src/cpu/sparc/vm/assembler_sparc.cpp

Tue, 09 Oct 2012 07:41:27 +0200

author
rbackman
date
Tue, 09 Oct 2012 07:41:27 +0200
changeset 4151
6e5a59a8e4a7
parent 4101
2cb2f30450c7
child 4159
8e47bac5643a
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_sparc.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #ifndef SERIALGC
    40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    42 #include "gc_implementation/g1/heapRegion.hpp"
    43 #endif
    45 #ifdef PRODUCT
    46 #define BLOCK_COMMENT(str) /* nothing */
    47 #define STOP(error) stop(error)
    48 #else
    49 #define BLOCK_COMMENT(str) block_comment(str)
    50 #define STOP(error) block_comment(error); stop(error)
    51 #endif
    53 // Convert the raw encoding form into the form expected by the
    54 // constructor for Address.
    55 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
    56   assert(scale == 0, "not supported");
    57   RelocationHolder rspec;
    58   if (disp_reloc != relocInfo::none) {
    59     rspec = Relocation::spec_simple(disp_reloc);
    60   }
    62   Register rindex = as_Register(index);
    63   if (rindex != G0) {
    64     Address madr(as_Register(base), rindex);
    65     madr._rspec = rspec;
    66     return madr;
    67   } else {
    68     Address madr(as_Register(base), disp);
    69     madr._rspec = rspec;
    70     return madr;
    71   }
    72 }
    74 Address Argument::address_in_frame() const {
    75   // Warning: In LP64 mode disp will occupy more than 10 bits, but
    76   //          op codes such as ld or ldx, only access disp() to get
    77   //          their simm13 argument.
    78   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    79   if (is_in())
    80     return Address(FP, disp); // In argument.
    81   else
    82     return Address(SP, disp); // Out argument.
    83 }
    85 static const char* argumentNames[][2] = {
    86   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    87   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    88   {"A(n>9)","P(n>9)"}
    89 };
    91 const char* Argument::name() const {
    92   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    93   int num = number();
    94   if (num >= nofArgs)  num = nofArgs - 1;
    95   return argumentNames[num][is_in() ? 1 : 0];
    96 }
    98 void Assembler::print_instruction(int inst) {
    99   const char* s;
   100   switch (inv_op(inst)) {
   101   default:         s = "????"; break;
   102   case call_op:    s = "call"; break;
   103   case branch_op:
   104     switch (inv_op2(inst)) {
   105       case fb_op2:     s = "fb";   break;
   106       case fbp_op2:    s = "fbp";  break;
   107       case br_op2:     s = "br";   break;
   108       case bp_op2:     s = "bp";   break;
   109       case cb_op2:     s = "cb";   break;
   110       case bpr_op2: {
   111         if (is_cbcond(inst)) {
   112           s = is_cxb(inst) ? "cxb" : "cwb";
   113         } else {
   114           s = "bpr";
   115         }
   116         break;
   117       }
   118       default:         s = "????"; break;
   119     }
   120   }
   121   ::tty->print("%s", s);
   122 }
   125 // Patch instruction inst at offset inst_pos to refer to dest_pos
   126 // and return the resulting instruction.
   127 // We should have pcs, not offsets, but since all is relative, it will work out
   128 // OK.
   129 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
   131   int m; // mask for displacement field
   132   int v; // new value for displacement field
   133   const int word_aligned_ones = -4;
   134   switch (inv_op(inst)) {
   135   default: ShouldNotReachHere();
   136   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
   137   case branch_op:
   138     switch (inv_op2(inst)) {
   139       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   140       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   141       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   142       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   143       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   144       case bpr_op2: {
   145         if (is_cbcond(inst)) {
   146           m = wdisp10(word_aligned_ones, 0);
   147           v = wdisp10(dest_pos, inst_pos);
   148         } else {
   149           m = wdisp16(word_aligned_ones, 0);
   150           v = wdisp16(dest_pos, inst_pos);
   151         }
   152         break;
   153       }
   154       default: ShouldNotReachHere();
   155     }
   156   }
   157   return  inst & ~m  |  v;
   158 }
   160 // Return the offset of the branch destionation of instruction inst
   161 // at offset pos.
   162 // Should have pcs, but since all is relative, it works out.
   163 int Assembler::branch_destination(int inst, int pos) {
   164   int r;
   165   switch (inv_op(inst)) {
   166   default: ShouldNotReachHere();
   167   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   168   case branch_op:
   169     switch (inv_op2(inst)) {
   170       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   171       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   172       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   173       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   174       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   175       case bpr_op2: {
   176         if (is_cbcond(inst)) {
   177           r = inv_wdisp10(inst, pos);
   178         } else {
   179           r = inv_wdisp16(inst, pos);
   180         }
   181         break;
   182       }
   183       default: ShouldNotReachHere();
   184     }
   185   }
   186   return r;
   187 }
   189 int AbstractAssembler::code_fill_byte() {
   190   return 0x00;                  // illegal instruction 0x00000000
   191 }
   193 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
   194   switch (in) {
   195   case rc_z:   return equal;
   196   case rc_lez: return lessEqual;
   197   case rc_lz:  return less;
   198   case rc_nz:  return notEqual;
   199   case rc_gz:  return greater;
   200   case rc_gez: return greaterEqual;
   201   default:
   202     ShouldNotReachHere();
   203   }
   204   return equal;
   205 }
   207 // Generate a bunch 'o stuff (including v9's
   208 #ifndef PRODUCT
   209 void Assembler::test_v9() {
   210   add(    G0, G1, G2 );
   211   add(    G3,  0, G4 );
   213   addcc(  G5, G6, G7 );
   214   addcc(  I0,  1, I1 );
   215   addc(   I2, I3, I4 );
   216   addc(   I5, -1, I6 );
   217   addccc( I7, L0, L1 );
   218   addccc( L2, (1 << 12) - 2, L3 );
   220   Label lbl1, lbl2, lbl3;
   222   bind(lbl1);
   224   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
   225   delayed()->nop();
   226   bpr( rc_lez, false, pt, L5, lbl1);
   227   delayed()->nop();
   229   fb( f_never,     true, pc() + 4,  relocInfo::none);
   230   delayed()->nop();
   231   fb( f_notEqual, false, lbl2 );
   232   delayed()->nop();
   234   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
   235   delayed()->nop();
   236   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
   237   delayed()->nop();
   239   br( equal,  true, pc() + 1024, relocInfo::none);
   240   delayed()->nop();
   241   br( lessEqual, false, lbl1 );
   242   delayed()->nop();
   243   br( never, false, lbl1 );
   244   delayed()->nop();
   246   bp( less,               true, icc, pn, pc(), relocInfo::none);
   247   delayed()->nop();
   248   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
   249   delayed()->nop();
   251   call( pc(), relocInfo::none);
   252   delayed()->nop();
   253   call( lbl3 );
   254   delayed()->nop();
   257   casa(  L6, L7, O0 );
   258   casxa( O1, O2, O3, 0 );
   260   udiv(   O4, O5, O7 );
   261   udiv(   G0, (1 << 12) - 1, G1 );
   262   sdiv(   G1, G2, G3 );
   263   sdiv(   G4, -((1 << 12) - 1), G5 );
   264   udivcc( G6, G7, I0 );
   265   udivcc( I1, -((1 << 12) - 2), I2 );
   266   sdivcc( I3, I4, I5 );
   267   sdivcc( I6, -((1 << 12) - 0), I7 );
   269   done();
   270   retry();
   272   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
   273   fsub( FloatRegisterImpl::D, F34, F0, F62 );
   275   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
   276   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
   278   ftox( FloatRegisterImpl::D, F2, F4 );
   279   ftoi( FloatRegisterImpl::Q, F4, F8 );
   281   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
   283   fxtof( FloatRegisterImpl::S, F4, F5 );
   284   fitof( FloatRegisterImpl::D, F6, F8 );
   286   fmov( FloatRegisterImpl::Q, F16, F20 );
   287   fneg( FloatRegisterImpl::S, F6, F7 );
   288   fabs( FloatRegisterImpl::D, F10, F12 );
   290   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
   291   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
   292   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
   294   fsqrt( FloatRegisterImpl::S, F13, F14 );
   296   flush( L0, L1 );
   297   flush( L2, -1 );
   299   flushw();
   301   illtrap( (1 << 22) - 2);
   303   impdep1( 17, (1 << 19) - 1 );
   304   impdep2( 3,  0 );
   306   jmpl( L3, L4, L5 );
   307   delayed()->nop();
   308   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
   309   delayed()->nop();
   312   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
   313   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
   316   ldfsr(  O3, O4 );
   317   ldfsr(  O5, -1 );
   318   ldxfsr( O6, O7 );
   319   ldxfsr( I0, -1 );
   321   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
   322   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
   324   ldsb(  I4, I5, I6 );
   325   ldsb(  I7, -1, G0 );
   326   ldsh(  G1, G3, G4 );
   327   ldsh(  G5, -1, G6 );
   328   ldsw(  G7, L0, L1 );
   329   ldsw(  L2, -1, L3 );
   330   ldub(  L4, L5, L6 );
   331   ldub(  L7, -1, O0 );
   332   lduh(  O1, O2, O3 );
   333   lduh(  O4, -1, O5 );
   334   lduw(  O6, O7, G0 );
   335   lduw(  G1, -1, G2 );
   336   ldx(   G3, G4, G5 );
   337   ldx(   G6, -1, G7 );
   338   ldd(   I0, I1, I2 );
   339   ldd(   I3, -1, I4 );
   341   ldsba(  I5, I6, 2, I7 );
   342   ldsba(  L0, -1, L1 );
   343   ldsha(  L2, L3, 3, L4 );
   344   ldsha(  L5, -1, L6 );
   345   ldswa(  L7, O0, (1 << 8) - 1, O1 );
   346   ldswa(  O2, -1, O3 );
   347   lduba(  O4, O5, 0, O6 );
   348   lduba(  O7, -1, I0 );
   349   lduha(  I1, I2, 1, I3 );
   350   lduha(  I4, -1, I5 );
   351   lduwa(  I6, I7, 2, L0 );
   352   lduwa(  L1, -1, L2 );
   353   ldxa(   L3, L4, 3, L5 );
   354   ldxa(   L6, -1, L7 );
   355   ldda(   G0, G1, 4, G2 );
   356   ldda(   G3, -1, G4 );
   358   ldstub(  G5, G6, G7 );
   359   ldstub(  O0, -1, O1 );
   361   ldstuba( O2, O3, 5, O4 );
   362   ldstuba( O5, -1, O6 );
   364   and3(    I0, L0, O0 );
   365   and3(    G7, -1, O7 );
   366   andcc(   L2, I2, G2 );
   367   andcc(   L4, -1, G4 );
   368   andn(    I5, I6, I7 );
   369   andn(    I6, -1, I7 );
   370   andncc(  I5, I6, I7 );
   371   andncc(  I7, -1, I6 );
   372   or3(     I5, I6, I7 );
   373   or3(     I7, -1, I6 );
   374   orcc(    I5, I6, I7 );
   375   orcc(    I7, -1, I6 );
   376   orn(     I5, I6, I7 );
   377   orn(     I7, -1, I6 );
   378   orncc(   I5, I6, I7 );
   379   orncc(   I7, -1, I6 );
   380   xor3(    I5, I6, I7 );
   381   xor3(    I7, -1, I6 );
   382   xorcc(   I5, I6, I7 );
   383   xorcc(   I7, -1, I6 );
   384   xnor(    I5, I6, I7 );
   385   xnor(    I7, -1, I6 );
   386   xnorcc(  I5, I6, I7 );
   387   xnorcc(  I7, -1, I6 );
   389   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
   390   membar( StoreStore );
   391   membar( LoadStore );
   392   membar( StoreLoad );
   393   membar( LoadLoad );
   394   membar( Sync );
   395   membar( MemIssue );
   396   membar( Lookaside );
   398   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
   399   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
   401   movcc( overflowClear,  false, icc, I6, L4 );
   402   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
   404   movr( rc_nz, I5, I6, I7 );
   405   movr( rc_gz, L1, -1,  L2 );
   407   mulx(  I5, I6, I7 );
   408   mulx(  I7, -1, I6 );
   409   sdivx( I5, I6, I7 );
   410   sdivx( I7, -1, I6 );
   411   udivx( I5, I6, I7 );
   412   udivx( I7, -1, I6 );
   414   umul(   I5, I6, I7 );
   415   umul(   I7, -1, I6 );
   416   smul(   I5, I6, I7 );
   417   smul(   I7, -1, I6 );
   418   umulcc( I5, I6, I7 );
   419   umulcc( I7, -1, I6 );
   420   smulcc( I5, I6, I7 );
   421   smulcc( I7, -1, I6 );
   423   mulscc(   I5, I6, I7 );
   424   mulscc(   I7, -1, I6 );
   426   nop();
   429   popc( G0,  G1);
   430   popc( -1, G2);
   432   prefetch(   L1, L2,    severalReads );
   433   prefetch(   L3, -1,    oneRead );
   434   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
   435   prefetcha(  G2, -1,    oneWrite );
   437   rett( I7, I7);
   438   delayed()->nop();
   439   rett( G0, -1, relocInfo::none);
   440   delayed()->nop();
   442   save(    I5, I6, I7 );
   443   save(    I7, -1, I6 );
   444   restore( I5, I6, I7 );
   445   restore( I7, -1, I6 );
   447   saved();
   448   restored();
   450   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
   452   sll(  I5, I6, I7 );
   453   sll(  I7, 31, I6 );
   454   srl(  I5, I6, I7 );
   455   srl(  I7,  0, I6 );
   456   sra(  I5, I6, I7 );
   457   sra(  I7, 30, I6 );
   458   sllx( I5, I6, I7 );
   459   sllx( I7, 63, I6 );
   460   srlx( I5, I6, I7 );
   461   srlx( I7,  0, I6 );
   462   srax( I5, I6, I7 );
   463   srax( I7, 62, I6 );
   465   sir( -1 );
   467   stbar();
   469   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
   470   stf(    FloatRegisterImpl::S, F18, I3, -1 );
   472   stfsr(  L1, L2 );
   473   stfsr(  I7, -1 );
   474   stxfsr( I6, I5 );
   475   stxfsr( L4, -1 );
   477   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
   478   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
   480   stb(  L5, O2, I7 );
   481   stb(  I7, I6, -1 );
   482   sth(  L5, O2, I7 );
   483   sth(  I7, I6, -1 );
   484   stw(  L5, O2, I7 );
   485   stw(  I7, I6, -1 );
   486   stx(  L5, O2, I7 );
   487   stx(  I7, I6, -1 );
   488   std(  L5, O2, I7 );
   489   std(  I7, I6, -1 );
   491   stba(  L5, O2, I7, 8 );
   492   stba(  I7, I6, -1    );
   493   stha(  L5, O2, I7, 9 );
   494   stha(  I7, I6, -1    );
   495   stwa(  L5, O2, I7, 0 );
   496   stwa(  I7, I6, -1    );
   497   stxa(  L5, O2, I7, 11 );
   498   stxa(  I7, I6, -1     );
   499   stda(  L5, O2, I7, 12 );
   500   stda(  I7, I6, -1     );
   502   sub(    I5, I6, I7 );
   503   sub(    I7, -1, I6 );
   504   subcc(  I5, I6, I7 );
   505   subcc(  I7, -1, I6 );
   506   subc(   I5, I6, I7 );
   507   subc(   I7, -1, I6 );
   508   subccc( I5, I6, I7 );
   509   subccc( I7, -1, I6 );
   511   swap( I5, I6, I7 );
   512   swap( I7, -1, I6 );
   514   swapa(   G0, G1, 13, G2 );
   515   swapa(   I7, -1,     I6 );
   517   taddcc(    I5, I6, I7 );
   518   taddcc(    I7, -1, I6 );
   519   taddcctv(  I5, I6, I7 );
   520   taddcctv(  I7, -1, I6 );
   522   tsubcc(    I5, I6, I7 );
   523   tsubcc(    I7, -1, I6 );
   524   tsubcctv(  I5, I6, I7 );
   525   tsubcctv(  I7, -1, I6 );
   527   trap( overflowClear, xcc, G0, G1 );
   528   trap( lessEqual,     icc, I7, 17 );
   530   bind(lbl2);
   531   bind(lbl3);
   533   code()->decode();
   534 }
   536 // Generate a bunch 'o stuff unique to V8
   537 void Assembler::test_v8_onlys() {
   538   Label lbl1;
   540   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
   541   delayed()->nop();
   542   cb( cp_never,    true, lbl1);
   543   delayed()->nop();
   545   cpop1(1, 2, 3, 4);
   546   cpop2(5, 6, 7, 8);
   548   ldc( I0, I1, 31);
   549   ldc( I2, -1,  0);
   551   lddc( I4, I4, 30);
   552   lddc( I6,  0, 1 );
   554   ldcsr( L0, L1, 0);
   555   ldcsr( L1, (1 << 12) - 1, 17 );
   557   stc( 31, L4, L5);
   558   stc( 30, L6, -(1 << 12) );
   560   stdc( 0, L7, G0);
   561   stdc( 1, G1, 0 );
   563   stcsr( 16, G2, G3);
   564   stcsr( 17, G4, 1 );
   566   stdcq( 4, G5, G6);
   567   stdcq( 5, G7, -1 );
   569   bind(lbl1);
   571   code()->decode();
   572 }
   573 #endif
   575 // Implementation of MacroAssembler
   577 void MacroAssembler::null_check(Register reg, int offset) {
   578   if (needs_explicit_null_check((intptr_t)offset)) {
   579     // provoke OS NULL exception if reg = NULL by
   580     // accessing M[reg] w/o changing any registers
   581     ld_ptr(reg, 0, G0);
   582   }
   583   else {
   584     // nothing to do, (later) access of M[reg + offset]
   585     // will provoke OS NULL exception if reg = NULL
   586   }
   587 }
   589 // Ring buffer jumps
   591 #ifndef PRODUCT
   592 void MacroAssembler::ret(  bool trace )   { if (trace) {
   593                                                     mov(I7, O7); // traceable register
   594                                                     JMP(O7, 2 * BytesPerInstWord);
   595                                                   } else {
   596                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   597                                                   }
   598                                                 }
   600 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   601                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   602 #endif /* PRODUCT */
   605 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   606   assert_not_delayed();
   607   // This can only be traceable if r1 & r2 are visible after a window save
   608   if (TraceJumps) {
   609 #ifndef PRODUCT
   610     save_frame(0);
   611     verify_thread();
   612     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   613     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   614     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   615     add(O2, O1, O1);
   617     add(r1->after_save(), r2->after_save(), O2);
   618     set((intptr_t)file, O3);
   619     set(line, O4);
   620     Label L;
   621     // get nearby pc, store jmp target
   622     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   623     delayed()->st(O2, O1, 0);
   624     bind(L);
   626     // store nearby pc
   627     st(O7, O1, sizeof(intptr_t));
   628     // store file
   629     st(O3, O1, 2*sizeof(intptr_t));
   630     // store line
   631     st(O4, O1, 3*sizeof(intptr_t));
   632     add(O0, 1, O0);
   633     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   634     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   635     restore();
   636 #endif /* PRODUCT */
   637   }
   638   jmpl(r1, r2, G0);
   639 }
   640 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   641   assert_not_delayed();
   642   // This can only be traceable if r1 is visible after a window save
   643   if (TraceJumps) {
   644 #ifndef PRODUCT
   645     save_frame(0);
   646     verify_thread();
   647     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   648     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   649     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   650     add(O2, O1, O1);
   652     add(r1->after_save(), offset, O2);
   653     set((intptr_t)file, O3);
   654     set(line, O4);
   655     Label L;
   656     // get nearby pc, store jmp target
   657     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   658     delayed()->st(O2, O1, 0);
   659     bind(L);
   661     // store nearby pc
   662     st(O7, O1, sizeof(intptr_t));
   663     // store file
   664     st(O3, O1, 2*sizeof(intptr_t));
   665     // store line
   666     st(O4, O1, 3*sizeof(intptr_t));
   667     add(O0, 1, O0);
   668     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   669     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   670     restore();
   671 #endif /* PRODUCT */
   672   }
   673   jmp(r1, offset);
   674 }
   676 // This code sequence is relocatable to any address, even on LP64.
   677 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
   678   assert_not_delayed();
   679   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   680   // variable length instruction streams.
   681   patchable_sethi(addrlit, temp);
   682   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
   683   if (TraceJumps) {
   684 #ifndef PRODUCT
   685     // Must do the add here so relocation can find the remainder of the
   686     // value to be relocated.
   687     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
   688     save_frame(0);
   689     verify_thread();
   690     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   691     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   692     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   693     add(O2, O1, O1);
   695     set((intptr_t)file, O3);
   696     set(line, O4);
   697     Label L;
   699     // get nearby pc, store jmp target
   700     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   701     delayed()->st(a.base()->after_save(), O1, 0);
   702     bind(L);
   704     // store nearby pc
   705     st(O7, O1, sizeof(intptr_t));
   706     // store file
   707     st(O3, O1, 2*sizeof(intptr_t));
   708     // store line
   709     st(O4, O1, 3*sizeof(intptr_t));
   710     add(O0, 1, O0);
   711     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   712     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   713     restore();
   714     jmpl(a.base(), G0, d);
   715 #else
   716     jmpl(a.base(), a.disp(), d);
   717 #endif /* PRODUCT */
   718   } else {
   719     jmpl(a.base(), a.disp(), d);
   720   }
   721 }
   723 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
   724   jumpl(addrlit, temp, G0, offset, file, line);
   725 }
   728 // Conditional breakpoint (for assertion checks in assembly code)
   729 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   730   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   731 }
   733 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   734 void MacroAssembler::breakpoint_trap() {
   735   trap(ST_RESERVED_FOR_USER_0);
   736 }
   738 // flush windows (except current) using flushw instruction if avail.
   739 void MacroAssembler::flush_windows() {
   740   if (VM_Version::v9_instructions_work())  flushw();
   741   else                                     flush_windows_trap();
   742 }
   744 // Write serialization page so VM thread can do a pseudo remote membar
   745 // We use the current thread pointer to calculate a thread specific
   746 // offset to write to within the page. This minimizes bus traffic
   747 // due to cache line collision.
   748 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   749   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   750   if (Assembler::is_simm13(os::vm_page_size())) {
   751     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   752   }
   753   else {
   754     set((os::vm_page_size() - sizeof(int)), tmp1);
   755     and3(tmp2, tmp1, tmp2);
   756   }
   757   set(os::get_memory_serialize_page(), tmp1);
   758   st(G0, tmp1, tmp2);
   759 }
   763 void MacroAssembler::enter() {
   764   Unimplemented();
   765 }
   767 void MacroAssembler::leave() {
   768   Unimplemented();
   769 }
   771 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   772   if(VM_Version::v9_instructions_work()) {
   773     mulx (s1, s2, d);
   774   } else {
   775     smul (s1, s2, d);
   776   }
   777 }
   779 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   780   if(VM_Version::v9_instructions_work()) {
   781     mulx (s1, simm13a, d);
   782   } else {
   783     smul (s1, simm13a, d);
   784   }
   785 }
   788 #ifdef ASSERT
   789 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   790   const Register s1 = G3_scratch;
   791   const Register s2 = G4_scratch;
   792   Label get_psr_test;
   793   // Get the condition codes the V8 way.
   794   read_ccr_trap(s1);
   795   mov(ccr_save, s2);
   796   // This is a test of V8 which has icc but not xcc
   797   // so mask off the xcc bits
   798   and3(s2, 0xf, s2);
   799   // Compare condition codes from the V8 and V9 ways.
   800   subcc(s2, s1, G0);
   801   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   802   delayed()->breakpoint_trap();
   803   bind(get_psr_test);
   804 }
   806 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   807   const Register s1 = G3_scratch;
   808   const Register s2 = G4_scratch;
   809   Label set_psr_test;
   810   // Write out the saved condition codes the V8 way
   811   write_ccr_trap(ccr_save, s1, s2);
   812   // Read back the condition codes using the V9 instruction
   813   rdccr(s1);
   814   mov(ccr_save, s2);
   815   // This is a test of V8 which has icc but not xcc
   816   // so mask off the xcc bits
   817   and3(s2, 0xf, s2);
   818   and3(s1, 0xf, s1);
   819   // Compare the V8 way with the V9 way.
   820   subcc(s2, s1, G0);
   821   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   822   delayed()->breakpoint_trap();
   823   bind(set_psr_test);
   824 }
   825 #else
   826 #define read_ccr_v8_assert(x)
   827 #define write_ccr_v8_assert(x)
   828 #endif // ASSERT
   830 void MacroAssembler::read_ccr(Register ccr_save) {
   831   if (VM_Version::v9_instructions_work()) {
   832     rdccr(ccr_save);
   833     // Test code sequence used on V8.  Do not move above rdccr.
   834     read_ccr_v8_assert(ccr_save);
   835   } else {
   836     read_ccr_trap(ccr_save);
   837   }
   838 }
   840 void MacroAssembler::write_ccr(Register ccr_save) {
   841   if (VM_Version::v9_instructions_work()) {
   842     // Test code sequence used on V8.  Do not move below wrccr.
   843     write_ccr_v8_assert(ccr_save);
   844     wrccr(ccr_save);
   845   } else {
   846     const Register temp_reg1 = G3_scratch;
   847     const Register temp_reg2 = G4_scratch;
   848     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   849   }
   850 }
   853 // Calls to C land
   855 #ifdef ASSERT
   856 // a hook for debugging
   857 static Thread* reinitialize_thread() {
   858   return ThreadLocalStorage::thread();
   859 }
   860 #else
   861 #define reinitialize_thread ThreadLocalStorage::thread
   862 #endif
   864 #ifdef ASSERT
   865 address last_get_thread = NULL;
   866 #endif
   868 // call this when G2_thread is not known to be valid
   869 void MacroAssembler::get_thread() {
   870   save_frame(0);                // to avoid clobbering O0
   871   mov(G1, L0);                  // avoid clobbering G1
   872   mov(G5_method, L1);           // avoid clobbering G5
   873   mov(G3, L2);                  // avoid clobbering G3 also
   874   mov(G4, L5);                  // avoid clobbering G4
   875 #ifdef ASSERT
   876   AddressLiteral last_get_thread_addrlit(&last_get_thread);
   877   set(last_get_thread_addrlit, L3);
   878   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   879   st_ptr(L4, L3, 0);
   880 #endif
   881   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   882   delayed()->nop();
   883   mov(L0, G1);
   884   mov(L1, G5_method);
   885   mov(L2, G3);
   886   mov(L5, G4);
   887   restore(O0, 0, G2_thread);
   888 }
   890 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   891   Thread* correct_value = ThreadLocalStorage::thread();
   892   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   893   return correct_value;
   894 }
   896 void MacroAssembler::verify_thread() {
   897   if (VerifyThread) {
   898     // NOTE: this chops off the heads of the 64-bit O registers.
   899 #ifdef CC_INTERP
   900     save_frame(0);
   901 #else
   902     // make sure G2_thread contains the right value
   903     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   904     mov(G1, L1);                // avoid clobbering G1
   905     // G2 saved below
   906     mov(G3, L3);                // avoid clobbering G3
   907     mov(G4, L4);                // avoid clobbering G4
   908     mov(G5_method, L5);         // avoid clobbering G5_method
   909 #endif /* CC_INTERP */
   910 #if defined(COMPILER2) && !defined(_LP64)
   911     // Save & restore possible 64-bit Long arguments in G-regs
   912     srlx(G1,32,L0);
   913     srlx(G4,32,L6);
   914 #endif
   915     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   916     delayed()->mov(G2_thread, O0);
   918     mov(L1, G1);                // Restore G1
   919     // G2 restored below
   920     mov(L3, G3);                // restore G3
   921     mov(L4, G4);                // restore G4
   922     mov(L5, G5_method);         // restore G5_method
   923 #if defined(COMPILER2) && !defined(_LP64)
   924     // Save & restore possible 64-bit Long arguments in G-regs
   925     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   926     srl(G1, 0,G1);              // Clear current high G1 bits
   927     or3 (G1,G2,G1);             // Recover 64-bit G1
   928     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   929     srl(G4, 0,G4);              // Clear current high G4 bits
   930     or3 (G4,G2,G4);             // Recover 64-bit G4
   931 #endif
   932     restore(O0, 0, G2_thread);
   933   }
   934 }
   937 void MacroAssembler::save_thread(const Register thread_cache) {
   938   verify_thread();
   939   if (thread_cache->is_valid()) {
   940     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   941     mov(G2_thread, thread_cache);
   942   }
   943   if (VerifyThread) {
   944     // smash G2_thread, as if the VM were about to anyway
   945     set(0x67676767, G2_thread);
   946   }
   947 }
   950 void MacroAssembler::restore_thread(const Register thread_cache) {
   951   if (thread_cache->is_valid()) {
   952     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   953     mov(thread_cache, G2_thread);
   954     verify_thread();
   955   } else {
   956     // do it the slow way
   957     get_thread();
   958   }
   959 }
   962 // %%% maybe get rid of [re]set_last_Java_frame
   963 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   964   assert_not_delayed();
   965   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
   966                            JavaFrameAnchor::flags_offset());
   967   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
   969   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   970   // has_last_Java_frame is true and users will look at the rest of the fields.
   971   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   973 #ifdef ASSERT
   974   // Verify that flags was zeroed on return to Java
   975   Label PcOk;
   976   save_frame(0);                // to avoid clobbering O0
   977   ld_ptr(pc_addr, L0);
   978   br_null_short(L0, Assembler::pt, PcOk);
   979   STOP("last_Java_pc not zeroed before leaving Java");
   980   bind(PcOk);
   982   // Verify that flags was zeroed on return to Java
   983   Label FlagsOk;
   984   ld(flags, L0);
   985   tst(L0);
   986   br(Assembler::zero, false, Assembler::pt, FlagsOk);
   987   delayed() -> restore();
   988   STOP("flags not zeroed before leaving Java");
   989   bind(FlagsOk);
   990 #endif /* ASSERT */
   991   //
   992   // When returning from calling out from Java mode the frame anchor's last_Java_pc
   993   // will always be set to NULL. It is set here so that if we are doing a call to
   994   // native (not VM) that we capture the known pc and don't have to rely on the
   995   // native call having a standard frame linkage where we can find the pc.
   997   if (last_Java_pc->is_valid()) {
   998     st_ptr(last_Java_pc, pc_addr);
   999   }
  1001 #ifdef _LP64
  1002 #ifdef ASSERT
  1003   // Make sure that we have an odd stack
  1004   Label StackOk;
  1005   andcc(last_java_sp, 0x01, G0);
  1006   br(Assembler::notZero, false, Assembler::pt, StackOk);
  1007   delayed()->nop();
  1008   STOP("Stack Not Biased in set_last_Java_frame");
  1009   bind(StackOk);
  1010 #endif // ASSERT
  1011   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
  1012   add( last_java_sp, STACK_BIAS, G4_scratch );
  1013   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
  1014 #else
  1015   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
  1016 #endif // _LP64
  1019 void MacroAssembler::reset_last_Java_frame(void) {
  1020   assert_not_delayed();
  1022   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
  1023   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1024   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1026 #ifdef ASSERT
  1027   // check that it WAS previously set
  1028 #ifdef CC_INTERP
  1029     save_frame(0);
  1030 #else
  1031     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
  1032 #endif /* CC_INTERP */
  1033     ld_ptr(sp_addr, L0);
  1034     tst(L0);
  1035     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
  1036     restore();
  1037 #endif // ASSERT
  1039   st_ptr(G0, sp_addr);
  1040   // Always return last_Java_pc to zero
  1041   st_ptr(G0, pc_addr);
  1042   // Always null flags after return to Java
  1043   st(G0, flags);
  1047 void MacroAssembler::call_VM_base(
  1048   Register        oop_result,
  1049   Register        thread_cache,
  1050   Register        last_java_sp,
  1051   address         entry_point,
  1052   int             number_of_arguments,
  1053   bool            check_exceptions)
  1055   assert_not_delayed();
  1057   // determine last_java_sp register
  1058   if (!last_java_sp->is_valid()) {
  1059     last_java_sp = SP;
  1061   // debugging support
  1062   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1064   // 64-bit last_java_sp is biased!
  1065   set_last_Java_frame(last_java_sp, noreg);
  1066   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  1067   save_thread(thread_cache);
  1068   // do the call
  1069   call(entry_point, relocInfo::runtime_call_type);
  1070   if (!VerifyThread)
  1071     delayed()->mov(G2_thread, O0);  // pass thread as first argument
  1072   else
  1073     delayed()->nop();             // (thread already passed)
  1074   restore_thread(thread_cache);
  1075   reset_last_Java_frame();
  1077   // check for pending exceptions. use Gtemp as scratch register.
  1078   if (check_exceptions) {
  1079     check_and_forward_exception(Gtemp);
  1082 #ifdef ASSERT
  1083   set(badHeapWordVal, G3);
  1084   set(badHeapWordVal, G4);
  1085   set(badHeapWordVal, G5);
  1086 #endif
  1088   // get oop result if there is one and reset the value in the thread
  1089   if (oop_result->is_valid()) {
  1090     get_vm_result(oop_result);
  1094 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
  1096   Label L;
  1098   check_and_handle_popframe(scratch_reg);
  1099   check_and_handle_earlyret(scratch_reg);
  1101   Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1102   ld_ptr(exception_addr, scratch_reg);
  1103   br_null_short(scratch_reg, pt, L);
  1104   // we use O7 linkage so that forward_exception_entry has the issuing PC
  1105   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1106   delayed()->nop();
  1107   bind(L);
  1111 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  1115 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  1119 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1120   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
  1124 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  1125   // O0 is reserved for the thread
  1126   mov(arg_1, O1);
  1127   call_VM(oop_result, entry_point, 1, check_exceptions);
  1131 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1132   // O0 is reserved for the thread
  1133   mov(arg_1, O1);
  1134   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1135   call_VM(oop_result, entry_point, 2, check_exceptions);
  1139 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1140   // O0 is reserved for the thread
  1141   mov(arg_1, O1);
  1142   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1143   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1144   call_VM(oop_result, entry_point, 3, check_exceptions);
  1149 // Note: The following call_VM overloadings are useful when a "save"
  1150 // has already been performed by a stub, and the last Java frame is
  1151 // the previous one.  In that case, last_java_sp must be passed as FP
  1152 // instead of SP.
  1155 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  1156   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1160 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  1161   // O0 is reserved for the thread
  1162   mov(arg_1, O1);
  1163   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1167 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1168   // O0 is reserved for the thread
  1169   mov(arg_1, O1);
  1170   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1171   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1175 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1176   // O0 is reserved for the thread
  1177   mov(arg_1, O1);
  1178   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1179   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1180   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1185 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  1186   assert_not_delayed();
  1187   save_thread(thread_cache);
  1188   // do the call
  1189   call(entry_point, relocInfo::runtime_call_type);
  1190   delayed()->nop();
  1191   restore_thread(thread_cache);
  1192 #ifdef ASSERT
  1193   set(badHeapWordVal, G3);
  1194   set(badHeapWordVal, G4);
  1195   set(badHeapWordVal, G5);
  1196 #endif
  1200 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  1201   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
  1205 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  1206   mov(arg_1, O0);
  1207   call_VM_leaf(thread_cache, entry_point, 1);
  1211 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  1212   mov(arg_1, O0);
  1213   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  1214   call_VM_leaf(thread_cache, entry_point, 2);
  1218 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1219   mov(arg_1, O0);
  1220   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  1221   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  1222   call_VM_leaf(thread_cache, entry_point, 3);
  1226 void MacroAssembler::get_vm_result(Register oop_result) {
  1227   verify_thread();
  1228   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1229   ld_ptr(    vm_result_addr, oop_result);
  1230   st_ptr(G0, vm_result_addr);
  1231   verify_oop(oop_result);
  1235 void MacroAssembler::get_vm_result_2(Register metadata_result) {
  1236   verify_thread();
  1237   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
  1238   ld_ptr(vm_result_addr_2, metadata_result);
  1239   st_ptr(G0, vm_result_addr_2);
  1243 // We require that C code which does not return a value in vm_result will
  1244 // leave it undisturbed.
  1245 void MacroAssembler::set_vm_result(Register oop_result) {
  1246   verify_thread();
  1247   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1248   verify_oop(oop_result);
  1250 # ifdef ASSERT
  1251     // Check that we are not overwriting any other oop.
  1252 #ifdef CC_INTERP
  1253     save_frame(0);
  1254 #else
  1255     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
  1256 #endif /* CC_INTERP */
  1257     ld_ptr(vm_result_addr, L0);
  1258     tst(L0);
  1259     restore();
  1260     breakpoint_trap(notZero, Assembler::ptr_cc);
  1261     // }
  1262 # endif
  1264   st_ptr(oop_result, vm_result_addr);
  1268 void MacroAssembler::ic_call(address entry, bool emit_delay) {
  1269   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
  1270   patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
  1271   relocate(rspec);
  1272   call(entry, relocInfo::none);
  1273   if (emit_delay) {
  1274     delayed()->nop();
  1279 void MacroAssembler::card_table_write(jbyte* byte_map_base,
  1280                                       Register tmp, Register obj) {
  1281 #ifdef _LP64
  1282   srlx(obj, CardTableModRefBS::card_shift, obj);
  1283 #else
  1284   srl(obj, CardTableModRefBS::card_shift, obj);
  1285 #endif
  1286   assert(tmp != obj, "need separate temp reg");
  1287   set((address) byte_map_base, tmp);
  1288   stb(G0, tmp, obj);
  1292 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1293   address save_pc;
  1294   int shiftcnt;
  1295 #ifdef _LP64
  1296 # ifdef CHECK_DELAY
  1297   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1298 # endif
  1299   v9_dep();
  1300   save_pc = pc();
  1302   int msb32 = (int) (addrlit.value() >> 32);
  1303   int lsb32 = (int) (addrlit.value());
  1305   if (msb32 == 0 && lsb32 >= 0) {
  1306     Assembler::sethi(lsb32, d, addrlit.rspec());
  1308   else if (msb32 == -1) {
  1309     Assembler::sethi(~lsb32, d, addrlit.rspec());
  1310     xor3(d, ~low10(~0), d);
  1312   else {
  1313     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
  1314     if (msb32 & 0x3ff)                            // Any bits?
  1315       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
  1316     if (lsb32 & 0xFFFFFC00) {                     // done?
  1317       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
  1318         sllx(d, 12, d);                           // Make room for next 12 bits
  1319         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
  1320         shiftcnt = 0;                             // We already shifted
  1322       else
  1323         shiftcnt = 12;
  1324       if ((lsb32 >> 10) & 0x3ff) {
  1325         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
  1326         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
  1327         shiftcnt = 0;
  1329       else
  1330         shiftcnt = 10;
  1331       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
  1333     else
  1334       sllx(d, 32, d);
  1336   // Pad out the instruction sequence so it can be patched later.
  1337   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
  1338                            addrlit.rtype() != relocInfo::runtime_call_type)) {
  1339     while (pc() < (save_pc + (7 * BytesPerInstWord)))
  1340       nop();
  1342 #else
  1343   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
  1344 #endif
  1348 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
  1349   internal_sethi(addrlit, d, false);
  1353 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
  1354   internal_sethi(addrlit, d, true);
  1358 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
  1359 #ifdef _LP64
  1360   if (worst_case)  return 7;
  1361   intptr_t iaddr = (intptr_t) a;
  1362   int msb32 = (int) (iaddr >> 32);
  1363   int lsb32 = (int) (iaddr);
  1364   int count;
  1365   if (msb32 == 0 && lsb32 >= 0)
  1366     count = 1;
  1367   else if (msb32 == -1)
  1368     count = 2;
  1369   else {
  1370     count = 2;
  1371     if (msb32 & 0x3ff)
  1372       count++;
  1373     if (lsb32 & 0xFFFFFC00 ) {
  1374       if ((lsb32 >> 20) & 0xfff)  count += 2;
  1375       if ((lsb32 >> 10) & 0x3ff)  count += 2;
  1378   return count;
  1379 #else
  1380   return 1;
  1381 #endif
  1384 int MacroAssembler::worst_case_insts_for_set() {
  1385   return insts_for_sethi(NULL, true) + 1;
  1389 // Keep in sync with MacroAssembler::insts_for_internal_set
  1390 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1391   intptr_t value = addrlit.value();
  1393   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
  1394     // can optimize
  1395     if (-4096 <= value && value <= 4095) {
  1396       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
  1397       return;
  1399     if (inv_hi22(hi22(value)) == value) {
  1400       sethi(addrlit, d);
  1401       return;
  1404   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1405   internal_sethi(addrlit, d, ForceRelocatable);
  1406   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
  1407     add(d, addrlit.low10(), d, addrlit.rspec());
  1411 // Keep in sync with MacroAssembler::internal_set
  1412 int MacroAssembler::insts_for_internal_set(intptr_t value) {
  1413   // can optimize
  1414   if (-4096 <= value && value <= 4095) {
  1415     return 1;
  1417   if (inv_hi22(hi22(value)) == value) {
  1418     return insts_for_sethi((address) value);
  1420   int count = insts_for_sethi((address) value);
  1421   AddressLiteral al(value);
  1422   if (al.low10() != 0) {
  1423     count++;
  1425   return count;
  1428 void MacroAssembler::set(const AddressLiteral& al, Register d) {
  1429   internal_set(al, d, false);
  1432 void MacroAssembler::set(intptr_t value, Register d) {
  1433   AddressLiteral al(value);
  1434   internal_set(al, d, false);
  1437 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
  1438   AddressLiteral al(addr, rspec);
  1439   internal_set(al, d, false);
  1442 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
  1443   internal_set(al, d, true);
  1446 void MacroAssembler::patchable_set(intptr_t value, Register d) {
  1447   AddressLiteral al(value);
  1448   internal_set(al, d, true);
  1452 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1453   assert_not_delayed();
  1454   v9_dep();
  1456   int hi = (int)(value >> 32);
  1457   int lo = (int)(value & ~0);
  1458   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1459   if (Assembler::is_simm13(lo) && value == lo) {
  1460     or3(G0, lo, d);
  1461   } else if (hi == 0) {
  1462     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1463     if (low10(lo) != 0)
  1464       or3(d, low10(lo), d);
  1466   else if (hi == -1) {
  1467     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1468     xor3(d, low10(lo) ^ ~low10(~0), d);
  1470   else if (lo == 0) {
  1471     if (Assembler::is_simm13(hi)) {
  1472       or3(G0, hi, d);
  1473     } else {
  1474       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1475       if (low10(hi) != 0)
  1476         or3(d, low10(hi), d);
  1478     sllx(d, 32, d);
  1480   else {
  1481     Assembler::sethi(hi, tmp);
  1482     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1483     if (low10(hi) != 0)
  1484       or3 (tmp, low10(hi), tmp);
  1485     if (low10(lo) != 0)
  1486       or3 (  d, low10(lo),   d);
  1487     sllx(tmp, 32, tmp);
  1488     or3 (d, tmp, d);
  1492 int MacroAssembler::insts_for_set64(jlong value) {
  1493   v9_dep();
  1495   int hi = (int) (value >> 32);
  1496   int lo = (int) (value & ~0);
  1497   int count = 0;
  1499   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1500   if (Assembler::is_simm13(lo) && value == lo) {
  1501     count++;
  1502   } else if (hi == 0) {
  1503     count++;
  1504     if (low10(lo) != 0)
  1505       count++;
  1507   else if (hi == -1) {
  1508     count += 2;
  1510   else if (lo == 0) {
  1511     if (Assembler::is_simm13(hi)) {
  1512       count++;
  1513     } else {
  1514       count++;
  1515       if (low10(hi) != 0)
  1516         count++;
  1518     count++;
  1520   else {
  1521     count += 2;
  1522     if (low10(hi) != 0)
  1523       count++;
  1524     if (low10(lo) != 0)
  1525       count++;
  1526     count += 2;
  1528   return count;
  1531 // compute size in bytes of sparc frame, given
  1532 // number of extraWords
  1533 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1535   int nWords = frame::memory_parameter_word_sp_offset;
  1537   nWords += extraWords;
  1539   if (nWords & 1) ++nWords; // round up to double-word
  1541   return nWords * BytesPerWord;
  1545 // save_frame: given number of "extra" words in frame,
  1546 // issue approp. save instruction (p 200, v8 manual)
  1548 void MacroAssembler::save_frame(int extraWords) {
  1549   int delta = -total_frame_size_in_bytes(extraWords);
  1550   if (is_simm13(delta)) {
  1551     save(SP, delta, SP);
  1552   } else {
  1553     set(delta, G3_scratch);
  1554     save(SP, G3_scratch, SP);
  1559 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1560   if (is_simm13(-size_in_bytes)) {
  1561     save(SP, -size_in_bytes, SP);
  1562   } else {
  1563     set(-size_in_bytes, G3_scratch);
  1564     save(SP, G3_scratch, SP);
  1569 void MacroAssembler::save_frame_and_mov(int extraWords,
  1570                                         Register s1, Register d1,
  1571                                         Register s2, Register d2) {
  1572   assert_not_delayed();
  1574   // The trick here is to use precisely the same memory word
  1575   // that trap handlers also use to save the register.
  1576   // This word cannot be used for any other purpose, but
  1577   // it works fine to save the register's value, whether or not
  1578   // an interrupt flushes register windows at any given moment!
  1579   Address s1_addr;
  1580   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1581     s1_addr = s1->address_in_saved_window();
  1582     st_ptr(s1, s1_addr);
  1585   Address s2_addr;
  1586   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1587     s2_addr = s2->address_in_saved_window();
  1588     st_ptr(s2, s2_addr);
  1591   save_frame(extraWords);
  1593   if (s1_addr.base() == SP) {
  1594     ld_ptr(s1_addr.after_save(), d1);
  1595   } else if (s1->is_valid()) {
  1596     mov(s1->after_save(), d1);
  1599   if (s2_addr.base() == SP) {
  1600     ld_ptr(s2_addr.after_save(), d2);
  1601   } else if (s2->is_valid()) {
  1602     mov(s2->after_save(), d2);
  1607 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
  1608   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
  1609   int index = oop_recorder()->allocate_metadata_index(obj);
  1610   RelocationHolder rspec = metadata_Relocation::spec(index);
  1611   return AddressLiteral((address)obj, rspec);
  1614 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
  1615   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
  1616   int index = oop_recorder()->find_index(obj);
  1617   RelocationHolder rspec = metadata_Relocation::spec(index);
  1618   return AddressLiteral((address)obj, rspec);
  1622 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
  1623   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1624   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
  1625   int oop_index = oop_recorder()->find_index(obj);
  1626   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1629 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  1630   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1631   int oop_index = oop_recorder()->find_index(obj);
  1632   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1634   assert_not_delayed();
  1635   // Relocation with special format (see relocInfo_sparc.hpp).
  1636   relocate(rspec, 1);
  1637   // Assembler::sethi(0x3fffff, d);
  1638   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  1639   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1640   add(d, 0x3ff, d);
  1645 void MacroAssembler::align(int modulus) {
  1646   while (offset() % modulus != 0) nop();
  1650 void MacroAssembler::safepoint() {
  1651   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1655 void RegistersForDebugging::print(outputStream* s) {
  1656   FlagSetting fs(Debugging, true);
  1657   int j;
  1658   for (j = 0; j < 8; ++j) {
  1659     if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
  1660     else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
  1662   s->cr();
  1664   for (j = 0;  j < 8;  ++j) {
  1665     s->print("l%d = ", j); os::print_location(s, l[j]);
  1667   s->cr();
  1669   for (j = 0; j < 8; ++j) {
  1670     if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
  1671     else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
  1673   s->cr();
  1675   for (j = 0; j < 8; ++j) {
  1676     s->print("g%d = ", j); os::print_location(s, g[j]);
  1678   s->cr();
  1680   // print out floats with compression
  1681   for (j = 0; j < 32; ) {
  1682     jfloat val = f[j];
  1683     int last = j;
  1684     for ( ;  last+1 < 32;  ++last ) {
  1685       char b1[1024], b2[1024];
  1686       sprintf(b1, "%f", val);
  1687       sprintf(b2, "%f", f[last+1]);
  1688       if (strcmp(b1, b2))
  1689         break;
  1691     s->print("f%d", j);
  1692     if ( j != last )  s->print(" - f%d", last);
  1693     s->print(" = %f", val);
  1694     s->fill_to(25);
  1695     s->print_cr(" (0x%x)", val);
  1696     j = last + 1;
  1698   s->cr();
  1700   // and doubles (evens only)
  1701   for (j = 0; j < 32; ) {
  1702     jdouble val = d[j];
  1703     int last = j;
  1704     for ( ;  last+1 < 32;  ++last ) {
  1705       char b1[1024], b2[1024];
  1706       sprintf(b1, "%f", val);
  1707       sprintf(b2, "%f", d[last+1]);
  1708       if (strcmp(b1, b2))
  1709         break;
  1711     s->print("d%d", 2 * j);
  1712     if ( j != last )  s->print(" - d%d", last);
  1713     s->print(" = %f", val);
  1714     s->fill_to(30);
  1715     s->print("(0x%x)", *(int*)&val);
  1716     s->fill_to(42);
  1717     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1718     j = last + 1;
  1720   s->cr();
  1723 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1724   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1725   a->flush_windows();
  1726   int i;
  1727   for (i = 0; i < 8; ++i) {
  1728     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1729     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1730     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1731     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1733   for (i = 0;  i < 32; ++i) {
  1734     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1736   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1737     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1741 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1742   for (int i = 1; i < 8;  ++i) {
  1743     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1745   for (int j = 0; j < 32; ++j) {
  1746     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1748   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1749     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1754 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1755 void MacroAssembler::push_fTOS() {
  1756   // %%%%%% need to implement this
  1759 // pops double TOS element from CPU stack and pushes on FPU stack
  1760 void MacroAssembler::pop_fTOS() {
  1761   // %%%%%% need to implement this
  1764 void MacroAssembler::empty_FPU_stack() {
  1765   // %%%%%% need to implement this
  1768 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1769   // plausibility check for oops
  1770   if (!VerifyOops) return;
  1772   if (reg == G0)  return;       // always NULL, which is always an oop
  1774   BLOCK_COMMENT("verify_oop {");
  1775   char buffer[64];
  1776 #ifdef COMPILER1
  1777   if (CommentedAssembly) {
  1778     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
  1779     block_comment(buffer);
  1781 #endif
  1783   int len = strlen(file) + strlen(msg) + 1 + 4;
  1784   sprintf(buffer, "%d", line);
  1785   len += strlen(buffer);
  1786   sprintf(buffer, " at offset %d ", offset());
  1787   len += strlen(buffer);
  1788   char * real_msg = new char[len];
  1789   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
  1791   // Call indirectly to solve generation ordering problem
  1792   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1794   // Make some space on stack above the current register window.
  1795   // Enough to hold 8 64-bit registers.
  1796   add(SP,-8*8,SP);
  1798   // Save some 64-bit registers; a normal 'save' chops the heads off
  1799   // of 64-bit longs in the 32-bit build.
  1800   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1801   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1802   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1803   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1805   // Size of set() should stay the same
  1806   patchable_set((intptr_t)real_msg, O1);
  1807   // Load address to call to into O7
  1808   load_ptr_contents(a, O7);
  1809   // Register call to verify_oop_subroutine
  1810   callr(O7, G0);
  1811   delayed()->nop();
  1812   // recover frame size
  1813   add(SP, 8*8,SP);
  1814   BLOCK_COMMENT("} verify_oop");
  1817 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1818   // plausibility check for oops
  1819   if (!VerifyOops) return;
  1821   char buffer[64];
  1822   sprintf(buffer, "%d", line);
  1823   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1824   sprintf(buffer, " at SP+%d ", addr.disp());
  1825   len += strlen(buffer);
  1826   char * real_msg = new char[len];
  1827   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1829   // Call indirectly to solve generation ordering problem
  1830   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1832   // Make some space on stack above the current register window.
  1833   // Enough to hold 8 64-bit registers.
  1834   add(SP,-8*8,SP);
  1836   // Save some 64-bit registers; a normal 'save' chops the heads off
  1837   // of 64-bit longs in the 32-bit build.
  1838   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1839   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1840   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1841   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1843   // Size of set() should stay the same
  1844   patchable_set((intptr_t)real_msg, O1);
  1845   // Load address to call to into O7
  1846   load_ptr_contents(a, O7);
  1847   // Register call to verify_oop_subroutine
  1848   callr(O7, G0);
  1849   delayed()->nop();
  1850   // recover frame size
  1851   add(SP, 8*8,SP);
  1854 // side-door communication with signalHandler in os_solaris.cpp
  1855 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1857 // This macro is expanded just once; it creates shared code.  Contract:
  1858 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1859 // registers, including flags.  May not use a register 'save', as this blows
  1860 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1861 // call.
  1862 void MacroAssembler::verify_oop_subroutine() {
  1863   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1865   // Leaf call; no frame.
  1866   Label succeed, fail, null_or_fail;
  1868   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1869   // O0 is now the oop to be checked.  O7 is the return address.
  1870   Register O0_obj = O0;
  1872   // Save some more registers for temps.
  1873   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1874   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1875   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1876   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1878   // Save flags
  1879   Register O5_save_flags = O5;
  1880   rdccr( O5_save_flags );
  1882   { // count number of verifies
  1883     Register O2_adr   = O2;
  1884     Register O3_accum = O3;
  1885     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
  1888   Register O2_mask = O2;
  1889   Register O3_bits = O3;
  1890   Register O4_temp = O4;
  1892   // mark lower end of faulting range
  1893   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1894   _verify_oop_implicit_branch[0] = pc();
  1896   // We can't check the mark oop because it could be in the process of
  1897   // locking or unlocking while this is running.
  1898   set(Universe::verify_oop_mask (), O2_mask);
  1899   set(Universe::verify_oop_bits (), O3_bits);
  1901   // assert((obj & oop_mask) == oop_bits);
  1902   and3(O0_obj, O2_mask, O4_temp);
  1903   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
  1905   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1906     // the null_or_fail case is useless; must test for null separately
  1907     br_null_short(O0_obj, pn, succeed);
  1910   // Check the Klass* of this object for being in the right area of memory.
  1911   // Cannot do the load in the delay above slot in case O0 is null
  1912   load_klass(O0_obj, O0_obj);
  1913   // assert((klass != NULL)
  1914   br_null_short(O0_obj, pn, fail);
  1915   // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
  1917   wrccr( O5_save_flags ); // Restore CCR's
  1919   // mark upper end of faulting range
  1920   _verify_oop_implicit_branch[1] = pc();
  1922   //-----------------------
  1923   // all tests pass
  1924   bind(succeed);
  1926   // Restore prior 64-bit registers
  1927   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1928   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1929   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1930   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1931   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1932   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1934   retl();                       // Leaf return; restore prior O7 in delay slot
  1935   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1937   //-----------------------
  1938   bind(null_or_fail);           // nulls are less common but OK
  1939   br_null(O0_obj, false, pt, succeed);
  1940   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1942   //-----------------------
  1943   // report failure:
  1944   bind(fail);
  1945   _verify_oop_implicit_branch[2] = pc();
  1947   wrccr( O5_save_flags ); // Restore CCR's
  1949   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1951   // stop_subroutine expects message pointer in I1.
  1952   mov(I1, O1);
  1954   // Restore prior 64-bit registers
  1955   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1956   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1957   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1958   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1959   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1960   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1962   // factor long stop-sequence into subroutine to save space
  1963   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1965   // call indirectly to solve generation ordering problem
  1966   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
  1967   load_ptr_contents(al, O5);
  1968   jmpl(O5, 0, O7);
  1969   delayed()->nop();
  1973 void MacroAssembler::stop(const char* msg) {
  1974   // save frame first to get O7 for return address
  1975   // add one word to size in case struct is odd number of words long
  1976   // It must be doubleword-aligned for storing doubles into it.
  1978     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1980     // stop_subroutine expects message pointer in I1.
  1981     // Size of set() should stay the same
  1982     patchable_set((intptr_t)msg, O1);
  1984     // factor long stop-sequence into subroutine to save space
  1985     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1987     // call indirectly to solve generation ordering problem
  1988     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
  1989     load_ptr_contents(a, O5);
  1990     jmpl(O5, 0, O7);
  1991     delayed()->nop();
  1993     breakpoint_trap();   // make stop actually stop rather than writing
  1994                          // unnoticeable results in the output files.
  1996     // restore(); done in callee to save space!
  2000 void MacroAssembler::warn(const char* msg) {
  2001   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  2002   RegistersForDebugging::save_registers(this);
  2003   mov(O0, L0);
  2004   // Size of set() should stay the same
  2005   patchable_set((intptr_t)msg, O0);
  2006   call( CAST_FROM_FN_PTR(address, warning) );
  2007   delayed()->nop();
  2008 //  ret();
  2009 //  delayed()->restore();
  2010   RegistersForDebugging::restore_registers(this, L0);
  2011   restore();
  2015 void MacroAssembler::untested(const char* what) {
  2016   // We must be able to turn interactive prompting off
  2017   // in order to run automated test scripts on the VM
  2018   // Use the flag ShowMessageBoxOnError
  2020   char* b = new char[1024];
  2021   sprintf(b, "untested: %s", what);
  2023   if (ShowMessageBoxOnError) { STOP(b); }
  2024   else                       { warn(b); }
  2028 void MacroAssembler::stop_subroutine() {
  2029   RegistersForDebugging::save_registers(this);
  2031   // for the sake of the debugger, stick a PC on the current frame
  2032   // (this assumes that the caller has performed an extra "save")
  2033   mov(I7, L7);
  2034   add(O7, -7 * BytesPerInt, I7);
  2036   save_frame(); // one more save to free up another O7 register
  2037   mov(I0, O1); // addr of reg save area
  2039   // We expect pointer to message in I1. Caller must set it up in O1
  2040   mov(I1, O0); // get msg
  2041   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  2042   delayed()->nop();
  2044   restore();
  2046   RegistersForDebugging::restore_registers(this, O0);
  2048   save_frame(0);
  2049   call(CAST_FROM_FN_PTR(address,breakpoint));
  2050   delayed()->nop();
  2051   restore();
  2053   mov(L7, I7);
  2054   retl();
  2055   delayed()->restore(); // see stop above
  2059 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  2060   if ( ShowMessageBoxOnError ) {
  2061     JavaThread* thread = JavaThread::current();
  2062     JavaThreadState saved_state = thread->thread_state();
  2063     thread->set_thread_state(_thread_in_vm);
  2065         // In order to get locks work, we need to fake a in_VM state
  2066         ttyLocker ttyl;
  2067         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  2068         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  2069         BytecodeCounter::print();
  2071         if (os::message_box(msg, "Execution stopped, print registers?"))
  2072           regs->print(::tty);
  2074     BREAKPOINT;
  2075       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  2077   else {
  2078      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  2080   assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  2083 #ifndef PRODUCT
  2084 void MacroAssembler::test() {
  2085   ResourceMark rm;
  2087   CodeBuffer cb("test", 10000, 10000);
  2088   MacroAssembler* a = new MacroAssembler(&cb);
  2089   VM_Version::allow_all();
  2090   a->test_v9();
  2091   a->test_v8_onlys();
  2092   VM_Version::revert();
  2094   StubRoutines::Sparc::test_stop_entry()();
  2096 #endif
  2099 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  2100   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  2101   Label no_extras;
  2102   br( negative, true, pt, no_extras ); // if neg, clear reg
  2103   delayed()->set(0, Rresult);          // annuled, so only if taken
  2104   bind( no_extras );
  2108 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  2109 #ifdef _LP64
  2110   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  2111 #else
  2112   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  2113 #endif
  2114   bclr(1, Rresult);
  2115   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  2119 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  2120   calc_frame_size(Rextra_words, Rresult);
  2121   neg(Rresult);
  2122   save(SP, Rresult, SP);
  2126 // ---------------------------------------------------------
  2127 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  2128   switch (c) {
  2129     /*case zero: */
  2130     case Assembler::equal:        return Assembler::rc_z;
  2131     case Assembler::lessEqual:    return Assembler::rc_lez;
  2132     case Assembler::less:         return Assembler::rc_lz;
  2133     /*case notZero:*/
  2134     case Assembler::notEqual:     return Assembler::rc_nz;
  2135     case Assembler::greater:      return Assembler::rc_gz;
  2136     case Assembler::greaterEqual: return Assembler::rc_gez;
  2138   ShouldNotReachHere();
  2139   return Assembler::rc_z;
  2142 // compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  2143 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
  2144   tst(s1);
  2145   br (c, a, p, L);
  2148 // Compares a pointer register with zero and branches on null.
  2149 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  2150 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  2151   assert_not_delayed();
  2152 #ifdef _LP64
  2153   bpr( rc_z, a, p, s1, L );
  2154 #else
  2155   tst(s1);
  2156   br ( zero, a, p, L );
  2157 #endif
  2160 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  2161   assert_not_delayed();
  2162 #ifdef _LP64
  2163   bpr( rc_nz, a, p, s1, L );
  2164 #else
  2165   tst(s1);
  2166   br ( notZero, a, p, L );
  2167 #endif
  2170 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
  2172 // Compare integer (32 bit) values (icc only).
  2173 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
  2174                                       Predict p, Label& L) {
  2175   assert_not_delayed();
  2176   if (use_cbcond(L)) {
  2177     Assembler::cbcond(c, icc, s1, s2, L);
  2178   } else {
  2179     cmp(s1, s2);
  2180     br(c, false, p, L);
  2181     delayed()->nop();
  2185 // Compare integer (32 bit) values (icc only).
  2186 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
  2187                                       Predict p, Label& L) {
  2188   assert_not_delayed();
  2189   if (is_simm(simm13a,5) && use_cbcond(L)) {
  2190     Assembler::cbcond(c, icc, s1, simm13a, L);
  2191   } else {
  2192     cmp(s1, simm13a);
  2193     br(c, false, p, L);
  2194     delayed()->nop();
  2198 // Branch that tests xcc in LP64 and icc in !LP64
  2199 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
  2200                                        Predict p, Label& L) {
  2201   assert_not_delayed();
  2202   if (use_cbcond(L)) {
  2203     Assembler::cbcond(c, ptr_cc, s1, s2, L);
  2204   } else {
  2205     cmp(s1, s2);
  2206     brx(c, false, p, L);
  2207     delayed()->nop();
  2211 // Branch that tests xcc in LP64 and icc in !LP64
  2212 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
  2213                                        Predict p, Label& L) {
  2214   assert_not_delayed();
  2215   if (is_simm(simm13a,5) && use_cbcond(L)) {
  2216     Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
  2217   } else {
  2218     cmp(s1, simm13a);
  2219     brx(c, false, p, L);
  2220     delayed()->nop();
  2224 // Short branch version for compares a pointer with zero.
  2226 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
  2227   assert_not_delayed();
  2228   if (use_cbcond(L)) {
  2229     Assembler::cbcond(zero, ptr_cc, s1, 0, L);
  2230     return;
  2232   br_null(s1, false, p, L);
  2233   delayed()->nop();
  2236 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
  2237   assert_not_delayed();
  2238   if (use_cbcond(L)) {
  2239     Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
  2240     return;
  2242   br_notnull(s1, false, p, L);
  2243   delayed()->nop();
  2246 // Unconditional short branch
  2247 void MacroAssembler::ba_short(Label& L) {
  2248   if (use_cbcond(L)) {
  2249     Assembler::cbcond(equal, icc, G0, G0, L);
  2250     return;
  2252   br(always, false, pt, L);
  2253   delayed()->nop();
  2256 // instruction sequences factored across compiler & interpreter
  2259 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  2260                            Register Rb_hi, Register Rb_low,
  2261                            Register Rresult) {
  2263   Label check_low_parts, done;
  2265   cmp(Ra_hi, Rb_hi );  // compare hi parts
  2266   br(equal, true, pt, check_low_parts);
  2267   delayed()->cmp(Ra_low, Rb_low); // test low parts
  2269   // And, with an unsigned comparison, it does not matter if the numbers
  2270   // are negative or not.
  2271   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  2272   // The second one is bigger (unsignedly).
  2274   // Other notes:  The first move in each triplet can be unconditional
  2275   // (and therefore probably prefetchable).
  2276   // And the equals case for the high part does not need testing,
  2277   // since that triplet is reached only after finding the high halves differ.
  2279   if (VM_Version::v9_instructions_work()) {
  2280     mov(-1, Rresult);
  2281     ba(done);  delayed()-> movcc(greater, false, icc,  1, Rresult);
  2282   } else {
  2283     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  2284     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  2287   bind( check_low_parts );
  2289   if (VM_Version::v9_instructions_work()) {
  2290     mov(                               -1, Rresult);
  2291     movcc(equal,           false, icc,  0, Rresult);
  2292     movcc(greaterUnsigned, false, icc,  1, Rresult);
  2293   } else {
  2294     set(-1, Rresult);
  2295     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  2296     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  2298   bind( done );
  2301 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  2302   subcc(  G0, Rlow, Rlow );
  2303   subc(   G0, Rhi,  Rhi  );
  2306 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  2307                            Register Rcount,
  2308                            Register Rout_high, Register Rout_low,
  2309                            Register Rtemp ) {
  2312   Register Ralt_count = Rtemp;
  2313   Register Rxfer_bits = Rtemp;
  2315   assert( Ralt_count != Rin_high
  2316       &&  Ralt_count != Rin_low
  2317       &&  Ralt_count != Rcount
  2318       &&  Rxfer_bits != Rin_low
  2319       &&  Rxfer_bits != Rin_high
  2320       &&  Rxfer_bits != Rcount
  2321       &&  Rxfer_bits != Rout_low
  2322       &&  Rout_low   != Rin_high,
  2323         "register alias checks");
  2325   Label big_shift, done;
  2327   // This code can be optimized to use the 64 bit shifts in V9.
  2328   // Here we use the 32 bit shifts.
  2330   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  2331   subcc(Rcount,   31, Ralt_count);
  2332   br(greater, true, pn, big_shift);
  2333   delayed()->dec(Ralt_count);
  2335   // shift < 32 bits, Ralt_count = Rcount-31
  2337   // We get the transfer bits by shifting right by 32-count the low
  2338   // register. This is done by shifting right by 31-count and then by one
  2339   // more to take care of the special (rare) case where count is zero
  2340   // (shifting by 32 would not work).
  2342   neg(Ralt_count);
  2344   // The order of the next two instructions is critical in the case where
  2345   // Rin and Rout are the same and should not be reversed.
  2347   srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
  2348   if (Rcount != Rout_low) {
  2349     sll(Rin_low, Rcount, Rout_low); // low half
  2351   sll(Rin_high, Rcount, Rout_high);
  2352   if (Rcount == Rout_low) {
  2353     sll(Rin_low, Rcount, Rout_low); // low half
  2355   srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
  2356   ba(done);
  2357   delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  2359   // shift >= 32 bits, Ralt_count = Rcount-32
  2360   bind(big_shift);
  2361   sll(Rin_low, Ralt_count, Rout_high  );
  2362   clr(Rout_low);
  2364   bind(done);
  2368 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  2369                            Register Rcount,
  2370                            Register Rout_high, Register Rout_low,
  2371                            Register Rtemp ) {
  2373   Register Ralt_count = Rtemp;
  2374   Register Rxfer_bits = Rtemp;
  2376   assert( Ralt_count != Rin_high
  2377       &&  Ralt_count != Rin_low
  2378       &&  Ralt_count != Rcount
  2379       &&  Rxfer_bits != Rin_low
  2380       &&  Rxfer_bits != Rin_high
  2381       &&  Rxfer_bits != Rcount
  2382       &&  Rxfer_bits != Rout_high
  2383       &&  Rout_high  != Rin_low,
  2384         "register alias checks");
  2386   Label big_shift, done;
  2388   // This code can be optimized to use the 64 bit shifts in V9.
  2389   // Here we use the 32 bit shifts.
  2391   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  2392   subcc(Rcount,   31, Ralt_count);
  2393   br(greater, true, pn, big_shift);
  2394   delayed()->dec(Ralt_count);
  2396   // shift < 32 bits, Ralt_count = Rcount-31
  2398   // We get the transfer bits by shifting left by 32-count the high
  2399   // register. This is done by shifting left by 31-count and then by one
  2400   // more to take care of the special (rare) case where count is zero
  2401   // (shifting by 32 would not work).
  2403   neg(Ralt_count);
  2404   if (Rcount != Rout_low) {
  2405     srl(Rin_low, Rcount, Rout_low);
  2408   // The order of the next two instructions is critical in the case where
  2409   // Rin and Rout are the same and should not be reversed.
  2411   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  2412   sra(Rin_high,     Rcount, Rout_high ); // high half
  2413   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
  2414   if (Rcount == Rout_low) {
  2415     srl(Rin_low, Rcount, Rout_low);
  2417   ba(done);
  2418   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
  2420   // shift >= 32 bits, Ralt_count = Rcount-32
  2421   bind(big_shift);
  2423   sra(Rin_high, Ralt_count, Rout_low);
  2424   sra(Rin_high,         31, Rout_high); // sign into hi
  2426   bind( done );
  2431 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2432                             Register Rcount,
  2433                             Register Rout_high, Register Rout_low,
  2434                             Register Rtemp ) {
  2436   Register Ralt_count = Rtemp;
  2437   Register Rxfer_bits = Rtemp;
  2439   assert( Ralt_count != Rin_high
  2440       &&  Ralt_count != Rin_low
  2441       &&  Ralt_count != Rcount
  2442       &&  Rxfer_bits != Rin_low
  2443       &&  Rxfer_bits != Rin_high
  2444       &&  Rxfer_bits != Rcount
  2445       &&  Rxfer_bits != Rout_high
  2446       &&  Rout_high  != Rin_low,
  2447         "register alias checks");
  2449   Label big_shift, done;
  2451   // This code can be optimized to use the 64 bit shifts in V9.
  2452   // Here we use the 32 bit shifts.
  2454   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  2455   subcc(Rcount,   31, Ralt_count);
  2456   br(greater, true, pn, big_shift);
  2457   delayed()->dec(Ralt_count);
  2459   // shift < 32 bits, Ralt_count = Rcount-31
  2461   // We get the transfer bits by shifting left by 32-count the high
  2462   // register. This is done by shifting left by 31-count and then by one
  2463   // more to take care of the special (rare) case where count is zero
  2464   // (shifting by 32 would not work).
  2466   neg(Ralt_count);
  2467   if (Rcount != Rout_low) {
  2468     srl(Rin_low, Rcount, Rout_low);
  2471   // The order of the next two instructions is critical in the case where
  2472   // Rin and Rout are the same and should not be reversed.
  2474   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  2475   srl(Rin_high,     Rcount, Rout_high ); // high half
  2476   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
  2477   if (Rcount == Rout_low) {
  2478     srl(Rin_low, Rcount, Rout_low);
  2480   ba(done);
  2481   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
  2483   // shift >= 32 bits, Ralt_count = Rcount-32
  2484   bind(big_shift);
  2486   srl(Rin_high, Ralt_count, Rout_low);
  2487   clr(Rout_high);
  2489   bind( done );
  2492 #ifdef _LP64
  2493 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2494   cmp(Ra, Rb);
  2495   mov(-1, Rresult);
  2496   movcc(equal,   false, xcc,  0, Rresult);
  2497   movcc(greater, false, xcc,  1, Rresult);
  2499 #endif
  2502 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
  2503   switch (size_in_bytes) {
  2504   case  8:  ld_long(src, dst); break;
  2505   case  4:  ld(     src, dst); break;
  2506   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
  2507   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
  2508   default:  ShouldNotReachHere();
  2512 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
  2513   switch (size_in_bytes) {
  2514   case  8:  st_long(src, dst); break;
  2515   case  4:  st(     src, dst); break;
  2516   case  2:  sth(    src, dst); break;
  2517   case  1:  stb(    src, dst); break;
  2518   default:  ShouldNotReachHere();
  2523 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2524                                 FloatRegister Fa, FloatRegister Fb,
  2525                                 Register Rresult) {
  2527   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2529   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2530   Condition eq =                          f_equal;
  2531   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2533   if (VM_Version::v9_instructions_work()) {
  2535     mov(-1, Rresult);
  2536     movcc(eq, true, fcc0, 0, Rresult);
  2537     movcc(gt, true, fcc0, 1, Rresult);
  2539   } else {
  2540     Label done;
  2542     set( -1, Rresult );
  2543     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2544     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2545     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2547     bind (done);
  2552 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2554   if (VM_Version::v9_instructions_work()) {
  2555     Assembler::fneg(w, s, d);
  2556   } else {
  2557     if (w == FloatRegisterImpl::S) {
  2558       Assembler::fneg(w, s, d);
  2559     } else if (w == FloatRegisterImpl::D) {
  2560       // number() does a sanity check on the alignment.
  2561       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2562         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2564       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2565       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2566     } else {
  2567       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2569       // number() does a sanity check on the alignment.
  2570       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2571         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2573       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2574       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2575       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2576       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2581 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2583   if (VM_Version::v9_instructions_work()) {
  2584     Assembler::fmov(w, s, d);
  2585   } else {
  2586     if (w == FloatRegisterImpl::S) {
  2587       Assembler::fmov(w, s, d);
  2588     } else if (w == FloatRegisterImpl::D) {
  2589       // number() does a sanity check on the alignment.
  2590       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2591         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2593       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2594       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2595     } else {
  2596       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2598       // number() does a sanity check on the alignment.
  2599       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2600         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2602       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2603       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2604       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2605       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2610 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2612   if (VM_Version::v9_instructions_work()) {
  2613     Assembler::fabs(w, s, d);
  2614   } else {
  2615     if (w == FloatRegisterImpl::S) {
  2616       Assembler::fabs(w, s, d);
  2617     } else if (w == FloatRegisterImpl::D) {
  2618       // number() does a sanity check on the alignment.
  2619       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2620         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2622       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2623       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2624     } else {
  2625       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2627       // number() does a sanity check on the alignment.
  2628       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2629        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2631       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2632       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2633       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2634       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2639 void MacroAssembler::save_all_globals_into_locals() {
  2640   mov(G1,L1);
  2641   mov(G2,L2);
  2642   mov(G3,L3);
  2643   mov(G4,L4);
  2644   mov(G5,L5);
  2645   mov(G6,L6);
  2646   mov(G7,L7);
  2649 void MacroAssembler::restore_globals_from_locals() {
  2650   mov(L1,G1);
  2651   mov(L2,G2);
  2652   mov(L3,G3);
  2653   mov(L4,G4);
  2654   mov(L5,G5);
  2655   mov(L6,G6);
  2656   mov(L7,G7);
  2659 // Use for 64 bit operation.
  2660 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2662   // store ptr_reg as the new top value
  2663 #ifdef _LP64
  2664   casx(top_ptr_reg, top_reg, ptr_reg);
  2665 #else
  2666   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2667 #endif // _LP64
  2670 // [RGV] This routine does not handle 64 bit operations.
  2671 //       use casx_under_lock() or casx directly!!!
  2672 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2674   // store ptr_reg as the new top value
  2675   if (VM_Version::v9_instructions_work()) {
  2676     cas(top_ptr_reg, top_reg, ptr_reg);
  2677   } else {
  2679     // If the register is not an out nor global, it is not visible
  2680     // after the save.  Allocate a register for it, save its
  2681     // value in the register save area (the save may not flush
  2682     // registers to the save area).
  2684     Register top_ptr_reg_after_save;
  2685     Register top_reg_after_save;
  2686     Register ptr_reg_after_save;
  2688     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2689       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2690     } else {
  2691       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2692       top_ptr_reg_after_save = L0;
  2693       st(top_ptr_reg, reg_save_addr);
  2696     if (top_reg->is_out() || top_reg->is_global()) {
  2697       top_reg_after_save = top_reg->after_save();
  2698     } else {
  2699       Address reg_save_addr = top_reg->address_in_saved_window();
  2700       top_reg_after_save = L1;
  2701       st(top_reg, reg_save_addr);
  2704     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2705       ptr_reg_after_save = ptr_reg->after_save();
  2706     } else {
  2707       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2708       ptr_reg_after_save = L2;
  2709       st(ptr_reg, reg_save_addr);
  2712     const Register& lock_reg = L3;
  2713     const Register& lock_ptr_reg = L4;
  2714     const Register& value_reg = L5;
  2715     const Register& yield_reg = L6;
  2716     const Register& yieldall_reg = L7;
  2718     save_frame();
  2720     if (top_ptr_reg_after_save == L0) {
  2721       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2724     if (top_reg_after_save == L1) {
  2725       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2728     if (ptr_reg_after_save == L2) {
  2729       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2732     Label(retry_get_lock);
  2733     Label(not_same);
  2734     Label(dont_yield);
  2736     assert(lock_addr, "lock_address should be non null for v8");
  2737     set((intptr_t)lock_addr, lock_ptr_reg);
  2738     // Initialize yield counter
  2739     mov(G0,yield_reg);
  2740     mov(G0, yieldall_reg);
  2741     set(StubRoutines::Sparc::locked, lock_reg);
  2743     bind(retry_get_lock);
  2744     cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
  2746     if(use_call_vm) {
  2747       Untested("Need to verify global reg consistancy");
  2748       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2749     } else {
  2750       // Save the regs and make space for a C call
  2751       save(SP, -96, SP);
  2752       save_all_globals_into_locals();
  2753       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2754       delayed()->mov(yieldall_reg, O0);
  2755       restore_globals_from_locals();
  2756       restore();
  2759     // reset the counter
  2760     mov(G0,yield_reg);
  2761     add(yieldall_reg, 1, yieldall_reg);
  2763     bind(dont_yield);
  2764     // try to get lock
  2765     swap(lock_ptr_reg, 0, lock_reg);
  2767     // did we get the lock?
  2768     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2769     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2770     delayed()->add(yield_reg,1,yield_reg);
  2772     // yes, got lock.  do we have the same top?
  2773     ld(top_ptr_reg_after_save, 0, value_reg);
  2774     cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
  2776     // yes, same top.
  2777     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2778     membar(Assembler::StoreStore);
  2780     bind(not_same);
  2781     mov(value_reg, ptr_reg_after_save);
  2782     st(lock_reg, lock_ptr_reg, 0); // unlock
  2784     restore();
  2788 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2789                                                       Register tmp,
  2790                                                       int offset) {
  2791   intptr_t value = *delayed_value_addr;
  2792   if (value != 0)
  2793     return RegisterOrConstant(value + offset);
  2795   // load indirectly to solve generation ordering problem
  2796   AddressLiteral a(delayed_value_addr);
  2797   load_ptr_contents(a, tmp);
  2799 #ifdef ASSERT
  2800   tst(tmp);
  2801   breakpoint_trap(zero, xcc);
  2802 #endif
  2804   if (offset != 0)
  2805     add(tmp, offset, tmp);
  2807   return RegisterOrConstant(tmp);
  2811 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2812   assert(d.register_or_noreg() != G0, "lost side effect");
  2813   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2814       (s2.is_register() && s2.as_register() == G0)) {
  2815     // Do nothing, just move value.
  2816     if (s1.is_register()) {
  2817       if (d.is_constant())  d = temp;
  2818       mov(s1.as_register(), d.as_register());
  2819       return d;
  2820     } else {
  2821       return s1;
  2825   if (s1.is_register()) {
  2826     assert_different_registers(s1.as_register(), temp);
  2827     if (d.is_constant())  d = temp;
  2828     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2829     return d;
  2830   } else {
  2831     if (s2.is_register()) {
  2832       assert_different_registers(s2.as_register(), temp);
  2833       if (d.is_constant())  d = temp;
  2834       set(s1.as_constant(), temp);
  2835       andn(temp, s2.as_register(), d.as_register());
  2836       return d;
  2837     } else {
  2838       intptr_t res = s1.as_constant() & ~s2.as_constant();
  2839       return res;
  2844 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2845   assert(d.register_or_noreg() != G0, "lost side effect");
  2846   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2847       (s2.is_register() && s2.as_register() == G0)) {
  2848     // Do nothing, just move value.
  2849     if (s1.is_register()) {
  2850       if (d.is_constant())  d = temp;
  2851       mov(s1.as_register(), d.as_register());
  2852       return d;
  2853     } else {
  2854       return s1;
  2858   if (s1.is_register()) {
  2859     assert_different_registers(s1.as_register(), temp);
  2860     if (d.is_constant())  d = temp;
  2861     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2862     return d;
  2863   } else {
  2864     if (s2.is_register()) {
  2865       assert_different_registers(s2.as_register(), temp);
  2866       if (d.is_constant())  d = temp;
  2867       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
  2868       return d;
  2869     } else {
  2870       intptr_t res = s1.as_constant() + s2.as_constant();
  2871       return res;
  2876 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2877   assert(d.register_or_noreg() != G0, "lost side effect");
  2878   if (!is_simm13(s2.constant_or_zero()))
  2879     s2 = (s2.as_constant() & 0xFF);
  2880   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2881       (s2.is_register() && s2.as_register() == G0)) {
  2882     // Do nothing, just move value.
  2883     if (s1.is_register()) {
  2884       if (d.is_constant())  d = temp;
  2885       mov(s1.as_register(), d.as_register());
  2886       return d;
  2887     } else {
  2888       return s1;
  2892   if (s1.is_register()) {
  2893     assert_different_registers(s1.as_register(), temp);
  2894     if (d.is_constant())  d = temp;
  2895     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2896     return d;
  2897   } else {
  2898     if (s2.is_register()) {
  2899       assert_different_registers(s2.as_register(), temp);
  2900       if (d.is_constant())  d = temp;
  2901       set(s1.as_constant(), temp);
  2902       sll_ptr(temp, s2.as_register(), d.as_register());
  2903       return d;
  2904     } else {
  2905       intptr_t res = s1.as_constant() << s2.as_constant();
  2906       return res;
  2912 // Look up the method for a megamorphic invokeinterface call.
  2913 // The target method is determined by <intf_klass, itable_index>.
  2914 // The receiver klass is in recv_klass.
  2915 // On success, the result will be in method_result, and execution falls through.
  2916 // On failure, execution transfers to the given label.
  2917 void MacroAssembler::lookup_interface_method(Register recv_klass,
  2918                                              Register intf_klass,
  2919                                              RegisterOrConstant itable_index,
  2920                                              Register method_result,
  2921                                              Register scan_temp,
  2922                                              Register sethi_temp,
  2923                                              Label& L_no_such_interface) {
  2924   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  2925   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  2926          "caller must use same register for non-constant itable index as for method");
  2928   Label L_no_such_interface_restore;
  2929   bool did_save = false;
  2930   if (scan_temp == noreg || sethi_temp == noreg) {
  2931     Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
  2932     Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
  2933     assert(method_result->is_global(), "must be able to return value");
  2934     scan_temp  = L2;
  2935     sethi_temp = L3;
  2936     save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
  2937     recv_klass = recv_2;
  2938     intf_klass = intf_2;
  2939     did_save = true;
  2942   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  2943   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
  2944   int scan_step   = itableOffsetEntry::size() * wordSize;
  2945   int vte_size    = vtableEntry::size() * wordSize;
  2947   lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
  2948   // %%% We should store the aligned, prescaled offset in the klassoop.
  2949   // Then the next several instructions would fold away.
  2951   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
  2952   int itb_offset = vtable_base;
  2953   if (round_to_unit != 0) {
  2954     // hoist first instruction of round_to(scan_temp, BytesPerLong):
  2955     itb_offset += round_to_unit - wordSize;
  2957   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
  2958   sll(scan_temp, itb_scale,  scan_temp);
  2959   add(scan_temp, itb_offset, scan_temp);
  2960   if (round_to_unit != 0) {
  2961     // Round up to align_object_offset boundary
  2962     // see code for InstanceKlass::start_of_itable!
  2963     // Was: round_to(scan_temp, BytesPerLong);
  2964     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
  2965     and3(scan_temp, -round_to_unit, scan_temp);
  2967   add(recv_klass, scan_temp, scan_temp);
  2969   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  2970   RegisterOrConstant itable_offset = itable_index;
  2971   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
  2972   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
  2973   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
  2975   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  2976   //   if (scan->interface() == intf) {
  2977   //     result = (klass + scan->offset() + itable_index);
  2978   //   }
  2979   // }
  2980   Label L_search, L_found_method;
  2982   for (int peel = 1; peel >= 0; peel--) {
  2983     // %%%% Could load both offset and interface in one ldx, if they were
  2984     // in the opposite order.  This would save a load.
  2985     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
  2987     // Check that this entry is non-null.  A null entry means that
  2988     // the receiver class doesn't implement the interface, and wasn't the
  2989     // same as when the caller was compiled.
  2990     bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
  2991     delayed()->cmp(method_result, intf_klass);
  2993     if (peel) {
  2994       brx(Assembler::equal,    false, Assembler::pt, L_found_method);
  2995     } else {
  2996       brx(Assembler::notEqual, false, Assembler::pn, L_search);
  2997       // (invert the test to fall through to found_method...)
  2999     delayed()->add(scan_temp, scan_step, scan_temp);
  3001     if (!peel)  break;
  3003     bind(L_search);
  3006   bind(L_found_method);
  3008   // Got a hit.
  3009   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
  3010   // scan_temp[-scan_step] points to the vtable offset we need
  3011   ito_offset -= scan_step;
  3012   lduw(scan_temp, ito_offset, scan_temp);
  3013   ld_ptr(recv_klass, scan_temp, method_result);
  3015   if (did_save) {
  3016     Label L_done;
  3017     ba(L_done);
  3018     delayed()->restore();
  3020     bind(L_no_such_interface_restore);
  3021     ba(L_no_such_interface);
  3022     delayed()->restore();
  3024     bind(L_done);
  3029 // virtual method calling
  3030 void MacroAssembler::lookup_virtual_method(Register recv_klass,
  3031                                            RegisterOrConstant vtable_index,
  3032                                            Register method_result) {
  3033   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
  3034   Register sethi_temp = method_result;
  3035   const int base = (InstanceKlass::vtable_start_offset() * wordSize +
  3036                     // method pointer offset within the vtable entry:
  3037                     vtableEntry::method_offset_in_bytes());
  3038   RegisterOrConstant vtable_offset = vtable_index;
  3039   // Each of the following three lines potentially generates an instruction.
  3040   // But the total number of address formation instructions will always be
  3041   // at most two, and will often be zero.  In any case, it will be optimal.
  3042   // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
  3043   // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
  3044   vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
  3045   vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
  3046   Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
  3047   ld_ptr(vtable_entry_addr, method_result);
  3051 void MacroAssembler::check_klass_subtype(Register sub_klass,
  3052                                          Register super_klass,
  3053                                          Register temp_reg,
  3054                                          Register temp2_reg,
  3055                                          Label& L_success) {
  3056   Register sub_2 = sub_klass;
  3057   Register sup_2 = super_klass;
  3058   if (!sub_2->is_global())  sub_2 = L0;
  3059   if (!sup_2->is_global())  sup_2 = L1;
  3060   bool did_save = false;
  3061   if (temp_reg == noreg || temp2_reg == noreg) {
  3062     temp_reg = L2;
  3063     temp2_reg = L3;
  3064     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  3065     sub_klass = sub_2;
  3066     super_klass = sup_2;
  3067     did_save = true;
  3069   Label L_failure, L_pop_to_failure, L_pop_to_success;
  3070   check_klass_subtype_fast_path(sub_klass, super_klass,
  3071                                 temp_reg, temp2_reg,
  3072                                 (did_save ? &L_pop_to_success : &L_success),
  3073                                 (did_save ? &L_pop_to_failure : &L_failure), NULL);
  3075   if (!did_save)
  3076     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  3077   check_klass_subtype_slow_path(sub_2, sup_2,
  3078                                 L2, L3, L4, L5,
  3079                                 NULL, &L_pop_to_failure);
  3081   // on success:
  3082   bind(L_pop_to_success);
  3083   restore();
  3084   ba_short(L_success);
  3086   // on failure:
  3087   bind(L_pop_to_failure);
  3088   restore();
  3089   bind(L_failure);
  3093 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  3094                                                    Register super_klass,
  3095                                                    Register temp_reg,
  3096                                                    Register temp2_reg,
  3097                                                    Label* L_success,
  3098                                                    Label* L_failure,
  3099                                                    Label* L_slow_path,
  3100                                         RegisterOrConstant super_check_offset) {
  3101   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3102   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  3104   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
  3105   bool need_slow_path = (must_load_sco ||
  3106                          super_check_offset.constant_or_zero() == sco_offset);
  3108   assert_different_registers(sub_klass, super_klass, temp_reg);
  3109   if (super_check_offset.is_register()) {
  3110     assert_different_registers(sub_klass, super_klass, temp_reg,
  3111                                super_check_offset.as_register());
  3112   } else if (must_load_sco) {
  3113     assert(temp2_reg != noreg, "supply either a temp or a register offset");
  3116   Label L_fallthrough;
  3117   int label_nulls = 0;
  3118   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3119   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3120   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  3121   assert(label_nulls <= 1 ||
  3122          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
  3123          "at most one NULL in the batch, usually");
  3125   // If the pointers are equal, we are done (e.g., String[] elements).
  3126   // This self-check enables sharing of secondary supertype arrays among
  3127   // non-primary types such as array-of-interface.  Otherwise, each such
  3128   // type would need its own customized SSA.
  3129   // We move this check to the front of the fast path because many
  3130   // type checks are in fact trivially successful in this manner,
  3131   // so we get a nicely predicted branch right at the start of the check.
  3132   cmp(super_klass, sub_klass);
  3133   brx(Assembler::equal, false, Assembler::pn, *L_success);
  3134   delayed()->nop();
  3136   // Check the supertype display:
  3137   if (must_load_sco) {
  3138     // The super check offset is always positive...
  3139     lduw(super_klass, sco_offset, temp2_reg);
  3140     super_check_offset = RegisterOrConstant(temp2_reg);
  3141     // super_check_offset is register.
  3142     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
  3144   ld_ptr(sub_klass, super_check_offset, temp_reg);
  3145   cmp(super_klass, temp_reg);
  3147   // This check has worked decisively for primary supers.
  3148   // Secondary supers are sought in the super_cache ('super_cache_addr').
  3149   // (Secondary supers are interfaces and very deeply nested subtypes.)
  3150   // This works in the same check above because of a tricky aliasing
  3151   // between the super_cache and the primary super display elements.
  3152   // (The 'super_check_addr' can address either, as the case requires.)
  3153   // Note that the cache is updated below if it does not help us find
  3154   // what we need immediately.
  3155   // So if it was a primary super, we can just fail immediately.
  3156   // Otherwise, it's the slow path for us (no success at this point).
  3158   // Hacked ba(), which may only be used just before L_fallthrough.
  3159 #define FINAL_JUMP(label)            \
  3160   if (&(label) != &L_fallthrough) {  \
  3161     ba(label);  delayed()->nop();    \
  3164   if (super_check_offset.is_register()) {
  3165     brx(Assembler::equal, false, Assembler::pn, *L_success);
  3166     delayed()->cmp(super_check_offset.as_register(), sc_offset);
  3168     if (L_failure == &L_fallthrough) {
  3169       brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
  3170       delayed()->nop();
  3171     } else {
  3172       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
  3173       delayed()->nop();
  3174       FINAL_JUMP(*L_slow_path);
  3176   } else if (super_check_offset.as_constant() == sc_offset) {
  3177     // Need a slow path; fast failure is impossible.
  3178     if (L_slow_path == &L_fallthrough) {
  3179       brx(Assembler::equal, false, Assembler::pt, *L_success);
  3180       delayed()->nop();
  3181     } else {
  3182       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
  3183       delayed()->nop();
  3184       FINAL_JUMP(*L_success);
  3186   } else {
  3187     // No slow path; it's a fast decision.
  3188     if (L_failure == &L_fallthrough) {
  3189       brx(Assembler::equal, false, Assembler::pt, *L_success);
  3190       delayed()->nop();
  3191     } else {
  3192       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
  3193       delayed()->nop();
  3194       FINAL_JUMP(*L_success);
  3198   bind(L_fallthrough);
  3200 #undef FINAL_JUMP
  3204 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  3205                                                    Register super_klass,
  3206                                                    Register count_temp,
  3207                                                    Register scan_temp,
  3208                                                    Register scratch_reg,
  3209                                                    Register coop_reg,
  3210                                                    Label* L_success,
  3211                                                    Label* L_failure) {
  3212   assert_different_registers(sub_klass, super_klass,
  3213                              count_temp, scan_temp, scratch_reg, coop_reg);
  3215   Label L_fallthrough, L_loop;
  3216   int label_nulls = 0;
  3217   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3218   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3219   assert(label_nulls <= 1, "at most one NULL in the batch");
  3221   // a couple of useful fields in sub_klass:
  3222   int ss_offset = in_bytes(Klass::secondary_supers_offset());
  3223   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
  3225   // Do a linear scan of the secondary super-klass chain.
  3226   // This code is rarely used, so simplicity is a virtue here.
  3228 #ifndef PRODUCT
  3229   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  3230   inc_counter((address) pst_counter, count_temp, scan_temp);
  3231 #endif
  3233   // We will consult the secondary-super array.
  3234   ld_ptr(sub_klass, ss_offset, scan_temp);
  3236   Register search_key = super_klass;
  3238   // Load the array length.  (Positive movl does right thing on LP64.)
  3239   lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
  3241   // Check for empty secondary super list
  3242   tst(count_temp);
  3244   // In the array of super classes elements are pointer sized.
  3245   int element_size = wordSize;
  3247   // Top of search loop
  3248   bind(L_loop);
  3249   br(Assembler::equal, false, Assembler::pn, *L_failure);
  3250   delayed()->add(scan_temp, element_size, scan_temp);
  3252   // Skip the array header in all array accesses.
  3253   int elem_offset = Array<Klass*>::base_offset_in_bytes();
  3254   elem_offset -= element_size;   // the scan pointer was pre-incremented also
  3256   // Load next super to check
  3257     ld_ptr( scan_temp, elem_offset, scratch_reg );
  3259   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
  3260   cmp(scratch_reg, search_key);
  3262   // A miss means we are NOT a subtype and need to keep looping
  3263   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
  3264   delayed()->deccc(count_temp); // decrement trip counter in delay slot
  3266   // Success.  Cache the super we found and proceed in triumph.
  3267   st_ptr(super_klass, sub_klass, sc_offset);
  3269   if (L_success != &L_fallthrough) {
  3270     ba(*L_success);
  3271     delayed()->nop();
  3274   bind(L_fallthrough);
  3278 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
  3279                                                    Register temp_reg,
  3280                                                    int extra_slot_offset) {
  3281   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  3282   int stackElementSize = Interpreter::stackElementSize;
  3283   int offset = extra_slot_offset * stackElementSize;
  3284   if (arg_slot.is_constant()) {
  3285     offset += arg_slot.as_constant() * stackElementSize;
  3286     return offset;
  3287   } else {
  3288     assert(temp_reg != noreg, "must specify");
  3289     sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
  3290     if (offset != 0)
  3291       add(temp_reg, offset, temp_reg);
  3292     return temp_reg;
  3297 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  3298                                          Register temp_reg,
  3299                                          int extra_slot_offset) {
  3300   return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
  3304 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
  3305                                           Register temp_reg,
  3306                                           Label& done, Label* slow_case,
  3307                                           BiasedLockingCounters* counters) {
  3308   assert(UseBiasedLocking, "why call this otherwise?");
  3310   if (PrintBiasedLockingStatistics) {
  3311     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  3312     if (counters == NULL)
  3313       counters = BiasedLocking::counters();
  3316   Label cas_label;
  3318   // Biased locking
  3319   // See whether the lock is currently biased toward our thread and
  3320   // whether the epoch is still valid
  3321   // Note that the runtime guarantees sufficient alignment of JavaThread
  3322   // pointers to allow age to be placed into low bits
  3323   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  3324   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3325   cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
  3327   load_klass(obj_reg, temp_reg);
  3328   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  3329   or3(G2_thread, temp_reg, temp_reg);
  3330   xor3(mark_reg, temp_reg, temp_reg);
  3331   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  3332   if (counters != NULL) {
  3333     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3334     // Reload mark_reg as we may need it later
  3335     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
  3337   brx(Assembler::equal, true, Assembler::pt, done);
  3338   delayed()->nop();
  3340   Label try_revoke_bias;
  3341   Label try_rebias;
  3342   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
  3343   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3345   // At this point we know that the header has the bias pattern and
  3346   // that we are not the bias owner in the current epoch. We need to
  3347   // figure out more details about the state of the header in order to
  3348   // know what operations can be legally performed on the object's
  3349   // header.
  3351   // If the low three bits in the xor result aren't clear, that means
  3352   // the prototype header is no longer biased and we have to revoke
  3353   // the bias on this object.
  3354   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  3355   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  3357   // Biasing is still enabled for this data type. See whether the
  3358   // epoch of the current bias is still valid, meaning that the epoch
  3359   // bits of the mark word are equal to the epoch bits of the
  3360   // prototype header. (Note that the prototype header's epoch bits
  3361   // only change at a safepoint.) If not, attempt to rebias the object
  3362   // toward the current thread. Note that we must be absolutely sure
  3363   // that the current epoch is invalid in order to do this because
  3364   // otherwise the manipulations it performs on the mark word are
  3365   // illegal.
  3366   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  3367   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  3369   // The epoch of the current bias is still valid but we know nothing
  3370   // about the owner; it might be set or it might be clear. Try to
  3371   // acquire the bias of the object using an atomic operation. If this
  3372   // fails we will go in to the runtime to revoke the object's bias.
  3373   // Note that we first construct the presumed unbiased header so we
  3374   // don't accidentally blow away another thread's valid bias.
  3375   delayed()->and3(mark_reg,
  3376                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  3377                   mark_reg);
  3378   or3(G2_thread, mark_reg, temp_reg);
  3379   casn(mark_addr.base(), mark_reg, temp_reg);
  3380   // If the biasing toward our thread failed, this means that
  3381   // another thread succeeded in biasing it toward itself and we
  3382   // need to revoke that bias. The revocation will occur in the
  3383   // interpreter runtime in the slow case.
  3384   cmp(mark_reg, temp_reg);
  3385   if (counters != NULL) {
  3386     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3388   if (slow_case != NULL) {
  3389     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3390     delayed()->nop();
  3392   ba_short(done);
  3394   bind(try_rebias);
  3395   // At this point we know the epoch has expired, meaning that the
  3396   // current "bias owner", if any, is actually invalid. Under these
  3397   // circumstances _only_, we are allowed to use the current header's
  3398   // value as the comparison value when doing the cas to acquire the
  3399   // bias in the current epoch. In other words, we allow transfer of
  3400   // the bias from one thread to another directly in this situation.
  3401   //
  3402   // FIXME: due to a lack of registers we currently blow away the age
  3403   // bits in this situation. Should attempt to preserve them.
  3404   load_klass(obj_reg, temp_reg);
  3405   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  3406   or3(G2_thread, temp_reg, temp_reg);
  3407   casn(mark_addr.base(), mark_reg, temp_reg);
  3408   // If the biasing toward our thread failed, this means that
  3409   // another thread succeeded in biasing it toward itself and we
  3410   // need to revoke that bias. The revocation will occur in the
  3411   // interpreter runtime in the slow case.
  3412   cmp(mark_reg, temp_reg);
  3413   if (counters != NULL) {
  3414     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  3416   if (slow_case != NULL) {
  3417     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3418     delayed()->nop();
  3420   ba_short(done);
  3422   bind(try_revoke_bias);
  3423   // The prototype mark in the klass doesn't have the bias bit set any
  3424   // more, indicating that objects of this data type are not supposed
  3425   // to be biased any more. We are going to try to reset the mark of
  3426   // this object to the prototype value and fall through to the
  3427   // CAS-based locking scheme. Note that if our CAS fails, it means
  3428   // that another thread raced us for the privilege of revoking the
  3429   // bias of this particular object, so it's okay to continue in the
  3430   // normal locking code.
  3431   //
  3432   // FIXME: due to a lack of registers we currently blow away the age
  3433   // bits in this situation. Should attempt to preserve them.
  3434   load_klass(obj_reg, temp_reg);
  3435   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
  3436   casn(mark_addr.base(), mark_reg, temp_reg);
  3437   // Fall through to the normal CAS-based lock, because no matter what
  3438   // the result of the above CAS, some thread must have succeeded in
  3439   // removing the bias bit from the object's header.
  3440   if (counters != NULL) {
  3441     cmp(mark_reg, temp_reg);
  3442     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  3445   bind(cas_label);
  3448 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  3449                                           bool allow_delay_slot_filling) {
  3450   // Check for biased locking unlock case, which is a no-op
  3451   // Note: we do not have to check the thread ID for two reasons.
  3452   // First, the interpreter checks for IllegalMonitorStateException at
  3453   // a higher level. Second, if the bias was revoked while we held the
  3454   // lock, the object could not be rebiased toward another thread, so
  3455   // the bias bit would be clear.
  3456   ld_ptr(mark_addr, temp_reg);
  3457   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3458   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3459   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  3460   delayed();
  3461   if (!allow_delay_slot_filling) {
  3462     nop();
  3467 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  3468 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  3470 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  3471   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3476 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  3477 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  3478 // The code could be tightened up considerably.
  3479 //
  3480 // box->dhw disposition - post-conditions at DONE_LABEL.
  3481 // -   Successful inflated lock:  box->dhw != 0.
  3482 //     Any non-zero value suffices.
  3483 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  3484 // -   Successful Stack-lock: box->dhw == mark.
  3485 //     box->dhw must contain the displaced mark word value
  3486 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  3487 //     The slow-path fast_enter() and slow_enter() operators
  3488 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  3489 // -   Biased: box->dhw is undefined
  3490 //
  3491 // SPARC refworkload performance - specifically jetstream and scimark - are
  3492 // extremely sensitive to the size of the code emitted by compiler_lock_object
  3493 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  3494 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  3495 // effect).
  3498 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
  3499                                           Register Rbox, Register Rscratch,
  3500                                           BiasedLockingCounters* counters,
  3501                                           bool try_bias) {
  3502    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3504    verify_oop(Roop);
  3505    Label done ;
  3507    if (counters != NULL) {
  3508      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  3511    if (EmitSync & 1) {
  3512      mov(3, Rscratch);
  3513      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3514      cmp(SP, G0);
  3515      return ;
  3518    if (EmitSync & 2) {
  3520      // Fetch object's markword
  3521      ld_ptr(mark_addr, Rmark);
  3523      if (try_bias) {
  3524         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3527      // Save Rbox in Rscratch to be used for the cas operation
  3528      mov(Rbox, Rscratch);
  3530      // set Rmark to markOop | markOopDesc::unlocked_value
  3531      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3533      // Initialize the box.  (Must happen before we update the object mark!)
  3534      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3536      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  3537      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3538      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  3539         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3541      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  3542      // hence we are done
  3543      cmp(Rmark, Rscratch);
  3544 #ifdef _LP64
  3545      sub(Rscratch, STACK_BIAS, Rscratch);
  3546 #endif
  3547      brx(Assembler::equal, false, Assembler::pt, done);
  3548      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  3550      // we did not find an unlocked object so see if this is a recursive case
  3551      // sub(Rscratch, SP, Rscratch);
  3552      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3553      andcc(Rscratch, 0xfffff003, Rscratch);
  3554      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3555      bind (done);
  3556      return ;
  3559    Label Egress ;
  3561    if (EmitSync & 256) {
  3562       Label IsInflated ;
  3564       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
  3565       // Triage: biased, stack-locked, neutral, inflated
  3566       if (try_bias) {
  3567         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3568         // Invariant: if control reaches this point in the emitted stream
  3569         // then Rmark has not been modified.
  3572       // Store mark into displaced mark field in the on-stack basic-lock "box"
  3573       // Critically, this must happen before the CAS
  3574       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  3575       st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3576       andcc(Rmark, 2, G0);
  3577       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
  3578       delayed()->
  3580       // Try stack-lock acquisition.
  3581       // Beware: the 1st instruction is in a delay slot
  3582       mov(Rbox,  Rscratch);
  3583       or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3584       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3585       casn(mark_addr.base(), Rmark, Rscratch);
  3586       cmp(Rmark, Rscratch);
  3587       brx(Assembler::equal, false, Assembler::pt, done);
  3588       delayed()->sub(Rscratch, SP, Rscratch);
  3590       // Stack-lock attempt failed - check for recursive stack-lock.
  3591       // See the comments below about how we might remove this case.
  3592 #ifdef _LP64
  3593       sub(Rscratch, STACK_BIAS, Rscratch);
  3594 #endif
  3595       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3596       andcc(Rscratch, 0xfffff003, Rscratch);
  3597       br(Assembler::always, false, Assembler::pt, done);
  3598       delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3600       bind(IsInflated);
  3601       if (EmitSync & 64) {
  3602          // If m->owner != null goto IsLocked
  3603          // Pessimistic form: Test-and-CAS vs CAS
  3604          // The optimistic form avoids RTS->RTO cache line upgrades.
  3605          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3606          andcc(Rscratch, Rscratch, G0);
  3607          brx(Assembler::notZero, false, Assembler::pn, done);
  3608          delayed()->nop();
  3609          // m->owner == null : it's unlocked.
  3612       // Try to CAS m->owner from null to Self
  3613       // Invariant: if we acquire the lock then _recursions should be 0.
  3614       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3615       mov(G2_thread, Rscratch);
  3616       casn(Rmark, G0, Rscratch);
  3617       cmp(Rscratch, G0);
  3618       // Intentional fall-through into done
  3619    } else {
  3620       // Aggressively avoid the Store-before-CAS penalty
  3621       // Defer the store into box->dhw until after the CAS
  3622       Label IsInflated, Recursive ;
  3624 // Anticipate CAS -- Avoid RTS->RTO upgrade
  3625 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
  3627       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
  3628       // Triage: biased, stack-locked, neutral, inflated
  3630       if (try_bias) {
  3631         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3632         // Invariant: if control reaches this point in the emitted stream
  3633         // then Rmark has not been modified.
  3635       andcc(Rmark, 2, G0);
  3636       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
  3637       delayed()->                         // Beware - dangling delay-slot
  3639       // Try stack-lock acquisition.
  3640       // Transiently install BUSY (0) encoding in the mark word.
  3641       // if the CAS of 0 into the mark was successful then we execute:
  3642       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  3643       //   ST obj->mark = box    -- overwrite transient 0 value
  3644       // This presumes TSO, of course.
  3646       mov(0, Rscratch);
  3647       or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3648       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3649       casn(mark_addr.base(), Rmark, Rscratch);
  3650 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
  3651       cmp(Rscratch, Rmark);
  3652       brx(Assembler::notZero, false, Assembler::pn, Recursive);
  3653       delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3654       if (counters != NULL) {
  3655         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3657       ba(done);
  3658       delayed()->st_ptr(Rbox, mark_addr);
  3660       bind(Recursive);
  3661       // Stack-lock attempt failed - check for recursive stack-lock.
  3662       // Tests show that we can remove the recursive case with no impact
  3663       // on refworkload 0.83.  If we need to reduce the size of the code
  3664       // emitted by compiler_lock_object() the recursive case is perfect
  3665       // candidate.
  3666       //
  3667       // A more extreme idea is to always inflate on stack-lock recursion.
  3668       // This lets us eliminate the recursive checks in compiler_lock_object
  3669       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  3670       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  3671       // and showed a performance *increase*.  In the same experiment I eliminated
  3672       // the fast-path stack-lock code from the interpreter and always passed
  3673       // control to the "slow" operators in synchronizer.cpp.
  3675       // RScratch contains the fetched obj->mark value from the failed CASN.
  3676 #ifdef _LP64
  3677       sub(Rscratch, STACK_BIAS, Rscratch);
  3678 #endif
  3679       sub(Rscratch, SP, Rscratch);
  3680       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3681       andcc(Rscratch, 0xfffff003, Rscratch);
  3682       if (counters != NULL) {
  3683         // Accounting needs the Rscratch register
  3684         st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3685         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3686         ba_short(done);
  3687       } else {
  3688         ba(done);
  3689         delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3692       bind   (IsInflated);
  3693       if (EmitSync & 64) {
  3694          // If m->owner != null goto IsLocked
  3695          // Test-and-CAS vs CAS
  3696          // Pessimistic form avoids futile (doomed) CAS attempts
  3697          // The optimistic form avoids RTS->RTO cache line upgrades.
  3698          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3699          andcc(Rscratch, Rscratch, G0);
  3700          brx(Assembler::notZero, false, Assembler::pn, done);
  3701          delayed()->nop();
  3702          // m->owner == null : it's unlocked.
  3705       // Try to CAS m->owner from null to Self
  3706       // Invariant: if we acquire the lock then _recursions should be 0.
  3707       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3708       mov(G2_thread, Rscratch);
  3709       casn(Rmark, G0, Rscratch);
  3710       cmp(Rscratch, G0);
  3711       // ST box->displaced_header = NonZero.
  3712       // Any non-zero value suffices:
  3713       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  3714       st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3715       // Intentional fall-through into done
  3718    bind   (done);
  3721 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
  3722                                             Register Rbox, Register Rscratch,
  3723                                             bool try_bias) {
  3724    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3726    Label done ;
  3728    if (EmitSync & 4) {
  3729      cmp(SP, G0);
  3730      return ;
  3733    if (EmitSync & 8) {
  3734      if (try_bias) {
  3735         biased_locking_exit(mark_addr, Rscratch, done);
  3738      // Test first if it is a fast recursive unlock
  3739      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3740      br_null_short(Rmark, Assembler::pt, done);
  3742      // Check if it is still a light weight lock, this is is true if we see
  3743      // the stack address of the basicLock in the markOop of the object
  3744      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3745      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3746        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3747      ba(done);
  3748      delayed()->cmp(Rbox, Rmark);
  3749      bind(done);
  3750      return ;
  3753    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3754    // is too large performance rolls abruptly off a cliff.
  3755    // This could be related to inlining policies, code cache management, or
  3756    // I$ effects.
  3757    Label LStacked ;
  3759    if (try_bias) {
  3760       // TODO: eliminate redundant LDs of obj->mark
  3761       biased_locking_exit(mark_addr, Rscratch, done);
  3764    ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
  3765    ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3766    andcc(Rscratch, Rscratch, G0);
  3767    brx(Assembler::zero, false, Assembler::pn, done);
  3768    delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
  3769    andcc(Rmark, 2, G0);
  3770    brx(Assembler::zero, false, Assembler::pt, LStacked);
  3771    delayed()->nop();
  3773    // It's inflated
  3774    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3775    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3776    // and stores within the critical section from reordering (floating)
  3777    // past the store that releases the lock.  But TSO is a strong memory model
  3778    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3779    // Note that we use 1-0 locking by default for the inflated case.  We
  3780    // close the resultant (and rare) race by having contented threads in
  3781    // monitorenter periodically poll _owner.
  3782    ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3783    ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
  3784    xor3(Rscratch, G2_thread, Rscratch);
  3785    orcc(Rbox, Rscratch, Rbox);
  3786    brx(Assembler::notZero, false, Assembler::pn, done);
  3787    delayed()->
  3788    ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
  3789    ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
  3790    orcc(Rbox, Rscratch, G0);
  3791    if (EmitSync & 65536) {
  3792       Label LSucc ;
  3793       brx(Assembler::notZero, false, Assembler::pn, LSucc);
  3794       delayed()->nop();
  3795       ba(done);
  3796       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3798       bind(LSucc);
  3799       st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3800       if (os::is_MP()) { membar (StoreLoad); }
  3801       ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
  3802       andcc(Rscratch, Rscratch, G0);
  3803       brx(Assembler::notZero, false, Assembler::pt, done);
  3804       delayed()->andcc(G0, G0, G0);
  3805       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3806       mov(G2_thread, Rscratch);
  3807       casn(Rmark, G0, Rscratch);
  3808       // invert icc.zf and goto done
  3809       br_notnull(Rscratch, false, Assembler::pt, done);
  3810       delayed()->cmp(G0, G0);
  3811       ba(done);
  3812       delayed()->cmp(G0, 1);
  3813    } else {
  3814       brx(Assembler::notZero, false, Assembler::pn, done);
  3815       delayed()->nop();
  3816       ba(done);
  3817       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3820    bind   (LStacked);
  3821    // Consider: we could replace the expensive CAS in the exit
  3822    // path with a simple ST of the displaced mark value fetched from
  3823    // the on-stack basiclock box.  That admits a race where a thread T2
  3824    // in the slow lock path -- inflating with monitor M -- could race a
  3825    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3826    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3827    // inflated mark value M installed by T2, resulting in an orphan
  3828    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3829    // by having T2 periodically poll the object's mark word using timed wait
  3830    // operations.  If T2 discovers that a stomp has occurred it vacates
  3831    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3832    // In addition the monitor scavenger, which performs deflation,
  3833    // would also need to check for orpan monitors and stranded threads.
  3834    //
  3835    // Finally, inflation is also used when T2 needs to assign a hashCode
  3836    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3837    // an assigned hashCode value to be lost.  We can avoid that condition
  3838    // and provide the necessary hashCode stability invariants by ensuring
  3839    // that hashCode generation is idempotent between copying GCs.
  3840    // For example we could compute the hashCode of an object O as
  3841    // O's heap address XOR some high quality RNG value that is refreshed
  3842    // at GC-time.  The monitor scavenger would install the hashCode
  3843    // found in any orphan monitors.  Again, the mechanism admits a
  3844    // lost-update "stomp" WAW race but detects and recovers as needed.
  3845    //
  3846    // A prototype implementation showed excellent results, although
  3847    // the scavenger and timeout code was rather involved.
  3849    casn(mark_addr.base(), Rbox, Rscratch);
  3850    cmp(Rbox, Rscratch);
  3851    // Intentional fall through into done ...
  3853    bind(done);
  3858 void MacroAssembler::print_CPU_state() {
  3859   // %%%%% need to implement this
  3862 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3863   // %%%%% need to implement this
  3866 void MacroAssembler::push_IU_state() {
  3867   // %%%%% need to implement this
  3871 void MacroAssembler::pop_IU_state() {
  3872   // %%%%% need to implement this
  3876 void MacroAssembler::push_FPU_state() {
  3877   // %%%%% need to implement this
  3881 void MacroAssembler::pop_FPU_state() {
  3882   // %%%%% need to implement this
  3886 void MacroAssembler::push_CPU_state() {
  3887   // %%%%% need to implement this
  3891 void MacroAssembler::pop_CPU_state() {
  3892   // %%%%% need to implement this
  3897 void MacroAssembler::verify_tlab() {
  3898 #ifdef ASSERT
  3899   if (UseTLAB && VerifyOops) {
  3900     Label next, next2, ok;
  3901     Register t1 = L0;
  3902     Register t2 = L1;
  3903     Register t3 = L2;
  3905     save_frame(0);
  3906     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3907     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3908     or3(t1, t2, t3);
  3909     cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
  3910     STOP("assert(top >= start)");
  3911     should_not_reach_here();
  3913     bind(next);
  3914     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3915     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3916     or3(t3, t2, t3);
  3917     cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
  3918     STOP("assert(top <= end)");
  3919     should_not_reach_here();
  3921     bind(next2);
  3922     and3(t3, MinObjAlignmentInBytesMask, t3);
  3923     cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
  3924     STOP("assert(aligned)");
  3925     should_not_reach_here();
  3927     bind(ok);
  3928     restore();
  3930 #endif
  3934 void MacroAssembler::eden_allocate(
  3935   Register obj,                        // result: pointer to object after successful allocation
  3936   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3937   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3938   Register t1,                         // temp register
  3939   Register t2,                         // temp register
  3940   Label&   slow_case                   // continuation point if fast allocation fails
  3941 ){
  3942   // make sure arguments make sense
  3943   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3944   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3945   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3947   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3948     // No allocation in the shared eden.
  3949     ba_short(slow_case);
  3950   } else {
  3951     // get eden boundaries
  3952     // note: we need both top & top_addr!
  3953     const Register top_addr = t1;
  3954     const Register end      = t2;
  3956     CollectedHeap* ch = Universe::heap();
  3957     set((intx)ch->top_addr(), top_addr);
  3958     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3959     ld_ptr(top_addr, delta, end);
  3960     ld_ptr(top_addr, 0, obj);
  3962     // try to allocate
  3963     Label retry;
  3964     bind(retry);
  3965 #ifdef ASSERT
  3966     // make sure eden top is properly aligned
  3968       Label L;
  3969       btst(MinObjAlignmentInBytesMask, obj);
  3970       br(Assembler::zero, false, Assembler::pt, L);
  3971       delayed()->nop();
  3972       STOP("eden top is not properly aligned");
  3973       bind(L);
  3975 #endif // ASSERT
  3976     const Register free = end;
  3977     sub(end, obj, free);                                   // compute amount of free space
  3978     if (var_size_in_bytes->is_valid()) {
  3979       // size is unknown at compile time
  3980       cmp(free, var_size_in_bytes);
  3981       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3982       delayed()->add(obj, var_size_in_bytes, end);
  3983     } else {
  3984       // size is known at compile time
  3985       cmp(free, con_size_in_bytes);
  3986       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3987       delayed()->add(obj, con_size_in_bytes, end);
  3989     // Compare obj with the value at top_addr; if still equal, swap the value of
  3990     // end with the value at top_addr. If not equal, read the value at top_addr
  3991     // into end.
  3992     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3993     // if someone beat us on the allocation, try again, otherwise continue
  3994     cmp(obj, end);
  3995     brx(Assembler::notEqual, false, Assembler::pn, retry);
  3996     delayed()->mov(end, obj);                              // nop if successfull since obj == end
  3998 #ifdef ASSERT
  3999     // make sure eden top is properly aligned
  4001       Label L;
  4002       const Register top_addr = t1;
  4004       set((intx)ch->top_addr(), top_addr);
  4005       ld_ptr(top_addr, 0, top_addr);
  4006       btst(MinObjAlignmentInBytesMask, top_addr);
  4007       br(Assembler::zero, false, Assembler::pt, L);
  4008       delayed()->nop();
  4009       STOP("eden top is not properly aligned");
  4010       bind(L);
  4012 #endif // ASSERT
  4017 void MacroAssembler::tlab_allocate(
  4018   Register obj,                        // result: pointer to object after successful allocation
  4019   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  4020   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  4021   Register t1,                         // temp register
  4022   Label&   slow_case                   // continuation point if fast allocation fails
  4023 ){
  4024   // make sure arguments make sense
  4025   assert_different_registers(obj, var_size_in_bytes, t1);
  4026   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  4027   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  4029   const Register free  = t1;
  4031   verify_tlab();
  4033   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  4035   // calculate amount of free space
  4036   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  4037   sub(free, obj, free);
  4039   Label done;
  4040   if (var_size_in_bytes == noreg) {
  4041     cmp(free, con_size_in_bytes);
  4042   } else {
  4043     cmp(free, var_size_in_bytes);
  4045   br(Assembler::less, false, Assembler::pn, slow_case);
  4046   // calculate the new top pointer
  4047   if (var_size_in_bytes == noreg) {
  4048     delayed()->add(obj, con_size_in_bytes, free);
  4049   } else {
  4050     delayed()->add(obj, var_size_in_bytes, free);
  4053   bind(done);
  4055 #ifdef ASSERT
  4056   // make sure new free pointer is properly aligned
  4058     Label L;
  4059     btst(MinObjAlignmentInBytesMask, free);
  4060     br(Assembler::zero, false, Assembler::pt, L);
  4061     delayed()->nop();
  4062     STOP("updated TLAB free is not properly aligned");
  4063     bind(L);
  4065 #endif // ASSERT
  4067   // update the tlab top pointer
  4068   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  4069   verify_tlab();
  4073 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  4074   Register top = O0;
  4075   Register t1 = G1;
  4076   Register t2 = G3;
  4077   Register t3 = O1;
  4078   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  4079   Label do_refill, discard_tlab;
  4081   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  4082     // No allocation in the shared eden.
  4083     ba_short(slow_case);
  4086   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  4087   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  4088   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  4090   // calculate amount of free space
  4091   sub(t1, top, t1);
  4092   srl_ptr(t1, LogHeapWordSize, t1);
  4094   // Retain tlab and allocate object in shared space if
  4095   // the amount free in the tlab is too large to discard.
  4096   cmp(t1, t2);
  4097   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  4099   // increment waste limit to prevent getting stuck on this slow path
  4100   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  4101   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  4102   if (TLABStats) {
  4103     // increment number of slow_allocations
  4104     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  4105     add(t2, 1, t2);
  4106     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  4108   ba_short(try_eden);
  4110   bind(discard_tlab);
  4111   if (TLABStats) {
  4112     // increment number of refills
  4113     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  4114     add(t2, 1, t2);
  4115     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  4116     // accumulate wastage
  4117     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  4118     add(t2, t1, t2);
  4119     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  4122   // if tlab is currently allocated (top or end != null) then
  4123   // fill [top, end + alignment_reserve) with array object
  4124   br_null_short(top, Assembler::pn, do_refill);
  4126   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  4127   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  4128   // set klass to intArrayKlass
  4129   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  4130   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  4131   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  4132   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  4133   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  4134   ld_ptr(t2, 0, t2);
  4135   // store klass last.  concurrent gcs assumes klass length is valid if
  4136   // klass field is not null.
  4137   store_klass(t2, top);
  4138   verify_oop(top);
  4140   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
  4141   sub(top, t1, t1); // size of tlab's allocated portion
  4142   incr_allocated_bytes(t1, t2, t3);
  4144   // refill the tlab with an eden allocation
  4145   bind(do_refill);
  4146   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  4147   sll_ptr(t1, LogHeapWordSize, t1);
  4148   // allocate new tlab, address returned in top
  4149   eden_allocate(top, t1, 0, t2, t3, slow_case);
  4151   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  4152   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  4153 #ifdef ASSERT
  4154   // check that tlab_size (t1) is still valid
  4156     Label ok;
  4157     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  4158     sll_ptr(t2, LogHeapWordSize, t2);
  4159     cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
  4160     STOP("assert(t1 == tlab_size)");
  4161     should_not_reach_here();
  4163     bind(ok);
  4165 #endif // ASSERT
  4166   add(top, t1, top); // t1 is tlab_size
  4167   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  4168   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  4169   verify_tlab();
  4170   ba_short(retry);
  4173 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
  4174                                           Register t1, Register t2) {
  4175   // Bump total bytes allocated by this thread
  4176   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
  4177   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
  4178   // v8 support has gone the way of the dodo
  4179   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
  4180   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
  4181   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
  4184 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  4185   switch (cond) {
  4186     // Note some conditions are synonyms for others
  4187     case Assembler::never:                return Assembler::always;
  4188     case Assembler::zero:                 return Assembler::notZero;
  4189     case Assembler::lessEqual:            return Assembler::greater;
  4190     case Assembler::less:                 return Assembler::greaterEqual;
  4191     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  4192     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  4193     case Assembler::negative:             return Assembler::positive;
  4194     case Assembler::overflowSet:          return Assembler::overflowClear;
  4195     case Assembler::always:               return Assembler::never;
  4196     case Assembler::notZero:              return Assembler::zero;
  4197     case Assembler::greater:              return Assembler::lessEqual;
  4198     case Assembler::greaterEqual:         return Assembler::less;
  4199     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  4200     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  4201     case Assembler::positive:             return Assembler::negative;
  4202     case Assembler::overflowClear:        return Assembler::overflowSet;
  4205   ShouldNotReachHere(); return Assembler::overflowClear;
  4208 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  4209                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  4210   Condition negated_cond = negate_condition(cond);
  4211   Label L;
  4212   brx(negated_cond, false, Assembler::pt, L);
  4213   delayed()->nop();
  4214   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  4215   bind(L);
  4218 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
  4219   AddressLiteral addrlit(counter_addr);
  4220   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
  4221   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
  4222   ld(addr, Rtmp2);
  4223   inc(Rtmp2);
  4224   st(Rtmp2, addr);
  4227 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
  4228   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
  4231 SkipIfEqual::SkipIfEqual(
  4232     MacroAssembler* masm, Register temp, const bool* flag_addr,
  4233     Assembler::Condition condition) {
  4234   _masm = masm;
  4235   AddressLiteral flag(flag_addr);
  4236   _masm->sethi(flag, temp);
  4237   _masm->ldub(temp, flag.low10(), temp);
  4238   _masm->tst(temp);
  4239   _masm->br(condition, false, Assembler::pt, _label);
  4240   _masm->delayed()->nop();
  4243 SkipIfEqual::~SkipIfEqual() {
  4244   _masm->bind(_label);
  4248 // Writes to stack successive pages until offset reached to check for
  4249 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  4250 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  4251                                      Register Rscratch) {
  4252   // Use stack pointer in temp stack pointer
  4253   mov(SP, Rtsp);
  4255   // Bang stack for total size given plus stack shadow page size.
  4256   // Bang one page at a time because a large size can overflow yellow and
  4257   // red zones (the bang will fail but stack overflow handling can't tell that
  4258   // it was a stack overflow bang vs a regular segv).
  4259   int offset = os::vm_page_size();
  4260   Register Roffset = Rscratch;
  4262   Label loop;
  4263   bind(loop);
  4264   set((-offset)+STACK_BIAS, Rscratch);
  4265   st(G0, Rtsp, Rscratch);
  4266   set(offset, Roffset);
  4267   sub(Rsize, Roffset, Rsize);
  4268   cmp(Rsize, G0);
  4269   br(Assembler::greater, false, Assembler::pn, loop);
  4270   delayed()->sub(Rtsp, Roffset, Rtsp);
  4272   // Bang down shadow pages too.
  4273   // The -1 because we already subtracted 1 page.
  4274   for (int i = 0; i< StackShadowPages-1; i++) {
  4275     set((-i*offset)+STACK_BIAS, Rscratch);
  4276     st(G0, Rtsp, Rscratch);
  4280 ///////////////////////////////////////////////////////////////////////////////////
  4281 #ifndef SERIALGC
  4283 static address satb_log_enqueue_with_frame = NULL;
  4284 static u_char* satb_log_enqueue_with_frame_end = NULL;
  4286 static address satb_log_enqueue_frameless = NULL;
  4287 static u_char* satb_log_enqueue_frameless_end = NULL;
  4289 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
  4291 static void generate_satb_log_enqueue(bool with_frame) {
  4292   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
  4293   CodeBuffer buf(bb);
  4294   MacroAssembler masm(&buf);
  4296 #define __ masm.
  4298   address start = __ pc();
  4299   Register pre_val;
  4301   Label refill, restart;
  4302   if (with_frame) {
  4303     __ save_frame(0);
  4304     pre_val = I0;  // Was O0 before the save.
  4305   } else {
  4306     pre_val = O0;
  4309   int satb_q_index_byte_offset =
  4310     in_bytes(JavaThread::satb_mark_queue_offset() +
  4311              PtrQueue::byte_offset_of_index());
  4313   int satb_q_buf_byte_offset =
  4314     in_bytes(JavaThread::satb_mark_queue_offset() +
  4315              PtrQueue::byte_offset_of_buf());
  4317   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
  4318          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
  4319          "check sizes in assembly below");
  4321   __ bind(restart);
  4323   // Load the index into the SATB buffer. PtrQueue::_index is a size_t
  4324   // so ld_ptr is appropriate.
  4325   __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
  4327   // index == 0?
  4328   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
  4330   __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
  4331   __ sub(L0, oopSize, L0);
  4333   __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
  4334   if (!with_frame) {
  4335     // Use return-from-leaf
  4336     __ retl();
  4337     __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4338   } else {
  4339     // Not delayed.
  4340     __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4342   if (with_frame) {
  4343     __ ret();
  4344     __ delayed()->restore();
  4346   __ bind(refill);
  4348   address handle_zero =
  4349     CAST_FROM_FN_PTR(address,
  4350                      &SATBMarkQueueSet::handle_zero_index_for_thread);
  4351   // This should be rare enough that we can afford to save all the
  4352   // scratch registers that the calling context might be using.
  4353   __ mov(G1_scratch, L0);
  4354   __ mov(G3_scratch, L1);
  4355   __ mov(G4, L2);
  4356   // We need the value of O0 above (for the write into the buffer), so we
  4357   // save and restore it.
  4358   __ mov(O0, L3);
  4359   // Since the call will overwrite O7, we save and restore that, as well.
  4360   __ mov(O7, L4);
  4361   __ call_VM_leaf(L5, handle_zero, G2_thread);
  4362   __ mov(L0, G1_scratch);
  4363   __ mov(L1, G3_scratch);
  4364   __ mov(L2, G4);
  4365   __ mov(L3, O0);
  4366   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4367   __ delayed()->mov(L4, O7);
  4369   if (with_frame) {
  4370     satb_log_enqueue_with_frame = start;
  4371     satb_log_enqueue_with_frame_end = __ pc();
  4372   } else {
  4373     satb_log_enqueue_frameless = start;
  4374     satb_log_enqueue_frameless_end = __ pc();
  4377 #undef __
  4380 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  4381   if (with_frame) {
  4382     if (satb_log_enqueue_with_frame == 0) {
  4383       generate_satb_log_enqueue(with_frame);
  4384       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
  4385       if (G1SATBPrintStubs) {
  4386         tty->print_cr("Generated with-frame satb enqueue:");
  4387         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
  4388                              satb_log_enqueue_with_frame_end,
  4389                              tty);
  4392   } else {
  4393     if (satb_log_enqueue_frameless == 0) {
  4394       generate_satb_log_enqueue(with_frame);
  4395       assert(satb_log_enqueue_frameless != 0, "postcondition.");
  4396       if (G1SATBPrintStubs) {
  4397         tty->print_cr("Generated frameless satb enqueue:");
  4398         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
  4399                              satb_log_enqueue_frameless_end,
  4400                              tty);
  4406 void MacroAssembler::g1_write_barrier_pre(Register obj,
  4407                                           Register index,
  4408                                           int offset,
  4409                                           Register pre_val,
  4410                                           Register tmp,
  4411                                           bool preserve_o_regs) {
  4412   Label filtered;
  4414   if (obj == noreg) {
  4415     // We are not loading the previous value so make
  4416     // sure that we don't trash the value in pre_val
  4417     // with the code below.
  4418     assert_different_registers(pre_val, tmp);
  4419   } else {
  4420     // We will be loading the previous value
  4421     // in this code so...
  4422     assert(offset == 0 || index == noreg, "choose one");
  4423     assert(pre_val == noreg, "check this code");
  4426   // Is marking active?
  4427   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  4428     ld(G2,
  4429        in_bytes(JavaThread::satb_mark_queue_offset() +
  4430                 PtrQueue::byte_offset_of_active()),
  4431        tmp);
  4432   } else {
  4433     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  4434               "Assumption");
  4435     ldsb(G2,
  4436          in_bytes(JavaThread::satb_mark_queue_offset() +
  4437                   PtrQueue::byte_offset_of_active()),
  4438          tmp);
  4441   // Is marking active?
  4442   cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
  4444   // Do we need to load the previous value?
  4445   if (obj != noreg) {
  4446     // Load the previous value...
  4447     if (index == noreg) {
  4448       if (Assembler::is_simm13(offset)) {
  4449         load_heap_oop(obj, offset, tmp);
  4450       } else {
  4451         set(offset, tmp);
  4452         load_heap_oop(obj, tmp, tmp);
  4454     } else {
  4455       load_heap_oop(obj, index, tmp);
  4457     // Previous value has been loaded into tmp
  4458     pre_val = tmp;
  4461   assert(pre_val != noreg, "must have a real register");
  4463   // Is the previous value null?
  4464   cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
  4466   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
  4467   // case, pre_val will be a scratch G-reg, but there are some cases in
  4468   // which it's an O-reg.  In the first case, do a normal call.  In the
  4469   // latter, do a save here and call the frameless version.
  4471   guarantee(pre_val->is_global() || pre_val->is_out(),
  4472             "Or we need to think harder.");
  4474   if (pre_val->is_global() && !preserve_o_regs) {
  4475     generate_satb_log_enqueue_if_necessary(true); // with frame
  4477     call(satb_log_enqueue_with_frame);
  4478     delayed()->mov(pre_val, O0);
  4479   } else {
  4480     generate_satb_log_enqueue_if_necessary(false); // frameless
  4482     save_frame(0);
  4483     call(satb_log_enqueue_frameless);
  4484     delayed()->mov(pre_val->after_save(), O0);
  4485     restore();
  4488   bind(filtered);
  4491 static address dirty_card_log_enqueue = 0;
  4492 static u_char* dirty_card_log_enqueue_end = 0;
  4494 // This gets to assume that o0 contains the object address.
  4495 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  4496   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
  4497   CodeBuffer buf(bb);
  4498   MacroAssembler masm(&buf);
  4499 #define __ masm.
  4500   address start = __ pc();
  4502   Label not_already_dirty, restart, refill;
  4504 #ifdef _LP64
  4505   __ srlx(O0, CardTableModRefBS::card_shift, O0);
  4506 #else
  4507   __ srl(O0, CardTableModRefBS::card_shift, O0);
  4508 #endif
  4509   AddressLiteral addrlit(byte_map_base);
  4510   __ set(addrlit, O1); // O1 := <card table base>
  4511   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
  4513   assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
  4514   __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
  4516   // We didn't take the branch, so we're already dirty: return.
  4517   // Use return-from-leaf
  4518   __ retl();
  4519   __ delayed()->nop();
  4521   // Not dirty.
  4522   __ bind(not_already_dirty);
  4524   // Get O0 + O1 into a reg by itself
  4525   __ add(O0, O1, O3);
  4527   // First, dirty it.
  4528   __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
  4530   int dirty_card_q_index_byte_offset =
  4531     in_bytes(JavaThread::dirty_card_queue_offset() +
  4532              PtrQueue::byte_offset_of_index());
  4533   int dirty_card_q_buf_byte_offset =
  4534     in_bytes(JavaThread::dirty_card_queue_offset() +
  4535              PtrQueue::byte_offset_of_buf());
  4536   __ bind(restart);
  4538   // Load the index into the update buffer. PtrQueue::_index is
  4539   // a size_t so ld_ptr is appropriate here.
  4540   __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
  4542   // index == 0?
  4543   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
  4545   __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
  4546   __ sub(L0, oopSize, L0);
  4548   __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
  4549   // Use return-from-leaf
  4550   __ retl();
  4551   __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
  4553   __ bind(refill);
  4554   address handle_zero =
  4555     CAST_FROM_FN_PTR(address,
  4556                      &DirtyCardQueueSet::handle_zero_index_for_thread);
  4557   // This should be rare enough that we can afford to save all the
  4558   // scratch registers that the calling context might be using.
  4559   __ mov(G1_scratch, L3);
  4560   __ mov(G3_scratch, L5);
  4561   // We need the value of O3 above (for the write into the buffer), so we
  4562   // save and restore it.
  4563   __ mov(O3, L6);
  4564   // Since the call will overwrite O7, we save and restore that, as well.
  4565   __ mov(O7, L4);
  4567   __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  4568   __ mov(L3, G1_scratch);
  4569   __ mov(L5, G3_scratch);
  4570   __ mov(L6, O3);
  4571   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4572   __ delayed()->mov(L4, O7);
  4574   dirty_card_log_enqueue = start;
  4575   dirty_card_log_enqueue_end = __ pc();
  4576   // XXX Should have a guarantee here about not going off the end!
  4577   // Does it already do so?  Do an experiment...
  4579 #undef __
  4583 static inline void
  4584 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  4585   if (dirty_card_log_enqueue == 0) {
  4586     generate_dirty_card_log_enqueue(byte_map_base);
  4587     assert(dirty_card_log_enqueue != 0, "postcondition.");
  4588     if (G1SATBPrintStubs) {
  4589       tty->print_cr("Generated dirty_card enqueue:");
  4590       Disassembler::decode((u_char*)dirty_card_log_enqueue,
  4591                            dirty_card_log_enqueue_end,
  4592                            tty);
  4598 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4600   Label filtered;
  4601   MacroAssembler* post_filter_masm = this;
  4603   if (new_val == G0) return;
  4605   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  4606   assert(bs->kind() == BarrierSet::G1SATBCT ||
  4607          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  4609   if (G1RSBarrierRegionFilter) {
  4610     xor3(store_addr, new_val, tmp);
  4611 #ifdef _LP64
  4612     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4613 #else
  4614     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4615 #endif
  4617     // XXX Should I predict this taken or not?  Does it matter?
  4618     cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
  4621   // If the "store_addr" register is an "in" or "local" register, move it to
  4622   // a scratch reg so we can pass it as an argument.
  4623   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  4624   // Pick a scratch register different from "tmp".
  4625   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  4626   // Make sure we use up the delay slot!
  4627   if (use_scr) {
  4628     post_filter_masm->mov(store_addr, scr);
  4629   } else {
  4630     post_filter_masm->nop();
  4632   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  4633   save_frame(0);
  4634   call(dirty_card_log_enqueue);
  4635   if (use_scr) {
  4636     delayed()->mov(scr, O0);
  4637   } else {
  4638     delayed()->mov(store_addr->after_save(), O0);
  4640   restore();
  4642   bind(filtered);
  4645 #endif  // SERIALGC
  4646 ///////////////////////////////////////////////////////////////////////////////////
  4648 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4649   // If we're writing constant NULL, we can skip the write barrier.
  4650   if (new_val == G0) return;
  4651   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  4652   assert(bs->kind() == BarrierSet::CardTableModRef ||
  4653          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  4654   card_table_write(bs->byte_map_base, tmp, store_addr);
  4657 void MacroAssembler::load_klass(Register src_oop, Register klass) {
  4658   // The number of bytes in this code is used by
  4659   // MachCallDynamicJavaNode::ret_addr_offset()
  4660   // if this changes, change that.
  4661   if (UseCompressedKlassPointers) {
  4662     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4663     decode_heap_oop_not_null(klass);
  4664   } else {
  4665     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4669 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
  4670   if (UseCompressedKlassPointers) {
  4671     assert(dst_oop != klass, "not enough registers");
  4672     encode_heap_oop_not_null(klass);
  4673     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4674   } else {
  4675     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4679 void MacroAssembler::store_klass_gap(Register s, Register d) {
  4680   if (UseCompressedKlassPointers) {
  4681     assert(s != d, "not enough registers");
  4682     st(s, d, oopDesc::klass_gap_offset_in_bytes());
  4686 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
  4687   if (UseCompressedOops) {
  4688     lduw(s, d);
  4689     decode_heap_oop(d);
  4690   } else {
  4691     ld_ptr(s, d);
  4695 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  4696    if (UseCompressedOops) {
  4697     lduw(s1, s2, d);
  4698     decode_heap_oop(d, d);
  4699   } else {
  4700     ld_ptr(s1, s2, d);
  4704 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  4705    if (UseCompressedOops) {
  4706     lduw(s1, simm13a, d);
  4707     decode_heap_oop(d, d);
  4708   } else {
  4709     ld_ptr(s1, simm13a, d);
  4713 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
  4714   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
  4715   else                   load_heap_oop(s1, s2.as_register(), d);
  4718 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  4719   if (UseCompressedOops) {
  4720     assert(s1 != d && s2 != d, "not enough registers");
  4721     encode_heap_oop(d);
  4722     st(d, s1, s2);
  4723   } else {
  4724     st_ptr(d, s1, s2);
  4728 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  4729   if (UseCompressedOops) {
  4730     assert(s1 != d, "not enough registers");
  4731     encode_heap_oop(d);
  4732     st(d, s1, simm13a);
  4733   } else {
  4734     st_ptr(d, s1, simm13a);
  4738 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  4739   if (UseCompressedOops) {
  4740     assert(a.base() != d, "not enough registers");
  4741     encode_heap_oop(d);
  4742     st(d, a, offset);
  4743   } else {
  4744     st_ptr(d, a, offset);
  4749 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  4750   assert (UseCompressedOops, "must be compressed");
  4751   assert (Universe::heap() != NULL, "java heap should be initialized");
  4752   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4753   verify_oop(src);
  4754   if (Universe::narrow_oop_base() == NULL) {
  4755     srlx(src, LogMinObjAlignmentInBytes, dst);
  4756     return;
  4758   Label done;
  4759   if (src == dst) {
  4760     // optimize for frequent case src == dst
  4761     bpr(rc_nz, true, Assembler::pt, src, done);
  4762     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  4763     bind(done);
  4764     srlx(src, LogMinObjAlignmentInBytes, dst);
  4765   } else {
  4766     bpr(rc_z, false, Assembler::pn, src, done);
  4767     delayed() -> mov(G0, dst);
  4768     // could be moved before branch, and annulate delay,
  4769     // but may add some unneeded work decoding null
  4770     sub(src, G6_heapbase, dst);
  4771     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4772     bind(done);
  4777 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4778   assert (UseCompressedOops, "must be compressed");
  4779   assert (Universe::heap() != NULL, "java heap should be initialized");
  4780   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4781   verify_oop(r);
  4782   if (Universe::narrow_oop_base() != NULL)
  4783     sub(r, G6_heapbase, r);
  4784   srlx(r, LogMinObjAlignmentInBytes, r);
  4787 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  4788   assert (UseCompressedOops, "must be compressed");
  4789   assert (Universe::heap() != NULL, "java heap should be initialized");
  4790   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4791   verify_oop(src);
  4792   if (Universe::narrow_oop_base() == NULL) {
  4793     srlx(src, LogMinObjAlignmentInBytes, dst);
  4794   } else {
  4795     sub(src, G6_heapbase, dst);
  4796     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4800 // Same algorithm as oops.inline.hpp decode_heap_oop.
  4801 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  4802   assert (UseCompressedOops, "must be compressed");
  4803   assert (Universe::heap() != NULL, "java heap should be initialized");
  4804   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4805   sllx(src, LogMinObjAlignmentInBytes, dst);
  4806   if (Universe::narrow_oop_base() != NULL) {
  4807     Label done;
  4808     bpr(rc_nz, true, Assembler::pt, dst, done);
  4809     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  4810     bind(done);
  4812   verify_oop(dst);
  4815 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4816   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4817   // pd_code_size_limit.
  4818   // Also do not verify_oop as this is called by verify_oop.
  4819   assert (UseCompressedOops, "must be compressed");
  4820   assert (Universe::heap() != NULL, "java heap should be initialized");
  4821   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4822   sllx(r, LogMinObjAlignmentInBytes, r);
  4823   if (Universe::narrow_oop_base() != NULL)
  4824     add(r, G6_heapbase, r);
  4827 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  4828   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4829   // pd_code_size_limit.
  4830   // Also do not verify_oop as this is called by verify_oop.
  4831   assert (UseCompressedOops, "must be compressed");
  4832   assert (Universe::heap() != NULL, "java heap should be initialized");
  4833   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4834   sllx(src, LogMinObjAlignmentInBytes, dst);
  4835   if (Universe::narrow_oop_base() != NULL)
  4836     add(dst, G6_heapbase, dst);
  4839 void MacroAssembler::reinit_heapbase() {
  4840   if (UseCompressedOops) {
  4841     // call indirectly to solve generation ordering problem
  4842     AddressLiteral base(Universe::narrow_oop_base_addr());
  4843     load_ptr_contents(base, G6_heapbase);
  4847 // Compare char[] arrays aligned to 4 bytes.
  4848 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
  4849                                         Register limit, Register result,
  4850                                         Register chr1, Register chr2, Label& Ldone) {
  4851   Label Lvector, Lloop;
  4852   assert(chr1 == result, "should be the same");
  4854   // Note: limit contains number of bytes (2*char_elements) != 0.
  4855   andcc(limit, 0x2, chr1); // trailing character ?
  4856   br(Assembler::zero, false, Assembler::pt, Lvector);
  4857   delayed()->nop();
  4859   // compare the trailing char
  4860   sub(limit, sizeof(jchar), limit);
  4861   lduh(ary1, limit, chr1);
  4862   lduh(ary2, limit, chr2);
  4863   cmp(chr1, chr2);
  4864   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4865   delayed()->mov(G0, result);     // not equal
  4867   // only one char ?
  4868   cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
  4869   delayed()->add(G0, 1, result); // zero-length arrays are equal
  4871   // word by word compare, dont't need alignment check
  4872   bind(Lvector);
  4873   // Shift ary1 and ary2 to the end of the arrays, negate limit
  4874   add(ary1, limit, ary1);
  4875   add(ary2, limit, ary2);
  4876   neg(limit, limit);
  4878   lduw(ary1, limit, chr1);
  4879   bind(Lloop);
  4880   lduw(ary2, limit, chr2);
  4881   cmp(chr1, chr2);
  4882   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4883   delayed()->mov(G0, result);     // not equal
  4884   inccc(limit, 2*sizeof(jchar));
  4885   // annul LDUW if branch is not taken to prevent access past end of array
  4886   br(Assembler::notZero, true, Assembler::pt, Lloop);
  4887   delayed()->lduw(ary1, limit, chr1); // hoisted
  4889   // Caller should set it:
  4890   // add(G0, 1, result); // equals
  4893 // Use BIS for zeroing (count is in bytes).
  4894 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
  4895   assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
  4896   Register end = count;
  4897   int cache_line_size = VM_Version::prefetch_data_size();
  4898   // Minimum count when BIS zeroing can be used since
  4899   // it needs membar which is expensive.
  4900   int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
  4902   Label small_loop;
  4903   // Check if count is negative (dead code) or zero.
  4904   // Note, count uses 64bit in 64 bit VM.
  4905   cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
  4907   // Use BIS zeroing only for big arrays since it requires membar.
  4908   if (Assembler::is_simm13(block_zero_size)) { // < 4096
  4909     cmp(count, block_zero_size);
  4910   } else {
  4911     set(block_zero_size, temp);
  4912     cmp(count, temp);
  4914   br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
  4915   delayed()->add(to, count, end);
  4917   // Note: size is >= three (32 bytes) cache lines.
  4919   // Clean the beginning of space up to next cache line.
  4920   for (int offs = 0; offs < cache_line_size; offs += 8) {
  4921     stx(G0, to, offs);
  4924   // align to next cache line
  4925   add(to, cache_line_size, to);
  4926   and3(to, -cache_line_size, to);
  4928   // Note: size left >= two (32 bytes) cache lines.
  4930   // BIS should not be used to zero tail (64 bytes)
  4931   // to avoid zeroing a header of the following object.
  4932   sub(end, (cache_line_size*2)-8, end);
  4934   Label bis_loop;
  4935   bind(bis_loop);
  4936   stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  4937   add(to, cache_line_size, to);
  4938   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
  4940   // BIS needs membar.
  4941   membar(Assembler::StoreLoad);
  4943   add(end, (cache_line_size*2)-8, end); // restore end
  4944   cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
  4946   // Clean the tail.
  4947   bind(small_loop);
  4948   stx(G0, to, 0);
  4949   add(to, 8, to);
  4950   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
  4951   nop(); // Separate short branches

mercurial