src/share/vm/opto/memnode.hpp

Wed, 08 May 2013 15:08:01 -0700

author
kvn
date
Wed, 08 May 2013 15:08:01 -0700
changeset 5110
6f3fd5150b67
parent 4657
6931f425c517
child 6070
94a83e0f9ce1
child 6479
2113136690bc
permissions
-rw-r--r--

6934604: enable parts of EliminateAutoBox by default
Summary: Resurrected autobox elimination code and enabled part of it by default.
Reviewed-by: roland, twisti

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
    26 #define SHARE_VM_OPTO_MEMNODE_HPP
    28 #include "opto/multnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "opto/opcodes.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 class MultiNode;
    36 class PhaseCCP;
    37 class PhaseTransform;
    39 //------------------------------MemNode----------------------------------------
    40 // Load or Store, possibly throwing a NULL pointer exception
    41 class MemNode : public Node {
    42 protected:
    43 #ifdef ASSERT
    44   const TypePtr* _adr_type;     // What kind of memory is being addressed?
    45 #endif
    46   virtual uint size_of() const; // Size is bigger (ASSERT only)
    47 public:
    48   enum { Control,               // When is it safe to do this load?
    49          Memory,                // Chunk of memory is being loaded from
    50          Address,               // Actually address, derived from base
    51          ValueIn,               // Value to store
    52          OopStore               // Preceeding oop store, only in StoreCM
    53   };
    54 protected:
    55   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    56     : Node(c0,c1,c2   ) {
    57     init_class_id(Class_Mem);
    58     debug_only(_adr_type=at; adr_type();)
    59   }
    60   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    61     : Node(c0,c1,c2,c3) {
    62     init_class_id(Class_Mem);
    63     debug_only(_adr_type=at; adr_type();)
    64   }
    65   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    66     : Node(c0,c1,c2,c3,c4) {
    67     init_class_id(Class_Mem);
    68     debug_only(_adr_type=at; adr_type();)
    69   }
    71 public:
    72   // Helpers for the optimizer.  Documented in memnode.cpp.
    73   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
    74                                       Node* p2, AllocateNode* a2,
    75                                       PhaseTransform* phase);
    76   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
    78   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
    79   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
    80   // This one should probably be a phase-specific function:
    81   static bool all_controls_dominate(Node* dom, Node* sub);
    83   // Find any cast-away of null-ness and keep its control.
    84   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
    85   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
    87   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
    89   // Shared code for Ideal methods:
    90   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
    92   // Helper function for adr_type() implementations.
    93   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
    95   // Raw access function, to allow copying of adr_type efficiently in
    96   // product builds and retain the debug info for debug builds.
    97   const TypePtr *raw_adr_type() const {
    98 #ifdef ASSERT
    99     return _adr_type;
   100 #else
   101     return 0;
   102 #endif
   103   }
   105   // Map a load or store opcode to its corresponding store opcode.
   106   // (Return -1 if unknown.)
   107   virtual int store_Opcode() const { return -1; }
   109   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
   110   virtual BasicType memory_type() const = 0;
   111   virtual int memory_size() const {
   112 #ifdef ASSERT
   113     return type2aelembytes(memory_type(), true);
   114 #else
   115     return type2aelembytes(memory_type());
   116 #endif
   117   }
   119   // Search through memory states which precede this node (load or store).
   120   // Look for an exact match for the address, with no intervening
   121   // aliased stores.
   122   Node* find_previous_store(PhaseTransform* phase);
   124   // Can this node (load or store) accurately see a stored value in
   125   // the given memory state?  (The state may or may not be in(Memory).)
   126   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
   128 #ifndef PRODUCT
   129   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
   130   virtual void dump_spec(outputStream *st) const;
   131 #endif
   132 };
   134 //------------------------------LoadNode---------------------------------------
   135 // Load value; requires Memory and Address
   136 class LoadNode : public MemNode {
   137 protected:
   138   virtual uint cmp( const Node &n ) const;
   139   virtual uint size_of() const; // Size is bigger
   140   const Type* const _type;      // What kind of value is loaded?
   141 public:
   143   LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
   144     : MemNode(c,mem,adr,at), _type(rt) {
   145     init_class_id(Class_Load);
   146   }
   148   // Polymorphic factory method:
   149   static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   150                      const TypePtr* at, const Type *rt, BasicType bt );
   152   virtual uint hash()   const;  // Check the type
   154   // Handle algebraic identities here.  If we have an identity, return the Node
   155   // we are equivalent to.  We look for Load of a Store.
   156   virtual Node *Identity( PhaseTransform *phase );
   158   // If the load is from Field memory and the pointer is non-null, we can
   159   // zero out the control input.
   160   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   162   // Split instance field load through Phi.
   163   Node* split_through_phi(PhaseGVN *phase);
   165   // Recover original value from boxed values
   166   Node *eliminate_autobox(PhaseGVN *phase);
   168   // Compute a new Type for this node.  Basically we just do the pre-check,
   169   // then call the virtual add() to set the type.
   170   virtual const Type *Value( PhaseTransform *phase ) const;
   172   // Common methods for LoadKlass and LoadNKlass nodes.
   173   const Type *klass_value_common( PhaseTransform *phase ) const;
   174   Node *klass_identity_common( PhaseTransform *phase );
   176   virtual uint ideal_reg() const;
   177   virtual const Type *bottom_type() const;
   178   // Following method is copied from TypeNode:
   179   void set_type(const Type* t) {
   180     assert(t != NULL, "sanity");
   181     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   182     *(const Type**)&_type = t;   // cast away const-ness
   183     // If this node is in the hash table, make sure it doesn't need a rehash.
   184     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
   185   }
   186   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
   188   // Do not match memory edge
   189   virtual uint match_edge(uint idx) const;
   191   // Map a load opcode to its corresponding store opcode.
   192   virtual int store_Opcode() const = 0;
   194   // Check if the load's memory input is a Phi node with the same control.
   195   bool is_instance_field_load_with_local_phi(Node* ctrl);
   197 #ifndef PRODUCT
   198   virtual void dump_spec(outputStream *st) const;
   199 #endif
   200 #ifdef ASSERT
   201   // Helper function to allow a raw load without control edge for some cases
   202   static bool is_immutable_value(Node* adr);
   203 #endif
   204 protected:
   205   const Type* load_array_final_field(const TypeKlassPtr *tkls,
   206                                      ciKlass* klass) const;
   207 };
   209 //------------------------------LoadBNode--------------------------------------
   210 // Load a byte (8bits signed) from memory
   211 class LoadBNode : public LoadNode {
   212 public:
   213   LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
   214     : LoadNode(c,mem,adr,at,ti) {}
   215   virtual int Opcode() const;
   216   virtual uint ideal_reg() const { return Op_RegI; }
   217   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   218   virtual const Type *Value(PhaseTransform *phase) const;
   219   virtual int store_Opcode() const { return Op_StoreB; }
   220   virtual BasicType memory_type() const { return T_BYTE; }
   221 };
   223 //------------------------------LoadUBNode-------------------------------------
   224 // Load a unsigned byte (8bits unsigned) from memory
   225 class LoadUBNode : public LoadNode {
   226 public:
   227   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
   228     : LoadNode(c, mem, adr, at, ti) {}
   229   virtual int Opcode() const;
   230   virtual uint ideal_reg() const { return Op_RegI; }
   231   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
   232   virtual const Type *Value(PhaseTransform *phase) const;
   233   virtual int store_Opcode() const { return Op_StoreB; }
   234   virtual BasicType memory_type() const { return T_BYTE; }
   235 };
   237 //------------------------------LoadUSNode-------------------------------------
   238 // Load an unsigned short/char (16bits unsigned) from memory
   239 class LoadUSNode : public LoadNode {
   240 public:
   241   LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
   242     : LoadNode(c,mem,adr,at,ti) {}
   243   virtual int Opcode() const;
   244   virtual uint ideal_reg() const { return Op_RegI; }
   245   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   246   virtual const Type *Value(PhaseTransform *phase) const;
   247   virtual int store_Opcode() const { return Op_StoreC; }
   248   virtual BasicType memory_type() const { return T_CHAR; }
   249 };
   251 //------------------------------LoadSNode--------------------------------------
   252 // Load a short (16bits signed) from memory
   253 class LoadSNode : public LoadNode {
   254 public:
   255   LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
   256     : LoadNode(c,mem,adr,at,ti) {}
   257   virtual int Opcode() const;
   258   virtual uint ideal_reg() const { return Op_RegI; }
   259   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   260   virtual const Type *Value(PhaseTransform *phase) const;
   261   virtual int store_Opcode() const { return Op_StoreC; }
   262   virtual BasicType memory_type() const { return T_SHORT; }
   263 };
   265 //------------------------------LoadINode--------------------------------------
   266 // Load an integer from memory
   267 class LoadINode : public LoadNode {
   268 public:
   269   LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
   270     : LoadNode(c,mem,adr,at,ti) {}
   271   virtual int Opcode() const;
   272   virtual uint ideal_reg() const { return Op_RegI; }
   273   virtual int store_Opcode() const { return Op_StoreI; }
   274   virtual BasicType memory_type() const { return T_INT; }
   275 };
   277 //------------------------------LoadRangeNode----------------------------------
   278 // Load an array length from the array
   279 class LoadRangeNode : public LoadINode {
   280 public:
   281   LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
   282     : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
   283   virtual int Opcode() const;
   284   virtual const Type *Value( PhaseTransform *phase ) const;
   285   virtual Node *Identity( PhaseTransform *phase );
   286   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   287 };
   289 //------------------------------LoadLNode--------------------------------------
   290 // Load a long from memory
   291 class LoadLNode : public LoadNode {
   292   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   293   virtual uint cmp( const Node &n ) const {
   294     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
   295       && LoadNode::cmp(n);
   296   }
   297   virtual uint size_of() const { return sizeof(*this); }
   298   const bool _require_atomic_access;  // is piecewise load forbidden?
   300 public:
   301   LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
   302              const TypeLong *tl = TypeLong::LONG,
   303              bool require_atomic_access = false )
   304     : LoadNode(c,mem,adr,at,tl)
   305     , _require_atomic_access(require_atomic_access)
   306   {}
   307   virtual int Opcode() const;
   308   virtual uint ideal_reg() const { return Op_RegL; }
   309   virtual int store_Opcode() const { return Op_StoreL; }
   310   virtual BasicType memory_type() const { return T_LONG; }
   311   bool require_atomic_access() { return _require_atomic_access; }
   312   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
   313 #ifndef PRODUCT
   314   virtual void dump_spec(outputStream *st) const {
   315     LoadNode::dump_spec(st);
   316     if (_require_atomic_access)  st->print(" Atomic!");
   317   }
   318 #endif
   319 };
   321 //------------------------------LoadL_unalignedNode----------------------------
   322 // Load a long from unaligned memory
   323 class LoadL_unalignedNode : public LoadLNode {
   324 public:
   325   LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   326     : LoadLNode(c,mem,adr,at) {}
   327   virtual int Opcode() const;
   328 };
   330 //------------------------------LoadFNode--------------------------------------
   331 // Load a float (64 bits) from memory
   332 class LoadFNode : public LoadNode {
   333 public:
   334   LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
   335     : LoadNode(c,mem,adr,at,t) {}
   336   virtual int Opcode() const;
   337   virtual uint ideal_reg() const { return Op_RegF; }
   338   virtual int store_Opcode() const { return Op_StoreF; }
   339   virtual BasicType memory_type() const { return T_FLOAT; }
   340 };
   342 //------------------------------LoadDNode--------------------------------------
   343 // Load a double (64 bits) from memory
   344 class LoadDNode : public LoadNode {
   345 public:
   346   LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
   347     : LoadNode(c,mem,adr,at,t) {}
   348   virtual int Opcode() const;
   349   virtual uint ideal_reg() const { return Op_RegD; }
   350   virtual int store_Opcode() const { return Op_StoreD; }
   351   virtual BasicType memory_type() const { return T_DOUBLE; }
   352 };
   354 //------------------------------LoadD_unalignedNode----------------------------
   355 // Load a double from unaligned memory
   356 class LoadD_unalignedNode : public LoadDNode {
   357 public:
   358   LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
   359     : LoadDNode(c,mem,adr,at) {}
   360   virtual int Opcode() const;
   361 };
   363 //------------------------------LoadPNode--------------------------------------
   364 // Load a pointer from memory (either object or array)
   365 class LoadPNode : public LoadNode {
   366 public:
   367   LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
   368     : LoadNode(c,mem,adr,at,t) {}
   369   virtual int Opcode() const;
   370   virtual uint ideal_reg() const { return Op_RegP; }
   371   virtual int store_Opcode() const { return Op_StoreP; }
   372   virtual BasicType memory_type() const { return T_ADDRESS; }
   373   // depends_only_on_test is almost always true, and needs to be almost always
   374   // true to enable key hoisting & commoning optimizations.  However, for the
   375   // special case of RawPtr loads from TLS top & end, the control edge carries
   376   // the dependence preventing hoisting past a Safepoint instead of the memory
   377   // edge.  (An unfortunate consequence of having Safepoints not set Raw
   378   // Memory; itself an unfortunate consequence of having Nodes which produce
   379   // results (new raw memory state) inside of loops preventing all manner of
   380   // other optimizations).  Basically, it's ugly but so is the alternative.
   381   // See comment in macro.cpp, around line 125 expand_allocate_common().
   382   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   383 };
   386 //------------------------------LoadNNode--------------------------------------
   387 // Load a narrow oop from memory (either object or array)
   388 class LoadNNode : public LoadNode {
   389 public:
   390   LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
   391     : LoadNode(c,mem,adr,at,t) {}
   392   virtual int Opcode() const;
   393   virtual uint ideal_reg() const { return Op_RegN; }
   394   virtual int store_Opcode() const { return Op_StoreN; }
   395   virtual BasicType memory_type() const { return T_NARROWOOP; }
   396   // depends_only_on_test is almost always true, and needs to be almost always
   397   // true to enable key hoisting & commoning optimizations.  However, for the
   398   // special case of RawPtr loads from TLS top & end, the control edge carries
   399   // the dependence preventing hoisting past a Safepoint instead of the memory
   400   // edge.  (An unfortunate consequence of having Safepoints not set Raw
   401   // Memory; itself an unfortunate consequence of having Nodes which produce
   402   // results (new raw memory state) inside of loops preventing all manner of
   403   // other optimizations).  Basically, it's ugly but so is the alternative.
   404   // See comment in macro.cpp, around line 125 expand_allocate_common().
   405   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
   406 };
   408 //------------------------------LoadKlassNode----------------------------------
   409 // Load a Klass from an object
   410 class LoadKlassNode : public LoadPNode {
   411 public:
   412   LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
   413     : LoadPNode(c,mem,adr,at,tk) {}
   414   virtual int Opcode() const;
   415   virtual const Type *Value( PhaseTransform *phase ) const;
   416   virtual Node *Identity( PhaseTransform *phase );
   417   virtual bool depends_only_on_test() const { return true; }
   419   // Polymorphic factory method:
   420   static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
   421                      const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
   422 };
   424 //------------------------------LoadNKlassNode---------------------------------
   425 // Load a narrow Klass from an object.
   426 class LoadNKlassNode : public LoadNNode {
   427 public:
   428   LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk )
   429     : LoadNNode(c,mem,adr,at,tk) {}
   430   virtual int Opcode() const;
   431   virtual uint ideal_reg() const { return Op_RegN; }
   432   virtual int store_Opcode() const { return Op_StoreNKlass; }
   433   virtual BasicType memory_type() const { return T_NARROWKLASS; }
   435   virtual const Type *Value( PhaseTransform *phase ) const;
   436   virtual Node *Identity( PhaseTransform *phase );
   437   virtual bool depends_only_on_test() const { return true; }
   438 };
   441 //------------------------------StoreNode--------------------------------------
   442 // Store value; requires Store, Address and Value
   443 class StoreNode : public MemNode {
   444 protected:
   445   virtual uint cmp( const Node &n ) const;
   446   virtual bool depends_only_on_test() const { return false; }
   448   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
   449   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
   451 public:
   452   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
   453     : MemNode(c,mem,adr,at,val) {
   454     init_class_id(Class_Store);
   455   }
   456   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
   457     : MemNode(c,mem,adr,at,val,oop_store) {
   458     init_class_id(Class_Store);
   459   }
   461   // Polymorphic factory method:
   462   static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   463                           const TypePtr* at, Node *val, BasicType bt );
   465   virtual uint hash() const;    // Check the type
   467   // If the store is to Field memory and the pointer is non-null, we can
   468   // zero out the control input.
   469   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   471   // Compute a new Type for this node.  Basically we just do the pre-check,
   472   // then call the virtual add() to set the type.
   473   virtual const Type *Value( PhaseTransform *phase ) const;
   475   // Check for identity function on memory (Load then Store at same address)
   476   virtual Node *Identity( PhaseTransform *phase );
   478   // Do not match memory edge
   479   virtual uint match_edge(uint idx) const;
   481   virtual const Type *bottom_type() const;  // returns Type::MEMORY
   483   // Map a store opcode to its corresponding own opcode, trivially.
   484   virtual int store_Opcode() const { return Opcode(); }
   486   // have all possible loads of the value stored been optimized away?
   487   bool value_never_loaded(PhaseTransform *phase) const;
   488 };
   490 //------------------------------StoreBNode-------------------------------------
   491 // Store byte to memory
   492 class StoreBNode : public StoreNode {
   493 public:
   494   StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   495   virtual int Opcode() const;
   496   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   497   virtual BasicType memory_type() const { return T_BYTE; }
   498 };
   500 //------------------------------StoreCNode-------------------------------------
   501 // Store char/short to memory
   502 class StoreCNode : public StoreNode {
   503 public:
   504   StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   505   virtual int Opcode() const;
   506   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   507   virtual BasicType memory_type() const { return T_CHAR; }
   508 };
   510 //------------------------------StoreINode-------------------------------------
   511 // Store int to memory
   512 class StoreINode : public StoreNode {
   513 public:
   514   StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   515   virtual int Opcode() const;
   516   virtual BasicType memory_type() const { return T_INT; }
   517 };
   519 //------------------------------StoreLNode-------------------------------------
   520 // Store long to memory
   521 class StoreLNode : public StoreNode {
   522   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   523   virtual uint cmp( const Node &n ) const {
   524     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
   525       && StoreNode::cmp(n);
   526   }
   527   virtual uint size_of() const { return sizeof(*this); }
   528   const bool _require_atomic_access;  // is piecewise store forbidden?
   530 public:
   531   StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
   532               bool require_atomic_access = false )
   533     : StoreNode(c,mem,adr,at,val)
   534     , _require_atomic_access(require_atomic_access)
   535   {}
   536   virtual int Opcode() const;
   537   virtual BasicType memory_type() const { return T_LONG; }
   538   bool require_atomic_access() { return _require_atomic_access; }
   539   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
   540 #ifndef PRODUCT
   541   virtual void dump_spec(outputStream *st) const {
   542     StoreNode::dump_spec(st);
   543     if (_require_atomic_access)  st->print(" Atomic!");
   544   }
   545 #endif
   546 };
   548 //------------------------------StoreFNode-------------------------------------
   549 // Store float to memory
   550 class StoreFNode : public StoreNode {
   551 public:
   552   StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   553   virtual int Opcode() const;
   554   virtual BasicType memory_type() const { return T_FLOAT; }
   555 };
   557 //------------------------------StoreDNode-------------------------------------
   558 // Store double to memory
   559 class StoreDNode : public StoreNode {
   560 public:
   561   StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   562   virtual int Opcode() const;
   563   virtual BasicType memory_type() const { return T_DOUBLE; }
   564 };
   566 //------------------------------StorePNode-------------------------------------
   567 // Store pointer to memory
   568 class StorePNode : public StoreNode {
   569 public:
   570   StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   571   virtual int Opcode() const;
   572   virtual BasicType memory_type() const { return T_ADDRESS; }
   573 };
   575 //------------------------------StoreNNode-------------------------------------
   576 // Store narrow oop to memory
   577 class StoreNNode : public StoreNode {
   578 public:
   579   StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
   580   virtual int Opcode() const;
   581   virtual BasicType memory_type() const { return T_NARROWOOP; }
   582 };
   584 //------------------------------StoreNKlassNode--------------------------------------
   585 // Store narrow klass to memory
   586 class StoreNKlassNode : public StoreNNode {
   587 public:
   588   StoreNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNNode(c,mem,adr,at,val) {}
   589   virtual int Opcode() const;
   590   virtual BasicType memory_type() const { return T_NARROWKLASS; }
   591 };
   593 //------------------------------StoreCMNode-----------------------------------
   594 // Store card-mark byte to memory for CM
   595 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
   596 // Preceeding equivalent StoreCMs may be eliminated.
   597 class StoreCMNode : public StoreNode {
   598  private:
   599   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
   600   virtual uint cmp( const Node &n ) const {
   601     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
   602       && StoreNode::cmp(n);
   603   }
   604   virtual uint size_of() const { return sizeof(*this); }
   605   int _oop_alias_idx;   // The alias_idx of OopStore
   607 public:
   608   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
   609     StoreNode(c,mem,adr,at,val,oop_store),
   610     _oop_alias_idx(oop_alias_idx) {
   611     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
   612            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
   613            "bad oop alias idx");
   614   }
   615   virtual int Opcode() const;
   616   virtual Node *Identity( PhaseTransform *phase );
   617   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   618   virtual const Type *Value( PhaseTransform *phase ) const;
   619   virtual BasicType memory_type() const { return T_VOID; } // unspecific
   620   int oop_alias_idx() const { return _oop_alias_idx; }
   621 };
   623 //------------------------------LoadPLockedNode---------------------------------
   624 // Load-locked a pointer from memory (either object or array).
   625 // On Sparc & Intel this is implemented as a normal pointer load.
   626 // On PowerPC and friends it's a real load-locked.
   627 class LoadPLockedNode : public LoadPNode {
   628 public:
   629   LoadPLockedNode( Node *c, Node *mem, Node *adr )
   630     : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
   631   virtual int Opcode() const;
   632   virtual int store_Opcode() const { return Op_StorePConditional; }
   633   virtual bool depends_only_on_test() const { return true; }
   634 };
   636 //------------------------------SCMemProjNode---------------------------------------
   637 // This class defines a projection of the memory  state of a store conditional node.
   638 // These nodes return a value, but also update memory.
   639 class SCMemProjNode : public ProjNode {
   640 public:
   641   enum {SCMEMPROJCON = (uint)-2};
   642   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
   643   virtual int Opcode() const;
   644   virtual bool      is_CFG() const  { return false; }
   645   virtual const Type *bottom_type() const {return Type::MEMORY;}
   646   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
   647   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
   648   virtual const Type *Value( PhaseTransform *phase ) const;
   649 #ifndef PRODUCT
   650   virtual void dump_spec(outputStream *st) const {};
   651 #endif
   652 };
   654 //------------------------------LoadStoreNode---------------------------
   655 // Note: is_Mem() method returns 'true' for this class.
   656 class LoadStoreNode : public Node {
   657 private:
   658   const Type* const _type;      // What kind of value is loaded?
   659   const TypePtr* _adr_type;     // What kind of memory is being addressed?
   660   virtual uint size_of() const; // Size is bigger
   661 public:
   662   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
   663   virtual bool depends_only_on_test() const { return false; }
   664   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
   666   virtual const Type *bottom_type() const { return _type; }
   667   virtual uint ideal_reg() const;
   668   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
   670   bool result_not_used() const;
   671 };
   673 class LoadStoreConditionalNode : public LoadStoreNode {
   674 public:
   675   enum {
   676     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
   677   };
   678   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
   679 };
   681 //------------------------------StorePConditionalNode---------------------------
   682 // Conditionally store pointer to memory, if no change since prior
   683 // load-locked.  Sets flags for success or failure of the store.
   684 class StorePConditionalNode : public LoadStoreConditionalNode {
   685 public:
   686   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
   687   virtual int Opcode() const;
   688   // Produces flags
   689   virtual uint ideal_reg() const { return Op_RegFlags; }
   690 };
   692 //------------------------------StoreIConditionalNode---------------------------
   693 // Conditionally store int to memory, if no change since prior
   694 // load-locked.  Sets flags for success or failure of the store.
   695 class StoreIConditionalNode : public LoadStoreConditionalNode {
   696 public:
   697   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
   698   virtual int Opcode() const;
   699   // Produces flags
   700   virtual uint ideal_reg() const { return Op_RegFlags; }
   701 };
   703 //------------------------------StoreLConditionalNode---------------------------
   704 // Conditionally store long to memory, if no change since prior
   705 // load-locked.  Sets flags for success or failure of the store.
   706 class StoreLConditionalNode : public LoadStoreConditionalNode {
   707 public:
   708   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
   709   virtual int Opcode() const;
   710   // Produces flags
   711   virtual uint ideal_reg() const { return Op_RegFlags; }
   712 };
   715 //------------------------------CompareAndSwapLNode---------------------------
   716 class CompareAndSwapLNode : public LoadStoreConditionalNode {
   717 public:
   718   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   719   virtual int Opcode() const;
   720 };
   723 //------------------------------CompareAndSwapINode---------------------------
   724 class CompareAndSwapINode : public LoadStoreConditionalNode {
   725 public:
   726   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   727   virtual int Opcode() const;
   728 };
   731 //------------------------------CompareAndSwapPNode---------------------------
   732 class CompareAndSwapPNode : public LoadStoreConditionalNode {
   733 public:
   734   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   735   virtual int Opcode() const;
   736 };
   738 //------------------------------CompareAndSwapNNode---------------------------
   739 class CompareAndSwapNNode : public LoadStoreConditionalNode {
   740 public:
   741   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   742   virtual int Opcode() const;
   743 };
   745 //------------------------------GetAndAddINode---------------------------
   746 class GetAndAddINode : public LoadStoreNode {
   747 public:
   748   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
   749   virtual int Opcode() const;
   750 };
   752 //------------------------------GetAndAddLNode---------------------------
   753 class GetAndAddLNode : public LoadStoreNode {
   754 public:
   755   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
   756   virtual int Opcode() const;
   757 };
   760 //------------------------------GetAndSetINode---------------------------
   761 class GetAndSetINode : public LoadStoreNode {
   762 public:
   763   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
   764   virtual int Opcode() const;
   765 };
   767 //------------------------------GetAndSetINode---------------------------
   768 class GetAndSetLNode : public LoadStoreNode {
   769 public:
   770   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
   771   virtual int Opcode() const;
   772 };
   774 //------------------------------GetAndSetPNode---------------------------
   775 class GetAndSetPNode : public LoadStoreNode {
   776 public:
   777   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
   778   virtual int Opcode() const;
   779 };
   781 //------------------------------GetAndSetNNode---------------------------
   782 class GetAndSetNNode : public LoadStoreNode {
   783 public:
   784   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
   785   virtual int Opcode() const;
   786 };
   788 //------------------------------ClearArray-------------------------------------
   789 class ClearArrayNode: public Node {
   790 public:
   791   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
   792     : Node(ctrl,arymem,word_cnt,base) {
   793     init_class_id(Class_ClearArray);
   794   }
   795   virtual int         Opcode() const;
   796   virtual const Type *bottom_type() const { return Type::MEMORY; }
   797   // ClearArray modifies array elements, and so affects only the
   798   // array memory addressed by the bottom_type of its base address.
   799   virtual const class TypePtr *adr_type() const;
   800   virtual Node *Identity( PhaseTransform *phase );
   801   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   802   virtual uint match_edge(uint idx) const;
   804   // Clear the given area of an object or array.
   805   // The start offset must always be aligned mod BytesPerInt.
   806   // The end offset must always be aligned mod BytesPerLong.
   807   // Return the new memory.
   808   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   809                             intptr_t start_offset,
   810                             intptr_t end_offset,
   811                             PhaseGVN* phase);
   812   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   813                             intptr_t start_offset,
   814                             Node* end_offset,
   815                             PhaseGVN* phase);
   816   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   817                             Node* start_offset,
   818                             Node* end_offset,
   819                             PhaseGVN* phase);
   820   // Return allocation input memory edge if it is different instance
   821   // or itself if it is the one we are looking for.
   822   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
   823 };
   825 //------------------------------StrIntrinsic-------------------------------
   826 // Base class for Ideal nodes used in String instrinsic code.
   827 class StrIntrinsicNode: public Node {
   828 public:
   829   StrIntrinsicNode(Node* control, Node* char_array_mem,
   830                    Node* s1, Node* c1, Node* s2, Node* c2):
   831     Node(control, char_array_mem, s1, c1, s2, c2) {
   832   }
   834   StrIntrinsicNode(Node* control, Node* char_array_mem,
   835                    Node* s1, Node* s2, Node* c):
   836     Node(control, char_array_mem, s1, s2, c) {
   837   }
   839   StrIntrinsicNode(Node* control, Node* char_array_mem,
   840                    Node* s1, Node* s2):
   841     Node(control, char_array_mem, s1, s2) {
   842   }
   844   virtual bool depends_only_on_test() const { return false; }
   845   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
   846   virtual uint match_edge(uint idx) const;
   847   virtual uint ideal_reg() const { return Op_RegI; }
   848   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   849   virtual const Type *Value(PhaseTransform *phase) const;
   850 };
   852 //------------------------------StrComp-------------------------------------
   853 class StrCompNode: public StrIntrinsicNode {
   854 public:
   855   StrCompNode(Node* control, Node* char_array_mem,
   856               Node* s1, Node* c1, Node* s2, Node* c2):
   857     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
   858   virtual int Opcode() const;
   859   virtual const Type* bottom_type() const { return TypeInt::INT; }
   860 };
   862 //------------------------------StrEquals-------------------------------------
   863 class StrEqualsNode: public StrIntrinsicNode {
   864 public:
   865   StrEqualsNode(Node* control, Node* char_array_mem,
   866                 Node* s1, Node* s2, Node* c):
   867     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
   868   virtual int Opcode() const;
   869   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
   870 };
   872 //------------------------------StrIndexOf-------------------------------------
   873 class StrIndexOfNode: public StrIntrinsicNode {
   874 public:
   875   StrIndexOfNode(Node* control, Node* char_array_mem,
   876               Node* s1, Node* c1, Node* s2, Node* c2):
   877     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
   878   virtual int Opcode() const;
   879   virtual const Type* bottom_type() const { return TypeInt::INT; }
   880 };
   882 //------------------------------AryEq---------------------------------------
   883 class AryEqNode: public StrIntrinsicNode {
   884 public:
   885   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
   886     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
   887   virtual int Opcode() const;
   888   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
   889 };
   892 //------------------------------EncodeISOArray--------------------------------
   893 // encode char[] to byte[] in ISO_8859_1
   894 class EncodeISOArrayNode: public Node {
   895 public:
   896   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
   897   virtual int Opcode() const;
   898   virtual bool depends_only_on_test() const { return false; }
   899   virtual const Type* bottom_type() const { return TypeInt::INT; }
   900   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
   901   virtual uint match_edge(uint idx) const;
   902   virtual uint ideal_reg() const { return Op_RegI; }
   903   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   904   virtual const Type *Value(PhaseTransform *phase) const;
   905 };
   907 //------------------------------MemBar-----------------------------------------
   908 // There are different flavors of Memory Barriers to match the Java Memory
   909 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
   910 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
   911 // volatile-load.  Monitor-exit and volatile-store act as Release: no
   912 // preceding ref can be moved to after them.  We insert a MemBar-Release
   913 // before a FastUnlock or volatile-store.  All volatiles need to be
   914 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
   915 // separate it from any following volatile-load.
   916 class MemBarNode: public MultiNode {
   917   virtual uint hash() const ;                  // { return NO_HASH; }
   918   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
   920   virtual uint size_of() const { return sizeof(*this); }
   921   // Memory type this node is serializing.  Usually either rawptr or bottom.
   922   const TypePtr* _adr_type;
   924 public:
   925   enum {
   926     Precedent = TypeFunc::Parms  // optional edge to force precedence
   927   };
   928   MemBarNode(Compile* C, int alias_idx, Node* precedent);
   929   virtual int Opcode() const = 0;
   930   virtual const class TypePtr *adr_type() const { return _adr_type; }
   931   virtual const Type *Value( PhaseTransform *phase ) const;
   932   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   933   virtual uint match_edge(uint idx) const { return 0; }
   934   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
   935   virtual Node *match( const ProjNode *proj, const Matcher *m );
   936   // Factory method.  Builds a wide or narrow membar.
   937   // Optional 'precedent' becomes an extra edge if not null.
   938   static MemBarNode* make(Compile* C, int opcode,
   939                           int alias_idx = Compile::AliasIdxBot,
   940                           Node* precedent = NULL);
   941 };
   943 // "Acquire" - no following ref can move before (but earlier refs can
   944 // follow, like an early Load stalled in cache).  Requires multi-cpu
   945 // visibility.  Inserted after a volatile load.
   946 class MemBarAcquireNode: public MemBarNode {
   947 public:
   948   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
   949     : MemBarNode(C, alias_idx, precedent) {}
   950   virtual int Opcode() const;
   951 };
   953 // "Release" - no earlier ref can move after (but later refs can move
   954 // up, like a speculative pipelined cache-hitting Load).  Requires
   955 // multi-cpu visibility.  Inserted before a volatile store.
   956 class MemBarReleaseNode: public MemBarNode {
   957 public:
   958   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
   959     : MemBarNode(C, alias_idx, precedent) {}
   960   virtual int Opcode() const;
   961 };
   963 // "Acquire" - no following ref can move before (but earlier refs can
   964 // follow, like an early Load stalled in cache).  Requires multi-cpu
   965 // visibility.  Inserted after a FastLock.
   966 class MemBarAcquireLockNode: public MemBarNode {
   967 public:
   968   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
   969     : MemBarNode(C, alias_idx, precedent) {}
   970   virtual int Opcode() const;
   971 };
   973 // "Release" - no earlier ref can move after (but later refs can move
   974 // up, like a speculative pipelined cache-hitting Load).  Requires
   975 // multi-cpu visibility.  Inserted before a FastUnLock.
   976 class MemBarReleaseLockNode: public MemBarNode {
   977 public:
   978   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
   979     : MemBarNode(C, alias_idx, precedent) {}
   980   virtual int Opcode() const;
   981 };
   983 class MemBarStoreStoreNode: public MemBarNode {
   984 public:
   985   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
   986     : MemBarNode(C, alias_idx, precedent) {
   987     init_class_id(Class_MemBarStoreStore);
   988   }
   989   virtual int Opcode() const;
   990 };
   992 // Ordering between a volatile store and a following volatile load.
   993 // Requires multi-CPU visibility?
   994 class MemBarVolatileNode: public MemBarNode {
   995 public:
   996   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
   997     : MemBarNode(C, alias_idx, precedent) {}
   998   virtual int Opcode() const;
   999 };
  1001 // Ordering within the same CPU.  Used to order unsafe memory references
  1002 // inside the compiler when we lack alias info.  Not needed "outside" the
  1003 // compiler because the CPU does all the ordering for us.
  1004 class MemBarCPUOrderNode: public MemBarNode {
  1005 public:
  1006   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
  1007     : MemBarNode(C, alias_idx, precedent) {}
  1008   virtual int Opcode() const;
  1009   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  1010 };
  1012 // Isolation of object setup after an AllocateNode and before next safepoint.
  1013 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
  1014 class InitializeNode: public MemBarNode {
  1015   friend class AllocateNode;
  1017   enum {
  1018     Incomplete    = 0,
  1019     Complete      = 1,
  1020     WithArraycopy = 2
  1021   };
  1022   int _is_complete;
  1024   bool _does_not_escape;
  1026 public:
  1027   enum {
  1028     Control    = TypeFunc::Control,
  1029     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
  1030     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
  1031     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
  1032   };
  1034   InitializeNode(Compile* C, int adr_type, Node* rawoop);
  1035   virtual int Opcode() const;
  1036   virtual uint size_of() const { return sizeof(*this); }
  1037   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  1038   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
  1040   // Manage incoming memory edges via a MergeMem on in(Memory):
  1041   Node* memory(uint alias_idx);
  1043   // The raw memory edge coming directly from the Allocation.
  1044   // The contents of this memory are *always* all-zero-bits.
  1045   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
  1047   // Return the corresponding allocation for this initialization (or null if none).
  1048   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
  1049   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
  1050   AllocateNode* allocation();
  1052   // Anything other than zeroing in this init?
  1053   bool is_non_zero();
  1055   // An InitializeNode must completed before macro expansion is done.
  1056   // Completion requires that the AllocateNode must be followed by
  1057   // initialization of the new memory to zero, then to any initializers.
  1058   bool is_complete() { return _is_complete != Incomplete; }
  1059   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
  1061   // Mark complete.  (Must not yet be complete.)
  1062   void set_complete(PhaseGVN* phase);
  1063   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
  1065   bool does_not_escape() { return _does_not_escape; }
  1066   void set_does_not_escape() { _does_not_escape = true; }
  1068 #ifdef ASSERT
  1069   // ensure all non-degenerate stores are ordered and non-overlapping
  1070   bool stores_are_sane(PhaseTransform* phase);
  1071 #endif //ASSERT
  1073   // See if this store can be captured; return offset where it initializes.
  1074   // Return 0 if the store cannot be moved (any sort of problem).
  1075   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
  1077   // Capture another store; reformat it to write my internal raw memory.
  1078   // Return the captured copy, else NULL if there is some sort of problem.
  1079   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
  1081   // Find captured store which corresponds to the range [start..start+size).
  1082   // Return my own memory projection (meaning the initial zero bits)
  1083   // if there is no such store.  Return NULL if there is a problem.
  1084   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
  1086   // Called when the associated AllocateNode is expanded into CFG.
  1087   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  1088                         intptr_t header_size, Node* size_in_bytes,
  1089                         PhaseGVN* phase);
  1091  private:
  1092   void remove_extra_zeroes();
  1094   // Find out where a captured store should be placed (or already is placed).
  1095   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
  1096                                      PhaseTransform* phase);
  1098   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
  1100   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
  1102   bool detect_init_independence(Node* n, int& count);
  1104   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
  1105                                PhaseGVN* phase);
  1107   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
  1108 };
  1110 //------------------------------MergeMem---------------------------------------
  1111 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
  1112 class MergeMemNode: public Node {
  1113   virtual uint hash() const ;                  // { return NO_HASH; }
  1114   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
  1115   friend class MergeMemStream;
  1116   MergeMemNode(Node* def);  // clients use MergeMemNode::make
  1118 public:
  1119   // If the input is a whole memory state, clone it with all its slices intact.
  1120   // Otherwise, make a new memory state with just that base memory input.
  1121   // In either case, the result is a newly created MergeMem.
  1122   static MergeMemNode* make(Compile* C, Node* base_memory);
  1124   virtual int Opcode() const;
  1125   virtual Node *Identity( PhaseTransform *phase );
  1126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1127   virtual uint ideal_reg() const { return NotAMachineReg; }
  1128   virtual uint match_edge(uint idx) const { return 0; }
  1129   virtual const RegMask &out_RegMask() const;
  1130   virtual const Type *bottom_type() const { return Type::MEMORY; }
  1131   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  1132   // sparse accessors
  1133   // Fetch the previously stored "set_memory_at", or else the base memory.
  1134   // (Caller should clone it if it is a phi-nest.)
  1135   Node* memory_at(uint alias_idx) const;
  1136   // set the memory, regardless of its previous value
  1137   void set_memory_at(uint alias_idx, Node* n);
  1138   // the "base" is the memory that provides the non-finite support
  1139   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
  1140   // warning: setting the base can implicitly set any of the other slices too
  1141   void set_base_memory(Node* def);
  1142   // sentinel value which denotes a copy of the base memory:
  1143   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
  1144   static Node* make_empty_memory(); // where the sentinel comes from
  1145   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
  1146   // hook for the iterator, to perform any necessary setup
  1147   void iteration_setup(const MergeMemNode* other = NULL);
  1148   // push sentinels until I am at least as long as the other (semantic no-op)
  1149   void grow_to_match(const MergeMemNode* other);
  1150   bool verify_sparse() const PRODUCT_RETURN0;
  1151 #ifndef PRODUCT
  1152   virtual void dump_spec(outputStream *st) const;
  1153 #endif
  1154 };
  1156 class MergeMemStream : public StackObj {
  1157  private:
  1158   MergeMemNode*       _mm;
  1159   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
  1160   Node*               _mm_base;  // loop-invariant base memory of _mm
  1161   int                 _idx;
  1162   int                 _cnt;
  1163   Node*               _mem;
  1164   Node*               _mem2;
  1165   int                 _cnt2;
  1167   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
  1168     // subsume_node will break sparseness at times, whenever a memory slice
  1169     // folds down to a copy of the base ("fat") memory.  In such a case,
  1170     // the raw edge will update to base, although it should be top.
  1171     // This iterator will recognize either top or base_memory as an
  1172     // "empty" slice.  See is_empty, is_empty2, and next below.
  1173     //
  1174     // The sparseness property is repaired in MergeMemNode::Ideal.
  1175     // As long as access to a MergeMem goes through this iterator
  1176     // or the memory_at accessor, flaws in the sparseness will
  1177     // never be observed.
  1178     //
  1179     // Also, iteration_setup repairs sparseness.
  1180     assert(mm->verify_sparse(), "please, no dups of base");
  1181     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
  1183     _mm  = mm;
  1184     _mm_base = mm->base_memory();
  1185     _mm2 = mm2;
  1186     _cnt = mm->req();
  1187     _idx = Compile::AliasIdxBot-1; // start at the base memory
  1188     _mem = NULL;
  1189     _mem2 = NULL;
  1192 #ifdef ASSERT
  1193   Node* check_memory() const {
  1194     if (at_base_memory())
  1195       return _mm->base_memory();
  1196     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
  1197       return _mm->memory_at(_idx);
  1198     else
  1199       return _mm_base;
  1201   Node* check_memory2() const {
  1202     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
  1204 #endif
  1206   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
  1207   void assert_synch() const {
  1208     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
  1209            "no side-effects except through the stream");
  1212  public:
  1214   // expected usages:
  1215   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
  1216   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
  1218   // iterate over one merge
  1219   MergeMemStream(MergeMemNode* mm) {
  1220     mm->iteration_setup();
  1221     init(mm);
  1222     debug_only(_cnt2 = 999);
  1224   // iterate in parallel over two merges
  1225   // only iterates through non-empty elements of mm2
  1226   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
  1227     assert(mm2, "second argument must be a MergeMem also");
  1228     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
  1229     mm->iteration_setup(mm2);
  1230     init(mm, mm2);
  1231     _cnt2 = mm2->req();
  1233 #ifdef ASSERT
  1234   ~MergeMemStream() {
  1235     assert_synch();
  1237 #endif
  1239   MergeMemNode* all_memory() const {
  1240     return _mm;
  1242   Node* base_memory() const {
  1243     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
  1244     return _mm_base;
  1246   const MergeMemNode* all_memory2() const {
  1247     assert(_mm2 != NULL, "");
  1248     return _mm2;
  1250   bool at_base_memory() const {
  1251     return _idx == Compile::AliasIdxBot;
  1253   int alias_idx() const {
  1254     assert(_mem, "must call next 1st");
  1255     return _idx;
  1258   const TypePtr* adr_type() const {
  1259     return Compile::current()->get_adr_type(alias_idx());
  1262   const TypePtr* adr_type(Compile* C) const {
  1263     return C->get_adr_type(alias_idx());
  1265   bool is_empty() const {
  1266     assert(_mem, "must call next 1st");
  1267     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
  1268     return _mem->is_top();
  1270   bool is_empty2() const {
  1271     assert(_mem2, "must call next 1st");
  1272     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
  1273     return _mem2->is_top();
  1275   Node* memory() const {
  1276     assert(!is_empty(), "must not be empty");
  1277     assert_synch();
  1278     return _mem;
  1280   // get the current memory, regardless of empty or non-empty status
  1281   Node* force_memory() const {
  1282     assert(!is_empty() || !at_base_memory(), "");
  1283     // Use _mm_base to defend against updates to _mem->base_memory().
  1284     Node *mem = _mem->is_top() ? _mm_base : _mem;
  1285     assert(mem == check_memory(), "");
  1286     return mem;
  1288   Node* memory2() const {
  1289     assert(_mem2 == check_memory2(), "");
  1290     return _mem2;
  1292   void set_memory(Node* mem) {
  1293     if (at_base_memory()) {
  1294       // Note that this does not change the invariant _mm_base.
  1295       _mm->set_base_memory(mem);
  1296     } else {
  1297       _mm->set_memory_at(_idx, mem);
  1299     _mem = mem;
  1300     assert_synch();
  1303   // Recover from a side effect to the MergeMemNode.
  1304   void set_memory() {
  1305     _mem = _mm->in(_idx);
  1308   bool next()  { return next(false); }
  1309   bool next2() { return next(true); }
  1311   bool next_non_empty()  { return next_non_empty(false); }
  1312   bool next_non_empty2() { return next_non_empty(true); }
  1313   // next_non_empty2 can yield states where is_empty() is true
  1315  private:
  1316   // find the next item, which might be empty
  1317   bool next(bool have_mm2) {
  1318     assert((_mm2 != NULL) == have_mm2, "use other next");
  1319     assert_synch();
  1320     if (++_idx < _cnt) {
  1321       // Note:  This iterator allows _mm to be non-sparse.
  1322       // It behaves the same whether _mem is top or base_memory.
  1323       _mem = _mm->in(_idx);
  1324       if (have_mm2)
  1325         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
  1326       return true;
  1328     return false;
  1331   // find the next non-empty item
  1332   bool next_non_empty(bool have_mm2) {
  1333     while (next(have_mm2)) {
  1334       if (!is_empty()) {
  1335         // make sure _mem2 is filled in sensibly
  1336         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
  1337         return true;
  1338       } else if (have_mm2 && !is_empty2()) {
  1339         return true;   // is_empty() == true
  1342     return false;
  1344 };
  1346 //------------------------------Prefetch---------------------------------------
  1348 // Non-faulting prefetch load.  Prefetch for many reads.
  1349 class PrefetchReadNode : public Node {
  1350 public:
  1351   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1352   virtual int Opcode() const;
  1353   virtual uint ideal_reg() const { return NotAMachineReg; }
  1354   virtual uint match_edge(uint idx) const { return idx==2; }
  1355   virtual const Type *bottom_type() const { return Type::ABIO; }
  1356 };
  1358 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
  1359 class PrefetchWriteNode : public Node {
  1360 public:
  1361   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1362   virtual int Opcode() const;
  1363   virtual uint ideal_reg() const { return NotAMachineReg; }
  1364   virtual uint match_edge(uint idx) const { return idx==2; }
  1365   virtual const Type *bottom_type() const { return Type::ABIO; }
  1366 };
  1368 // Allocation prefetch which may fault, TLAB size have to be adjusted.
  1369 class PrefetchAllocationNode : public Node {
  1370 public:
  1371   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
  1372   virtual int Opcode() const;
  1373   virtual uint ideal_reg() const { return NotAMachineReg; }
  1374   virtual uint match_edge(uint idx) const { return idx==2; }
  1375   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
  1376 };
  1378 #endif // SHARE_VM_OPTO_MEMNODE_HPP

mercurial