src/share/vm/opto/library_call.cpp

Wed, 08 May 2013 15:08:01 -0700

author
kvn
date
Wed, 08 May 2013 15:08:01 -0700
changeset 5110
6f3fd5150b67
parent 4921
124ca22437b1
child 5111
70120f47d403
permissions
-rw-r--r--

6934604: enable parts of EliminateAutoBox by default
Summary: Resurrected autobox elimination code and enabled part of it by default.
Reviewed-by: roland, twisti

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    42 class LibraryIntrinsic : public InlineCallGenerator {
    43   // Extend the set of intrinsics known to the runtime:
    44  public:
    45  private:
    46   bool             _is_virtual;
    47   bool             _is_predicted;
    48   vmIntrinsics::ID _intrinsic_id;
    50  public:
    51   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
    52     : InlineCallGenerator(m),
    53       _is_virtual(is_virtual),
    54       _is_predicted(is_predicted),
    55       _intrinsic_id(id)
    56   {
    57   }
    58   virtual bool is_intrinsic() const { return true; }
    59   virtual bool is_virtual()   const { return _is_virtual; }
    60   virtual bool is_predicted()   const { return _is_predicted; }
    61   virtual JVMState* generate(JVMState* jvms);
    62   virtual Node* generate_predicate(JVMState* jvms);
    63   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    64 };
    67 // Local helper class for LibraryIntrinsic:
    68 class LibraryCallKit : public GraphKit {
    69  private:
    70   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    71   Node*             _result;        // the result node, if any
    72   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    74   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    76  public:
    77   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    78     : GraphKit(jvms),
    79       _intrinsic(intrinsic),
    80       _result(NULL)
    81   {
    82     // Check if this is a root compile.  In that case we don't have a caller.
    83     if (!jvms->has_method()) {
    84       _reexecute_sp = sp();
    85     } else {
    86       // Find out how many arguments the interpreter needs when deoptimizing
    87       // and save the stack pointer value so it can used by uncommon_trap.
    88       // We find the argument count by looking at the declared signature.
    89       bool ignored_will_link;
    90       ciSignature* declared_signature = NULL;
    91       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
    92       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
    93       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
    94     }
    95   }
    97   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
    99   ciMethod*         caller()    const    { return jvms()->method(); }
   100   int               bci()       const    { return jvms()->bci(); }
   101   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   102   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   103   ciMethod*         callee()    const    { return _intrinsic->method(); }
   105   bool try_to_inline();
   106   Node* try_to_predicate();
   108   void push_result() {
   109     // Push the result onto the stack.
   110     if (!stopped() && result() != NULL) {
   111       BasicType bt = result()->bottom_type()->basic_type();
   112       push_node(bt, result());
   113     }
   114   }
   116  private:
   117   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   118     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   119   }
   121   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   122   void  set_result(RegionNode* region, PhiNode* value);
   123   Node*     result() { return _result; }
   125   virtual int reexecute_sp() { return _reexecute_sp; }
   127   // Helper functions to inline natives
   128   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   129   Node* generate_slow_guard(Node* test, RegionNode* region);
   130   Node* generate_fair_guard(Node* test, RegionNode* region);
   131   Node* generate_negative_guard(Node* index, RegionNode* region,
   132                                 // resulting CastII of index:
   133                                 Node* *pos_index = NULL);
   134   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   135                                    // resulting CastII of index:
   136                                    Node* *pos_index = NULL);
   137   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   138                              Node* array_length,
   139                              RegionNode* region);
   140   Node* generate_current_thread(Node* &tls_output);
   141   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   142                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   143   Node* load_mirror_from_klass(Node* klass);
   144   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   145                                       RegionNode* region, int null_path,
   146                                       int offset);
   147   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   148                                RegionNode* region, int null_path) {
   149     int offset = java_lang_Class::klass_offset_in_bytes();
   150     return load_klass_from_mirror_common(mirror, never_see_null,
   151                                          region, null_path,
   152                                          offset);
   153   }
   154   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   155                                      RegionNode* region, int null_path) {
   156     int offset = java_lang_Class::array_klass_offset_in_bytes();
   157     return load_klass_from_mirror_common(mirror, never_see_null,
   158                                          region, null_path,
   159                                          offset);
   160   }
   161   Node* generate_access_flags_guard(Node* kls,
   162                                     int modifier_mask, int modifier_bits,
   163                                     RegionNode* region);
   164   Node* generate_interface_guard(Node* kls, RegionNode* region);
   165   Node* generate_array_guard(Node* kls, RegionNode* region) {
   166     return generate_array_guard_common(kls, region, false, false);
   167   }
   168   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   169     return generate_array_guard_common(kls, region, false, true);
   170   }
   171   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   172     return generate_array_guard_common(kls, region, true, false);
   173   }
   174   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   175     return generate_array_guard_common(kls, region, true, true);
   176   }
   177   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   178                                     bool obj_array, bool not_array);
   179   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   180   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   181                                      bool is_virtual = false, bool is_static = false);
   182   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   183     return generate_method_call(method_id, false, true);
   184   }
   185   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   186     return generate_method_call(method_id, true, false);
   187   }
   188   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   190   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   191   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   192   bool inline_string_compareTo();
   193   bool inline_string_indexOf();
   194   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   195   bool inline_string_equals();
   196   Node* round_double_node(Node* n);
   197   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   198   bool inline_math_native(vmIntrinsics::ID id);
   199   bool inline_trig(vmIntrinsics::ID id);
   200   bool inline_math(vmIntrinsics::ID id);
   201   bool inline_exp();
   202   bool inline_pow();
   203   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   204   bool inline_min_max(vmIntrinsics::ID id);
   205   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   206   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   207   int classify_unsafe_addr(Node* &base, Node* &offset);
   208   Node* make_unsafe_address(Node* base, Node* offset);
   209   // Helper for inline_unsafe_access.
   210   // Generates the guards that check whether the result of
   211   // Unsafe.getObject should be recorded in an SATB log buffer.
   212   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   213   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   214   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   215   bool inline_unsafe_allocate();
   216   bool inline_unsafe_copyMemory();
   217   bool inline_native_currentThread();
   218 #ifdef TRACE_HAVE_INTRINSICS
   219   bool inline_native_classID();
   220   bool inline_native_threadID();
   221 #endif
   222   bool inline_native_time_funcs(address method, const char* funcName);
   223   bool inline_native_isInterrupted();
   224   bool inline_native_Class_query(vmIntrinsics::ID id);
   225   bool inline_native_subtype_check();
   227   bool inline_native_newArray();
   228   bool inline_native_getLength();
   229   bool inline_array_copyOf(bool is_copyOfRange);
   230   bool inline_array_equals();
   231   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   232   bool inline_native_clone(bool is_virtual);
   233   bool inline_native_Reflection_getCallerClass();
   234   // Helper function for inlining native object hash method
   235   bool inline_native_hashcode(bool is_virtual, bool is_static);
   236   bool inline_native_getClass();
   238   // Helper functions for inlining arraycopy
   239   bool inline_arraycopy();
   240   void generate_arraycopy(const TypePtr* adr_type,
   241                           BasicType basic_elem_type,
   242                           Node* src,  Node* src_offset,
   243                           Node* dest, Node* dest_offset,
   244                           Node* copy_length,
   245                           bool disjoint_bases = false,
   246                           bool length_never_negative = false,
   247                           RegionNode* slow_region = NULL);
   248   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   249                                                 RegionNode* slow_region);
   250   void generate_clear_array(const TypePtr* adr_type,
   251                             Node* dest,
   252                             BasicType basic_elem_type,
   253                             Node* slice_off,
   254                             Node* slice_len,
   255                             Node* slice_end);
   256   bool generate_block_arraycopy(const TypePtr* adr_type,
   257                                 BasicType basic_elem_type,
   258                                 AllocateNode* alloc,
   259                                 Node* src,  Node* src_offset,
   260                                 Node* dest, Node* dest_offset,
   261                                 Node* dest_size, bool dest_uninitialized);
   262   void generate_slow_arraycopy(const TypePtr* adr_type,
   263                                Node* src,  Node* src_offset,
   264                                Node* dest, Node* dest_offset,
   265                                Node* copy_length, bool dest_uninitialized);
   266   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   267                                      Node* dest_elem_klass,
   268                                      Node* src,  Node* src_offset,
   269                                      Node* dest, Node* dest_offset,
   270                                      Node* copy_length, bool dest_uninitialized);
   271   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   272                                    Node* src,  Node* src_offset,
   273                                    Node* dest, Node* dest_offset,
   274                                    Node* copy_length, bool dest_uninitialized);
   275   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   276                                     BasicType basic_elem_type,
   277                                     bool disjoint_bases,
   278                                     Node* src,  Node* src_offset,
   279                                     Node* dest, Node* dest_offset,
   280                                     Node* copy_length, bool dest_uninitialized);
   281   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   282   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   283   bool inline_unsafe_ordered_store(BasicType type);
   284   bool inline_unsafe_fence(vmIntrinsics::ID id);
   285   bool inline_fp_conversions(vmIntrinsics::ID id);
   286   bool inline_number_methods(vmIntrinsics::ID id);
   287   bool inline_reference_get();
   288   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   289   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   290   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   291   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   292   bool inline_encodeISOArray();
   293 };
   296 //---------------------------make_vm_intrinsic----------------------------
   297 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   298   vmIntrinsics::ID id = m->intrinsic_id();
   299   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   301   if (DisableIntrinsic[0] != '\0'
   302       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   303     // disabled by a user request on the command line:
   304     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   305     return NULL;
   306   }
   308   if (!m->is_loaded()) {
   309     // do not attempt to inline unloaded methods
   310     return NULL;
   311   }
   313   // Only a few intrinsics implement a virtual dispatch.
   314   // They are expensive calls which are also frequently overridden.
   315   if (is_virtual) {
   316     switch (id) {
   317     case vmIntrinsics::_hashCode:
   318     case vmIntrinsics::_clone:
   319       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   320       break;
   321     default:
   322       return NULL;
   323     }
   324   }
   326   // -XX:-InlineNatives disables nearly all intrinsics:
   327   if (!InlineNatives) {
   328     switch (id) {
   329     case vmIntrinsics::_indexOf:
   330     case vmIntrinsics::_compareTo:
   331     case vmIntrinsics::_equals:
   332     case vmIntrinsics::_equalsC:
   333     case vmIntrinsics::_getAndAddInt:
   334     case vmIntrinsics::_getAndAddLong:
   335     case vmIntrinsics::_getAndSetInt:
   336     case vmIntrinsics::_getAndSetLong:
   337     case vmIntrinsics::_getAndSetObject:
   338     case vmIntrinsics::_loadFence:
   339     case vmIntrinsics::_storeFence:
   340     case vmIntrinsics::_fullFence:
   341       break;  // InlineNatives does not control String.compareTo
   342     case vmIntrinsics::_Reference_get:
   343       break;  // InlineNatives does not control Reference.get
   344     default:
   345       return NULL;
   346     }
   347   }
   349   bool is_predicted = false;
   351   switch (id) {
   352   case vmIntrinsics::_compareTo:
   353     if (!SpecialStringCompareTo)  return NULL;
   354     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   355     break;
   356   case vmIntrinsics::_indexOf:
   357     if (!SpecialStringIndexOf)  return NULL;
   358     break;
   359   case vmIntrinsics::_equals:
   360     if (!SpecialStringEquals)  return NULL;
   361     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   362     break;
   363   case vmIntrinsics::_equalsC:
   364     if (!SpecialArraysEquals)  return NULL;
   365     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   366     break;
   367   case vmIntrinsics::_arraycopy:
   368     if (!InlineArrayCopy)  return NULL;
   369     break;
   370   case vmIntrinsics::_copyMemory:
   371     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   372     if (!InlineArrayCopy)  return NULL;
   373     break;
   374   case vmIntrinsics::_hashCode:
   375     if (!InlineObjectHash)  return NULL;
   376     break;
   377   case vmIntrinsics::_clone:
   378   case vmIntrinsics::_copyOf:
   379   case vmIntrinsics::_copyOfRange:
   380     if (!InlineObjectCopy)  return NULL;
   381     // These also use the arraycopy intrinsic mechanism:
   382     if (!InlineArrayCopy)  return NULL;
   383     break;
   384   case vmIntrinsics::_encodeISOArray:
   385     if (!SpecialEncodeISOArray)  return NULL;
   386     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   387     break;
   388   case vmIntrinsics::_checkIndex:
   389     // We do not intrinsify this.  The optimizer does fine with it.
   390     return NULL;
   392   case vmIntrinsics::_getCallerClass:
   393     if (!UseNewReflection)  return NULL;
   394     if (!InlineReflectionGetCallerClass)  return NULL;
   395     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   396     break;
   398   case vmIntrinsics::_bitCount_i:
   399     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   400     break;
   402   case vmIntrinsics::_bitCount_l:
   403     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   404     break;
   406   case vmIntrinsics::_numberOfLeadingZeros_i:
   407     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   408     break;
   410   case vmIntrinsics::_numberOfLeadingZeros_l:
   411     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   412     break;
   414   case vmIntrinsics::_numberOfTrailingZeros_i:
   415     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   416     break;
   418   case vmIntrinsics::_numberOfTrailingZeros_l:
   419     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   420     break;
   422   case vmIntrinsics::_reverseBytes_c:
   423     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   424     break;
   425   case vmIntrinsics::_reverseBytes_s:
   426     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   427     break;
   428   case vmIntrinsics::_reverseBytes_i:
   429     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   430     break;
   431   case vmIntrinsics::_reverseBytes_l:
   432     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   433     break;
   435   case vmIntrinsics::_Reference_get:
   436     // Use the intrinsic version of Reference.get() so that the value in
   437     // the referent field can be registered by the G1 pre-barrier code.
   438     // Also add memory barrier to prevent commoning reads from this field
   439     // across safepoint since GC can change it value.
   440     break;
   442   case vmIntrinsics::_compareAndSwapObject:
   443 #ifdef _LP64
   444     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   445 #endif
   446     break;
   448   case vmIntrinsics::_compareAndSwapLong:
   449     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   450     break;
   452   case vmIntrinsics::_getAndAddInt:
   453     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   454     break;
   456   case vmIntrinsics::_getAndAddLong:
   457     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   458     break;
   460   case vmIntrinsics::_getAndSetInt:
   461     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   462     break;
   464   case vmIntrinsics::_getAndSetLong:
   465     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   466     break;
   468   case vmIntrinsics::_getAndSetObject:
   469 #ifdef _LP64
   470     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   471     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   472     break;
   473 #else
   474     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   475     break;
   476 #endif
   478   case vmIntrinsics::_aescrypt_encryptBlock:
   479   case vmIntrinsics::_aescrypt_decryptBlock:
   480     if (!UseAESIntrinsics) return NULL;
   481     break;
   483   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   484   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   485     if (!UseAESIntrinsics) return NULL;
   486     // these two require the predicated logic
   487     is_predicted = true;
   488     break;
   490  default:
   491     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   492     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   493     break;
   494   }
   496   // -XX:-InlineClassNatives disables natives from the Class class.
   497   // The flag applies to all reflective calls, notably Array.newArray
   498   // (visible to Java programmers as Array.newInstance).
   499   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   500       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   501     if (!InlineClassNatives)  return NULL;
   502   }
   504   // -XX:-InlineThreadNatives disables natives from the Thread class.
   505   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   506     if (!InlineThreadNatives)  return NULL;
   507   }
   509   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   510   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   511       m->holder()->name() == ciSymbol::java_lang_Float() ||
   512       m->holder()->name() == ciSymbol::java_lang_Double()) {
   513     if (!InlineMathNatives)  return NULL;
   514   }
   516   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   517   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   518     if (!InlineUnsafeOps)  return NULL;
   519   }
   521   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
   522 }
   524 //----------------------register_library_intrinsics-----------------------
   525 // Initialize this file's data structures, for each Compile instance.
   526 void Compile::register_library_intrinsics() {
   527   // Nothing to do here.
   528 }
   530 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   531   LibraryCallKit kit(jvms, this);
   532   Compile* C = kit.C;
   533   int nodes = C->unique();
   534 #ifndef PRODUCT
   535   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   536     char buf[1000];
   537     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   538     tty->print_cr("Intrinsic %s", str);
   539   }
   540 #endif
   541   ciMethod* callee = kit.callee();
   542   const int bci    = kit.bci();
   544   // Try to inline the intrinsic.
   545   if (kit.try_to_inline()) {
   546     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   547       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   548     }
   549     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   550     if (C->log()) {
   551       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   552                      vmIntrinsics::name_at(intrinsic_id()),
   553                      (is_virtual() ? " virtual='1'" : ""),
   554                      C->unique() - nodes);
   555     }
   556     // Push the result from the inlined method onto the stack.
   557     kit.push_result();
   558     return kit.transfer_exceptions_into_jvms();
   559   }
   561   // The intrinsic bailed out
   562   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   563     if (jvms->has_method()) {
   564       // Not a root compile.
   565       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   566       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   567     } else {
   568       // Root compile
   569       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   570                vmIntrinsics::name_at(intrinsic_id()),
   571                (is_virtual() ? " (virtual)" : ""), bci);
   572     }
   573   }
   574   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   575   return NULL;
   576 }
   578 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   579   LibraryCallKit kit(jvms, this);
   580   Compile* C = kit.C;
   581   int nodes = C->unique();
   582 #ifndef PRODUCT
   583   assert(is_predicted(), "sanity");
   584   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   585     char buf[1000];
   586     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   587     tty->print_cr("Predicate for intrinsic %s", str);
   588   }
   589 #endif
   590   ciMethod* callee = kit.callee();
   591   const int bci    = kit.bci();
   593   Node* slow_ctl = kit.try_to_predicate();
   594   if (!kit.failing()) {
   595     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   596       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   597     }
   598     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   599     if (C->log()) {
   600       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   601                      vmIntrinsics::name_at(intrinsic_id()),
   602                      (is_virtual() ? " virtual='1'" : ""),
   603                      C->unique() - nodes);
   604     }
   605     return slow_ctl; // Could be NULL if the check folds.
   606   }
   608   // The intrinsic bailed out
   609   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   610     if (jvms->has_method()) {
   611       // Not a root compile.
   612       const char* msg = "failed to generate predicate for intrinsic";
   613       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   614     } else {
   615       // Root compile
   616       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   617                                         vmIntrinsics::name_at(intrinsic_id()),
   618                                         (is_virtual() ? " (virtual)" : ""), bci);
   619     }
   620   }
   621   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   622   return NULL;
   623 }
   625 bool LibraryCallKit::try_to_inline() {
   626   // Handle symbolic names for otherwise undistinguished boolean switches:
   627   const bool is_store       = true;
   628   const bool is_native_ptr  = true;
   629   const bool is_static      = true;
   630   const bool is_volatile    = true;
   632   if (!jvms()->has_method()) {
   633     // Root JVMState has a null method.
   634     assert(map()->memory()->Opcode() == Op_Parm, "");
   635     // Insert the memory aliasing node
   636     set_all_memory(reset_memory());
   637   }
   638   assert(merged_memory(), "");
   641   switch (intrinsic_id()) {
   642   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   643   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   644   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   646   case vmIntrinsics::_dsin:
   647   case vmIntrinsics::_dcos:
   648   case vmIntrinsics::_dtan:
   649   case vmIntrinsics::_dabs:
   650   case vmIntrinsics::_datan2:
   651   case vmIntrinsics::_dsqrt:
   652   case vmIntrinsics::_dexp:
   653   case vmIntrinsics::_dlog:
   654   case vmIntrinsics::_dlog10:
   655   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   657   case vmIntrinsics::_min:
   658   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   660   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   662   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   663   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   664   case vmIntrinsics::_equals:                   return inline_string_equals();
   666   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   667   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   668   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   669   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   670   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   671   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   672   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   673   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   674   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   676   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   677   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   678   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   679   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   680   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   681   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   682   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   683   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   684   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   686   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   687   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   688   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   689   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   690   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   691   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   692   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   693   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   695   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   696   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   697   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   698   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   699   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   700   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   701   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   702   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   704   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   705   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   706   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   707   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   708   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   709   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   710   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   711   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   712   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   714   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   715   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   716   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   717   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   718   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   719   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   720   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   721   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   722   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   724   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   725   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   726   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   727   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   729   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   730   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   731   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   733   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   734   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   735   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   737   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   738   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   739   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   740   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   741   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   743   case vmIntrinsics::_loadFence:
   744   case vmIntrinsics::_storeFence:
   745   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   747   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   748   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   750 #ifdef TRACE_HAVE_INTRINSICS
   751   case vmIntrinsics::_classID:                  return inline_native_classID();
   752   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   753   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   754 #endif
   755   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   756   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   757   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   758   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   759   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   760   case vmIntrinsics::_getLength:                return inline_native_getLength();
   761   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   762   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   763   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   764   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   766   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   768   case vmIntrinsics::_isInstance:
   769   case vmIntrinsics::_getModifiers:
   770   case vmIntrinsics::_isInterface:
   771   case vmIntrinsics::_isArray:
   772   case vmIntrinsics::_isPrimitive:
   773   case vmIntrinsics::_getSuperclass:
   774   case vmIntrinsics::_getComponentType:
   775   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   777   case vmIntrinsics::_floatToRawIntBits:
   778   case vmIntrinsics::_floatToIntBits:
   779   case vmIntrinsics::_intBitsToFloat:
   780   case vmIntrinsics::_doubleToRawLongBits:
   781   case vmIntrinsics::_doubleToLongBits:
   782   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   784   case vmIntrinsics::_numberOfLeadingZeros_i:
   785   case vmIntrinsics::_numberOfLeadingZeros_l:
   786   case vmIntrinsics::_numberOfTrailingZeros_i:
   787   case vmIntrinsics::_numberOfTrailingZeros_l:
   788   case vmIntrinsics::_bitCount_i:
   789   case vmIntrinsics::_bitCount_l:
   790   case vmIntrinsics::_reverseBytes_i:
   791   case vmIntrinsics::_reverseBytes_l:
   792   case vmIntrinsics::_reverseBytes_s:
   793   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   795   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   797   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   799   case vmIntrinsics::_aescrypt_encryptBlock:
   800   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   802   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   803   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   804     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   806   case vmIntrinsics::_encodeISOArray:
   807     return inline_encodeISOArray();
   809   default:
   810     // If you get here, it may be that someone has added a new intrinsic
   811     // to the list in vmSymbols.hpp without implementing it here.
   812 #ifndef PRODUCT
   813     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   814       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   815                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   816     }
   817 #endif
   818     return false;
   819   }
   820 }
   822 Node* LibraryCallKit::try_to_predicate() {
   823   if (!jvms()->has_method()) {
   824     // Root JVMState has a null method.
   825     assert(map()->memory()->Opcode() == Op_Parm, "");
   826     // Insert the memory aliasing node
   827     set_all_memory(reset_memory());
   828   }
   829   assert(merged_memory(), "");
   831   switch (intrinsic_id()) {
   832   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   833     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   834   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   835     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   837   default:
   838     // If you get here, it may be that someone has added a new intrinsic
   839     // to the list in vmSymbols.hpp without implementing it here.
   840 #ifndef PRODUCT
   841     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   842       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   843                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   844     }
   845 #endif
   846     Node* slow_ctl = control();
   847     set_control(top()); // No fast path instrinsic
   848     return slow_ctl;
   849   }
   850 }
   852 //------------------------------set_result-------------------------------
   853 // Helper function for finishing intrinsics.
   854 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   855   record_for_igvn(region);
   856   set_control(_gvn.transform(region));
   857   set_result( _gvn.transform(value));
   858   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   859 }
   861 //------------------------------generate_guard---------------------------
   862 // Helper function for generating guarded fast-slow graph structures.
   863 // The given 'test', if true, guards a slow path.  If the test fails
   864 // then a fast path can be taken.  (We generally hope it fails.)
   865 // In all cases, GraphKit::control() is updated to the fast path.
   866 // The returned value represents the control for the slow path.
   867 // The return value is never 'top'; it is either a valid control
   868 // or NULL if it is obvious that the slow path can never be taken.
   869 // Also, if region and the slow control are not NULL, the slow edge
   870 // is appended to the region.
   871 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   872   if (stopped()) {
   873     // Already short circuited.
   874     return NULL;
   875   }
   877   // Build an if node and its projections.
   878   // If test is true we take the slow path, which we assume is uncommon.
   879   if (_gvn.type(test) == TypeInt::ZERO) {
   880     // The slow branch is never taken.  No need to build this guard.
   881     return NULL;
   882   }
   884   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   886   Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
   887   if (if_slow == top()) {
   888     // The slow branch is never taken.  No need to build this guard.
   889     return NULL;
   890   }
   892   if (region != NULL)
   893     region->add_req(if_slow);
   895   Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
   896   set_control(if_fast);
   898   return if_slow;
   899 }
   901 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   902   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   903 }
   904 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   905   return generate_guard(test, region, PROB_FAIR);
   906 }
   908 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   909                                                      Node* *pos_index) {
   910   if (stopped())
   911     return NULL;                // already stopped
   912   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   913     return NULL;                // index is already adequately typed
   914   Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
   915   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
   916   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   917   if (is_neg != NULL && pos_index != NULL) {
   918     // Emulate effect of Parse::adjust_map_after_if.
   919     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   920     ccast->set_req(0, control());
   921     (*pos_index) = _gvn.transform(ccast);
   922   }
   923   return is_neg;
   924 }
   926 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   927                                                         Node* *pos_index) {
   928   if (stopped())
   929     return NULL;                // already stopped
   930   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   931     return NULL;                // index is already adequately typed
   932   Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
   933   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   934   Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
   935   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   936   if (is_notp != NULL && pos_index != NULL) {
   937     // Emulate effect of Parse::adjust_map_after_if.
   938     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
   939     ccast->set_req(0, control());
   940     (*pos_index) = _gvn.transform(ccast);
   941   }
   942   return is_notp;
   943 }
   945 // Make sure that 'position' is a valid limit index, in [0..length].
   946 // There are two equivalent plans for checking this:
   947 //   A. (offset + copyLength)  unsigned<=  arrayLength
   948 //   B. offset  <=  (arrayLength - copyLength)
   949 // We require that all of the values above, except for the sum and
   950 // difference, are already known to be non-negative.
   951 // Plan A is robust in the face of overflow, if offset and copyLength
   952 // are both hugely positive.
   953 //
   954 // Plan B is less direct and intuitive, but it does not overflow at
   955 // all, since the difference of two non-negatives is always
   956 // representable.  Whenever Java methods must perform the equivalent
   957 // check they generally use Plan B instead of Plan A.
   958 // For the moment we use Plan A.
   959 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   960                                                   Node* subseq_length,
   961                                                   Node* array_length,
   962                                                   RegionNode* region) {
   963   if (stopped())
   964     return NULL;                // already stopped
   965   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   966   if (zero_offset && subseq_length->eqv_uncast(array_length))
   967     return NULL;                // common case of whole-array copy
   968   Node* last = subseq_length;
   969   if (!zero_offset)             // last += offset
   970     last = _gvn.transform( new (C) AddINode(last, offset));
   971   Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
   972   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
   973   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   974   return is_over;
   975 }
   978 //--------------------------generate_current_thread--------------------
   979 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   980   ciKlass*    thread_klass = env()->Thread_klass();
   981   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   982   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
   983   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   984   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   985   tls_output = thread;
   986   return threadObj;
   987 }
   990 //------------------------------make_string_method_node------------------------
   991 // Helper method for String intrinsic functions. This version is called
   992 // with str1 and str2 pointing to String object nodes.
   993 //
   994 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
   995   Node* no_ctrl = NULL;
   997   // Get start addr of string
   998   Node* str1_value   = load_String_value(no_ctrl, str1);
   999   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1000   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1002   // Get length of string 1
  1003   Node* str1_len  = load_String_length(no_ctrl, str1);
  1005   Node* str2_value   = load_String_value(no_ctrl, str2);
  1006   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1007   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1009   Node* str2_len = NULL;
  1010   Node* result = NULL;
  1012   switch (opcode) {
  1013   case Op_StrIndexOf:
  1014     // Get length of string 2
  1015     str2_len = load_String_length(no_ctrl, str2);
  1017     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1018                                  str1_start, str1_len, str2_start, str2_len);
  1019     break;
  1020   case Op_StrComp:
  1021     // Get length of string 2
  1022     str2_len = load_String_length(no_ctrl, str2);
  1024     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1025                                  str1_start, str1_len, str2_start, str2_len);
  1026     break;
  1027   case Op_StrEquals:
  1028     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1029                                str1_start, str2_start, str1_len);
  1030     break;
  1031   default:
  1032     ShouldNotReachHere();
  1033     return NULL;
  1036   // All these intrinsics have checks.
  1037   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1039   return _gvn.transform(result);
  1042 // Helper method for String intrinsic functions. This version is called
  1043 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1044 // to Int nodes containing the lenghts of str1 and str2.
  1045 //
  1046 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1047   Node* result = NULL;
  1048   switch (opcode) {
  1049   case Op_StrIndexOf:
  1050     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1051                                  str1_start, cnt1, str2_start, cnt2);
  1052     break;
  1053   case Op_StrComp:
  1054     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1055                                  str1_start, cnt1, str2_start, cnt2);
  1056     break;
  1057   case Op_StrEquals:
  1058     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1059                                  str1_start, str2_start, cnt1);
  1060     break;
  1061   default:
  1062     ShouldNotReachHere();
  1063     return NULL;
  1066   // All these intrinsics have checks.
  1067   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1069   return _gvn.transform(result);
  1072 //------------------------------inline_string_compareTo------------------------
  1073 // public int java.lang.String.compareTo(String anotherString);
  1074 bool LibraryCallKit::inline_string_compareTo() {
  1075   Node* receiver = null_check(argument(0));
  1076   Node* arg      = null_check(argument(1));
  1077   if (stopped()) {
  1078     return true;
  1080   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1081   return true;
  1084 //------------------------------inline_string_equals------------------------
  1085 bool LibraryCallKit::inline_string_equals() {
  1086   Node* receiver = null_check_receiver();
  1087   // NOTE: Do not null check argument for String.equals() because spec
  1088   // allows to specify NULL as argument.
  1089   Node* argument = this->argument(1);
  1090   if (stopped()) {
  1091     return true;
  1094   // paths (plus control) merge
  1095   RegionNode* region = new (C) RegionNode(5);
  1096   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1098   // does source == target string?
  1099   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1100   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1102   Node* if_eq = generate_slow_guard(bol, NULL);
  1103   if (if_eq != NULL) {
  1104     // receiver == argument
  1105     phi->init_req(2, intcon(1));
  1106     region->init_req(2, if_eq);
  1109   // get String klass for instanceOf
  1110   ciInstanceKlass* klass = env()->String_klass();
  1112   if (!stopped()) {
  1113     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1114     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1115     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1117     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1118     //instanceOf == true, fallthrough
  1120     if (inst_false != NULL) {
  1121       phi->init_req(3, intcon(0));
  1122       region->init_req(3, inst_false);
  1126   if (!stopped()) {
  1127     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1129     // Properly cast the argument to String
  1130     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1131     // This path is taken only when argument's type is String:NotNull.
  1132     argument = cast_not_null(argument, false);
  1134     Node* no_ctrl = NULL;
  1136     // Get start addr of receiver
  1137     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1138     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1139     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1141     // Get length of receiver
  1142     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1144     // Get start addr of argument
  1145     Node* argument_val    = load_String_value(no_ctrl, argument);
  1146     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1147     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1149     // Get length of argument
  1150     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1152     // Check for receiver count != argument count
  1153     Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
  1154     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
  1155     Node* if_ne = generate_slow_guard(bol, NULL);
  1156     if (if_ne != NULL) {
  1157       phi->init_req(4, intcon(0));
  1158       region->init_req(4, if_ne);
  1161     // Check for count == 0 is done by assembler code for StrEquals.
  1163     if (!stopped()) {
  1164       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1165       phi->init_req(1, equals);
  1166       region->init_req(1, control());
  1170   // post merge
  1171   set_control(_gvn.transform(region));
  1172   record_for_igvn(region);
  1174   set_result(_gvn.transform(phi));
  1175   return true;
  1178 //------------------------------inline_array_equals----------------------------
  1179 bool LibraryCallKit::inline_array_equals() {
  1180   Node* arg1 = argument(0);
  1181   Node* arg2 = argument(1);
  1182   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1183   return true;
  1186 // Java version of String.indexOf(constant string)
  1187 // class StringDecl {
  1188 //   StringDecl(char[] ca) {
  1189 //     offset = 0;
  1190 //     count = ca.length;
  1191 //     value = ca;
  1192 //   }
  1193 //   int offset;
  1194 //   int count;
  1195 //   char[] value;
  1196 // }
  1197 //
  1198 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1199 //                             int targetOffset, int cache_i, int md2) {
  1200 //   int cache = cache_i;
  1201 //   int sourceOffset = string_object.offset;
  1202 //   int sourceCount = string_object.count;
  1203 //   int targetCount = target_object.length;
  1204 //
  1205 //   int targetCountLess1 = targetCount - 1;
  1206 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1207 //
  1208 //   char[] source = string_object.value;
  1209 //   char[] target = target_object;
  1210 //   int lastChar = target[targetCountLess1];
  1211 //
  1212 //  outer_loop:
  1213 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1214 //     int src = source[i + targetCountLess1];
  1215 //     if (src == lastChar) {
  1216 //       // With random strings and a 4-character alphabet,
  1217 //       // reverse matching at this point sets up 0.8% fewer
  1218 //       // frames, but (paradoxically) makes 0.3% more probes.
  1219 //       // Since those probes are nearer the lastChar probe,
  1220 //       // there is may be a net D$ win with reverse matching.
  1221 //       // But, reversing loop inhibits unroll of inner loop
  1222 //       // for unknown reason.  So, does running outer loop from
  1223 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1224 //       for (int j = 0; j < targetCountLess1; j++) {
  1225 //         if (target[targetOffset + j] != source[i+j]) {
  1226 //           if ((cache & (1 << source[i+j])) == 0) {
  1227 //             if (md2 < j+1) {
  1228 //               i += j+1;
  1229 //               continue outer_loop;
  1230 //             }
  1231 //           }
  1232 //           i += md2;
  1233 //           continue outer_loop;
  1234 //         }
  1235 //       }
  1236 //       return i - sourceOffset;
  1237 //     }
  1238 //     if ((cache & (1 << src)) == 0) {
  1239 //       i += targetCountLess1;
  1240 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1241 //     i++;
  1242 //   }
  1243 //   return -1;
  1244 // }
  1246 //------------------------------string_indexOf------------------------
  1247 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1248                                      jint cache_i, jint md2_i) {
  1250   Node* no_ctrl  = NULL;
  1251   float likely   = PROB_LIKELY(0.9);
  1252   float unlikely = PROB_UNLIKELY(0.9);
  1254   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1256   Node* source        = load_String_value(no_ctrl, string_object);
  1257   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1258   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1260   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  1261   jint target_length = target_array->length();
  1262   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1263   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1265   IdealKit kit(this, false, true);
  1266 #define __ kit.
  1267   Node* zero             = __ ConI(0);
  1268   Node* one              = __ ConI(1);
  1269   Node* cache            = __ ConI(cache_i);
  1270   Node* md2              = __ ConI(md2_i);
  1271   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1272   Node* targetCount      = __ ConI(target_length);
  1273   Node* targetCountLess1 = __ ConI(target_length - 1);
  1274   Node* targetOffset     = __ ConI(targetOffset_i);
  1275   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1277   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1278   Node* outer_loop = __ make_label(2 /* goto */);
  1279   Node* return_    = __ make_label(1);
  1281   __ set(rtn,__ ConI(-1));
  1282   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1283        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1284        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1285        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1286        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1287          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1288               Node* tpj = __ AddI(targetOffset, __ value(j));
  1289               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1290               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1291               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1292               __ if_then(targ, BoolTest::ne, src2); {
  1293                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1294                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1295                     __ increment(i, __ AddI(__ value(j), one));
  1296                     __ goto_(outer_loop);
  1297                   } __ end_if(); __ dead(j);
  1298                 }__ end_if(); __ dead(j);
  1299                 __ increment(i, md2);
  1300                 __ goto_(outer_loop);
  1301               }__ end_if();
  1302               __ increment(j, one);
  1303          }__ end_loop(); __ dead(j);
  1304          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1305          __ goto_(return_);
  1306        }__ end_if();
  1307        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1308          __ increment(i, targetCountLess1);
  1309        }__ end_if();
  1310        __ increment(i, one);
  1311        __ bind(outer_loop);
  1312   }__ end_loop(); __ dead(i);
  1313   __ bind(return_);
  1315   // Final sync IdealKit and GraphKit.
  1316   final_sync(kit);
  1317   Node* result = __ value(rtn);
  1318 #undef __
  1319   C->set_has_loops(true);
  1320   return result;
  1323 //------------------------------inline_string_indexOf------------------------
  1324 bool LibraryCallKit::inline_string_indexOf() {
  1325   Node* receiver = argument(0);
  1326   Node* arg      = argument(1);
  1328   Node* result;
  1329   // Disable the use of pcmpestri until it can be guaranteed that
  1330   // the load doesn't cross into the uncommited space.
  1331   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1332       UseSSE42Intrinsics) {
  1333     // Generate SSE4.2 version of indexOf
  1334     // We currently only have match rules that use SSE4.2
  1336     receiver = null_check(receiver);
  1337     arg      = null_check(arg);
  1338     if (stopped()) {
  1339       return true;
  1342     ciInstanceKlass* str_klass = env()->String_klass();
  1343     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1345     // Make the merge point
  1346     RegionNode* result_rgn = new (C) RegionNode(4);
  1347     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1348     Node* no_ctrl  = NULL;
  1350     // Get start addr of source string
  1351     Node* source = load_String_value(no_ctrl, receiver);
  1352     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1353     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1355     // Get length of source string
  1356     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1358     // Get start addr of substring
  1359     Node* substr = load_String_value(no_ctrl, arg);
  1360     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1361     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1363     // Get length of source string
  1364     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1366     // Check for substr count > string count
  1367     Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
  1368     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
  1369     Node* if_gt = generate_slow_guard(bol, NULL);
  1370     if (if_gt != NULL) {
  1371       result_phi->init_req(2, intcon(-1));
  1372       result_rgn->init_req(2, if_gt);
  1375     if (!stopped()) {
  1376       // Check for substr count == 0
  1377       cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
  1378       bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  1379       Node* if_zero = generate_slow_guard(bol, NULL);
  1380       if (if_zero != NULL) {
  1381         result_phi->init_req(3, intcon(0));
  1382         result_rgn->init_req(3, if_zero);
  1386     if (!stopped()) {
  1387       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1388       result_phi->init_req(1, result);
  1389       result_rgn->init_req(1, control());
  1391     set_control(_gvn.transform(result_rgn));
  1392     record_for_igvn(result_rgn);
  1393     result = _gvn.transform(result_phi);
  1395   } else { // Use LibraryCallKit::string_indexOf
  1396     // don't intrinsify if argument isn't a constant string.
  1397     if (!arg->is_Con()) {
  1398      return false;
  1400     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1401     if (str_type == NULL) {
  1402       return false;
  1404     ciInstanceKlass* klass = env()->String_klass();
  1405     ciObject* str_const = str_type->const_oop();
  1406     if (str_const == NULL || str_const->klass() != klass) {
  1407       return false;
  1409     ciInstance* str = str_const->as_instance();
  1410     assert(str != NULL, "must be instance");
  1412     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1413     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1415     int o;
  1416     int c;
  1417     if (java_lang_String::has_offset_field()) {
  1418       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1419       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1420     } else {
  1421       o = 0;
  1422       c = pat->length();
  1425     // constant strings have no offset and count == length which
  1426     // simplifies the resulting code somewhat so lets optimize for that.
  1427     if (o != 0 || c != pat->length()) {
  1428      return false;
  1431     receiver = null_check(receiver, T_OBJECT);
  1432     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1433     if (stopped()) {
  1434       return true;
  1437     // The null string as a pattern always returns 0 (match at beginning of string)
  1438     if (c == 0) {
  1439       set_result(intcon(0));
  1440       return true;
  1443     // Generate default indexOf
  1444     jchar lastChar = pat->char_at(o + (c - 1));
  1445     int cache = 0;
  1446     int i;
  1447     for (i = 0; i < c - 1; i++) {
  1448       assert(i < pat->length(), "out of range");
  1449       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1452     int md2 = c;
  1453     for (i = 0; i < c - 1; i++) {
  1454       assert(i < pat->length(), "out of range");
  1455       if (pat->char_at(o + i) == lastChar) {
  1456         md2 = (c - 1) - i;
  1460     result = string_indexOf(receiver, pat, o, cache, md2);
  1462   set_result(result);
  1463   return true;
  1466 //--------------------------round_double_node--------------------------------
  1467 // Round a double node if necessary.
  1468 Node* LibraryCallKit::round_double_node(Node* n) {
  1469   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1470     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1471   return n;
  1474 //------------------------------inline_math-----------------------------------
  1475 // public static double Math.abs(double)
  1476 // public static double Math.sqrt(double)
  1477 // public static double Math.log(double)
  1478 // public static double Math.log10(double)
  1479 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1480   Node* arg = round_double_node(argument(0));
  1481   Node* n;
  1482   switch (id) {
  1483   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1484   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1485   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1486   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1487   default:  fatal_unexpected_iid(id);  break;
  1489   set_result(_gvn.transform(n));
  1490   return true;
  1493 //------------------------------inline_trig----------------------------------
  1494 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1495 // argument reduction which will turn into a fast/slow diamond.
  1496 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1497   Node* arg = round_double_node(argument(0));
  1498   Node* n = NULL;
  1500   switch (id) {
  1501   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1502   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1503   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1504   default:  fatal_unexpected_iid(id);  break;
  1506   n = _gvn.transform(n);
  1508   // Rounding required?  Check for argument reduction!
  1509   if (Matcher::strict_fp_requires_explicit_rounding) {
  1510     static const double     pi_4 =  0.7853981633974483;
  1511     static const double neg_pi_4 = -0.7853981633974483;
  1512     // pi/2 in 80-bit extended precision
  1513     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1514     // -pi/2 in 80-bit extended precision
  1515     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1516     // Cutoff value for using this argument reduction technique
  1517     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1518     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1520     // Pseudocode for sin:
  1521     // if (x <= Math.PI / 4.0) {
  1522     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1523     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1524     // } else {
  1525     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1526     // }
  1527     // return StrictMath.sin(x);
  1529     // Pseudocode for cos:
  1530     // if (x <= Math.PI / 4.0) {
  1531     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1532     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1533     // } else {
  1534     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1535     // }
  1536     // return StrictMath.cos(x);
  1538     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1539     // requires a special machine instruction to load it.  Instead we'll try
  1540     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1541     // probably do the math inside the SIN encoding.
  1543     // Make the merge point
  1544     RegionNode* r = new (C) RegionNode(3);
  1545     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1547     // Flatten arg so we need only 1 test
  1548     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1549     // Node for PI/4 constant
  1550     Node *pi4 = makecon(TypeD::make(pi_4));
  1551     // Check PI/4 : abs(arg)
  1552     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1553     // Check: If PI/4 < abs(arg) then go slow
  1554     Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
  1555     // Branch either way
  1556     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1557     set_control(opt_iff(r,iff));
  1559     // Set fast path result
  1560     phi->init_req(2, n);
  1562     // Slow path - non-blocking leaf call
  1563     Node* call = NULL;
  1564     switch (id) {
  1565     case vmIntrinsics::_dsin:
  1566       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1567                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1568                                "Sin", NULL, arg, top());
  1569       break;
  1570     case vmIntrinsics::_dcos:
  1571       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1572                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1573                                "Cos", NULL, arg, top());
  1574       break;
  1575     case vmIntrinsics::_dtan:
  1576       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1577                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1578                                "Tan", NULL, arg, top());
  1579       break;
  1581     assert(control()->in(0) == call, "");
  1582     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1583     r->init_req(1, control());
  1584     phi->init_req(1, slow_result);
  1586     // Post-merge
  1587     set_control(_gvn.transform(r));
  1588     record_for_igvn(r);
  1589     n = _gvn.transform(phi);
  1591     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1593   set_result(n);
  1594   return true;
  1597 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1598   //-------------------
  1599   //result=(result.isNaN())? funcAddr():result;
  1600   // Check: If isNaN() by checking result!=result? then either trap
  1601   // or go to runtime
  1602   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1603   // Build the boolean node
  1604   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1606   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1607     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1608       // The pow or exp intrinsic returned a NaN, which requires a call
  1609       // to the runtime.  Recompile with the runtime call.
  1610       uncommon_trap(Deoptimization::Reason_intrinsic,
  1611                     Deoptimization::Action_make_not_entrant);
  1613     set_result(result);
  1614   } else {
  1615     // If this inlining ever returned NaN in the past, we compile a call
  1616     // to the runtime to properly handle corner cases
  1618     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1619     Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
  1620     Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
  1622     if (!if_slow->is_top()) {
  1623       RegionNode* result_region = new (C) RegionNode(3);
  1624       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1626       result_region->init_req(1, if_fast);
  1627       result_val->init_req(1, result);
  1629       set_control(if_slow);
  1631       const TypePtr* no_memory_effects = NULL;
  1632       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1633                                    no_memory_effects,
  1634                                    x, top(), y, y ? top() : NULL);
  1635       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1636 #ifdef ASSERT
  1637       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1638       assert(value_top == top(), "second value must be top");
  1639 #endif
  1641       result_region->init_req(2, control());
  1642       result_val->init_req(2, value);
  1643       set_result(result_region, result_val);
  1644     } else {
  1645       set_result(result);
  1650 //------------------------------inline_exp-------------------------------------
  1651 // Inline exp instructions, if possible.  The Intel hardware only misses
  1652 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1653 bool LibraryCallKit::inline_exp() {
  1654   Node* arg = round_double_node(argument(0));
  1655   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1657   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1659   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1660   return true;
  1663 //------------------------------inline_pow-------------------------------------
  1664 // Inline power instructions, if possible.
  1665 bool LibraryCallKit::inline_pow() {
  1666   // Pseudocode for pow
  1667   // if (x <= 0.0) {
  1668   //   long longy = (long)y;
  1669   //   if ((double)longy == y) { // if y is long
  1670   //     if (y + 1 == y) longy = 0; // huge number: even
  1671   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1672   //   } else {
  1673   //     result = NaN;
  1674   //   }
  1675   // } else {
  1676   //   result = DPow(x,y);
  1677   // }
  1678   // if (result != result)?  {
  1679   //   result = uncommon_trap() or runtime_call();
  1680   // }
  1681   // return result;
  1683   Node* x = round_double_node(argument(0));
  1684   Node* y = round_double_node(argument(2));
  1686   Node* result = NULL;
  1688   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1689     // Short form: skip the fancy tests and just check for NaN result.
  1690     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1691   } else {
  1692     // If this inlining ever returned NaN in the past, include all
  1693     // checks + call to the runtime.
  1695     // Set the merge point for If node with condition of (x <= 0.0)
  1696     // There are four possible paths to region node and phi node
  1697     RegionNode *r = new (C) RegionNode(4);
  1698     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1700     // Build the first if node: if (x <= 0.0)
  1701     // Node for 0 constant
  1702     Node *zeronode = makecon(TypeD::ZERO);
  1703     // Check x:0
  1704     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1705     // Check: If (x<=0) then go complex path
  1706     Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
  1707     // Branch either way
  1708     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1709     // Fast path taken; set region slot 3
  1710     Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
  1711     r->init_req(3,fast_taken); // Capture fast-control
  1713     // Fast path not-taken, i.e. slow path
  1714     Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
  1716     // Set fast path result
  1717     Node *fast_result = _gvn.transform( new (C) PowDNode(C, control(), x, y) );
  1718     phi->init_req(3, fast_result);
  1720     // Complex path
  1721     // Build the second if node (if y is long)
  1722     // Node for (long)y
  1723     Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
  1724     // Node for (double)((long) y)
  1725     Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
  1726     // Check (double)((long) y) : y
  1727     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1728     // Check if (y isn't long) then go to slow path
  1730     Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
  1731     // Branch either way
  1732     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1733     Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
  1735     Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
  1737     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1738     // Node for constant 1
  1739     Node *conone = longcon(1);
  1740     // 1& (long)y
  1741     Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
  1743     // A huge number is always even. Detect a huge number by checking
  1744     // if y + 1 == y and set integer to be tested for parity to 0.
  1745     // Required for corner case:
  1746     // (long)9.223372036854776E18 = max_jlong
  1747     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1748     // max_jlong is odd but 9.223372036854776E18 is even
  1749     Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
  1750     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1751     Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
  1752     Node* correctedsign = NULL;
  1753     if (ConditionalMoveLimit != 0) {
  1754       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1755     } else {
  1756       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1757       RegionNode *r = new (C) RegionNode(3);
  1758       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1759       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
  1760       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
  1761       phi->init_req(1, signnode);
  1762       phi->init_req(2, longcon(0));
  1763       correctedsign = _gvn.transform(phi);
  1764       ylong_path = _gvn.transform(r);
  1765       record_for_igvn(r);
  1768     // zero node
  1769     Node *conzero = longcon(0);
  1770     // Check (1&(long)y)==0?
  1771     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1772     // Check if (1&(long)y)!=0?, if so the result is negative
  1773     Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
  1774     // abs(x)
  1775     Node *absx=_gvn.transform( new (C) AbsDNode(x));
  1776     // abs(x)^y
  1777     Node *absxpowy = _gvn.transform( new (C) PowDNode(C, control(), absx, y) );
  1778     // -abs(x)^y
  1779     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1780     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1781     Node *signresult = NULL;
  1782     if (ConditionalMoveLimit != 0) {
  1783       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1784     } else {
  1785       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1786       RegionNode *r = new (C) RegionNode(3);
  1787       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1788       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
  1789       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
  1790       phi->init_req(1, absxpowy);
  1791       phi->init_req(2, negabsxpowy);
  1792       signresult = _gvn.transform(phi);
  1793       ylong_path = _gvn.transform(r);
  1794       record_for_igvn(r);
  1796     // Set complex path fast result
  1797     r->init_req(2, ylong_path);
  1798     phi->init_req(2, signresult);
  1800     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1801     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1802     r->init_req(1,slow_path);
  1803     phi->init_req(1,slow_result);
  1805     // Post merge
  1806     set_control(_gvn.transform(r));
  1807     record_for_igvn(r);
  1808     result = _gvn.transform(phi);
  1811   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1813   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1814   return true;
  1817 //------------------------------runtime_math-----------------------------
  1818 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1819   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1820          "must be (DD)D or (D)D type");
  1822   // Inputs
  1823   Node* a = round_double_node(argument(0));
  1824   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1826   const TypePtr* no_memory_effects = NULL;
  1827   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1828                                  no_memory_effects,
  1829                                  a, top(), b, b ? top() : NULL);
  1830   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1831 #ifdef ASSERT
  1832   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1833   assert(value_top == top(), "second value must be top");
  1834 #endif
  1836   set_result(value);
  1837   return true;
  1840 //------------------------------inline_math_native-----------------------------
  1841 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1842 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1843   switch (id) {
  1844     // These intrinsics are not properly supported on all hardware
  1845   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  1846     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  1847   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  1848     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  1849   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  1850     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  1852   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  1853     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  1854   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  1855     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  1857     // These intrinsics are supported on all hardware
  1858   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
  1859   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  1861   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  1862     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  1863   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  1864     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  1865 #undef FN_PTR
  1867    // These intrinsics are not yet correctly implemented
  1868   case vmIntrinsics::_datan2:
  1869     return false;
  1871   default:
  1872     fatal_unexpected_iid(id);
  1873     return false;
  1877 static bool is_simple_name(Node* n) {
  1878   return (n->req() == 1         // constant
  1879           || (n->is_Type() && n->as_Type()->type()->singleton())
  1880           || n->is_Proj()       // parameter or return value
  1881           || n->is_Phi()        // local of some sort
  1882           );
  1885 //----------------------------inline_min_max-----------------------------------
  1886 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1887   set_result(generate_min_max(id, argument(0), argument(1)));
  1888   return true;
  1891 Node*
  1892 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1893   // These are the candidate return value:
  1894   Node* xvalue = x0;
  1895   Node* yvalue = y0;
  1897   if (xvalue == yvalue) {
  1898     return xvalue;
  1901   bool want_max = (id == vmIntrinsics::_max);
  1903   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1904   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1905   if (txvalue == NULL || tyvalue == NULL)  return top();
  1906   // This is not really necessary, but it is consistent with a
  1907   // hypothetical MaxINode::Value method:
  1908   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1910   // %%% This folding logic should (ideally) be in a different place.
  1911   // Some should be inside IfNode, and there to be a more reliable
  1912   // transformation of ?: style patterns into cmoves.  We also want
  1913   // more powerful optimizations around cmove and min/max.
  1915   // Try to find a dominating comparison of these guys.
  1916   // It can simplify the index computation for Arrays.copyOf
  1917   // and similar uses of System.arraycopy.
  1918   // First, compute the normalized version of CmpI(x, y).
  1919   int   cmp_op = Op_CmpI;
  1920   Node* xkey = xvalue;
  1921   Node* ykey = yvalue;
  1922   Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
  1923   if (ideal_cmpxy->is_Cmp()) {
  1924     // E.g., if we have CmpI(length - offset, count),
  1925     // it might idealize to CmpI(length, count + offset)
  1926     cmp_op = ideal_cmpxy->Opcode();
  1927     xkey = ideal_cmpxy->in(1);
  1928     ykey = ideal_cmpxy->in(2);
  1931   // Start by locating any relevant comparisons.
  1932   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1933   Node* cmpxy = NULL;
  1934   Node* cmpyx = NULL;
  1935   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1936     Node* cmp = start_from->fast_out(k);
  1937     if (cmp->outcnt() > 0 &&            // must have prior uses
  1938         cmp->in(0) == NULL &&           // must be context-independent
  1939         cmp->Opcode() == cmp_op) {      // right kind of compare
  1940       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1941       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1945   const int NCMPS = 2;
  1946   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1947   int cmpn;
  1948   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1949     if (cmps[cmpn] != NULL)  break;     // find a result
  1951   if (cmpn < NCMPS) {
  1952     // Look for a dominating test that tells us the min and max.
  1953     int depth = 0;                // Limit search depth for speed
  1954     Node* dom = control();
  1955     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1956       if (++depth >= 100)  break;
  1957       Node* ifproj = dom;
  1958       if (!ifproj->is_Proj())  continue;
  1959       Node* iff = ifproj->in(0);
  1960       if (!iff->is_If())  continue;
  1961       Node* bol = iff->in(1);
  1962       if (!bol->is_Bool())  continue;
  1963       Node* cmp = bol->in(1);
  1964       if (cmp == NULL)  continue;
  1965       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1966         if (cmps[cmpn] == cmp)  break;
  1967       if (cmpn == NCMPS)  continue;
  1968       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1969       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1970       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1971       // At this point, we know that 'x btest y' is true.
  1972       switch (btest) {
  1973       case BoolTest::eq:
  1974         // They are proven equal, so we can collapse the min/max.
  1975         // Either value is the answer.  Choose the simpler.
  1976         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1977           return yvalue;
  1978         return xvalue;
  1979       case BoolTest::lt:          // x < y
  1980       case BoolTest::le:          // x <= y
  1981         return (want_max ? yvalue : xvalue);
  1982       case BoolTest::gt:          // x > y
  1983       case BoolTest::ge:          // x >= y
  1984         return (want_max ? xvalue : yvalue);
  1989   // We failed to find a dominating test.
  1990   // Let's pick a test that might GVN with prior tests.
  1991   Node*          best_bol   = NULL;
  1992   BoolTest::mask best_btest = BoolTest::illegal;
  1993   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1994     Node* cmp = cmps[cmpn];
  1995     if (cmp == NULL)  continue;
  1996     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1997       Node* bol = cmp->fast_out(j);
  1998       if (!bol->is_Bool())  continue;
  1999       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2000       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2001       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2002       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2003         best_bol   = bol->as_Bool();
  2004         best_btest = btest;
  2009   Node* answer_if_true  = NULL;
  2010   Node* answer_if_false = NULL;
  2011   switch (best_btest) {
  2012   default:
  2013     if (cmpxy == NULL)
  2014       cmpxy = ideal_cmpxy;
  2015     best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
  2016     // and fall through:
  2017   case BoolTest::lt:          // x < y
  2018   case BoolTest::le:          // x <= y
  2019     answer_if_true  = (want_max ? yvalue : xvalue);
  2020     answer_if_false = (want_max ? xvalue : yvalue);
  2021     break;
  2022   case BoolTest::gt:          // x > y
  2023   case BoolTest::ge:          // x >= y
  2024     answer_if_true  = (want_max ? xvalue : yvalue);
  2025     answer_if_false = (want_max ? yvalue : xvalue);
  2026     break;
  2029   jint hi, lo;
  2030   if (want_max) {
  2031     // We can sharpen the minimum.
  2032     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2033     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2034   } else {
  2035     // We can sharpen the maximum.
  2036     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2037     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2040   // Use a flow-free graph structure, to avoid creating excess control edges
  2041   // which could hinder other optimizations.
  2042   // Since Math.min/max is often used with arraycopy, we want
  2043   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2044   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2045                                answer_if_false, answer_if_true,
  2046                                TypeInt::make(lo, hi, widen));
  2048   return _gvn.transform(cmov);
  2050   /*
  2051   // This is not as desirable as it may seem, since Min and Max
  2052   // nodes do not have a full set of optimizations.
  2053   // And they would interfere, anyway, with 'if' optimizations
  2054   // and with CMoveI canonical forms.
  2055   switch (id) {
  2056   case vmIntrinsics::_min:
  2057     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2058   case vmIntrinsics::_max:
  2059     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2060   default:
  2061     ShouldNotReachHere();
  2063   */
  2066 inline int
  2067 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2068   const TypePtr* base_type = TypePtr::NULL_PTR;
  2069   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2070   if (base_type == NULL) {
  2071     // Unknown type.
  2072     return Type::AnyPtr;
  2073   } else if (base_type == TypePtr::NULL_PTR) {
  2074     // Since this is a NULL+long form, we have to switch to a rawptr.
  2075     base   = _gvn.transform( new (C) CastX2PNode(offset) );
  2076     offset = MakeConX(0);
  2077     return Type::RawPtr;
  2078   } else if (base_type->base() == Type::RawPtr) {
  2079     return Type::RawPtr;
  2080   } else if (base_type->isa_oopptr()) {
  2081     // Base is never null => always a heap address.
  2082     if (base_type->ptr() == TypePtr::NotNull) {
  2083       return Type::OopPtr;
  2085     // Offset is small => always a heap address.
  2086     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2087     if (offset_type != NULL &&
  2088         base_type->offset() == 0 &&     // (should always be?)
  2089         offset_type->_lo >= 0 &&
  2090         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2091       return Type::OopPtr;
  2093     // Otherwise, it might either be oop+off or NULL+addr.
  2094     return Type::AnyPtr;
  2095   } else {
  2096     // No information:
  2097     return Type::AnyPtr;
  2101 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2102   int kind = classify_unsafe_addr(base, offset);
  2103   if (kind == Type::RawPtr) {
  2104     return basic_plus_adr(top(), base, offset);
  2105   } else {
  2106     return basic_plus_adr(base, offset);
  2110 //--------------------------inline_number_methods-----------------------------
  2111 // inline int     Integer.numberOfLeadingZeros(int)
  2112 // inline int        Long.numberOfLeadingZeros(long)
  2113 //
  2114 // inline int     Integer.numberOfTrailingZeros(int)
  2115 // inline int        Long.numberOfTrailingZeros(long)
  2116 //
  2117 // inline int     Integer.bitCount(int)
  2118 // inline int        Long.bitCount(long)
  2119 //
  2120 // inline char  Character.reverseBytes(char)
  2121 // inline short     Short.reverseBytes(short)
  2122 // inline int     Integer.reverseBytes(int)
  2123 // inline long       Long.reverseBytes(long)
  2124 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2125   Node* arg = argument(0);
  2126   Node* n;
  2127   switch (id) {
  2128   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2129   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2130   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2131   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2132   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2133   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2134   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2135   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2136   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2137   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2138   default:  fatal_unexpected_iid(id);  break;
  2140   set_result(_gvn.transform(n));
  2141   return true;
  2144 //----------------------------inline_unsafe_access----------------------------
  2146 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2148 // Helper that guards and inserts a pre-barrier.
  2149 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2150                                         Node* pre_val, bool need_mem_bar) {
  2151   // We could be accessing the referent field of a reference object. If so, when G1
  2152   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2153   // This routine performs some compile time filters and generates suitable
  2154   // runtime filters that guard the pre-barrier code.
  2155   // Also add memory barrier for non volatile load from the referent field
  2156   // to prevent commoning of loads across safepoint.
  2157   if (!UseG1GC && !need_mem_bar)
  2158     return;
  2160   // Some compile time checks.
  2162   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2163   const TypeX* otype = offset->find_intptr_t_type();
  2164   if (otype != NULL && otype->is_con() &&
  2165       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2166     // Constant offset but not the reference_offset so just return
  2167     return;
  2170   // We only need to generate the runtime guards for instances.
  2171   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2172   if (btype != NULL) {
  2173     if (btype->isa_aryptr()) {
  2174       // Array type so nothing to do
  2175       return;
  2178     const TypeInstPtr* itype = btype->isa_instptr();
  2179     if (itype != NULL) {
  2180       // Can the klass of base_oop be statically determined to be
  2181       // _not_ a sub-class of Reference and _not_ Object?
  2182       ciKlass* klass = itype->klass();
  2183       if ( klass->is_loaded() &&
  2184           !klass->is_subtype_of(env()->Reference_klass()) &&
  2185           !env()->Object_klass()->is_subtype_of(klass)) {
  2186         return;
  2191   // The compile time filters did not reject base_oop/offset so
  2192   // we need to generate the following runtime filters
  2193   //
  2194   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2195   //   if (instance_of(base, java.lang.ref.Reference)) {
  2196   //     pre_barrier(_, pre_val, ...);
  2197   //   }
  2198   // }
  2200   float likely   = PROB_LIKELY(  0.999);
  2201   float unlikely = PROB_UNLIKELY(0.999);
  2203   IdealKit ideal(this);
  2204 #define __ ideal.
  2206   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2208   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2209       // Update graphKit memory and control from IdealKit.
  2210       sync_kit(ideal);
  2212       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2213       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2215       // Update IdealKit memory and control from graphKit.
  2216       __ sync_kit(this);
  2218       Node* one = __ ConI(1);
  2219       // is_instof == 0 if base_oop == NULL
  2220       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2222         // Update graphKit from IdeakKit.
  2223         sync_kit(ideal);
  2225         // Use the pre-barrier to record the value in the referent field
  2226         pre_barrier(false /* do_load */,
  2227                     __ ctrl(),
  2228                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2229                     pre_val /* pre_val */,
  2230                     T_OBJECT);
  2231         if (need_mem_bar) {
  2232           // Add memory barrier to prevent commoning reads from this field
  2233           // across safepoint since GC can change its value.
  2234           insert_mem_bar(Op_MemBarCPUOrder);
  2236         // Update IdealKit from graphKit.
  2237         __ sync_kit(this);
  2239       } __ end_if(); // _ref_type != ref_none
  2240   } __ end_if(); // offset == referent_offset
  2242   // Final sync IdealKit and GraphKit.
  2243   final_sync(ideal);
  2244 #undef __
  2248 // Interpret Unsafe.fieldOffset cookies correctly:
  2249 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2251 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2252   // Attempt to infer a sharper value type from the offset and base type.
  2253   ciKlass* sharpened_klass = NULL;
  2255   // See if it is an instance field, with an object type.
  2256   if (alias_type->field() != NULL) {
  2257     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2258     if (alias_type->field()->type()->is_klass()) {
  2259       sharpened_klass = alias_type->field()->type()->as_klass();
  2263   // See if it is a narrow oop array.
  2264   if (adr_type->isa_aryptr()) {
  2265     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2266       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2267       if (elem_type != NULL) {
  2268         sharpened_klass = elem_type->klass();
  2273   // The sharpened class might be unloaded if there is no class loader
  2274   // contraint in place.
  2275   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2276     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2278 #ifndef PRODUCT
  2279     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2280       tty->print("  from base type: ");  adr_type->dump();
  2281       tty->print("  sharpened value: ");  tjp->dump();
  2283 #endif
  2284     // Sharpen the value type.
  2285     return tjp;
  2287   return NULL;
  2290 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2291   if (callee()->is_static())  return false;  // caller must have the capability!
  2293 #ifndef PRODUCT
  2295     ResourceMark rm;
  2296     // Check the signatures.
  2297     ciSignature* sig = callee()->signature();
  2298 #ifdef ASSERT
  2299     if (!is_store) {
  2300       // Object getObject(Object base, int/long offset), etc.
  2301       BasicType rtype = sig->return_type()->basic_type();
  2302       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2303           rtype = T_ADDRESS;  // it is really a C void*
  2304       assert(rtype == type, "getter must return the expected value");
  2305       if (!is_native_ptr) {
  2306         assert(sig->count() == 2, "oop getter has 2 arguments");
  2307         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2308         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2309       } else {
  2310         assert(sig->count() == 1, "native getter has 1 argument");
  2311         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2313     } else {
  2314       // void putObject(Object base, int/long offset, Object x), etc.
  2315       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2316       if (!is_native_ptr) {
  2317         assert(sig->count() == 3, "oop putter has 3 arguments");
  2318         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2319         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2320       } else {
  2321         assert(sig->count() == 2, "native putter has 2 arguments");
  2322         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2324       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2325       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2326         vtype = T_ADDRESS;  // it is really a C void*
  2327       assert(vtype == type, "putter must accept the expected value");
  2329 #endif // ASSERT
  2331 #endif //PRODUCT
  2333   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2335   Node* receiver = argument(0);  // type: oop
  2337   // Build address expression.  See the code in inline_unsafe_prefetch.
  2338   Node* adr;
  2339   Node* heap_base_oop = top();
  2340   Node* offset = top();
  2341   Node* val;
  2343   if (!is_native_ptr) {
  2344     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2345     Node* base = argument(1);  // type: oop
  2346     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2347     offset = argument(2);  // type: long
  2348     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2349     // to be plain byte offsets, which are also the same as those accepted
  2350     // by oopDesc::field_base.
  2351     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2352            "fieldOffset must be byte-scaled");
  2353     // 32-bit machines ignore the high half!
  2354     offset = ConvL2X(offset);
  2355     adr = make_unsafe_address(base, offset);
  2356     heap_base_oop = base;
  2357     val = is_store ? argument(4) : NULL;
  2358   } else {
  2359     Node* ptr = argument(1);  // type: long
  2360     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2361     adr = make_unsafe_address(NULL, ptr);
  2362     val = is_store ? argument(3) : NULL;
  2365   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2367   // First guess at the value type.
  2368   const Type *value_type = Type::get_const_basic_type(type);
  2370   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2371   // there was not enough information to nail it down.
  2372   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2373   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2375   // We will need memory barriers unless we can determine a unique
  2376   // alias category for this reference.  (Note:  If for some reason
  2377   // the barriers get omitted and the unsafe reference begins to "pollute"
  2378   // the alias analysis of the rest of the graph, either Compile::can_alias
  2379   // or Compile::must_alias will throw a diagnostic assert.)
  2380   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2382   // If we are reading the value of the referent field of a Reference
  2383   // object (either by using Unsafe directly or through reflection)
  2384   // then, if G1 is enabled, we need to record the referent in an
  2385   // SATB log buffer using the pre-barrier mechanism.
  2386   // Also we need to add memory barrier to prevent commoning reads
  2387   // from this field across safepoint since GC can change its value.
  2388   bool need_read_barrier = !is_native_ptr && !is_store &&
  2389                            offset != top() && heap_base_oop != top();
  2391   if (!is_store && type == T_OBJECT) {
  2392     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2393     if (tjp != NULL) {
  2394       value_type = tjp;
  2398   receiver = null_check(receiver);
  2399   if (stopped()) {
  2400     return true;
  2402   // Heap pointers get a null-check from the interpreter,
  2403   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2404   // and it is not possible to fully distinguish unintended nulls
  2405   // from intended ones in this API.
  2407   if (is_volatile) {
  2408     // We need to emit leading and trailing CPU membars (see below) in
  2409     // addition to memory membars when is_volatile. This is a little
  2410     // too strong, but avoids the need to insert per-alias-type
  2411     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2412     // we cannot do effectively here because we probably only have a
  2413     // rough approximation of type.
  2414     need_mem_bar = true;
  2415     // For Stores, place a memory ordering barrier now.
  2416     if (is_store)
  2417       insert_mem_bar(Op_MemBarRelease);
  2420   // Memory barrier to prevent normal and 'unsafe' accesses from
  2421   // bypassing each other.  Happens after null checks, so the
  2422   // exception paths do not take memory state from the memory barrier,
  2423   // so there's no problems making a strong assert about mixing users
  2424   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2425   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2426   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2428   if (!is_store) {
  2429     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2430     // load value
  2431     switch (type) {
  2432     case T_BOOLEAN:
  2433     case T_CHAR:
  2434     case T_BYTE:
  2435     case T_SHORT:
  2436     case T_INT:
  2437     case T_LONG:
  2438     case T_FLOAT:
  2439     case T_DOUBLE:
  2440       break;
  2441     case T_OBJECT:
  2442       if (need_read_barrier) {
  2443         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2445       break;
  2446     case T_ADDRESS:
  2447       // Cast to an int type.
  2448       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2449       p = ConvX2L(p);
  2450       break;
  2451     default:
  2452       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2453       break;
  2455     // The load node has the control of the preceding MemBarCPUOrder.  All
  2456     // following nodes will have the control of the MemBarCPUOrder inserted at
  2457     // the end of this method.  So, pushing the load onto the stack at a later
  2458     // point is fine.
  2459     set_result(p);
  2460   } else {
  2461     // place effect of store into memory
  2462     switch (type) {
  2463     case T_DOUBLE:
  2464       val = dstore_rounding(val);
  2465       break;
  2466     case T_ADDRESS:
  2467       // Repackage the long as a pointer.
  2468       val = ConvL2X(val);
  2469       val = _gvn.transform( new (C) CastX2PNode(val) );
  2470       break;
  2473     if (type != T_OBJECT ) {
  2474       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2475     } else {
  2476       // Possibly an oop being stored to Java heap or native memory
  2477       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2478         // oop to Java heap.
  2479         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2480       } else {
  2481         // We can't tell at compile time if we are storing in the Java heap or outside
  2482         // of it. So we need to emit code to conditionally do the proper type of
  2483         // store.
  2485         IdealKit ideal(this);
  2486 #define __ ideal.
  2487         // QQQ who knows what probability is here??
  2488         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2489           // Sync IdealKit and graphKit.
  2490           sync_kit(ideal);
  2491           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2492           // Update IdealKit memory.
  2493           __ sync_kit(this);
  2494         } __ else_(); {
  2495           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2496         } __ end_if();
  2497         // Final sync IdealKit and GraphKit.
  2498         final_sync(ideal);
  2499 #undef __
  2504   if (is_volatile) {
  2505     if (!is_store)
  2506       insert_mem_bar(Op_MemBarAcquire);
  2507     else
  2508       insert_mem_bar(Op_MemBarVolatile);
  2511   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2513   return true;
  2516 //----------------------------inline_unsafe_prefetch----------------------------
  2518 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2519 #ifndef PRODUCT
  2521     ResourceMark rm;
  2522     // Check the signatures.
  2523     ciSignature* sig = callee()->signature();
  2524 #ifdef ASSERT
  2525     // Object getObject(Object base, int/long offset), etc.
  2526     BasicType rtype = sig->return_type()->basic_type();
  2527     if (!is_native_ptr) {
  2528       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2529       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2530       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2531     } else {
  2532       assert(sig->count() == 1, "native prefetch has 1 argument");
  2533       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2535 #endif // ASSERT
  2537 #endif // !PRODUCT
  2539   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2541   const int idx = is_static ? 0 : 1;
  2542   if (!is_static) {
  2543     null_check_receiver();
  2544     if (stopped()) {
  2545       return true;
  2549   // Build address expression.  See the code in inline_unsafe_access.
  2550   Node *adr;
  2551   if (!is_native_ptr) {
  2552     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2553     Node* base   = argument(idx + 0);  // type: oop
  2554     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2555     Node* offset = argument(idx + 1);  // type: long
  2556     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2557     // to be plain byte offsets, which are also the same as those accepted
  2558     // by oopDesc::field_base.
  2559     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2560            "fieldOffset must be byte-scaled");
  2561     // 32-bit machines ignore the high half!
  2562     offset = ConvL2X(offset);
  2563     adr = make_unsafe_address(base, offset);
  2564   } else {
  2565     Node* ptr = argument(idx + 0);  // type: long
  2566     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2567     adr = make_unsafe_address(NULL, ptr);
  2570   // Generate the read or write prefetch
  2571   Node *prefetch;
  2572   if (is_store) {
  2573     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2574   } else {
  2575     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2577   prefetch->init_req(0, control());
  2578   set_i_o(_gvn.transform(prefetch));
  2580   return true;
  2583 //----------------------------inline_unsafe_load_store----------------------------
  2584 // This method serves a couple of different customers (depending on LoadStoreKind):
  2585 //
  2586 // LS_cmpxchg:
  2587 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2588 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2589 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2590 //
  2591 // LS_xadd:
  2592 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2593 //   public long getAndAddLong(Object o, long offset, long delta)
  2594 //
  2595 // LS_xchg:
  2596 //   int    getAndSet(Object o, long offset, int    newValue)
  2597 //   long   getAndSet(Object o, long offset, long   newValue)
  2598 //   Object getAndSet(Object o, long offset, Object newValue)
  2599 //
  2600 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2601   // This basic scheme here is the same as inline_unsafe_access, but
  2602   // differs in enough details that combining them would make the code
  2603   // overly confusing.  (This is a true fact! I originally combined
  2604   // them, but even I was confused by it!) As much code/comments as
  2605   // possible are retained from inline_unsafe_access though to make
  2606   // the correspondences clearer. - dl
  2608   if (callee()->is_static())  return false;  // caller must have the capability!
  2610 #ifndef PRODUCT
  2611   BasicType rtype;
  2613     ResourceMark rm;
  2614     // Check the signatures.
  2615     ciSignature* sig = callee()->signature();
  2616     rtype = sig->return_type()->basic_type();
  2617     if (kind == LS_xadd || kind == LS_xchg) {
  2618       // Check the signatures.
  2619 #ifdef ASSERT
  2620       assert(rtype == type, "get and set must return the expected type");
  2621       assert(sig->count() == 3, "get and set has 3 arguments");
  2622       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2623       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2624       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2625 #endif // ASSERT
  2626     } else if (kind == LS_cmpxchg) {
  2627       // Check the signatures.
  2628 #ifdef ASSERT
  2629       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2630       assert(sig->count() == 4, "CAS has 4 arguments");
  2631       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2632       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2633 #endif // ASSERT
  2634     } else {
  2635       ShouldNotReachHere();
  2638 #endif //PRODUCT
  2640   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2642   // Get arguments:
  2643   Node* receiver = NULL;
  2644   Node* base     = NULL;
  2645   Node* offset   = NULL;
  2646   Node* oldval   = NULL;
  2647   Node* newval   = NULL;
  2648   if (kind == LS_cmpxchg) {
  2649     const bool two_slot_type = type2size[type] == 2;
  2650     receiver = argument(0);  // type: oop
  2651     base     = argument(1);  // type: oop
  2652     offset   = argument(2);  // type: long
  2653     oldval   = argument(4);  // type: oop, int, or long
  2654     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2655   } else if (kind == LS_xadd || kind == LS_xchg){
  2656     receiver = argument(0);  // type: oop
  2657     base     = argument(1);  // type: oop
  2658     offset   = argument(2);  // type: long
  2659     oldval   = NULL;
  2660     newval   = argument(4);  // type: oop, int, or long
  2663   // Null check receiver.
  2664   receiver = null_check(receiver);
  2665   if (stopped()) {
  2666     return true;
  2669   // Build field offset expression.
  2670   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2671   // to be plain byte offsets, which are also the same as those accepted
  2672   // by oopDesc::field_base.
  2673   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2674   // 32-bit machines ignore the high half of long offsets
  2675   offset = ConvL2X(offset);
  2676   Node* adr = make_unsafe_address(base, offset);
  2677   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2679   // For CAS, unlike inline_unsafe_access, there seems no point in
  2680   // trying to refine types. Just use the coarse types here.
  2681   const Type *value_type = Type::get_const_basic_type(type);
  2682   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2683   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2685   if (kind == LS_xchg && type == T_OBJECT) {
  2686     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2687     if (tjp != NULL) {
  2688       value_type = tjp;
  2692   int alias_idx = C->get_alias_index(adr_type);
  2694   // Memory-model-wise, a LoadStore acts like a little synchronized
  2695   // block, so needs barriers on each side.  These don't translate
  2696   // into actual barriers on most machines, but we still need rest of
  2697   // compiler to respect ordering.
  2699   insert_mem_bar(Op_MemBarRelease);
  2700   insert_mem_bar(Op_MemBarCPUOrder);
  2702   // 4984716: MemBars must be inserted before this
  2703   //          memory node in order to avoid a false
  2704   //          dependency which will confuse the scheduler.
  2705   Node *mem = memory(alias_idx);
  2707   // For now, we handle only those cases that actually exist: ints,
  2708   // longs, and Object. Adding others should be straightforward.
  2709   Node* load_store;
  2710   switch(type) {
  2711   case T_INT:
  2712     if (kind == LS_xadd) {
  2713       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2714     } else if (kind == LS_xchg) {
  2715       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2716     } else if (kind == LS_cmpxchg) {
  2717       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2718     } else {
  2719       ShouldNotReachHere();
  2721     break;
  2722   case T_LONG:
  2723     if (kind == LS_xadd) {
  2724       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2725     } else if (kind == LS_xchg) {
  2726       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2727     } else if (kind == LS_cmpxchg) {
  2728       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2729     } else {
  2730       ShouldNotReachHere();
  2732     break;
  2733   case T_OBJECT:
  2734     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2735     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2736     // Execute transformation here to avoid barrier generation in such case.
  2737     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2738       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2740     // Reference stores need a store barrier.
  2741     pre_barrier(true /* do_load*/,
  2742                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2743                 NULL /* pre_val*/,
  2744                 T_OBJECT);
  2745 #ifdef _LP64
  2746     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2747       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2748       if (kind == LS_xchg) {
  2749         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2750                                                               newval_enc, adr_type, value_type->make_narrowoop()));
  2751       } else {
  2752         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2753         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2754         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2755                                                                    newval_enc, oldval_enc));
  2757     } else
  2758 #endif
  2760       if (kind == LS_xchg) {
  2761         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  2762       } else {
  2763         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2764         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2767     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  2768     break;
  2769   default:
  2770     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2771     break;
  2774   // SCMemProjNodes represent the memory state of a LoadStore. Their
  2775   // main role is to prevent LoadStore nodes from being optimized away
  2776   // when their results aren't used.
  2777   Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
  2778   set_memory(proj, alias_idx);
  2780   // Add the trailing membar surrounding the access
  2781   insert_mem_bar(Op_MemBarCPUOrder);
  2782   insert_mem_bar(Op_MemBarAcquire);
  2784 #ifdef _LP64
  2785   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
  2786     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->bottom_type()->make_ptr()));
  2788 #endif
  2790   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  2791   set_result(load_store);
  2792   return true;
  2795 //----------------------------inline_unsafe_ordered_store----------------------
  2796 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  2797 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  2798 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  2799 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2800   // This is another variant of inline_unsafe_access, differing in
  2801   // that it always issues store-store ("release") barrier and ensures
  2802   // store-atomicity (which only matters for "long").
  2804   if (callee()->is_static())  return false;  // caller must have the capability!
  2806 #ifndef PRODUCT
  2808     ResourceMark rm;
  2809     // Check the signatures.
  2810     ciSignature* sig = callee()->signature();
  2811 #ifdef ASSERT
  2812     BasicType rtype = sig->return_type()->basic_type();
  2813     assert(rtype == T_VOID, "must return void");
  2814     assert(sig->count() == 3, "has 3 arguments");
  2815     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2816     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2817 #endif // ASSERT
  2819 #endif //PRODUCT
  2821   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2823   // Get arguments:
  2824   Node* receiver = argument(0);  // type: oop
  2825   Node* base     = argument(1);  // type: oop
  2826   Node* offset   = argument(2);  // type: long
  2827   Node* val      = argument(4);  // type: oop, int, or long
  2829   // Null check receiver.
  2830   receiver = null_check(receiver);
  2831   if (stopped()) {
  2832     return true;
  2835   // Build field offset expression.
  2836   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2837   // 32-bit machines ignore the high half of long offsets
  2838   offset = ConvL2X(offset);
  2839   Node* adr = make_unsafe_address(base, offset);
  2840   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2841   const Type *value_type = Type::get_const_basic_type(type);
  2842   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2844   insert_mem_bar(Op_MemBarRelease);
  2845   insert_mem_bar(Op_MemBarCPUOrder);
  2846   // Ensure that the store is atomic for longs:
  2847   const bool require_atomic_access = true;
  2848   Node* store;
  2849   if (type == T_OBJECT) // reference stores need a store barrier.
  2850     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2851   else {
  2852     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2854   insert_mem_bar(Op_MemBarCPUOrder);
  2855   return true;
  2858 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  2859   // Regardless of form, don't allow previous ld/st to move down,
  2860   // then issue acquire, release, or volatile mem_bar.
  2861   insert_mem_bar(Op_MemBarCPUOrder);
  2862   switch(id) {
  2863     case vmIntrinsics::_loadFence:
  2864       insert_mem_bar(Op_MemBarAcquire);
  2865       return true;
  2866     case vmIntrinsics::_storeFence:
  2867       insert_mem_bar(Op_MemBarRelease);
  2868       return true;
  2869     case vmIntrinsics::_fullFence:
  2870       insert_mem_bar(Op_MemBarVolatile);
  2871       return true;
  2872     default:
  2873       fatal_unexpected_iid(id);
  2874       return false;
  2878 //----------------------------inline_unsafe_allocate---------------------------
  2879 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
  2880 bool LibraryCallKit::inline_unsafe_allocate() {
  2881   if (callee()->is_static())  return false;  // caller must have the capability!
  2883   null_check_receiver();  // null-check, then ignore
  2884   Node* cls = null_check(argument(1));
  2885   if (stopped())  return true;
  2887   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  2888   kls = null_check(kls);
  2889   if (stopped())  return true;  // argument was like int.class
  2891   // Note:  The argument might still be an illegal value like
  2892   // Serializable.class or Object[].class.   The runtime will handle it.
  2893   // But we must make an explicit check for initialization.
  2894   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  2895   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  2896   // can generate code to load it as unsigned byte.
  2897   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  2898   Node* bits = intcon(InstanceKlass::fully_initialized);
  2899   Node* test = _gvn.transform(new (C) SubINode(inst, bits));
  2900   // The 'test' is non-zero if we need to take a slow path.
  2902   Node* obj = new_instance(kls, test);
  2903   set_result(obj);
  2904   return true;
  2907 #ifdef TRACE_HAVE_INTRINSICS
  2908 /*
  2909  * oop -> myklass
  2910  * myklass->trace_id |= USED
  2911  * return myklass->trace_id & ~0x3
  2912  */
  2913 bool LibraryCallKit::inline_native_classID() {
  2914   null_check_receiver();  // null-check, then ignore
  2915   Node* cls = null_check(argument(1), T_OBJECT);
  2916   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  2917   kls = null_check(kls, T_OBJECT);
  2918   ByteSize offset = TRACE_ID_OFFSET;
  2919   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  2920   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
  2921   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  2922   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  2923   Node* clsused = longcon(0x01l); // set the class bit
  2924   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  2926   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  2927   store_to_memory(control(), insp, orl, T_LONG, adr_type);
  2928   set_result(andl);
  2929   return true;
  2932 bool LibraryCallKit::inline_native_threadID() {
  2933   Node* tls_ptr = NULL;
  2934   Node* cur_thr = generate_current_thread(tls_ptr);
  2935   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2936   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2937   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  2939   Node* threadid = NULL;
  2940   size_t thread_id_size = OSThread::thread_id_size();
  2941   if (thread_id_size == (size_t) BytesPerLong) {
  2942     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
  2943   } else if (thread_id_size == (size_t) BytesPerInt) {
  2944     threadid = make_load(control(), p, TypeInt::INT, T_INT);
  2945   } else {
  2946     ShouldNotReachHere();
  2948   set_result(threadid);
  2949   return true;
  2951 #endif
  2953 //------------------------inline_native_time_funcs--------------
  2954 // inline code for System.currentTimeMillis() and System.nanoTime()
  2955 // these have the same type and signature
  2956 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  2957   const TypeFunc* tf = OptoRuntime::void_long_Type();
  2958   const TypePtr* no_memory_effects = NULL;
  2959   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2960   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  2961 #ifdef ASSERT
  2962   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  2963   assert(value_top == top(), "second value must be top");
  2964 #endif
  2965   set_result(value);
  2966   return true;
  2969 //------------------------inline_native_currentThread------------------
  2970 bool LibraryCallKit::inline_native_currentThread() {
  2971   Node* junk = NULL;
  2972   set_result(generate_current_thread(junk));
  2973   return true;
  2976 //------------------------inline_native_isInterrupted------------------
  2977 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  2978 bool LibraryCallKit::inline_native_isInterrupted() {
  2979   // Add a fast path to t.isInterrupted(clear_int):
  2980   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  2981   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  2982   // So, in the common case that the interrupt bit is false,
  2983   // we avoid making a call into the VM.  Even if the interrupt bit
  2984   // is true, if the clear_int argument is false, we avoid the VM call.
  2985   // However, if the receiver is not currentThread, we must call the VM,
  2986   // because there must be some locking done around the operation.
  2988   // We only go to the fast case code if we pass two guards.
  2989   // Paths which do not pass are accumulated in the slow_region.
  2991   enum {
  2992     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  2993     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  2994     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  2995     PATH_LIMIT
  2996   };
  2998   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  2999   // out of the function.
  3000   insert_mem_bar(Op_MemBarCPUOrder);
  3002   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3003   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3005   RegionNode* slow_region = new (C) RegionNode(1);
  3006   record_for_igvn(slow_region);
  3008   // (a) Receiving thread must be the current thread.
  3009   Node* rec_thr = argument(0);
  3010   Node* tls_ptr = NULL;
  3011   Node* cur_thr = generate_current_thread(tls_ptr);
  3012   Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
  3013   Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
  3015   generate_slow_guard(bol_thr, slow_region);
  3017   // (b) Interrupt bit on TLS must be false.
  3018   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3019   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3020   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3022   // Set the control input on the field _interrupted read to prevent it floating up.
  3023   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  3024   Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
  3025   Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
  3027   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3029   // First fast path:  if (!TLS._interrupted) return false;
  3030   Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
  3031   result_rgn->init_req(no_int_result_path, false_bit);
  3032   result_val->init_req(no_int_result_path, intcon(0));
  3034   // drop through to next case
  3035   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
  3037   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3038   Node* clr_arg = argument(1);
  3039   Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
  3040   Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
  3041   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3043   // Second fast path:  ... else if (!clear_int) return true;
  3044   Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
  3045   result_rgn->init_req(no_clear_result_path, false_arg);
  3046   result_val->init_req(no_clear_result_path, intcon(1));
  3048   // drop through to next case
  3049   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
  3051   // (d) Otherwise, go to the slow path.
  3052   slow_region->add_req(control());
  3053   set_control( _gvn.transform(slow_region) );
  3055   if (stopped()) {
  3056     // There is no slow path.
  3057     result_rgn->init_req(slow_result_path, top());
  3058     result_val->init_req(slow_result_path, top());
  3059   } else {
  3060     // non-virtual because it is a private non-static
  3061     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3063     Node* slow_val = set_results_for_java_call(slow_call);
  3064     // this->control() comes from set_results_for_java_call
  3066     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3067     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3069     // These two phis are pre-filled with copies of of the fast IO and Memory
  3070     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3071     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3073     result_rgn->init_req(slow_result_path, control());
  3074     result_io ->init_req(slow_result_path, i_o());
  3075     result_mem->init_req(slow_result_path, reset_memory());
  3076     result_val->init_req(slow_result_path, slow_val);
  3078     set_all_memory(_gvn.transform(result_mem));
  3079     set_i_o(       _gvn.transform(result_io));
  3082   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3083   set_result(result_rgn, result_val);
  3084   return true;
  3087 //---------------------------load_mirror_from_klass----------------------------
  3088 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3089 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3090   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3091   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  3094 //-----------------------load_klass_from_mirror_common-------------------------
  3095 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3096 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3097 // and branch to the given path on the region.
  3098 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3099 // compile for the non-null case.
  3100 // If the region is NULL, force never_see_null = true.
  3101 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3102                                                     bool never_see_null,
  3103                                                     RegionNode* region,
  3104                                                     int null_path,
  3105                                                     int offset) {
  3106   if (region == NULL)  never_see_null = true;
  3107   Node* p = basic_plus_adr(mirror, offset);
  3108   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3109   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  3110   Node* null_ctl = top();
  3111   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3112   if (region != NULL) {
  3113     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3114     region->init_req(null_path, null_ctl);
  3115   } else {
  3116     assert(null_ctl == top(), "no loose ends");
  3118   return kls;
  3121 //--------------------(inline_native_Class_query helpers)---------------------
  3122 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3123 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3124 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3125   // Branch around if the given klass has the given modifier bit set.
  3126   // Like generate_guard, adds a new path onto the region.
  3127   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3128   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3129   Node* mask = intcon(modifier_mask);
  3130   Node* bits = intcon(modifier_bits);
  3131   Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
  3132   Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
  3133   Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
  3134   return generate_fair_guard(bol, region);
  3136 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3137   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3140 //-------------------------inline_native_Class_query-------------------
  3141 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3142   const Type* return_type = TypeInt::BOOL;
  3143   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3144   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3145   bool expect_prim = false;     // most of these guys expect to work on refs
  3147   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3149   Node* mirror = argument(0);
  3150   Node* obj    = top();
  3152   switch (id) {
  3153   case vmIntrinsics::_isInstance:
  3154     // nothing is an instance of a primitive type
  3155     prim_return_value = intcon(0);
  3156     obj = argument(1);
  3157     break;
  3158   case vmIntrinsics::_getModifiers:
  3159     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3160     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3161     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3162     break;
  3163   case vmIntrinsics::_isInterface:
  3164     prim_return_value = intcon(0);
  3165     break;
  3166   case vmIntrinsics::_isArray:
  3167     prim_return_value = intcon(0);
  3168     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3169     break;
  3170   case vmIntrinsics::_isPrimitive:
  3171     prim_return_value = intcon(1);
  3172     expect_prim = true;  // obviously
  3173     break;
  3174   case vmIntrinsics::_getSuperclass:
  3175     prim_return_value = null();
  3176     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3177     break;
  3178   case vmIntrinsics::_getComponentType:
  3179     prim_return_value = null();
  3180     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3181     break;
  3182   case vmIntrinsics::_getClassAccessFlags:
  3183     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3184     return_type = TypeInt::INT;  // not bool!  6297094
  3185     break;
  3186   default:
  3187     fatal_unexpected_iid(id);
  3188     break;
  3191   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3192   if (mirror_con == NULL)  return false;  // cannot happen?
  3194 #ifndef PRODUCT
  3195   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  3196     ciType* k = mirror_con->java_mirror_type();
  3197     if (k) {
  3198       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3199       k->print_name();
  3200       tty->cr();
  3203 #endif
  3205   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3206   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3207   record_for_igvn(region);
  3208   PhiNode* phi = new (C) PhiNode(region, return_type);
  3210   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3211   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3212   // if it is. See bug 4774291.
  3214   // For Reflection.getClassAccessFlags(), the null check occurs in
  3215   // the wrong place; see inline_unsafe_access(), above, for a similar
  3216   // situation.
  3217   mirror = null_check(mirror);
  3218   // If mirror or obj is dead, only null-path is taken.
  3219   if (stopped())  return true;
  3221   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3223   // Now load the mirror's klass metaobject, and null-check it.
  3224   // Side-effects region with the control path if the klass is null.
  3225   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3226   // If kls is null, we have a primitive mirror.
  3227   phi->init_req(_prim_path, prim_return_value);
  3228   if (stopped()) { set_result(region, phi); return true; }
  3230   Node* p;  // handy temp
  3231   Node* null_ctl;
  3233   // Now that we have the non-null klass, we can perform the real query.
  3234   // For constant classes, the query will constant-fold in LoadNode::Value.
  3235   Node* query_value = top();
  3236   switch (id) {
  3237   case vmIntrinsics::_isInstance:
  3238     // nothing is an instance of a primitive type
  3239     query_value = gen_instanceof(obj, kls);
  3240     break;
  3242   case vmIntrinsics::_getModifiers:
  3243     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3244     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3245     break;
  3247   case vmIntrinsics::_isInterface:
  3248     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3249     if (generate_interface_guard(kls, region) != NULL)
  3250       // A guard was added.  If the guard is taken, it was an interface.
  3251       phi->add_req(intcon(1));
  3252     // If we fall through, it's a plain class.
  3253     query_value = intcon(0);
  3254     break;
  3256   case vmIntrinsics::_isArray:
  3257     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3258     if (generate_array_guard(kls, region) != NULL)
  3259       // A guard was added.  If the guard is taken, it was an array.
  3260       phi->add_req(intcon(1));
  3261     // If we fall through, it's a plain class.
  3262     query_value = intcon(0);
  3263     break;
  3265   case vmIntrinsics::_isPrimitive:
  3266     query_value = intcon(0); // "normal" path produces false
  3267     break;
  3269   case vmIntrinsics::_getSuperclass:
  3270     // The rules here are somewhat unfortunate, but we can still do better
  3271     // with random logic than with a JNI call.
  3272     // Interfaces store null or Object as _super, but must report null.
  3273     // Arrays store an intermediate super as _super, but must report Object.
  3274     // Other types can report the actual _super.
  3275     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3276     if (generate_interface_guard(kls, region) != NULL)
  3277       // A guard was added.  If the guard is taken, it was an interface.
  3278       phi->add_req(null());
  3279     if (generate_array_guard(kls, region) != NULL)
  3280       // A guard was added.  If the guard is taken, it was an array.
  3281       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3282     // If we fall through, it's a plain class.  Get its _super.
  3283     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3284     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3285     null_ctl = top();
  3286     kls = null_check_oop(kls, &null_ctl);
  3287     if (null_ctl != top()) {
  3288       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3289       region->add_req(null_ctl);
  3290       phi   ->add_req(null());
  3292     if (!stopped()) {
  3293       query_value = load_mirror_from_klass(kls);
  3295     break;
  3297   case vmIntrinsics::_getComponentType:
  3298     if (generate_array_guard(kls, region) != NULL) {
  3299       // Be sure to pin the oop load to the guard edge just created:
  3300       Node* is_array_ctrl = region->in(region->req()-1);
  3301       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3302       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3303       phi->add_req(cmo);
  3305     query_value = null();  // non-array case is null
  3306     break;
  3308   case vmIntrinsics::_getClassAccessFlags:
  3309     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3310     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3311     break;
  3313   default:
  3314     fatal_unexpected_iid(id);
  3315     break;
  3318   // Fall-through is the normal case of a query to a real class.
  3319   phi->init_req(1, query_value);
  3320   region->init_req(1, control());
  3322   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3323   set_result(region, phi);
  3324   return true;
  3327 //--------------------------inline_native_subtype_check------------------------
  3328 // This intrinsic takes the JNI calls out of the heart of
  3329 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3330 bool LibraryCallKit::inline_native_subtype_check() {
  3331   // Pull both arguments off the stack.
  3332   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3333   args[0] = argument(0);
  3334   args[1] = argument(1);
  3335   Node* klasses[2];             // corresponding Klasses: superk, subk
  3336   klasses[0] = klasses[1] = top();
  3338   enum {
  3339     // A full decision tree on {superc is prim, subc is prim}:
  3340     _prim_0_path = 1,           // {P,N} => false
  3341                                 // {P,P} & superc!=subc => false
  3342     _prim_same_path,            // {P,P} & superc==subc => true
  3343     _prim_1_path,               // {N,P} => false
  3344     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3345     _both_ref_path,             // {N,N} & subtype check loses => false
  3346     PATH_LIMIT
  3347   };
  3349   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3350   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3351   record_for_igvn(region);
  3353   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3354   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3355   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3357   // First null-check both mirrors and load each mirror's klass metaobject.
  3358   int which_arg;
  3359   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3360     Node* arg = args[which_arg];
  3361     arg = null_check(arg);
  3362     if (stopped())  break;
  3363     args[which_arg] = arg;
  3365     Node* p = basic_plus_adr(arg, class_klass_offset);
  3366     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3367     klasses[which_arg] = _gvn.transform(kls);
  3370   // Having loaded both klasses, test each for null.
  3371   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3372   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3373     Node* kls = klasses[which_arg];
  3374     Node* null_ctl = top();
  3375     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3376     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3377     region->init_req(prim_path, null_ctl);
  3378     if (stopped())  break;
  3379     klasses[which_arg] = kls;
  3382   if (!stopped()) {
  3383     // now we have two reference types, in klasses[0..1]
  3384     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3385     Node* superk = klasses[0];  // the receiver
  3386     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3387     // now we have a successful reference subtype check
  3388     region->set_req(_ref_subtype_path, control());
  3391   // If both operands are primitive (both klasses null), then
  3392   // we must return true when they are identical primitives.
  3393   // It is convenient to test this after the first null klass check.
  3394   set_control(region->in(_prim_0_path)); // go back to first null check
  3395   if (!stopped()) {
  3396     // Since superc is primitive, make a guard for the superc==subc case.
  3397     Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
  3398     Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
  3399     generate_guard(bol_eq, region, PROB_FAIR);
  3400     if (region->req() == PATH_LIMIT+1) {
  3401       // A guard was added.  If the added guard is taken, superc==subc.
  3402       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3403       region->del_req(PATH_LIMIT);
  3405     region->set_req(_prim_0_path, control()); // Not equal after all.
  3408   // these are the only paths that produce 'true':
  3409   phi->set_req(_prim_same_path,   intcon(1));
  3410   phi->set_req(_ref_subtype_path, intcon(1));
  3412   // pull together the cases:
  3413   assert(region->req() == PATH_LIMIT, "sane region");
  3414   for (uint i = 1; i < region->req(); i++) {
  3415     Node* ctl = region->in(i);
  3416     if (ctl == NULL || ctl == top()) {
  3417       region->set_req(i, top());
  3418       phi   ->set_req(i, top());
  3419     } else if (phi->in(i) == NULL) {
  3420       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3424   set_control(_gvn.transform(region));
  3425   set_result(_gvn.transform(phi));
  3426   return true;
  3429 //---------------------generate_array_guard_common------------------------
  3430 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3431                                                   bool obj_array, bool not_array) {
  3432   // If obj_array/non_array==false/false:
  3433   // Branch around if the given klass is in fact an array (either obj or prim).
  3434   // If obj_array/non_array==false/true:
  3435   // Branch around if the given klass is not an array klass of any kind.
  3436   // If obj_array/non_array==true/true:
  3437   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3438   // If obj_array/non_array==true/false:
  3439   // Branch around if the kls is an oop array (Object[] or subtype)
  3440   //
  3441   // Like generate_guard, adds a new path onto the region.
  3442   jint  layout_con = 0;
  3443   Node* layout_val = get_layout_helper(kls, layout_con);
  3444   if (layout_val == NULL) {
  3445     bool query = (obj_array
  3446                   ? Klass::layout_helper_is_objArray(layout_con)
  3447                   : Klass::layout_helper_is_array(layout_con));
  3448     if (query == not_array) {
  3449       return NULL;                       // never a branch
  3450     } else {                             // always a branch
  3451       Node* always_branch = control();
  3452       if (region != NULL)
  3453         region->add_req(always_branch);
  3454       set_control(top());
  3455       return always_branch;
  3458   // Now test the correct condition.
  3459   jint  nval = (obj_array
  3460                 ? ((jint)Klass::_lh_array_tag_type_value
  3461                    <<    Klass::_lh_array_tag_shift)
  3462                 : Klass::_lh_neutral_value);
  3463   Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
  3464   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3465   // invert the test if we are looking for a non-array
  3466   if (not_array)  btest = BoolTest(btest).negate();
  3467   Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
  3468   return generate_fair_guard(bol, region);
  3472 //-----------------------inline_native_newArray--------------------------
  3473 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3474 bool LibraryCallKit::inline_native_newArray() {
  3475   Node* mirror    = argument(0);
  3476   Node* count_val = argument(1);
  3478   mirror = null_check(mirror);
  3479   // If mirror or obj is dead, only null-path is taken.
  3480   if (stopped())  return true;
  3482   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3483   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3484   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3485                                           TypeInstPtr::NOTNULL);
  3486   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3487   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3488                                           TypePtr::BOTTOM);
  3490   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3491   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3492                                                   result_reg, _slow_path);
  3493   Node* normal_ctl   = control();
  3494   Node* no_array_ctl = result_reg->in(_slow_path);
  3496   // Generate code for the slow case.  We make a call to newArray().
  3497   set_control(no_array_ctl);
  3498   if (!stopped()) {
  3499     // Either the input type is void.class, or else the
  3500     // array klass has not yet been cached.  Either the
  3501     // ensuing call will throw an exception, or else it
  3502     // will cache the array klass for next time.
  3503     PreserveJVMState pjvms(this);
  3504     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3505     Node* slow_result = set_results_for_java_call(slow_call);
  3506     // this->control() comes from set_results_for_java_call
  3507     result_reg->set_req(_slow_path, control());
  3508     result_val->set_req(_slow_path, slow_result);
  3509     result_io ->set_req(_slow_path, i_o());
  3510     result_mem->set_req(_slow_path, reset_memory());
  3513   set_control(normal_ctl);
  3514   if (!stopped()) {
  3515     // Normal case:  The array type has been cached in the java.lang.Class.
  3516     // The following call works fine even if the array type is polymorphic.
  3517     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3518     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3519     result_reg->init_req(_normal_path, control());
  3520     result_val->init_req(_normal_path, obj);
  3521     result_io ->init_req(_normal_path, i_o());
  3522     result_mem->init_req(_normal_path, reset_memory());
  3525   // Return the combined state.
  3526   set_i_o(        _gvn.transform(result_io)  );
  3527   set_all_memory( _gvn.transform(result_mem) );
  3529   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3530   set_result(result_reg, result_val);
  3531   return true;
  3534 //----------------------inline_native_getLength--------------------------
  3535 // public static native int java.lang.reflect.Array.getLength(Object array);
  3536 bool LibraryCallKit::inline_native_getLength() {
  3537   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3539   Node* array = null_check(argument(0));
  3540   // If array is dead, only null-path is taken.
  3541   if (stopped())  return true;
  3543   // Deoptimize if it is a non-array.
  3544   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3546   if (non_array != NULL) {
  3547     PreserveJVMState pjvms(this);
  3548     set_control(non_array);
  3549     uncommon_trap(Deoptimization::Reason_intrinsic,
  3550                   Deoptimization::Action_maybe_recompile);
  3553   // If control is dead, only non-array-path is taken.
  3554   if (stopped())  return true;
  3556   // The works fine even if the array type is polymorphic.
  3557   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3558   Node* result = load_array_length(array);
  3560   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3561   set_result(result);
  3562   return true;
  3565 //------------------------inline_array_copyOf----------------------------
  3566 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3567 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3568 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3569   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3571   // Get the arguments.
  3572   Node* original          = argument(0);
  3573   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3574   Node* end               = is_copyOfRange? argument(2): argument(1);
  3575   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3577   Node* newcopy;
  3579   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3580   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3581   { PreserveReexecuteState preexecs(this);
  3582     jvms()->set_should_reexecute(true);
  3584     array_type_mirror = null_check(array_type_mirror);
  3585     original          = null_check(original);
  3587     // Check if a null path was taken unconditionally.
  3588     if (stopped())  return true;
  3590     Node* orig_length = load_array_length(original);
  3592     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3593     klass_node = null_check(klass_node);
  3595     RegionNode* bailout = new (C) RegionNode(1);
  3596     record_for_igvn(bailout);
  3598     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3599     // Bail out if that is so.
  3600     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3601     if (not_objArray != NULL) {
  3602       // Improve the klass node's type from the new optimistic assumption:
  3603       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3604       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3605       Node* cast = new (C) CastPPNode(klass_node, akls);
  3606       cast->init_req(0, control());
  3607       klass_node = _gvn.transform(cast);
  3610     // Bail out if either start or end is negative.
  3611     generate_negative_guard(start, bailout, &start);
  3612     generate_negative_guard(end,   bailout, &end);
  3614     Node* length = end;
  3615     if (_gvn.type(start) != TypeInt::ZERO) {
  3616       length = _gvn.transform(new (C) SubINode(end, start));
  3619     // Bail out if length is negative.
  3620     // Without this the new_array would throw
  3621     // NegativeArraySizeException but IllegalArgumentException is what
  3622     // should be thrown
  3623     generate_negative_guard(length, bailout, &length);
  3625     if (bailout->req() > 1) {
  3626       PreserveJVMState pjvms(this);
  3627       set_control(_gvn.transform(bailout));
  3628       uncommon_trap(Deoptimization::Reason_intrinsic,
  3629                     Deoptimization::Action_maybe_recompile);
  3632     if (!stopped()) {
  3633       // How many elements will we copy from the original?
  3634       // The answer is MinI(orig_length - start, length).
  3635       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3636       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3638       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3640       // Generate a direct call to the right arraycopy function(s).
  3641       // We know the copy is disjoint but we might not know if the
  3642       // oop stores need checking.
  3643       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3644       // This will fail a store-check if x contains any non-nulls.
  3645       bool disjoint_bases = true;
  3646       // if start > orig_length then the length of the copy may be
  3647       // negative.
  3648       bool length_never_negative = !is_copyOfRange;
  3649       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3650                          original, start, newcopy, intcon(0), moved,
  3651                          disjoint_bases, length_never_negative);
  3653   } // original reexecute is set back here
  3655   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3656   if (!stopped()) {
  3657     set_result(newcopy);
  3659   return true;
  3663 //----------------------generate_virtual_guard---------------------------
  3664 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3665 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3666                                              RegionNode* slow_region) {
  3667   ciMethod* method = callee();
  3668   int vtable_index = method->vtable_index();
  3669   // Get the Method* out of the appropriate vtable entry.
  3670   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3671                      vtable_index*vtableEntry::size()) * wordSize +
  3672                      vtableEntry::method_offset_in_bytes();
  3673   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3674   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
  3676   // Compare the target method with the expected method (e.g., Object.hashCode).
  3677   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3679   Node* native_call = makecon(native_call_addr);
  3680   Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
  3681   Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
  3683   return generate_slow_guard(test_native, slow_region);
  3686 //-----------------------generate_method_call----------------------------
  3687 // Use generate_method_call to make a slow-call to the real
  3688 // method if the fast path fails.  An alternative would be to
  3689 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3690 // This only works for expanding the current library call,
  3691 // not another intrinsic.  (E.g., don't use this for making an
  3692 // arraycopy call inside of the copyOf intrinsic.)
  3693 CallJavaNode*
  3694 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3695   // When compiling the intrinsic method itself, do not use this technique.
  3696   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3698   ciMethod* method = callee();
  3699   // ensure the JVMS we have will be correct for this call
  3700   guarantee(method_id == method->intrinsic_id(), "must match");
  3702   const TypeFunc* tf = TypeFunc::make(method);
  3703   CallJavaNode* slow_call;
  3704   if (is_static) {
  3705     assert(!is_virtual, "");
  3706     slow_call = new(C) CallStaticJavaNode(C, tf,
  3707                            SharedRuntime::get_resolve_static_call_stub(),
  3708                            method, bci());
  3709   } else if (is_virtual) {
  3710     null_check_receiver();
  3711     int vtable_index = Method::invalid_vtable_index;
  3712     if (UseInlineCaches) {
  3713       // Suppress the vtable call
  3714     } else {
  3715       // hashCode and clone are not a miranda methods,
  3716       // so the vtable index is fixed.
  3717       // No need to use the linkResolver to get it.
  3718        vtable_index = method->vtable_index();
  3720     slow_call = new(C) CallDynamicJavaNode(tf,
  3721                           SharedRuntime::get_resolve_virtual_call_stub(),
  3722                           method, vtable_index, bci());
  3723   } else {  // neither virtual nor static:  opt_virtual
  3724     null_check_receiver();
  3725     slow_call = new(C) CallStaticJavaNode(C, tf,
  3726                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3727                                 method, bci());
  3728     slow_call->set_optimized_virtual(true);
  3730   set_arguments_for_java_call(slow_call);
  3731   set_edges_for_java_call(slow_call);
  3732   return slow_call;
  3736 //------------------------------inline_native_hashcode--------------------
  3737 // Build special case code for calls to hashCode on an object.
  3738 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3739   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3740   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3742   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3744   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3745   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3746                                           TypeInt::INT);
  3747   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3748   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3749                                           TypePtr::BOTTOM);
  3750   Node* obj = NULL;
  3751   if (!is_static) {
  3752     // Check for hashing null object
  3753     obj = null_check_receiver();
  3754     if (stopped())  return true;        // unconditionally null
  3755     result_reg->init_req(_null_path, top());
  3756     result_val->init_req(_null_path, top());
  3757   } else {
  3758     // Do a null check, and return zero if null.
  3759     // System.identityHashCode(null) == 0
  3760     obj = argument(0);
  3761     Node* null_ctl = top();
  3762     obj = null_check_oop(obj, &null_ctl);
  3763     result_reg->init_req(_null_path, null_ctl);
  3764     result_val->init_req(_null_path, _gvn.intcon(0));
  3767   // Unconditionally null?  Then return right away.
  3768   if (stopped()) {
  3769     set_control( result_reg->in(_null_path));
  3770     if (!stopped())
  3771       set_result(result_val->in(_null_path));
  3772     return true;
  3775   // After null check, get the object's klass.
  3776   Node* obj_klass = load_object_klass(obj);
  3778   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3779   // For each case we generate slightly different code.
  3781   // We only go to the fast case code if we pass a number of guards.  The
  3782   // paths which do not pass are accumulated in the slow_region.
  3783   RegionNode* slow_region = new (C) RegionNode(1);
  3784   record_for_igvn(slow_region);
  3786   // If this is a virtual call, we generate a funny guard.  We pull out
  3787   // the vtable entry corresponding to hashCode() from the target object.
  3788   // If the target method which we are calling happens to be the native
  3789   // Object hashCode() method, we pass the guard.  We do not need this
  3790   // guard for non-virtual calls -- the caller is known to be the native
  3791   // Object hashCode().
  3792   if (is_virtual) {
  3793     generate_virtual_guard(obj_klass, slow_region);
  3796   // Get the header out of the object, use LoadMarkNode when available
  3797   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3798   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3800   // Test the header to see if it is unlocked.
  3801   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3802   Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
  3803   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3804   Node *chk_unlocked   = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
  3805   Node *test_unlocked  = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
  3807   generate_slow_guard(test_unlocked, slow_region);
  3809   // Get the hash value and check to see that it has been properly assigned.
  3810   // We depend on hash_mask being at most 32 bits and avoid the use of
  3811   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3812   // vm: see markOop.hpp.
  3813   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3814   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3815   Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
  3816   // This hack lets the hash bits live anywhere in the mark object now, as long
  3817   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3818   // Java spec says that HashCode is an int so there's no point in capturing
  3819   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3820   hshifted_header      = ConvX2I(hshifted_header);
  3821   Node *hash_val       = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
  3823   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3824   Node *chk_assigned   = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
  3825   Node *test_assigned  = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
  3827   generate_slow_guard(test_assigned, slow_region);
  3829   Node* init_mem = reset_memory();
  3830   // fill in the rest of the null path:
  3831   result_io ->init_req(_null_path, i_o());
  3832   result_mem->init_req(_null_path, init_mem);
  3834   result_val->init_req(_fast_path, hash_val);
  3835   result_reg->init_req(_fast_path, control());
  3836   result_io ->init_req(_fast_path, i_o());
  3837   result_mem->init_req(_fast_path, init_mem);
  3839   // Generate code for the slow case.  We make a call to hashCode().
  3840   set_control(_gvn.transform(slow_region));
  3841   if (!stopped()) {
  3842     // No need for PreserveJVMState, because we're using up the present state.
  3843     set_all_memory(init_mem);
  3844     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  3845     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3846     Node* slow_result = set_results_for_java_call(slow_call);
  3847     // this->control() comes from set_results_for_java_call
  3848     result_reg->init_req(_slow_path, control());
  3849     result_val->init_req(_slow_path, slow_result);
  3850     result_io  ->set_req(_slow_path, i_o());
  3851     result_mem ->set_req(_slow_path, reset_memory());
  3854   // Return the combined state.
  3855   set_i_o(        _gvn.transform(result_io)  );
  3856   set_all_memory( _gvn.transform(result_mem) );
  3858   set_result(result_reg, result_val);
  3859   return true;
  3862 //---------------------------inline_native_getClass----------------------------
  3863 // public final native Class<?> java.lang.Object.getClass();
  3864 //
  3865 // Build special case code for calls to getClass on an object.
  3866 bool LibraryCallKit::inline_native_getClass() {
  3867   Node* obj = null_check_receiver();
  3868   if (stopped())  return true;
  3869   set_result(load_mirror_from_klass(load_object_klass(obj)));
  3870   return true;
  3873 //-----------------inline_native_Reflection_getCallerClass---------------------
  3874 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  3875 //
  3876 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3877 //
  3878 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  3879 // in that it must skip particular security frames and checks for
  3880 // caller sensitive methods.
  3881 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3882 #ifndef PRODUCT
  3883   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3884     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3886 #endif
  3888   if (!jvms()->has_method()) {
  3889 #ifndef PRODUCT
  3890     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3891       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3893 #endif
  3894     return false;
  3897   // Walk back up the JVM state to find the caller at the required
  3898   // depth.
  3899   JVMState* caller_jvms = jvms();
  3901   // Cf. JVM_GetCallerClass
  3902   // NOTE: Start the loop at depth 1 because the current JVM state does
  3903   // not include the Reflection.getCallerClass() frame.
  3904   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  3905     ciMethod* m = caller_jvms->method();
  3906     switch (n) {
  3907     case 0:
  3908       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  3909       break;
  3910     case 1:
  3911       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  3912       if (!m->caller_sensitive()) {
  3913 #ifndef PRODUCT
  3914         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3915           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  3917 #endif
  3918         return false;  // bail-out; let JVM_GetCallerClass do the work
  3920       break;
  3921     default:
  3922       if (!m->is_ignored_by_security_stack_walk()) {
  3923         // We have reached the desired frame; return the holder class.
  3924         // Acquire method holder as java.lang.Class and push as constant.
  3925         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  3926         ciInstance* caller_mirror = caller_klass->java_mirror();
  3927         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  3929 #ifndef PRODUCT
  3930         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3931           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  3932           tty->print_cr("  JVM state at this point:");
  3933           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  3934             ciMethod* m = jvms()->of_depth(i)->method();
  3935             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  3938 #endif
  3939         return true;
  3941       break;
  3945 #ifndef PRODUCT
  3946   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3947     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  3948     tty->print_cr("  JVM state at this point:");
  3949     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  3950       ciMethod* m = jvms()->of_depth(i)->method();
  3951       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  3954 #endif
  3956   return false;  // bail-out; let JVM_GetCallerClass do the work
  3959 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  3960   Node* arg = argument(0);
  3961   Node* result;
  3963   switch (id) {
  3964   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  3965   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  3966   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  3967   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  3969   case vmIntrinsics::_doubleToLongBits: {
  3970     // two paths (plus control) merge in a wood
  3971     RegionNode *r = new (C) RegionNode(3);
  3972     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  3974     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  3975     // Build the boolean node
  3976     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  3978     // Branch either way.
  3979     // NaN case is less traveled, which makes all the difference.
  3980     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  3981     Node *opt_isnan = _gvn.transform(ifisnan);
  3982     assert( opt_isnan->is_If(), "Expect an IfNode");
  3983     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  3984     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
  3986     set_control(iftrue);
  3988     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  3989     Node *slow_result = longcon(nan_bits); // return NaN
  3990     phi->init_req(1, _gvn.transform( slow_result ));
  3991     r->init_req(1, iftrue);
  3993     // Else fall through
  3994     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  3995     set_control(iffalse);
  3997     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  3998     r->init_req(2, iffalse);
  4000     // Post merge
  4001     set_control(_gvn.transform(r));
  4002     record_for_igvn(r);
  4004     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4005     result = phi;
  4006     assert(result->bottom_type()->isa_long(), "must be");
  4007     break;
  4010   case vmIntrinsics::_floatToIntBits: {
  4011     // two paths (plus control) merge in a wood
  4012     RegionNode *r = new (C) RegionNode(3);
  4013     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4015     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4016     // Build the boolean node
  4017     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4019     // Branch either way.
  4020     // NaN case is less traveled, which makes all the difference.
  4021     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4022     Node *opt_isnan = _gvn.transform(ifisnan);
  4023     assert( opt_isnan->is_If(), "Expect an IfNode");
  4024     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4025     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
  4027     set_control(iftrue);
  4029     static const jint nan_bits = 0x7fc00000;
  4030     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4031     phi->init_req(1, _gvn.transform( slow_result ));
  4032     r->init_req(1, iftrue);
  4034     // Else fall through
  4035     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4036     set_control(iffalse);
  4038     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4039     r->init_req(2, iffalse);
  4041     // Post merge
  4042     set_control(_gvn.transform(r));
  4043     record_for_igvn(r);
  4045     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4046     result = phi;
  4047     assert(result->bottom_type()->isa_int(), "must be");
  4048     break;
  4051   default:
  4052     fatal_unexpected_iid(id);
  4053     break;
  4055   set_result(_gvn.transform(result));
  4056   return true;
  4059 #ifdef _LP64
  4060 #define XTOP ,top() /*additional argument*/
  4061 #else  //_LP64
  4062 #define XTOP        /*no additional argument*/
  4063 #endif //_LP64
  4065 //----------------------inline_unsafe_copyMemory-------------------------
  4066 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4067 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4068   if (callee()->is_static())  return false;  // caller must have the capability!
  4069   null_check_receiver();  // null-check receiver
  4070   if (stopped())  return true;
  4072   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4074   Node* src_ptr =         argument(1);   // type: oop
  4075   Node* src_off = ConvL2X(argument(2));  // type: long
  4076   Node* dst_ptr =         argument(4);   // type: oop
  4077   Node* dst_off = ConvL2X(argument(5));  // type: long
  4078   Node* size    = ConvL2X(argument(7));  // type: long
  4080   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4081          "fieldOffset must be byte-scaled");
  4083   Node* src = make_unsafe_address(src_ptr, src_off);
  4084   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4086   // Conservatively insert a memory barrier on all memory slices.
  4087   // Do not let writes of the copy source or destination float below the copy.
  4088   insert_mem_bar(Op_MemBarCPUOrder);
  4090   // Call it.  Note that the length argument is not scaled.
  4091   make_runtime_call(RC_LEAF|RC_NO_FP,
  4092                     OptoRuntime::fast_arraycopy_Type(),
  4093                     StubRoutines::unsafe_arraycopy(),
  4094                     "unsafe_arraycopy",
  4095                     TypeRawPtr::BOTTOM,
  4096                     src, dst, size XTOP);
  4098   // Do not let reads of the copy destination float above the copy.
  4099   insert_mem_bar(Op_MemBarCPUOrder);
  4101   return true;
  4104 //------------------------clone_coping-----------------------------------
  4105 // Helper function for inline_native_clone.
  4106 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4107   assert(obj_size != NULL, "");
  4108   Node* raw_obj = alloc_obj->in(1);
  4109   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4111   AllocateNode* alloc = NULL;
  4112   if (ReduceBulkZeroing) {
  4113     // We will be completely responsible for initializing this object -
  4114     // mark Initialize node as complete.
  4115     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4116     // The object was just allocated - there should be no any stores!
  4117     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4118     // Mark as complete_with_arraycopy so that on AllocateNode
  4119     // expansion, we know this AllocateNode is initialized by an array
  4120     // copy and a StoreStore barrier exists after the array copy.
  4121     alloc->initialization()->set_complete_with_arraycopy();
  4124   // Copy the fastest available way.
  4125   // TODO: generate fields copies for small objects instead.
  4126   Node* src  = obj;
  4127   Node* dest = alloc_obj;
  4128   Node* size = _gvn.transform(obj_size);
  4130   // Exclude the header but include array length to copy by 8 bytes words.
  4131   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4132   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4133                             instanceOopDesc::base_offset_in_bytes();
  4134   // base_off:
  4135   // 8  - 32-bit VM
  4136   // 12 - 64-bit VM, compressed klass
  4137   // 16 - 64-bit VM, normal klass
  4138   if (base_off % BytesPerLong != 0) {
  4139     assert(UseCompressedKlassPointers, "");
  4140     if (is_array) {
  4141       // Exclude length to copy by 8 bytes words.
  4142       base_off += sizeof(int);
  4143     } else {
  4144       // Include klass to copy by 8 bytes words.
  4145       base_off = instanceOopDesc::klass_offset_in_bytes();
  4147     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4149   src  = basic_plus_adr(src,  base_off);
  4150   dest = basic_plus_adr(dest, base_off);
  4152   // Compute the length also, if needed:
  4153   Node* countx = size;
  4154   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
  4155   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4157   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4158   bool disjoint_bases = true;
  4159   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4160                                src, NULL, dest, NULL, countx,
  4161                                /*dest_uninitialized*/true);
  4163   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4164   if (card_mark) {
  4165     assert(!is_array, "");
  4166     // Put in store barrier for any and all oops we are sticking
  4167     // into this object.  (We could avoid this if we could prove
  4168     // that the object type contains no oop fields at all.)
  4169     Node* no_particular_value = NULL;
  4170     Node* no_particular_field = NULL;
  4171     int raw_adr_idx = Compile::AliasIdxRaw;
  4172     post_barrier(control(),
  4173                  memory(raw_adr_type),
  4174                  alloc_obj,
  4175                  no_particular_field,
  4176                  raw_adr_idx,
  4177                  no_particular_value,
  4178                  T_OBJECT,
  4179                  false);
  4182   // Do not let reads from the cloned object float above the arraycopy.
  4183   if (alloc != NULL) {
  4184     // Do not let stores that initialize this object be reordered with
  4185     // a subsequent store that would make this object accessible by
  4186     // other threads.
  4187     // Record what AllocateNode this StoreStore protects so that
  4188     // escape analysis can go from the MemBarStoreStoreNode to the
  4189     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4190     // based on the escape status of the AllocateNode.
  4191     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4192   } else {
  4193     insert_mem_bar(Op_MemBarCPUOrder);
  4197 //------------------------inline_native_clone----------------------------
  4198 // protected native Object java.lang.Object.clone();
  4199 //
  4200 // Here are the simple edge cases:
  4201 //  null receiver => normal trap
  4202 //  virtual and clone was overridden => slow path to out-of-line clone
  4203 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4204 //
  4205 // The general case has two steps, allocation and copying.
  4206 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4207 //
  4208 // Copying also has two cases, oop arrays and everything else.
  4209 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4210 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4211 //
  4212 // These steps fold up nicely if and when the cloned object's klass
  4213 // can be sharply typed as an object array, a type array, or an instance.
  4214 //
  4215 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4216   PhiNode* result_val;
  4218   // Set the reexecute bit for the interpreter to reexecute
  4219   // the bytecode that invokes Object.clone if deoptimization happens.
  4220   { PreserveReexecuteState preexecs(this);
  4221     jvms()->set_should_reexecute(true);
  4223     Node* obj = null_check_receiver();
  4224     if (stopped())  return true;
  4226     Node* obj_klass = load_object_klass(obj);
  4227     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4228     const TypeOopPtr*   toop   = ((tklass != NULL)
  4229                                 ? tklass->as_instance_type()
  4230                                 : TypeInstPtr::NOTNULL);
  4232     // Conservatively insert a memory barrier on all memory slices.
  4233     // Do not let writes into the original float below the clone.
  4234     insert_mem_bar(Op_MemBarCPUOrder);
  4236     // paths into result_reg:
  4237     enum {
  4238       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4239       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4240       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4241       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4242       PATH_LIMIT
  4243     };
  4244     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4245     result_val             = new(C) PhiNode(result_reg,
  4246                                             TypeInstPtr::NOTNULL);
  4247     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4248     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4249                                             TypePtr::BOTTOM);
  4250     record_for_igvn(result_reg);
  4252     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4253     int raw_adr_idx = Compile::AliasIdxRaw;
  4255     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4256     if (array_ctl != NULL) {
  4257       // It's an array.
  4258       PreserveJVMState pjvms(this);
  4259       set_control(array_ctl);
  4260       Node* obj_length = load_array_length(obj);
  4261       Node* obj_size  = NULL;
  4262       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4264       if (!use_ReduceInitialCardMarks()) {
  4265         // If it is an oop array, it requires very special treatment,
  4266         // because card marking is required on each card of the array.
  4267         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4268         if (is_obja != NULL) {
  4269           PreserveJVMState pjvms2(this);
  4270           set_control(is_obja);
  4271           // Generate a direct call to the right arraycopy function(s).
  4272           bool disjoint_bases = true;
  4273           bool length_never_negative = true;
  4274           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4275                              obj, intcon(0), alloc_obj, intcon(0),
  4276                              obj_length,
  4277                              disjoint_bases, length_never_negative);
  4278           result_reg->init_req(_objArray_path, control());
  4279           result_val->init_req(_objArray_path, alloc_obj);
  4280           result_i_o ->set_req(_objArray_path, i_o());
  4281           result_mem ->set_req(_objArray_path, reset_memory());
  4284       // Otherwise, there are no card marks to worry about.
  4285       // (We can dispense with card marks if we know the allocation
  4286       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4287       //  causes the non-eden paths to take compensating steps to
  4288       //  simulate a fresh allocation, so that no further
  4289       //  card marks are required in compiled code to initialize
  4290       //  the object.)
  4292       if (!stopped()) {
  4293         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4295         // Present the results of the copy.
  4296         result_reg->init_req(_array_path, control());
  4297         result_val->init_req(_array_path, alloc_obj);
  4298         result_i_o ->set_req(_array_path, i_o());
  4299         result_mem ->set_req(_array_path, reset_memory());
  4303     // We only go to the instance fast case code if we pass a number of guards.
  4304     // The paths which do not pass are accumulated in the slow_region.
  4305     RegionNode* slow_region = new (C) RegionNode(1);
  4306     record_for_igvn(slow_region);
  4307     if (!stopped()) {
  4308       // It's an instance (we did array above).  Make the slow-path tests.
  4309       // If this is a virtual call, we generate a funny guard.  We grab
  4310       // the vtable entry corresponding to clone() from the target object.
  4311       // If the target method which we are calling happens to be the
  4312       // Object clone() method, we pass the guard.  We do not need this
  4313       // guard for non-virtual calls; the caller is known to be the native
  4314       // Object clone().
  4315       if (is_virtual) {
  4316         generate_virtual_guard(obj_klass, slow_region);
  4319       // The object must be cloneable and must not have a finalizer.
  4320       // Both of these conditions may be checked in a single test.
  4321       // We could optimize the cloneable test further, but we don't care.
  4322       generate_access_flags_guard(obj_klass,
  4323                                   // Test both conditions:
  4324                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4325                                   // Must be cloneable but not finalizer:
  4326                                   JVM_ACC_IS_CLONEABLE,
  4327                                   slow_region);
  4330     if (!stopped()) {
  4331       // It's an instance, and it passed the slow-path tests.
  4332       PreserveJVMState pjvms(this);
  4333       Node* obj_size  = NULL;
  4334       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4336       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4338       // Present the results of the slow call.
  4339       result_reg->init_req(_instance_path, control());
  4340       result_val->init_req(_instance_path, alloc_obj);
  4341       result_i_o ->set_req(_instance_path, i_o());
  4342       result_mem ->set_req(_instance_path, reset_memory());
  4345     // Generate code for the slow case.  We make a call to clone().
  4346     set_control(_gvn.transform(slow_region));
  4347     if (!stopped()) {
  4348       PreserveJVMState pjvms(this);
  4349       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4350       Node* slow_result = set_results_for_java_call(slow_call);
  4351       // this->control() comes from set_results_for_java_call
  4352       result_reg->init_req(_slow_path, control());
  4353       result_val->init_req(_slow_path, slow_result);
  4354       result_i_o ->set_req(_slow_path, i_o());
  4355       result_mem ->set_req(_slow_path, reset_memory());
  4358     // Return the combined state.
  4359     set_control(    _gvn.transform(result_reg) );
  4360     set_i_o(        _gvn.transform(result_i_o) );
  4361     set_all_memory( _gvn.transform(result_mem) );
  4362   } // original reexecute is set back here
  4364   set_result(_gvn.transform(result_val));
  4365   return true;
  4368 //------------------------------basictype2arraycopy----------------------------
  4369 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4370                                             Node* src_offset,
  4371                                             Node* dest_offset,
  4372                                             bool disjoint_bases,
  4373                                             const char* &name,
  4374                                             bool dest_uninitialized) {
  4375   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4376   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4378   bool aligned = false;
  4379   bool disjoint = disjoint_bases;
  4381   // if the offsets are the same, we can treat the memory regions as
  4382   // disjoint, because either the memory regions are in different arrays,
  4383   // or they are identical (which we can treat as disjoint.)  We can also
  4384   // treat a copy with a destination index  less that the source index
  4385   // as disjoint since a low->high copy will work correctly in this case.
  4386   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4387       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4388     // both indices are constants
  4389     int s_offs = src_offset_inttype->get_con();
  4390     int d_offs = dest_offset_inttype->get_con();
  4391     int element_size = type2aelembytes(t);
  4392     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4393               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4394     if (s_offs >= d_offs)  disjoint = true;
  4395   } else if (src_offset == dest_offset && src_offset != NULL) {
  4396     // This can occur if the offsets are identical non-constants.
  4397     disjoint = true;
  4400   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4404 //------------------------------inline_arraycopy-----------------------
  4405 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4406 //                                                      Object dest, int destPos,
  4407 //                                                      int length);
  4408 bool LibraryCallKit::inline_arraycopy() {
  4409   // Get the arguments.
  4410   Node* src         = argument(0);  // type: oop
  4411   Node* src_offset  = argument(1);  // type: int
  4412   Node* dest        = argument(2);  // type: oop
  4413   Node* dest_offset = argument(3);  // type: int
  4414   Node* length      = argument(4);  // type: int
  4416   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4417   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4418   // is.  The checks we choose to mandate at compile time are:
  4419   //
  4420   // (1) src and dest are arrays.
  4421   const Type* src_type  = src->Value(&_gvn);
  4422   const Type* dest_type = dest->Value(&_gvn);
  4423   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4424   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4425   if (top_src  == NULL || top_src->klass()  == NULL ||
  4426       top_dest == NULL || top_dest->klass() == NULL) {
  4427     // Conservatively insert a memory barrier on all memory slices.
  4428     // Do not let writes into the source float below the arraycopy.
  4429     insert_mem_bar(Op_MemBarCPUOrder);
  4431     // Call StubRoutines::generic_arraycopy stub.
  4432     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4433                        src, src_offset, dest, dest_offset, length);
  4435     // Do not let reads from the destination float above the arraycopy.
  4436     // Since we cannot type the arrays, we don't know which slices
  4437     // might be affected.  We could restrict this barrier only to those
  4438     // memory slices which pertain to array elements--but don't bother.
  4439     if (!InsertMemBarAfterArraycopy)
  4440       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4441       insert_mem_bar(Op_MemBarCPUOrder);
  4442     return true;
  4445   // (2) src and dest arrays must have elements of the same BasicType
  4446   // Figure out the size and type of the elements we will be copying.
  4447   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4448   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4449   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4450   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4452   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4453     // The component types are not the same or are not recognized.  Punt.
  4454     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4455     generate_slow_arraycopy(TypePtr::BOTTOM,
  4456                             src, src_offset, dest, dest_offset, length,
  4457                             /*dest_uninitialized*/false);
  4458     return true;
  4461   //---------------------------------------------------------------------------
  4462   // We will make a fast path for this call to arraycopy.
  4464   // We have the following tests left to perform:
  4465   //
  4466   // (3) src and dest must not be null.
  4467   // (4) src_offset must not be negative.
  4468   // (5) dest_offset must not be negative.
  4469   // (6) length must not be negative.
  4470   // (7) src_offset + length must not exceed length of src.
  4471   // (8) dest_offset + length must not exceed length of dest.
  4472   // (9) each element of an oop array must be assignable
  4474   RegionNode* slow_region = new (C) RegionNode(1);
  4475   record_for_igvn(slow_region);
  4477   // (3) operands must not be null
  4478   // We currently perform our null checks with the null_check routine.
  4479   // This means that the null exceptions will be reported in the caller
  4480   // rather than (correctly) reported inside of the native arraycopy call.
  4481   // This should be corrected, given time.  We do our null check with the
  4482   // stack pointer restored.
  4483   src  = null_check(src,  T_ARRAY);
  4484   dest = null_check(dest, T_ARRAY);
  4486   // (4) src_offset must not be negative.
  4487   generate_negative_guard(src_offset, slow_region);
  4489   // (5) dest_offset must not be negative.
  4490   generate_negative_guard(dest_offset, slow_region);
  4492   // (6) length must not be negative (moved to generate_arraycopy()).
  4493   // generate_negative_guard(length, slow_region);
  4495   // (7) src_offset + length must not exceed length of src.
  4496   generate_limit_guard(src_offset, length,
  4497                        load_array_length(src),
  4498                        slow_region);
  4500   // (8) dest_offset + length must not exceed length of dest.
  4501   generate_limit_guard(dest_offset, length,
  4502                        load_array_length(dest),
  4503                        slow_region);
  4505   // (9) each element of an oop array must be assignable
  4506   // The generate_arraycopy subroutine checks this.
  4508   // This is where the memory effects are placed:
  4509   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4510   generate_arraycopy(adr_type, dest_elem,
  4511                      src, src_offset, dest, dest_offset, length,
  4512                      false, false, slow_region);
  4514   return true;
  4517 //-----------------------------generate_arraycopy----------------------
  4518 // Generate an optimized call to arraycopy.
  4519 // Caller must guard against non-arrays.
  4520 // Caller must determine a common array basic-type for both arrays.
  4521 // Caller must validate offsets against array bounds.
  4522 // The slow_region has already collected guard failure paths
  4523 // (such as out of bounds length or non-conformable array types).
  4524 // The generated code has this shape, in general:
  4525 //
  4526 //     if (length == 0)  return   // via zero_path
  4527 //     slowval = -1
  4528 //     if (types unknown) {
  4529 //       slowval = call generic copy loop
  4530 //       if (slowval == 0)  return  // via checked_path
  4531 //     } else if (indexes in bounds) {
  4532 //       if ((is object array) && !(array type check)) {
  4533 //         slowval = call checked copy loop
  4534 //         if (slowval == 0)  return  // via checked_path
  4535 //       } else {
  4536 //         call bulk copy loop
  4537 //         return  // via fast_path
  4538 //       }
  4539 //     }
  4540 //     // adjust params for remaining work:
  4541 //     if (slowval != -1) {
  4542 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4543 //     }
  4544 //   slow_region:
  4545 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4546 //     return  // via slow_call_path
  4547 //
  4548 // This routine is used from several intrinsics:  System.arraycopy,
  4549 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4550 //
  4551 void
  4552 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4553                                    BasicType basic_elem_type,
  4554                                    Node* src,  Node* src_offset,
  4555                                    Node* dest, Node* dest_offset,
  4556                                    Node* copy_length,
  4557                                    bool disjoint_bases,
  4558                                    bool length_never_negative,
  4559                                    RegionNode* slow_region) {
  4561   if (slow_region == NULL) {
  4562     slow_region = new(C) RegionNode(1);
  4563     record_for_igvn(slow_region);
  4566   Node* original_dest      = dest;
  4567   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4568   bool  dest_uninitialized = false;
  4570   // See if this is the initialization of a newly-allocated array.
  4571   // If so, we will take responsibility here for initializing it to zero.
  4572   // (Note:  Because tightly_coupled_allocation performs checks on the
  4573   // out-edges of the dest, we need to avoid making derived pointers
  4574   // from it until we have checked its uses.)
  4575   if (ReduceBulkZeroing
  4576       && !ZeroTLAB              // pointless if already zeroed
  4577       && basic_elem_type != T_CONFLICT // avoid corner case
  4578       && !src->eqv_uncast(dest)
  4579       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4580           != NULL)
  4581       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4582       && alloc->maybe_set_complete(&_gvn)) {
  4583     // "You break it, you buy it."
  4584     InitializeNode* init = alloc->initialization();
  4585     assert(init->is_complete(), "we just did this");
  4586     init->set_complete_with_arraycopy();
  4587     assert(dest->is_CheckCastPP(), "sanity");
  4588     assert(dest->in(0)->in(0) == init, "dest pinned");
  4589     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4590     // From this point on, every exit path is responsible for
  4591     // initializing any non-copied parts of the object to zero.
  4592     // Also, if this flag is set we make sure that arraycopy interacts properly
  4593     // with G1, eliding pre-barriers. See CR 6627983.
  4594     dest_uninitialized = true;
  4595   } else {
  4596     // No zeroing elimination here.
  4597     alloc             = NULL;
  4598     //original_dest   = dest;
  4599     //dest_uninitialized = false;
  4602   // Results are placed here:
  4603   enum { fast_path        = 1,  // normal void-returning assembly stub
  4604          checked_path     = 2,  // special assembly stub with cleanup
  4605          slow_call_path   = 3,  // something went wrong; call the VM
  4606          zero_path        = 4,  // bypass when length of copy is zero
  4607          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4608          PATH_LIMIT       = 6
  4609   };
  4610   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4611   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4612   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4613   record_for_igvn(result_region);
  4614   _gvn.set_type_bottom(result_i_o);
  4615   _gvn.set_type_bottom(result_memory);
  4616   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4618   // The slow_control path:
  4619   Node* slow_control;
  4620   Node* slow_i_o = i_o();
  4621   Node* slow_mem = memory(adr_type);
  4622   debug_only(slow_control = (Node*) badAddress);
  4624   // Checked control path:
  4625   Node* checked_control = top();
  4626   Node* checked_mem     = NULL;
  4627   Node* checked_i_o     = NULL;
  4628   Node* checked_value   = NULL;
  4630   if (basic_elem_type == T_CONFLICT) {
  4631     assert(!dest_uninitialized, "");
  4632     Node* cv = generate_generic_arraycopy(adr_type,
  4633                                           src, src_offset, dest, dest_offset,
  4634                                           copy_length, dest_uninitialized);
  4635     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4636     checked_control = control();
  4637     checked_i_o     = i_o();
  4638     checked_mem     = memory(adr_type);
  4639     checked_value   = cv;
  4640     set_control(top());         // no fast path
  4643   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4644   if (not_pos != NULL) {
  4645     PreserveJVMState pjvms(this);
  4646     set_control(not_pos);
  4648     // (6) length must not be negative.
  4649     if (!length_never_negative) {
  4650       generate_negative_guard(copy_length, slow_region);
  4653     // copy_length is 0.
  4654     if (!stopped() && dest_uninitialized) {
  4655       Node* dest_length = alloc->in(AllocateNode::ALength);
  4656       if (copy_length->eqv_uncast(dest_length)
  4657           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4658         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4659       } else {
  4660         // Clear the whole thing since there are no source elements to copy.
  4661         generate_clear_array(adr_type, dest, basic_elem_type,
  4662                              intcon(0), NULL,
  4663                              alloc->in(AllocateNode::AllocSize));
  4664         // Use a secondary InitializeNode as raw memory barrier.
  4665         // Currently it is needed only on this path since other
  4666         // paths have stub or runtime calls as raw memory barriers.
  4667         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4668                                                        Compile::AliasIdxRaw,
  4669                                                        top())->as_Initialize();
  4670         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4674     // Present the results of the fast call.
  4675     result_region->init_req(zero_path, control());
  4676     result_i_o   ->init_req(zero_path, i_o());
  4677     result_memory->init_req(zero_path, memory(adr_type));
  4680   if (!stopped() && dest_uninitialized) {
  4681     // We have to initialize the *uncopied* part of the array to zero.
  4682     // The copy destination is the slice dest[off..off+len].  The other slices
  4683     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4684     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4685     Node* dest_length = alloc->in(AllocateNode::ALength);
  4686     Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
  4687                                                           copy_length) );
  4689     // If there is a head section that needs zeroing, do it now.
  4690     if (find_int_con(dest_offset, -1) != 0) {
  4691       generate_clear_array(adr_type, dest, basic_elem_type,
  4692                            intcon(0), dest_offset,
  4693                            NULL);
  4696     // Next, perform a dynamic check on the tail length.
  4697     // It is often zero, and we can win big if we prove this.
  4698     // There are two wins:  Avoid generating the ClearArray
  4699     // with its attendant messy index arithmetic, and upgrade
  4700     // the copy to a more hardware-friendly word size of 64 bits.
  4701     Node* tail_ctl = NULL;
  4702     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  4703       Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
  4704       Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
  4705       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4706       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4709     // At this point, let's assume there is no tail.
  4710     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4711       // There is no tail.  Try an upgrade to a 64-bit copy.
  4712       bool didit = false;
  4713       { PreserveJVMState pjvms(this);
  4714         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4715                                          src, src_offset, dest, dest_offset,
  4716                                          dest_size, dest_uninitialized);
  4717         if (didit) {
  4718           // Present the results of the block-copying fast call.
  4719           result_region->init_req(bcopy_path, control());
  4720           result_i_o   ->init_req(bcopy_path, i_o());
  4721           result_memory->init_req(bcopy_path, memory(adr_type));
  4724       if (didit)
  4725         set_control(top());     // no regular fast path
  4728     // Clear the tail, if any.
  4729     if (tail_ctl != NULL) {
  4730       Node* notail_ctl = stopped() ? NULL : control();
  4731       set_control(tail_ctl);
  4732       if (notail_ctl == NULL) {
  4733         generate_clear_array(adr_type, dest, basic_elem_type,
  4734                              dest_tail, NULL,
  4735                              dest_size);
  4736       } else {
  4737         // Make a local merge.
  4738         Node* done_ctl = new(C) RegionNode(3);
  4739         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4740         done_ctl->init_req(1, notail_ctl);
  4741         done_mem->init_req(1, memory(adr_type));
  4742         generate_clear_array(adr_type, dest, basic_elem_type,
  4743                              dest_tail, NULL,
  4744                              dest_size);
  4745         done_ctl->init_req(2, control());
  4746         done_mem->init_req(2, memory(adr_type));
  4747         set_control( _gvn.transform(done_ctl) );
  4748         set_memory(  _gvn.transform(done_mem), adr_type );
  4753   BasicType copy_type = basic_elem_type;
  4754   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4755   if (!stopped() && copy_type == T_OBJECT) {
  4756     // If src and dest have compatible element types, we can copy bits.
  4757     // Types S[] and D[] are compatible if D is a supertype of S.
  4758     //
  4759     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4760     // which performs a fast optimistic per-oop check, and backs off
  4761     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4762     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4764     // Get the Klass* for both src and dest
  4765     Node* src_klass  = load_object_klass(src);
  4766     Node* dest_klass = load_object_klass(dest);
  4768     // Generate the subtype check.
  4769     // This might fold up statically, or then again it might not.
  4770     //
  4771     // Non-static example:  Copying List<String>.elements to a new String[].
  4772     // The backing store for a List<String> is always an Object[],
  4773     // but its elements are always type String, if the generic types
  4774     // are correct at the source level.
  4775     //
  4776     // Test S[] against D[], not S against D, because (probably)
  4777     // the secondary supertype cache is less busy for S[] than S.
  4778     // This usually only matters when D is an interface.
  4779     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4780     // Plug failing path into checked_oop_disjoint_arraycopy
  4781     if (not_subtype_ctrl != top()) {
  4782       PreserveJVMState pjvms(this);
  4783       set_control(not_subtype_ctrl);
  4784       // (At this point we can assume disjoint_bases, since types differ.)
  4785       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  4786       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4787       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4788       Node* dest_elem_klass = _gvn.transform(n1);
  4789       Node* cv = generate_checkcast_arraycopy(adr_type,
  4790                                               dest_elem_klass,
  4791                                               src, src_offset, dest, dest_offset,
  4792                                               ConvI2X(copy_length), dest_uninitialized);
  4793       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4794       checked_control = control();
  4795       checked_i_o     = i_o();
  4796       checked_mem     = memory(adr_type);
  4797       checked_value   = cv;
  4799     // At this point we know we do not need type checks on oop stores.
  4801     // Let's see if we need card marks:
  4802     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4803       // If we do not need card marks, copy using the jint or jlong stub.
  4804       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4805       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4806              "sizes agree");
  4810   if (!stopped()) {
  4811     // Generate the fast path, if possible.
  4812     PreserveJVMState pjvms(this);
  4813     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4814                                  src, src_offset, dest, dest_offset,
  4815                                  ConvI2X(copy_length), dest_uninitialized);
  4817     // Present the results of the fast call.
  4818     result_region->init_req(fast_path, control());
  4819     result_i_o   ->init_req(fast_path, i_o());
  4820     result_memory->init_req(fast_path, memory(adr_type));
  4823   // Here are all the slow paths up to this point, in one bundle:
  4824   slow_control = top();
  4825   if (slow_region != NULL)
  4826     slow_control = _gvn.transform(slow_region);
  4827   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  4829   set_control(checked_control);
  4830   if (!stopped()) {
  4831     // Clean up after the checked call.
  4832     // The returned value is either 0 or -1^K,
  4833     // where K = number of partially transferred array elements.
  4834     Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
  4835     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  4836     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4838     // If it is 0, we are done, so transfer to the end.
  4839     Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
  4840     result_region->init_req(checked_path, checks_done);
  4841     result_i_o   ->init_req(checked_path, checked_i_o);
  4842     result_memory->init_req(checked_path, checked_mem);
  4844     // If it is not zero, merge into the slow call.
  4845     set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
  4846     RegionNode* slow_reg2 = new(C) RegionNode(3);
  4847     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  4848     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4849     record_for_igvn(slow_reg2);
  4850     slow_reg2  ->init_req(1, slow_control);
  4851     slow_i_o2  ->init_req(1, slow_i_o);
  4852     slow_mem2  ->init_req(1, slow_mem);
  4853     slow_reg2  ->init_req(2, control());
  4854     slow_i_o2  ->init_req(2, checked_i_o);
  4855     slow_mem2  ->init_req(2, checked_mem);
  4857     slow_control = _gvn.transform(slow_reg2);
  4858     slow_i_o     = _gvn.transform(slow_i_o2);
  4859     slow_mem     = _gvn.transform(slow_mem2);
  4861     if (alloc != NULL) {
  4862       // We'll restart from the very beginning, after zeroing the whole thing.
  4863       // This can cause double writes, but that's OK since dest is brand new.
  4864       // So we ignore the low 31 bits of the value returned from the stub.
  4865     } else {
  4866       // We must continue the copy exactly where it failed, or else
  4867       // another thread might see the wrong number of writes to dest.
  4868       Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
  4869       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  4870       slow_offset->init_req(1, intcon(0));
  4871       slow_offset->init_req(2, checked_offset);
  4872       slow_offset  = _gvn.transform(slow_offset);
  4874       // Adjust the arguments by the conditionally incoming offset.
  4875       Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
  4876       Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
  4877       Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
  4879       // Tweak the node variables to adjust the code produced below:
  4880       src_offset  = src_off_plus;
  4881       dest_offset = dest_off_plus;
  4882       copy_length = length_minus;
  4886   set_control(slow_control);
  4887   if (!stopped()) {
  4888     // Generate the slow path, if needed.
  4889     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  4891     set_memory(slow_mem, adr_type);
  4892     set_i_o(slow_i_o);
  4894     if (dest_uninitialized) {
  4895       generate_clear_array(adr_type, dest, basic_elem_type,
  4896                            intcon(0), NULL,
  4897                            alloc->in(AllocateNode::AllocSize));
  4900     generate_slow_arraycopy(adr_type,
  4901                             src, src_offset, dest, dest_offset,
  4902                             copy_length, /*dest_uninitialized*/false);
  4904     result_region->init_req(slow_call_path, control());
  4905     result_i_o   ->init_req(slow_call_path, i_o());
  4906     result_memory->init_req(slow_call_path, memory(adr_type));
  4909   // Remove unused edges.
  4910   for (uint i = 1; i < result_region->req(); i++) {
  4911     if (result_region->in(i) == NULL)
  4912       result_region->init_req(i, top());
  4915   // Finished; return the combined state.
  4916   set_control( _gvn.transform(result_region) );
  4917   set_i_o(     _gvn.transform(result_i_o)    );
  4918   set_memory(  _gvn.transform(result_memory), adr_type );
  4920   // The memory edges above are precise in order to model effects around
  4921   // array copies accurately to allow value numbering of field loads around
  4922   // arraycopy.  Such field loads, both before and after, are common in Java
  4923   // collections and similar classes involving header/array data structures.
  4924   //
  4925   // But with low number of register or when some registers are used or killed
  4926   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  4927   // The next memory barrier is added to avoid it. If the arraycopy can be
  4928   // optimized away (which it can, sometimes) then we can manually remove
  4929   // the membar also.
  4930   //
  4931   // Do not let reads from the cloned object float above the arraycopy.
  4932   if (alloc != NULL) {
  4933     // Do not let stores that initialize this object be reordered with
  4934     // a subsequent store that would make this object accessible by
  4935     // other threads.
  4936     // Record what AllocateNode this StoreStore protects so that
  4937     // escape analysis can go from the MemBarStoreStoreNode to the
  4938     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4939     // based on the escape status of the AllocateNode.
  4940     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4941   } else if (InsertMemBarAfterArraycopy)
  4942     insert_mem_bar(Op_MemBarCPUOrder);
  4946 // Helper function which determines if an arraycopy immediately follows
  4947 // an allocation, with no intervening tests or other escapes for the object.
  4948 AllocateArrayNode*
  4949 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  4950                                            RegionNode* slow_region) {
  4951   if (stopped())             return NULL;  // no fast path
  4952   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  4954   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  4955   if (alloc == NULL)  return NULL;
  4957   Node* rawmem = memory(Compile::AliasIdxRaw);
  4958   // Is the allocation's memory state untouched?
  4959   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  4960     // Bail out if there have been raw-memory effects since the allocation.
  4961     // (Example:  There might have been a call or safepoint.)
  4962     return NULL;
  4964   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  4965   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  4966     return NULL;
  4969   // There must be no unexpected observers of this allocation.
  4970   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  4971     Node* obs = ptr->fast_out(i);
  4972     if (obs != this->map()) {
  4973       return NULL;
  4977   // This arraycopy must unconditionally follow the allocation of the ptr.
  4978   Node* alloc_ctl = ptr->in(0);
  4979   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  4981   Node* ctl = control();
  4982   while (ctl != alloc_ctl) {
  4983     // There may be guards which feed into the slow_region.
  4984     // Any other control flow means that we might not get a chance
  4985     // to finish initializing the allocated object.
  4986     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  4987       IfNode* iff = ctl->in(0)->as_If();
  4988       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  4989       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  4990       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  4991         ctl = iff->in(0);       // This test feeds the known slow_region.
  4992         continue;
  4994       // One more try:  Various low-level checks bottom out in
  4995       // uncommon traps.  If the debug-info of the trap omits
  4996       // any reference to the allocation, as we've already
  4997       // observed, then there can be no objection to the trap.
  4998       bool found_trap = false;
  4999       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5000         Node* obs = not_ctl->fast_out(j);
  5001         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5002             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5003           found_trap = true; break;
  5006       if (found_trap) {
  5007         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5008         continue;
  5011     return NULL;
  5014   // If we get this far, we have an allocation which immediately
  5015   // precedes the arraycopy, and we can take over zeroing the new object.
  5016   // The arraycopy will finish the initialization, and provide
  5017   // a new control state to which we will anchor the destination pointer.
  5019   return alloc;
  5022 // Helper for initialization of arrays, creating a ClearArray.
  5023 // It writes zero bits in [start..end), within the body of an array object.
  5024 // The memory effects are all chained onto the 'adr_type' alias category.
  5025 //
  5026 // Since the object is otherwise uninitialized, we are free
  5027 // to put a little "slop" around the edges of the cleared area,
  5028 // as long as it does not go back into the array's header,
  5029 // or beyond the array end within the heap.
  5030 //
  5031 // The lower edge can be rounded down to the nearest jint and the
  5032 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5033 //
  5034 // Arguments:
  5035 //   adr_type           memory slice where writes are generated
  5036 //   dest               oop of the destination array
  5037 //   basic_elem_type    element type of the destination
  5038 //   slice_idx          array index of first element to store
  5039 //   slice_len          number of elements to store (or NULL)
  5040 //   dest_size          total size in bytes of the array object
  5041 //
  5042 // Exactly one of slice_len or dest_size must be non-NULL.
  5043 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5044 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5045 void
  5046 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5047                                      Node* dest,
  5048                                      BasicType basic_elem_type,
  5049                                      Node* slice_idx,
  5050                                      Node* slice_len,
  5051                                      Node* dest_size) {
  5052   // one or the other but not both of slice_len and dest_size:
  5053   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5054   if (slice_len == NULL)  slice_len = top();
  5055   if (dest_size == NULL)  dest_size = top();
  5057   // operate on this memory slice:
  5058   Node* mem = memory(adr_type); // memory slice to operate on
  5060   // scaling and rounding of indexes:
  5061   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5062   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5063   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5064   int bump_bit  = (-1 << scale) & BytesPerInt;
  5066   // determine constant starts and ends
  5067   const intptr_t BIG_NEG = -128;
  5068   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5069   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5070   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5071   if (slice_len_con == 0) {
  5072     return;                     // nothing to do here
  5074   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5075   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5076   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5077     assert(end_con < 0, "not two cons");
  5078     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5079                        BytesPerLong);
  5082   if (start_con >= 0 && end_con >= 0) {
  5083     // Constant start and end.  Simple.
  5084     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5085                                        start_con, end_con, &_gvn);
  5086   } else if (start_con >= 0 && dest_size != top()) {
  5087     // Constant start, pre-rounded end after the tail of the array.
  5088     Node* end = dest_size;
  5089     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5090                                        start_con, end, &_gvn);
  5091   } else if (start_con >= 0 && slice_len != top()) {
  5092     // Constant start, non-constant end.  End needs rounding up.
  5093     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5094     intptr_t end_base  = abase + (slice_idx_con << scale);
  5095     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5096     Node*    end       = ConvI2X(slice_len);
  5097     if (scale != 0)
  5098       end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
  5099     end_base += end_round;
  5100     end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
  5101     end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
  5102     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5103                                        start_con, end, &_gvn);
  5104   } else if (start_con < 0 && dest_size != top()) {
  5105     // Non-constant start, pre-rounded end after the tail of the array.
  5106     // This is almost certainly a "round-to-end" operation.
  5107     Node* start = slice_idx;
  5108     start = ConvI2X(start);
  5109     if (scale != 0)
  5110       start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
  5111     start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
  5112     if ((bump_bit | clear_low) != 0) {
  5113       int to_clear = (bump_bit | clear_low);
  5114       // Align up mod 8, then store a jint zero unconditionally
  5115       // just before the mod-8 boundary.
  5116       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5117           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5118         bump_bit = 0;
  5119         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5120       } else {
  5121         // Bump 'start' up to (or past) the next jint boundary:
  5122         start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
  5123         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5125       // Round bumped 'start' down to jlong boundary in body of array.
  5126       start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
  5127       if (bump_bit != 0) {
  5128         // Store a zero to the immediately preceding jint:
  5129         Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
  5130         Node* p1 = basic_plus_adr(dest, x1);
  5131         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5132         mem = _gvn.transform(mem);
  5135     Node* end = dest_size; // pre-rounded
  5136     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5137                                        start, end, &_gvn);
  5138   } else {
  5139     // Non-constant start, unrounded non-constant end.
  5140     // (Nobody zeroes a random midsection of an array using this routine.)
  5141     ShouldNotReachHere();       // fix caller
  5144   // Done.
  5145   set_memory(mem, adr_type);
  5149 bool
  5150 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5151                                          BasicType basic_elem_type,
  5152                                          AllocateNode* alloc,
  5153                                          Node* src,  Node* src_offset,
  5154                                          Node* dest, Node* dest_offset,
  5155                                          Node* dest_size, bool dest_uninitialized) {
  5156   // See if there is an advantage from block transfer.
  5157   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5158   if (scale >= LogBytesPerLong)
  5159     return false;               // it is already a block transfer
  5161   // Look at the alignment of the starting offsets.
  5162   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5164   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5165   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5166   if (src_off_con < 0 || dest_off_con < 0)
  5167     // At present, we can only understand constants.
  5168     return false;
  5170   intptr_t src_off  = abase + (src_off_con  << scale);
  5171   intptr_t dest_off = abase + (dest_off_con << scale);
  5173   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5174     // Non-aligned; too bad.
  5175     // One more chance:  Pick off an initial 32-bit word.
  5176     // This is a common case, since abase can be odd mod 8.
  5177     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5178         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5179       Node* sptr = basic_plus_adr(src,  src_off);
  5180       Node* dptr = basic_plus_adr(dest, dest_off);
  5181       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5182       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5183       src_off += BytesPerInt;
  5184       dest_off += BytesPerInt;
  5185     } else {
  5186       return false;
  5189   assert(src_off % BytesPerLong == 0, "");
  5190   assert(dest_off % BytesPerLong == 0, "");
  5192   // Do this copy by giant steps.
  5193   Node* sptr  = basic_plus_adr(src,  src_off);
  5194   Node* dptr  = basic_plus_adr(dest, dest_off);
  5195   Node* countx = dest_size;
  5196   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
  5197   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5199   bool disjoint_bases = true;   // since alloc != NULL
  5200   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5201                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5203   return true;
  5207 // Helper function; generates code for the slow case.
  5208 // We make a call to a runtime method which emulates the native method,
  5209 // but without the native wrapper overhead.
  5210 void
  5211 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5212                                         Node* src,  Node* src_offset,
  5213                                         Node* dest, Node* dest_offset,
  5214                                         Node* copy_length, bool dest_uninitialized) {
  5215   assert(!dest_uninitialized, "Invariant");
  5216   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5217                                  OptoRuntime::slow_arraycopy_Type(),
  5218                                  OptoRuntime::slow_arraycopy_Java(),
  5219                                  "slow_arraycopy", adr_type,
  5220                                  src, src_offset, dest, dest_offset,
  5221                                  copy_length);
  5223   // Handle exceptions thrown by this fellow:
  5224   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5227 // Helper function; generates code for cases requiring runtime checks.
  5228 Node*
  5229 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5230                                              Node* dest_elem_klass,
  5231                                              Node* src,  Node* src_offset,
  5232                                              Node* dest, Node* dest_offset,
  5233                                              Node* copy_length, bool dest_uninitialized) {
  5234   if (stopped())  return NULL;
  5236   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5237   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5238     return NULL;
  5241   // Pick out the parameters required to perform a store-check
  5242   // for the target array.  This is an optimistic check.  It will
  5243   // look in each non-null element's class, at the desired klass's
  5244   // super_check_offset, for the desired klass.
  5245   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5246   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5247   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5248   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5249   Node* check_value  = dest_elem_klass;
  5251   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5252   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5254   // (We know the arrays are never conjoint, because their types differ.)
  5255   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5256                                  OptoRuntime::checkcast_arraycopy_Type(),
  5257                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5258                                  // five arguments, of which two are
  5259                                  // intptr_t (jlong in LP64)
  5260                                  src_start, dest_start,
  5261                                  copy_length XTOP,
  5262                                  check_offset XTOP,
  5263                                  check_value);
  5265   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5269 // Helper function; generates code for cases requiring runtime checks.
  5270 Node*
  5271 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5272                                            Node* src,  Node* src_offset,
  5273                                            Node* dest, Node* dest_offset,
  5274                                            Node* copy_length, bool dest_uninitialized) {
  5275   assert(!dest_uninitialized, "Invariant");
  5276   if (stopped())  return NULL;
  5277   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5278   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5279     return NULL;
  5282   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5283                     OptoRuntime::generic_arraycopy_Type(),
  5284                     copyfunc_addr, "generic_arraycopy", adr_type,
  5285                     src, src_offset, dest, dest_offset, copy_length);
  5287   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5290 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5291 void
  5292 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5293                                              BasicType basic_elem_type,
  5294                                              bool disjoint_bases,
  5295                                              Node* src,  Node* src_offset,
  5296                                              Node* dest, Node* dest_offset,
  5297                                              Node* copy_length, bool dest_uninitialized) {
  5298   if (stopped())  return;               // nothing to do
  5300   Node* src_start  = src;
  5301   Node* dest_start = dest;
  5302   if (src_offset != NULL || dest_offset != NULL) {
  5303     assert(src_offset != NULL && dest_offset != NULL, "");
  5304     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5305     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5308   // Figure out which arraycopy runtime method to call.
  5309   const char* copyfunc_name = "arraycopy";
  5310   address     copyfunc_addr =
  5311       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5312                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5314   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5315   make_runtime_call(RC_LEAF|RC_NO_FP,
  5316                     OptoRuntime::fast_arraycopy_Type(),
  5317                     copyfunc_addr, copyfunc_name, adr_type,
  5318                     src_start, dest_start, copy_length XTOP);
  5321 //-------------inline_encodeISOArray-----------------------------------
  5322 // encode char[] to byte[] in ISO_8859_1
  5323 bool LibraryCallKit::inline_encodeISOArray() {
  5324   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5325   // no receiver since it is static method
  5326   Node *src         = argument(0);
  5327   Node *src_offset  = argument(1);
  5328   Node *dst         = argument(2);
  5329   Node *dst_offset  = argument(3);
  5330   Node *length      = argument(4);
  5332   const Type* src_type = src->Value(&_gvn);
  5333   const Type* dst_type = dst->Value(&_gvn);
  5334   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5335   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5336   if (top_src  == NULL || top_src->klass()  == NULL ||
  5337       top_dest == NULL || top_dest->klass() == NULL) {
  5338     // failed array check
  5339     return false;
  5342   // Figure out the size and type of the elements we will be copying.
  5343   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5344   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5345   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5346     return false;
  5348   Node* src_start = array_element_address(src, src_offset, src_elem);
  5349   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5350   // 'src_start' points to src array + scaled offset
  5351   // 'dst_start' points to dst array + scaled offset
  5353   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5354   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5355   enc = _gvn.transform(enc);
  5356   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5357   set_memory(res_mem, mtype);
  5358   set_result(enc);
  5359   return true;
  5362 //----------------------------inline_reference_get----------------------------
  5363 // public T java.lang.ref.Reference.get();
  5364 bool LibraryCallKit::inline_reference_get() {
  5365   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5366   guarantee(referent_offset > 0, "should have already been set");
  5368   // Get the argument:
  5369   Node* reference_obj = null_check_receiver();
  5370   if (stopped()) return true;
  5372   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5374   ciInstanceKlass* klass = env()->Object_klass();
  5375   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5377   Node* no_ctrl = NULL;
  5378   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5380   // Use the pre-barrier to record the value in the referent field
  5381   pre_barrier(false /* do_load */,
  5382               control(),
  5383               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5384               result /* pre_val */,
  5385               T_OBJECT);
  5387   // Add memory barrier to prevent commoning reads from this field
  5388   // across safepoint since GC can change its value.
  5389   insert_mem_bar(Op_MemBarCPUOrder);
  5391   set_result(result);
  5392   return true;
  5396 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5397                                               bool is_exact=true, bool is_static=false) {
  5399   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5400   assert(tinst != NULL, "obj is null");
  5401   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5402   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5404   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5405                                                                           ciSymbol::make(fieldTypeString),
  5406                                                                           is_static);
  5407   if (field == NULL) return (Node *) NULL;
  5408   assert (field != NULL, "undefined field");
  5410   // Next code  copied from Parse::do_get_xxx():
  5412   // Compute address and memory type.
  5413   int offset  = field->offset_in_bytes();
  5414   bool is_vol = field->is_volatile();
  5415   ciType* field_klass = field->type();
  5416   assert(field_klass->is_loaded(), "should be loaded");
  5417   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5418   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5419   BasicType bt = field->layout_type();
  5421   // Build the resultant type of the load
  5422   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5424   // Build the load.
  5425   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
  5426   return loadedField;
  5430 //------------------------------inline_aescrypt_Block-----------------------
  5431 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5432   address stubAddr;
  5433   const char *stubName;
  5434   assert(UseAES, "need AES instruction support");
  5436   switch(id) {
  5437   case vmIntrinsics::_aescrypt_encryptBlock:
  5438     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5439     stubName = "aescrypt_encryptBlock";
  5440     break;
  5441   case vmIntrinsics::_aescrypt_decryptBlock:
  5442     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5443     stubName = "aescrypt_decryptBlock";
  5444     break;
  5446   if (stubAddr == NULL) return false;
  5448   Node* aescrypt_object = argument(0);
  5449   Node* src             = argument(1);
  5450   Node* src_offset      = argument(2);
  5451   Node* dest            = argument(3);
  5452   Node* dest_offset     = argument(4);
  5454   // (1) src and dest are arrays.
  5455   const Type* src_type = src->Value(&_gvn);
  5456   const Type* dest_type = dest->Value(&_gvn);
  5457   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5458   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5459   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5461   // for the quick and dirty code we will skip all the checks.
  5462   // we are just trying to get the call to be generated.
  5463   Node* src_start  = src;
  5464   Node* dest_start = dest;
  5465   if (src_offset != NULL || dest_offset != NULL) {
  5466     assert(src_offset != NULL && dest_offset != NULL, "");
  5467     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5468     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5471   // now need to get the start of its expanded key array
  5472   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5473   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5474   if (k_start == NULL) return false;
  5476   // Call the stub.
  5477   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5478                     stubAddr, stubName, TypePtr::BOTTOM,
  5479                     src_start, dest_start, k_start);
  5481   return true;
  5484 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  5485 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  5486   address stubAddr;
  5487   const char *stubName;
  5489   assert(UseAES, "need AES instruction support");
  5491   switch(id) {
  5492   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  5493     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  5494     stubName = "cipherBlockChaining_encryptAESCrypt";
  5495     break;
  5496   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  5497     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  5498     stubName = "cipherBlockChaining_decryptAESCrypt";
  5499     break;
  5501   if (stubAddr == NULL) return false;
  5503   Node* cipherBlockChaining_object = argument(0);
  5504   Node* src                        = argument(1);
  5505   Node* src_offset                 = argument(2);
  5506   Node* len                        = argument(3);
  5507   Node* dest                       = argument(4);
  5508   Node* dest_offset                = argument(5);
  5510   // (1) src and dest are arrays.
  5511   const Type* src_type = src->Value(&_gvn);
  5512   const Type* dest_type = dest->Value(&_gvn);
  5513   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5514   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5515   assert (top_src  != NULL && top_src->klass()  != NULL
  5516           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5518   // checks are the responsibility of the caller
  5519   Node* src_start  = src;
  5520   Node* dest_start = dest;
  5521   if (src_offset != NULL || dest_offset != NULL) {
  5522     assert(src_offset != NULL && dest_offset != NULL, "");
  5523     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5524     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5527   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  5528   // (because of the predicated logic executed earlier).
  5529   // so we cast it here safely.
  5530   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5532   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5533   if (embeddedCipherObj == NULL) return false;
  5535   // cast it to what we know it will be at runtime
  5536   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  5537   assert(tinst != NULL, "CBC obj is null");
  5538   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  5539   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5540   if (!klass_AESCrypt->is_loaded()) return false;
  5542   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5543   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  5544   const TypeOopPtr* xtype = aklass->as_instance_type();
  5545   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  5546   aescrypt_object = _gvn.transform(aescrypt_object);
  5548   // we need to get the start of the aescrypt_object's expanded key array
  5549   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5550   if (k_start == NULL) return false;
  5552   // similarly, get the start address of the r vector
  5553   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  5554   if (objRvec == NULL) return false;
  5555   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  5557   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  5558   make_runtime_call(RC_LEAF|RC_NO_FP,
  5559                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  5560                     stubAddr, stubName, TypePtr::BOTTOM,
  5561                     src_start, dest_start, k_start, r_start, len);
  5563   // return is void so no result needs to be pushed
  5565   return true;
  5568 //------------------------------get_key_start_from_aescrypt_object-----------------------
  5569 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  5570   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  5571   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  5572   if (objAESCryptKey == NULL) return (Node *) NULL;
  5574   // now have the array, need to get the start address of the K array
  5575   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  5576   return k_start;
  5579 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  5580 // Return node representing slow path of predicate check.
  5581 // the pseudo code we want to emulate with this predicate is:
  5582 // for encryption:
  5583 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  5584 // for decryption:
  5585 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  5586 //    note cipher==plain is more conservative than the original java code but that's OK
  5587 //
  5588 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  5589   // First, check receiver for NULL since it is virtual method.
  5590   Node* objCBC = argument(0);
  5591   objCBC = null_check(objCBC);
  5593   if (stopped()) return NULL; // Always NULL
  5595   // Load embeddedCipher field of CipherBlockChaining object.
  5596   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5598   // get AESCrypt klass for instanceOf check
  5599   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  5600   // will have same classloader as CipherBlockChaining object
  5601   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  5602   assert(tinst != NULL, "CBCobj is null");
  5603   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  5605   // we want to do an instanceof comparison against the AESCrypt class
  5606   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5607   if (!klass_AESCrypt->is_loaded()) {
  5608     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  5609     Node* ctrl = control();
  5610     set_control(top()); // no regular fast path
  5611     return ctrl;
  5613   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5615   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  5616   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  5617   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  5619   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  5621   // for encryption, we are done
  5622   if (!decrypting)
  5623     return instof_false;  // even if it is NULL
  5625   // for decryption, we need to add a further check to avoid
  5626   // taking the intrinsic path when cipher and plain are the same
  5627   // see the original java code for why.
  5628   RegionNode* region = new(C) RegionNode(3);
  5629   region->init_req(1, instof_false);
  5630   Node* src = argument(1);
  5631   Node* dest = argument(4);
  5632   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  5633   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  5634   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  5635   region->init_req(2, src_dest_conjoint);
  5637   record_for_igvn(region);
  5638   return _gvn.transform(region);

mercurial