3, entry_offset, mdp);
  1923     sldi(tmp3, tmp3, Interpreter::logStackElementSize);
  1924     neg(tmp3, tmp3);
  1925     // Read the parameter from the local area.
  1926     ldx(tmp3, tmp3, R18_locals);
  1928     // Make entry_offset now point to the type field for this parameter.
  1929     int type_base = in_bytes(ParametersTypeData::type_offset(0));
  1930     assert(type_base > off_base, "unexpected");
  1931     addi(entry_offset, entry_offset, type_base - off_base);
  1933     // Profile the parameter.
  1934     profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3);
  1936     // Go to next parameter.
  1937     int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base);
  1938     cmpdi(CCR0, entry_offset, off_base + delta);
  1939     addi(entry_offset, entry_offset, -delta);
  1940     bge(CCR0, loop);
  1942     align(32, 12);
  1943     bind(profile_continue);
  1947 // Add a InterpMonitorElem to stack (see frame_sparc.hpp).
  1948 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
  1950   // Very-local scratch registers.
  1951   const Register esp  = Rtemp1;
  1952   const Register slot = Rtemp2;
  1954   // Extracted monitor_size.
  1955   int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
  1956   assert(Assembler::is_aligned((unsigned int)monitor_size,
  1957                                (unsigned int)frame::alignment_in_bytes),
  1958          "size of a monitor must respect alignment of SP");
  1960   resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
  1961   std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
  1963   // Shuffle expression stack down. Recall that stack_base points
  1964   // just above the new expression stack bottom. Old_tos and new_tos
  1965   // are used to scan thru the old and new expression stacks.
  1966   if (!stack_is_empty) {
  1967     Label copy_slot, copy_slot_finished;
  1968     const Register n_slots = slot;
  1970     addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
  1971     subf(n_slots, esp, R26_monitor);
  1972     srdi_(n_slots, n_slots, LogBytesPerWord);          // Compute number of slots to copy.
  1973     assert(LogBytesPerWord == 3, "conflicts assembler instructions");
  1974     beq(CCR0, copy_slot_finished);                     // Nothing to copy.
  1976     mtctr(n_slots);
  1978     // loop
  1979     bind(copy_slot);
  1980     ld(slot, 0, esp);              // Move expression stack down.
  1981     std(slot, -monitor_size, esp); // distance = monitor_size
  1982     addi(esp, esp, BytesPerWord);
  1983     bdnz(copy_slot);
  1985     bind(copy_slot_finished);
  1988   addi(R15_esp, R15_esp, -monitor_size);
  1989   addi(R26_monitor, R26_monitor, -monitor_size);
  1991   // Restart interpreter
  1994 // ============================================================================
  1995 // Java locals access
  1997 // Load a local variable at index in Rindex into register Rdst_value.
  1998 // Also puts address of local into Rdst_address as a service.
  1999 // Kills:
  2000 //   - Rdst_value
  2001 //   - Rdst_address
  2002 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
  2003   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
  2004   subf(Rdst_address, Rdst_address, R18_locals);
  2005   lwz(Rdst_value, 0, Rdst_address);
  2008 // Load a local variable at index in Rindex into register Rdst_value.
  2009 // Also puts address of local into Rdst_address as a service.
  2010 // Kills:
  2011 //   - Rdst_value
  2012 //   - Rdst_address
  2013 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
  2014   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
  2015   subf(Rdst_address, Rdst_address, R18_locals);
  2016   ld(Rdst_value, -8, Rdst_address);
  2019 // Load a local variable at index in Rindex into register Rdst_value.
  2020 // Also puts address of local into Rdst_address as a service.
  2021 // Input:
  2022 //   - Rindex:      slot nr of local variable
  2023 // Kills:
  2024 //   - Rdst_value
  2025 //   - Rdst_address
  2026 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, Register Rdst_address, Register Rindex) {
  2027   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
  2028   subf(Rdst_address, Rdst_address, R18_locals);
  2029   ld(Rdst_value, 0, Rdst_address);
  2032 // Load a local variable at index in Rindex into register Rdst_value.
  2033 // Also puts address of local into Rdst_address as a service.
  2034 // Kills:
  2035 //   - Rdst_value
  2036 //   - Rdst_address
  2037 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
  2038   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
  2039   subf(Rdst_address, Rdst_address, R18_locals);
  2040   lfs(Rdst_value, 0, Rdst_address);
  2043 // Load a local variable at index in Rindex into register Rdst_value.
  2044 // Also puts address of local into Rdst_address as a service.
  2045 // Kills:
  2046 //   - Rdst_value
  2047 //   - Rdst_address
  2048 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
  2049   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
  2050   subf(Rdst_address, Rdst_address, R18_locals);
  2051   lfd(Rdst_value, -8, Rdst_address);
  2054 // Store an int value at local variable slot Rindex.
  2055 // Kills:
  2056 //   - Rindex
  2057 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
  2058   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
  2059   subf(Rindex, Rindex, R18_locals);
  2060   stw(Rvalue, 0, Rindex);
  2063 // Store a long value at local variable slot Rindex.
  2064 // Kills:
  2065 //   - Rindex
  2066 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
  2067   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
  2068   subf(Rindex, Rindex, R18_locals);
  2069   std(Rvalue, -8, Rindex);
  2072 // Store an oop value at local variable slot Rindex.
  2073 // Kills:
  2074 //   - Rindex
  2075 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
  2076   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
  2077   subf(Rindex, Rindex, R18_locals);
  2078   std(Rvalue, 0, Rindex);
  2081 // Store an int value at local variable slot Rindex.
  2082 // Kills:
  2083 //   - Rindex
  2084 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
  2085   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
  2086   subf(Rindex, Rindex, R18_locals);
  2087   stfs(Rvalue, 0, Rindex);
  2090 // Store an int value at local variable slot Rindex.
  2091 // Kills:
  2092 //   - Rindex
  2093 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
  2094   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
  2095   subf(Rindex, Rindex, R18_locals);
  2096   stfd(Rvalue, -8, Rindex);
  2099 // Read pending exception from thread and jump to interpreter.
  2100 // Throw exception entry if one if pending. Fall through otherwise.
  2101 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
  2102   assert_different_registers(Rscratch1, Rscratch2, R3);
  2103   Register Rexception = Rscratch1;
  2104   Register Rtmp       = Rscratch2;
  2105   Label Ldone;
  2106   // Get pending exception oop.
  2107   ld(Rexception, thread_(pending_exception));
  2108   cmpdi(CCR0, Rexception, 0);
  2109   beq(CCR0, Ldone);
  2110   li(Rtmp, 0);
  2111   mr_if_needed(R3, Rexception);
  2112   std(Rtmp, thread_(pending_exception)); // Clear exception in thread
  2113   if (Interpreter::rethrow_exception_entry() != NULL) {
  2114     // Already got entry address.
  2115     load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
  2116   } else {
  2117     // Dynamically load entry address.
  2118     int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
  2119     ld(Rtmp, simm16_rest, Rtmp);
  2121   mtctr(Rtmp);
  2122   save_interpreter_state(Rtmp);
  2123   bctr();
  2125   align(32, 12);
  2126   bind(Ldone);
  2129 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
  2130   save_interpreter_state(R11_scratch1);
  2132   MacroAssembler::call_VM(oop_result, entry_point, false);
  2134   restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
  2136   check_and_handle_popframe(R11_scratch1);
  2137   check_and_handle_earlyret(R11_scratch1);
  2138   // Now check exceptions manually.
  2139   if (check_exceptions) {
  2140     check_and_forward_exception(R11_scratch1, R12_scratch2);
  2144 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  2145   // ARG1 is reserved for the thread.
  2146   mr_if_needed(R4_ARG2, arg_1);
  2147   call_VM(oop_result, entry_point, check_exceptions);
  2150 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  2151   // ARG1 is reserved for the thread.
  2152   mr_if_needed(R4_ARG2, arg_1);
  2153   assert(arg_2 != R4_ARG2, "smashed argument");
  2154   mr_if_needed(R5_ARG3, arg_2);
  2155   call_VM(oop_result, entry_point, check_exceptions);
  2158 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  2159   // ARG1 is reserved for the thread.
  2160   mr_if_needed(R4_ARG2, arg_1);
  2161   assert(arg_2 != R4_ARG2, "smashed argument");
  2162   mr_if_needed(R5_ARG3, arg_2);
  2163   assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
  2164   mr_if_needed(R6_ARG4, arg_3);
  2165   call_VM(oop_result, entry_point, check_exceptions);
  2168 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
  2169   ld(scratch, 0, R1_SP);
  2170   std(R15_esp, _ijava_state_neg(esp), scratch);
  2171   std(R14_bcp, _ijava_state_neg(bcp), scratch);
  2172   std(R26_monitor, _ijava_state_neg(monitors), scratch);
  2173   if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
  2174   // Other entries should be unchanged.
  2177 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
  2178   ld(scratch, 0, R1_SP);
  2179   ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
  2180   if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
  2181   if (!bcp_and_mdx_only) {
  2182     // Following ones are Metadata.
  2183     ld(R19_method, _ijava_state_neg(method), scratch);
  2184     ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
  2185     // Following ones are stack addresses and don't require reload.
  2186     ld(R15_esp, _ijava_state_neg(esp), scratch);
  2187     ld(R18_locals, _ijava_state_neg(locals), scratch);
  2188     ld(R26_monitor, _ijava_state_neg(monitors), scratch);
  2190 #ifdef ASSERT
  2192     Label Lok;
  2193     subf(R0, R1_SP, scratch);
  2194     cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
  2195     bge(CCR0, Lok);
  2196     stop("frame too small (restore istate)", 0x5432);
  2197     bind(Lok);
  2200     Label Lok;
  2201     ld(R0, _ijava_state_neg(ijava_reserved), scratch);
  2202     cmpdi(CCR0, R0, 0x5afe);
  2203     beq(CCR0, Lok);
  2204     stop("frame corrupted (restore istate)", 0x5afe);
  2205     bind(Lok);
  2207 #endif
  2210 #endif // !CC_INTERP
  2212 void InterpreterMacroAssembler::get_method_counters(Register method,
  2213                                                     Register Rcounters,
  2214                                                     Label& skip) {
  2215   BLOCK_COMMENT("Load and ev. allocate counter object {");
  2216   Label has_counters;
  2217   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
  2218   cmpdi(CCR0, Rcounters, 0);
  2219   bne(CCR0, has_counters);
  2220   call_VM(noreg, CAST_FROM_FN_PTR(address,
  2221                                   InterpreterRuntime::build_method_counters), method, false);
  2222   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
  2223   cmpdi(CCR0, Rcounters, 0);
  2224   beq(CCR0, skip); // No MethodCounters, OutOfMemory.
  2225   BLOCK_COMMENT("} Load and ev. allocate counter object");
  2227   bind(has_counters);
  2230 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register iv_be_count, Register Rtmp_r0) {
  2231   assert(UseCompiler, "incrementing must be useful");
  2232   Register invocation_count = iv_be_count;
  2233   Register backedge_count   = Rtmp_r0;
  2234   int delta = InvocationCounter::count_increment;
  2236   // Load each counter in a register.
  2237   //  ld(inv_counter, Rtmp);
  2238   //  ld(be_counter, Rtmp2);
  2239   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
  2240                                     InvocationCounter::counter_offset());
  2241   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset() +
  2242                                     InvocationCounter::counter_offset());
  2244   BLOCK_COMMENT("Increment profiling counters {");
  2246   // Load the backedge counter.
  2247   lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
  2248   // Mask the backedge counter.
  2249   Register tmp = invocation_count;
  2250   li(tmp, InvocationCounter::count_mask_value);
  2251   andr(backedge_count, tmp, backedge_count); // Cannot use andi, need sign extension of count_mask_value.
  2253   // Load the invocation counter.
  2254   lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
  2255   // Add the delta to the invocation counter and store the result.
  2256   addi(invocation_count, invocation_count, delta);
  2257   // Store value.
  2258   stw(invocation_count, inv_counter_offset, Rcounters);
  2260   // Add invocation counter + backedge counter.
  2261   add(iv_be_count, backedge_count, invocation_count);
  2263   // Note that this macro must leave the backedge_count + invocation_count in
  2264   // register iv_be_count!
  2265   BLOCK_COMMENT("} Increment profiling counters");
  2268 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  2269   if (state == atos) { MacroAssembler::verify_oop(reg); }
  2272 #ifndef CC_INTERP
  2273 // Local helper function for the verify_oop_or_return_address macro.
  2274 static bool verify_return_address(Method* m, int bci) {
  2275 #ifndef PRODUCT
  2276   address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
  2277   // Assume it is a valid return address if it is inside m and is preceded by a jsr.
  2278   if (!m->contains(pc))                                            return false;
  2279   address jsr_pc;
  2280   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
  2281   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
  2282   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
  2283   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
  2284 #endif // PRODUCT
  2285   return false;
  2288 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  2289   if (VerifyFPU) {
  2290     unimplemented("verfiyFPU");
  2294 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
  2295   if (!VerifyOops) return;
  2297   // The VM documentation for the astore[_wide] bytecode allows
  2298   // the TOS to be not only an oop but also a return address.
  2299   Label test;
  2300   Label skip;
  2301   // See if it is an address (in the current method):
  2303   const int log2_bytecode_size_limit = 16;
  2304   srdi_(Rtmp, reg, log2_bytecode_size_limit);
  2305   bne(CCR0, test);
  2307   address fd = CAST_FROM_FN_PTR(address, verify_return_address);
  2308   const int nbytes_save = 11*8; // volatile gprs except R0
  2309   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
  2310   save_LR_CR(Rtmp); // Save in old frame.
  2311   push_frame_reg_args(nbytes_save, Rtmp);
  2313   load_const_optimized(Rtmp, fd, R0);
  2314   mr_if_needed(R4_ARG2, reg);
  2315   mr(R3_ARG1, R19_method);
  2316   call_c(Rtmp); // call C
  2318   pop_frame();
  2319   restore_LR_CR(Rtmp);
  2320   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
  2321   b(skip);
  2323   // Perform a more elaborate out-of-line call.
  2324   // Not an address; verify it:
  2325   bind(test);
  2326   verify_oop(reg);
  2327   bind(skip);
  2329 #endif // !CC_INTERP
  2331 // Inline assembly for:
  2332 //
  2333 // if (thread is in interp_only_mode) {
  2334 //   InterpreterRuntime::post_method_entry();
  2335 // }
  2336 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
  2337 //     *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2)   ) {
  2338 //   SharedRuntime::jvmpi_method_entry(method, receiver);
  2339 // }
  2340 void InterpreterMacroAssembler::notify_method_entry() {
  2341   // JVMTI
  2342   // Whenever JVMTI puts a thread in interp_only_mode, method
  2343   // entry/exit events are sent for that thread to track stack
  2344   // depth. If it is possible to enter interp_only_mode we add
  2345   // the code to check if the event should be sent.
  2346   if (JvmtiExport::can_post_interpreter_events()) {
  2347     Label jvmti_post_done;
  2349     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
  2350     cmpwi(CCR0, R0, 0);
  2351     beq(CCR0, jvmti_post_done);
  2352     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
  2353             /*check_exceptions=*/true CC_INTERP_ONLY(&& false));
  2355     bind(jvmti_post_done);
  2359 // Inline assembly for:
  2360 //
  2361 // if (thread is in interp_only_mode) {
  2362 //   // save result
  2363 //   InterpreterRuntime::post_method_exit();
  2364 //   // restore result
  2365 // }
  2366 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
  2367 //   // save result
  2368 //   SharedRuntime::jvmpi_method_exit();
  2369 //   // restore result
  2370 // }
  2371 //
  2372 // Native methods have their result stored in d_tmp and l_tmp.
  2373 // Java methods have their result stored in the expression stack.
  2374 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
  2375                                                    NotifyMethodExitMode mode, bool check_exceptions) {
  2376   // JVMTI
  2377   // Whenever JVMTI puts a thread in interp_only_mode, method
  2378   // entry/exit events are sent for that thread to track stack
  2379   // depth. If it is possible to enter interp_only_mode we add
  2380   // the code to check if the event should be sent.
  2381   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  2382     Label jvmti_post_done;
  2384     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
  2385     cmpwi(CCR0, R0, 0);
  2386     beq(CCR0, jvmti_post_done);
  2387     CC_INTERP_ONLY(assert(is_native_method && !check_exceptions, "must not push state"));
  2388     if (!is_native_method) push(state); // Expose tos to GC.
  2389     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
  2390             /*check_exceptions=*/check_exceptions);
  2391     if (!is_native_method) pop(state);
  2393     align(32, 12);
  2394     bind(jvmti_post_done);
  2397   // Dtrace support not implemented.
  2400 #ifdef CC_INTERP
  2401 // Convert the current TOP_IJAVA_FRAME into a PARENT_IJAVA_FRAME
  2402 // (using parent_frame_resize) and push a new interpreter
  2403 // TOP_IJAVA_FRAME (using frame_size).
  2404 void InterpreterMacroAssembler::push_interpreter_frame(Register top_frame_size, Register parent_frame_resize,
  2405                                                        Register tmp1, Register tmp2, Register tmp3,
  2406                                                        Register tmp4, Register pc) {
  2407   assert_different_registers(top_frame_size, parent_frame_resize, tmp1, tmp2, tmp3, tmp4);
  2408   ld(tmp1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  2409   mr(tmp2/*top_frame_sp*/, R1_SP);
  2410   // Move initial_caller_sp.
  2411   ld(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
  2412   neg(parent_frame_resize, parent_frame_resize);
  2413   resize_frame(parent_frame_resize/*-parent_frame_resize*/, tmp3);
  2415   // Set LR in new parent frame.
  2416   std(tmp1, _abi(lr), R1_SP);
  2417   // Set top_frame_sp info for new parent frame.
  2418   std(tmp2, _parent_ijava_frame_abi(top_frame_sp), R1_SP);
  2419   std(tmp4, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
  2421   // Push new TOP_IJAVA_FRAME.
  2422   push_frame(top_frame_size, tmp2);
  2424   get_PC_trash_LR(tmp3);
  2425   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  2426   // Used for non-initial callers by unextended_sp().
  2427   std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
  2430 // Pop the topmost TOP_IJAVA_FRAME and convert the previous
  2431 // PARENT_IJAVA_FRAME back into a TOP_IJAVA_FRAME.
  2432 void InterpreterMacroAssembler::pop_interpreter_frame(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
  2433   assert_different_registers(tmp1, tmp2, tmp3, tmp4);
  2435   ld(tmp1/*caller's sp*/, _abi(callers_sp), R1_SP);
  2436   ld(tmp3, _abi(lr), tmp1);
  2438   ld(tmp4, _parent_ijava_frame_abi(initial_caller_sp), tmp1);
  2440   ld(tmp2/*caller's caller's sp*/, _abi(callers_sp), tmp1);
  2441   // Merge top frame.
  2442   std(tmp2, _abi(callers_sp), R1_SP);
  2444   ld(tmp2, _parent_ijava_frame_abi(top_frame_sp), tmp1);
  2446   // Update C stack pointer to caller's top_abi.
  2447   resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
  2449   // Update LR in top_frame.
  2450   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  2452   std(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
  2454   // Store the top-frame stack-pointer for c2i adapters.
  2455   std(R1_SP, _top_ijava_frame_abi(top_frame_sp), R1_SP);
  2458 // Turn state's interpreter frame into the current TOP_IJAVA_FRAME.
  2459 void InterpreterMacroAssembler::pop_interpreter_frame_to_state(Register state, Register tmp1, Register tmp2, Register tmp3) {
  2460   assert_different_registers(R14_state, R15_prev_state, tmp1, tmp2, tmp3);
  2462   if (state == R14_state) {
  2463     ld(tmp1/*state's fp*/, state_(_last_Java_fp));
  2464     ld(tmp2/*state's sp*/, state_(_last_Java_sp));
  2465   } else if (state == R15_prev_state) {
  2466     ld(tmp1/*state's fp*/, prev_state_(_last_Java_fp));
  2467     ld(tmp2/*state's sp*/, prev_state_(_last_Java_sp));
  2468   } else {
  2469     ShouldNotReachHere();
  2472   // Merge top frames.
  2473   std(tmp1, _abi(callers_sp), R1_SP);
  2475   // Tmp2 is new SP.
  2476   // Tmp1 is parent's SP.
  2477   resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
  2479   // Update LR in top_frame.
  2480   // Must be interpreter frame.
  2481   get_PC_trash_LR(tmp3);
  2482   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  2483   // Used for non-initial callers by unextended_sp().
  2484   std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
  2487 // Set SP to initial caller's sp, but before fix the back chain.
  2488 void InterpreterMacroAssembler::resize_frame_to_initial_caller(Register tmp1, Register tmp2) {
  2489   ld(tmp1, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
  2490   ld(tmp2, _parent_ijava_frame_abi(callers_sp), R1_SP);
  2491   std(tmp2, _parent_ijava_frame_abi(callers_sp), tmp1); // Fix back chain ...
  2492   mr(R1_SP, tmp1); // ... and resize to initial caller.
  2495 // Pop the current interpreter state (without popping the correspoding
  2496 // frame) and restore R14_state and R15_prev_state accordingly.
  2497 // Use prev_state_may_be_0 to indicate whether prev_state may be 0
  2498 // in order to generate an extra check before retrieving prev_state_(_prev_link).
  2499 void InterpreterMacroAssembler::pop_interpreter_state(bool prev_state_may_be_0)
  2501   // Move prev_state to state and restore prev_state from state_(_prev_link).
  2502   Label prev_state_is_0;
  2503   mr(R14_state, R15_prev_state);
  2505   // Don't retrieve /*state==*/prev_state_(_prev_link)
  2506   // if /*state==*/prev_state is 0.
  2507   if (prev_state_may_be_0) {
  2508     cmpdi(CCR0, R15_prev_state, 0);
  2509     beq(CCR0, prev_state_is_0);
  2512   ld(R15_prev_state, /*state==*/prev_state_(_prev_link));
  2513   bind(prev_state_is_0);
  2516 void InterpreterMacroAssembler::restore_prev_state() {
  2517   // _prev_link is private, but cInterpreter is a friend.
  2518   ld(R15_prev_state, state_(_prev_link));
  2520 #endif // CC_INTERP

mercurial