src/share/vm/memory/referenceProcessor.hpp

Thu, 21 Aug 2014 13:57:51 -0700

author
iklam
date
Thu, 21 Aug 2014 13:57:51 -0700
changeset 7089
6e0cb14ce59b
parent 6904
0982ec23da03
child 7476
c2844108a708
permissions
-rw-r--r--

8046070: Class Data Sharing clean up and refactoring
Summary: Cleaned up CDS to be more configurable, maintainable and extensible
Reviewed-by: dholmes, coleenp, acorn, mchung

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    26 #define SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP
    28 #include "gc_implementation/shared/gcTrace.hpp"
    29 #include "memory/referencePolicy.hpp"
    30 #include "memory/referenceProcessorStats.hpp"
    31 #include "memory/referenceType.hpp"
    32 #include "oops/instanceRefKlass.hpp"
    34 class GCTimer;
    36 // ReferenceProcessor class encapsulates the per-"collector" processing
    37 // of java.lang.Reference objects for GC. The interface is useful for supporting
    38 // a generational abstraction, in particular when there are multiple
    39 // generations that are being independently collected -- possibly
    40 // concurrently and/or incrementally.  Note, however, that the
    41 // ReferenceProcessor class abstracts away from a generational setting
    42 // by using only a heap interval (called "span" below), thus allowing
    43 // its use in a straightforward manner in a general, non-generational
    44 // setting.
    45 //
    46 // The basic idea is that each ReferenceProcessor object concerns
    47 // itself with ("weak") reference processing in a specific "span"
    48 // of the heap of interest to a specific collector. Currently,
    49 // the span is a convex interval of the heap, but, efficiency
    50 // apart, there seems to be no reason it couldn't be extended
    51 // (with appropriate modifications) to any "non-convex interval".
    53 // forward references
    54 class ReferencePolicy;
    55 class AbstractRefProcTaskExecutor;
    57 // List of discovered references.
    58 class DiscoveredList {
    59 public:
    60   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
    61   oop head() const     {
    62      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
    63                                 _oop_head;
    64   }
    65   HeapWord* adr_head() {
    66     return UseCompressedOops ? (HeapWord*)&_compressed_head :
    67                                (HeapWord*)&_oop_head;
    68   }
    69   void set_head(oop o) {
    70     if (UseCompressedOops) {
    71       // Must compress the head ptr.
    72       _compressed_head = oopDesc::encode_heap_oop(o);
    73     } else {
    74       _oop_head = o;
    75     }
    76   }
    77   bool   is_empty() const       { return head() == NULL; }
    78   size_t length()               { return _len; }
    79   void   set_length(size_t len) { _len = len;  }
    80   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
    81   void   dec_length(size_t dec) { _len -= dec; }
    82 private:
    83   // Set value depending on UseCompressedOops. This could be a template class
    84   // but then we have to fix all the instantiations and declarations that use this class.
    85   oop       _oop_head;
    86   narrowOop _compressed_head;
    87   size_t _len;
    88 };
    90 // Iterator for the list of discovered references.
    91 class DiscoveredListIterator {
    92 private:
    93   DiscoveredList&    _refs_list;
    94   HeapWord*          _prev_next;
    95   oop                _prev;
    96   oop                _ref;
    97   HeapWord*          _discovered_addr;
    98   oop                _next;
    99   HeapWord*          _referent_addr;
   100   oop                _referent;
   101   OopClosure*        _keep_alive;
   102   BoolObjectClosure* _is_alive;
   104   DEBUG_ONLY(
   105   oop                _first_seen; // cyclic linked list check
   106   )
   108   NOT_PRODUCT(
   109   size_t             _processed;
   110   size_t             _removed;
   111   )
   113 public:
   114   inline DiscoveredListIterator(DiscoveredList&    refs_list,
   115                                 OopClosure*        keep_alive,
   116                                 BoolObjectClosure* is_alive):
   117     _refs_list(refs_list),
   118     _prev_next(refs_list.adr_head()),
   119     _prev(NULL),
   120     _ref(refs_list.head()),
   121 #ifdef ASSERT
   122     _first_seen(refs_list.head()),
   123 #endif
   124 #ifndef PRODUCT
   125     _processed(0),
   126     _removed(0),
   127 #endif
   128     _next(NULL),
   129     _keep_alive(keep_alive),
   130     _is_alive(is_alive)
   131 { }
   133   // End Of List.
   134   inline bool has_next() const { return _ref != NULL; }
   136   // Get oop to the Reference object.
   137   inline oop obj() const { return _ref; }
   139   // Get oop to the referent object.
   140   inline oop referent() const { return _referent; }
   142   // Returns true if referent is alive.
   143   inline bool is_referent_alive() const {
   144     return _is_alive->do_object_b(_referent);
   145   }
   147   // Loads data for the current reference.
   148   // The "allow_null_referent" argument tells us to allow for the possibility
   149   // of a NULL referent in the discovered Reference object. This typically
   150   // happens in the case of concurrent collectors that may have done the
   151   // discovery concurrently, or interleaved, with mutator execution.
   152   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
   154   // Move to the next discovered reference.
   155   inline void next() {
   156     _prev_next = _discovered_addr;
   157     _prev = _ref;
   158     move_to_next();
   159   }
   161   // Remove the current reference from the list
   162   void remove();
   164   // Make the Reference object active again.
   165   void make_active();
   167   // Make the referent alive.
   168   inline void make_referent_alive() {
   169     if (UseCompressedOops) {
   170       _keep_alive->do_oop((narrowOop*)_referent_addr);
   171     } else {
   172       _keep_alive->do_oop((oop*)_referent_addr);
   173     }
   174   }
   176   // Update the discovered field.
   177   inline void update_discovered() {
   178     // First _prev_next ref actually points into DiscoveredList (gross).
   179     if (UseCompressedOops) {
   180       if (!oopDesc::is_null(*(narrowOop*)_prev_next)) {
   181         _keep_alive->do_oop((narrowOop*)_prev_next);
   182       }
   183     } else {
   184       if (!oopDesc::is_null(*(oop*)_prev_next)) {
   185         _keep_alive->do_oop((oop*)_prev_next);
   186       }
   187     }
   188   }
   190   // NULL out referent pointer.
   191   void clear_referent();
   193   // Statistics
   194   NOT_PRODUCT(
   195   inline size_t processed() const { return _processed; }
   196   inline size_t removed() const   { return _removed; }
   197   )
   199   inline void move_to_next() {
   200     if (_ref == _next) {
   201       // End of the list.
   202       _ref = NULL;
   203     } else {
   204       _ref = _next;
   205     }
   206     assert(_ref != _first_seen, "cyclic ref_list found");
   207     NOT_PRODUCT(_processed++);
   208   }
   209 };
   211 class ReferenceProcessor : public CHeapObj<mtGC> {
   213  private:
   214   size_t total_count(DiscoveredList lists[]);
   216  protected:
   217   // Compatibility with pre-4965777 JDK's
   218   static bool _pending_list_uses_discovered_field;
   220   // The SoftReference master timestamp clock
   221   static jlong _soft_ref_timestamp_clock;
   223   MemRegion   _span;                    // (right-open) interval of heap
   224                                         // subject to wkref discovery
   226   bool        _discovering_refs;        // true when discovery enabled
   227   bool        _discovery_is_atomic;     // if discovery is atomic wrt
   228                                         // other collectors in configuration
   229   bool        _discovery_is_mt;         // true if reference discovery is MT.
   231   bool        _enqueuing_is_done;       // true if all weak references enqueued
   232   bool        _processing_is_mt;        // true during phases when
   233                                         // reference processing is MT.
   234   uint        _next_id;                 // round-robin mod _num_q counter in
   235                                         // support of work distribution
   237   // For collectors that do not keep GC liveness information
   238   // in the object header, this field holds a closure that
   239   // helps the reference processor determine the reachability
   240   // of an oop. It is currently initialized to NULL for all
   241   // collectors except for CMS and G1.
   242   BoolObjectClosure* _is_alive_non_header;
   244   // Soft ref clearing policies
   245   // . the default policy
   246   static ReferencePolicy*   _default_soft_ref_policy;
   247   // . the "clear all" policy
   248   static ReferencePolicy*   _always_clear_soft_ref_policy;
   249   // . the current policy below is either one of the above
   250   ReferencePolicy*          _current_soft_ref_policy;
   252   // The discovered ref lists themselves
   254   // The active MT'ness degree of the queues below
   255   uint             _num_q;
   256   // The maximum MT'ness degree of the queues below
   257   uint             _max_num_q;
   259   // Master array of discovered oops
   260   DiscoveredList* _discovered_refs;
   262   // Arrays of lists of oops, one per thread (pointers into master array above)
   263   DiscoveredList* _discoveredSoftRefs;
   264   DiscoveredList* _discoveredWeakRefs;
   265   DiscoveredList* _discoveredFinalRefs;
   266   DiscoveredList* _discoveredPhantomRefs;
   268  public:
   269   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
   271   uint num_q()                             { return _num_q; }
   272   uint max_num_q()                         { return _max_num_q; }
   273   void set_active_mt_degree(uint v)        { _num_q = v; }
   275   DiscoveredList* discovered_refs()        { return _discovered_refs; }
   277   ReferencePolicy* setup_policy(bool always_clear) {
   278     _current_soft_ref_policy = always_clear ?
   279       _always_clear_soft_ref_policy : _default_soft_ref_policy;
   280     _current_soft_ref_policy->setup();   // snapshot the policy threshold
   281     return _current_soft_ref_policy;
   282   }
   284   // Process references with a certain reachability level.
   285   size_t process_discovered_reflist(DiscoveredList               refs_lists[],
   286                                     ReferencePolicy*             policy,
   287                                     bool                         clear_referent,
   288                                     BoolObjectClosure*           is_alive,
   289                                     OopClosure*                  keep_alive,
   290                                     VoidClosure*                 complete_gc,
   291                                     AbstractRefProcTaskExecutor* task_executor);
   293   void process_phaseJNI(BoolObjectClosure* is_alive,
   294                         OopClosure*        keep_alive,
   295                         VoidClosure*       complete_gc);
   297   // Work methods used by the method process_discovered_reflist
   298   // Phase1: keep alive all those referents that are otherwise
   299   // dead but which must be kept alive by policy (and their closure).
   300   void process_phase1(DiscoveredList&     refs_list,
   301                       ReferencePolicy*    policy,
   302                       BoolObjectClosure*  is_alive,
   303                       OopClosure*         keep_alive,
   304                       VoidClosure*        complete_gc);
   305   // Phase2: remove all those references whose referents are
   306   // reachable.
   307   inline void process_phase2(DiscoveredList&    refs_list,
   308                              BoolObjectClosure* is_alive,
   309                              OopClosure*        keep_alive,
   310                              VoidClosure*       complete_gc) {
   311     if (discovery_is_atomic()) {
   312       // complete_gc is ignored in this case for this phase
   313       pp2_work(refs_list, is_alive, keep_alive);
   314     } else {
   315       assert(complete_gc != NULL, "Error");
   316       pp2_work_concurrent_discovery(refs_list, is_alive,
   317                                     keep_alive, complete_gc);
   318     }
   319   }
   320   // Work methods in support of process_phase2
   321   void pp2_work(DiscoveredList&    refs_list,
   322                 BoolObjectClosure* is_alive,
   323                 OopClosure*        keep_alive);
   324   void pp2_work_concurrent_discovery(
   325                 DiscoveredList&    refs_list,
   326                 BoolObjectClosure* is_alive,
   327                 OopClosure*        keep_alive,
   328                 VoidClosure*       complete_gc);
   329   // Phase3: process the referents by either clearing them
   330   // or keeping them alive (and their closure)
   331   void process_phase3(DiscoveredList&    refs_list,
   332                       bool               clear_referent,
   333                       BoolObjectClosure* is_alive,
   334                       OopClosure*        keep_alive,
   335                       VoidClosure*       complete_gc);
   337   // Enqueue references with a certain reachability level
   338   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
   340   // "Preclean" all the discovered reference lists
   341   // by removing references with strongly reachable referents.
   342   // The first argument is a predicate on an oop that indicates
   343   // its (strong) reachability and the second is a closure that
   344   // may be used to incrementalize or abort the precleaning process.
   345   // The caller is responsible for taking care of potential
   346   // interference with concurrent operations on these lists
   347   // (or predicates involved) by other threads. Currently
   348   // only used by the CMS collector.
   349   void preclean_discovered_references(BoolObjectClosure* is_alive,
   350                                       OopClosure*        keep_alive,
   351                                       VoidClosure*       complete_gc,
   352                                       YieldClosure*      yield,
   353                                       GCTimer*           gc_timer,
   354                                       GCId               gc_id);
   356   // Delete entries in the discovered lists that have
   357   // either a null referent or are not active. Such
   358   // Reference objects can result from the clearing
   359   // or enqueueing of Reference objects concurrent
   360   // with their discovery by a (concurrent) collector.
   361   // For a definition of "active" see java.lang.ref.Reference;
   362   // Refs are born active, become inactive when enqueued,
   363   // and never become active again. The state of being
   364   // active is encoded as follows: A Ref is active
   365   // if and only if its "next" field is NULL.
   366   void clean_up_discovered_references();
   367   void clean_up_discovered_reflist(DiscoveredList& refs_list);
   369   // Returns the name of the discovered reference list
   370   // occupying the i / _num_q slot.
   371   const char* list_name(uint i);
   373   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
   375  protected:
   376   // "Preclean" the given discovered reference list
   377   // by removing references with strongly reachable referents.
   378   // Currently used in support of CMS only.
   379   void preclean_discovered_reflist(DiscoveredList&    refs_list,
   380                                    BoolObjectClosure* is_alive,
   381                                    OopClosure*        keep_alive,
   382                                    VoidClosure*       complete_gc,
   383                                    YieldClosure*      yield);
   385   // round-robin mod _num_q (not: _not_ mode _max_num_q)
   386   uint next_id() {
   387     uint id = _next_id;
   388     if (++_next_id == _num_q) {
   389       _next_id = 0;
   390     }
   391     return id;
   392   }
   393   DiscoveredList* get_discovered_list(ReferenceType rt);
   394   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
   395                                         HeapWord* discovered_addr);
   396   void verify_ok_to_handle_reflists() PRODUCT_RETURN;
   398   void clear_discovered_references(DiscoveredList& refs_list);
   399   void abandon_partial_discovered_list(DiscoveredList& refs_list);
   401   // Calculate the number of jni handles.
   402   unsigned int count_jni_refs();
   404   // Balances reference queues.
   405   void balance_queues(DiscoveredList ref_lists[]);
   407   // Update (advance) the soft ref master clock field.
   408   void update_soft_ref_master_clock();
   410  public:
   411   // Default parameters give you a vanilla reference processor.
   412   ReferenceProcessor(MemRegion span,
   413                      bool mt_processing = false, uint mt_processing_degree = 1,
   414                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
   415                      bool atomic_discovery = true,
   416                      BoolObjectClosure* is_alive_non_header = NULL);
   418   // RefDiscoveryPolicy values
   419   enum DiscoveryPolicy {
   420     ReferenceBasedDiscovery = 0,
   421     ReferentBasedDiscovery  = 1,
   422     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
   423     DiscoveryPolicyMax      = ReferentBasedDiscovery
   424   };
   426   static void init_statics();
   428  public:
   429   // get and set "is_alive_non_header" field
   430   BoolObjectClosure* is_alive_non_header() {
   431     return _is_alive_non_header;
   432   }
   433   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
   434     _is_alive_non_header = is_alive_non_header;
   435   }
   437   // get and set span
   438   MemRegion span()                   { return _span; }
   439   void      set_span(MemRegion span) { _span = span; }
   441   // start and stop weak ref discovery
   442   void enable_discovery(bool verify_disabled, bool check_no_refs);
   443   void disable_discovery()  { _discovering_refs = false; }
   444   bool discovery_enabled()  { return _discovering_refs;  }
   446   // whether discovery is atomic wrt other collectors
   447   bool discovery_is_atomic() const { return _discovery_is_atomic; }
   448   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
   450   // whether the JDK in which we are embedded is a pre-4965777 JDK,
   451   // and thus whether or not it uses the discovered field to chain
   452   // the entries in the pending list.
   453   static bool pending_list_uses_discovered_field() {
   454     return _pending_list_uses_discovered_field;
   455   }
   457   // whether discovery is done by multiple threads same-old-timeously
   458   bool discovery_is_mt() const { return _discovery_is_mt; }
   459   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
   461   // Whether we are in a phase when _processing_ is MT.
   462   bool processing_is_mt() const { return _processing_is_mt; }
   463   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
   465   // whether all enqueuing of weak references is complete
   466   bool enqueuing_is_done()  { return _enqueuing_is_done; }
   467   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
   469   // iterate over oops
   470   void weak_oops_do(OopClosure* f);       // weak roots
   472   // Balance each of the discovered lists.
   473   void balance_all_queues();
   474   void verify_list(DiscoveredList& ref_list);
   476   // Discover a Reference object, using appropriate discovery criteria
   477   bool discover_reference(oop obj, ReferenceType rt);
   479   // Process references found during GC (called by the garbage collector)
   480   ReferenceProcessorStats
   481   process_discovered_references(BoolObjectClosure*           is_alive,
   482                                 OopClosure*                  keep_alive,
   483                                 VoidClosure*                 complete_gc,
   484                                 AbstractRefProcTaskExecutor* task_executor,
   485                                 GCTimer *gc_timer,
   486                                 GCId    gc_id);
   488   // Enqueue references at end of GC (called by the garbage collector)
   489   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
   491   // If a discovery is in process that is being superceded, abandon it: all
   492   // the discovered lists will be empty, and all the objects on them will
   493   // have NULL discovered fields.  Must be called only at a safepoint.
   494   void abandon_partial_discovery();
   496   // debugging
   497   void verify_no_references_recorded() PRODUCT_RETURN;
   498   void verify_referent(oop obj)        PRODUCT_RETURN;
   500   // clear the discovered lists (unlinking each entry).
   501   void clear_discovered_references() PRODUCT_RETURN;
   502 };
   504 // A utility class to disable reference discovery in
   505 // the scope which contains it, for given ReferenceProcessor.
   506 class NoRefDiscovery: StackObj {
   507  private:
   508   ReferenceProcessor* _rp;
   509   bool _was_discovering_refs;
   510  public:
   511   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
   512     _was_discovering_refs = _rp->discovery_enabled();
   513     if (_was_discovering_refs) {
   514       _rp->disable_discovery();
   515     }
   516   }
   518   ~NoRefDiscovery() {
   519     if (_was_discovering_refs) {
   520       _rp->enable_discovery(true /*verify_disabled*/, false /*check_no_refs*/);
   521     }
   522   }
   523 };
   526 // A utility class to temporarily mutate the span of the
   527 // given ReferenceProcessor in the scope that contains it.
   528 class ReferenceProcessorSpanMutator: StackObj {
   529  private:
   530   ReferenceProcessor* _rp;
   531   MemRegion           _saved_span;
   533  public:
   534   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
   535                                 MemRegion span):
   536     _rp(rp) {
   537     _saved_span = _rp->span();
   538     _rp->set_span(span);
   539   }
   541   ~ReferenceProcessorSpanMutator() {
   542     _rp->set_span(_saved_span);
   543   }
   544 };
   546 // A utility class to temporarily change the MT'ness of
   547 // reference discovery for the given ReferenceProcessor
   548 // in the scope that contains it.
   549 class ReferenceProcessorMTDiscoveryMutator: StackObj {
   550  private:
   551   ReferenceProcessor* _rp;
   552   bool                _saved_mt;
   554  public:
   555   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
   556                                        bool mt):
   557     _rp(rp) {
   558     _saved_mt = _rp->discovery_is_mt();
   559     _rp->set_mt_discovery(mt);
   560   }
   562   ~ReferenceProcessorMTDiscoveryMutator() {
   563     _rp->set_mt_discovery(_saved_mt);
   564   }
   565 };
   568 // A utility class to temporarily change the disposition
   569 // of the "is_alive_non_header" closure field of the
   570 // given ReferenceProcessor in the scope that contains it.
   571 class ReferenceProcessorIsAliveMutator: StackObj {
   572  private:
   573   ReferenceProcessor* _rp;
   574   BoolObjectClosure*  _saved_cl;
   576  public:
   577   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
   578                                    BoolObjectClosure*  cl):
   579     _rp(rp) {
   580     _saved_cl = _rp->is_alive_non_header();
   581     _rp->set_is_alive_non_header(cl);
   582   }
   584   ~ReferenceProcessorIsAliveMutator() {
   585     _rp->set_is_alive_non_header(_saved_cl);
   586   }
   587 };
   589 // A utility class to temporarily change the disposition
   590 // of the "discovery_is_atomic" field of the
   591 // given ReferenceProcessor in the scope that contains it.
   592 class ReferenceProcessorAtomicMutator: StackObj {
   593  private:
   594   ReferenceProcessor* _rp;
   595   bool                _saved_atomic_discovery;
   597  public:
   598   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
   599                                   bool atomic):
   600     _rp(rp) {
   601     _saved_atomic_discovery = _rp->discovery_is_atomic();
   602     _rp->set_atomic_discovery(atomic);
   603   }
   605   ~ReferenceProcessorAtomicMutator() {
   606     _rp->set_atomic_discovery(_saved_atomic_discovery);
   607   }
   608 };
   611 // A utility class to temporarily change the MT processing
   612 // disposition of the given ReferenceProcessor instance
   613 // in the scope that contains it.
   614 class ReferenceProcessorMTProcMutator: StackObj {
   615  private:
   616   ReferenceProcessor* _rp;
   617   bool  _saved_mt;
   619  public:
   620   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
   621                                   bool mt):
   622     _rp(rp) {
   623     _saved_mt = _rp->processing_is_mt();
   624     _rp->set_mt_processing(mt);
   625   }
   627   ~ReferenceProcessorMTProcMutator() {
   628     _rp->set_mt_processing(_saved_mt);
   629   }
   630 };
   633 // This class is an interface used to implement task execution for the
   634 // reference processing.
   635 class AbstractRefProcTaskExecutor {
   636 public:
   638   // Abstract tasks to execute.
   639   class ProcessTask;
   640   class EnqueueTask;
   642   // Executes a task using worker threads.
   643   virtual void execute(ProcessTask& task) = 0;
   644   virtual void execute(EnqueueTask& task) = 0;
   646   // Switch to single threaded mode.
   647   virtual void set_single_threaded_mode() { };
   648 };
   650 // Abstract reference processing task to execute.
   651 class AbstractRefProcTaskExecutor::ProcessTask {
   652 protected:
   653   ProcessTask(ReferenceProcessor& ref_processor,
   654               DiscoveredList      refs_lists[],
   655               bool                marks_oops_alive)
   656     : _ref_processor(ref_processor),
   657       _refs_lists(refs_lists),
   658       _marks_oops_alive(marks_oops_alive)
   659   { }
   661 public:
   662   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
   663                     OopClosure& keep_alive,
   664                     VoidClosure& complete_gc) = 0;
   666   // Returns true if a task marks some oops as alive.
   667   bool marks_oops_alive() const
   668   { return _marks_oops_alive; }
   670 protected:
   671   ReferenceProcessor& _ref_processor;
   672   DiscoveredList*     _refs_lists;
   673   const bool          _marks_oops_alive;
   674 };
   676 // Abstract reference processing task to execute.
   677 class AbstractRefProcTaskExecutor::EnqueueTask {
   678 protected:
   679   EnqueueTask(ReferenceProcessor& ref_processor,
   680               DiscoveredList      refs_lists[],
   681               HeapWord*           pending_list_addr,
   682               int                 n_queues)
   683     : _ref_processor(ref_processor),
   684       _refs_lists(refs_lists),
   685       _pending_list_addr(pending_list_addr),
   686       _n_queues(n_queues)
   687   { }
   689 public:
   690   virtual void work(unsigned int work_id) = 0;
   692 protected:
   693   ReferenceProcessor& _ref_processor;
   694   DiscoveredList*     _refs_lists;
   695   HeapWord*           _pending_list_addr;
   696   int                 _n_queues;
   697 };
   699 #endif // SHARE_VM_MEMORY_REFERENCEPROCESSOR_HPP

mercurial