src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Mon, 02 Mar 2009 14:03:03 -0700

author
dcubed
date
Mon, 02 Mar 2009 14:03:03 -0700
changeset 1045
70998f2e05ef
parent 797
f8199438385b
child 1145
e5b0439ef4ae
permissions
-rw-r--r--

6805864: 4/3 Problem with jvmti->redefineClasses: some methods don't get redefined
Summary: Remove incorrect optimization in klassItable::adjust_method_entries(). Add RedefineClasses() tracing support for obsolete method entry.
Reviewed-by: acorn, swamyv

     1 /*
     2  * Copyright 2003-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_sharedRuntime_sparc.cpp.incl"
    28 #define __ masm->
    30 #ifdef COMPILER2
    31 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
    32 #endif // COMPILER2
    34 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    35 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    36 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
    37 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    38 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    39 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    40 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    41 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    43 class RegisterSaver {
    45   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
    46   // The Oregs are problematic. In the 32bit build the compiler can
    47   // have O registers live with 64 bit quantities. A window save will
    48   // cut the heads off of the registers. We have to do a very extensive
    49   // stack dance to save and restore these properly.
    51   // Note that the Oregs problem only exists if we block at either a polling
    52   // page exception a compiled code safepoint that was not originally a call
    53   // or deoptimize following one of these kinds of safepoints.
    55   // Lots of registers to save.  For all builds, a window save will preserve
    56   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
    57   // builds a window-save will preserve the %o registers.  In the LION build
    58   // we need to save the 64-bit %o registers which requires we save them
    59   // before the window-save (as then they become %i registers and get their
    60   // heads chopped off on interrupt).  We have to save some %g registers here
    61   // as well.
    62   enum {
    63     // This frame's save area.  Includes extra space for the native call:
    64     // vararg's layout space and the like.  Briefly holds the caller's
    65     // register save area.
    66     call_args_area = frame::register_save_words_sp_offset +
    67                      frame::memory_parameter_word_sp_offset*wordSize,
    68     // Make sure save locations are always 8 byte aligned.
    69     // can't use round_to because it doesn't produce compile time constant
    70     start_of_extra_save_area = ((call_args_area + 7) & ~7),
    71     g1_offset = start_of_extra_save_area, // g-regs needing saving
    72     g3_offset = g1_offset+8,
    73     g4_offset = g3_offset+8,
    74     g5_offset = g4_offset+8,
    75     o0_offset = g5_offset+8,
    76     o1_offset = o0_offset+8,
    77     o2_offset = o1_offset+8,
    78     o3_offset = o2_offset+8,
    79     o4_offset = o3_offset+8,
    80     o5_offset = o4_offset+8,
    81     start_of_flags_save_area = o5_offset+8,
    82     ccr_offset = start_of_flags_save_area,
    83     fsr_offset = ccr_offset + 8,
    84     d00_offset = fsr_offset+8,  // Start of float save area
    85     register_save_size = d00_offset+8*32
    86   };
    89   public:
    91   static int Oexception_offset() { return o0_offset; };
    92   static int G3_offset() { return g3_offset; };
    93   static int G5_offset() { return g5_offset; };
    94   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
    95   static void restore_live_registers(MacroAssembler* masm);
    97   // During deoptimization only the result register need to be restored
    98   // all the other values have already been extracted.
   100   static void restore_result_registers(MacroAssembler* masm);
   101 };
   103 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   104   // Record volatile registers as callee-save values in an OopMap so their save locations will be
   105   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
   106   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
   107   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
   108   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
   109   int i;
   110   // Always make the frame size 16 bytr aligned.
   111   int frame_size = round_to(additional_frame_words + register_save_size, 16);
   112   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
   113   int frame_size_in_slots = frame_size / sizeof(jint);
   114   // CodeBlob frame size is in words.
   115   *total_frame_words = frame_size / wordSize;
   116   // OopMap* map = new OopMap(*total_frame_words, 0);
   117   OopMap* map = new OopMap(frame_size_in_slots, 0);
   119 #if !defined(_LP64)
   121   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
   122   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   123   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   124   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   125   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   126   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   127   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   128 #endif /* _LP64 */
   130   __ save(SP, -frame_size, SP);
   132 #ifndef _LP64
   133   // Reload the 64 bit Oregs. Although they are now Iregs we load them
   134   // to Oregs here to avoid interrupts cutting off their heads
   136   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   137   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   138   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   139   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   140   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   141   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   143   __ stx(O0, SP, o0_offset+STACK_BIAS);
   144   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
   146   __ stx(O1, SP, o1_offset+STACK_BIAS);
   148   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
   150   __ stx(O2, SP, o2_offset+STACK_BIAS);
   151   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
   153   __ stx(O3, SP, o3_offset+STACK_BIAS);
   154   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
   156   __ stx(O4, SP, o4_offset+STACK_BIAS);
   157   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
   159   __ stx(O5, SP, o5_offset+STACK_BIAS);
   160   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
   161 #endif /* _LP64 */
   164 #ifdef _LP64
   165   int debug_offset = 0;
   166 #else
   167   int debug_offset = 4;
   168 #endif
   169   // Save the G's
   170   __ stx(G1, SP, g1_offset+STACK_BIAS);
   171   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
   173   __ stx(G3, SP, g3_offset+STACK_BIAS);
   174   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
   176   __ stx(G4, SP, g4_offset+STACK_BIAS);
   177   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
   179   __ stx(G5, SP, g5_offset+STACK_BIAS);
   180   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
   182   // This is really a waste but we'll keep things as they were for now
   183   if (true) {
   184 #ifndef _LP64
   185     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
   186     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
   187     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
   188     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
   189     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
   190     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
   191     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
   192     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
   193     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
   194     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
   195 #endif /* _LP64 */
   196   }
   199   // Save the flags
   200   __ rdccr( G5 );
   201   __ stx(G5, SP, ccr_offset+STACK_BIAS);
   202   __ stxfsr(SP, fsr_offset+STACK_BIAS);
   204   // Save all the FP registers
   205   int offset = d00_offset;
   206   for( int i=0; i<64; i+=2 ) {
   207     FloatRegister f = as_FloatRegister(i);
   208     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
   209     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
   210     if (true) {
   211       map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
   212     }
   213     offset += sizeof(double);
   214   }
   216   // And we're done.
   218   return map;
   219 }
   222 // Pop the current frame and restore all the registers that we
   223 // saved.
   224 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   226   // Restore all the FP registers
   227   for( int i=0; i<64; i+=2 ) {
   228     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
   229   }
   231   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
   232   __ wrccr (G1) ;
   234   // Restore the G's
   235   // Note that G2 (AKA GThread) must be saved and restored separately.
   236   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
   238   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   239   __ ldx(SP, g3_offset+STACK_BIAS, G3);
   240   __ ldx(SP, g4_offset+STACK_BIAS, G4);
   241   __ ldx(SP, g5_offset+STACK_BIAS, G5);
   244 #if !defined(_LP64)
   245   // Restore the 64-bit O's.
   246   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   247   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   248   __ ldx(SP, o2_offset+STACK_BIAS, O2);
   249   __ ldx(SP, o3_offset+STACK_BIAS, O3);
   250   __ ldx(SP, o4_offset+STACK_BIAS, O4);
   251   __ ldx(SP, o5_offset+STACK_BIAS, O5);
   253   // And temporarily place them in TLS
   255   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   256   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   257   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   258   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   259   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   260   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   261 #endif /* _LP64 */
   263   // Restore flags
   265   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
   267   __ restore();
   269 #if !defined(_LP64)
   270   // Now reload the 64bit Oregs after we've restore the window.
   271   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   272   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   273   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   274   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   275   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   276   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   277 #endif /* _LP64 */
   279 }
   281 // Pop the current frame and restore the registers that might be holding
   282 // a result.
   283 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   285 #if !defined(_LP64)
   286   // 32bit build returns longs in G1
   287   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   289   // Retrieve the 64-bit O's.
   290   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   291   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   292   // and save to TLS
   293   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   294   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   295 #endif /* _LP64 */
   297   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
   299   __ restore();
   301 #if !defined(_LP64)
   302   // Now reload the 64bit Oregs after we've restore the window.
   303   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   304   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   305 #endif /* _LP64 */
   307 }
   309 // The java_calling_convention describes stack locations as ideal slots on
   310 // a frame with no abi restrictions. Since we must observe abi restrictions
   311 // (like the placement of the register window) the slots must be biased by
   312 // the following value.
   313 static int reg2offset(VMReg r) {
   314   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   315 }
   317 // ---------------------------------------------------------------------------
   318 // Read the array of BasicTypes from a signature, and compute where the
   319 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
   320 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   321 // refer to 4-byte stack slots.  All stack slots are based off of the window
   322 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
   323 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   324 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
   325 // integer registers.  Values 64-95 are the (32-bit only) float registers.
   326 // Each 32-bit quantity is given its own number, so the integer registers
   327 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
   328 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
   330 // Register results are passed in O0-O5, for outgoing call arguments.  To
   331 // convert to incoming arguments, convert all O's to I's.  The regs array
   332 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
   333 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
   334 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
   335 // passed (used as a placeholder for the other half of longs and doubles in
   336 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
   337 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
   338 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
   339 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
   340 // same VMRegPair.
   342 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   343 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   344 // units regardless of build.
   347 // ---------------------------------------------------------------------------
   348 // The compiled Java calling convention.  The Java convention always passes
   349 // 64-bit values in adjacent aligned locations (either registers or stack),
   350 // floats in float registers and doubles in aligned float pairs.  Values are
   351 // packed in the registers.  There is no backing varargs store for values in
   352 // registers.  In the 32-bit build, longs are passed in G1 and G4 (cannot be
   353 // passed in I's, because longs in I's get their heads chopped off at
   354 // interrupt).
   355 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   356                                            VMRegPair *regs,
   357                                            int total_args_passed,
   358                                            int is_outgoing) {
   359   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
   361   // Convention is to pack the first 6 int/oop args into the first 6 registers
   362   // (I0-I5), extras spill to the stack.  Then pack the first 8 float args
   363   // into F0-F7, extras spill to the stack.  Then pad all register sets to
   364   // align.  Then put longs and doubles into the same registers as they fit,
   365   // else spill to the stack.
   366   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
   367   const int flt_reg_max = 8;
   368   //
   369   // Where 32-bit 1-reg longs start being passed
   370   // In tiered we must pass on stack because c1 can't use a "pair" in a single reg.
   371   // So make it look like we've filled all the G regs that c2 wants to use.
   372   Register g_reg = TieredCompilation ? noreg : G1;
   374   // Count int/oop and float args.  See how many stack slots we'll need and
   375   // where the longs & doubles will go.
   376   int int_reg_cnt   = 0;
   377   int flt_reg_cnt   = 0;
   378   // int stk_reg_pairs = frame::register_save_words*(wordSize>>2);
   379   // int stk_reg_pairs = SharedRuntime::out_preserve_stack_slots();
   380   int stk_reg_pairs = 0;
   381   for (int i = 0; i < total_args_passed; i++) {
   382     switch (sig_bt[i]) {
   383     case T_LONG:                // LP64, longs compete with int args
   384       assert(sig_bt[i+1] == T_VOID, "");
   385 #ifdef _LP64
   386       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   387 #endif
   388       break;
   389     case T_OBJECT:
   390     case T_ARRAY:
   391     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   392       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   393 #ifndef _LP64
   394       else                            stk_reg_pairs++;
   395 #endif
   396       break;
   397     case T_INT:
   398     case T_SHORT:
   399     case T_CHAR:
   400     case T_BYTE:
   401     case T_BOOLEAN:
   402       if (int_reg_cnt < int_reg_max) int_reg_cnt++;
   403       else                            stk_reg_pairs++;
   404       break;
   405     case T_FLOAT:
   406       if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
   407       else                            stk_reg_pairs++;
   408       break;
   409     case T_DOUBLE:
   410       assert(sig_bt[i+1] == T_VOID, "");
   411       break;
   412     case T_VOID:
   413       break;
   414     default:
   415       ShouldNotReachHere();
   416     }
   417   }
   419   // This is where the longs/doubles start on the stack.
   420   stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
   422   int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
   423   int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
   425   // int stk_reg = frame::register_save_words*(wordSize>>2);
   426   // int stk_reg = SharedRuntime::out_preserve_stack_slots();
   427   int stk_reg = 0;
   428   int int_reg = 0;
   429   int flt_reg = 0;
   431   // Now do the signature layout
   432   for (int i = 0; i < total_args_passed; i++) {
   433     switch (sig_bt[i]) {
   434     case T_INT:
   435     case T_SHORT:
   436     case T_CHAR:
   437     case T_BYTE:
   438     case T_BOOLEAN:
   439 #ifndef _LP64
   440     case T_OBJECT:
   441     case T_ARRAY:
   442     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   443 #endif // _LP64
   444       if (int_reg < int_reg_max) {
   445         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   446         regs[i].set1(r->as_VMReg());
   447       } else {
   448         regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
   449       }
   450       break;
   452 #ifdef _LP64
   453     case T_OBJECT:
   454     case T_ARRAY:
   455     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   456       if (int_reg < int_reg_max) {
   457         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   458         regs[i].set2(r->as_VMReg());
   459       } else {
   460         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   461         stk_reg_pairs += 2;
   462       }
   463       break;
   464 #endif // _LP64
   466     case T_LONG:
   467       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   468 #ifdef _LP64
   469         if (int_reg < int_reg_max) {
   470           Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   471           regs[i].set2(r->as_VMReg());
   472         } else {
   473           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   474           stk_reg_pairs += 2;
   475         }
   476 #else
   477 #ifdef COMPILER2
   478         // For 32-bit build, can't pass longs in O-regs because they become
   479         // I-regs and get trashed.  Use G-regs instead.  G1 and G4 are almost
   480         // spare and available.  This convention isn't used by the Sparc ABI or
   481         // anywhere else. If we're tiered then we don't use G-regs because c1
   482         // can't deal with them as a "pair". (Tiered makes this code think g's are filled)
   483         // G0: zero
   484         // G1: 1st Long arg
   485         // G2: global allocated to TLS
   486         // G3: used in inline cache check
   487         // G4: 2nd Long arg
   488         // G5: used in inline cache check
   489         // G6: used by OS
   490         // G7: used by OS
   492         if (g_reg == G1) {
   493           regs[i].set2(G1->as_VMReg()); // This long arg in G1
   494           g_reg = G4;                  // Where the next arg goes
   495         } else if (g_reg == G4) {
   496           regs[i].set2(G4->as_VMReg()); // The 2nd long arg in G4
   497           g_reg = noreg;               // No more longs in registers
   498         } else {
   499           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   500           stk_reg_pairs += 2;
   501         }
   502 #else // COMPILER2
   503         if (int_reg_pairs + 1 < int_reg_max) {
   504           if (is_outgoing) {
   505             regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
   506           } else {
   507             regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
   508           }
   509           int_reg_pairs += 2;
   510         } else {
   511           regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   512           stk_reg_pairs += 2;
   513         }
   514 #endif // COMPILER2
   515 #endif // _LP64
   516       break;
   518     case T_FLOAT:
   519       if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
   520       else                       regs[i].set1(    VMRegImpl::stack2reg(stk_reg++));
   521       break;
   522     case T_DOUBLE:
   523       assert(sig_bt[i+1] == T_VOID, "expecting half");
   524       if (flt_reg_pairs + 1 < flt_reg_max) {
   525         regs[i].set2(as_FloatRegister(flt_reg_pairs)->as_VMReg());
   526         flt_reg_pairs += 2;
   527       } else {
   528         regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
   529         stk_reg_pairs += 2;
   530       }
   531       break;
   532     case T_VOID: regs[i].set_bad();  break; // Halves of longs & doubles
   533     default:
   534       ShouldNotReachHere();
   535     }
   536   }
   538   // retun the amount of stack space these arguments will need.
   539   return stk_reg_pairs;
   541 }
   543 // Helper class mostly to avoid passing masm everywhere, and handle store
   544 // displacement overflow logic for LP64
   545 class AdapterGenerator {
   546   MacroAssembler *masm;
   547 #ifdef _LP64
   548   Register Rdisp;
   549   void set_Rdisp(Register r)  { Rdisp = r; }
   550 #endif // _LP64
   552   void patch_callers_callsite();
   553   void tag_c2i_arg(frame::Tag t, Register base, int st_off, Register scratch);
   555   // base+st_off points to top of argument
   556   int arg_offset(const int st_off) { return st_off + Interpreter::value_offset_in_bytes(); }
   557   int next_arg_offset(const int st_off) {
   558     return st_off - Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
   559   }
   561 #ifdef _LP64
   562   // On _LP64 argument slot values are loaded first into a register
   563   // because they might not fit into displacement.
   564   Register arg_slot(const int st_off);
   565   Register next_arg_slot(const int st_off);
   566 #else
   567   int arg_slot(const int st_off)      { return arg_offset(st_off); }
   568   int next_arg_slot(const int st_off) { return next_arg_offset(st_off); }
   569 #endif // _LP64
   571   // Stores long into offset pointed to by base
   572   void store_c2i_long(Register r, Register base,
   573                       const int st_off, bool is_stack);
   574   void store_c2i_object(Register r, Register base,
   575                         const int st_off);
   576   void store_c2i_int(Register r, Register base,
   577                      const int st_off);
   578   void store_c2i_double(VMReg r_2,
   579                         VMReg r_1, Register base, const int st_off);
   580   void store_c2i_float(FloatRegister f, Register base,
   581                        const int st_off);
   583  public:
   584   void gen_c2i_adapter(int total_args_passed,
   585                               // VMReg max_arg,
   586                               int comp_args_on_stack, // VMRegStackSlots
   587                               const BasicType *sig_bt,
   588                               const VMRegPair *regs,
   589                               Label& skip_fixup);
   590   void gen_i2c_adapter(int total_args_passed,
   591                               // VMReg max_arg,
   592                               int comp_args_on_stack, // VMRegStackSlots
   593                               const BasicType *sig_bt,
   594                               const VMRegPair *regs);
   596   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
   597 };
   600 // Patch the callers callsite with entry to compiled code if it exists.
   601 void AdapterGenerator::patch_callers_callsite() {
   602   Label L;
   603   __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
   604   __ br_null(G3_scratch, false, __ pt, L);
   605   // Schedule the branch target address early.
   606   __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   607   // Call into the VM to patch the caller, then jump to compiled callee
   608   __ save_frame(4);     // Args in compiled layout; do not blow them
   610   // Must save all the live Gregs the list is:
   611   // G1: 1st Long arg (32bit build)
   612   // G2: global allocated to TLS
   613   // G3: used in inline cache check (scratch)
   614   // G4: 2nd Long arg (32bit build);
   615   // G5: used in inline cache check (methodOop)
   617   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
   619 #ifdef _LP64
   620   // mov(s,d)
   621   __ mov(G1, L1);
   622   __ mov(G4, L4);
   623   __ mov(G5_method, L5);
   624   __ mov(G5_method, O0);         // VM needs target method
   625   __ mov(I7, O1);                // VM needs caller's callsite
   626   // Must be a leaf call...
   627   // can be very far once the blob has been relocated
   628   Address dest(O7, CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
   629   __ relocate(relocInfo::runtime_call_type);
   630   __ jumpl_to(dest, O7);
   631   __ delayed()->mov(G2_thread, L7_thread_cache);
   632   __ mov(L7_thread_cache, G2_thread);
   633   __ mov(L1, G1);
   634   __ mov(L4, G4);
   635   __ mov(L5, G5_method);
   636 #else
   637   __ stx(G1, FP, -8 + STACK_BIAS);
   638   __ stx(G4, FP, -16 + STACK_BIAS);
   639   __ mov(G5_method, L5);
   640   __ mov(G5_method, O0);         // VM needs target method
   641   __ mov(I7, O1);                // VM needs caller's callsite
   642   // Must be a leaf call...
   643   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
   644   __ delayed()->mov(G2_thread, L7_thread_cache);
   645   __ mov(L7_thread_cache, G2_thread);
   646   __ ldx(FP, -8 + STACK_BIAS, G1);
   647   __ ldx(FP, -16 + STACK_BIAS, G4);
   648   __ mov(L5, G5_method);
   649   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   650 #endif /* _LP64 */
   652   __ restore();      // Restore args
   653   __ bind(L);
   654 }
   656 void AdapterGenerator::tag_c2i_arg(frame::Tag t, Register base, int st_off,
   657                  Register scratch) {
   658   if (TaggedStackInterpreter) {
   659     int tag_off = st_off + Interpreter::tag_offset_in_bytes();
   660 #ifdef _LP64
   661     Register tag_slot = Rdisp;
   662     __ set(tag_off, tag_slot);
   663 #else
   664     int tag_slot = tag_off;
   665 #endif // _LP64
   666     // have to store zero because local slots can be reused (rats!)
   667     if (t == frame::TagValue) {
   668       __ st_ptr(G0, base, tag_slot);
   669     } else if (t == frame::TagCategory2) {
   670       __ st_ptr(G0, base, tag_slot);
   671       int next_tag_off  = st_off - Interpreter::stackElementSize() +
   672                                    Interpreter::tag_offset_in_bytes();
   673 #ifdef _LP64
   674       __ set(next_tag_off, tag_slot);
   675 #else
   676       tag_slot = next_tag_off;
   677 #endif // _LP64
   678       __ st_ptr(G0, base, tag_slot);
   679     } else {
   680       __ mov(t, scratch);
   681       __ st_ptr(scratch, base, tag_slot);
   682     }
   683   }
   684 }
   686 #ifdef _LP64
   687 Register AdapterGenerator::arg_slot(const int st_off) {
   688   __ set( arg_offset(st_off), Rdisp);
   689   return Rdisp;
   690 }
   692 Register AdapterGenerator::next_arg_slot(const int st_off){
   693   __ set( next_arg_offset(st_off), Rdisp);
   694   return Rdisp;
   695 }
   696 #endif // _LP64
   698 // Stores long into offset pointed to by base
   699 void AdapterGenerator::store_c2i_long(Register r, Register base,
   700                                       const int st_off, bool is_stack) {
   701 #ifdef _LP64
   702   // In V9, longs are given 2 64-bit slots in the interpreter, but the
   703   // data is passed in only 1 slot.
   704   __ stx(r, base, next_arg_slot(st_off));
   705 #else
   706 #ifdef COMPILER2
   707   // Misaligned store of 64-bit data
   708   __ stw(r, base, arg_slot(st_off));    // lo bits
   709   __ srlx(r, 32, r);
   710   __ stw(r, base, next_arg_slot(st_off));  // hi bits
   711 #else
   712   if (is_stack) {
   713     // Misaligned store of 64-bit data
   714     __ stw(r, base, arg_slot(st_off));    // lo bits
   715     __ srlx(r, 32, r);
   716     __ stw(r, base, next_arg_slot(st_off));  // hi bits
   717   } else {
   718     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
   719     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
   720   }
   721 #endif // COMPILER2
   722 #endif // _LP64
   723   tag_c2i_arg(frame::TagCategory2, base, st_off, r);
   724 }
   726 void AdapterGenerator::store_c2i_object(Register r, Register base,
   727                       const int st_off) {
   728   __ st_ptr (r, base, arg_slot(st_off));
   729   tag_c2i_arg(frame::TagReference, base, st_off, r);
   730 }
   732 void AdapterGenerator::store_c2i_int(Register r, Register base,
   733                    const int st_off) {
   734   __ st (r, base, arg_slot(st_off));
   735   tag_c2i_arg(frame::TagValue, base, st_off, r);
   736 }
   738 // Stores into offset pointed to by base
   739 void AdapterGenerator::store_c2i_double(VMReg r_2,
   740                       VMReg r_1, Register base, const int st_off) {
   741 #ifdef _LP64
   742   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   743   // data is passed in only 1 slot.
   744   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   745 #else
   746   // Need to marshal 64-bit value from misaligned Lesp loads
   747   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   748   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
   749 #endif
   750   tag_c2i_arg(frame::TagCategory2, base, st_off, G1_scratch);
   751 }
   753 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
   754                                        const int st_off) {
   755   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
   756   tag_c2i_arg(frame::TagValue, base, st_off, G1_scratch);
   757 }
   759 void AdapterGenerator::gen_c2i_adapter(
   760                             int total_args_passed,
   761                             // VMReg max_arg,
   762                             int comp_args_on_stack, // VMRegStackSlots
   763                             const BasicType *sig_bt,
   764                             const VMRegPair *regs,
   765                             Label& skip_fixup) {
   767   // Before we get into the guts of the C2I adapter, see if we should be here
   768   // at all.  We've come from compiled code and are attempting to jump to the
   769   // interpreter, which means the caller made a static call to get here
   770   // (vcalls always get a compiled target if there is one).  Check for a
   771   // compiled target.  If there is one, we need to patch the caller's call.
   772   // However we will run interpreted if we come thru here. The next pass
   773   // thru the call site will run compiled. If we ran compiled here then
   774   // we can (theorectically) do endless i2c->c2i->i2c transitions during
   775   // deopt/uncommon trap cycles. If we always go interpreted here then
   776   // we can have at most one and don't need to play any tricks to keep
   777   // from endlessly growing the stack.
   778   //
   779   // Actually if we detected that we had an i2c->c2i transition here we
   780   // ought to be able to reset the world back to the state of the interpreted
   781   // call and not bother building another interpreter arg area. We don't
   782   // do that at this point.
   784   patch_callers_callsite();
   786   __ bind(skip_fixup);
   788   // Since all args are passed on the stack, total_args_passed*wordSize is the
   789   // space we need.  Add in varargs area needed by the interpreter. Round up
   790   // to stack alignment.
   791   const int arg_size = total_args_passed * Interpreter::stackElementSize();
   792   const int varargs_area =
   793                  (frame::varargs_offset - frame::register_save_words)*wordSize;
   794   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
   796   int bias = STACK_BIAS;
   797   const int interp_arg_offset = frame::varargs_offset*wordSize +
   798                         (total_args_passed-1)*Interpreter::stackElementSize();
   800   Register base = SP;
   802 #ifdef _LP64
   803   // In the 64bit build because of wider slots and STACKBIAS we can run
   804   // out of bits in the displacement to do loads and stores.  Use g3 as
   805   // temporary displacement.
   806   if (! __ is_simm13(extraspace)) {
   807     __ set(extraspace, G3_scratch);
   808     __ sub(SP, G3_scratch, SP);
   809   } else {
   810     __ sub(SP, extraspace, SP);
   811   }
   812   set_Rdisp(G3_scratch);
   813 #else
   814   __ sub(SP, extraspace, SP);
   815 #endif // _LP64
   817   // First write G1 (if used) to where ever it must go
   818   for (int i=0; i<total_args_passed; i++) {
   819     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
   820     VMReg r_1 = regs[i].first();
   821     VMReg r_2 = regs[i].second();
   822     if (r_1 == G1_scratch->as_VMReg()) {
   823       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   824         store_c2i_object(G1_scratch, base, st_off);
   825       } else if (sig_bt[i] == T_LONG) {
   826         assert(!TieredCompilation, "should not use register args for longs");
   827         store_c2i_long(G1_scratch, base, st_off, false);
   828       } else {
   829         store_c2i_int(G1_scratch, base, st_off);
   830       }
   831     }
   832   }
   834   // Now write the args into the outgoing interpreter space
   835   for (int i=0; i<total_args_passed; i++) {
   836     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize()) + bias;
   837     VMReg r_1 = regs[i].first();
   838     VMReg r_2 = regs[i].second();
   839     if (!r_1->is_valid()) {
   840       assert(!r_2->is_valid(), "");
   841       continue;
   842     }
   843     // Skip G1 if found as we did it first in order to free it up
   844     if (r_1 == G1_scratch->as_VMReg()) {
   845       continue;
   846     }
   847 #ifdef ASSERT
   848     bool G1_forced = false;
   849 #endif // ASSERT
   850     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
   851 #ifdef _LP64
   852       Register ld_off = Rdisp;
   853       __ set(reg2offset(r_1) + extraspace + bias, ld_off);
   854 #else
   855       int ld_off = reg2offset(r_1) + extraspace + bias;
   856 #ifdef ASSERT
   857       G1_forced = true;
   858 #endif // ASSERT
   859 #endif // _LP64
   860       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
   861       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
   862       else                  __ ldx(base, ld_off, G1_scratch);
   863     }
   865     if (r_1->is_Register()) {
   866       Register r = r_1->as_Register()->after_restore();
   867       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   868         store_c2i_object(r, base, st_off);
   869       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   870         if (TieredCompilation) {
   871           assert(G1_forced || sig_bt[i] != T_LONG, "should not use register args for longs");
   872         }
   873         store_c2i_long(r, base, st_off, r_2->is_stack());
   874       } else {
   875         store_c2i_int(r, base, st_off);
   876       }
   877     } else {
   878       assert(r_1->is_FloatRegister(), "");
   879       if (sig_bt[i] == T_FLOAT) {
   880         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
   881       } else {
   882         assert(sig_bt[i] == T_DOUBLE, "wrong type");
   883         store_c2i_double(r_2, r_1, base, st_off);
   884       }
   885     }
   886   }
   888 #ifdef _LP64
   889   // Need to reload G3_scratch, used for temporary displacements.
   890   __ ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
   892   // Pass O5_savedSP as an argument to the interpreter.
   893   // The interpreter will restore SP to this value before returning.
   894   __ set(extraspace, G1);
   895   __ add(SP, G1, O5_savedSP);
   896 #else
   897   // Pass O5_savedSP as an argument to the interpreter.
   898   // The interpreter will restore SP to this value before returning.
   899   __ add(SP, extraspace, O5_savedSP);
   900 #endif // _LP64
   902   __ mov((frame::varargs_offset)*wordSize -
   903          1*Interpreter::stackElementSize()+bias+BytesPerWord, G1);
   904   // Jump to the interpreter just as if interpreter was doing it.
   905   __ jmpl(G3_scratch, 0, G0);
   906   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
   907   // (really L0) is in use by the compiled frame as a generic temp.  However,
   908   // the interpreter does not know where its args are without some kind of
   909   // arg pointer being passed in.  Pass it in Gargs.
   910   __ delayed()->add(SP, G1, Gargs);
   911 }
   913 void AdapterGenerator::gen_i2c_adapter(
   914                             int total_args_passed,
   915                             // VMReg max_arg,
   916                             int comp_args_on_stack, // VMRegStackSlots
   917                             const BasicType *sig_bt,
   918                             const VMRegPair *regs) {
   920   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
   921   // layout.  Lesp was saved by the calling I-frame and will be restored on
   922   // return.  Meanwhile, outgoing arg space is all owned by the callee
   923   // C-frame, so we can mangle it at will.  After adjusting the frame size,
   924   // hoist register arguments and repack other args according to the compiled
   925   // code convention.  Finally, end in a jump to the compiled code.  The entry
   926   // point address is the start of the buffer.
   928   // We will only enter here from an interpreted frame and never from after
   929   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   930   // race and use a c2i we will remain interpreted for the race loser(s).
   931   // This removes all sorts of headaches on the x86 side and also eliminates
   932   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   934   // As you can see from the list of inputs & outputs there are not a lot
   935   // of temp registers to work with: mostly G1, G3 & G4.
   937   // Inputs:
   938   // G2_thread      - TLS
   939   // G5_method      - Method oop
   940   // O0             - Flag telling us to restore SP from O5
   941   // O4_args        - Pointer to interpreter's args
   942   // O5             - Caller's saved SP, to be restored if needed
   943   // O6             - Current SP!
   944   // O7             - Valid return address
   945   // L0-L7, I0-I7    - Caller's temps (no frame pushed yet)
   947   // Outputs:
   948   // G2_thread      - TLS
   949   // G1, G4         - Outgoing long args in 32-bit build
   950   // O0-O5          - Outgoing args in compiled layout
   951   // O6             - Adjusted or restored SP
   952   // O7             - Valid return address
   953   // L0-L7, I0-I7    - Caller's temps (no frame pushed yet)
   954   // F0-F7          - more outgoing args
   957   // O4 is about to get loaded up with compiled callee's args
   958   __ sub(Gargs, BytesPerWord, Gargs);
   960 #ifdef ASSERT
   961   {
   962     // on entry OsavedSP and SP should be equal
   963     Label ok;
   964     __ cmp(O5_savedSP, SP);
   965     __ br(Assembler::equal, false, Assembler::pt, ok);
   966     __ delayed()->nop();
   967     __ stop("I5_savedSP not set");
   968     __ should_not_reach_here();
   969     __ bind(ok);
   970   }
   971 #endif
   973   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
   974   // WITH O7 HOLDING A VALID RETURN PC
   975   //
   976   // |              |
   977   // :  java stack  :
   978   // |              |
   979   // +--------------+ <--- start of outgoing args
   980   // |   receiver   |   |
   981   // : rest of args :   |---size is java-arg-words
   982   // |              |   |
   983   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
   984   // |              |   |
   985   // :    unused    :   |---Space for max Java stack, plus stack alignment
   986   // |              |   |
   987   // +--------------+ <--- SP + 16*wordsize
   988   // |              |
   989   // :    window    :
   990   // |              |
   991   // +--------------+ <--- SP
   993   // WE REPACK THE STACK.  We use the common calling convention layout as
   994   // discovered by calling SharedRuntime::calling_convention.  We assume it
   995   // causes an arbitrary shuffle of memory, which may require some register
   996   // temps to do the shuffle.  We hope for (and optimize for) the case where
   997   // temps are not needed.  We may have to resize the stack slightly, in case
   998   // we need alignment padding (32-bit interpreter can pass longs & doubles
   999   // misaligned, but the compilers expect them aligned).
  1000   //
  1001   // |              |
  1002   // :  java stack  :
  1003   // |              |
  1004   // +--------------+ <--- start of outgoing args
  1005   // |  pad, align  |   |
  1006   // +--------------+   |
  1007   // | ints, floats |   |---Outgoing stack args, packed low.
  1008   // +--------------+   |   First few args in registers.
  1009   // :   doubles    :   |
  1010   // |   longs      |   |
  1011   // +--------------+ <--- SP' + 16*wordsize
  1012   // |              |
  1013   // :    window    :
  1014   // |              |
  1015   // +--------------+ <--- SP'
  1017   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
  1018   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
  1019   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
  1021   // Cut-out for having no stack args.  Since up to 6 args are passed
  1022   // in registers, we will commonly have no stack args.
  1023   if (comp_args_on_stack > 0) {
  1025     // Convert VMReg stack slots to words.
  1026     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
  1027     // Round up to miminum stack alignment, in wordSize
  1028     comp_words_on_stack = round_to(comp_words_on_stack, 2);
  1029     // Now compute the distance from Lesp to SP.  This calculation does not
  1030     // include the space for total_args_passed because Lesp has not yet popped
  1031     // the arguments.
  1032     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
  1035   // Will jump to the compiled code just as if compiled code was doing it.
  1036   // Pre-load the register-jump target early, to schedule it better.
  1037   __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
  1039   // Now generate the shuffle code.  Pick up all register args and move the
  1040   // rest through G1_scratch.
  1041   for (int i=0; i<total_args_passed; i++) {
  1042     if (sig_bt[i] == T_VOID) {
  1043       // Longs and doubles are passed in native word order, but misaligned
  1044       // in the 32-bit build.
  1045       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
  1046       continue;
  1049     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
  1050     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
  1051     // ldx/lddf optimizations.
  1053     // Load in argument order going down.
  1054     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
  1055 #ifdef _LP64
  1056     set_Rdisp(G1_scratch);
  1057 #endif // _LP64
  1059     VMReg r_1 = regs[i].first();
  1060     VMReg r_2 = regs[i].second();
  1061     if (!r_1->is_valid()) {
  1062       assert(!r_2->is_valid(), "");
  1063       continue;
  1065     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
  1066       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
  1067       if (r_2->is_valid()) r_2 = r_1->next();
  1069     if (r_1->is_Register()) {  // Register argument
  1070       Register r = r_1->as_Register()->after_restore();
  1071       if (!r_2->is_valid()) {
  1072         __ ld(Gargs, arg_slot(ld_off), r);
  1073       } else {
  1074 #ifdef _LP64
  1075         // In V9, longs are given 2 64-bit slots in the interpreter, but the
  1076         // data is passed in only 1 slot.
  1077         Register slot = (sig_bt[i]==T_LONG) ?
  1078               next_arg_slot(ld_off) : arg_slot(ld_off);
  1079         __ ldx(Gargs, slot, r);
  1080 #else
  1081         // Need to load a 64-bit value into G1/G4, but G1/G4 is being used in the
  1082         // stack shuffle.  Load the first 2 longs into G1/G4 later.
  1083 #endif
  1085     } else {
  1086       assert(r_1->is_FloatRegister(), "");
  1087       if (!r_2->is_valid()) {
  1088         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_1->as_FloatRegister());
  1089       } else {
  1090 #ifdef _LP64
  1091         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
  1092         // data is passed in only 1 slot.  This code also handles longs that
  1093         // are passed on the stack, but need a stack-to-stack move through a
  1094         // spare float register.
  1095         Register slot = (sig_bt[i]==T_LONG || sig_bt[i] == T_DOUBLE) ?
  1096               next_arg_slot(ld_off) : arg_slot(ld_off);
  1097         __ ldf(FloatRegisterImpl::D, Gargs, slot, r_1->as_FloatRegister());
  1098 #else
  1099         // Need to marshal 64-bit value from misaligned Lesp loads
  1100         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
  1101         __ ldf(FloatRegisterImpl::S, Gargs, arg_slot(ld_off), r_2->as_FloatRegister());
  1102 #endif
  1105     // Was the argument really intended to be on the stack, but was loaded
  1106     // into F8/F9?
  1107     if (regs[i].first()->is_stack()) {
  1108       assert(r_1->as_FloatRegister() == F8, "fix this code");
  1109       // Convert stack slot to an SP offset
  1110       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
  1111       // Store down the shuffled stack word.  Target address _is_ aligned.
  1112       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, st_off);
  1113       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, st_off);
  1116   bool made_space = false;
  1117 #ifndef _LP64
  1118   // May need to pick up a few long args in G1/G4
  1119   bool g4_crushed = false;
  1120   bool g3_crushed = false;
  1121   for (int i=0; i<total_args_passed; i++) {
  1122     if (regs[i].first()->is_Register() && regs[i].second()->is_valid()) {
  1123       // Load in argument order going down
  1124       int ld_off = (total_args_passed-i)*Interpreter::stackElementSize();
  1125       // Need to marshal 64-bit value from misaligned Lesp loads
  1126       Register r = regs[i].first()->as_Register()->after_restore();
  1127       if (r == G1 || r == G4) {
  1128         assert(!g4_crushed, "ordering problem");
  1129         if (r == G4){
  1130           g4_crushed = true;
  1131           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
  1132           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
  1133         } else {
  1134           // better schedule this way
  1135           __ ld  (Gargs, next_arg_slot(ld_off), r);          // Load hi bits
  1136           __ lduw(Gargs, arg_slot(ld_off)     , G3_scratch); // Load lo bits
  1138         g3_crushed = true;
  1139         __ sllx(r, 32, r);
  1140         __ or3(G3_scratch, r, r);
  1141       } else {
  1142         assert(r->is_out(), "longs passed in two O registers");
  1143         __ ld  (Gargs, arg_slot(ld_off)     , r->successor()); // Load lo bits
  1144         __ ld  (Gargs, next_arg_slot(ld_off), r);              // Load hi bits
  1148 #endif
  1150   // Jump to the compiled code just as if compiled code was doing it.
  1151   //
  1152 #ifndef _LP64
  1153     if (g3_crushed) {
  1154       // Rats load was wasted, at least it is in cache...
  1155       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3);
  1157 #endif /* _LP64 */
  1159     // 6243940 We might end up in handle_wrong_method if
  1160     // the callee is deoptimized as we race thru here. If that
  1161     // happens we don't want to take a safepoint because the
  1162     // caller frame will look interpreted and arguments are now
  1163     // "compiled" so it is much better to make this transition
  1164     // invisible to the stack walking code. Unfortunately if
  1165     // we try and find the callee by normal means a safepoint
  1166     // is possible. So we stash the desired callee in the thread
  1167     // and the vm will find there should this case occur.
  1168     Address callee_target_addr(G2_thread, 0, in_bytes(JavaThread::callee_target_offset()));
  1169     __ st_ptr(G5_method, callee_target_addr);
  1171     if (StressNonEntrant) {
  1172       // Open a big window for deopt failure
  1173       __ save_frame(0);
  1174       __ mov(G0, L0);
  1175       Label loop;
  1176       __ bind(loop);
  1177       __ sub(L0, 1, L0);
  1178       __ br_null(L0, false, Assembler::pt, loop);
  1179       __ delayed()->nop();
  1181       __ restore();
  1185     __ jmpl(G3, 0, G0);
  1186     __ delayed()->nop();
  1189 // ---------------------------------------------------------------
  1190 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1191                                                             int total_args_passed,
  1192                                                             // VMReg max_arg,
  1193                                                             int comp_args_on_stack, // VMRegStackSlots
  1194                                                             const BasicType *sig_bt,
  1195                                                             const VMRegPair *regs) {
  1196   address i2c_entry = __ pc();
  1198   AdapterGenerator agen(masm);
  1200   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
  1203   // -------------------------------------------------------------------------
  1204   // Generate a C2I adapter.  On entry we know G5 holds the methodOop.  The
  1205   // args start out packed in the compiled layout.  They need to be unpacked
  1206   // into the interpreter layout.  This will almost always require some stack
  1207   // space.  We grow the current (compiled) stack, then repack the args.  We
  1208   // finally end in a jump to the generic interpreter entry point.  On exit
  1209   // from the interpreter, the interpreter will restore our SP (lest the
  1210   // compiled code, which relys solely on SP and not FP, get sick).
  1212   address c2i_unverified_entry = __ pc();
  1213   Label skip_fixup;
  1215 #if !defined(_LP64) && defined(COMPILER2)
  1216     Register R_temp   = L0;   // another scratch register
  1217 #else
  1218     Register R_temp   = G1;   // another scratch register
  1219 #endif
  1221     Address ic_miss(G3_scratch, SharedRuntime::get_ic_miss_stub());
  1223     __ verify_oop(O0);
  1224     __ verify_oop(G5_method);
  1225     __ load_klass(O0, G3_scratch);
  1226     __ verify_oop(G3_scratch);
  1228 #if !defined(_LP64) && defined(COMPILER2)
  1229     __ save(SP, -frame::register_save_words*wordSize, SP);
  1230     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
  1231     __ verify_oop(R_temp);
  1232     __ cmp(G3_scratch, R_temp);
  1233     __ restore();
  1234 #else
  1235     __ ld_ptr(G5_method, compiledICHolderOopDesc::holder_klass_offset(), R_temp);
  1236     __ verify_oop(R_temp);
  1237     __ cmp(G3_scratch, R_temp);
  1238 #endif
  1240     Label ok, ok2;
  1241     __ brx(Assembler::equal, false, Assembler::pt, ok);
  1242     __ delayed()->ld_ptr(G5_method, compiledICHolderOopDesc::holder_method_offset(), G5_method);
  1243     __ jump_to(ic_miss);
  1244     __ delayed()->nop();
  1246     __ bind(ok);
  1247     // Method might have been compiled since the call site was patched to
  1248     // interpreted if that is the case treat it as a miss so we can get
  1249     // the call site corrected.
  1250     __ ld_ptr(G5_method, in_bytes(methodOopDesc::code_offset()), G3_scratch);
  1251     __ bind(ok2);
  1252     __ br_null(G3_scratch, false, __ pt, skip_fixup);
  1253     __ delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), G3_scratch);
  1254     __ jump_to(ic_miss);
  1255     __ delayed()->nop();
  1259   address c2i_entry = __ pc();
  1261   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
  1263   __ flush();
  1264   return new AdapterHandlerEntry(i2c_entry, c2i_entry, c2i_unverified_entry);
  1268 // Helper function for native calling conventions
  1269 static VMReg int_stk_helper( int i ) {
  1270   // Bias any stack based VMReg we get by ignoring the window area
  1271   // but not the register parameter save area.
  1272   //
  1273   // This is strange for the following reasons. We'd normally expect
  1274   // the calling convention to return an VMReg for a stack slot
  1275   // completely ignoring any abi reserved area. C2 thinks of that
  1276   // abi area as only out_preserve_stack_slots. This does not include
  1277   // the area allocated by the C abi to store down integer arguments
  1278   // because the java calling convention does not use it. So
  1279   // since c2 assumes that there are only out_preserve_stack_slots
  1280   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
  1281   // location the c calling convention must add in this bias amount
  1282   // to make up for the fact that the out_preserve_stack_slots is
  1283   // insufficient for C calls. What a mess. I sure hope those 6
  1284   // stack words were worth it on every java call!
  1286   // Another way of cleaning this up would be for out_preserve_stack_slots
  1287   // to take a parameter to say whether it was C or java calling conventions.
  1288   // Then things might look a little better (but not much).
  1290   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
  1291   if( mem_parm_offset < 0 ) {
  1292     return as_oRegister(i)->as_VMReg();
  1293   } else {
  1294     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
  1295     // Now return a biased offset that will be correct when out_preserve_slots is added back in
  1296     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
  1301 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
  1302                                          VMRegPair *regs,
  1303                                          int total_args_passed) {
  1305     // Return the number of VMReg stack_slots needed for the args.
  1306     // This value does not include an abi space (like register window
  1307     // save area).
  1309     // The native convention is V8 if !LP64
  1310     // The LP64 convention is the V9 convention which is slightly more sane.
  1312     // We return the amount of VMReg stack slots we need to reserve for all
  1313     // the arguments NOT counting out_preserve_stack_slots. Since we always
  1314     // have space for storing at least 6 registers to memory we start with that.
  1315     // See int_stk_helper for a further discussion.
  1316     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
  1318 #ifdef _LP64
  1319     // V9 convention: All things "as-if" on double-wide stack slots.
  1320     // Hoist any int/ptr/long's in the first 6 to int regs.
  1321     // Hoist any flt/dbl's in the first 16 dbl regs.
  1322     int j = 0;                  // Count of actual args, not HALVES
  1323     for( int i=0; i<total_args_passed; i++, j++ ) {
  1324       switch( sig_bt[i] ) {
  1325       case T_BOOLEAN:
  1326       case T_BYTE:
  1327       case T_CHAR:
  1328       case T_INT:
  1329       case T_SHORT:
  1330         regs[i].set1( int_stk_helper( j ) ); break;
  1331       case T_LONG:
  1332         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1333       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1334       case T_ARRAY:
  1335       case T_OBJECT:
  1336         regs[i].set2( int_stk_helper( j ) );
  1337         break;
  1338       case T_FLOAT:
  1339         if ( j < 16 ) {
  1340           // V9ism: floats go in ODD registers
  1341           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
  1342         } else {
  1343           // V9ism: floats go in ODD stack slot
  1344           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
  1346         break;
  1347       case T_DOUBLE:
  1348         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1349         if ( j < 16 ) {
  1350           // V9ism: doubles go in EVEN/ODD regs
  1351           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
  1352         } else {
  1353           // V9ism: doubles go in EVEN/ODD stack slots
  1354           regs[i].set2(VMRegImpl::stack2reg(j<<1));
  1356         break;
  1357       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
  1358       default:
  1359         ShouldNotReachHere();
  1361       if (regs[i].first()->is_stack()) {
  1362         int off =  regs[i].first()->reg2stack();
  1363         if (off > max_stack_slots) max_stack_slots = off;
  1365       if (regs[i].second()->is_stack()) {
  1366         int off =  regs[i].second()->reg2stack();
  1367         if (off > max_stack_slots) max_stack_slots = off;
  1371 #else // _LP64
  1372     // V8 convention: first 6 things in O-regs, rest on stack.
  1373     // Alignment is willy-nilly.
  1374     for( int i=0; i<total_args_passed; i++ ) {
  1375       switch( sig_bt[i] ) {
  1376       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1377       case T_ARRAY:
  1378       case T_BOOLEAN:
  1379       case T_BYTE:
  1380       case T_CHAR:
  1381       case T_FLOAT:
  1382       case T_INT:
  1383       case T_OBJECT:
  1384       case T_SHORT:
  1385         regs[i].set1( int_stk_helper( i ) );
  1386         break;
  1387       case T_DOUBLE:
  1388       case T_LONG:
  1389         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1390         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
  1391         break;
  1392       case T_VOID: regs[i].set_bad(); break;
  1393       default:
  1394         ShouldNotReachHere();
  1396       if (regs[i].first()->is_stack()) {
  1397         int off =  regs[i].first()->reg2stack();
  1398         if (off > max_stack_slots) max_stack_slots = off;
  1400       if (regs[i].second()->is_stack()) {
  1401         int off =  regs[i].second()->reg2stack();
  1402         if (off > max_stack_slots) max_stack_slots = off;
  1405 #endif // _LP64
  1407   return round_to(max_stack_slots + 1, 2);
  1412 // ---------------------------------------------------------------------------
  1413 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1414   switch (ret_type) {
  1415   case T_FLOAT:
  1416     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
  1417     break;
  1418   case T_DOUBLE:
  1419     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
  1420     break;
  1424 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1425   switch (ret_type) {
  1426   case T_FLOAT:
  1427     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
  1428     break;
  1429   case T_DOUBLE:
  1430     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
  1431     break;
  1435 // Check and forward and pending exception.  Thread is stored in
  1436 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
  1437 // is no exception handler.  We merely pop this frame off and throw the
  1438 // exception in the caller's frame.
  1439 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
  1440   Label L;
  1441   __ br_null(Rex_oop, false, Assembler::pt, L);
  1442   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
  1443   // Since this is a native call, we *know* the proper exception handler
  1444   // without calling into the VM: it's the empty function.  Just pop this
  1445   // frame and then jump to forward_exception_entry; O7 will contain the
  1446   // native caller's return PC.
  1447   Address exception_entry(G3_scratch, StubRoutines::forward_exception_entry());
  1448   __ jump_to(exception_entry);
  1449   __ delayed()->restore();      // Pop this frame off.
  1450   __ bind(L);
  1453 // A simple move of integer like type
  1454 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1455   if (src.first()->is_stack()) {
  1456     if (dst.first()->is_stack()) {
  1457       // stack to stack
  1458       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1459       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1460     } else {
  1461       // stack to reg
  1462       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1464   } else if (dst.first()->is_stack()) {
  1465     // reg to stack
  1466     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1467   } else {
  1468     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1472 // On 64 bit we will store integer like items to the stack as
  1473 // 64 bits items (sparc abi) even though java would only store
  1474 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1475 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1476 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1477   if (src.first()->is_stack()) {
  1478     if (dst.first()->is_stack()) {
  1479       // stack to stack
  1480       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1481       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1482     } else {
  1483       // stack to reg
  1484       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1486   } else if (dst.first()->is_stack()) {
  1487     // reg to stack
  1488     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1489   } else {
  1490     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1495 // An oop arg. Must pass a handle not the oop itself
  1496 static void object_move(MacroAssembler* masm,
  1497                         OopMap* map,
  1498                         int oop_handle_offset,
  1499                         int framesize_in_slots,
  1500                         VMRegPair src,
  1501                         VMRegPair dst,
  1502                         bool is_receiver,
  1503                         int* receiver_offset) {
  1505   // must pass a handle. First figure out the location we use as a handle
  1507   if (src.first()->is_stack()) {
  1508     // Oop is already on the stack
  1509     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
  1510     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
  1511     __ ld_ptr(rHandle, 0, L4);
  1512 #ifdef _LP64
  1513     __ movr( Assembler::rc_z, L4, G0, rHandle );
  1514 #else
  1515     __ tst( L4 );
  1516     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1517 #endif
  1518     if (dst.first()->is_stack()) {
  1519       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1521     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1522     if (is_receiver) {
  1523       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1525     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1526   } else {
  1527     // Oop is in an input register pass we must flush it to the stack
  1528     const Register rOop = src.first()->as_Register();
  1529     const Register rHandle = L5;
  1530     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
  1531     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1532     Label skip;
  1533     __ st_ptr(rOop, SP, offset + STACK_BIAS);
  1534     if (is_receiver) {
  1535       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
  1537     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1538     __ add(SP, offset + STACK_BIAS, rHandle);
  1539 #ifdef _LP64
  1540     __ movr( Assembler::rc_z, rOop, G0, rHandle );
  1541 #else
  1542     __ tst( rOop );
  1543     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1544 #endif
  1546     if (dst.first()->is_stack()) {
  1547       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1548     } else {
  1549       __ mov(rHandle, dst.first()->as_Register());
  1554 // A float arg may have to do float reg int reg conversion
  1555 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1556   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1558   if (src.first()->is_stack()) {
  1559     if (dst.first()->is_stack()) {
  1560       // stack to stack the easiest of the bunch
  1561       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1562       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1563     } else {
  1564       // stack to reg
  1565       if (dst.first()->is_Register()) {
  1566         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1567       } else {
  1568         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1571   } else if (dst.first()->is_stack()) {
  1572     // reg to stack
  1573     if (src.first()->is_Register()) {
  1574       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1575     } else {
  1576       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1578   } else {
  1579     // reg to reg
  1580     if (src.first()->is_Register()) {
  1581       if (dst.first()->is_Register()) {
  1582         // gpr -> gpr
  1583         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1584       } else {
  1585         // gpr -> fpr
  1586         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
  1587         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
  1589     } else if (dst.first()->is_Register()) {
  1590       // fpr -> gpr
  1591       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
  1592       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
  1593     } else {
  1594       // fpr -> fpr
  1595       // In theory these overlap but the ordering is such that this is likely a nop
  1596       if ( src.first() != dst.first()) {
  1597         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1603 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1604   VMRegPair src_lo(src.first());
  1605   VMRegPair src_hi(src.second());
  1606   VMRegPair dst_lo(dst.first());
  1607   VMRegPair dst_hi(dst.second());
  1608   simple_move32(masm, src_lo, dst_lo);
  1609   simple_move32(masm, src_hi, dst_hi);
  1612 // A long move
  1613 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1615   // Do the simple ones here else do two int moves
  1616   if (src.is_single_phys_reg() ) {
  1617     if (dst.is_single_phys_reg()) {
  1618       __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1619     } else {
  1620       // split src into two separate registers
  1621       // Remember hi means hi address or lsw on sparc
  1622       // Move msw to lsw
  1623       if (dst.second()->is_reg()) {
  1624         // MSW -> MSW
  1625         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
  1626         // Now LSW -> LSW
  1627         // this will only move lo -> lo and ignore hi
  1628         VMRegPair split(dst.second());
  1629         simple_move32(masm, src, split);
  1630       } else {
  1631         VMRegPair split(src.first(), L4->as_VMReg());
  1632         // MSW -> MSW (lo ie. first word)
  1633         __ srax(src.first()->as_Register(), 32, L4);
  1634         split_long_move(masm, split, dst);
  1637   } else if (dst.is_single_phys_reg()) {
  1638     if (src.is_adjacent_aligned_on_stack(2)) {
  1639       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1640     } else {
  1641       // dst is a single reg.
  1642       // Remember lo is low address not msb for stack slots
  1643       // and lo is the "real" register for registers
  1644       // src is
  1646       VMRegPair split;
  1648       if (src.first()->is_reg()) {
  1649         // src.lo (msw) is a reg, src.hi is stk/reg
  1650         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
  1651         split.set_pair(dst.first(), src.first());
  1652       } else {
  1653         // msw is stack move to L5
  1654         // lsw is stack move to dst.lo (real reg)
  1655         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
  1656         split.set_pair(dst.first(), L5->as_VMReg());
  1659       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
  1660       // msw   -> src.lo/L5,  lsw -> dst.lo
  1661       split_long_move(masm, src, split);
  1663       // So dst now has the low order correct position the
  1664       // msw half
  1665       __ sllx(split.first()->as_Register(), 32, L5);
  1667       const Register d = dst.first()->as_Register();
  1668       __ or3(L5, d, d);
  1670   } else {
  1671     // For LP64 we can probably do better.
  1672     split_long_move(masm, src, dst);
  1676 // A double move
  1677 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1679   // The painful thing here is that like long_move a VMRegPair might be
  1680   // 1: a single physical register
  1681   // 2: two physical registers (v8)
  1682   // 3: a physical reg [lo] and a stack slot [hi] (v8)
  1683   // 4: two stack slots
  1685   // Since src is always a java calling convention we know that the src pair
  1686   // is always either all registers or all stack (and aligned?)
  1688   // in a register [lo] and a stack slot [hi]
  1689   if (src.first()->is_stack()) {
  1690     if (dst.first()->is_stack()) {
  1691       // stack to stack the easiest of the bunch
  1692       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
  1693       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1694       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1695       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1696       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1697     } else {
  1698       // stack to reg
  1699       if (dst.second()->is_stack()) {
  1700         // stack -> reg, stack -> stack
  1701         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1702         if (dst.first()->is_Register()) {
  1703           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1704         } else {
  1705           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1707         // This was missing. (very rare case)
  1708         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1709       } else {
  1710         // stack -> reg
  1711         // Eventually optimize for alignment QQQ
  1712         if (dst.first()->is_Register()) {
  1713           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1714           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
  1715         } else {
  1716           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1717           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
  1721   } else if (dst.first()->is_stack()) {
  1722     // reg to stack
  1723     if (src.first()->is_Register()) {
  1724       // Eventually optimize for alignment QQQ
  1725       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1726       if (src.second()->is_stack()) {
  1727         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1728         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1729       } else {
  1730         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1732     } else {
  1733       // fpr to stack
  1734       if (src.second()->is_stack()) {
  1735         ShouldNotReachHere();
  1736       } else {
  1737         // Is the stack aligned?
  1738         if (reg2offset(dst.first()) & 0x7) {
  1739           // No do as pairs
  1740           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1741           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1742         } else {
  1743           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1747   } else {
  1748     // reg to reg
  1749     if (src.first()->is_Register()) {
  1750       if (dst.first()->is_Register()) {
  1751         // gpr -> gpr
  1752         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1753         __ mov(src.second()->as_Register(), dst.second()->as_Register());
  1754       } else {
  1755         // gpr -> fpr
  1756         // ought to be able to do a single store
  1757         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
  1758         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
  1759         // ought to be able to do a single load
  1760         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
  1761         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
  1763     } else if (dst.first()->is_Register()) {
  1764       // fpr -> gpr
  1765       // ought to be able to do a single store
  1766       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
  1767       // ought to be able to do a single load
  1768       // REMEMBER first() is low address not LSB
  1769       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
  1770       if (dst.second()->is_Register()) {
  1771         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
  1772       } else {
  1773         __ ld(FP, -4 + STACK_BIAS, L4);
  1774         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1776     } else {
  1777       // fpr -> fpr
  1778       // In theory these overlap but the ordering is such that this is likely a nop
  1779       if ( src.first() != dst.first()) {
  1780         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1786 // Creates an inner frame if one hasn't already been created, and
  1787 // saves a copy of the thread in L7_thread_cache
  1788 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
  1789   if (!*already_created) {
  1790     __ save_frame(0);
  1791     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
  1792     // Don't use save_thread because it smashes G2 and we merely want to save a
  1793     // copy
  1794     __ mov(G2_thread, L7_thread_cache);
  1795     *already_created = true;
  1799 // ---------------------------------------------------------------------------
  1800 // Generate a native wrapper for a given method.  The method takes arguments
  1801 // in the Java compiled code convention, marshals them to the native
  1802 // convention (handlizes oops, etc), transitions to native, makes the call,
  1803 // returns to java state (possibly blocking), unhandlizes any result and
  1804 // returns.
  1805 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1806                                                 methodHandle method,
  1807                                                 int total_in_args,
  1808                                                 int comp_args_on_stack, // in VMRegStackSlots
  1809                                                 BasicType *in_sig_bt,
  1810                                                 VMRegPair *in_regs,
  1811                                                 BasicType ret_type) {
  1813   // Native nmethod wrappers never take possesion of the oop arguments.
  1814   // So the caller will gc the arguments. The only thing we need an
  1815   // oopMap for is if the call is static
  1816   //
  1817   // An OopMap for lock (and class if static), and one for the VM call itself
  1818   OopMapSet *oop_maps = new OopMapSet();
  1819   intptr_t start = (intptr_t)__ pc();
  1821   // First thing make an ic check to see if we should even be here
  1823     Label L;
  1824     const Register temp_reg = G3_scratch;
  1825     Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub());
  1826     __ verify_oop(O0);
  1827     __ load_klass(O0, temp_reg);
  1828     __ cmp(temp_reg, G5_inline_cache_reg);
  1829     __ brx(Assembler::equal, true, Assembler::pt, L);
  1830     __ delayed()->nop();
  1832     __ jump_to(ic_miss, 0);
  1833     __ delayed()->nop();
  1834     __ align(CodeEntryAlignment);
  1835     __ bind(L);
  1838   int vep_offset = ((intptr_t)__ pc()) - start;
  1840 #ifdef COMPILER1
  1841   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1842     // Object.hashCode can pull the hashCode from the header word
  1843     // instead of doing a full VM transition once it's been computed.
  1844     // Since hashCode is usually polymorphic at call sites we can't do
  1845     // this optimization at the call site without a lot of work.
  1846     Label slowCase;
  1847     Register receiver             = O0;
  1848     Register result               = O0;
  1849     Register header               = G3_scratch;
  1850     Register hash                 = G3_scratch; // overwrite header value with hash value
  1851     Register mask                 = G1;         // to get hash field from header
  1853     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
  1854     // We depend on hash_mask being at most 32 bits and avoid the use of
  1855     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  1856     // vm: see markOop.hpp.
  1857     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
  1858     __ sethi(markOopDesc::hash_mask, mask);
  1859     __ btst(markOopDesc::unlocked_value, header);
  1860     __ br(Assembler::zero, false, Assembler::pn, slowCase);
  1861     if (UseBiasedLocking) {
  1862       // Check if biased and fall through to runtime if so
  1863       __ delayed()->nop();
  1864       __ btst(markOopDesc::biased_lock_bit_in_place, header);
  1865       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
  1867     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
  1869     // Check for a valid (non-zero) hash code and get its value.
  1870 #ifdef _LP64
  1871     __ srlx(header, markOopDesc::hash_shift, hash);
  1872 #else
  1873     __ srl(header, markOopDesc::hash_shift, hash);
  1874 #endif
  1875     __ andcc(hash, mask, hash);
  1876     __ br(Assembler::equal, false, Assembler::pn, slowCase);
  1877     __ delayed()->nop();
  1879     // leaf return.
  1880     __ retl();
  1881     __ delayed()->mov(hash, result);
  1882     __ bind(slowCase);
  1884 #endif // COMPILER1
  1887   // We have received a description of where all the java arg are located
  1888   // on entry to the wrapper. We need to convert these args to where
  1889   // the jni function will expect them. To figure out where they go
  1890   // we convert the java signature to a C signature by inserting
  1891   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  1893   int total_c_args = total_in_args + 1;
  1894   if (method->is_static()) {
  1895     total_c_args++;
  1898   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  1899   VMRegPair  * out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
  1901   int argc = 0;
  1902   out_sig_bt[argc++] = T_ADDRESS;
  1903   if (method->is_static()) {
  1904     out_sig_bt[argc++] = T_OBJECT;
  1907   for (int i = 0; i < total_in_args ; i++ ) {
  1908     out_sig_bt[argc++] = in_sig_bt[i];
  1911   // Now figure out where the args must be stored and how much stack space
  1912   // they require (neglecting out_preserve_stack_slots but space for storing
  1913   // the 1st six register arguments). It's weird see int_stk_helper.
  1914   //
  1915   int out_arg_slots;
  1916   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  1918   // Compute framesize for the wrapper.  We need to handlize all oops in
  1919   // registers. We must create space for them here that is disjoint from
  1920   // the windowed save area because we have no control over when we might
  1921   // flush the window again and overwrite values that gc has since modified.
  1922   // (The live window race)
  1923   //
  1924   // We always just allocate 6 word for storing down these object. This allow
  1925   // us to simply record the base and use the Ireg number to decide which
  1926   // slot to use. (Note that the reg number is the inbound number not the
  1927   // outbound number).
  1928   // We must shuffle args to match the native convention, and include var-args space.
  1930   // Calculate the total number of stack slots we will need.
  1932   // First count the abi requirement plus all of the outgoing args
  1933   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  1935   // Now the space for the inbound oop handle area
  1937   int oop_handle_offset = stack_slots;
  1938   stack_slots += 6*VMRegImpl::slots_per_word;
  1940   // Now any space we need for handlizing a klass if static method
  1942   int oop_temp_slot_offset = 0;
  1943   int klass_slot_offset = 0;
  1944   int klass_offset = -1;
  1945   int lock_slot_offset = 0;
  1946   bool is_static = false;
  1948   if (method->is_static()) {
  1949     klass_slot_offset = stack_slots;
  1950     stack_slots += VMRegImpl::slots_per_word;
  1951     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  1952     is_static = true;
  1955   // Plus a lock if needed
  1957   if (method->is_synchronized()) {
  1958     lock_slot_offset = stack_slots;
  1959     stack_slots += VMRegImpl::slots_per_word;
  1962   // Now a place to save return value or as a temporary for any gpr -> fpr moves
  1963   stack_slots += 2;
  1965   // Ok The space we have allocated will look like:
  1966   //
  1967   //
  1968   // FP-> |                     |
  1969   //      |---------------------|
  1970   //      | 2 slots for moves   |
  1971   //      |---------------------|
  1972   //      | lock box (if sync)  |
  1973   //      |---------------------| <- lock_slot_offset
  1974   //      | klass (if static)   |
  1975   //      |---------------------| <- klass_slot_offset
  1976   //      | oopHandle area      |
  1977   //      |---------------------| <- oop_handle_offset
  1978   //      | outbound memory     |
  1979   //      | based arguments     |
  1980   //      |                     |
  1981   //      |---------------------|
  1982   //      | vararg area         |
  1983   //      |---------------------|
  1984   //      |                     |
  1985   // SP-> | out_preserved_slots |
  1986   //
  1987   //
  1990   // Now compute actual number of stack words we need rounding to make
  1991   // stack properly aligned.
  1992   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  1994   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  1996   // Generate stack overflow check before creating frame
  1997   __ generate_stack_overflow_check(stack_size);
  1999   // Generate a new frame for the wrapper.
  2000   __ save(SP, -stack_size, SP);
  2002   int frame_complete = ((intptr_t)__ pc()) - start;
  2004   __ verify_thread();
  2007   //
  2008   // We immediately shuffle the arguments so that any vm call we have to
  2009   // make from here on out (sync slow path, jvmti, etc.) we will have
  2010   // captured the oops from our caller and have a valid oopMap for
  2011   // them.
  2013   // -----------------
  2014   // The Grand Shuffle
  2015   //
  2016   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  2017   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
  2018   // the class mirror instead of a receiver.  This pretty much guarantees that
  2019   // register layout will not match.  We ignore these extra arguments during
  2020   // the shuffle. The shuffle is described by the two calling convention
  2021   // vectors we have in our possession. We simply walk the java vector to
  2022   // get the source locations and the c vector to get the destinations.
  2023   // Because we have a new window and the argument registers are completely
  2024   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
  2025   // here.
  2027   // This is a trick. We double the stack slots so we can claim
  2028   // the oops in the caller's frame. Since we are sure to have
  2029   // more args than the caller doubling is enough to make
  2030   // sure we can capture all the incoming oop args from the
  2031   // caller.
  2032   //
  2033   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2034   int c_arg = total_c_args - 1;
  2035   // Record sp-based slot for receiver on stack for non-static methods
  2036   int receiver_offset = -1;
  2038   // We move the arguments backward because the floating point registers
  2039   // destination will always be to a register with a greater or equal register
  2040   // number or the stack.
  2042 #ifdef ASSERT
  2043   bool reg_destroyed[RegisterImpl::number_of_registers];
  2044   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2045   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2046     reg_destroyed[r] = false;
  2048   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2049     freg_destroyed[f] = false;
  2052 #endif /* ASSERT */
  2054   for ( int i = total_in_args - 1; i >= 0 ; i--, c_arg-- ) {
  2056 #ifdef ASSERT
  2057     if (in_regs[i].first()->is_Register()) {
  2058       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
  2059     } else if (in_regs[i].first()->is_FloatRegister()) {
  2060       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
  2062     if (out_regs[c_arg].first()->is_Register()) {
  2063       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2064     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
  2065       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
  2067 #endif /* ASSERT */
  2069     switch (in_sig_bt[i]) {
  2070       case T_ARRAY:
  2071       case T_OBJECT:
  2072         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2073                     ((i == 0) && (!is_static)),
  2074                     &receiver_offset);
  2075         break;
  2076       case T_VOID:
  2077         break;
  2079       case T_FLOAT:
  2080         float_move(masm, in_regs[i], out_regs[c_arg]);
  2081           break;
  2083       case T_DOUBLE:
  2084         assert( i + 1 < total_in_args &&
  2085                 in_sig_bt[i + 1] == T_VOID &&
  2086                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2087         double_move(masm, in_regs[i], out_regs[c_arg]);
  2088         break;
  2090       case T_LONG :
  2091         long_move(masm, in_regs[i], out_regs[c_arg]);
  2092         break;
  2094       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2096       default:
  2097         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2101   // Pre-load a static method's oop into O1.  Used both by locking code and
  2102   // the normal JNI call code.
  2103   if (method->is_static()) {
  2104     __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
  2106     // Now handlize the static class mirror in O1.  It's known not-null.
  2107     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
  2108     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2109     __ add(SP, klass_offset + STACK_BIAS, O1);
  2113   const Register L6_handle = L6;
  2115   if (method->is_synchronized()) {
  2116     __ mov(O1, L6_handle);
  2119   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
  2120   // except O6/O7. So if we must call out we must push a new frame. We immediately
  2121   // push a new frame and flush the windows.
  2123 #ifdef _LP64
  2124   intptr_t thepc = (intptr_t) __ pc();
  2126     address here = __ pc();
  2127     // Call the next instruction
  2128     __ call(here + 8, relocInfo::none);
  2129     __ delayed()->nop();
  2131 #else
  2132   intptr_t thepc = __ load_pc_address(O7, 0);
  2133 #endif /* _LP64 */
  2135   // We use the same pc/oopMap repeatedly when we call out
  2136   oop_maps->add_gc_map(thepc - start, map);
  2138   // O7 now has the pc loaded that we will use when we finally call to native.
  2140   // Save thread in L7; it crosses a bunch of VM calls below
  2141   // Don't use save_thread because it smashes G2 and we merely
  2142   // want to save a copy
  2143   __ mov(G2_thread, L7_thread_cache);
  2146   // If we create an inner frame once is plenty
  2147   // when we create it we must also save G2_thread
  2148   bool inner_frame_created = false;
  2150   // dtrace method entry support
  2152     SkipIfEqual skip_if(
  2153       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2154     // create inner frame
  2155     __ save_frame(0);
  2156     __ mov(G2_thread, L7_thread_cache);
  2157     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2158     __ call_VM_leaf(L7_thread_cache,
  2159          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2160          G2_thread, O1);
  2161     __ restore();
  2164   // RedefineClasses() tracing support for obsolete method entry
  2165   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2166     // create inner frame
  2167     __ save_frame(0);
  2168     __ mov(G2_thread, L7_thread_cache);
  2169     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2170     __ call_VM_leaf(L7_thread_cache,
  2171          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2172          G2_thread, O1);
  2173     __ restore();
  2176   // We are in the jni frame unless saved_frame is true in which case
  2177   // we are in one frame deeper (the "inner" frame). If we are in the
  2178   // "inner" frames the args are in the Iregs and if the jni frame then
  2179   // they are in the Oregs.
  2180   // If we ever need to go to the VM (for locking, jvmti) then
  2181   // we will always be in the "inner" frame.
  2183   // Lock a synchronized method
  2184   int lock_offset = -1;         // Set if locked
  2185   if (method->is_synchronized()) {
  2186     Register Roop = O1;
  2187     const Register L3_box = L3;
  2189     create_inner_frame(masm, &inner_frame_created);
  2191     __ ld_ptr(I1, 0, O1);
  2192     Label done;
  2194     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
  2195     __ add(FP, lock_offset+STACK_BIAS, L3_box);
  2196 #ifdef ASSERT
  2197     if (UseBiasedLocking) {
  2198       // making the box point to itself will make it clear it went unused
  2199       // but also be obviously invalid
  2200       __ st_ptr(L3_box, L3_box, 0);
  2202 #endif // ASSERT
  2203     //
  2204     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
  2205     //
  2206     __ compiler_lock_object(Roop, L1,    L3_box, L2);
  2207     __ br(Assembler::equal, false, Assembler::pt, done);
  2208     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
  2211     // None of the above fast optimizations worked so we have to get into the
  2212     // slow case of monitor enter.  Inline a special case of call_VM that
  2213     // disallows any pending_exception.
  2214     __ mov(Roop, O0);            // Need oop in O0
  2215     __ mov(L3_box, O1);
  2217     // Record last_Java_sp, in case the VM code releases the JVM lock.
  2219     __ set_last_Java_frame(FP, I7);
  2221     // do the call
  2222     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
  2223     __ delayed()->mov(L7_thread_cache, O2);
  2225     __ restore_thread(L7_thread_cache); // restore G2_thread
  2226     __ reset_last_Java_frame();
  2228 #ifdef ASSERT
  2229     { Label L;
  2230     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2231     __ br_null(O0, false, Assembler::pt, L);
  2232     __ delayed()->nop();
  2233     __ stop("no pending exception allowed on exit from IR::monitorenter");
  2234     __ bind(L);
  2236 #endif
  2237     __ bind(done);
  2241   // Finally just about ready to make the JNI call
  2243   __ flush_windows();
  2244   if (inner_frame_created) {
  2245     __ restore();
  2246   } else {
  2247     // Store only what we need from this frame
  2248     // QQQ I think that non-v9 (like we care) we don't need these saves
  2249     // either as the flush traps and the current window goes too.
  2250     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2251     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2254   // get JNIEnv* which is first argument to native
  2256   __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
  2258   // Use that pc we placed in O7 a while back as the current frame anchor
  2260   __ set_last_Java_frame(SP, O7);
  2262   // Transition from _thread_in_Java to _thread_in_native.
  2263   __ set(_thread_in_native, G3_scratch);
  2264   __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
  2266   // We flushed the windows ages ago now mark them as flushed
  2268   // mark windows as flushed
  2269   __ set(JavaFrameAnchor::flushed, G3_scratch);
  2271   Address flags(G2_thread,
  2272                 0,
  2273                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
  2275 #ifdef _LP64
  2276   Address dest(O7, method->native_function());
  2277   __ relocate(relocInfo::runtime_call_type);
  2278   __ jumpl_to(dest, O7);
  2279 #else
  2280   __ call(method->native_function(), relocInfo::runtime_call_type);
  2281 #endif
  2282   __ delayed()->st(G3_scratch, flags);
  2284   __ restore_thread(L7_thread_cache); // restore G2_thread
  2286   // Unpack native results.  For int-types, we do any needed sign-extension
  2287   // and move things into I0.  The return value there will survive any VM
  2288   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
  2289   // specially in the slow-path code.
  2290   switch (ret_type) {
  2291   case T_VOID:    break;        // Nothing to do!
  2292   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
  2293   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
  2294   // In 64 bits build result is in O0, in O0, O1 in 32bit build
  2295   case T_LONG:
  2296 #ifndef _LP64
  2297                   __ mov(O1, I1);
  2298 #endif
  2299                   // Fall thru
  2300   case T_OBJECT:                // Really a handle
  2301   case T_ARRAY:
  2302   case T_INT:
  2303                   __ mov(O0, I0);
  2304                   break;
  2305   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
  2306   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
  2307   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
  2308   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
  2309     break;                      // Cannot de-handlize until after reclaiming jvm_lock
  2310   default:
  2311     ShouldNotReachHere();
  2314   // must we block?
  2316   // Block, if necessary, before resuming in _thread_in_Java state.
  2317   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2318   { Label no_block;
  2319     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
  2321     // Switch thread to "native transition" state before reading the synchronization state.
  2322     // This additional state is necessary because reading and testing the synchronization
  2323     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2324     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2325     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2326     //     Thread A is resumed to finish this native method, but doesn't block here since it
  2327     //     didn't see any synchronization is progress, and escapes.
  2328     __ set(_thread_in_native_trans, G3_scratch);
  2329     __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
  2330     if(os::is_MP()) {
  2331       if (UseMembar) {
  2332         // Force this write out before the read below
  2333         __ membar(Assembler::StoreLoad);
  2334       } else {
  2335         // Write serialization page so VM thread can do a pseudo remote membar.
  2336         // We use the current thread pointer to calculate a thread specific
  2337         // offset to write to within the page. This minimizes bus traffic
  2338         // due to cache line collision.
  2339         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  2342     __ load_contents(sync_state, G3_scratch);
  2343     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  2345     Label L;
  2346     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
  2347     __ br(Assembler::notEqual, false, Assembler::pn, L);
  2348     __ delayed()->
  2349       ld(suspend_state, G3_scratch);
  2350     __ cmp(G3_scratch, 0);
  2351     __ br(Assembler::equal, false, Assembler::pt, no_block);
  2352     __ delayed()->nop();
  2353     __ bind(L);
  2355     // Block.  Save any potential method result value before the operation and
  2356     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2357     // lets us share the oopMap we used when we went native rather the create
  2358     // a distinct one for this pc
  2359     //
  2360     save_native_result(masm, ret_type, stack_slots);
  2361     __ call_VM_leaf(L7_thread_cache,
  2362                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  2363                     G2_thread);
  2365     // Restore any method result value
  2366     restore_native_result(masm, ret_type, stack_slots);
  2367     __ bind(no_block);
  2370   // thread state is thread_in_native_trans. Any safepoint blocking has already
  2371   // happened so we can now change state to _thread_in_Java.
  2374   __ set(_thread_in_Java, G3_scratch);
  2375   __ st(G3_scratch, G2_thread, in_bytes(JavaThread::thread_state_offset()));
  2378   Label no_reguard;
  2379   __ ld(G2_thread, in_bytes(JavaThread::stack_guard_state_offset()), G3_scratch);
  2380   __ cmp(G3_scratch, JavaThread::stack_guard_yellow_disabled);
  2381   __ br(Assembler::notEqual, false, Assembler::pt, no_reguard);
  2382   __ delayed()->nop();
  2384     save_native_result(masm, ret_type, stack_slots);
  2385   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2386   __ delayed()->nop();
  2388   __ restore_thread(L7_thread_cache); // restore G2_thread
  2389     restore_native_result(masm, ret_type, stack_slots);
  2391   __ bind(no_reguard);
  2393   // Handle possible exception (will unlock if necessary)
  2395   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
  2397   // Unlock
  2398   if (method->is_synchronized()) {
  2399     Label done;
  2400     Register I2_ex_oop = I2;
  2401     const Register L3_box = L3;
  2402     // Get locked oop from the handle we passed to jni
  2403     __ ld_ptr(L6_handle, 0, L4);
  2404     __ add(SP, lock_offset+STACK_BIAS, L3_box);
  2405     // Must save pending exception around the slow-path VM call.  Since it's a
  2406     // leaf call, the pending exception (if any) can be kept in a register.
  2407     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
  2408     // Now unlock
  2409     //                       (Roop, Rmark, Rbox,   Rscratch)
  2410     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
  2411     __ br(Assembler::equal, false, Assembler::pt, done);
  2412     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
  2414     // save and restore any potential method result value around the unlocking
  2415     // operation.  Will save in I0 (or stack for FP returns).
  2416     save_native_result(masm, ret_type, stack_slots);
  2418     // Must clear pending-exception before re-entering the VM.  Since this is
  2419     // a leaf call, pending-exception-oop can be safely kept in a register.
  2420     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2422     // slow case of monitor enter.  Inline a special case of call_VM that
  2423     // disallows any pending_exception.
  2424     __ mov(L3_box, O1);
  2426     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
  2427     __ delayed()->mov(L4, O0);              // Need oop in O0
  2429     __ restore_thread(L7_thread_cache); // restore G2_thread
  2431 #ifdef ASSERT
  2432     { Label L;
  2433     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2434     __ br_null(O0, false, Assembler::pt, L);
  2435     __ delayed()->nop();
  2436     __ stop("no pending exception allowed on exit from IR::monitorexit");
  2437     __ bind(L);
  2439 #endif
  2440     restore_native_result(masm, ret_type, stack_slots);
  2441     // check_forward_pending_exception jump to forward_exception if any pending
  2442     // exception is set.  The forward_exception routine expects to see the
  2443     // exception in pending_exception and not in a register.  Kind of clumsy,
  2444     // since all folks who branch to forward_exception must have tested
  2445     // pending_exception first and hence have it in a register already.
  2446     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2447     __ bind(done);
  2450   // Tell dtrace about this method exit
  2452     SkipIfEqual skip_if(
  2453       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2454     save_native_result(masm, ret_type, stack_slots);
  2455     __ set_oop_constant(JNIHandles::make_local(method()), O1);
  2456     __ call_VM_leaf(L7_thread_cache,
  2457        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2458        G2_thread, O1);
  2459     restore_native_result(masm, ret_type, stack_slots);
  2462   // Clear "last Java frame" SP and PC.
  2463   __ verify_thread(); // G2_thread must be correct
  2464   __ reset_last_Java_frame();
  2466   // Unpack oop result
  2467   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2468       Label L;
  2469       __ addcc(G0, I0, G0);
  2470       __ brx(Assembler::notZero, true, Assembler::pt, L);
  2471       __ delayed()->ld_ptr(I0, 0, I0);
  2472       __ mov(G0, I0);
  2473       __ bind(L);
  2474       __ verify_oop(I0);
  2477   // reset handle block
  2478   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
  2479   __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
  2481   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
  2482   check_forward_pending_exception(masm, G3_scratch);
  2485   // Return
  2487 #ifndef _LP64
  2488   if (ret_type == T_LONG) {
  2490     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
  2491     __ sllx(I0, 32, G1);          // Shift bits into high G1
  2492     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  2493     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  2495 #endif
  2497   __ ret();
  2498   __ delayed()->restore();
  2500   __ flush();
  2502   nmethod *nm = nmethod::new_native_nmethod(method,
  2503                                             masm->code(),
  2504                                             vep_offset,
  2505                                             frame_complete,
  2506                                             stack_slots / VMRegImpl::slots_per_word,
  2507                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2508                                             in_ByteSize(lock_offset),
  2509                                             oop_maps);
  2510   return nm;
  2514 #ifdef HAVE_DTRACE_H
  2515 // ---------------------------------------------------------------------------
  2516 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2517 // in the Java compiled code convention, marshals them to the native
  2518 // abi and then leaves nops at the position you would expect to call a native
  2519 // function. When the probe is enabled the nops are replaced with a trap
  2520 // instruction that dtrace inserts and the trace will cause a notification
  2521 // to dtrace.
  2522 //
  2523 // The probes are only able to take primitive types and java/lang/String as
  2524 // arguments.  No other java types are allowed. Strings are converted to utf8
  2525 // strings so that from dtrace point of view java strings are converted to C
  2526 // strings. There is an arbitrary fixed limit on the total space that a method
  2527 // can use for converting the strings. (256 chars per string in the signature).
  2528 // So any java string larger then this is truncated.
  2530 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2531 static bool offsets_initialized = false;
  2533 static VMRegPair reg64_to_VMRegPair(Register r) {
  2534   VMRegPair ret;
  2535   if (wordSize == 8) {
  2536     ret.set2(r->as_VMReg());
  2537   } else {
  2538     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
  2540   return ret;
  2544 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2545     MacroAssembler *masm, methodHandle method) {
  2548   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2549   // be single threaded in this method.
  2550   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2552   // Fill in the signature array, for the calling-convention call.
  2553   int total_args_passed = method->size_of_parameters();
  2555   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2556   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2558   // The signature we are going to use for the trap that dtrace will see
  2559   // java/lang/String is converted. We drop "this" and any other object
  2560   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2561   // is converted to a two-slot long, which is why we double the allocation).
  2562   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2563   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2565   int i=0;
  2566   int total_strings = 0;
  2567   int first_arg_to_pass = 0;
  2568   int total_c_args = 0;
  2570   // Skip the receiver as dtrace doesn't want to see it
  2571   if( !method->is_static() ) {
  2572     in_sig_bt[i++] = T_OBJECT;
  2573     first_arg_to_pass = 1;
  2576   SignatureStream ss(method->signature());
  2577   for ( ; !ss.at_return_type(); ss.next()) {
  2578     BasicType bt = ss.type();
  2579     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2580     out_sig_bt[total_c_args++] = bt;
  2581     if( bt == T_OBJECT) {
  2582       symbolOop s = ss.as_symbol_or_null();
  2583       if (s == vmSymbols::java_lang_String()) {
  2584         total_strings++;
  2585         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2586       } else if (s == vmSymbols::java_lang_Boolean() ||
  2587                  s == vmSymbols::java_lang_Byte()) {
  2588         out_sig_bt[total_c_args-1] = T_BYTE;
  2589       } else if (s == vmSymbols::java_lang_Character() ||
  2590                  s == vmSymbols::java_lang_Short()) {
  2591         out_sig_bt[total_c_args-1] = T_SHORT;
  2592       } else if (s == vmSymbols::java_lang_Integer() ||
  2593                  s == vmSymbols::java_lang_Float()) {
  2594         out_sig_bt[total_c_args-1] = T_INT;
  2595       } else if (s == vmSymbols::java_lang_Long() ||
  2596                  s == vmSymbols::java_lang_Double()) {
  2597         out_sig_bt[total_c_args-1] = T_LONG;
  2598         out_sig_bt[total_c_args++] = T_VOID;
  2600     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2601       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2602       // We convert double to long
  2603       out_sig_bt[total_c_args-1] = T_LONG;
  2604       out_sig_bt[total_c_args++] = T_VOID;
  2605     } else if ( bt == T_FLOAT) {
  2606       // We convert float to int
  2607       out_sig_bt[total_c_args-1] = T_INT;
  2611   assert(i==total_args_passed, "validly parsed signature");
  2613   // Now get the compiled-Java layout as input arguments
  2614   int comp_args_on_stack;
  2615   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2616       in_sig_bt, in_regs, total_args_passed, false);
  2618   // We have received a description of where all the java arg are located
  2619   // on entry to the wrapper. We need to convert these args to where
  2620   // the a  native (non-jni) function would expect them. To figure out
  2621   // where they go we convert the java signature to a C signature and remove
  2622   // T_VOID for any long/double we might have received.
  2625   // Now figure out where the args must be stored and how much stack space
  2626   // they require (neglecting out_preserve_stack_slots but space for storing
  2627   // the 1st six register arguments). It's weird see int_stk_helper.
  2628   //
  2629   int out_arg_slots;
  2630   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2632   // Calculate the total number of stack slots we will need.
  2634   // First count the abi requirement plus all of the outgoing args
  2635   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2637   // Plus a temp for possible converion of float/double/long register args
  2639   int conversion_temp = stack_slots;
  2640   stack_slots += 2;
  2643   // Now space for the string(s) we must convert
  2645   int string_locs = stack_slots;
  2646   stack_slots += total_strings *
  2647                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
  2649   // Ok The space we have allocated will look like:
  2650   //
  2651   //
  2652   // FP-> |                     |
  2653   //      |---------------------|
  2654   //      | string[n]           |
  2655   //      |---------------------| <- string_locs[n]
  2656   //      | string[n-1]         |
  2657   //      |---------------------| <- string_locs[n-1]
  2658   //      | ...                 |
  2659   //      | ...                 |
  2660   //      |---------------------| <- string_locs[1]
  2661   //      | string[0]           |
  2662   //      |---------------------| <- string_locs[0]
  2663   //      | temp                |
  2664   //      |---------------------| <- conversion_temp
  2665   //      | outbound memory     |
  2666   //      | based arguments     |
  2667   //      |                     |
  2668   //      |---------------------|
  2669   //      |                     |
  2670   // SP-> | out_preserved_slots |
  2671   //
  2672   //
  2674   // Now compute actual number of stack words we need rounding to make
  2675   // stack properly aligned.
  2676   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2678   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2680   intptr_t start = (intptr_t)__ pc();
  2682   // First thing make an ic check to see if we should even be here
  2685     Label L;
  2686     const Register temp_reg = G3_scratch;
  2687     Address ic_miss(temp_reg, SharedRuntime::get_ic_miss_stub());
  2688     __ verify_oop(O0);
  2689     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
  2690     __ cmp(temp_reg, G5_inline_cache_reg);
  2691     __ brx(Assembler::equal, true, Assembler::pt, L);
  2692     __ delayed()->nop();
  2694     __ jump_to(ic_miss, 0);
  2695     __ delayed()->nop();
  2696     __ align(CodeEntryAlignment);
  2697     __ bind(L);
  2700   int vep_offset = ((intptr_t)__ pc()) - start;
  2703   // The instruction at the verified entry point must be 5 bytes or longer
  2704   // because it can be patched on the fly by make_non_entrant. The stack bang
  2705   // instruction fits that requirement.
  2707   // Generate stack overflow check before creating frame
  2708   __ generate_stack_overflow_check(stack_size);
  2710   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
  2711          "valid size for make_non_entrant");
  2713   // Generate a new frame for the wrapper.
  2714   __ save(SP, -stack_size, SP);
  2716   // Frame is now completed as far a size and linkage.
  2718   int frame_complete = ((intptr_t)__ pc()) - start;
  2720 #ifdef ASSERT
  2721   bool reg_destroyed[RegisterImpl::number_of_registers];
  2722   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2723   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2724     reg_destroyed[r] = false;
  2726   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2727     freg_destroyed[f] = false;
  2730 #endif /* ASSERT */
  2732   VMRegPair zero;
  2733   const Register g0 = G0; // without this we get a compiler warning (why??)
  2734   zero.set2(g0->as_VMReg());
  2736   int c_arg, j_arg;
  2738   Register conversion_off = noreg;
  2740   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2741        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2743     VMRegPair src = in_regs[j_arg];
  2744     VMRegPair dst = out_regs[c_arg];
  2746 #ifdef ASSERT
  2747     if (src.first()->is_Register()) {
  2748       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
  2749     } else if (src.first()->is_FloatRegister()) {
  2750       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
  2751                                                FloatRegisterImpl::S)], "ack!");
  2753     if (dst.first()->is_Register()) {
  2754       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
  2755     } else if (dst.first()->is_FloatRegister()) {
  2756       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
  2757                                                  FloatRegisterImpl::S)] = true;
  2759 #endif /* ASSERT */
  2761     switch (in_sig_bt[j_arg]) {
  2762       case T_ARRAY:
  2763       case T_OBJECT:
  2765           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
  2766               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2767             // need to unbox a one-slot value
  2768             Register in_reg = L0;
  2769             Register tmp = L2;
  2770             if ( src.first()->is_reg() ) {
  2771               in_reg = src.first()->as_Register();
  2772             } else {
  2773               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
  2774                      "must be");
  2775               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
  2777             // If the final destination is an acceptable register
  2778             if ( dst.first()->is_reg() ) {
  2779               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
  2780                 tmp = dst.first()->as_Register();
  2784             Label skipUnbox;
  2785             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
  2786               __ mov(G0, tmp->successor());
  2788             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
  2789             __ delayed()->mov(G0, tmp);
  2791             BasicType bt = out_sig_bt[c_arg];
  2792             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  2793             switch (bt) {
  2794                 case T_BYTE:
  2795                   __ ldub(in_reg, box_offset, tmp); break;
  2796                 case T_SHORT:
  2797                   __ lduh(in_reg, box_offset, tmp); break;
  2798                 case T_INT:
  2799                   __ ld(in_reg, box_offset, tmp); break;
  2800                 case T_LONG:
  2801                   __ ld_long(in_reg, box_offset, tmp); break;
  2802                 default: ShouldNotReachHere();
  2805             __ bind(skipUnbox);
  2806             // If tmp wasn't final destination copy to final destination
  2807             if (tmp == L2) {
  2808               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
  2809               if (out_sig_bt[c_arg] == T_LONG) {
  2810                 long_move(masm, tmp_as_VM, dst);
  2811               } else {
  2812                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
  2815             if (out_sig_bt[c_arg] == T_LONG) {
  2816               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  2817               ++c_arg; // move over the T_VOID to keep the loop indices in sync
  2819           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
  2820             Register s =
  2821                 src.first()->is_reg() ? src.first()->as_Register() : L2;
  2822             Register d =
  2823                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  2825             // We store the oop now so that the conversion pass can reach
  2826             // while in the inner frame. This will be the only store if
  2827             // the oop is NULL.
  2828             if (s != L2) {
  2829               // src is register
  2830               if (d != L2) {
  2831                 // dst is register
  2832                 __ mov(s, d);
  2833               } else {
  2834                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
  2835                           STACK_BIAS), "must be");
  2836                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
  2838             } else {
  2839                 // src not a register
  2840                 assert(Assembler::is_simm13(reg2offset(src.first()) +
  2841                            STACK_BIAS), "must be");
  2842                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
  2843                 if (d == L2) {
  2844                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
  2845                              STACK_BIAS), "must be");
  2846                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
  2849           } else if (out_sig_bt[c_arg] != T_VOID) {
  2850             // Convert the arg to NULL
  2851             if (dst.first()->is_reg()) {
  2852               __ mov(G0, dst.first()->as_Register());
  2853             } else {
  2854               assert(Assembler::is_simm13(reg2offset(dst.first()) +
  2855                          STACK_BIAS), "must be");
  2856               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
  2860         break;
  2861       case T_VOID:
  2862         break;
  2864       case T_FLOAT:
  2865         if (src.first()->is_stack()) {
  2866           // Stack to stack/reg is simple
  2867           move32_64(masm, src, dst);
  2868         } else {
  2869           if (dst.first()->is_reg()) {
  2870             // freg -> reg
  2871             int off =
  2872               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  2873             Register d = dst.first()->as_Register();
  2874             if (Assembler::is_simm13(off)) {
  2875               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2876                      SP, off);
  2877               __ ld(SP, off, d);
  2878             } else {
  2879               if (conversion_off == noreg) {
  2880                 __ set(off, L6);
  2881                 conversion_off = L6;
  2883               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2884                      SP, conversion_off);
  2885               __ ld(SP, conversion_off , d);
  2887           } else {
  2888             // freg -> mem
  2889             int off = STACK_BIAS + reg2offset(dst.first());
  2890             if (Assembler::is_simm13(off)) {
  2891               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2892                      SP, off);
  2893             } else {
  2894               if (conversion_off == noreg) {
  2895                 __ set(off, L6);
  2896                 conversion_off = L6;
  2898               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  2899                      SP, conversion_off);
  2903         break;
  2905       case T_DOUBLE:
  2906         assert( j_arg + 1 < total_args_passed &&
  2907                 in_sig_bt[j_arg + 1] == T_VOID &&
  2908                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2909         if (src.first()->is_stack()) {
  2910           // Stack to stack/reg is simple
  2911           long_move(masm, src, dst);
  2912         } else {
  2913           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  2915           // Destination could be an odd reg on 32bit in which case
  2916           // we can't load direct to the destination.
  2918           if (!d->is_even() && wordSize == 4) {
  2919             d = L2;
  2921           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  2922           if (Assembler::is_simm13(off)) {
  2923             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  2924                    SP, off);
  2925             __ ld_long(SP, off, d);
  2926           } else {
  2927             if (conversion_off == noreg) {
  2928               __ set(off, L6);
  2929               conversion_off = L6;
  2931             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  2932                    SP, conversion_off);
  2933             __ ld_long(SP, conversion_off, d);
  2935           if (d == L2) {
  2936             long_move(masm, reg64_to_VMRegPair(L2), dst);
  2939         break;
  2941       case T_LONG :
  2942         // 32bit can't do a split move of something like g1 -> O0, O1
  2943         // so use a memory temp
  2944         if (src.is_single_phys_reg() && wordSize == 4) {
  2945           Register tmp = L2;
  2946           if (dst.first()->is_reg() &&
  2947               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
  2948             tmp = dst.first()->as_Register();
  2951           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  2952           if (Assembler::is_simm13(off)) {
  2953             __ stx(src.first()->as_Register(), SP, off);
  2954             __ ld_long(SP, off, tmp);
  2955           } else {
  2956             if (conversion_off == noreg) {
  2957               __ set(off, L6);
  2958               conversion_off = L6;
  2960             __ stx(src.first()->as_Register(), SP, conversion_off);
  2961             __ ld_long(SP, conversion_off, tmp);
  2964           if (tmp == L2) {
  2965             long_move(masm, reg64_to_VMRegPair(L2), dst);
  2967         } else {
  2968           long_move(masm, src, dst);
  2970         break;
  2972       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2974       default:
  2975         move32_64(masm, src, dst);
  2980   // If we have any strings we must store any register based arg to the stack
  2981   // This includes any still live xmm registers too.
  2983   if (total_strings > 0 ) {
  2985     // protect all the arg registers
  2986     __ save_frame(0);
  2987     __ mov(G2_thread, L7_thread_cache);
  2988     const Register L2_string_off = L2;
  2990     // Get first string offset
  2991     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
  2993     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
  2994       if (out_sig_bt[c_arg] == T_ADDRESS) {
  2996         VMRegPair dst = out_regs[c_arg];
  2997         const Register d = dst.first()->is_reg() ?
  2998             dst.first()->as_Register()->after_save() : noreg;
  3000         // It's a string the oop and it was already copied to the out arg
  3001         // position
  3002         if (d != noreg) {
  3003           __ mov(d, O0);
  3004         } else {
  3005           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3006                  "must be");
  3007           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
  3009         Label skip;
  3011         __ br_null(O0, false, Assembler::pn, skip);
  3012         __ delayed()->add(FP, L2_string_off, O1);
  3014         if (d != noreg) {
  3015           __ mov(O1, d);
  3016         } else {
  3017           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3018                  "must be");
  3019           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
  3022         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
  3023                 relocInfo::runtime_call_type);
  3024         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
  3026         __ bind(skip);
  3031     __ mov(L7_thread_cache, G2_thread);
  3032     __ restore();
  3037   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3038   // patch in the trap
  3040   int patch_offset = ((intptr_t)__ pc()) - start;
  3042   __ nop();
  3045   // Return
  3047   __ ret();
  3048   __ delayed()->restore();
  3050   __ flush();
  3052   nmethod *nm = nmethod::new_dtrace_nmethod(
  3053       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3054       stack_slots / VMRegImpl::slots_per_word);
  3055   return nm;
  3059 #endif // HAVE_DTRACE_H
  3061 // this function returns the adjust size (in number of words) to a c2i adapter
  3062 // activation for use during deoptimization
  3063 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  3064   assert(callee_locals >= callee_parameters,
  3065           "test and remove; got more parms than locals");
  3066   if (callee_locals < callee_parameters)
  3067     return 0;                   // No adjustment for negative locals
  3068   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords();
  3069   return round_to(diff, WordsPerLong);
  3072 // "Top of Stack" slots that may be unused by the calling convention but must
  3073 // otherwise be preserved.
  3074 // On Intel these are not necessary and the value can be zero.
  3075 // On Sparc this describes the words reserved for storing a register window
  3076 // when an interrupt occurs.
  3077 uint SharedRuntime::out_preserve_stack_slots() {
  3078   return frame::register_save_words * VMRegImpl::slots_per_word;
  3081 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
  3082 //
  3083 // Common out the new frame generation for deopt and uncommon trap
  3084 //
  3085   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
  3086   Register        Oreturn0           = O0;
  3087   Register        Oreturn1           = O1;
  3088   Register        O2UnrollBlock      = O2;
  3089   Register        O3array            = O3;         // Array of frame sizes (input)
  3090   Register        O4array_size       = O4;         // number of frames (input)
  3091   Register        O7frame_size       = O7;         // number of frames (input)
  3093   __ ld_ptr(O3array, 0, O7frame_size);
  3094   __ sub(G0, O7frame_size, O7frame_size);
  3095   __ save(SP, O7frame_size, SP);
  3096   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
  3098   #ifdef ASSERT
  3099   // make sure that the frames are aligned properly
  3100 #ifndef _LP64
  3101   __ btst(wordSize*2-1, SP);
  3102   __ breakpoint_trap(Assembler::notZero);
  3103 #endif
  3104   #endif
  3106   // Deopt needs to pass some extra live values from frame to frame
  3108   if (deopt) {
  3109     __ mov(Oreturn0->after_save(), Oreturn0);
  3110     __ mov(Oreturn1->after_save(), Oreturn1);
  3113   __ mov(O4array_size->after_save(), O4array_size);
  3114   __ sub(O4array_size, 1, O4array_size);
  3115   __ mov(O3array->after_save(), O3array);
  3116   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
  3117   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
  3119   #ifdef ASSERT
  3120   // trash registers to show a clear pattern in backtraces
  3121   __ set(0xDEAD0000, I0);
  3122   __ add(I0,  2, I1);
  3123   __ add(I0,  4, I2);
  3124   __ add(I0,  6, I3);
  3125   __ add(I0,  8, I4);
  3126   // Don't touch I5 could have valuable savedSP
  3127   __ set(0xDEADBEEF, L0);
  3128   __ mov(L0, L1);
  3129   __ mov(L0, L2);
  3130   __ mov(L0, L3);
  3131   __ mov(L0, L4);
  3132   __ mov(L0, L5);
  3134   // trash the return value as there is nothing to return yet
  3135   __ set(0xDEAD0001, O7);
  3136   #endif
  3138   __ mov(SP, O5_savedSP);
  3142 static void make_new_frames(MacroAssembler* masm, bool deopt) {
  3143   //
  3144   // loop through the UnrollBlock info and create new frames
  3145   //
  3146   Register        G3pcs              = G3_scratch;
  3147   Register        Oreturn0           = O0;
  3148   Register        Oreturn1           = O1;
  3149   Register        O2UnrollBlock      = O2;
  3150   Register        O3array            = O3;
  3151   Register        O4array_size       = O4;
  3152   Label           loop;
  3154   // Before we make new frames, check to see if stack is available.
  3155   // Do this after the caller's return address is on top of stack
  3156   if (UseStackBanging) {
  3157     // Get total frame size for interpreted frames
  3158     __ ld(Address(O2UnrollBlock, 0,
  3159          Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()), O4);
  3160     __ bang_stack_size(O4, O3, G3_scratch);
  3163   __ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()), O4array_size);
  3164   __ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()), G3pcs);
  3166   __ ld_ptr(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()), O3array);
  3168   // Adjust old interpreter frame to make space for new frame's extra java locals
  3169   //
  3170   // We capture the original sp for the transition frame only because it is needed in
  3171   // order to properly calculate interpreter_sp_adjustment. Even though in real life
  3172   // every interpreter frame captures a savedSP it is only needed at the transition
  3173   // (fortunately). If we had to have it correct everywhere then we would need to
  3174   // be told the sp_adjustment for each frame we create. If the frame size array
  3175   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
  3176   // for each frame we create and keep up the illusion every where.
  3177   //
  3179   __ ld(Address(O2UnrollBlock, 0, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()), O7);
  3180   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
  3181   __ sub(SP, O7, SP);
  3183 #ifdef ASSERT
  3184   // make sure that there is at least one entry in the array
  3185   __ tst(O4array_size);
  3186   __ breakpoint_trap(Assembler::zero);
  3187 #endif
  3189   // Now push the new interpreter frames
  3190   __ bind(loop);
  3192   // allocate a new frame, filling the registers
  3194   gen_new_frame(masm, deopt);        // allocate an interpreter frame
  3196   __ tst(O4array_size);
  3197   __ br(Assembler::notZero, false, Assembler::pn, loop);
  3198   __ delayed()->add(O3array, wordSize, O3array);
  3199   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
  3203 //------------------------------generate_deopt_blob----------------------------
  3204 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3205 // instead.
  3206 void SharedRuntime::generate_deopt_blob() {
  3207   // allocate space for the code
  3208   ResourceMark rm;
  3209   // setup code generation tools
  3210   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
  3211 #ifdef _LP64
  3212   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
  3213 #else
  3214   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
  3215   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
  3216   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
  3217 #endif /* _LP64 */
  3218   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3219   FloatRegister   Freturn0           = F0;
  3220   Register        Greturn1           = G1;
  3221   Register        Oreturn0           = O0;
  3222   Register        Oreturn1           = O1;
  3223   Register        O2UnrollBlock      = O2;
  3224   Register        O3tmp              = O3;
  3225   Register        I5exception_tmp    = I5;
  3226   Register        G4exception_tmp    = G4_scratch;
  3227   int             frame_size_words;
  3228   Address         saved_Freturn0_addr(FP, 0, -sizeof(double) + STACK_BIAS);
  3229 #if !defined(_LP64) && defined(COMPILER2)
  3230   Address         saved_Greturn1_addr(FP, 0, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
  3231 #endif
  3232   Label           cont;
  3234   OopMapSet *oop_maps = new OopMapSet();
  3236   //
  3237   // This is the entry point for code which is returning to a de-optimized
  3238   // frame.
  3239   // The steps taken by this frame are as follows:
  3240   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
  3241   //     and all potentially live registers (at a pollpoint many registers can be live).
  3242   //
  3243   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
  3244   //     returns information about the number and size of interpreter frames
  3245   //     which are equivalent to the frame which is being deoptimized)
  3246   //   - deallocate the unpack frame, restoring only results values. Other
  3247   //     volatile registers will now be captured in the vframeArray as needed.
  3248   //   - deallocate the deoptimization frame
  3249   //   - in a loop using the information returned in the previous step
  3250   //     push new interpreter frames (take care to propagate the return
  3251   //     values through each new frame pushed)
  3252   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
  3253   //   - call the C routine: Deoptimization::unpack_frames (this function
  3254   //     lays out values on the interpreter frame which was just created)
  3255   //   - deallocate the dummy unpack_frame
  3256   //   - ensure that all the return values are correctly set and then do
  3257   //     a return to the interpreter entry point
  3258   //
  3259   // Refer to the following methods for more information:
  3260   //   - Deoptimization::fetch_unroll_info
  3261   //   - Deoptimization::unpack_frames
  3263   OopMap* map = NULL;
  3265   int start = __ offset();
  3267   // restore G2, the trampoline destroyed it
  3268   __ get_thread();
  3270   // On entry we have been called by the deoptimized nmethod with a call that
  3271   // replaced the original call (or safepoint polling location) so the deoptimizing
  3272   // pc is now in O7. Return values are still in the expected places
  3274   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3275   __ ba(false, cont);
  3276   __ delayed()->mov(Deoptimization::Unpack_deopt, I5exception_tmp);
  3278   int exception_offset = __ offset() - start;
  3280   // restore G2, the trampoline destroyed it
  3281   __ get_thread();
  3283   // On entry we have been jumped to by the exception handler (or exception_blob
  3284   // for server).  O0 contains the exception oop and O7 contains the original
  3285   // exception pc.  So if we push a frame here it will look to the
  3286   // stack walking code (fetch_unroll_info) just like a normal call so
  3287   // state will be extracted normally.
  3289   // save exception oop in JavaThread and fall through into the
  3290   // exception_in_tls case since they are handled in same way except
  3291   // for where the pending exception is kept.
  3292   __ st_ptr(Oexception, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
  3294   //
  3295   // Vanilla deoptimization with an exception pending in exception_oop
  3296   //
  3297   int exception_in_tls_offset = __ offset() - start;
  3299   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3300   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3302   // Restore G2_thread
  3303   __ get_thread();
  3305 #ifdef ASSERT
  3307     // verify that there is really an exception oop in exception_oop
  3308     Label has_exception;
  3309     __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
  3310     __ br_notnull(Oexception, false, Assembler::pt, has_exception);
  3311     __ delayed()-> nop();
  3312     __ stop("no exception in thread");
  3313     __ bind(has_exception);
  3315     // verify that there is no pending exception
  3316     Label no_pending_exception;
  3317     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  3318     __ ld_ptr(exception_addr, Oexception);
  3319     __ br_null(Oexception, false, Assembler::pt, no_pending_exception);
  3320     __ delayed()->nop();
  3321     __ stop("must not have pending exception here");
  3322     __ bind(no_pending_exception);
  3324 #endif
  3326   __ ba(false, cont);
  3327   __ delayed()->mov(Deoptimization::Unpack_exception, I5exception_tmp);;
  3329   //
  3330   // Reexecute entry, similar to c2 uncommon trap
  3331   //
  3332   int reexecute_offset = __ offset() - start;
  3334   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3335   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3337   __ mov(Deoptimization::Unpack_reexecute, I5exception_tmp);
  3339   __ bind(cont);
  3341   __ set_last_Java_frame(SP, noreg);
  3343   // do the call by hand so we can get the oopmap
  3345   __ mov(G2_thread, L7_thread_cache);
  3346   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
  3347   __ delayed()->mov(G2_thread, O0);
  3349   // Set an oopmap for the call site this describes all our saved volatile registers
  3351   oop_maps->add_gc_map( __ offset()-start, map);
  3353   __ mov(L7_thread_cache, G2_thread);
  3355   __ reset_last_Java_frame();
  3357   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
  3358   // so this move will survive
  3360   __ mov(I5exception_tmp, G4exception_tmp);
  3362   __ mov(O0, O2UnrollBlock->after_save());
  3364   RegisterSaver::restore_result_registers(masm);
  3366   Label noException;
  3367   __ cmp(G4exception_tmp, Deoptimization::Unpack_exception);   // Was exception pending?
  3368   __ br(Assembler::notEqual, false, Assembler::pt, noException);
  3369   __ delayed()->nop();
  3371   // Move the pending exception from exception_oop to Oexception so
  3372   // the pending exception will be picked up the interpreter.
  3373   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
  3374   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
  3375   __ bind(noException);
  3377   // deallocate the deoptimization frame taking care to preserve the return values
  3378   __ mov(Oreturn0,     Oreturn0->after_save());
  3379   __ mov(Oreturn1,     Oreturn1->after_save());
  3380   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3381   __ restore();
  3383   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3385   make_new_frames(masm, true);
  3387   // push a dummy "unpack_frame" taking care of float return values and
  3388   // call Deoptimization::unpack_frames to have the unpacker layout
  3389   // information in the interpreter frames just created and then return
  3390   // to the interpreter entry point
  3391   __ save(SP, -frame_size_words*wordSize, SP);
  3392   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
  3393 #if !defined(_LP64)
  3394 #if defined(COMPILER2)
  3395   if (!TieredCompilation) {
  3396     // 32-bit 1-register longs return longs in G1
  3397     __ stx(Greturn1, saved_Greturn1_addr);
  3399 #endif
  3400   __ set_last_Java_frame(SP, noreg);
  3401   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4exception_tmp);
  3402 #else
  3403   // LP64 uses g4 in set_last_Java_frame
  3404   __ mov(G4exception_tmp, O1);
  3405   __ set_last_Java_frame(SP, G0);
  3406   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
  3407 #endif
  3408   __ reset_last_Java_frame();
  3409   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
  3411   // In tiered we never use C2 to compile methods returning longs so
  3412   // the result is where we expect it already.
  3414 #if !defined(_LP64) && defined(COMPILER2)
  3415   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
  3416   // I0/I1 if the return value is long.  In the tiered world there is
  3417   // a mismatch between how C1 and C2 return longs compiles and so
  3418   // currently compilation of methods which return longs is disabled
  3419   // for C2 and so is this code.  Eventually C1 and C2 will do the
  3420   // same thing for longs in the tiered world.
  3421   if (!TieredCompilation) {
  3422     Label not_long;
  3423     __ cmp(O0,T_LONG);
  3424     __ br(Assembler::notEqual, false, Assembler::pt, not_long);
  3425     __ delayed()->nop();
  3426     __ ldd(saved_Greturn1_addr,I0);
  3427     __ bind(not_long);
  3429 #endif
  3430   __ ret();
  3431   __ delayed()->restore();
  3433   masm->flush();
  3434   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
  3435   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3438 #ifdef COMPILER2
  3440 //------------------------------generate_uncommon_trap_blob--------------------
  3441 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3442 // instead.
  3443 void SharedRuntime::generate_uncommon_trap_blob() {
  3444   // allocate space for the code
  3445   ResourceMark rm;
  3446   // setup code generation tools
  3447   int pad = VerifyThread ? 512 : 0;
  3448 #ifdef _LP64
  3449   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
  3450 #else
  3451   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
  3452   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
  3453   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
  3454 #endif
  3455   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3456   Register        O2UnrollBlock      = O2;
  3457   Register        O3tmp              = O3;
  3458   Register        O2klass_index      = O2;
  3460   //
  3461   // This is the entry point for all traps the compiler takes when it thinks
  3462   // it cannot handle further execution of compilation code. The frame is
  3463   // deoptimized in these cases and converted into interpreter frames for
  3464   // execution
  3465   // The steps taken by this frame are as follows:
  3466   //   - push a fake "unpack_frame"
  3467   //   - call the C routine Deoptimization::uncommon_trap (this function
  3468   //     packs the current compiled frame into vframe arrays and returns
  3469   //     information about the number and size of interpreter frames which
  3470   //     are equivalent to the frame which is being deoptimized)
  3471   //   - deallocate the "unpack_frame"
  3472   //   - deallocate the deoptimization frame
  3473   //   - in a loop using the information returned in the previous step
  3474   //     push interpreter frames;
  3475   //   - create a dummy "unpack_frame"
  3476   //   - call the C routine: Deoptimization::unpack_frames (this function
  3477   //     lays out values on the interpreter frame which was just created)
  3478   //   - deallocate the dummy unpack_frame
  3479   //   - return to the interpreter entry point
  3480   //
  3481   //  Refer to the following methods for more information:
  3482   //   - Deoptimization::uncommon_trap
  3483   //   - Deoptimization::unpack_frame
  3485   // the unloaded class index is in O0 (first parameter to this blob)
  3487   // push a dummy "unpack_frame"
  3488   // and call Deoptimization::uncommon_trap to pack the compiled frame into
  3489   // vframe array and return the UnrollBlock information
  3490   __ save_frame(0);
  3491   __ set_last_Java_frame(SP, noreg);
  3492   __ mov(I0, O2klass_index);
  3493   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
  3494   __ reset_last_Java_frame();
  3495   __ mov(O0, O2UnrollBlock->after_save());
  3496   __ restore();
  3498   // deallocate the deoptimized frame taking care to preserve the return values
  3499   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3500   __ restore();
  3502   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3504   make_new_frames(masm, false);
  3506   // push a dummy "unpack_frame" taking care of float return values and
  3507   // call Deoptimization::unpack_frames to have the unpacker layout
  3508   // information in the interpreter frames just created and then return
  3509   // to the interpreter entry point
  3510   __ save_frame(0);
  3511   __ set_last_Java_frame(SP, noreg);
  3512   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
  3513   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
  3514   __ reset_last_Java_frame();
  3515   __ ret();
  3516   __ delayed()->restore();
  3518   masm->flush();
  3519   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
  3522 #endif // COMPILER2
  3524 //------------------------------generate_handler_blob-------------------
  3525 //
  3526 // Generate a special Compile2Runtime blob that saves all registers, and sets
  3527 // up an OopMap.
  3528 //
  3529 // This blob is jumped to (via a breakpoint and the signal handler) from a
  3530 // safepoint in compiled code.  On entry to this blob, O7 contains the
  3531 // address in the original nmethod at which we should resume normal execution.
  3532 // Thus, this blob looks like a subroutine which must preserve lots of
  3533 // registers and return normally.  Note that O7 is never register-allocated,
  3534 // so it is guaranteed to be free here.
  3535 //
  3537 // The hardest part of what this blob must do is to save the 64-bit %o
  3538 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
  3539 // an interrupt will chop off their heads.  Making space in the caller's frame
  3540 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
  3541 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
  3542 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
  3543 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
  3544 // Tricky, tricky, tricky...
  3546 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
  3547   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3549   // allocate space for the code
  3550   ResourceMark rm;
  3551   // setup code generation tools
  3552   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3553   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3554   // even larger with TraceJumps
  3555   int pad = TraceJumps ? 512 : 0;
  3556   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
  3557   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3558   int             frame_size_words;
  3559   OopMapSet *oop_maps = new OopMapSet();
  3560   OopMap* map = NULL;
  3562   int start = __ offset();
  3564   // If this causes a return before the processing, then do a "restore"
  3565   if (cause_return) {
  3566     __ restore();
  3567   } else {
  3568     // Make it look like we were called via the poll
  3569     // so that frame constructor always sees a valid return address
  3570     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
  3571     __ sub(O7, frame::pc_return_offset, O7);
  3574   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3576   // setup last_Java_sp (blows G4)
  3577   __ set_last_Java_frame(SP, noreg);
  3579   // call into the runtime to handle illegal instructions exception
  3580   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3581   __ mov(G2_thread, O0);
  3582   __ save_thread(L7_thread_cache);
  3583   __ call(call_ptr);
  3584   __ delayed()->nop();
  3586   // Set an oopmap for the call site.
  3587   // We need this not only for callee-saved registers, but also for volatile
  3588   // registers that the compiler might be keeping live across a safepoint.
  3590   oop_maps->add_gc_map( __ offset() - start, map);
  3592   __ restore_thread(L7_thread_cache);
  3593   // clear last_Java_sp
  3594   __ reset_last_Java_frame();
  3596   // Check for exceptions
  3597   Label pending;
  3599   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3600   __ tst(O1);
  3601   __ brx(Assembler::notEqual, true, Assembler::pn, pending);
  3602   __ delayed()->nop();
  3604   RegisterSaver::restore_live_registers(masm);
  3606   // We are back the the original state on entry and ready to go.
  3608   __ retl();
  3609   __ delayed()->nop();
  3611   // Pending exception after the safepoint
  3613   __ bind(pending);
  3615   RegisterSaver::restore_live_registers(masm);
  3617   // We are back the the original state on entry.
  3619   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3620   // so it looks like the original nmethod called forward_exception_entry.
  3621   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3622   __ JMP(O0, 0);
  3623   __ delayed()->nop();
  3625   // -------------
  3626   // make sure all code is generated
  3627   masm->flush();
  3629   // return exception blob
  3630   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
  3633 //
  3634 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3635 //
  3636 // Generate a stub that calls into vm to find out the proper destination
  3637 // of a java call. All the argument registers are live at this point
  3638 // but since this is generic code we don't know what they are and the caller
  3639 // must do any gc of the args.
  3640 //
  3641 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
  3642   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3644   // allocate space for the code
  3645   ResourceMark rm;
  3646   // setup code generation tools
  3647   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3648   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3649   // even larger with TraceJumps
  3650   int pad = TraceJumps ? 512 : 0;
  3651   CodeBuffer buffer(name, 1600 + pad, 512);
  3652   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3653   int             frame_size_words;
  3654   OopMapSet *oop_maps = new OopMapSet();
  3655   OopMap* map = NULL;
  3657   int start = __ offset();
  3659   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3661   int frame_complete = __ offset();
  3663   // setup last_Java_sp (blows G4)
  3664   __ set_last_Java_frame(SP, noreg);
  3666   // call into the runtime to handle illegal instructions exception
  3667   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3668   __ mov(G2_thread, O0);
  3669   __ save_thread(L7_thread_cache);
  3670   __ call(destination, relocInfo::runtime_call_type);
  3671   __ delayed()->nop();
  3673   // O0 contains the address we are going to jump to assuming no exception got installed
  3675   // Set an oopmap for the call site.
  3676   // We need this not only for callee-saved registers, but also for volatile
  3677   // registers that the compiler might be keeping live across a safepoint.
  3679   oop_maps->add_gc_map( __ offset() - start, map);
  3681   __ restore_thread(L7_thread_cache);
  3682   // clear last_Java_sp
  3683   __ reset_last_Java_frame();
  3685   // Check for exceptions
  3686   Label pending;
  3688   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3689   __ tst(O1);
  3690   __ brx(Assembler::notEqual, true, Assembler::pn, pending);
  3691   __ delayed()->nop();
  3693   // get the returned methodOop
  3695   __ get_vm_result(G5_method);
  3696   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
  3698   // O0 is where we want to jump, overwrite G3 which is saved and scratch
  3700   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
  3702   RegisterSaver::restore_live_registers(masm);
  3704   // We are back the the original state on entry and ready to go.
  3706   __ JMP(G3, 0);
  3707   __ delayed()->nop();
  3709   // Pending exception after the safepoint
  3711   __ bind(pending);
  3713   RegisterSaver::restore_live_registers(masm);
  3715   // We are back the the original state on entry.
  3717   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3718   // so it looks like the original nmethod called forward_exception_entry.
  3719   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3720   __ JMP(O0, 0);
  3721   __ delayed()->nop();
  3723   // -------------
  3724   // make sure all code is generated
  3725   masm->flush();
  3727   // return the  blob
  3728   // frame_size_words or bytes??
  3729   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
  3732 void SharedRuntime::generate_stubs() {
  3734   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
  3735                                              "wrong_method_stub");
  3737   _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
  3738                                         "ic_miss_stub");
  3740   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
  3741                                         "resolve_opt_virtual_call");
  3743   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
  3744                                         "resolve_virtual_call");
  3746   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
  3747                                         "resolve_static_call");
  3749   _polling_page_safepoint_handler_blob =
  3750     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3751                    SafepointSynchronize::handle_polling_page_exception), false);
  3753   _polling_page_return_handler_blob =
  3754     generate_handler_blob(CAST_FROM_FN_PTR(address,
  3755                    SafepointSynchronize::handle_polling_page_exception), true);
  3757   generate_deopt_blob();
  3759 #ifdef COMPILER2
  3760   generate_uncommon_trap_blob();
  3761 #endif // COMPILER2

mercurial