src/share/vm/opto/callnode.hpp

Fri, 20 Feb 2015 22:12:53 -0500

author
drchase
date
Fri, 20 Feb 2015 22:12:53 -0500
changeset 7605
6e8e0bf87bbe
parent 7041
411e30e5fbb8
child 7994
04ff2f6cd0eb
child 8723
9f5da1a1724c
permissions
-rw-r--r--

8069412: Locks need better debug-printing support
Summary: Added better debug-printing support and enhanced LogCompilation tool
Reviewed-by: kvn, roland, dholmes

     1 /*
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
    26 #define SHARE_VM_OPTO_CALLNODE_HPP
    28 #include "opto/connode.hpp"
    29 #include "opto/mulnode.hpp"
    30 #include "opto/multnode.hpp"
    31 #include "opto/opcodes.hpp"
    32 #include "opto/phaseX.hpp"
    33 #include "opto/replacednodes.hpp"
    34 #include "opto/type.hpp"
    36 // Portions of code courtesy of Clifford Click
    38 // Optimization - Graph Style
    40 class Chaitin;
    41 class NamedCounter;
    42 class MultiNode;
    43 class  SafePointNode;
    44 class   CallNode;
    45 class     CallJavaNode;
    46 class       CallStaticJavaNode;
    47 class       CallDynamicJavaNode;
    48 class     CallRuntimeNode;
    49 class       CallLeafNode;
    50 class         CallLeafNoFPNode;
    51 class     AllocateNode;
    52 class       AllocateArrayNode;
    53 class     BoxLockNode;
    54 class     LockNode;
    55 class     UnlockNode;
    56 class JVMState;
    57 class OopMap;
    58 class State;
    59 class StartNode;
    60 class MachCallNode;
    61 class FastLockNode;
    63 //------------------------------StartNode--------------------------------------
    64 // The method start node
    65 class StartNode : public MultiNode {
    66   virtual uint cmp( const Node &n ) const;
    67   virtual uint size_of() const; // Size is bigger
    68 public:
    69   const TypeTuple *_domain;
    70   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    71     init_class_id(Class_Start);
    72     init_req(0,this);
    73     init_req(1,root);
    74   }
    75   virtual int Opcode() const;
    76   virtual bool pinned() const { return true; };
    77   virtual const Type *bottom_type() const;
    78   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
    79   virtual const Type *Value( PhaseTransform *phase ) const;
    80   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
    81   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
    82   virtual const RegMask &in_RegMask(uint) const;
    83   virtual Node *match( const ProjNode *proj, const Matcher *m );
    84   virtual uint ideal_reg() const { return 0; }
    85 #ifndef PRODUCT
    86   virtual void  dump_spec(outputStream *st) const;
    87 #endif
    88 };
    90 //------------------------------StartOSRNode-----------------------------------
    91 // The method start node for on stack replacement code
    92 class StartOSRNode : public StartNode {
    93 public:
    94   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
    95   virtual int   Opcode() const;
    96   static  const TypeTuple *osr_domain();
    97 };
   100 //------------------------------ParmNode---------------------------------------
   101 // Incoming parameters
   102 class ParmNode : public ProjNode {
   103   static const char * const names[TypeFunc::Parms+1];
   104 public:
   105   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
   106     init_class_id(Class_Parm);
   107   }
   108   virtual int Opcode() const;
   109   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
   110   virtual uint ideal_reg() const;
   111 #ifndef PRODUCT
   112   virtual void dump_spec(outputStream *st) const;
   113 #endif
   114 };
   117 //------------------------------ReturnNode-------------------------------------
   118 // Return from subroutine node
   119 class ReturnNode : public Node {
   120 public:
   121   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
   122   virtual int Opcode() const;
   123   virtual bool  is_CFG() const { return true; }
   124   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   125   virtual bool depends_only_on_test() const { return false; }
   126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   127   virtual const Type *Value( PhaseTransform *phase ) const;
   128   virtual uint ideal_reg() const { return NotAMachineReg; }
   129   virtual uint match_edge(uint idx) const;
   130 #ifndef PRODUCT
   131   virtual void dump_req(outputStream *st = tty) const;
   132 #endif
   133 };
   136 //------------------------------RethrowNode------------------------------------
   137 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
   138 // ends the current basic block like a ReturnNode.  Restores registers and
   139 // unwinds stack.  Rethrow happens in the caller's method.
   140 class RethrowNode : public Node {
   141  public:
   142   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
   143   virtual int Opcode() const;
   144   virtual bool  is_CFG() const { return true; }
   145   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
   146   virtual bool depends_only_on_test() const { return false; }
   147   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   148   virtual const Type *Value( PhaseTransform *phase ) const;
   149   virtual uint match_edge(uint idx) const;
   150   virtual uint ideal_reg() const { return NotAMachineReg; }
   151 #ifndef PRODUCT
   152   virtual void dump_req(outputStream *st = tty) const;
   153 #endif
   154 };
   157 //------------------------------TailCallNode-----------------------------------
   158 // Pop stack frame and jump indirect
   159 class TailCallNode : public ReturnNode {
   160 public:
   161   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
   162     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
   163     init_req(TypeFunc::Parms, target);
   164     init_req(TypeFunc::Parms+1, moop);
   165   }
   167   virtual int Opcode() const;
   168   virtual uint match_edge(uint idx) const;
   169 };
   171 //------------------------------TailJumpNode-----------------------------------
   172 // Pop stack frame and jump indirect
   173 class TailJumpNode : public ReturnNode {
   174 public:
   175   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
   176     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
   177     init_req(TypeFunc::Parms, target);
   178     init_req(TypeFunc::Parms+1, ex_oop);
   179   }
   181   virtual int Opcode() const;
   182   virtual uint match_edge(uint idx) const;
   183 };
   185 //-------------------------------JVMState-------------------------------------
   186 // A linked list of JVMState nodes captures the whole interpreter state,
   187 // plus GC roots, for all active calls at some call site in this compilation
   188 // unit.  (If there is no inlining, then the list has exactly one link.)
   189 // This provides a way to map the optimized program back into the interpreter,
   190 // or to let the GC mark the stack.
   191 class JVMState : public ResourceObj {
   192   friend class VMStructs;
   193 public:
   194   typedef enum {
   195     Reexecute_Undefined = -1, // not defined -- will be translated into false later
   196     Reexecute_False     =  0, // false       -- do not reexecute
   197     Reexecute_True      =  1  // true        -- reexecute the bytecode
   198   } ReexecuteState; //Reexecute State
   200 private:
   201   JVMState*         _caller;    // List pointer for forming scope chains
   202   uint              _depth;     // One more than caller depth, or one.
   203   uint              _locoff;    // Offset to locals in input edge mapping
   204   uint              _stkoff;    // Offset to stack in input edge mapping
   205   uint              _monoff;    // Offset to monitors in input edge mapping
   206   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
   207   uint              _endoff;    // Offset to end of input edge mapping
   208   uint              _sp;        // Jave Expression Stack Pointer for this state
   209   int               _bci;       // Byte Code Index of this JVM point
   210   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
   211   ciMethod*         _method;    // Method Pointer
   212   SafePointNode*    _map;       // Map node associated with this scope
   213 public:
   214   friend class Compile;
   215   friend class PreserveReexecuteState;
   217   // Because JVMState objects live over the entire lifetime of the
   218   // Compile object, they are allocated into the comp_arena, which
   219   // does not get resource marked or reset during the compile process
   220   void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
   221   void operator delete( void * ) { } // fast deallocation
   223   // Create a new JVMState, ready for abstract interpretation.
   224   JVMState(ciMethod* method, JVMState* caller);
   225   JVMState(int stack_size);  // root state; has a null method
   227   // Access functions for the JVM
   228   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
   229   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
   230   uint              locoff() const { return _locoff; }
   231   uint              stkoff() const { return _stkoff; }
   232   uint              argoff() const { return _stkoff + _sp; }
   233   uint              monoff() const { return _monoff; }
   234   uint              scloff() const { return _scloff; }
   235   uint              endoff() const { return _endoff; }
   236   uint              oopoff() const { return debug_end(); }
   238   int            loc_size() const { return stkoff() - locoff(); }
   239   int            stk_size() const { return monoff() - stkoff(); }
   240   int            mon_size() const { return scloff() - monoff(); }
   241   int            scl_size() const { return endoff() - scloff(); }
   243   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
   244   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
   245   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
   246   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
   248   uint                      sp() const { return _sp; }
   249   int                      bci() const { return _bci; }
   250   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
   251   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
   252   bool              has_method() const { return _method != NULL; }
   253   ciMethod*             method() const { assert(has_method(), ""); return _method; }
   254   JVMState*             caller() const { return _caller; }
   255   SafePointNode*           map() const { return _map; }
   256   uint                   depth() const { return _depth; }
   257   uint             debug_start() const; // returns locoff of root caller
   258   uint               debug_end() const; // returns endoff of self
   259   uint              debug_size() const {
   260     return loc_size() + sp() + mon_size() + scl_size();
   261   }
   262   uint        debug_depth()  const; // returns sum of debug_size values at all depths
   264   // Returns the JVM state at the desired depth (1 == root).
   265   JVMState* of_depth(int d) const;
   267   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
   268   bool same_calls_as(const JVMState* that) const;
   270   // Monitors (monitors are stored as (boxNode, objNode) pairs
   271   enum { logMonitorEdges = 1 };
   272   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
   273   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
   274   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
   275   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
   276   bool is_monitor_box(uint off)    const {
   277     assert(is_mon(off), "should be called only for monitor edge");
   278     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
   279   }
   280   bool is_monitor_use(uint off)    const { return (is_mon(off)
   281                                                    && is_monitor_box(off))
   282                                              || (caller() && caller()->is_monitor_use(off)); }
   284   // Initialization functions for the JVM
   285   void              set_locoff(uint off) { _locoff = off; }
   286   void              set_stkoff(uint off) { _stkoff = off; }
   287   void              set_monoff(uint off) { _monoff = off; }
   288   void              set_scloff(uint off) { _scloff = off; }
   289   void              set_endoff(uint off) { _endoff = off; }
   290   void              set_offsets(uint off) {
   291     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
   292   }
   293   void              set_map(SafePointNode *map) { _map = map; }
   294   void              set_sp(uint sp) { _sp = sp; }
   295                     // _reexecute is initialized to "undefined" for a new bci
   296   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
   297   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
   299   // Miscellaneous utility functions
   300   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
   301   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
   302   void      set_map_deep(SafePointNode *map);// reset map for all callers
   303   void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
   304   int       interpreter_frame_size() const;
   306 #ifndef PRODUCT
   307   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
   308   void      dump_spec(outputStream *st) const;
   309   void      dump_on(outputStream* st) const;
   310   void      dump() const {
   311     dump_on(tty);
   312   }
   313 #endif
   314 };
   316 //------------------------------SafePointNode----------------------------------
   317 // A SafePointNode is a subclass of a MultiNode for convenience (and
   318 // potential code sharing) only - conceptually it is independent of
   319 // the Node semantics.
   320 class SafePointNode : public MultiNode {
   321   virtual uint           cmp( const Node &n ) const;
   322   virtual uint           size_of() const;       // Size is bigger
   324 public:
   325   SafePointNode(uint edges, JVMState* jvms,
   326                 // A plain safepoint advertises no memory effects (NULL):
   327                 const TypePtr* adr_type = NULL)
   328     : MultiNode( edges ),
   329       _jvms(jvms),
   330       _oop_map(NULL),
   331       _adr_type(adr_type)
   332   {
   333     init_class_id(Class_SafePoint);
   334   }
   336   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
   337   JVMState* const _jvms;      // Pointer to list of JVM State objects
   338   const TypePtr*  _adr_type;  // What type of memory does this node produce?
   339   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
   341   // Many calls take *all* of memory as input,
   342   // but some produce a limited subset of that memory as output.
   343   // The adr_type reports the call's behavior as a store, not a load.
   345   virtual JVMState* jvms() const { return _jvms; }
   346   void set_jvms(JVMState* s) {
   347     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
   348   }
   349   OopMap *oop_map() const { return _oop_map; }
   350   void set_oop_map(OopMap *om) { _oop_map = om; }
   352  private:
   353   void verify_input(JVMState* jvms, uint idx) const {
   354     assert(verify_jvms(jvms), "jvms must match");
   355     Node* n = in(idx);
   356     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
   357            in(idx + 1)->is_top(), "2nd half of long/double");
   358   }
   360  public:
   361   // Functionality from old debug nodes which has changed
   362   Node *local(JVMState* jvms, uint idx) const {
   363     verify_input(jvms, jvms->locoff() + idx);
   364     return in(jvms->locoff() + idx);
   365   }
   366   Node *stack(JVMState* jvms, uint idx) const {
   367     verify_input(jvms, jvms->stkoff() + idx);
   368     return in(jvms->stkoff() + idx);
   369   }
   370   Node *argument(JVMState* jvms, uint idx) const {
   371     verify_input(jvms, jvms->argoff() + idx);
   372     return in(jvms->argoff() + idx);
   373   }
   374   Node *monitor_box(JVMState* jvms, uint idx) const {
   375     assert(verify_jvms(jvms), "jvms must match");
   376     return in(jvms->monitor_box_offset(idx));
   377   }
   378   Node *monitor_obj(JVMState* jvms, uint idx) const {
   379     assert(verify_jvms(jvms), "jvms must match");
   380     return in(jvms->monitor_obj_offset(idx));
   381   }
   383   void  set_local(JVMState* jvms, uint idx, Node *c);
   385   void  set_stack(JVMState* jvms, uint idx, Node *c) {
   386     assert(verify_jvms(jvms), "jvms must match");
   387     set_req(jvms->stkoff() + idx, c);
   388   }
   389   void  set_argument(JVMState* jvms, uint idx, Node *c) {
   390     assert(verify_jvms(jvms), "jvms must match");
   391     set_req(jvms->argoff() + idx, c);
   392   }
   393   void ensure_stack(JVMState* jvms, uint stk_size) {
   394     assert(verify_jvms(jvms), "jvms must match");
   395     int grow_by = (int)stk_size - (int)jvms->stk_size();
   396     if (grow_by > 0)  grow_stack(jvms, grow_by);
   397   }
   398   void grow_stack(JVMState* jvms, uint grow_by);
   399   // Handle monitor stack
   400   void push_monitor( const FastLockNode *lock );
   401   void pop_monitor ();
   402   Node *peek_monitor_box() const;
   403   Node *peek_monitor_obj() const;
   405   // Access functions for the JVM
   406   Node *control  () const { return in(TypeFunc::Control  ); }
   407   Node *i_o      () const { return in(TypeFunc::I_O      ); }
   408   Node *memory   () const { return in(TypeFunc::Memory   ); }
   409   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
   410   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
   412   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
   413   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
   414   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
   416   MergeMemNode* merged_memory() const {
   417     return in(TypeFunc::Memory)->as_MergeMem();
   418   }
   420   // The parser marks useless maps as dead when it's done with them:
   421   bool is_killed() { return in(TypeFunc::Control) == NULL; }
   423   // Exception states bubbling out of subgraphs such as inlined calls
   424   // are recorded here.  (There might be more than one, hence the "next".)
   425   // This feature is used only for safepoints which serve as "maps"
   426   // for JVM states during parsing, intrinsic expansion, etc.
   427   SafePointNode*         next_exception() const;
   428   void               set_next_exception(SafePointNode* n);
   429   bool                   has_exceptions() const { return next_exception() != NULL; }
   431   // Helper methods to operate on replaced nodes
   432   ReplacedNodes replaced_nodes() const {
   433     return _replaced_nodes;
   434   }
   436   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
   437     _replaced_nodes = replaced_nodes;
   438   }
   440   void clone_replaced_nodes() {
   441     _replaced_nodes.clone();
   442   }
   443   void record_replaced_node(Node* initial, Node* improved) {
   444     _replaced_nodes.record(initial, improved);
   445   }
   446   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
   447     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
   448   }
   449   void delete_replaced_nodes() {
   450     _replaced_nodes.reset();
   451   }
   452   void apply_replaced_nodes() {
   453     _replaced_nodes.apply(this);
   454   }
   455   void merge_replaced_nodes_with(SafePointNode* sfpt) {
   456     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
   457   }
   458   bool has_replaced_nodes() const {
   459     return !_replaced_nodes.is_empty();
   460   }
   462   // Standard Node stuff
   463   virtual int            Opcode() const;
   464   virtual bool           pinned() const { return true; }
   465   virtual const Type    *Value( PhaseTransform *phase ) const;
   466   virtual const Type    *bottom_type() const { return Type::CONTROL; }
   467   virtual const TypePtr *adr_type() const { return _adr_type; }
   468   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
   469   virtual Node          *Identity( PhaseTransform *phase );
   470   virtual uint           ideal_reg() const { return 0; }
   471   virtual const RegMask &in_RegMask(uint) const;
   472   virtual const RegMask &out_RegMask() const;
   473   virtual uint           match_edge(uint idx) const;
   475   static  bool           needs_polling_address_input();
   477 #ifndef PRODUCT
   478   virtual void           dump_spec(outputStream *st) const;
   479 #endif
   480 };
   482 //------------------------------SafePointScalarObjectNode----------------------
   483 // A SafePointScalarObjectNode represents the state of a scalarized object
   484 // at a safepoint.
   486 class SafePointScalarObjectNode: public TypeNode {
   487   uint _first_index; // First input edge relative index of a SafePoint node where
   488                      // states of the scalarized object fields are collected.
   489                      // It is relative to the last (youngest) jvms->_scloff.
   490   uint _n_fields;    // Number of non-static fields of the scalarized object.
   491   DEBUG_ONLY(AllocateNode* _alloc;)
   493   virtual uint hash() const ; // { return NO_HASH; }
   494   virtual uint cmp( const Node &n ) const;
   496   uint first_index() const { return _first_index; }
   498 public:
   499   SafePointScalarObjectNode(const TypeOopPtr* tp,
   500 #ifdef ASSERT
   501                             AllocateNode* alloc,
   502 #endif
   503                             uint first_index, uint n_fields);
   504   virtual int Opcode() const;
   505   virtual uint           ideal_reg() const;
   506   virtual const RegMask &in_RegMask(uint) const;
   507   virtual const RegMask &out_RegMask() const;
   508   virtual uint           match_edge(uint idx) const;
   510   uint first_index(JVMState* jvms) const {
   511     assert(jvms != NULL, "missed JVMS");
   512     return jvms->scloff() + _first_index;
   513   }
   514   uint n_fields()    const { return _n_fields; }
   516 #ifdef ASSERT
   517   AllocateNode* alloc() const { return _alloc; }
   518 #endif
   520   virtual uint size_of() const { return sizeof(*this); }
   522   // Assumes that "this" is an argument to a safepoint node "s", and that
   523   // "new_call" is being created to correspond to "s".  But the difference
   524   // between the start index of the jvmstates of "new_call" and "s" is
   525   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
   526   // corresponds appropriately to "this" in "new_call".  Assumes that
   527   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
   528   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
   529   SafePointScalarObjectNode* clone(Dict* sosn_map) const;
   531 #ifndef PRODUCT
   532   virtual void              dump_spec(outputStream *st) const;
   533 #endif
   534 };
   537 // Simple container for the outgoing projections of a call.  Useful
   538 // for serious surgery on calls.
   539 class CallProjections : public StackObj {
   540 public:
   541   Node* fallthrough_proj;
   542   Node* fallthrough_catchproj;
   543   Node* fallthrough_memproj;
   544   Node* fallthrough_ioproj;
   545   Node* catchall_catchproj;
   546   Node* catchall_memproj;
   547   Node* catchall_ioproj;
   548   Node* resproj;
   549   Node* exobj;
   550 };
   552 class CallGenerator;
   554 //------------------------------CallNode---------------------------------------
   555 // Call nodes now subsume the function of debug nodes at callsites, so they
   556 // contain the functionality of a full scope chain of debug nodes.
   557 class CallNode : public SafePointNode {
   558   friend class VMStructs;
   559 public:
   560   const TypeFunc *_tf;        // Function type
   561   address      _entry_point;  // Address of method being called
   562   float        _cnt;          // Estimate of number of times called
   563   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
   565   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
   566     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
   567       _tf(tf),
   568       _entry_point(addr),
   569       _cnt(COUNT_UNKNOWN),
   570       _generator(NULL)
   571   {
   572     init_class_id(Class_Call);
   573   }
   575   const TypeFunc* tf()         const { return _tf; }
   576   const address  entry_point() const { return _entry_point; }
   577   const float    cnt()         const { return _cnt; }
   578   CallGenerator* generator()   const { return _generator; }
   580   void set_tf(const TypeFunc* tf)       { _tf = tf; }
   581   void set_entry_point(address p)       { _entry_point = p; }
   582   void set_cnt(float c)                 { _cnt = c; }
   583   void set_generator(CallGenerator* cg) { _generator = cg; }
   585   virtual const Type *bottom_type() const;
   586   virtual const Type *Value( PhaseTransform *phase ) const;
   587   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   588   virtual Node *Identity( PhaseTransform *phase ) { return this; }
   589   virtual uint        cmp( const Node &n ) const;
   590   virtual uint        size_of() const = 0;
   591   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   592   virtual Node       *match( const ProjNode *proj, const Matcher *m );
   593   virtual uint        ideal_reg() const { return NotAMachineReg; }
   594   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
   595   // for some macro nodes whose expansion does not have a safepoint on the fast path.
   596   virtual bool        guaranteed_safepoint()  { return true; }
   597   // For macro nodes, the JVMState gets modified during expansion. If calls
   598   // use MachConstantBase, it gets modified during matching. So when cloning
   599   // the node the JVMState must be cloned. Default is not to clone.
   600   virtual void clone_jvms(Compile* C) {
   601     if (C->needs_clone_jvms() && jvms() != NULL) {
   602       set_jvms(jvms()->clone_deep(C));
   603       jvms()->set_map_deep(this);
   604     }
   605   }
   607   // Returns true if the call may modify n
   608   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
   609   // Does this node have a use of n other than in debug information?
   610   bool                has_non_debug_use(Node *n);
   611   // Returns the unique CheckCastPP of a call
   612   // or result projection is there are several CheckCastPP
   613   // or returns NULL if there is no one.
   614   Node *result_cast();
   615   // Does this node returns pointer?
   616   bool returns_pointer() const {
   617     const TypeTuple *r = tf()->range();
   618     return (r->cnt() > TypeFunc::Parms &&
   619             r->field_at(TypeFunc::Parms)->isa_ptr());
   620   }
   622   // Collect all the interesting edges from a call for use in
   623   // replacing the call by something else.  Used by macro expansion
   624   // and the late inlining support.
   625   void extract_projections(CallProjections* projs, bool separate_io_proj);
   627   virtual uint match_edge(uint idx) const;
   629 #ifndef PRODUCT
   630   virtual void        dump_req(outputStream *st = tty) const;
   631   virtual void        dump_spec(outputStream *st) const;
   632 #endif
   633 };
   636 //------------------------------CallJavaNode-----------------------------------
   637 // Make a static or dynamic subroutine call node using Java calling
   638 // convention.  (The "Java" calling convention is the compiler's calling
   639 // convention, as opposed to the interpreter's or that of native C.)
   640 class CallJavaNode : public CallNode {
   641   friend class VMStructs;
   642 protected:
   643   virtual uint cmp( const Node &n ) const;
   644   virtual uint size_of() const; // Size is bigger
   646   bool    _optimized_virtual;
   647   bool    _method_handle_invoke;
   648   ciMethod* _method;            // Method being direct called
   649 public:
   650   const int       _bci;         // Byte Code Index of call byte code
   651   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
   652     : CallNode(tf, addr, TypePtr::BOTTOM),
   653       _method(method), _bci(bci),
   654       _optimized_virtual(false),
   655       _method_handle_invoke(false)
   656   {
   657     init_class_id(Class_CallJava);
   658   }
   660   virtual int   Opcode() const;
   661   ciMethod* method() const                { return _method; }
   662   void  set_method(ciMethod *m)           { _method = m; }
   663   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
   664   bool  is_optimized_virtual() const      { return _optimized_virtual; }
   665   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
   666   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
   668 #ifndef PRODUCT
   669   virtual void  dump_spec(outputStream *st) const;
   670 #endif
   671 };
   673 //------------------------------CallStaticJavaNode-----------------------------
   674 // Make a direct subroutine call using Java calling convention (for static
   675 // calls and optimized virtual calls, plus calls to wrappers for run-time
   676 // routines); generates static stub.
   677 class CallStaticJavaNode : public CallJavaNode {
   678   virtual uint cmp( const Node &n ) const;
   679   virtual uint size_of() const; // Size is bigger
   680 public:
   681   CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
   682     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
   683     init_class_id(Class_CallStaticJava);
   684     if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
   685       init_flags(Flag_is_macro);
   686       C->add_macro_node(this);
   687     }
   688     _is_scalar_replaceable = false;
   689     _is_non_escaping = false;
   690   }
   691   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
   692                      const TypePtr* adr_type)
   693     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
   694     init_class_id(Class_CallStaticJava);
   695     // This node calls a runtime stub, which often has narrow memory effects.
   696     _adr_type = adr_type;
   697     _is_scalar_replaceable = false;
   698     _is_non_escaping = false;
   699   }
   700   const char *_name;      // Runtime wrapper name
   702   // Result of Escape Analysis
   703   bool _is_scalar_replaceable;
   704   bool _is_non_escaping;
   706   // If this is an uncommon trap, return the request code, else zero.
   707   int uncommon_trap_request() const;
   708   static int extract_uncommon_trap_request(const Node* call);
   710   bool is_boxing_method() const {
   711     return is_macro() && (method() != NULL) && method()->is_boxing_method();
   712   }
   713   // Later inlining modifies the JVMState, so we need to clone it
   714   // when the call node is cloned (because it is macro node).
   715   virtual void  clone_jvms(Compile* C) {
   716     if ((jvms() != NULL) && is_boxing_method()) {
   717       set_jvms(jvms()->clone_deep(C));
   718       jvms()->set_map_deep(this);
   719     }
   720   }
   722   virtual int         Opcode() const;
   723 #ifndef PRODUCT
   724   virtual void        dump_spec(outputStream *st) const;
   725 #endif
   726 };
   728 //------------------------------CallDynamicJavaNode----------------------------
   729 // Make a dispatched call using Java calling convention.
   730 class CallDynamicJavaNode : public CallJavaNode {
   731   virtual uint cmp( const Node &n ) const;
   732   virtual uint size_of() const; // Size is bigger
   733 public:
   734   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
   735     init_class_id(Class_CallDynamicJava);
   736   }
   738   int _vtable_index;
   739   virtual int   Opcode() const;
   740 #ifndef PRODUCT
   741   virtual void  dump_spec(outputStream *st) const;
   742 #endif
   743 };
   745 //------------------------------CallRuntimeNode--------------------------------
   746 // Make a direct subroutine call node into compiled C++ code.
   747 class CallRuntimeNode : public CallNode {
   748   virtual uint cmp( const Node &n ) const;
   749   virtual uint size_of() const; // Size is bigger
   750 public:
   751   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
   752                   const TypePtr* adr_type)
   753     : CallNode(tf, addr, adr_type),
   754       _name(name)
   755   {
   756     init_class_id(Class_CallRuntime);
   757   }
   759   const char *_name;            // Printable name, if _method is NULL
   760   virtual int   Opcode() const;
   761   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
   763 #ifndef PRODUCT
   764   virtual void  dump_spec(outputStream *st) const;
   765 #endif
   766 };
   768 //------------------------------CallLeafNode-----------------------------------
   769 // Make a direct subroutine call node into compiled C++ code, without
   770 // safepoints
   771 class CallLeafNode : public CallRuntimeNode {
   772 public:
   773   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
   774                const TypePtr* adr_type)
   775     : CallRuntimeNode(tf, addr, name, adr_type)
   776   {
   777     init_class_id(Class_CallLeaf);
   778   }
   779   virtual int   Opcode() const;
   780   virtual bool        guaranteed_safepoint()  { return false; }
   781 #ifndef PRODUCT
   782   virtual void  dump_spec(outputStream *st) const;
   783 #endif
   784 };
   786 //------------------------------CallLeafNoFPNode-------------------------------
   787 // CallLeafNode, not using floating point or using it in the same manner as
   788 // the generated code
   789 class CallLeafNoFPNode : public CallLeafNode {
   790 public:
   791   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
   792                    const TypePtr* adr_type)
   793     : CallLeafNode(tf, addr, name, adr_type)
   794   {
   795   }
   796   virtual int   Opcode() const;
   797 };
   800 //------------------------------Allocate---------------------------------------
   801 // High-level memory allocation
   802 //
   803 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
   804 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
   805 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
   806 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
   807 //  order to differentiate the uses of the projection on the normal control path from
   808 //  those on the exception return path.
   809 //
   810 class AllocateNode : public CallNode {
   811 public:
   812   enum {
   813     // Output:
   814     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
   815     // Inputs:
   816     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
   817     KlassNode,                        // type (maybe dynamic) of the obj.
   818     InitialTest,                      // slow-path test (may be constant)
   819     ALength,                          // array length (or TOP if none)
   820     ParmLimit
   821   };
   823   static const TypeFunc* alloc_type(const Type* t) {
   824     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
   825     fields[AllocSize]   = TypeInt::POS;
   826     fields[KlassNode]   = TypeInstPtr::NOTNULL;
   827     fields[InitialTest] = TypeInt::BOOL;
   828     fields[ALength]     = t;  // length (can be a bad length)
   830     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
   832     // create result type (range)
   833     fields = TypeTuple::fields(1);
   834     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   836     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   838     return TypeFunc::make(domain, range);
   839   }
   841   // Result of Escape Analysis
   842   bool _is_scalar_replaceable;
   843   bool _is_non_escaping;
   845   virtual uint size_of() const; // Size is bigger
   846   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   847                Node *size, Node *klass_node, Node *initial_test);
   848   // Expansion modifies the JVMState, so we need to clone it
   849   virtual void  clone_jvms(Compile* C) {
   850     if (jvms() != NULL) {
   851       set_jvms(jvms()->clone_deep(C));
   852       jvms()->set_map_deep(this);
   853     }
   854   }
   855   virtual int Opcode() const;
   856   virtual uint ideal_reg() const { return Op_RegP; }
   857   virtual bool        guaranteed_safepoint()  { return false; }
   859   // allocations do not modify their arguments
   860   virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
   862   // Pattern-match a possible usage of AllocateNode.
   863   // Return null if no allocation is recognized.
   864   // The operand is the pointer produced by the (possible) allocation.
   865   // It must be a projection of the Allocate or its subsequent CastPP.
   866   // (Note:  This function is defined in file graphKit.cpp, near
   867   // GraphKit::new_instance/new_array, whose output it recognizes.)
   868   // The 'ptr' may not have an offset unless the 'offset' argument is given.
   869   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
   871   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
   872   // an offset, which is reported back to the caller.
   873   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
   874   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
   875                                         intptr_t& offset);
   877   // Dig the klass operand out of a (possible) allocation site.
   878   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
   879     AllocateNode* allo = Ideal_allocation(ptr, phase);
   880     return (allo == NULL) ? NULL : allo->in(KlassNode);
   881   }
   883   // Conservatively small estimate of offset of first non-header byte.
   884   int minimum_header_size() {
   885     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
   886                                 instanceOopDesc::base_offset_in_bytes();
   887   }
   889   // Return the corresponding initialization barrier (or null if none).
   890   // Walks out edges to find it...
   891   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
   892   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
   893   InitializeNode* initialization();
   895   // Convenience for initialization->maybe_set_complete(phase)
   896   bool maybe_set_complete(PhaseGVN* phase);
   897 };
   899 //------------------------------AllocateArray---------------------------------
   900 //
   901 // High-level array allocation
   902 //
   903 class AllocateArrayNode : public AllocateNode {
   904 public:
   905   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
   906                     Node* size, Node* klass_node, Node* initial_test,
   907                     Node* count_val
   908                     )
   909     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
   910                    initial_test)
   911   {
   912     init_class_id(Class_AllocateArray);
   913     set_req(AllocateNode::ALength,        count_val);
   914   }
   915   virtual int Opcode() const;
   916   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   918   // Dig the length operand out of a array allocation site.
   919   Node* Ideal_length() {
   920     return in(AllocateNode::ALength);
   921   }
   923   // Dig the length operand out of a array allocation site and narrow the
   924   // type with a CastII, if necesssary
   925   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
   927   // Pattern-match a possible usage of AllocateArrayNode.
   928   // Return null if no allocation is recognized.
   929   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
   930     AllocateNode* allo = Ideal_allocation(ptr, phase);
   931     return (allo == NULL || !allo->is_AllocateArray())
   932            ? NULL : allo->as_AllocateArray();
   933   }
   934 };
   936 //------------------------------AbstractLockNode-----------------------------------
   937 class AbstractLockNode: public CallNode {
   938 private:
   939   enum {
   940     Regular = 0,  // Normal lock
   941     NonEscObj,    // Lock is used for non escaping object
   942     Coarsened,    // Lock was coarsened
   943     Nested        // Nested lock
   944   } _kind;
   945 #ifndef PRODUCT
   946   NamedCounter* _counter;
   947 #endif
   949 protected:
   950   // helper functions for lock elimination
   951   //
   953   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
   954                             GrowableArray<AbstractLockNode*> &lock_ops);
   955   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
   956                                        GrowableArray<AbstractLockNode*> &lock_ops);
   957   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
   958                                GrowableArray<AbstractLockNode*> &lock_ops);
   959   LockNode *find_matching_lock(UnlockNode* unlock);
   961   // Update the counter to indicate that this lock was eliminated.
   962   void set_eliminated_lock_counter() PRODUCT_RETURN;
   964 public:
   965   AbstractLockNode(const TypeFunc *tf)
   966     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
   967       _kind(Regular)
   968   {
   969 #ifndef PRODUCT
   970     _counter = NULL;
   971 #endif
   972   }
   973   virtual int Opcode() const = 0;
   974   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
   975   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
   976   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
   977   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
   979   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
   981   virtual uint size_of() const { return sizeof(*this); }
   983   bool is_eliminated()  const { return (_kind != Regular); }
   984   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
   985   bool is_coarsened()   const { return (_kind == Coarsened); }
   986   bool is_nested()      const { return (_kind == Nested); }
   988   const char * kind_as_string() const;
   989   void log_lock_optimization(Compile* c, const char * tag) const;
   991   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
   992   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
   993   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
   995   // locking does not modify its arguments
   996   virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
   998 #ifndef PRODUCT
   999   void create_lock_counter(JVMState* s);
  1000   NamedCounter* counter() const { return _counter; }
  1001 #endif
  1002 };
  1004 //------------------------------Lock---------------------------------------
  1005 // High-level lock operation
  1006 //
  1007 // This is a subclass of CallNode because it is a macro node which gets expanded
  1008 // into a code sequence containing a call.  This node takes 3 "parameters":
  1009 //    0  -  object to lock
  1010 //    1 -   a BoxLockNode
  1011 //    2 -   a FastLockNode
  1012 //
  1013 class LockNode : public AbstractLockNode {
  1014 public:
  1016   static const TypeFunc *lock_type() {
  1017     // create input type (domain)
  1018     const Type **fields = TypeTuple::fields(3);
  1019     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
  1020     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
  1021     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
  1022     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
  1024     // create result type (range)
  1025     fields = TypeTuple::fields(0);
  1027     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1029     return TypeFunc::make(domain,range);
  1032   virtual int Opcode() const;
  1033   virtual uint size_of() const; // Size is bigger
  1034   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
  1035     init_class_id(Class_Lock);
  1036     init_flags(Flag_is_macro);
  1037     C->add_macro_node(this);
  1039   virtual bool        guaranteed_safepoint()  { return false; }
  1041   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1042   // Expansion modifies the JVMState, so we need to clone it
  1043   virtual void  clone_jvms(Compile* C) {
  1044     if (jvms() != NULL) {
  1045       set_jvms(jvms()->clone_deep(C));
  1046       jvms()->set_map_deep(this);
  1050   bool is_nested_lock_region(); // Is this Lock nested?
  1051   bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
  1052 };
  1054 //------------------------------Unlock---------------------------------------
  1055 // High-level unlock operation
  1056 class UnlockNode : public AbstractLockNode {
  1057 private:
  1058 #ifdef ASSERT
  1059   JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
  1060 #endif
  1061 public:
  1062   virtual int Opcode() const;
  1063   virtual uint size_of() const; // Size is bigger
  1064   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
  1065 #ifdef ASSERT
  1066     , _dbg_jvms(NULL)
  1067 #endif
  1069     init_class_id(Class_Unlock);
  1070     init_flags(Flag_is_macro);
  1071     C->add_macro_node(this);
  1073   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1074   // unlock is never a safepoint
  1075   virtual bool        guaranteed_safepoint()  { return false; }
  1076 #ifdef ASSERT
  1077   void set_dbg_jvms(JVMState* s) {
  1078     *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
  1080   JVMState* dbg_jvms() const { return _dbg_jvms; }
  1081 #else
  1082   JVMState* dbg_jvms() const { return NULL; }
  1083 #endif
  1084 };
  1086 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial