src/cpu/sparc/vm/sharedRuntime_sparc.cpp

Tue, 09 Oct 2012 07:41:27 +0200

author
rbackman
date
Tue, 09 Oct 2012 07:41:27 +0200
changeset 4151
6e5a59a8e4a7
parent 4103
137868b7aa6f
child 4251
18fb7da42534
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_sparc.inline.hpp"
    28 #include "code/debugInfoRec.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "interpreter/interpreter.hpp"
    32 #include "oops/compiledICHolder.hpp"
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/vframeArray.hpp"
    36 #include "vmreg_sparc.inline.hpp"
    37 #ifdef COMPILER1
    38 #include "c1/c1_Runtime1.hpp"
    39 #endif
    40 #ifdef COMPILER2
    41 #include "opto/runtime.hpp"
    42 #endif
    43 #ifdef SHARK
    44 #include "compiler/compileBroker.hpp"
    45 #include "shark/sharkCompiler.hpp"
    46 #endif
    48 #define __ masm->
    51 class RegisterSaver {
    53   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
    54   // The Oregs are problematic. In the 32bit build the compiler can
    55   // have O registers live with 64 bit quantities. A window save will
    56   // cut the heads off of the registers. We have to do a very extensive
    57   // stack dance to save and restore these properly.
    59   // Note that the Oregs problem only exists if we block at either a polling
    60   // page exception a compiled code safepoint that was not originally a call
    61   // or deoptimize following one of these kinds of safepoints.
    63   // Lots of registers to save.  For all builds, a window save will preserve
    64   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
    65   // builds a window-save will preserve the %o registers.  In the LION build
    66   // we need to save the 64-bit %o registers which requires we save them
    67   // before the window-save (as then they become %i registers and get their
    68   // heads chopped off on interrupt).  We have to save some %g registers here
    69   // as well.
    70   enum {
    71     // This frame's save area.  Includes extra space for the native call:
    72     // vararg's layout space and the like.  Briefly holds the caller's
    73     // register save area.
    74     call_args_area = frame::register_save_words_sp_offset +
    75                      frame::memory_parameter_word_sp_offset*wordSize,
    76     // Make sure save locations are always 8 byte aligned.
    77     // can't use round_to because it doesn't produce compile time constant
    78     start_of_extra_save_area = ((call_args_area + 7) & ~7),
    79     g1_offset = start_of_extra_save_area, // g-regs needing saving
    80     g3_offset = g1_offset+8,
    81     g4_offset = g3_offset+8,
    82     g5_offset = g4_offset+8,
    83     o0_offset = g5_offset+8,
    84     o1_offset = o0_offset+8,
    85     o2_offset = o1_offset+8,
    86     o3_offset = o2_offset+8,
    87     o4_offset = o3_offset+8,
    88     o5_offset = o4_offset+8,
    89     start_of_flags_save_area = o5_offset+8,
    90     ccr_offset = start_of_flags_save_area,
    91     fsr_offset = ccr_offset + 8,
    92     d00_offset = fsr_offset+8,  // Start of float save area
    93     register_save_size = d00_offset+8*32
    94   };
    97   public:
    99   static int Oexception_offset() { return o0_offset; };
   100   static int G3_offset() { return g3_offset; };
   101   static int G5_offset() { return g5_offset; };
   102   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
   103   static void restore_live_registers(MacroAssembler* masm);
   105   // During deoptimization only the result register need to be restored
   106   // all the other values have already been extracted.
   108   static void restore_result_registers(MacroAssembler* masm);
   109 };
   111 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
   112   // Record volatile registers as callee-save values in an OopMap so their save locations will be
   113   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
   114   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
   115   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
   116   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
   117   int i;
   118   // Always make the frame size 16 byte aligned.
   119   int frame_size = round_to(additional_frame_words + register_save_size, 16);
   120   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
   121   int frame_size_in_slots = frame_size / sizeof(jint);
   122   // CodeBlob frame size is in words.
   123   *total_frame_words = frame_size / wordSize;
   124   // OopMap* map = new OopMap(*total_frame_words, 0);
   125   OopMap* map = new OopMap(frame_size_in_slots, 0);
   127 #if !defined(_LP64)
   129   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
   130   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   131   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   132   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   133   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   134   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   135   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   136 #endif /* _LP64 */
   138   __ save(SP, -frame_size, SP);
   140 #ifndef _LP64
   141   // Reload the 64 bit Oregs. Although they are now Iregs we load them
   142   // to Oregs here to avoid interrupts cutting off their heads
   144   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   145   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   146   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   147   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   148   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   149   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   151   __ stx(O0, SP, o0_offset+STACK_BIAS);
   152   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
   154   __ stx(O1, SP, o1_offset+STACK_BIAS);
   156   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
   158   __ stx(O2, SP, o2_offset+STACK_BIAS);
   159   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
   161   __ stx(O3, SP, o3_offset+STACK_BIAS);
   162   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
   164   __ stx(O4, SP, o4_offset+STACK_BIAS);
   165   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
   167   __ stx(O5, SP, o5_offset+STACK_BIAS);
   168   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
   169 #endif /* _LP64 */
   172 #ifdef _LP64
   173   int debug_offset = 0;
   174 #else
   175   int debug_offset = 4;
   176 #endif
   177   // Save the G's
   178   __ stx(G1, SP, g1_offset+STACK_BIAS);
   179   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
   181   __ stx(G3, SP, g3_offset+STACK_BIAS);
   182   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
   184   __ stx(G4, SP, g4_offset+STACK_BIAS);
   185   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
   187   __ stx(G5, SP, g5_offset+STACK_BIAS);
   188   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
   190   // This is really a waste but we'll keep things as they were for now
   191   if (true) {
   192 #ifndef _LP64
   193     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
   194     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
   195     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
   196     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
   197     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
   198     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
   199     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
   200     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
   201     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
   202     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
   203 #endif /* _LP64 */
   204   }
   207   // Save the flags
   208   __ rdccr( G5 );
   209   __ stx(G5, SP, ccr_offset+STACK_BIAS);
   210   __ stxfsr(SP, fsr_offset+STACK_BIAS);
   212   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
   213   int offset = d00_offset;
   214   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   215     FloatRegister f = as_FloatRegister(i);
   216     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
   217     // Record as callee saved both halves of double registers (2 float registers).
   218     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
   219     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
   220     offset += sizeof(double);
   221   }
   223   // And we're done.
   225   return map;
   226 }
   229 // Pop the current frame and restore all the registers that we
   230 // saved.
   231 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
   233   // Restore all the FP registers
   234   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
   235     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
   236   }
   238   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
   239   __ wrccr (G1) ;
   241   // Restore the G's
   242   // Note that G2 (AKA GThread) must be saved and restored separately.
   243   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
   245   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   246   __ ldx(SP, g3_offset+STACK_BIAS, G3);
   247   __ ldx(SP, g4_offset+STACK_BIAS, G4);
   248   __ ldx(SP, g5_offset+STACK_BIAS, G5);
   251 #if !defined(_LP64)
   252   // Restore the 64-bit O's.
   253   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   254   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   255   __ ldx(SP, o2_offset+STACK_BIAS, O2);
   256   __ ldx(SP, o3_offset+STACK_BIAS, O3);
   257   __ ldx(SP, o4_offset+STACK_BIAS, O4);
   258   __ ldx(SP, o5_offset+STACK_BIAS, O5);
   260   // And temporarily place them in TLS
   262   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   263   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   264   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
   265   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
   266   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
   267   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
   268 #endif /* _LP64 */
   270   // Restore flags
   272   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
   274   __ restore();
   276 #if !defined(_LP64)
   277   // Now reload the 64bit Oregs after we've restore the window.
   278   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   279   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   280   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
   281   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
   282   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
   283   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
   284 #endif /* _LP64 */
   286 }
   288 // Pop the current frame and restore the registers that might be holding
   289 // a result.
   290 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
   292 #if !defined(_LP64)
   293   // 32bit build returns longs in G1
   294   __ ldx(SP, g1_offset+STACK_BIAS, G1);
   296   // Retrieve the 64-bit O's.
   297   __ ldx(SP, o0_offset+STACK_BIAS, O0);
   298   __ ldx(SP, o1_offset+STACK_BIAS, O1);
   299   // and save to TLS
   300   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
   301   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
   302 #endif /* _LP64 */
   304   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
   306   __ restore();
   308 #if !defined(_LP64)
   309   // Now reload the 64bit Oregs after we've restore the window.
   310   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
   311   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
   312 #endif /* _LP64 */
   314 }
   316 // Is vector's size (in bytes) bigger than a size saved by default?
   317 // 8 bytes FP registers are saved by default on SPARC.
   318 bool SharedRuntime::is_wide_vector(int size) {
   319   // Note, MaxVectorSize == 8 on SPARC.
   320   assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
   321   return size > 8;
   322 }
   324 // The java_calling_convention describes stack locations as ideal slots on
   325 // a frame with no abi restrictions. Since we must observe abi restrictions
   326 // (like the placement of the register window) the slots must be biased by
   327 // the following value.
   328 static int reg2offset(VMReg r) {
   329   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
   330 }
   332 static VMRegPair reg64_to_VMRegPair(Register r) {
   333   VMRegPair ret;
   334   if (wordSize == 8) {
   335     ret.set2(r->as_VMReg());
   336   } else {
   337     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
   338   }
   339   return ret;
   340 }
   342 // ---------------------------------------------------------------------------
   343 // Read the array of BasicTypes from a signature, and compute where the
   344 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
   345 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
   346 // refer to 4-byte stack slots.  All stack slots are based off of the window
   347 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
   348 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
   349 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
   350 // integer registers.  Values 64-95 are the (32-bit only) float registers.
   351 // Each 32-bit quantity is given its own number, so the integer registers
   352 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
   353 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
   355 // Register results are passed in O0-O5, for outgoing call arguments.  To
   356 // convert to incoming arguments, convert all O's to I's.  The regs array
   357 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
   358 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
   359 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
   360 // passed (used as a placeholder for the other half of longs and doubles in
   361 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
   362 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
   363 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
   364 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
   365 // same VMRegPair.
   367 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
   368 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
   369 // units regardless of build.
   372 // ---------------------------------------------------------------------------
   373 // The compiled Java calling convention.  The Java convention always passes
   374 // 64-bit values in adjacent aligned locations (either registers or stack),
   375 // floats in float registers and doubles in aligned float pairs.  There is
   376 // no backing varargs store for values in registers.
   377 // In the 32-bit build, longs are passed on the stack (cannot be
   378 // passed in I's, because longs in I's get their heads chopped off at
   379 // interrupt).
   380 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
   381                                            VMRegPair *regs,
   382                                            int total_args_passed,
   383                                            int is_outgoing) {
   384   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
   386   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
   387   const int flt_reg_max = 8;
   389   int int_reg = 0;
   390   int flt_reg = 0;
   391   int slot = 0;
   393   for (int i = 0; i < total_args_passed; i++) {
   394     switch (sig_bt[i]) {
   395     case T_INT:
   396     case T_SHORT:
   397     case T_CHAR:
   398     case T_BYTE:
   399     case T_BOOLEAN:
   400 #ifndef _LP64
   401     case T_OBJECT:
   402     case T_ARRAY:
   403     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   404 #endif // _LP64
   405       if (int_reg < int_reg_max) {
   406         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   407         regs[i].set1(r->as_VMReg());
   408       } else {
   409         regs[i].set1(VMRegImpl::stack2reg(slot++));
   410       }
   411       break;
   413 #ifdef _LP64
   414     case T_LONG:
   415       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   416       // fall-through
   417     case T_OBJECT:
   418     case T_ARRAY:
   419     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
   420       if (int_reg < int_reg_max) {
   421         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
   422         regs[i].set2(r->as_VMReg());
   423       } else {
   424         slot = round_to(slot, 2);  // align
   425         regs[i].set2(VMRegImpl::stack2reg(slot));
   426         slot += 2;
   427       }
   428       break;
   429 #else
   430     case T_LONG:
   431       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
   432       // On 32-bit SPARC put longs always on the stack to keep the pressure off
   433       // integer argument registers.  They should be used for oops.
   434       slot = round_to(slot, 2);  // align
   435       regs[i].set2(VMRegImpl::stack2reg(slot));
   436       slot += 2;
   437 #endif
   438       break;
   440     case T_FLOAT:
   441       if (flt_reg < flt_reg_max) {
   442         FloatRegister r = as_FloatRegister(flt_reg++);
   443         regs[i].set1(r->as_VMReg());
   444       } else {
   445         regs[i].set1(VMRegImpl::stack2reg(slot++));
   446       }
   447       break;
   449     case T_DOUBLE:
   450       assert(sig_bt[i+1] == T_VOID, "expecting half");
   451       if (round_to(flt_reg, 2) + 1 < flt_reg_max) {
   452         flt_reg = round_to(flt_reg, 2);  // align
   453         FloatRegister r = as_FloatRegister(flt_reg);
   454         regs[i].set2(r->as_VMReg());
   455         flt_reg += 2;
   456       } else {
   457         slot = round_to(slot, 2);  // align
   458         regs[i].set2(VMRegImpl::stack2reg(slot));
   459         slot += 2;
   460       }
   461       break;
   463     case T_VOID:
   464       regs[i].set_bad();   // Halves of longs & doubles
   465       break;
   467     default:
   468       fatal(err_msg_res("unknown basic type %d", sig_bt[i]));
   469       break;
   470     }
   471   }
   473   // retun the amount of stack space these arguments will need.
   474   return slot;
   475 }
   477 // Helper class mostly to avoid passing masm everywhere, and handle
   478 // store displacement overflow logic.
   479 class AdapterGenerator {
   480   MacroAssembler *masm;
   481   Register Rdisp;
   482   void set_Rdisp(Register r)  { Rdisp = r; }
   484   void patch_callers_callsite();
   486   // base+st_off points to top of argument
   487   int arg_offset(const int st_off) { return st_off; }
   488   int next_arg_offset(const int st_off) {
   489     return st_off - Interpreter::stackElementSize;
   490   }
   492   // Argument slot values may be loaded first into a register because
   493   // they might not fit into displacement.
   494   RegisterOrConstant arg_slot(const int st_off);
   495   RegisterOrConstant next_arg_slot(const int st_off);
   497   // Stores long into offset pointed to by base
   498   void store_c2i_long(Register r, Register base,
   499                       const int st_off, bool is_stack);
   500   void store_c2i_object(Register r, Register base,
   501                         const int st_off);
   502   void store_c2i_int(Register r, Register base,
   503                      const int st_off);
   504   void store_c2i_double(VMReg r_2,
   505                         VMReg r_1, Register base, const int st_off);
   506   void store_c2i_float(FloatRegister f, Register base,
   507                        const int st_off);
   509  public:
   510   void gen_c2i_adapter(int total_args_passed,
   511                               // VMReg max_arg,
   512                               int comp_args_on_stack, // VMRegStackSlots
   513                               const BasicType *sig_bt,
   514                               const VMRegPair *regs,
   515                               Label& skip_fixup);
   516   void gen_i2c_adapter(int total_args_passed,
   517                               // VMReg max_arg,
   518                               int comp_args_on_stack, // VMRegStackSlots
   519                               const BasicType *sig_bt,
   520                               const VMRegPair *regs);
   522   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
   523 };
   526 // Patch the callers callsite with entry to compiled code if it exists.
   527 void AdapterGenerator::patch_callers_callsite() {
   528   Label L;
   529   __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
   530   __ br_null(G3_scratch, false, Assembler::pt, L);
   531   __ delayed()->nop();
   532   // Call into the VM to patch the caller, then jump to compiled callee
   533   __ save_frame(4);     // Args in compiled layout; do not blow them
   535   // Must save all the live Gregs the list is:
   536   // G1: 1st Long arg (32bit build)
   537   // G2: global allocated to TLS
   538   // G3: used in inline cache check (scratch)
   539   // G4: 2nd Long arg (32bit build);
   540   // G5: used in inline cache check (Method*)
   542   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
   544 #ifdef _LP64
   545   // mov(s,d)
   546   __ mov(G1, L1);
   547   __ mov(G4, L4);
   548   __ mov(G5_method, L5);
   549   __ mov(G5_method, O0);         // VM needs target method
   550   __ mov(I7, O1);                // VM needs caller's callsite
   551   // Must be a leaf call...
   552   // can be very far once the blob has been relocated
   553   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
   554   __ relocate(relocInfo::runtime_call_type);
   555   __ jumpl_to(dest, O7, O7);
   556   __ delayed()->mov(G2_thread, L7_thread_cache);
   557   __ mov(L7_thread_cache, G2_thread);
   558   __ mov(L1, G1);
   559   __ mov(L4, G4);
   560   __ mov(L5, G5_method);
   561 #else
   562   __ stx(G1, FP, -8 + STACK_BIAS);
   563   __ stx(G4, FP, -16 + STACK_BIAS);
   564   __ mov(G5_method, L5);
   565   __ mov(G5_method, O0);         // VM needs target method
   566   __ mov(I7, O1);                // VM needs caller's callsite
   567   // Must be a leaf call...
   568   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
   569   __ delayed()->mov(G2_thread, L7_thread_cache);
   570   __ mov(L7_thread_cache, G2_thread);
   571   __ ldx(FP, -8 + STACK_BIAS, G1);
   572   __ ldx(FP, -16 + STACK_BIAS, G4);
   573   __ mov(L5, G5_method);
   574 #endif /* _LP64 */
   576   __ restore();      // Restore args
   577   __ bind(L);
   578 }
   581 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
   582   RegisterOrConstant roc(arg_offset(st_off));
   583   return __ ensure_simm13_or_reg(roc, Rdisp);
   584 }
   586 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
   587   RegisterOrConstant roc(next_arg_offset(st_off));
   588   return __ ensure_simm13_or_reg(roc, Rdisp);
   589 }
   592 // Stores long into offset pointed to by base
   593 void AdapterGenerator::store_c2i_long(Register r, Register base,
   594                                       const int st_off, bool is_stack) {
   595 #ifdef _LP64
   596   // In V9, longs are given 2 64-bit slots in the interpreter, but the
   597   // data is passed in only 1 slot.
   598   __ stx(r, base, next_arg_slot(st_off));
   599 #else
   600 #ifdef COMPILER2
   601   // Misaligned store of 64-bit data
   602   __ stw(r, base, arg_slot(st_off));    // lo bits
   603   __ srlx(r, 32, r);
   604   __ stw(r, base, next_arg_slot(st_off));  // hi bits
   605 #else
   606   if (is_stack) {
   607     // Misaligned store of 64-bit data
   608     __ stw(r, base, arg_slot(st_off));    // lo bits
   609     __ srlx(r, 32, r);
   610     __ stw(r, base, next_arg_slot(st_off));  // hi bits
   611   } else {
   612     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
   613     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
   614   }
   615 #endif // COMPILER2
   616 #endif // _LP64
   617 }
   619 void AdapterGenerator::store_c2i_object(Register r, Register base,
   620                       const int st_off) {
   621   __ st_ptr (r, base, arg_slot(st_off));
   622 }
   624 void AdapterGenerator::store_c2i_int(Register r, Register base,
   625                    const int st_off) {
   626   __ st (r, base, arg_slot(st_off));
   627 }
   629 // Stores into offset pointed to by base
   630 void AdapterGenerator::store_c2i_double(VMReg r_2,
   631                       VMReg r_1, Register base, const int st_off) {
   632 #ifdef _LP64
   633   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   634   // data is passed in only 1 slot.
   635   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   636 #else
   637   // Need to marshal 64-bit value from misaligned Lesp loads
   638   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
   639   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
   640 #endif
   641 }
   643 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
   644                                        const int st_off) {
   645   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
   646 }
   648 void AdapterGenerator::gen_c2i_adapter(
   649                             int total_args_passed,
   650                             // VMReg max_arg,
   651                             int comp_args_on_stack, // VMRegStackSlots
   652                             const BasicType *sig_bt,
   653                             const VMRegPair *regs,
   654                             Label& L_skip_fixup) {
   656   // Before we get into the guts of the C2I adapter, see if we should be here
   657   // at all.  We've come from compiled code and are attempting to jump to the
   658   // interpreter, which means the caller made a static call to get here
   659   // (vcalls always get a compiled target if there is one).  Check for a
   660   // compiled target.  If there is one, we need to patch the caller's call.
   661   // However we will run interpreted if we come thru here. The next pass
   662   // thru the call site will run compiled. If we ran compiled here then
   663   // we can (theorectically) do endless i2c->c2i->i2c transitions during
   664   // deopt/uncommon trap cycles. If we always go interpreted here then
   665   // we can have at most one and don't need to play any tricks to keep
   666   // from endlessly growing the stack.
   667   //
   668   // Actually if we detected that we had an i2c->c2i transition here we
   669   // ought to be able to reset the world back to the state of the interpreted
   670   // call and not bother building another interpreter arg area. We don't
   671   // do that at this point.
   673   patch_callers_callsite();
   675   __ bind(L_skip_fixup);
   677   // Since all args are passed on the stack, total_args_passed*wordSize is the
   678   // space we need.  Add in varargs area needed by the interpreter. Round up
   679   // to stack alignment.
   680   const int arg_size = total_args_passed * Interpreter::stackElementSize;
   681   const int varargs_area =
   682                  (frame::varargs_offset - frame::register_save_words)*wordSize;
   683   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
   685   const int bias = STACK_BIAS;
   686   const int interp_arg_offset = frame::varargs_offset*wordSize +
   687                         (total_args_passed-1)*Interpreter::stackElementSize;
   689   const Register base = SP;
   691   // Make some extra space on the stack.
   692   __ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
   693   set_Rdisp(G3_scratch);
   695   // Write the args into the outgoing interpreter space.
   696   for (int i = 0; i < total_args_passed; i++) {
   697     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
   698     VMReg r_1 = regs[i].first();
   699     VMReg r_2 = regs[i].second();
   700     if (!r_1->is_valid()) {
   701       assert(!r_2->is_valid(), "");
   702       continue;
   703     }
   704     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
   705       RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
   706       ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
   707       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
   708       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
   709       else                  __ ldx(base, ld_off, G1_scratch);
   710     }
   712     if (r_1->is_Register()) {
   713       Register r = r_1->as_Register()->after_restore();
   714       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
   715         store_c2i_object(r, base, st_off);
   716       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
   717         store_c2i_long(r, base, st_off, r_2->is_stack());
   718       } else {
   719         store_c2i_int(r, base, st_off);
   720       }
   721     } else {
   722       assert(r_1->is_FloatRegister(), "");
   723       if (sig_bt[i] == T_FLOAT) {
   724         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
   725       } else {
   726         assert(sig_bt[i] == T_DOUBLE, "wrong type");
   727         store_c2i_double(r_2, r_1, base, st_off);
   728       }
   729     }
   730   }
   732   // Load the interpreter entry point.
   733   __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
   735   // Pass O5_savedSP as an argument to the interpreter.
   736   // The interpreter will restore SP to this value before returning.
   737   __ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
   739   __ mov((frame::varargs_offset)*wordSize -
   740          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
   741   // Jump to the interpreter just as if interpreter was doing it.
   742   __ jmpl(G3_scratch, 0, G0);
   743   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
   744   // (really L0) is in use by the compiled frame as a generic temp.  However,
   745   // the interpreter does not know where its args are without some kind of
   746   // arg pointer being passed in.  Pass it in Gargs.
   747   __ delayed()->add(SP, G1, Gargs);
   748 }
   750 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
   751                         address code_start, address code_end,
   752                         Label& L_ok) {
   753   Label L_fail;
   754   __ set(ExternalAddress(code_start), temp_reg);
   755   __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
   756   __ cmp(pc_reg, temp_reg);
   757   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
   758   __ delayed()->add(temp_reg, temp2_reg, temp_reg);
   759   __ cmp(pc_reg, temp_reg);
   760   __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
   761   __ bind(L_fail);
   762 }
   764 void AdapterGenerator::gen_i2c_adapter(
   765                             int total_args_passed,
   766                             // VMReg max_arg,
   767                             int comp_args_on_stack, // VMRegStackSlots
   768                             const BasicType *sig_bt,
   769                             const VMRegPair *regs) {
   771   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
   772   // layout.  Lesp was saved by the calling I-frame and will be restored on
   773   // return.  Meanwhile, outgoing arg space is all owned by the callee
   774   // C-frame, so we can mangle it at will.  After adjusting the frame size,
   775   // hoist register arguments and repack other args according to the compiled
   776   // code convention.  Finally, end in a jump to the compiled code.  The entry
   777   // point address is the start of the buffer.
   779   // We will only enter here from an interpreted frame and never from after
   780   // passing thru a c2i. Azul allowed this but we do not. If we lose the
   781   // race and use a c2i we will remain interpreted for the race loser(s).
   782   // This removes all sorts of headaches on the x86 side and also eliminates
   783   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
   785   // More detail:
   786   // Adapters can be frameless because they do not require the caller
   787   // to perform additional cleanup work, such as correcting the stack pointer.
   788   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
   789   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
   790   // even if a callee has modified the stack pointer.
   791   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
   792   // routinely repairs its caller's stack pointer (from sender_sp, which is set
   793   // up via the senderSP register).
   794   // In other words, if *either* the caller or callee is interpreted, we can
   795   // get the stack pointer repaired after a call.
   796   // This is why c2i and i2c adapters cannot be indefinitely composed.
   797   // In particular, if a c2i adapter were to somehow call an i2c adapter,
   798   // both caller and callee would be compiled methods, and neither would
   799   // clean up the stack pointer changes performed by the two adapters.
   800   // If this happens, control eventually transfers back to the compiled
   801   // caller, but with an uncorrected stack, causing delayed havoc.
   803   if (VerifyAdapterCalls &&
   804       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
   805     // So, let's test for cascading c2i/i2c adapters right now.
   806     //  assert(Interpreter::contains($return_addr) ||
   807     //         StubRoutines::contains($return_addr),
   808     //         "i2c adapter must return to an interpreter frame");
   809     __ block_comment("verify_i2c { ");
   810     Label L_ok;
   811     if (Interpreter::code() != NULL)
   812       range_check(masm, O7, O0, O1,
   813                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
   814                   L_ok);
   815     if (StubRoutines::code1() != NULL)
   816       range_check(masm, O7, O0, O1,
   817                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
   818                   L_ok);
   819     if (StubRoutines::code2() != NULL)
   820       range_check(masm, O7, O0, O1,
   821                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
   822                   L_ok);
   823     const char* msg = "i2c adapter must return to an interpreter frame";
   824     __ block_comment(msg);
   825     __ stop(msg);
   826     __ bind(L_ok);
   827     __ block_comment("} verify_i2ce ");
   828   }
   830   // As you can see from the list of inputs & outputs there are not a lot
   831   // of temp registers to work with: mostly G1, G3 & G4.
   833   // Inputs:
   834   // G2_thread      - TLS
   835   // G5_method      - Method oop
   836   // G4 (Gargs)     - Pointer to interpreter's args
   837   // O0..O4         - free for scratch
   838   // O5_savedSP     - Caller's saved SP, to be restored if needed
   839   // O6             - Current SP!
   840   // O7             - Valid return address
   841   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   843   // Outputs:
   844   // G2_thread      - TLS
   845   // O0-O5          - Outgoing args in compiled layout
   846   // O6             - Adjusted or restored SP
   847   // O7             - Valid return address
   848   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
   849   // F0-F7          - more outgoing args
   852   // Gargs is the incoming argument base, and also an outgoing argument.
   853   __ sub(Gargs, BytesPerWord, Gargs);
   855   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
   856   // WITH O7 HOLDING A VALID RETURN PC
   857   //
   858   // |              |
   859   // :  java stack  :
   860   // |              |
   861   // +--------------+ <--- start of outgoing args
   862   // |   receiver   |   |
   863   // : rest of args :   |---size is java-arg-words
   864   // |              |   |
   865   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
   866   // |              |   |
   867   // :    unused    :   |---Space for max Java stack, plus stack alignment
   868   // |              |   |
   869   // +--------------+ <--- SP + 16*wordsize
   870   // |              |
   871   // :    window    :
   872   // |              |
   873   // +--------------+ <--- SP
   875   // WE REPACK THE STACK.  We use the common calling convention layout as
   876   // discovered by calling SharedRuntime::calling_convention.  We assume it
   877   // causes an arbitrary shuffle of memory, which may require some register
   878   // temps to do the shuffle.  We hope for (and optimize for) the case where
   879   // temps are not needed.  We may have to resize the stack slightly, in case
   880   // we need alignment padding (32-bit interpreter can pass longs & doubles
   881   // misaligned, but the compilers expect them aligned).
   882   //
   883   // |              |
   884   // :  java stack  :
   885   // |              |
   886   // +--------------+ <--- start of outgoing args
   887   // |  pad, align  |   |
   888   // +--------------+   |
   889   // | ints, longs, |   |
   890   // |    floats,   |   |---Outgoing stack args.
   891   // :    doubles   :   |   First few args in registers.
   892   // |              |   |
   893   // +--------------+ <--- SP' + 16*wordsize
   894   // |              |
   895   // :    window    :
   896   // |              |
   897   // +--------------+ <--- SP'
   899   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
   900   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
   901   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
   903   // Cut-out for having no stack args.  Since up to 6 args are passed
   904   // in registers, we will commonly have no stack args.
   905   if (comp_args_on_stack > 0) {
   906     // Convert VMReg stack slots to words.
   907     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
   908     // Round up to miminum stack alignment, in wordSize
   909     comp_words_on_stack = round_to(comp_words_on_stack, 2);
   910     // Now compute the distance from Lesp to SP.  This calculation does not
   911     // include the space for total_args_passed because Lesp has not yet popped
   912     // the arguments.
   913     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
   914   }
   916   // Now generate the shuffle code.  Pick up all register args and move the
   917   // rest through G1_scratch.
   918   for (int i = 0; i < total_args_passed; i++) {
   919     if (sig_bt[i] == T_VOID) {
   920       // Longs and doubles are passed in native word order, but misaligned
   921       // in the 32-bit build.
   922       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
   923       continue;
   924     }
   926     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
   927     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
   928     // ldx/lddf optimizations.
   930     // Load in argument order going down.
   931     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
   932     set_Rdisp(G1_scratch);
   934     VMReg r_1 = regs[i].first();
   935     VMReg r_2 = regs[i].second();
   936     if (!r_1->is_valid()) {
   937       assert(!r_2->is_valid(), "");
   938       continue;
   939     }
   940     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
   941       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
   942       if (r_2->is_valid()) r_2 = r_1->next();
   943     }
   944     if (r_1->is_Register()) {  // Register argument
   945       Register r = r_1->as_Register()->after_restore();
   946       if (!r_2->is_valid()) {
   947         __ ld(Gargs, arg_slot(ld_off), r);
   948       } else {
   949 #ifdef _LP64
   950         // In V9, longs are given 2 64-bit slots in the interpreter, but the
   951         // data is passed in only 1 slot.
   952         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
   953               next_arg_slot(ld_off) : arg_slot(ld_off);
   954         __ ldx(Gargs, slot, r);
   955 #else
   956         fatal("longs should be on stack");
   957 #endif
   958       }
   959     } else {
   960       assert(r_1->is_FloatRegister(), "");
   961       if (!r_2->is_valid()) {
   962         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_1->as_FloatRegister());
   963       } else {
   964 #ifdef _LP64
   965         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
   966         // data is passed in only 1 slot.  This code also handles longs that
   967         // are passed on the stack, but need a stack-to-stack move through a
   968         // spare float register.
   969         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
   970               next_arg_slot(ld_off) : arg_slot(ld_off);
   971         __ ldf(FloatRegisterImpl::D, Gargs,                  slot, r_1->as_FloatRegister());
   972 #else
   973         // Need to marshal 64-bit value from misaligned Lesp loads
   974         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
   975         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_2->as_FloatRegister());
   976 #endif
   977       }
   978     }
   979     // Was the argument really intended to be on the stack, but was loaded
   980     // into F8/F9?
   981     if (regs[i].first()->is_stack()) {
   982       assert(r_1->as_FloatRegister() == F8, "fix this code");
   983       // Convert stack slot to an SP offset
   984       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
   985       // Store down the shuffled stack word.  Target address _is_ aligned.
   986       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
   987       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
   988       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
   989     }
   990   }
   992   // Jump to the compiled code just as if compiled code was doing it.
   993   __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
   995   // 6243940 We might end up in handle_wrong_method if
   996   // the callee is deoptimized as we race thru here. If that
   997   // happens we don't want to take a safepoint because the
   998   // caller frame will look interpreted and arguments are now
   999   // "compiled" so it is much better to make this transition
  1000   // invisible to the stack walking code. Unfortunately if
  1001   // we try and find the callee by normal means a safepoint
  1002   // is possible. So we stash the desired callee in the thread
  1003   // and the vm will find there should this case occur.
  1004   Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
  1005   __ st_ptr(G5_method, callee_target_addr);
  1007   if (StressNonEntrant) {
  1008     // Open a big window for deopt failure
  1009     __ save_frame(0);
  1010     __ mov(G0, L0);
  1011     Label loop;
  1012     __ bind(loop);
  1013     __ sub(L0, 1, L0);
  1014     __ br_null_short(L0, Assembler::pt, loop);
  1015     __ restore();
  1018   __ jmpl(G3, 0, G0);
  1019   __ delayed()->nop();
  1022 // ---------------------------------------------------------------
  1023 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
  1024                                                             int total_args_passed,
  1025                                                             // VMReg max_arg,
  1026                                                             int comp_args_on_stack, // VMRegStackSlots
  1027                                                             const BasicType *sig_bt,
  1028                                                             const VMRegPair *regs,
  1029                                                             AdapterFingerPrint* fingerprint) {
  1030   address i2c_entry = __ pc();
  1032   AdapterGenerator agen(masm);
  1034   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
  1037   // -------------------------------------------------------------------------
  1038   // Generate a C2I adapter.  On entry we know G5 holds the Method*.  The
  1039   // args start out packed in the compiled layout.  They need to be unpacked
  1040   // into the interpreter layout.  This will almost always require some stack
  1041   // space.  We grow the current (compiled) stack, then repack the args.  We
  1042   // finally end in a jump to the generic interpreter entry point.  On exit
  1043   // from the interpreter, the interpreter will restore our SP (lest the
  1044   // compiled code, which relys solely on SP and not FP, get sick).
  1046   address c2i_unverified_entry = __ pc();
  1047   Label L_skip_fixup;
  1049     Register R_temp = G1;  // another scratch register
  1051     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1053     __ verify_oop(O0);
  1054     __ load_klass(O0, G3_scratch);
  1056     __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
  1057     __ cmp(G3_scratch, R_temp);
  1059     Label ok, ok2;
  1060     __ brx(Assembler::equal, false, Assembler::pt, ok);
  1061     __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_method_offset(), G5_method);
  1062     __ jump_to(ic_miss, G3_scratch);
  1063     __ delayed()->nop();
  1065     __ bind(ok);
  1066     // Method might have been compiled since the call site was patched to
  1067     // interpreted if that is the case treat it as a miss so we can get
  1068     // the call site corrected.
  1069     __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
  1070     __ bind(ok2);
  1071     __ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
  1072     __ delayed()->nop();
  1073     __ jump_to(ic_miss, G3_scratch);
  1074     __ delayed()->nop();
  1078   address c2i_entry = __ pc();
  1080   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
  1082   __ flush();
  1083   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  1087 // Helper function for native calling conventions
  1088 static VMReg int_stk_helper( int i ) {
  1089   // Bias any stack based VMReg we get by ignoring the window area
  1090   // but not the register parameter save area.
  1091   //
  1092   // This is strange for the following reasons. We'd normally expect
  1093   // the calling convention to return an VMReg for a stack slot
  1094   // completely ignoring any abi reserved area. C2 thinks of that
  1095   // abi area as only out_preserve_stack_slots. This does not include
  1096   // the area allocated by the C abi to store down integer arguments
  1097   // because the java calling convention does not use it. So
  1098   // since c2 assumes that there are only out_preserve_stack_slots
  1099   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
  1100   // location the c calling convention must add in this bias amount
  1101   // to make up for the fact that the out_preserve_stack_slots is
  1102   // insufficient for C calls. What a mess. I sure hope those 6
  1103   // stack words were worth it on every java call!
  1105   // Another way of cleaning this up would be for out_preserve_stack_slots
  1106   // to take a parameter to say whether it was C or java calling conventions.
  1107   // Then things might look a little better (but not much).
  1109   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
  1110   if( mem_parm_offset < 0 ) {
  1111     return as_oRegister(i)->as_VMReg();
  1112   } else {
  1113     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
  1114     // Now return a biased offset that will be correct when out_preserve_slots is added back in
  1115     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
  1120 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
  1121                                          VMRegPair *regs,
  1122                                          int total_args_passed) {
  1124     // Return the number of VMReg stack_slots needed for the args.
  1125     // This value does not include an abi space (like register window
  1126     // save area).
  1128     // The native convention is V8 if !LP64
  1129     // The LP64 convention is the V9 convention which is slightly more sane.
  1131     // We return the amount of VMReg stack slots we need to reserve for all
  1132     // the arguments NOT counting out_preserve_stack_slots. Since we always
  1133     // have space for storing at least 6 registers to memory we start with that.
  1134     // See int_stk_helper for a further discussion.
  1135     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
  1137 #ifdef _LP64
  1138     // V9 convention: All things "as-if" on double-wide stack slots.
  1139     // Hoist any int/ptr/long's in the first 6 to int regs.
  1140     // Hoist any flt/dbl's in the first 16 dbl regs.
  1141     int j = 0;                  // Count of actual args, not HALVES
  1142     for( int i=0; i<total_args_passed; i++, j++ ) {
  1143       switch( sig_bt[i] ) {
  1144       case T_BOOLEAN:
  1145       case T_BYTE:
  1146       case T_CHAR:
  1147       case T_INT:
  1148       case T_SHORT:
  1149         regs[i].set1( int_stk_helper( j ) ); break;
  1150       case T_LONG:
  1151         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1152       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1153       case T_ARRAY:
  1154       case T_OBJECT:
  1155       case T_METADATA:
  1156         regs[i].set2( int_stk_helper( j ) );
  1157         break;
  1158       case T_FLOAT:
  1159         if ( j < 16 ) {
  1160           // V9ism: floats go in ODD registers
  1161           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
  1162         } else {
  1163           // V9ism: floats go in ODD stack slot
  1164           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
  1166         break;
  1167       case T_DOUBLE:
  1168         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1169         if ( j < 16 ) {
  1170           // V9ism: doubles go in EVEN/ODD regs
  1171           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
  1172         } else {
  1173           // V9ism: doubles go in EVEN/ODD stack slots
  1174           regs[i].set2(VMRegImpl::stack2reg(j<<1));
  1176         break;
  1177       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
  1178       default:
  1179         ShouldNotReachHere();
  1181       if (regs[i].first()->is_stack()) {
  1182         int off =  regs[i].first()->reg2stack();
  1183         if (off > max_stack_slots) max_stack_slots = off;
  1185       if (regs[i].second()->is_stack()) {
  1186         int off =  regs[i].second()->reg2stack();
  1187         if (off > max_stack_slots) max_stack_slots = off;
  1191 #else // _LP64
  1192     // V8 convention: first 6 things in O-regs, rest on stack.
  1193     // Alignment is willy-nilly.
  1194     for( int i=0; i<total_args_passed; i++ ) {
  1195       switch( sig_bt[i] ) {
  1196       case T_ADDRESS: // raw pointers, like current thread, for VM calls
  1197       case T_ARRAY:
  1198       case T_BOOLEAN:
  1199       case T_BYTE:
  1200       case T_CHAR:
  1201       case T_FLOAT:
  1202       case T_INT:
  1203       case T_OBJECT:
  1204       case T_METADATA:
  1205       case T_SHORT:
  1206         regs[i].set1( int_stk_helper( i ) );
  1207         break;
  1208       case T_DOUBLE:
  1209       case T_LONG:
  1210         assert( sig_bt[i+1] == T_VOID, "expecting half" );
  1211         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
  1212         break;
  1213       case T_VOID: regs[i].set_bad(); break;
  1214       default:
  1215         ShouldNotReachHere();
  1217       if (regs[i].first()->is_stack()) {
  1218         int off =  regs[i].first()->reg2stack();
  1219         if (off > max_stack_slots) max_stack_slots = off;
  1221       if (regs[i].second()->is_stack()) {
  1222         int off =  regs[i].second()->reg2stack();
  1223         if (off > max_stack_slots) max_stack_slots = off;
  1226 #endif // _LP64
  1228   return round_to(max_stack_slots + 1, 2);
  1233 // ---------------------------------------------------------------------------
  1234 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1235   switch (ret_type) {
  1236   case T_FLOAT:
  1237     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
  1238     break;
  1239   case T_DOUBLE:
  1240     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
  1241     break;
  1245 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
  1246   switch (ret_type) {
  1247   case T_FLOAT:
  1248     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
  1249     break;
  1250   case T_DOUBLE:
  1251     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
  1252     break;
  1256 // Check and forward and pending exception.  Thread is stored in
  1257 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
  1258 // is no exception handler.  We merely pop this frame off and throw the
  1259 // exception in the caller's frame.
  1260 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
  1261   Label L;
  1262   __ br_null(Rex_oop, false, Assembler::pt, L);
  1263   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
  1264   // Since this is a native call, we *know* the proper exception handler
  1265   // without calling into the VM: it's the empty function.  Just pop this
  1266   // frame and then jump to forward_exception_entry; O7 will contain the
  1267   // native caller's return PC.
  1268  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
  1269   __ jump_to(exception_entry, G3_scratch);
  1270   __ delayed()->restore();      // Pop this frame off.
  1271   __ bind(L);
  1274 // A simple move of integer like type
  1275 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1276   if (src.first()->is_stack()) {
  1277     if (dst.first()->is_stack()) {
  1278       // stack to stack
  1279       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1280       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1281     } else {
  1282       // stack to reg
  1283       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1285   } else if (dst.first()->is_stack()) {
  1286     // reg to stack
  1287     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1288   } else {
  1289     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1293 // On 64 bit we will store integer like items to the stack as
  1294 // 64 bits items (sparc abi) even though java would only store
  1295 // 32bits for a parameter. On 32bit it will simply be 32 bits
  1296 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
  1297 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1298   if (src.first()->is_stack()) {
  1299     if (dst.first()->is_stack()) {
  1300       // stack to stack
  1301       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1302       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1303     } else {
  1304       // stack to reg
  1305       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1307   } else if (dst.first()->is_stack()) {
  1308     // reg to stack
  1309     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1310   } else {
  1311     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1316 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1317   if (src.first()->is_stack()) {
  1318     if (dst.first()->is_stack()) {
  1319       // stack to stack
  1320       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1321       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1322     } else {
  1323       // stack to reg
  1324       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1326   } else if (dst.first()->is_stack()) {
  1327     // reg to stack
  1328     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1329   } else {
  1330     __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1335 // An oop arg. Must pass a handle not the oop itself
  1336 static void object_move(MacroAssembler* masm,
  1337                         OopMap* map,
  1338                         int oop_handle_offset,
  1339                         int framesize_in_slots,
  1340                         VMRegPair src,
  1341                         VMRegPair dst,
  1342                         bool is_receiver,
  1343                         int* receiver_offset) {
  1345   // must pass a handle. First figure out the location we use as a handle
  1347   if (src.first()->is_stack()) {
  1348     // Oop is already on the stack
  1349     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
  1350     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
  1351     __ ld_ptr(rHandle, 0, L4);
  1352 #ifdef _LP64
  1353     __ movr( Assembler::rc_z, L4, G0, rHandle );
  1354 #else
  1355     __ tst( L4 );
  1356     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1357 #endif
  1358     if (dst.first()->is_stack()) {
  1359       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1361     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1362     if (is_receiver) {
  1363       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
  1365     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
  1366   } else {
  1367     // Oop is in an input register pass we must flush it to the stack
  1368     const Register rOop = src.first()->as_Register();
  1369     const Register rHandle = L5;
  1370     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
  1371     int offset = oop_slot*VMRegImpl::stack_slot_size;
  1372     Label skip;
  1373     __ st_ptr(rOop, SP, offset + STACK_BIAS);
  1374     if (is_receiver) {
  1375       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
  1377     map->set_oop(VMRegImpl::stack2reg(oop_slot));
  1378     __ add(SP, offset + STACK_BIAS, rHandle);
  1379 #ifdef _LP64
  1380     __ movr( Assembler::rc_z, rOop, G0, rHandle );
  1381 #else
  1382     __ tst( rOop );
  1383     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
  1384 #endif
  1386     if (dst.first()->is_stack()) {
  1387       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
  1388     } else {
  1389       __ mov(rHandle, dst.first()->as_Register());
  1394 // A float arg may have to do float reg int reg conversion
  1395 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1396   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
  1398   if (src.first()->is_stack()) {
  1399     if (dst.first()->is_stack()) {
  1400       // stack to stack the easiest of the bunch
  1401       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1402       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1403     } else {
  1404       // stack to reg
  1405       if (dst.first()->is_Register()) {
  1406         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1407       } else {
  1408         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1411   } else if (dst.first()->is_stack()) {
  1412     // reg to stack
  1413     if (src.first()->is_Register()) {
  1414       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1415     } else {
  1416       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1418   } else {
  1419     // reg to reg
  1420     if (src.first()->is_Register()) {
  1421       if (dst.first()->is_Register()) {
  1422         // gpr -> gpr
  1423         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1424       } else {
  1425         // gpr -> fpr
  1426         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
  1427         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
  1429     } else if (dst.first()->is_Register()) {
  1430       // fpr -> gpr
  1431       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
  1432       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
  1433     } else {
  1434       // fpr -> fpr
  1435       // In theory these overlap but the ordering is such that this is likely a nop
  1436       if ( src.first() != dst.first()) {
  1437         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1443 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1444   VMRegPair src_lo(src.first());
  1445   VMRegPair src_hi(src.second());
  1446   VMRegPair dst_lo(dst.first());
  1447   VMRegPair dst_hi(dst.second());
  1448   simple_move32(masm, src_lo, dst_lo);
  1449   simple_move32(masm, src_hi, dst_hi);
  1452 // A long move
  1453 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1455   // Do the simple ones here else do two int moves
  1456   if (src.is_single_phys_reg() ) {
  1457     if (dst.is_single_phys_reg()) {
  1458       __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1459     } else {
  1460       // split src into two separate registers
  1461       // Remember hi means hi address or lsw on sparc
  1462       // Move msw to lsw
  1463       if (dst.second()->is_reg()) {
  1464         // MSW -> MSW
  1465         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
  1466         // Now LSW -> LSW
  1467         // this will only move lo -> lo and ignore hi
  1468         VMRegPair split(dst.second());
  1469         simple_move32(masm, src, split);
  1470       } else {
  1471         VMRegPair split(src.first(), L4->as_VMReg());
  1472         // MSW -> MSW (lo ie. first word)
  1473         __ srax(src.first()->as_Register(), 32, L4);
  1474         split_long_move(masm, split, dst);
  1477   } else if (dst.is_single_phys_reg()) {
  1478     if (src.is_adjacent_aligned_on_stack(2)) {
  1479       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1480     } else {
  1481       // dst is a single reg.
  1482       // Remember lo is low address not msb for stack slots
  1483       // and lo is the "real" register for registers
  1484       // src is
  1486       VMRegPair split;
  1488       if (src.first()->is_reg()) {
  1489         // src.lo (msw) is a reg, src.hi is stk/reg
  1490         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
  1491         split.set_pair(dst.first(), src.first());
  1492       } else {
  1493         // msw is stack move to L5
  1494         // lsw is stack move to dst.lo (real reg)
  1495         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
  1496         split.set_pair(dst.first(), L5->as_VMReg());
  1499       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
  1500       // msw   -> src.lo/L5,  lsw -> dst.lo
  1501       split_long_move(masm, src, split);
  1503       // So dst now has the low order correct position the
  1504       // msw half
  1505       __ sllx(split.first()->as_Register(), 32, L5);
  1507       const Register d = dst.first()->as_Register();
  1508       __ or3(L5, d, d);
  1510   } else {
  1511     // For LP64 we can probably do better.
  1512     split_long_move(masm, src, dst);
  1516 // A double move
  1517 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
  1519   // The painful thing here is that like long_move a VMRegPair might be
  1520   // 1: a single physical register
  1521   // 2: two physical registers (v8)
  1522   // 3: a physical reg [lo] and a stack slot [hi] (v8)
  1523   // 4: two stack slots
  1525   // Since src is always a java calling convention we know that the src pair
  1526   // is always either all registers or all stack (and aligned?)
  1528   // in a register [lo] and a stack slot [hi]
  1529   if (src.first()->is_stack()) {
  1530     if (dst.first()->is_stack()) {
  1531       // stack to stack the easiest of the bunch
  1532       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
  1533       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
  1534       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1535       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
  1536       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1537     } else {
  1538       // stack to reg
  1539       if (dst.second()->is_stack()) {
  1540         // stack -> reg, stack -> stack
  1541         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1542         if (dst.first()->is_Register()) {
  1543           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1544         } else {
  1545           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1547         // This was missing. (very rare case)
  1548         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1549       } else {
  1550         // stack -> reg
  1551         // Eventually optimize for alignment QQQ
  1552         if (dst.first()->is_Register()) {
  1553           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
  1554           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
  1555         } else {
  1556           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
  1557           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
  1561   } else if (dst.first()->is_stack()) {
  1562     // reg to stack
  1563     if (src.first()->is_Register()) {
  1564       // Eventually optimize for alignment QQQ
  1565       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1566       if (src.second()->is_stack()) {
  1567         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
  1568         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1569       } else {
  1570         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1572     } else {
  1573       // fpr to stack
  1574       if (src.second()->is_stack()) {
  1575         ShouldNotReachHere();
  1576       } else {
  1577         // Is the stack aligned?
  1578         if (reg2offset(dst.first()) & 0x7) {
  1579           // No do as pairs
  1580           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1581           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
  1582         } else {
  1583           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
  1587   } else {
  1588     // reg to reg
  1589     if (src.first()->is_Register()) {
  1590       if (dst.first()->is_Register()) {
  1591         // gpr -> gpr
  1592         __ mov(src.first()->as_Register(), dst.first()->as_Register());
  1593         __ mov(src.second()->as_Register(), dst.second()->as_Register());
  1594       } else {
  1595         // gpr -> fpr
  1596         // ought to be able to do a single store
  1597         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
  1598         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
  1599         // ought to be able to do a single load
  1600         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
  1601         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
  1603     } else if (dst.first()->is_Register()) {
  1604       // fpr -> gpr
  1605       // ought to be able to do a single store
  1606       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
  1607       // ought to be able to do a single load
  1608       // REMEMBER first() is low address not LSB
  1609       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
  1610       if (dst.second()->is_Register()) {
  1611         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
  1612       } else {
  1613         __ ld(FP, -4 + STACK_BIAS, L4);
  1614         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
  1616     } else {
  1617       // fpr -> fpr
  1618       // In theory these overlap but the ordering is such that this is likely a nop
  1619       if ( src.first() != dst.first()) {
  1620         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
  1626 // Creates an inner frame if one hasn't already been created, and
  1627 // saves a copy of the thread in L7_thread_cache
  1628 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
  1629   if (!*already_created) {
  1630     __ save_frame(0);
  1631     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
  1632     // Don't use save_thread because it smashes G2 and we merely want to save a
  1633     // copy
  1634     __ mov(G2_thread, L7_thread_cache);
  1635     *already_created = true;
  1640 static void save_or_restore_arguments(MacroAssembler* masm,
  1641                                       const int stack_slots,
  1642                                       const int total_in_args,
  1643                                       const int arg_save_area,
  1644                                       OopMap* map,
  1645                                       VMRegPair* in_regs,
  1646                                       BasicType* in_sig_bt) {
  1647   // if map is non-NULL then the code should store the values,
  1648   // otherwise it should load them.
  1649   if (map != NULL) {
  1650     // Fill in the map
  1651     for (int i = 0; i < total_in_args; i++) {
  1652       if (in_sig_bt[i] == T_ARRAY) {
  1653         if (in_regs[i].first()->is_stack()) {
  1654           int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
  1655           map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
  1656         } else if (in_regs[i].first()->is_Register()) {
  1657           map->set_oop(in_regs[i].first());
  1658         } else {
  1659           ShouldNotReachHere();
  1665   // Save or restore double word values
  1666   int handle_index = 0;
  1667   for (int i = 0; i < total_in_args; i++) {
  1668     int slot = handle_index + arg_save_area;
  1669     int offset = slot * VMRegImpl::stack_slot_size;
  1670     if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
  1671       const Register reg = in_regs[i].first()->as_Register();
  1672       if (reg->is_global()) {
  1673         handle_index += 2;
  1674         assert(handle_index <= stack_slots, "overflow");
  1675         if (map != NULL) {
  1676           __ stx(reg, SP, offset + STACK_BIAS);
  1677         } else {
  1678           __ ldx(SP, offset + STACK_BIAS, reg);
  1681     } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
  1682       handle_index += 2;
  1683       assert(handle_index <= stack_slots, "overflow");
  1684       if (map != NULL) {
  1685         __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1686       } else {
  1687         __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1691   // Save floats
  1692   for (int i = 0; i < total_in_args; i++) {
  1693     int slot = handle_index + arg_save_area;
  1694     int offset = slot * VMRegImpl::stack_slot_size;
  1695     if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
  1696       handle_index++;
  1697       assert(handle_index <= stack_slots, "overflow");
  1698       if (map != NULL) {
  1699         __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
  1700       } else {
  1701         __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
  1709 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
  1710 // keeps a new JNI critical region from starting until a GC has been
  1711 // forced.  Save down any oops in registers and describe them in an
  1712 // OopMap.
  1713 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
  1714                                                const int stack_slots,
  1715                                                const int total_in_args,
  1716                                                const int arg_save_area,
  1717                                                OopMapSet* oop_maps,
  1718                                                VMRegPair* in_regs,
  1719                                                BasicType* in_sig_bt) {
  1720   __ block_comment("check GC_locker::needs_gc");
  1721   Label cont;
  1722   AddressLiteral sync_state(GC_locker::needs_gc_address());
  1723   __ load_bool_contents(sync_state, G3_scratch);
  1724   __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
  1725   __ delayed()->nop();
  1727   // Save down any values that are live in registers and call into the
  1728   // runtime to halt for a GC
  1729   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1730   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1731                             arg_save_area, map, in_regs, in_sig_bt);
  1733   __ mov(G2_thread, L7_thread_cache);
  1735   __ set_last_Java_frame(SP, noreg);
  1737   __ block_comment("block_for_jni_critical");
  1738   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
  1739   __ delayed()->mov(L7_thread_cache, O0);
  1740   oop_maps->add_gc_map( __ offset(), map);
  1742   __ restore_thread(L7_thread_cache); // restore G2_thread
  1743   __ reset_last_Java_frame();
  1745   // Reload all the register arguments
  1746   save_or_restore_arguments(masm, stack_slots, total_in_args,
  1747                             arg_save_area, NULL, in_regs, in_sig_bt);
  1749   __ bind(cont);
  1750 #ifdef ASSERT
  1751   if (StressCriticalJNINatives) {
  1752     // Stress register saving
  1753     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  1754     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1755                               arg_save_area, map, in_regs, in_sig_bt);
  1756     // Destroy argument registers
  1757     for (int i = 0; i < total_in_args; i++) {
  1758       if (in_regs[i].first()->is_Register()) {
  1759         const Register reg = in_regs[i].first()->as_Register();
  1760         if (reg->is_global()) {
  1761           __ mov(G0, reg);
  1763       } else if (in_regs[i].first()->is_FloatRegister()) {
  1764         __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
  1768     save_or_restore_arguments(masm, stack_slots, total_in_args,
  1769                               arg_save_area, NULL, in_regs, in_sig_bt);
  1771 #endif
  1774 // Unpack an array argument into a pointer to the body and the length
  1775 // if the array is non-null, otherwise pass 0 for both.
  1776 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
  1777   // Pass the length, ptr pair
  1778   Label is_null, done;
  1779   if (reg.first()->is_stack()) {
  1780     VMRegPair tmp  = reg64_to_VMRegPair(L2);
  1781     // Load the arg up from the stack
  1782     move_ptr(masm, reg, tmp);
  1783     reg = tmp;
  1785   __ cmp(reg.first()->as_Register(), G0);
  1786   __ brx(Assembler::equal, false, Assembler::pt, is_null);
  1787   __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
  1788   move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
  1789   __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
  1790   move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
  1791   __ ba_short(done);
  1792   __ bind(is_null);
  1793   // Pass zeros
  1794   move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
  1795   move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
  1796   __ bind(done);
  1799 static void verify_oop_args(MacroAssembler* masm,
  1800                             methodHandle method,
  1801                             const BasicType* sig_bt,
  1802                             const VMRegPair* regs) {
  1803   Register temp_reg = G5_method;  // not part of any compiled calling seq
  1804   if (VerifyOops) {
  1805     for (int i = 0; i < method->size_of_parameters(); i++) {
  1806       if (sig_bt[i] == T_OBJECT ||
  1807           sig_bt[i] == T_ARRAY) {
  1808         VMReg r = regs[i].first();
  1809         assert(r->is_valid(), "bad oop arg");
  1810         if (r->is_stack()) {
  1811           RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1812           ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
  1813           __ ld_ptr(SP, ld_off, temp_reg);
  1814           __ verify_oop(temp_reg);
  1815         } else {
  1816           __ verify_oop(r->as_Register());
  1823 static void gen_special_dispatch(MacroAssembler* masm,
  1824                                  methodHandle method,
  1825                                  const BasicType* sig_bt,
  1826                                  const VMRegPair* regs) {
  1827   verify_oop_args(masm, method, sig_bt, regs);
  1828   vmIntrinsics::ID iid = method->intrinsic_id();
  1830   // Now write the args into the outgoing interpreter space
  1831   bool     has_receiver   = false;
  1832   Register receiver_reg   = noreg;
  1833   int      member_arg_pos = -1;
  1834   Register member_reg     = noreg;
  1835   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
  1836   if (ref_kind != 0) {
  1837     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
  1838     member_reg = G5_method;  // known to be free at this point
  1839     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
  1840   } else if (iid == vmIntrinsics::_invokeBasic) {
  1841     has_receiver = true;
  1842   } else {
  1843     fatal(err_msg_res("unexpected intrinsic id %d", iid));
  1846   if (member_reg != noreg) {
  1847     // Load the member_arg into register, if necessary.
  1848     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
  1849     VMReg r = regs[member_arg_pos].first();
  1850     if (r->is_stack()) {
  1851       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1852       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
  1853       __ ld_ptr(SP, ld_off, member_reg);
  1854     } else {
  1855       // no data motion is needed
  1856       member_reg = r->as_Register();
  1860   if (has_receiver) {
  1861     // Make sure the receiver is loaded into a register.
  1862     assert(method->size_of_parameters() > 0, "oob");
  1863     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
  1864     VMReg r = regs[0].first();
  1865     assert(r->is_valid(), "bad receiver arg");
  1866     if (r->is_stack()) {
  1867       // Porting note:  This assumes that compiled calling conventions always
  1868       // pass the receiver oop in a register.  If this is not true on some
  1869       // platform, pick a temp and load the receiver from stack.
  1870       fatal("receiver always in a register");
  1871       receiver_reg = G3_scratch;  // known to be free at this point
  1872       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
  1873       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
  1874       __ ld_ptr(SP, ld_off, receiver_reg);
  1875     } else {
  1876       // no data motion is needed
  1877       receiver_reg = r->as_Register();
  1881   // Figure out which address we are really jumping to:
  1882   MethodHandles::generate_method_handle_dispatch(masm, iid,
  1883                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
  1886 // ---------------------------------------------------------------------------
  1887 // Generate a native wrapper for a given method.  The method takes arguments
  1888 // in the Java compiled code convention, marshals them to the native
  1889 // convention (handlizes oops, etc), transitions to native, makes the call,
  1890 // returns to java state (possibly blocking), unhandlizes any result and
  1891 // returns.
  1892 //
  1893 // Critical native functions are a shorthand for the use of
  1894 // GetPrimtiveArrayCritical and disallow the use of any other JNI
  1895 // functions.  The wrapper is expected to unpack the arguments before
  1896 // passing them to the callee and perform checks before and after the
  1897 // native call to ensure that they GC_locker
  1898 // lock_critical/unlock_critical semantics are followed.  Some other
  1899 // parts of JNI setup are skipped like the tear down of the JNI handle
  1900 // block and the check for pending exceptions it's impossible for them
  1901 // to be thrown.
  1902 //
  1903 // They are roughly structured like this:
  1904 //    if (GC_locker::needs_gc())
  1905 //      SharedRuntime::block_for_jni_critical();
  1906 //    tranistion to thread_in_native
  1907 //    unpack arrray arguments and call native entry point
  1908 //    check for safepoint in progress
  1909 //    check if any thread suspend flags are set
  1910 //      call into JVM and possible unlock the JNI critical
  1911 //      if a GC was suppressed while in the critical native.
  1912 //    transition back to thread_in_Java
  1913 //    return to caller
  1914 //
  1915 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
  1916                                                 methodHandle method,
  1917                                                 int compile_id,
  1918                                                 BasicType* in_sig_bt,
  1919                                                 VMRegPair* in_regs,
  1920                                                 BasicType ret_type) {
  1921   if (method->is_method_handle_intrinsic()) {
  1922     vmIntrinsics::ID iid = method->intrinsic_id();
  1923     intptr_t start = (intptr_t)__ pc();
  1924     int vep_offset = ((intptr_t)__ pc()) - start;
  1925     gen_special_dispatch(masm,
  1926                          method,
  1927                          in_sig_bt,
  1928                          in_regs);
  1929     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
  1930     __ flush();
  1931     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
  1932     return nmethod::new_native_nmethod(method,
  1933                                        compile_id,
  1934                                        masm->code(),
  1935                                        vep_offset,
  1936                                        frame_complete,
  1937                                        stack_slots / VMRegImpl::slots_per_word,
  1938                                        in_ByteSize(-1),
  1939                                        in_ByteSize(-1),
  1940                                        (OopMapSet*)NULL);
  1942   bool is_critical_native = true;
  1943   address native_func = method->critical_native_function();
  1944   if (native_func == NULL) {
  1945     native_func = method->native_function();
  1946     is_critical_native = false;
  1948   assert(native_func != NULL, "must have function");
  1950   // Native nmethod wrappers never take possesion of the oop arguments.
  1951   // So the caller will gc the arguments. The only thing we need an
  1952   // oopMap for is if the call is static
  1953   //
  1954   // An OopMap for lock (and class if static), and one for the VM call itself
  1955   OopMapSet *oop_maps = new OopMapSet();
  1956   intptr_t start = (intptr_t)__ pc();
  1958   // First thing make an ic check to see if we should even be here
  1960     Label L;
  1961     const Register temp_reg = G3_scratch;
  1962     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  1963     __ verify_oop(O0);
  1964     __ load_klass(O0, temp_reg);
  1965     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  1967     __ jump_to(ic_miss, temp_reg);
  1968     __ delayed()->nop();
  1969     __ align(CodeEntryAlignment);
  1970     __ bind(L);
  1973   int vep_offset = ((intptr_t)__ pc()) - start;
  1975 #ifdef COMPILER1
  1976   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
  1977     // Object.hashCode can pull the hashCode from the header word
  1978     // instead of doing a full VM transition once it's been computed.
  1979     // Since hashCode is usually polymorphic at call sites we can't do
  1980     // this optimization at the call site without a lot of work.
  1981     Label slowCase;
  1982     Register receiver             = O0;
  1983     Register result               = O0;
  1984     Register header               = G3_scratch;
  1985     Register hash                 = G3_scratch; // overwrite header value with hash value
  1986     Register mask                 = G1;         // to get hash field from header
  1988     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
  1989     // We depend on hash_mask being at most 32 bits and avoid the use of
  1990     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  1991     // vm: see markOop.hpp.
  1992     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
  1993     __ sethi(markOopDesc::hash_mask, mask);
  1994     __ btst(markOopDesc::unlocked_value, header);
  1995     __ br(Assembler::zero, false, Assembler::pn, slowCase);
  1996     if (UseBiasedLocking) {
  1997       // Check if biased and fall through to runtime if so
  1998       __ delayed()->nop();
  1999       __ btst(markOopDesc::biased_lock_bit_in_place, header);
  2000       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
  2002     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
  2004     // Check for a valid (non-zero) hash code and get its value.
  2005 #ifdef _LP64
  2006     __ srlx(header, markOopDesc::hash_shift, hash);
  2007 #else
  2008     __ srl(header, markOopDesc::hash_shift, hash);
  2009 #endif
  2010     __ andcc(hash, mask, hash);
  2011     __ br(Assembler::equal, false, Assembler::pn, slowCase);
  2012     __ delayed()->nop();
  2014     // leaf return.
  2015     __ retl();
  2016     __ delayed()->mov(hash, result);
  2017     __ bind(slowCase);
  2019 #endif // COMPILER1
  2022   // We have received a description of where all the java arg are located
  2023   // on entry to the wrapper. We need to convert these args to where
  2024   // the jni function will expect them. To figure out where they go
  2025   // we convert the java signature to a C signature by inserting
  2026   // the hidden arguments as arg[0] and possibly arg[1] (static method)
  2028   const int total_in_args = method->size_of_parameters();
  2029   int total_c_args = total_in_args;
  2030   int total_save_slots = 6 * VMRegImpl::slots_per_word;
  2031   if (!is_critical_native) {
  2032     total_c_args += 1;
  2033     if (method->is_static()) {
  2034       total_c_args++;
  2036   } else {
  2037     for (int i = 0; i < total_in_args; i++) {
  2038       if (in_sig_bt[i] == T_ARRAY) {
  2039         // These have to be saved and restored across the safepoint
  2040         total_c_args++;
  2045   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
  2046   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
  2047   BasicType* in_elem_bt = NULL;
  2049   int argc = 0;
  2050   if (!is_critical_native) {
  2051     out_sig_bt[argc++] = T_ADDRESS;
  2052     if (method->is_static()) {
  2053       out_sig_bt[argc++] = T_OBJECT;
  2056     for (int i = 0; i < total_in_args ; i++ ) {
  2057       out_sig_bt[argc++] = in_sig_bt[i];
  2059   } else {
  2060     Thread* THREAD = Thread::current();
  2061     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
  2062     SignatureStream ss(method->signature());
  2063     for (int i = 0; i < total_in_args ; i++ ) {
  2064       if (in_sig_bt[i] == T_ARRAY) {
  2065         // Arrays are passed as int, elem* pair
  2066         out_sig_bt[argc++] = T_INT;
  2067         out_sig_bt[argc++] = T_ADDRESS;
  2068         Symbol* atype = ss.as_symbol(CHECK_NULL);
  2069         const char* at = atype->as_C_string();
  2070         if (strlen(at) == 2) {
  2071           assert(at[0] == '[', "must be");
  2072           switch (at[1]) {
  2073             case 'B': in_elem_bt[i]  = T_BYTE; break;
  2074             case 'C': in_elem_bt[i]  = T_CHAR; break;
  2075             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
  2076             case 'F': in_elem_bt[i]  = T_FLOAT; break;
  2077             case 'I': in_elem_bt[i]  = T_INT; break;
  2078             case 'J': in_elem_bt[i]  = T_LONG; break;
  2079             case 'S': in_elem_bt[i]  = T_SHORT; break;
  2080             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
  2081             default: ShouldNotReachHere();
  2084       } else {
  2085         out_sig_bt[argc++] = in_sig_bt[i];
  2086         in_elem_bt[i] = T_VOID;
  2088       if (in_sig_bt[i] != T_VOID) {
  2089         assert(in_sig_bt[i] == ss.type(), "must match");
  2090         ss.next();
  2095   // Now figure out where the args must be stored and how much stack space
  2096   // they require (neglecting out_preserve_stack_slots but space for storing
  2097   // the 1st six register arguments). It's weird see int_stk_helper.
  2098   //
  2099   int out_arg_slots;
  2100   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2102   if (is_critical_native) {
  2103     // Critical natives may have to call out so they need a save area
  2104     // for register arguments.
  2105     int double_slots = 0;
  2106     int single_slots = 0;
  2107     for ( int i = 0; i < total_in_args; i++) {
  2108       if (in_regs[i].first()->is_Register()) {
  2109         const Register reg = in_regs[i].first()->as_Register();
  2110         switch (in_sig_bt[i]) {
  2111           case T_ARRAY:
  2112           case T_BOOLEAN:
  2113           case T_BYTE:
  2114           case T_SHORT:
  2115           case T_CHAR:
  2116           case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
  2117           case T_LONG: if (reg->is_global()) double_slots++; break;
  2118           default:  ShouldNotReachHere();
  2120       } else if (in_regs[i].first()->is_FloatRegister()) {
  2121         switch (in_sig_bt[i]) {
  2122           case T_FLOAT:  single_slots++; break;
  2123           case T_DOUBLE: double_slots++; break;
  2124           default:  ShouldNotReachHere();
  2128     total_save_slots = double_slots * 2 + single_slots;
  2131   // Compute framesize for the wrapper.  We need to handlize all oops in
  2132   // registers. We must create space for them here that is disjoint from
  2133   // the windowed save area because we have no control over when we might
  2134   // flush the window again and overwrite values that gc has since modified.
  2135   // (The live window race)
  2136   //
  2137   // We always just allocate 6 word for storing down these object. This allow
  2138   // us to simply record the base and use the Ireg number to decide which
  2139   // slot to use. (Note that the reg number is the inbound number not the
  2140   // outbound number).
  2141   // We must shuffle args to match the native convention, and include var-args space.
  2143   // Calculate the total number of stack slots we will need.
  2145   // First count the abi requirement plus all of the outgoing args
  2146   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2148   // Now the space for the inbound oop handle area
  2150   int oop_handle_offset = round_to(stack_slots, 2);
  2151   stack_slots += total_save_slots;
  2153   // Now any space we need for handlizing a klass if static method
  2155   int klass_slot_offset = 0;
  2156   int klass_offset = -1;
  2157   int lock_slot_offset = 0;
  2158   bool is_static = false;
  2160   if (method->is_static()) {
  2161     klass_slot_offset = stack_slots;
  2162     stack_slots += VMRegImpl::slots_per_word;
  2163     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
  2164     is_static = true;
  2167   // Plus a lock if needed
  2169   if (method->is_synchronized()) {
  2170     lock_slot_offset = stack_slots;
  2171     stack_slots += VMRegImpl::slots_per_word;
  2174   // Now a place to save return value or as a temporary for any gpr -> fpr moves
  2175   stack_slots += 2;
  2177   // Ok The space we have allocated will look like:
  2178   //
  2179   //
  2180   // FP-> |                     |
  2181   //      |---------------------|
  2182   //      | 2 slots for moves   |
  2183   //      |---------------------|
  2184   //      | lock box (if sync)  |
  2185   //      |---------------------| <- lock_slot_offset
  2186   //      | klass (if static)   |
  2187   //      |---------------------| <- klass_slot_offset
  2188   //      | oopHandle area      |
  2189   //      |---------------------| <- oop_handle_offset
  2190   //      | outbound memory     |
  2191   //      | based arguments     |
  2192   //      |                     |
  2193   //      |---------------------|
  2194   //      | vararg area         |
  2195   //      |---------------------|
  2196   //      |                     |
  2197   // SP-> | out_preserved_slots |
  2198   //
  2199   //
  2202   // Now compute actual number of stack words we need rounding to make
  2203   // stack properly aligned.
  2204   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
  2206   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2208   // Generate stack overflow check before creating frame
  2209   __ generate_stack_overflow_check(stack_size);
  2211   // Generate a new frame for the wrapper.
  2212   __ save(SP, -stack_size, SP);
  2214   int frame_complete = ((intptr_t)__ pc()) - start;
  2216   __ verify_thread();
  2218   if (is_critical_native) {
  2219     check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
  2220                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
  2223   //
  2224   // We immediately shuffle the arguments so that any vm call we have to
  2225   // make from here on out (sync slow path, jvmti, etc.) we will have
  2226   // captured the oops from our caller and have a valid oopMap for
  2227   // them.
  2229   // -----------------
  2230   // The Grand Shuffle
  2231   //
  2232   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
  2233   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
  2234   // the class mirror instead of a receiver.  This pretty much guarantees that
  2235   // register layout will not match.  We ignore these extra arguments during
  2236   // the shuffle. The shuffle is described by the two calling convention
  2237   // vectors we have in our possession. We simply walk the java vector to
  2238   // get the source locations and the c vector to get the destinations.
  2239   // Because we have a new window and the argument registers are completely
  2240   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
  2241   // here.
  2243   // This is a trick. We double the stack slots so we can claim
  2244   // the oops in the caller's frame. Since we are sure to have
  2245   // more args than the caller doubling is enough to make
  2246   // sure we can capture all the incoming oop args from the
  2247   // caller.
  2248   //
  2249   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
  2250   // Record sp-based slot for receiver on stack for non-static methods
  2251   int receiver_offset = -1;
  2253   // We move the arguments backward because the floating point registers
  2254   // destination will always be to a register with a greater or equal register
  2255   // number or the stack.
  2257 #ifdef ASSERT
  2258   bool reg_destroyed[RegisterImpl::number_of_registers];
  2259   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2260   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2261     reg_destroyed[r] = false;
  2263   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2264     freg_destroyed[f] = false;
  2267 #endif /* ASSERT */
  2269   for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
  2271 #ifdef ASSERT
  2272     if (in_regs[i].first()->is_Register()) {
  2273       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
  2274     } else if (in_regs[i].first()->is_FloatRegister()) {
  2275       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
  2277     if (out_regs[c_arg].first()->is_Register()) {
  2278       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
  2279     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
  2280       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
  2282 #endif /* ASSERT */
  2284     switch (in_sig_bt[i]) {
  2285       case T_ARRAY:
  2286         if (is_critical_native) {
  2287           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
  2288           c_arg--;
  2289           break;
  2291       case T_OBJECT:
  2292         assert(!is_critical_native, "no oop arguments");
  2293         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
  2294                     ((i == 0) && (!is_static)),
  2295                     &receiver_offset);
  2296         break;
  2297       case T_VOID:
  2298         break;
  2300       case T_FLOAT:
  2301         float_move(masm, in_regs[i], out_regs[c_arg]);
  2302         break;
  2304       case T_DOUBLE:
  2305         assert( i + 1 < total_in_args &&
  2306                 in_sig_bt[i + 1] == T_VOID &&
  2307                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  2308         double_move(masm, in_regs[i], out_regs[c_arg]);
  2309         break;
  2311       case T_LONG :
  2312         long_move(masm, in_regs[i], out_regs[c_arg]);
  2313         break;
  2315       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  2317       default:
  2318         move32_64(masm, in_regs[i], out_regs[c_arg]);
  2322   // Pre-load a static method's oop into O1.  Used both by locking code and
  2323   // the normal JNI call code.
  2324   if (method->is_static() && !is_critical_native) {
  2325     __ set_oop_constant(JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()), O1);
  2327     // Now handlize the static class mirror in O1.  It's known not-null.
  2328     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
  2329     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
  2330     __ add(SP, klass_offset + STACK_BIAS, O1);
  2334   const Register L6_handle = L6;
  2336   if (method->is_synchronized()) {
  2337     assert(!is_critical_native, "unhandled");
  2338     __ mov(O1, L6_handle);
  2341   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
  2342   // except O6/O7. So if we must call out we must push a new frame. We immediately
  2343   // push a new frame and flush the windows.
  2344 #ifdef _LP64
  2345   intptr_t thepc = (intptr_t) __ pc();
  2347     address here = __ pc();
  2348     // Call the next instruction
  2349     __ call(here + 8, relocInfo::none);
  2350     __ delayed()->nop();
  2352 #else
  2353   intptr_t thepc = __ load_pc_address(O7, 0);
  2354 #endif /* _LP64 */
  2356   // We use the same pc/oopMap repeatedly when we call out
  2357   oop_maps->add_gc_map(thepc - start, map);
  2359   // O7 now has the pc loaded that we will use when we finally call to native.
  2361   // Save thread in L7; it crosses a bunch of VM calls below
  2362   // Don't use save_thread because it smashes G2 and we merely
  2363   // want to save a copy
  2364   __ mov(G2_thread, L7_thread_cache);
  2367   // If we create an inner frame once is plenty
  2368   // when we create it we must also save G2_thread
  2369   bool inner_frame_created = false;
  2371   // dtrace method entry support
  2373     SkipIfEqual skip_if(
  2374       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2375     // create inner frame
  2376     __ save_frame(0);
  2377     __ mov(G2_thread, L7_thread_cache);
  2378     __ set_metadata_constant(method(), O1);
  2379     __ call_VM_leaf(L7_thread_cache,
  2380          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2381          G2_thread, O1);
  2382     __ restore();
  2385   // RedefineClasses() tracing support for obsolete method entry
  2386   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2387     // create inner frame
  2388     __ save_frame(0);
  2389     __ mov(G2_thread, L7_thread_cache);
  2390     __ set_metadata_constant(method(), O1);
  2391     __ call_VM_leaf(L7_thread_cache,
  2392          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2393          G2_thread, O1);
  2394     __ restore();
  2397   // We are in the jni frame unless saved_frame is true in which case
  2398   // we are in one frame deeper (the "inner" frame). If we are in the
  2399   // "inner" frames the args are in the Iregs and if the jni frame then
  2400   // they are in the Oregs.
  2401   // If we ever need to go to the VM (for locking, jvmti) then
  2402   // we will always be in the "inner" frame.
  2404   // Lock a synchronized method
  2405   int lock_offset = -1;         // Set if locked
  2406   if (method->is_synchronized()) {
  2407     Register Roop = O1;
  2408     const Register L3_box = L3;
  2410     create_inner_frame(masm, &inner_frame_created);
  2412     __ ld_ptr(I1, 0, O1);
  2413     Label done;
  2415     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
  2416     __ add(FP, lock_offset+STACK_BIAS, L3_box);
  2417 #ifdef ASSERT
  2418     if (UseBiasedLocking) {
  2419       // making the box point to itself will make it clear it went unused
  2420       // but also be obviously invalid
  2421       __ st_ptr(L3_box, L3_box, 0);
  2423 #endif // ASSERT
  2424     //
  2425     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
  2426     //
  2427     __ compiler_lock_object(Roop, L1,    L3_box, L2);
  2428     __ br(Assembler::equal, false, Assembler::pt, done);
  2429     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
  2432     // None of the above fast optimizations worked so we have to get into the
  2433     // slow case of monitor enter.  Inline a special case of call_VM that
  2434     // disallows any pending_exception.
  2435     __ mov(Roop, O0);            // Need oop in O0
  2436     __ mov(L3_box, O1);
  2438     // Record last_Java_sp, in case the VM code releases the JVM lock.
  2440     __ set_last_Java_frame(FP, I7);
  2442     // do the call
  2443     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
  2444     __ delayed()->mov(L7_thread_cache, O2);
  2446     __ restore_thread(L7_thread_cache); // restore G2_thread
  2447     __ reset_last_Java_frame();
  2449 #ifdef ASSERT
  2450     { Label L;
  2451     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2452     __ br_null_short(O0, Assembler::pt, L);
  2453     __ stop("no pending exception allowed on exit from IR::monitorenter");
  2454     __ bind(L);
  2456 #endif
  2457     __ bind(done);
  2461   // Finally just about ready to make the JNI call
  2463   __ flush_windows();
  2464   if (inner_frame_created) {
  2465     __ restore();
  2466   } else {
  2467     // Store only what we need from this frame
  2468     // QQQ I think that non-v9 (like we care) we don't need these saves
  2469     // either as the flush traps and the current window goes too.
  2470     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2471     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
  2474   // get JNIEnv* which is first argument to native
  2475   if (!is_critical_native) {
  2476     __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
  2479   // Use that pc we placed in O7 a while back as the current frame anchor
  2480   __ set_last_Java_frame(SP, O7);
  2482   // We flushed the windows ages ago now mark them as flushed before transitioning.
  2483   __ set(JavaFrameAnchor::flushed, G3_scratch);
  2484   __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  2486   // Transition from _thread_in_Java to _thread_in_native.
  2487   __ set(_thread_in_native, G3_scratch);
  2489 #ifdef _LP64
  2490   AddressLiteral dest(native_func);
  2491   __ relocate(relocInfo::runtime_call_type);
  2492   __ jumpl_to(dest, O7, O7);
  2493 #else
  2494   __ call(native_func, relocInfo::runtime_call_type);
  2495 #endif
  2496   __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2498   __ restore_thread(L7_thread_cache); // restore G2_thread
  2500   // Unpack native results.  For int-types, we do any needed sign-extension
  2501   // and move things into I0.  The return value there will survive any VM
  2502   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
  2503   // specially in the slow-path code.
  2504   switch (ret_type) {
  2505   case T_VOID:    break;        // Nothing to do!
  2506   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
  2507   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
  2508   // In 64 bits build result is in O0, in O0, O1 in 32bit build
  2509   case T_LONG:
  2510 #ifndef _LP64
  2511                   __ mov(O1, I1);
  2512 #endif
  2513                   // Fall thru
  2514   case T_OBJECT:                // Really a handle
  2515   case T_ARRAY:
  2516   case T_INT:
  2517                   __ mov(O0, I0);
  2518                   break;
  2519   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
  2520   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
  2521   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
  2522   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
  2523     break;                      // Cannot de-handlize until after reclaiming jvm_lock
  2524   default:
  2525     ShouldNotReachHere();
  2528   Label after_transition;
  2529   // must we block?
  2531   // Block, if necessary, before resuming in _thread_in_Java state.
  2532   // In order for GC to work, don't clear the last_Java_sp until after blocking.
  2533   { Label no_block;
  2534     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
  2536     // Switch thread to "native transition" state before reading the synchronization state.
  2537     // This additional state is necessary because reading and testing the synchronization
  2538     // state is not atomic w.r.t. GC, as this scenario demonstrates:
  2539     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
  2540     //     VM thread changes sync state to synchronizing and suspends threads for GC.
  2541     //     Thread A is resumed to finish this native method, but doesn't block here since it
  2542     //     didn't see any synchronization is progress, and escapes.
  2543     __ set(_thread_in_native_trans, G3_scratch);
  2544     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2545     if(os::is_MP()) {
  2546       if (UseMembar) {
  2547         // Force this write out before the read below
  2548         __ membar(Assembler::StoreLoad);
  2549       } else {
  2550         // Write serialization page so VM thread can do a pseudo remote membar.
  2551         // We use the current thread pointer to calculate a thread specific
  2552         // offset to write to within the page. This minimizes bus traffic
  2553         // due to cache line collision.
  2554         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
  2557     __ load_contents(sync_state, G3_scratch);
  2558     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
  2560     Label L;
  2561     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
  2562     __ br(Assembler::notEqual, false, Assembler::pn, L);
  2563     __ delayed()->ld(suspend_state, G3_scratch);
  2564     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
  2565     __ bind(L);
  2567     // Block.  Save any potential method result value before the operation and
  2568     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
  2569     // lets us share the oopMap we used when we went native rather the create
  2570     // a distinct one for this pc
  2571     //
  2572     save_native_result(masm, ret_type, stack_slots);
  2573     if (!is_critical_native) {
  2574       __ call_VM_leaf(L7_thread_cache,
  2575                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
  2576                       G2_thread);
  2577     } else {
  2578       __ call_VM_leaf(L7_thread_cache,
  2579                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
  2580                       G2_thread);
  2583     // Restore any method result value
  2584     restore_native_result(masm, ret_type, stack_slots);
  2586     if (is_critical_native) {
  2587       // The call above performed the transition to thread_in_Java so
  2588       // skip the transition logic below.
  2589       __ ba(after_transition);
  2590       __ delayed()->nop();
  2593     __ bind(no_block);
  2596   // thread state is thread_in_native_trans. Any safepoint blocking has already
  2597   // happened so we can now change state to _thread_in_Java.
  2598   __ set(_thread_in_Java, G3_scratch);
  2599   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
  2600   __ bind(after_transition);
  2602   Label no_reguard;
  2603   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
  2604   __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
  2606     save_native_result(masm, ret_type, stack_slots);
  2607   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
  2608   __ delayed()->nop();
  2610   __ restore_thread(L7_thread_cache); // restore G2_thread
  2611     restore_native_result(masm, ret_type, stack_slots);
  2613   __ bind(no_reguard);
  2615   // Handle possible exception (will unlock if necessary)
  2617   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
  2619   // Unlock
  2620   if (method->is_synchronized()) {
  2621     Label done;
  2622     Register I2_ex_oop = I2;
  2623     const Register L3_box = L3;
  2624     // Get locked oop from the handle we passed to jni
  2625     __ ld_ptr(L6_handle, 0, L4);
  2626     __ add(SP, lock_offset+STACK_BIAS, L3_box);
  2627     // Must save pending exception around the slow-path VM call.  Since it's a
  2628     // leaf call, the pending exception (if any) can be kept in a register.
  2629     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
  2630     // Now unlock
  2631     //                       (Roop, Rmark, Rbox,   Rscratch)
  2632     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
  2633     __ br(Assembler::equal, false, Assembler::pt, done);
  2634     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
  2636     // save and restore any potential method result value around the unlocking
  2637     // operation.  Will save in I0 (or stack for FP returns).
  2638     save_native_result(masm, ret_type, stack_slots);
  2640     // Must clear pending-exception before re-entering the VM.  Since this is
  2641     // a leaf call, pending-exception-oop can be safely kept in a register.
  2642     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2644     // slow case of monitor enter.  Inline a special case of call_VM that
  2645     // disallows any pending_exception.
  2646     __ mov(L3_box, O1);
  2648     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
  2649     __ delayed()->mov(L4, O0);              // Need oop in O0
  2651     __ restore_thread(L7_thread_cache); // restore G2_thread
  2653 #ifdef ASSERT
  2654     { Label L;
  2655     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
  2656     __ br_null_short(O0, Assembler::pt, L);
  2657     __ stop("no pending exception allowed on exit from IR::monitorexit");
  2658     __ bind(L);
  2660 #endif
  2661     restore_native_result(masm, ret_type, stack_slots);
  2662     // check_forward_pending_exception jump to forward_exception if any pending
  2663     // exception is set.  The forward_exception routine expects to see the
  2664     // exception in pending_exception and not in a register.  Kind of clumsy,
  2665     // since all folks who branch to forward_exception must have tested
  2666     // pending_exception first and hence have it in a register already.
  2667     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
  2668     __ bind(done);
  2671   // Tell dtrace about this method exit
  2673     SkipIfEqual skip_if(
  2674       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
  2675     save_native_result(masm, ret_type, stack_slots);
  2676     __ set_metadata_constant(method(), O1);
  2677     __ call_VM_leaf(L7_thread_cache,
  2678        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2679        G2_thread, O1);
  2680     restore_native_result(masm, ret_type, stack_slots);
  2683   // Clear "last Java frame" SP and PC.
  2684   __ verify_thread(); // G2_thread must be correct
  2685   __ reset_last_Java_frame();
  2687   // Unpack oop result
  2688   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
  2689       Label L;
  2690       __ addcc(G0, I0, G0);
  2691       __ brx(Assembler::notZero, true, Assembler::pt, L);
  2692       __ delayed()->ld_ptr(I0, 0, I0);
  2693       __ mov(G0, I0);
  2694       __ bind(L);
  2695       __ verify_oop(I0);
  2698   if (!is_critical_native) {
  2699     // reset handle block
  2700     __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
  2701     __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
  2703     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
  2704     check_forward_pending_exception(masm, G3_scratch);
  2708   // Return
  2710 #ifndef _LP64
  2711   if (ret_type == T_LONG) {
  2713     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
  2714     __ sllx(I0, 32, G1);          // Shift bits into high G1
  2715     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  2716     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  2718 #endif
  2720   __ ret();
  2721   __ delayed()->restore();
  2723   __ flush();
  2725   nmethod *nm = nmethod::new_native_nmethod(method,
  2726                                             compile_id,
  2727                                             masm->code(),
  2728                                             vep_offset,
  2729                                             frame_complete,
  2730                                             stack_slots / VMRegImpl::slots_per_word,
  2731                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
  2732                                             in_ByteSize(lock_offset),
  2733                                             oop_maps);
  2735   if (is_critical_native) {
  2736     nm->set_lazy_critical_native(true);
  2738   return nm;
  2742 #ifdef HAVE_DTRACE_H
  2743 // ---------------------------------------------------------------------------
  2744 // Generate a dtrace nmethod for a given signature.  The method takes arguments
  2745 // in the Java compiled code convention, marshals them to the native
  2746 // abi and then leaves nops at the position you would expect to call a native
  2747 // function. When the probe is enabled the nops are replaced with a trap
  2748 // instruction that dtrace inserts and the trace will cause a notification
  2749 // to dtrace.
  2750 //
  2751 // The probes are only able to take primitive types and java/lang/String as
  2752 // arguments.  No other java types are allowed. Strings are converted to utf8
  2753 // strings so that from dtrace point of view java strings are converted to C
  2754 // strings. There is an arbitrary fixed limit on the total space that a method
  2755 // can use for converting the strings. (256 chars per string in the signature).
  2756 // So any java string larger then this is truncated.
  2758 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
  2759 static bool offsets_initialized = false;
  2761 nmethod *SharedRuntime::generate_dtrace_nmethod(
  2762     MacroAssembler *masm, methodHandle method) {
  2765   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
  2766   // be single threaded in this method.
  2767   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
  2769   // Fill in the signature array, for the calling-convention call.
  2770   int total_args_passed = method->size_of_parameters();
  2772   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2773   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2775   // The signature we are going to use for the trap that dtrace will see
  2776   // java/lang/String is converted. We drop "this" and any other object
  2777   // is converted to NULL.  (A one-slot java/lang/Long object reference
  2778   // is converted to a two-slot long, which is why we double the allocation).
  2779   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
  2780   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
  2782   int i=0;
  2783   int total_strings = 0;
  2784   int first_arg_to_pass = 0;
  2785   int total_c_args = 0;
  2787   // Skip the receiver as dtrace doesn't want to see it
  2788   if( !method->is_static() ) {
  2789     in_sig_bt[i++] = T_OBJECT;
  2790     first_arg_to_pass = 1;
  2793   SignatureStream ss(method->signature());
  2794   for ( ; !ss.at_return_type(); ss.next()) {
  2795     BasicType bt = ss.type();
  2796     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
  2797     out_sig_bt[total_c_args++] = bt;
  2798     if( bt == T_OBJECT) {
  2799       Symbol* s = ss.as_symbol_or_null();
  2800       if (s == vmSymbols::java_lang_String()) {
  2801         total_strings++;
  2802         out_sig_bt[total_c_args-1] = T_ADDRESS;
  2803       } else if (s == vmSymbols::java_lang_Boolean() ||
  2804                  s == vmSymbols::java_lang_Byte()) {
  2805         out_sig_bt[total_c_args-1] = T_BYTE;
  2806       } else if (s == vmSymbols::java_lang_Character() ||
  2807                  s == vmSymbols::java_lang_Short()) {
  2808         out_sig_bt[total_c_args-1] = T_SHORT;
  2809       } else if (s == vmSymbols::java_lang_Integer() ||
  2810                  s == vmSymbols::java_lang_Float()) {
  2811         out_sig_bt[total_c_args-1] = T_INT;
  2812       } else if (s == vmSymbols::java_lang_Long() ||
  2813                  s == vmSymbols::java_lang_Double()) {
  2814         out_sig_bt[total_c_args-1] = T_LONG;
  2815         out_sig_bt[total_c_args++] = T_VOID;
  2817     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
  2818       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2819       // We convert double to long
  2820       out_sig_bt[total_c_args-1] = T_LONG;
  2821       out_sig_bt[total_c_args++] = T_VOID;
  2822     } else if ( bt == T_FLOAT) {
  2823       // We convert float to int
  2824       out_sig_bt[total_c_args-1] = T_INT;
  2828   assert(i==total_args_passed, "validly parsed signature");
  2830   // Now get the compiled-Java layout as input arguments
  2831   int comp_args_on_stack;
  2832   comp_args_on_stack = SharedRuntime::java_calling_convention(
  2833       in_sig_bt, in_regs, total_args_passed, false);
  2835   // We have received a description of where all the java arg are located
  2836   // on entry to the wrapper. We need to convert these args to where
  2837   // the a  native (non-jni) function would expect them. To figure out
  2838   // where they go we convert the java signature to a C signature and remove
  2839   // T_VOID for any long/double we might have received.
  2842   // Now figure out where the args must be stored and how much stack space
  2843   // they require (neglecting out_preserve_stack_slots but space for storing
  2844   // the 1st six register arguments). It's weird see int_stk_helper.
  2845   //
  2846   int out_arg_slots;
  2847   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
  2849   // Calculate the total number of stack slots we will need.
  2851   // First count the abi requirement plus all of the outgoing args
  2852   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
  2854   // Plus a temp for possible converion of float/double/long register args
  2856   int conversion_temp = stack_slots;
  2857   stack_slots += 2;
  2860   // Now space for the string(s) we must convert
  2862   int string_locs = stack_slots;
  2863   stack_slots += total_strings *
  2864                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
  2866   // Ok The space we have allocated will look like:
  2867   //
  2868   //
  2869   // FP-> |                     |
  2870   //      |---------------------|
  2871   //      | string[n]           |
  2872   //      |---------------------| <- string_locs[n]
  2873   //      | string[n-1]         |
  2874   //      |---------------------| <- string_locs[n-1]
  2875   //      | ...                 |
  2876   //      | ...                 |
  2877   //      |---------------------| <- string_locs[1]
  2878   //      | string[0]           |
  2879   //      |---------------------| <- string_locs[0]
  2880   //      | temp                |
  2881   //      |---------------------| <- conversion_temp
  2882   //      | outbound memory     |
  2883   //      | based arguments     |
  2884   //      |                     |
  2885   //      |---------------------|
  2886   //      |                     |
  2887   // SP-> | out_preserved_slots |
  2888   //
  2889   //
  2891   // Now compute actual number of stack words we need rounding to make
  2892   // stack properly aligned.
  2893   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
  2895   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
  2897   intptr_t start = (intptr_t)__ pc();
  2899   // First thing make an ic check to see if we should even be here
  2902     Label L;
  2903     const Register temp_reg = G3_scratch;
  2904     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
  2905     __ verify_oop(O0);
  2906     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
  2907     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
  2909     __ jump_to(ic_miss, temp_reg);
  2910     __ delayed()->nop();
  2911     __ align(CodeEntryAlignment);
  2912     __ bind(L);
  2915   int vep_offset = ((intptr_t)__ pc()) - start;
  2918   // The instruction at the verified entry point must be 5 bytes or longer
  2919   // because it can be patched on the fly by make_non_entrant. The stack bang
  2920   // instruction fits that requirement.
  2922   // Generate stack overflow check before creating frame
  2923   __ generate_stack_overflow_check(stack_size);
  2925   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
  2926          "valid size for make_non_entrant");
  2928   // Generate a new frame for the wrapper.
  2929   __ save(SP, -stack_size, SP);
  2931   // Frame is now completed as far a size and linkage.
  2933   int frame_complete = ((intptr_t)__ pc()) - start;
  2935 #ifdef ASSERT
  2936   bool reg_destroyed[RegisterImpl::number_of_registers];
  2937   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
  2938   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
  2939     reg_destroyed[r] = false;
  2941   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
  2942     freg_destroyed[f] = false;
  2945 #endif /* ASSERT */
  2947   VMRegPair zero;
  2948   const Register g0 = G0; // without this we get a compiler warning (why??)
  2949   zero.set2(g0->as_VMReg());
  2951   int c_arg, j_arg;
  2953   Register conversion_off = noreg;
  2955   for (j_arg = first_arg_to_pass, c_arg = 0 ;
  2956        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
  2958     VMRegPair src = in_regs[j_arg];
  2959     VMRegPair dst = out_regs[c_arg];
  2961 #ifdef ASSERT
  2962     if (src.first()->is_Register()) {
  2963       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
  2964     } else if (src.first()->is_FloatRegister()) {
  2965       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
  2966                                                FloatRegisterImpl::S)], "ack!");
  2968     if (dst.first()->is_Register()) {
  2969       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
  2970     } else if (dst.first()->is_FloatRegister()) {
  2971       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
  2972                                                  FloatRegisterImpl::S)] = true;
  2974 #endif /* ASSERT */
  2976     switch (in_sig_bt[j_arg]) {
  2977       case T_ARRAY:
  2978       case T_OBJECT:
  2980           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
  2981               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
  2982             // need to unbox a one-slot value
  2983             Register in_reg = L0;
  2984             Register tmp = L2;
  2985             if ( src.first()->is_reg() ) {
  2986               in_reg = src.first()->as_Register();
  2987             } else {
  2988               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
  2989                      "must be");
  2990               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
  2992             // If the final destination is an acceptable register
  2993             if ( dst.first()->is_reg() ) {
  2994               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
  2995                 tmp = dst.first()->as_Register();
  2999             Label skipUnbox;
  3000             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
  3001               __ mov(G0, tmp->successor());
  3003             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
  3004             __ delayed()->mov(G0, tmp);
  3006             BasicType bt = out_sig_bt[c_arg];
  3007             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
  3008             switch (bt) {
  3009                 case T_BYTE:
  3010                   __ ldub(in_reg, box_offset, tmp); break;
  3011                 case T_SHORT:
  3012                   __ lduh(in_reg, box_offset, tmp); break;
  3013                 case T_INT:
  3014                   __ ld(in_reg, box_offset, tmp); break;
  3015                 case T_LONG:
  3016                   __ ld_long(in_reg, box_offset, tmp); break;
  3017                 default: ShouldNotReachHere();
  3020             __ bind(skipUnbox);
  3021             // If tmp wasn't final destination copy to final destination
  3022             if (tmp == L2) {
  3023               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
  3024               if (out_sig_bt[c_arg] == T_LONG) {
  3025                 long_move(masm, tmp_as_VM, dst);
  3026               } else {
  3027                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
  3030             if (out_sig_bt[c_arg] == T_LONG) {
  3031               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
  3032               ++c_arg; // move over the T_VOID to keep the loop indices in sync
  3034           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
  3035             Register s =
  3036                 src.first()->is_reg() ? src.first()->as_Register() : L2;
  3037             Register d =
  3038                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3040             // We store the oop now so that the conversion pass can reach
  3041             // while in the inner frame. This will be the only store if
  3042             // the oop is NULL.
  3043             if (s != L2) {
  3044               // src is register
  3045               if (d != L2) {
  3046                 // dst is register
  3047                 __ mov(s, d);
  3048               } else {
  3049                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3050                           STACK_BIAS), "must be");
  3051                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
  3053             } else {
  3054                 // src not a register
  3055                 assert(Assembler::is_simm13(reg2offset(src.first()) +
  3056                            STACK_BIAS), "must be");
  3057                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
  3058                 if (d == L2) {
  3059                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3060                              STACK_BIAS), "must be");
  3061                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
  3064           } else if (out_sig_bt[c_arg] != T_VOID) {
  3065             // Convert the arg to NULL
  3066             if (dst.first()->is_reg()) {
  3067               __ mov(G0, dst.first()->as_Register());
  3068             } else {
  3069               assert(Assembler::is_simm13(reg2offset(dst.first()) +
  3070                          STACK_BIAS), "must be");
  3071               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
  3075         break;
  3076       case T_VOID:
  3077         break;
  3079       case T_FLOAT:
  3080         if (src.first()->is_stack()) {
  3081           // Stack to stack/reg is simple
  3082           move32_64(masm, src, dst);
  3083         } else {
  3084           if (dst.first()->is_reg()) {
  3085             // freg -> reg
  3086             int off =
  3087               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3088             Register d = dst.first()->as_Register();
  3089             if (Assembler::is_simm13(off)) {
  3090               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3091                      SP, off);
  3092               __ ld(SP, off, d);
  3093             } else {
  3094               if (conversion_off == noreg) {
  3095                 __ set(off, L6);
  3096                 conversion_off = L6;
  3098               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3099                      SP, conversion_off);
  3100               __ ld(SP, conversion_off , d);
  3102           } else {
  3103             // freg -> mem
  3104             int off = STACK_BIAS + reg2offset(dst.first());
  3105             if (Assembler::is_simm13(off)) {
  3106               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3107                      SP, off);
  3108             } else {
  3109               if (conversion_off == noreg) {
  3110                 __ set(off, L6);
  3111                 conversion_off = L6;
  3113               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
  3114                      SP, conversion_off);
  3118         break;
  3120       case T_DOUBLE:
  3121         assert( j_arg + 1 < total_args_passed &&
  3122                 in_sig_bt[j_arg + 1] == T_VOID &&
  3123                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
  3124         if (src.first()->is_stack()) {
  3125           // Stack to stack/reg is simple
  3126           long_move(masm, src, dst);
  3127         } else {
  3128           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
  3130           // Destination could be an odd reg on 32bit in which case
  3131           // we can't load direct to the destination.
  3133           if (!d->is_even() && wordSize == 4) {
  3134             d = L2;
  3136           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3137           if (Assembler::is_simm13(off)) {
  3138             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3139                    SP, off);
  3140             __ ld_long(SP, off, d);
  3141           } else {
  3142             if (conversion_off == noreg) {
  3143               __ set(off, L6);
  3144               conversion_off = L6;
  3146             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
  3147                    SP, conversion_off);
  3148             __ ld_long(SP, conversion_off, d);
  3150           if (d == L2) {
  3151             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3154         break;
  3156       case T_LONG :
  3157         // 32bit can't do a split move of something like g1 -> O0, O1
  3158         // so use a memory temp
  3159         if (src.is_single_phys_reg() && wordSize == 4) {
  3160           Register tmp = L2;
  3161           if (dst.first()->is_reg() &&
  3162               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
  3163             tmp = dst.first()->as_Register();
  3166           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
  3167           if (Assembler::is_simm13(off)) {
  3168             __ stx(src.first()->as_Register(), SP, off);
  3169             __ ld_long(SP, off, tmp);
  3170           } else {
  3171             if (conversion_off == noreg) {
  3172               __ set(off, L6);
  3173               conversion_off = L6;
  3175             __ stx(src.first()->as_Register(), SP, conversion_off);
  3176             __ ld_long(SP, conversion_off, tmp);
  3179           if (tmp == L2) {
  3180             long_move(masm, reg64_to_VMRegPair(L2), dst);
  3182         } else {
  3183           long_move(masm, src, dst);
  3185         break;
  3187       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
  3189       default:
  3190         move32_64(masm, src, dst);
  3195   // If we have any strings we must store any register based arg to the stack
  3196   // This includes any still live xmm registers too.
  3198   if (total_strings > 0 ) {
  3200     // protect all the arg registers
  3201     __ save_frame(0);
  3202     __ mov(G2_thread, L7_thread_cache);
  3203     const Register L2_string_off = L2;
  3205     // Get first string offset
  3206     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
  3208     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
  3209       if (out_sig_bt[c_arg] == T_ADDRESS) {
  3211         VMRegPair dst = out_regs[c_arg];
  3212         const Register d = dst.first()->is_reg() ?
  3213             dst.first()->as_Register()->after_save() : noreg;
  3215         // It's a string the oop and it was already copied to the out arg
  3216         // position
  3217         if (d != noreg) {
  3218           __ mov(d, O0);
  3219         } else {
  3220           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3221                  "must be");
  3222           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
  3224         Label skip;
  3226         __ br_null(O0, false, Assembler::pn, skip);
  3227         __ delayed()->add(FP, L2_string_off, O1);
  3229         if (d != noreg) {
  3230           __ mov(O1, d);
  3231         } else {
  3232           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
  3233                  "must be");
  3234           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
  3237         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
  3238                 relocInfo::runtime_call_type);
  3239         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
  3241         __ bind(skip);
  3246     __ mov(L7_thread_cache, G2_thread);
  3247     __ restore();
  3252   // Ok now we are done. Need to place the nop that dtrace wants in order to
  3253   // patch in the trap
  3255   int patch_offset = ((intptr_t)__ pc()) - start;
  3257   __ nop();
  3260   // Return
  3262   __ ret();
  3263   __ delayed()->restore();
  3265   __ flush();
  3267   nmethod *nm = nmethod::new_dtrace_nmethod(
  3268       method, masm->code(), vep_offset, patch_offset, frame_complete,
  3269       stack_slots / VMRegImpl::slots_per_word);
  3270   return nm;
  3274 #endif // HAVE_DTRACE_H
  3276 // this function returns the adjust size (in number of words) to a c2i adapter
  3277 // activation for use during deoptimization
  3278 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
  3279   assert(callee_locals >= callee_parameters,
  3280           "test and remove; got more parms than locals");
  3281   if (callee_locals < callee_parameters)
  3282     return 0;                   // No adjustment for negative locals
  3283   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
  3284   return round_to(diff, WordsPerLong);
  3287 // "Top of Stack" slots that may be unused by the calling convention but must
  3288 // otherwise be preserved.
  3289 // On Intel these are not necessary and the value can be zero.
  3290 // On Sparc this describes the words reserved for storing a register window
  3291 // when an interrupt occurs.
  3292 uint SharedRuntime::out_preserve_stack_slots() {
  3293   return frame::register_save_words * VMRegImpl::slots_per_word;
  3296 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
  3297 //
  3298 // Common out the new frame generation for deopt and uncommon trap
  3299 //
  3300   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
  3301   Register        Oreturn0           = O0;
  3302   Register        Oreturn1           = O1;
  3303   Register        O2UnrollBlock      = O2;
  3304   Register        O3array            = O3;         // Array of frame sizes (input)
  3305   Register        O4array_size       = O4;         // number of frames (input)
  3306   Register        O7frame_size       = O7;         // number of frames (input)
  3308   __ ld_ptr(O3array, 0, O7frame_size);
  3309   __ sub(G0, O7frame_size, O7frame_size);
  3310   __ save(SP, O7frame_size, SP);
  3311   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
  3313   #ifdef ASSERT
  3314   // make sure that the frames are aligned properly
  3315 #ifndef _LP64
  3316   __ btst(wordSize*2-1, SP);
  3317   __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
  3318 #endif
  3319   #endif
  3321   // Deopt needs to pass some extra live values from frame to frame
  3323   if (deopt) {
  3324     __ mov(Oreturn0->after_save(), Oreturn0);
  3325     __ mov(Oreturn1->after_save(), Oreturn1);
  3328   __ mov(O4array_size->after_save(), O4array_size);
  3329   __ sub(O4array_size, 1, O4array_size);
  3330   __ mov(O3array->after_save(), O3array);
  3331   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
  3332   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
  3334   #ifdef ASSERT
  3335   // trash registers to show a clear pattern in backtraces
  3336   __ set(0xDEAD0000, I0);
  3337   __ add(I0,  2, I1);
  3338   __ add(I0,  4, I2);
  3339   __ add(I0,  6, I3);
  3340   __ add(I0,  8, I4);
  3341   // Don't touch I5 could have valuable savedSP
  3342   __ set(0xDEADBEEF, L0);
  3343   __ mov(L0, L1);
  3344   __ mov(L0, L2);
  3345   __ mov(L0, L3);
  3346   __ mov(L0, L4);
  3347   __ mov(L0, L5);
  3349   // trash the return value as there is nothing to return yet
  3350   __ set(0xDEAD0001, O7);
  3351   #endif
  3353   __ mov(SP, O5_savedSP);
  3357 static void make_new_frames(MacroAssembler* masm, bool deopt) {
  3358   //
  3359   // loop through the UnrollBlock info and create new frames
  3360   //
  3361   Register        G3pcs              = G3_scratch;
  3362   Register        Oreturn0           = O0;
  3363   Register        Oreturn1           = O1;
  3364   Register        O2UnrollBlock      = O2;
  3365   Register        O3array            = O3;
  3366   Register        O4array_size       = O4;
  3367   Label           loop;
  3369   // Before we make new frames, check to see if stack is available.
  3370   // Do this after the caller's return address is on top of stack
  3371   if (UseStackBanging) {
  3372     // Get total frame size for interpreted frames
  3373     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
  3374     __ bang_stack_size(O4, O3, G3_scratch);
  3377   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
  3378   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
  3379   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
  3381   // Adjust old interpreter frame to make space for new frame's extra java locals
  3382   //
  3383   // We capture the original sp for the transition frame only because it is needed in
  3384   // order to properly calculate interpreter_sp_adjustment. Even though in real life
  3385   // every interpreter frame captures a savedSP it is only needed at the transition
  3386   // (fortunately). If we had to have it correct everywhere then we would need to
  3387   // be told the sp_adjustment for each frame we create. If the frame size array
  3388   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
  3389   // for each frame we create and keep up the illusion every where.
  3390   //
  3392   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
  3393   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
  3394   __ sub(SP, O7, SP);
  3396 #ifdef ASSERT
  3397   // make sure that there is at least one entry in the array
  3398   __ tst(O4array_size);
  3399   __ breakpoint_trap(Assembler::zero, Assembler::icc);
  3400 #endif
  3402   // Now push the new interpreter frames
  3403   __ bind(loop);
  3405   // allocate a new frame, filling the registers
  3407   gen_new_frame(masm, deopt);        // allocate an interpreter frame
  3409   __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
  3410   __ delayed()->add(O3array, wordSize, O3array);
  3411   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
  3415 //------------------------------generate_deopt_blob----------------------------
  3416 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3417 // instead.
  3418 void SharedRuntime::generate_deopt_blob() {
  3419   // allocate space for the code
  3420   ResourceMark rm;
  3421   // setup code generation tools
  3422   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
  3423   if (UseStackBanging) {
  3424     pad += StackShadowPages*16 + 32;
  3426 #ifdef _LP64
  3427   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
  3428 #else
  3429   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
  3430   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
  3431   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
  3432 #endif /* _LP64 */
  3433   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3434   FloatRegister   Freturn0           = F0;
  3435   Register        Greturn1           = G1;
  3436   Register        Oreturn0           = O0;
  3437   Register        Oreturn1           = O1;
  3438   Register        O2UnrollBlock      = O2;
  3439   Register        L0deopt_mode       = L0;
  3440   Register        G4deopt_mode       = G4_scratch;
  3441   int             frame_size_words;
  3442   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
  3443 #if !defined(_LP64) && defined(COMPILER2)
  3444   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
  3445 #endif
  3446   Label           cont;
  3448   OopMapSet *oop_maps = new OopMapSet();
  3450   //
  3451   // This is the entry point for code which is returning to a de-optimized
  3452   // frame.
  3453   // The steps taken by this frame are as follows:
  3454   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
  3455   //     and all potentially live registers (at a pollpoint many registers can be live).
  3456   //
  3457   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
  3458   //     returns information about the number and size of interpreter frames
  3459   //     which are equivalent to the frame which is being deoptimized)
  3460   //   - deallocate the unpack frame, restoring only results values. Other
  3461   //     volatile registers will now be captured in the vframeArray as needed.
  3462   //   - deallocate the deoptimization frame
  3463   //   - in a loop using the information returned in the previous step
  3464   //     push new interpreter frames (take care to propagate the return
  3465   //     values through each new frame pushed)
  3466   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
  3467   //   - call the C routine: Deoptimization::unpack_frames (this function
  3468   //     lays out values on the interpreter frame which was just created)
  3469   //   - deallocate the dummy unpack_frame
  3470   //   - ensure that all the return values are correctly set and then do
  3471   //     a return to the interpreter entry point
  3472   //
  3473   // Refer to the following methods for more information:
  3474   //   - Deoptimization::fetch_unroll_info
  3475   //   - Deoptimization::unpack_frames
  3477   OopMap* map = NULL;
  3479   int start = __ offset();
  3481   // restore G2, the trampoline destroyed it
  3482   __ get_thread();
  3484   // On entry we have been called by the deoptimized nmethod with a call that
  3485   // replaced the original call (or safepoint polling location) so the deoptimizing
  3486   // pc is now in O7. Return values are still in the expected places
  3488   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3489   __ ba(cont);
  3490   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
  3492   int exception_offset = __ offset() - start;
  3494   // restore G2, the trampoline destroyed it
  3495   __ get_thread();
  3497   // On entry we have been jumped to by the exception handler (or exception_blob
  3498   // for server).  O0 contains the exception oop and O7 contains the original
  3499   // exception pc.  So if we push a frame here it will look to the
  3500   // stack walking code (fetch_unroll_info) just like a normal call so
  3501   // state will be extracted normally.
  3503   // save exception oop in JavaThread and fall through into the
  3504   // exception_in_tls case since they are handled in same way except
  3505   // for where the pending exception is kept.
  3506   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
  3508   //
  3509   // Vanilla deoptimization with an exception pending in exception_oop
  3510   //
  3511   int exception_in_tls_offset = __ offset() - start;
  3513   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3514   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3516   // Restore G2_thread
  3517   __ get_thread();
  3519 #ifdef ASSERT
  3521     // verify that there is really an exception oop in exception_oop
  3522     Label has_exception;
  3523     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
  3524     __ br_notnull_short(Oexception, Assembler::pt, has_exception);
  3525     __ stop("no exception in thread");
  3526     __ bind(has_exception);
  3528     // verify that there is no pending exception
  3529     Label no_pending_exception;
  3530     Address exception_addr(G2_thread, Thread::pending_exception_offset());
  3531     __ ld_ptr(exception_addr, Oexception);
  3532     __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
  3533     __ stop("must not have pending exception here");
  3534     __ bind(no_pending_exception);
  3536 #endif
  3538   __ ba(cont);
  3539   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
  3541   //
  3542   // Reexecute entry, similar to c2 uncommon trap
  3543   //
  3544   int reexecute_offset = __ offset() - start;
  3546   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
  3547   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3549   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
  3551   __ bind(cont);
  3553   __ set_last_Java_frame(SP, noreg);
  3555   // do the call by hand so we can get the oopmap
  3557   __ mov(G2_thread, L7_thread_cache);
  3558   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
  3559   __ delayed()->mov(G2_thread, O0);
  3561   // Set an oopmap for the call site this describes all our saved volatile registers
  3563   oop_maps->add_gc_map( __ offset()-start, map);
  3565   __ mov(L7_thread_cache, G2_thread);
  3567   __ reset_last_Java_frame();
  3569   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
  3570   // so this move will survive
  3572   __ mov(L0deopt_mode, G4deopt_mode);
  3574   __ mov(O0, O2UnrollBlock->after_save());
  3576   RegisterSaver::restore_result_registers(masm);
  3578   Label noException;
  3579   __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
  3581   // Move the pending exception from exception_oop to Oexception so
  3582   // the pending exception will be picked up the interpreter.
  3583   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
  3584   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
  3585   __ bind(noException);
  3587   // deallocate the deoptimization frame taking care to preserve the return values
  3588   __ mov(Oreturn0,     Oreturn0->after_save());
  3589   __ mov(Oreturn1,     Oreturn1->after_save());
  3590   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3591   __ restore();
  3593   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3595   make_new_frames(masm, true);
  3597   // push a dummy "unpack_frame" taking care of float return values and
  3598   // call Deoptimization::unpack_frames to have the unpacker layout
  3599   // information in the interpreter frames just created and then return
  3600   // to the interpreter entry point
  3601   __ save(SP, -frame_size_words*wordSize, SP);
  3602   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
  3603 #if !defined(_LP64)
  3604 #if defined(COMPILER2)
  3605   // 32-bit 1-register longs return longs in G1
  3606   __ stx(Greturn1, saved_Greturn1_addr);
  3607 #endif
  3608   __ set_last_Java_frame(SP, noreg);
  3609   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
  3610 #else
  3611   // LP64 uses g4 in set_last_Java_frame
  3612   __ mov(G4deopt_mode, O1);
  3613   __ set_last_Java_frame(SP, G0);
  3614   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
  3615 #endif
  3616   __ reset_last_Java_frame();
  3617   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
  3619 #if !defined(_LP64) && defined(COMPILER2)
  3620   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
  3621   // I0/I1 if the return value is long.
  3622   Label not_long;
  3623   __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
  3624   __ ldd(saved_Greturn1_addr,I0);
  3625   __ bind(not_long);
  3626 #endif
  3627   __ ret();
  3628   __ delayed()->restore();
  3630   masm->flush();
  3631   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
  3632   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
  3635 #ifdef COMPILER2
  3637 //------------------------------generate_uncommon_trap_blob--------------------
  3638 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
  3639 // instead.
  3640 void SharedRuntime::generate_uncommon_trap_blob() {
  3641   // allocate space for the code
  3642   ResourceMark rm;
  3643   // setup code generation tools
  3644   int pad = VerifyThread ? 512 : 0;
  3645   if (UseStackBanging) {
  3646     pad += StackShadowPages*16 + 32;
  3648 #ifdef _LP64
  3649   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
  3650 #else
  3651   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
  3652   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
  3653   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
  3654 #endif
  3655   MacroAssembler* masm               = new MacroAssembler(&buffer);
  3656   Register        O2UnrollBlock      = O2;
  3657   Register        O2klass_index      = O2;
  3659   //
  3660   // This is the entry point for all traps the compiler takes when it thinks
  3661   // it cannot handle further execution of compilation code. The frame is
  3662   // deoptimized in these cases and converted into interpreter frames for
  3663   // execution
  3664   // The steps taken by this frame are as follows:
  3665   //   - push a fake "unpack_frame"
  3666   //   - call the C routine Deoptimization::uncommon_trap (this function
  3667   //     packs the current compiled frame into vframe arrays and returns
  3668   //     information about the number and size of interpreter frames which
  3669   //     are equivalent to the frame which is being deoptimized)
  3670   //   - deallocate the "unpack_frame"
  3671   //   - deallocate the deoptimization frame
  3672   //   - in a loop using the information returned in the previous step
  3673   //     push interpreter frames;
  3674   //   - create a dummy "unpack_frame"
  3675   //   - call the C routine: Deoptimization::unpack_frames (this function
  3676   //     lays out values on the interpreter frame which was just created)
  3677   //   - deallocate the dummy unpack_frame
  3678   //   - return to the interpreter entry point
  3679   //
  3680   //  Refer to the following methods for more information:
  3681   //   - Deoptimization::uncommon_trap
  3682   //   - Deoptimization::unpack_frame
  3684   // the unloaded class index is in O0 (first parameter to this blob)
  3686   // push a dummy "unpack_frame"
  3687   // and call Deoptimization::uncommon_trap to pack the compiled frame into
  3688   // vframe array and return the UnrollBlock information
  3689   __ save_frame(0);
  3690   __ set_last_Java_frame(SP, noreg);
  3691   __ mov(I0, O2klass_index);
  3692   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
  3693   __ reset_last_Java_frame();
  3694   __ mov(O0, O2UnrollBlock->after_save());
  3695   __ restore();
  3697   // deallocate the deoptimized frame taking care to preserve the return values
  3698   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
  3699   __ restore();
  3701   // Allocate new interpreter frame(s) and possible c2i adapter frame
  3703   make_new_frames(masm, false);
  3705   // push a dummy "unpack_frame" taking care of float return values and
  3706   // call Deoptimization::unpack_frames to have the unpacker layout
  3707   // information in the interpreter frames just created and then return
  3708   // to the interpreter entry point
  3709   __ save_frame(0);
  3710   __ set_last_Java_frame(SP, noreg);
  3711   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
  3712   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
  3713   __ reset_last_Java_frame();
  3714   __ ret();
  3715   __ delayed()->restore();
  3717   masm->flush();
  3718   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
  3721 #endif // COMPILER2
  3723 //------------------------------generate_handler_blob-------------------
  3724 //
  3725 // Generate a special Compile2Runtime blob that saves all registers, and sets
  3726 // up an OopMap.
  3727 //
  3728 // This blob is jumped to (via a breakpoint and the signal handler) from a
  3729 // safepoint in compiled code.  On entry to this blob, O7 contains the
  3730 // address in the original nmethod at which we should resume normal execution.
  3731 // Thus, this blob looks like a subroutine which must preserve lots of
  3732 // registers and return normally.  Note that O7 is never register-allocated,
  3733 // so it is guaranteed to be free here.
  3734 //
  3736 // The hardest part of what this blob must do is to save the 64-bit %o
  3737 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
  3738 // an interrupt will chop off their heads.  Making space in the caller's frame
  3739 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
  3740 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
  3741 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
  3742 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
  3743 // Tricky, tricky, tricky...
  3745 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
  3746   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3748   // allocate space for the code
  3749   ResourceMark rm;
  3750   // setup code generation tools
  3751   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3752   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3753   // even larger with TraceJumps
  3754   int pad = TraceJumps ? 512 : 0;
  3755   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
  3756   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3757   int             frame_size_words;
  3758   OopMapSet *oop_maps = new OopMapSet();
  3759   OopMap* map = NULL;
  3761   int start = __ offset();
  3763   bool cause_return = (poll_type == POLL_AT_RETURN);
  3764   // If this causes a return before the processing, then do a "restore"
  3765   if (cause_return) {
  3766     __ restore();
  3767   } else {
  3768     // Make it look like we were called via the poll
  3769     // so that frame constructor always sees a valid return address
  3770     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
  3771     __ sub(O7, frame::pc_return_offset, O7);
  3774   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3776   // setup last_Java_sp (blows G4)
  3777   __ set_last_Java_frame(SP, noreg);
  3779   // call into the runtime to handle illegal instructions exception
  3780   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3781   __ mov(G2_thread, O0);
  3782   __ save_thread(L7_thread_cache);
  3783   __ call(call_ptr);
  3784   __ delayed()->nop();
  3786   // Set an oopmap for the call site.
  3787   // We need this not only for callee-saved registers, but also for volatile
  3788   // registers that the compiler might be keeping live across a safepoint.
  3790   oop_maps->add_gc_map( __ offset() - start, map);
  3792   __ restore_thread(L7_thread_cache);
  3793   // clear last_Java_sp
  3794   __ reset_last_Java_frame();
  3796   // Check for exceptions
  3797   Label pending;
  3799   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3800   __ br_notnull_short(O1, Assembler::pn, pending);
  3802   RegisterSaver::restore_live_registers(masm);
  3804   // We are back the the original state on entry and ready to go.
  3806   __ retl();
  3807   __ delayed()->nop();
  3809   // Pending exception after the safepoint
  3811   __ bind(pending);
  3813   RegisterSaver::restore_live_registers(masm);
  3815   // We are back the the original state on entry.
  3817   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3818   // so it looks like the original nmethod called forward_exception_entry.
  3819   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3820   __ JMP(O0, 0);
  3821   __ delayed()->nop();
  3823   // -------------
  3824   // make sure all code is generated
  3825   masm->flush();
  3827   // return exception blob
  3828   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
  3831 //
  3832 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
  3833 //
  3834 // Generate a stub that calls into vm to find out the proper destination
  3835 // of a java call. All the argument registers are live at this point
  3836 // but since this is generic code we don't know what they are and the caller
  3837 // must do any gc of the args.
  3838 //
  3839 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
  3840   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
  3842   // allocate space for the code
  3843   ResourceMark rm;
  3844   // setup code generation tools
  3845   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
  3846   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
  3847   // even larger with TraceJumps
  3848   int pad = TraceJumps ? 512 : 0;
  3849   CodeBuffer buffer(name, 1600 + pad, 512);
  3850   MacroAssembler* masm                = new MacroAssembler(&buffer);
  3851   int             frame_size_words;
  3852   OopMapSet *oop_maps = new OopMapSet();
  3853   OopMap* map = NULL;
  3855   int start = __ offset();
  3857   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
  3859   int frame_complete = __ offset();
  3861   // setup last_Java_sp (blows G4)
  3862   __ set_last_Java_frame(SP, noreg);
  3864   // call into the runtime to handle illegal instructions exception
  3865   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
  3866   __ mov(G2_thread, O0);
  3867   __ save_thread(L7_thread_cache);
  3868   __ call(destination, relocInfo::runtime_call_type);
  3869   __ delayed()->nop();
  3871   // O0 contains the address we are going to jump to assuming no exception got installed
  3873   // Set an oopmap for the call site.
  3874   // We need this not only for callee-saved registers, but also for volatile
  3875   // registers that the compiler might be keeping live across a safepoint.
  3877   oop_maps->add_gc_map( __ offset() - start, map);
  3879   __ restore_thread(L7_thread_cache);
  3880   // clear last_Java_sp
  3881   __ reset_last_Java_frame();
  3883   // Check for exceptions
  3884   Label pending;
  3886   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
  3887   __ br_notnull_short(O1, Assembler::pn, pending);
  3889   // get the returned Method*
  3891   __ get_vm_result_2(G5_method);
  3892   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
  3894   // O0 is where we want to jump, overwrite G3 which is saved and scratch
  3896   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
  3898   RegisterSaver::restore_live_registers(masm);
  3900   // We are back the the original state on entry and ready to go.
  3902   __ JMP(G3, 0);
  3903   __ delayed()->nop();
  3905   // Pending exception after the safepoint
  3907   __ bind(pending);
  3909   RegisterSaver::restore_live_registers(masm);
  3911   // We are back the the original state on entry.
  3913   // Tail-call forward_exception_entry, with the issuing PC in O7,
  3914   // so it looks like the original nmethod called forward_exception_entry.
  3915   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
  3916   __ JMP(O0, 0);
  3917   __ delayed()->nop();
  3919   // -------------
  3920   // make sure all code is generated
  3921   masm->flush();
  3923   // return the  blob
  3924   // frame_size_words or bytes??
  3925   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);

mercurial