src/share/vm/runtime/synchronizer.cpp

Mon, 01 Feb 2010 17:35:05 -0700

author
dcubed
date
Mon, 01 Feb 2010 17:35:05 -0700
changeset 1648
6deeaebad47a
parent 1137
b9fba36710f2
child 1907
c18cbe5936b8
child 1942
b96a3e44582f
permissions
-rw-r--r--

6902182: 4/4 Starting with jdwp agent should not incur performance penalty
Summary: Rename can_post_exceptions support to can_post_on_exceptions. Add support for should_post_on_exceptions flag to permit per JavaThread optimizations.
Reviewed-by: never, kvn, dcubed
Contributed-by: tom.deneau@amd.com

     1 /*
     2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_synchronizer.cpp.incl"
    28 #if defined(__GNUC__) && !defined(IA64)
    29   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
    30   #define ATTR __attribute__((noinline))
    31 #else
    32   #define ATTR
    33 #endif
    35 // Native markword accessors for synchronization and hashCode().
    36 //
    37 // The "core" versions of monitor enter and exit reside in this file.
    38 // The interpreter and compilers contain specialized transliterated
    39 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
    40 // for instance.  If you make changes here, make sure to modify the
    41 // interpreter, and both C1 and C2 fast-path inline locking code emission.
    42 //
    43 // TODO: merge the objectMonitor and synchronizer classes.
    44 //
    45 // -----------------------------------------------------------------------------
    47 #ifdef DTRACE_ENABLED
    49 // Only bother with this argument setup if dtrace is available
    50 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
    52 HS_DTRACE_PROBE_DECL5(hotspot, monitor__wait,
    53   jlong, uintptr_t, char*, int, long);
    54 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
    55   jlong, uintptr_t, char*, int);
    56 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
    57   jlong, uintptr_t, char*, int);
    58 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
    59   jlong, uintptr_t, char*, int);
    60 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
    61   jlong, uintptr_t, char*, int);
    62 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
    63   jlong, uintptr_t, char*, int);
    64 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
    65   jlong, uintptr_t, char*, int);
    67 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
    68   char* bytes = NULL;                                                      \
    69   int len = 0;                                                             \
    70   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
    71   symbolOop klassname = ((oop)(klassOop))->klass()->klass_part()->name();  \
    72   if (klassname != NULL) {                                                 \
    73     bytes = (char*)klassname->bytes();                                     \
    74     len = klassname->utf8_length();                                        \
    75   }
    77 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
    78   {                                                                        \
    79     if (DTraceMonitorProbes) {                                            \
    80       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
    81       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
    82                        (monitor), bytes, len, (millis));                   \
    83     }                                                                      \
    84   }
    86 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
    87   {                                                                        \
    88     if (DTraceMonitorProbes) {                                            \
    89       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
    90       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
    91                        (uintptr_t)(monitor), bytes, len);                  \
    92     }                                                                      \
    93   }
    95 #else //  ndef DTRACE_ENABLED
    97 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
    98 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
   100 #endif // ndef DTRACE_ENABLED
   102 // ObjectWaiter serves as a "proxy" or surrogate thread.
   103 // TODO-FIXME: Eliminate ObjectWaiter and use the thread-specific
   104 // ParkEvent instead.  Beware, however, that the JVMTI code
   105 // knows about ObjectWaiters, so we'll have to reconcile that code.
   106 // See next_waiter(), first_waiter(), etc.
   108 class ObjectWaiter : public StackObj {
   109  public:
   110   enum TStates { TS_UNDEF, TS_READY, TS_RUN, TS_WAIT, TS_ENTER, TS_CXQ } ;
   111   enum Sorted  { PREPEND, APPEND, SORTED } ;
   112   ObjectWaiter * volatile _next;
   113   ObjectWaiter * volatile _prev;
   114   Thread*       _thread;
   115   ParkEvent *   _event;
   116   volatile int  _notified ;
   117   volatile TStates TState ;
   118   Sorted        _Sorted ;           // List placement disposition
   119   bool          _active ;           // Contention monitoring is enabled
   120  public:
   121   ObjectWaiter(Thread* thread) {
   122     _next     = NULL;
   123     _prev     = NULL;
   124     _notified = 0;
   125     TState    = TS_RUN ;
   126     _thread   = thread;
   127     _event    = thread->_ParkEvent ;
   128     _active   = false;
   129     assert (_event != NULL, "invariant") ;
   130   }
   132   void wait_reenter_begin(ObjectMonitor *mon) {
   133     JavaThread *jt = (JavaThread *)this->_thread;
   134     _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
   135   }
   137   void wait_reenter_end(ObjectMonitor *mon) {
   138     JavaThread *jt = (JavaThread *)this->_thread;
   139     JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
   140   }
   141 };
   143 enum ManifestConstants {
   144     ClearResponsibleAtSTW   = 0,
   145     MaximumRecheckInterval  = 1000
   146 } ;
   149 #undef TEVENT
   150 #define TEVENT(nom) {if (SyncVerbose) FEVENT(nom); }
   152 #define FEVENT(nom) { static volatile int ctr = 0 ; int v = ++ctr ; if ((v & (v-1)) == 0) { ::printf (#nom " : %d \n", v); ::fflush(stdout); }}
   154 #undef  TEVENT
   155 #define TEVENT(nom) {;}
   157 // Performance concern:
   158 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
   159 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
   160 // Many threads STing into a common location causes considerable cache migration
   161 // or "sloshing" on large SMP system.  As such, I avoid using OrderAccess::storestore()
   162 // until it's repaired.  In some cases OrderAccess::fence() -- which incurs local
   163 // latency on the executing processor -- is a better choice as it scales on SMP
   164 // systems.  See http://blogs.sun.com/dave/entry/biased_locking_in_hotspot for a
   165 // discussion of coherency costs.  Note that all our current reference platforms
   166 // provide strong ST-ST order, so the issue is moot on IA32, x64, and SPARC.
   167 //
   168 // As a general policy we use "volatile" to control compiler-based reordering
   169 // and explicit fences (barriers) to control for architectural reordering performed
   170 // by the CPU(s) or platform.
   172 static int  MBFence (int x) { OrderAccess::fence(); return x; }
   174 struct SharedGlobals {
   175     // These are highly shared mostly-read variables.
   176     // To avoid false-sharing they need to be the sole occupants of a $ line.
   177     double padPrefix [8];
   178     volatile int stwRandom ;
   179     volatile int stwCycle ;
   181     // Hot RW variables -- Sequester to avoid false-sharing
   182     double padSuffix [16];
   183     volatile int hcSequence ;
   184     double padFinal [8] ;
   185 } ;
   187 static SharedGlobals GVars ;
   190 // Tunables ...
   191 // The knob* variables are effectively final.  Once set they should
   192 // never be modified hence.  Consider using __read_mostly with GCC.
   194 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
   195 static int Knob_HandOff            = 0 ;
   196 static int Knob_Verbose            = 0 ;
   197 static int Knob_ReportSettings     = 0 ;
   199 static int Knob_SpinLimit          = 5000 ;    // derived by an external tool -
   200 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
   201 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
   202 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
   203 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
   204 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
   205 static int Knob_SpinEarly          = 1 ;
   206 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
   207 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
   208 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
   209 static int Knob_Bonus              = 100 ;     // spin success bonus
   210 static int Knob_BonusB             = 100 ;     // spin success bonus
   211 static int Knob_Penalty            = 200 ;     // spin failure penalty
   212 static int Knob_Poverty            = 1000 ;
   213 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
   214 static int Knob_FixedSpin          = 0 ;
   215 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
   216 static int Knob_UsePause           = 1 ;
   217 static int Knob_ExitPolicy         = 0 ;
   218 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
   219 static int Knob_ResetEvent         = 0 ;
   220 static int BackOffMask             = 0 ;
   222 static int Knob_FastHSSEC          = 0 ;
   223 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
   224 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
   225 static volatile int InitDone       = 0 ;
   228 // hashCode() generation :
   229 //
   230 // Possibilities:
   231 // * MD5Digest of {obj,stwRandom}
   232 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
   233 // * A DES- or AES-style SBox[] mechanism
   234 // * One of the Phi-based schemes, such as:
   235 //   2654435761 = 2^32 * Phi (golden ratio)
   236 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
   237 // * A variation of Marsaglia's shift-xor RNG scheme.
   238 // * (obj ^ stwRandom) is appealing, but can result
   239 //   in undesirable regularity in the hashCode values of adjacent objects
   240 //   (objects allocated back-to-back, in particular).  This could potentially
   241 //   result in hashtable collisions and reduced hashtable efficiency.
   242 //   There are simple ways to "diffuse" the middle address bits over the
   243 //   generated hashCode values:
   244 //
   246 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
   247   intptr_t value = 0 ;
   248   if (hashCode == 0) {
   249      // This form uses an unguarded global Park-Miller RNG,
   250      // so it's possible for two threads to race and generate the same RNG.
   251      // On MP system we'll have lots of RW access to a global, so the
   252      // mechanism induces lots of coherency traffic.
   253      value = os::random() ;
   254   } else
   255   if (hashCode == 1) {
   256      // This variation has the property of being stable (idempotent)
   257      // between STW operations.  This can be useful in some of the 1-0
   258      // synchronization schemes.
   259      intptr_t addrBits = intptr_t(obj) >> 3 ;
   260      value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
   261   } else
   262   if (hashCode == 2) {
   263      value = 1 ;            // for sensitivity testing
   264   } else
   265   if (hashCode == 3) {
   266      value = ++GVars.hcSequence ;
   267   } else
   268   if (hashCode == 4) {
   269      value = intptr_t(obj) ;
   270   } else {
   271      // Marsaglia's xor-shift scheme with thread-specific state
   272      // This is probably the best overall implementation -- we'll
   273      // likely make this the default in future releases.
   274      unsigned t = Self->_hashStateX ;
   275      t ^= (t << 11) ;
   276      Self->_hashStateX = Self->_hashStateY ;
   277      Self->_hashStateY = Self->_hashStateZ ;
   278      Self->_hashStateZ = Self->_hashStateW ;
   279      unsigned v = Self->_hashStateW ;
   280      v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
   281      Self->_hashStateW = v ;
   282      value = v ;
   283   }
   285   value &= markOopDesc::hash_mask;
   286   if (value == 0) value = 0xBAD ;
   287   assert (value != markOopDesc::no_hash, "invariant") ;
   288   TEVENT (hashCode: GENERATE) ;
   289   return value;
   290 }
   292 void BasicLock::print_on(outputStream* st) const {
   293   st->print("monitor");
   294 }
   296 void BasicLock::move_to(oop obj, BasicLock* dest) {
   297   // Check to see if we need to inflate the lock. This is only needed
   298   // if an object is locked using "this" lightweight monitor. In that
   299   // case, the displaced_header() is unlocked, because the
   300   // displaced_header() contains the header for the originally unlocked
   301   // object. However the object could have already been inflated. But it
   302   // does not matter, the inflation will just a no-op. For other cases,
   303   // the displaced header will be either 0x0 or 0x3, which are location
   304   // independent, therefore the BasicLock is free to move.
   305   //
   306   // During OSR we may need to relocate a BasicLock (which contains a
   307   // displaced word) from a location in an interpreter frame to a
   308   // new location in a compiled frame.  "this" refers to the source
   309   // basiclock in the interpreter frame.  "dest" refers to the destination
   310   // basiclock in the new compiled frame.  We *always* inflate in move_to().
   311   // The always-Inflate policy works properly, but in 1.5.0 it can sometimes
   312   // cause performance problems in code that makes heavy use of a small # of
   313   // uncontended locks.   (We'd inflate during OSR, and then sync performance
   314   // would subsequently plummet because the thread would be forced thru the slow-path).
   315   // This problem has been made largely moot on IA32 by inlining the inflated fast-path
   316   // operations in Fast_Lock and Fast_Unlock in i486.ad.
   317   //
   318   // Note that there is a way to safely swing the object's markword from
   319   // one stack location to another.  This avoids inflation.  Obviously,
   320   // we need to ensure that both locations refer to the current thread's stack.
   321   // There are some subtle concurrency issues, however, and since the benefit is
   322   // is small (given the support for inflated fast-path locking in the fast_lock, etc)
   323   // we'll leave that optimization for another time.
   325   if (displaced_header()->is_neutral()) {
   326     ObjectSynchronizer::inflate_helper(obj);
   327     // WARNING: We can not put check here, because the inflation
   328     // will not update the displaced header. Once BasicLock is inflated,
   329     // no one should ever look at its content.
   330   } else {
   331     // Typically the displaced header will be 0 (recursive stack lock) or
   332     // unused_mark.  Naively we'd like to assert that the displaced mark
   333     // value is either 0, neutral, or 3.  But with the advent of the
   334     // store-before-CAS avoidance in fast_lock/compiler_lock_object
   335     // we can find any flavor mark in the displaced mark.
   336   }
   337 // [RGV] The next line appears to do nothing!
   338   intptr_t dh = (intptr_t) displaced_header();
   339   dest->set_displaced_header(displaced_header());
   340 }
   342 // -----------------------------------------------------------------------------
   344 // standard constructor, allows locking failures
   345 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
   346   _dolock = doLock;
   347   _thread = thread;
   348   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
   349   _obj = obj;
   351   if (_dolock) {
   352     TEVENT (ObjectLocker) ;
   354     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
   355   }
   356 }
   358 ObjectLocker::~ObjectLocker() {
   359   if (_dolock) {
   360     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
   361   }
   362 }
   364 // -----------------------------------------------------------------------------
   367 PerfCounter * ObjectSynchronizer::_sync_Inflations                  = NULL ;
   368 PerfCounter * ObjectSynchronizer::_sync_Deflations                  = NULL ;
   369 PerfCounter * ObjectSynchronizer::_sync_ContendedLockAttempts       = NULL ;
   370 PerfCounter * ObjectSynchronizer::_sync_FutileWakeups               = NULL ;
   371 PerfCounter * ObjectSynchronizer::_sync_Parks                       = NULL ;
   372 PerfCounter * ObjectSynchronizer::_sync_EmptyNotifications          = NULL ;
   373 PerfCounter * ObjectSynchronizer::_sync_Notifications               = NULL ;
   374 PerfCounter * ObjectSynchronizer::_sync_PrivateA                    = NULL ;
   375 PerfCounter * ObjectSynchronizer::_sync_PrivateB                    = NULL ;
   376 PerfCounter * ObjectSynchronizer::_sync_SlowExit                    = NULL ;
   377 PerfCounter * ObjectSynchronizer::_sync_SlowEnter                   = NULL ;
   378 PerfCounter * ObjectSynchronizer::_sync_SlowNotify                  = NULL ;
   379 PerfCounter * ObjectSynchronizer::_sync_SlowNotifyAll               = NULL ;
   380 PerfCounter * ObjectSynchronizer::_sync_FailedSpins                 = NULL ;
   381 PerfCounter * ObjectSynchronizer::_sync_SuccessfulSpins             = NULL ;
   382 PerfCounter * ObjectSynchronizer::_sync_MonInCirculation            = NULL ;
   383 PerfCounter * ObjectSynchronizer::_sync_MonScavenged                = NULL ;
   384 PerfLongVariable * ObjectSynchronizer::_sync_MonExtant              = NULL ;
   386 // One-shot global initialization for the sync subsystem.
   387 // We could also defer initialization and initialize on-demand
   388 // the first time we call inflate().  Initialization would
   389 // be protected - like so many things - by the MonitorCache_lock.
   391 void ObjectSynchronizer::Initialize () {
   392   static int InitializationCompleted = 0 ;
   393   assert (InitializationCompleted == 0, "invariant") ;
   394   InitializationCompleted = 1 ;
   395   if (UsePerfData) {
   396       EXCEPTION_MARK ;
   397       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
   398       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
   399       NEWPERFCOUNTER(_sync_Inflations) ;
   400       NEWPERFCOUNTER(_sync_Deflations) ;
   401       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
   402       NEWPERFCOUNTER(_sync_FutileWakeups) ;
   403       NEWPERFCOUNTER(_sync_Parks) ;
   404       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
   405       NEWPERFCOUNTER(_sync_Notifications) ;
   406       NEWPERFCOUNTER(_sync_SlowEnter) ;
   407       NEWPERFCOUNTER(_sync_SlowExit) ;
   408       NEWPERFCOUNTER(_sync_SlowNotify) ;
   409       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
   410       NEWPERFCOUNTER(_sync_FailedSpins) ;
   411       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
   412       NEWPERFCOUNTER(_sync_PrivateA) ;
   413       NEWPERFCOUNTER(_sync_PrivateB) ;
   414       NEWPERFCOUNTER(_sync_MonInCirculation) ;
   415       NEWPERFCOUNTER(_sync_MonScavenged) ;
   416       NEWPERFVARIABLE(_sync_MonExtant) ;
   417       #undef NEWPERFCOUNTER
   418   }
   419 }
   421 // Compile-time asserts
   422 // When possible, it's better to catch errors deterministically at
   423 // compile-time than at runtime.  The down-side to using compile-time
   424 // asserts is that error message -- often something about negative array
   425 // indices -- is opaque.
   427 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
   429 void ObjectMonitor::ctAsserts() {
   430   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
   431 }
   433 static int Adjust (volatile int * adr, int dx) {
   434   int v ;
   435   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
   436   return v ;
   437 }
   439 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
   440 //
   441 // We employ SpinLocks _only for low-contention, fixed-length
   442 // short-duration critical sections where we're concerned
   443 // about native mutex_t or HotSpot Mutex:: latency.
   444 // The mux construct provides a spin-then-block mutual exclusion
   445 // mechanism.
   446 //
   447 // Testing has shown that contention on the ListLock guarding gFreeList
   448 // is common.  If we implement ListLock as a simple SpinLock it's common
   449 // for the JVM to devolve to yielding with little progress.  This is true
   450 // despite the fact that the critical sections protected by ListLock are
   451 // extremely short.
   452 //
   453 // TODO-FIXME: ListLock should be of type SpinLock.
   454 // We should make this a 1st-class type, integrated into the lock
   455 // hierarchy as leaf-locks.  Critically, the SpinLock structure
   456 // should have sufficient padding to avoid false-sharing and excessive
   457 // cache-coherency traffic.
   460 typedef volatile int SpinLockT ;
   462 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
   463   if (Atomic::cmpxchg (1, adr, 0) == 0) {
   464      return ;   // normal fast-path return
   465   }
   467   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
   468   TEVENT (SpinAcquire - ctx) ;
   469   int ctr = 0 ;
   470   int Yields = 0 ;
   471   for (;;) {
   472      while (*adr != 0) {
   473         ++ctr ;
   474         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
   475            if (Yields > 5) {
   476              // Consider using a simple NakedSleep() instead.
   477              // Then SpinAcquire could be called by non-JVM threads
   478              Thread::current()->_ParkEvent->park(1) ;
   479            } else {
   480              os::NakedYield() ;
   481              ++Yields ;
   482            }
   483         } else {
   484            SpinPause() ;
   485         }
   486      }
   487      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
   488   }
   489 }
   491 void Thread::SpinRelease (volatile int * adr) {
   492   assert (*adr != 0, "invariant") ;
   493   OrderAccess::fence() ;      // guarantee at least release consistency.
   494   // Roach-motel semantics.
   495   // It's safe if subsequent LDs and STs float "up" into the critical section,
   496   // but prior LDs and STs within the critical section can't be allowed
   497   // to reorder or float past the ST that releases the lock.
   498   *adr = 0 ;
   499 }
   501 // muxAcquire and muxRelease:
   502 //
   503 // *  muxAcquire and muxRelease support a single-word lock-word construct.
   504 //    The LSB of the word is set IFF the lock is held.
   505 //    The remainder of the word points to the head of a singly-linked list
   506 //    of threads blocked on the lock.
   507 //
   508 // *  The current implementation of muxAcquire-muxRelease uses its own
   509 //    dedicated Thread._MuxEvent instance.  If we're interested in
   510 //    minimizing the peak number of extant ParkEvent instances then
   511 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
   512 //    as certain invariants were satisfied.  Specifically, care would need
   513 //    to be taken with regards to consuming unpark() "permits".
   514 //    A safe rule of thumb is that a thread would never call muxAcquire()
   515 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
   516 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
   517 //    consume an unpark() permit intended for monitorenter, for instance.
   518 //    One way around this would be to widen the restricted-range semaphore
   519 //    implemented in park().  Another alternative would be to provide
   520 //    multiple instances of the PlatformEvent() for each thread.  One
   521 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
   522 //
   523 // *  Usage:
   524 //    -- Only as leaf locks
   525 //    -- for short-term locking only as muxAcquire does not perform
   526 //       thread state transitions.
   527 //
   528 // Alternatives:
   529 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
   530 //    but with parking or spin-then-park instead of pure spinning.
   531 // *  Use Taura-Oyama-Yonenzawa locks.
   532 // *  It's possible to construct a 1-0 lock if we encode the lockword as
   533 //    (List,LockByte).  Acquire will CAS the full lockword while Release
   534 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
   535 //    acquiring threads use timers (ParkTimed) to detect and recover from
   536 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
   537 //    boundaries by using placement-new.
   538 // *  Augment MCS with advisory back-link fields maintained with CAS().
   539 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
   540 //    The validity of the backlinks must be ratified before we trust the value.
   541 //    If the backlinks are invalid the exiting thread must back-track through the
   542 //    the forward links, which are always trustworthy.
   543 // *  Add a successor indication.  The LockWord is currently encoded as
   544 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
   545 //    to provide the usual futile-wakeup optimization.
   546 //    See RTStt for details.
   547 // *  Consider schedctl.sc_nopreempt to cover the critical section.
   548 //
   551 typedef volatile intptr_t MutexT ;      // Mux Lock-word
   552 enum MuxBits { LOCKBIT = 1 } ;
   554 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
   555   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
   556   if (w == 0) return ;
   557   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   558      return ;
   559   }
   561   TEVENT (muxAcquire - Contention) ;
   562   ParkEvent * const Self = Thread::current()->_MuxEvent ;
   563   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
   564   for (;;) {
   565      int its = (os::is_MP() ? 100 : 0) + 1 ;
   567      // Optional spin phase: spin-then-park strategy
   568      while (--its >= 0) {
   569        w = *Lock ;
   570        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   571           return ;
   572        }
   573      }
   575      Self->reset() ;
   576      Self->OnList = intptr_t(Lock) ;
   577      // The following fence() isn't _strictly necessary as the subsequent
   578      // CAS() both serializes execution and ratifies the fetched *Lock value.
   579      OrderAccess::fence();
   580      for (;;) {
   581         w = *Lock ;
   582         if ((w & LOCKBIT) == 0) {
   583             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   584                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
   585                 return ;
   586             }
   587             continue ;      // Interference -- *Lock changed -- Just retry
   588         }
   589         assert (w & LOCKBIT, "invariant") ;
   590         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
   591         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
   592      }
   594      while (Self->OnList != 0) {
   595         Self->park() ;
   596      }
   597   }
   598 }
   600 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
   601   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
   602   if (w == 0) return ;
   603   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   604     return ;
   605   }
   607   TEVENT (muxAcquire - Contention) ;
   608   ParkEvent * ReleaseAfter = NULL ;
   609   if (ev == NULL) {
   610     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
   611   }
   612   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
   613   for (;;) {
   614     guarantee (ev->OnList == 0, "invariant") ;
   615     int its = (os::is_MP() ? 100 : 0) + 1 ;
   617     // Optional spin phase: spin-then-park strategy
   618     while (--its >= 0) {
   619       w = *Lock ;
   620       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   621         if (ReleaseAfter != NULL) {
   622           ParkEvent::Release (ReleaseAfter) ;
   623         }
   624         return ;
   625       }
   626     }
   628     ev->reset() ;
   629     ev->OnList = intptr_t(Lock) ;
   630     // The following fence() isn't _strictly necessary as the subsequent
   631     // CAS() both serializes execution and ratifies the fetched *Lock value.
   632     OrderAccess::fence();
   633     for (;;) {
   634       w = *Lock ;
   635       if ((w & LOCKBIT) == 0) {
   636         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
   637           ev->OnList = 0 ;
   638           // We call ::Release while holding the outer lock, thus
   639           // artificially lengthening the critical section.
   640           // Consider deferring the ::Release() until the subsequent unlock(),
   641           // after we've dropped the outer lock.
   642           if (ReleaseAfter != NULL) {
   643             ParkEvent::Release (ReleaseAfter) ;
   644           }
   645           return ;
   646         }
   647         continue ;      // Interference -- *Lock changed -- Just retry
   648       }
   649       assert (w & LOCKBIT, "invariant") ;
   650       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
   651       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
   652     }
   654     while (ev->OnList != 0) {
   655       ev->park() ;
   656     }
   657   }
   658 }
   660 // Release() must extract a successor from the list and then wake that thread.
   661 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
   662 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
   663 // Release() would :
   664 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
   665 // (B) Extract a successor from the private list "in-hand"
   666 // (C) attempt to CAS() the residual back into *Lock over null.
   667 //     If there were any newly arrived threads and the CAS() would fail.
   668 //     In that case Release() would detach the RATs, re-merge the list in-hand
   669 //     with the RATs and repeat as needed.  Alternately, Release() might
   670 //     detach and extract a successor, but then pass the residual list to the wakee.
   671 //     The wakee would be responsible for reattaching and remerging before it
   672 //     competed for the lock.
   673 //
   674 // Both "pop" and DMR are immune from ABA corruption -- there can be
   675 // multiple concurrent pushers, but only one popper or detacher.
   676 // This implementation pops from the head of the list.  This is unfair,
   677 // but tends to provide excellent throughput as hot threads remain hot.
   678 // (We wake recently run threads first).
   680 void Thread::muxRelease (volatile intptr_t * Lock)  {
   681   for (;;) {
   682     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
   683     assert (w & LOCKBIT, "invariant") ;
   684     if (w == LOCKBIT) return ;
   685     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
   686     assert (List != NULL, "invariant") ;
   687     assert (List->OnList == intptr_t(Lock), "invariant") ;
   688     ParkEvent * nxt = List->ListNext ;
   690     // The following CAS() releases the lock and pops the head element.
   691     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
   692       continue ;
   693     }
   694     List->OnList = 0 ;
   695     OrderAccess::fence() ;
   696     List->unpark () ;
   697     return ;
   698   }
   699 }
   701 // ObjectMonitor Lifecycle
   702 // -----------------------
   703 // Inflation unlinks monitors from the global gFreeList and
   704 // associates them with objects.  Deflation -- which occurs at
   705 // STW-time -- disassociates idle monitors from objects.  Such
   706 // scavenged monitors are returned to the gFreeList.
   707 //
   708 // The global list is protected by ListLock.  All the critical sections
   709 // are short and operate in constant-time.
   710 //
   711 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
   712 //
   713 // Lifecycle:
   714 // --   unassigned and on the global free list
   715 // --   unassigned and on a thread's private omFreeList
   716 // --   assigned to an object.  The object is inflated and the mark refers
   717 //      to the objectmonitor.
   718 //
   719 // TODO-FIXME:
   720 //
   721 // *  We currently protect the gFreeList with a simple lock.
   722 //    An alternate lock-free scheme would be to pop elements from the gFreeList
   723 //    with CAS.  This would be safe from ABA corruption as long we only
   724 //    recycled previously appearing elements onto the list in deflate_idle_monitors()
   725 //    at STW-time.  Completely new elements could always be pushed onto the gFreeList
   726 //    with CAS.  Elements that appeared previously on the list could only
   727 //    be installed at STW-time.
   728 //
   729 // *  For efficiency and to help reduce the store-before-CAS penalty
   730 //    the objectmonitors on gFreeList or local free lists should be ready to install
   731 //    with the exception of _header and _object.  _object can be set after inflation.
   732 //    In particular, keep all objectMonitors on a thread's private list in ready-to-install
   733 //    state with m.Owner set properly.
   734 //
   735 // *  We could all diffuse contention by using multiple global (FreeList, Lock)
   736 //    pairs -- threads could use trylock() and a cyclic-scan strategy to search for
   737 //    an unlocked free list.
   738 //
   739 // *  Add lifecycle tags and assert()s.
   740 //
   741 // *  Be more consistent about when we clear an objectmonitor's fields:
   742 //    A.  After extracting the objectmonitor from a free list.
   743 //    B.  After adding an objectmonitor to a free list.
   744 //
   746 ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
   747 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
   748 static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
   749 #define CHAINMARKER ((oop)-1)
   751 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
   752     // A large MAXPRIVATE value reduces both list lock contention
   753     // and list coherency traffic, but also tends to increase the
   754     // number of objectMonitors in circulation as well as the STW
   755     // scavenge costs.  As usual, we lean toward time in space-time
   756     // tradeoffs.
   757     const int MAXPRIVATE = 1024 ;
   758     for (;;) {
   759         ObjectMonitor * m ;
   761         // 1: try to allocate from the thread's local omFreeList.
   762         // Threads will attempt to allocate first from their local list, then
   763         // from the global list, and only after those attempts fail will the thread
   764         // attempt to instantiate new monitors.   Thread-local free lists take
   765         // heat off the ListLock and improve allocation latency, as well as reducing
   766         // coherency traffic on the shared global list.
   767         m = Self->omFreeList ;
   768         if (m != NULL) {
   769            Self->omFreeList = m->FreeNext ;
   770            Self->omFreeCount -- ;
   771            // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
   772            guarantee (m->object() == NULL, "invariant") ;
   773            return m ;
   774         }
   776         // 2: try to allocate from the global gFreeList
   777         // CONSIDER: use muxTry() instead of muxAcquire().
   778         // If the muxTry() fails then drop immediately into case 3.
   779         // If we're using thread-local free lists then try
   780         // to reprovision the caller's free list.
   781         if (gFreeList != NULL) {
   782             // Reprovision the thread's omFreeList.
   783             // Use bulk transfers to reduce the allocation rate and heat
   784             // on various locks.
   785             Thread::muxAcquire (&ListLock, "omAlloc") ;
   786             for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL; ) {
   787                 ObjectMonitor * take = gFreeList ;
   788                 gFreeList = take->FreeNext ;
   789                 guarantee (take->object() == NULL, "invariant") ;
   790                 guarantee (!take->is_busy(), "invariant") ;
   791                 take->Recycle() ;
   792                 omRelease (Self, take) ;
   793             }
   794             Thread::muxRelease (&ListLock) ;
   795             Self->omFreeProvision += 1 + (Self->omFreeProvision/2) ;
   796             if (Self->omFreeProvision > MAXPRIVATE ) Self->omFreeProvision = MAXPRIVATE ;
   797             TEVENT (omFirst - reprovision) ;
   798             continue ;
   799         }
   801         // 3: allocate a block of new ObjectMonitors
   802         // Both the local and global free lists are empty -- resort to malloc().
   803         // In the current implementation objectMonitors are TSM - immortal.
   804         assert (_BLOCKSIZE > 1, "invariant") ;
   805         ObjectMonitor * temp = new ObjectMonitor[_BLOCKSIZE];
   807         // NOTE: (almost) no way to recover if allocation failed.
   808         // We might be able to induce a STW safepoint and scavenge enough
   809         // objectMonitors to permit progress.
   810         if (temp == NULL) {
   811             vm_exit_out_of_memory (sizeof (ObjectMonitor[_BLOCKSIZE]), "Allocate ObjectMonitors") ;
   812         }
   814         // Format the block.
   815         // initialize the linked list, each monitor points to its next
   816         // forming the single linked free list, the very first monitor
   817         // will points to next block, which forms the block list.
   818         // The trick of using the 1st element in the block as gBlockList
   819         // linkage should be reconsidered.  A better implementation would
   820         // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
   822         for (int i = 1; i < _BLOCKSIZE ; i++) {
   823            temp[i].FreeNext = &temp[i+1];
   824         }
   826         // terminate the last monitor as the end of list
   827         temp[_BLOCKSIZE - 1].FreeNext = NULL ;
   829         // Element [0] is reserved for global list linkage
   830         temp[0].set_object(CHAINMARKER);
   832         // Consider carving out this thread's current request from the
   833         // block in hand.  This avoids some lock traffic and redundant
   834         // list activity.
   836         // Acquire the ListLock to manipulate BlockList and FreeList.
   837         // An Oyama-Taura-Yonezawa scheme might be more efficient.
   838         Thread::muxAcquire (&ListLock, "omAlloc [2]") ;
   840         // Add the new block to the list of extant blocks (gBlockList).
   841         // The very first objectMonitor in a block is reserved and dedicated.
   842         // It serves as blocklist "next" linkage.
   843         temp[0].FreeNext = gBlockList;
   844         gBlockList = temp;
   846         // Add the new string of objectMonitors to the global free list
   847         temp[_BLOCKSIZE - 1].FreeNext = gFreeList ;
   848         gFreeList = temp + 1;
   849         Thread::muxRelease (&ListLock) ;
   850         TEVENT (Allocate block of monitors) ;
   851     }
   852 }
   854 // Place "m" on the caller's private per-thread omFreeList.
   855 // In practice there's no need to clamp or limit the number of
   856 // monitors on a thread's omFreeList as the only time we'll call
   857 // omRelease is to return a monitor to the free list after a CAS
   858 // attempt failed.  This doesn't allow unbounded #s of monitors to
   859 // accumulate on a thread's free list.
   860 //
   861 // In the future the usage of omRelease() might change and monitors
   862 // could migrate between free lists.  In that case to avoid excessive
   863 // accumulation we could  limit omCount to (omProvision*2), otherwise return
   864 // the objectMonitor to the global list.  We should drain (return) in reasonable chunks.
   865 // That is, *not* one-at-a-time.
   868 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m) {
   869     guarantee (m->object() == NULL, "invariant") ;
   870     m->FreeNext = Self->omFreeList ;
   871     Self->omFreeList = m ;
   872     Self->omFreeCount ++ ;
   873 }
   875 // Return the monitors of a moribund thread's local free list to
   876 // the global free list.  Typically a thread calls omFlush() when
   877 // it's dying.  We could also consider having the VM thread steal
   878 // monitors from threads that have not run java code over a few
   879 // consecutive STW safepoints.  Relatedly, we might decay
   880 // omFreeProvision at STW safepoints.
   881 //
   882 // We currently call omFlush() from the Thread:: dtor _after the thread
   883 // has been excised from the thread list and is no longer a mutator.
   884 // That means that omFlush() can run concurrently with a safepoint and
   885 // the scavenge operator.  Calling omFlush() from JavaThread::exit() might
   886 // be a better choice as we could safely reason that that the JVM is
   887 // not at a safepoint at the time of the call, and thus there could
   888 // be not inopportune interleavings between omFlush() and the scavenge
   889 // operator.
   891 void ObjectSynchronizer::omFlush (Thread * Self) {
   892     ObjectMonitor * List = Self->omFreeList ;  // Null-terminated SLL
   893     Self->omFreeList = NULL ;
   894     if (List == NULL) return ;
   895     ObjectMonitor * Tail = NULL ;
   896     ObjectMonitor * s ;
   897     for (s = List ; s != NULL ; s = s->FreeNext) {
   898         Tail = s ;
   899         guarantee (s->object() == NULL, "invariant") ;
   900         guarantee (!s->is_busy(), "invariant") ;
   901         s->set_owner (NULL) ;   // redundant but good hygiene
   902         TEVENT (omFlush - Move one) ;
   903     }
   905     guarantee (Tail != NULL && List != NULL, "invariant") ;
   906     Thread::muxAcquire (&ListLock, "omFlush") ;
   907     Tail->FreeNext = gFreeList ;
   908     gFreeList = List ;
   909     Thread::muxRelease (&ListLock) ;
   910     TEVENT (omFlush) ;
   911 }
   914 // Get the next block in the block list.
   915 static inline ObjectMonitor* next(ObjectMonitor* block) {
   916   assert(block->object() == CHAINMARKER, "must be a block header");
   917   block = block->FreeNext ;
   918   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
   919   return block;
   920 }
   922 // Fast path code shared by multiple functions
   923 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
   924   markOop mark = obj->mark();
   925   if (mark->has_monitor()) {
   926     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
   927     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
   928     return mark->monitor();
   929   }
   930   return ObjectSynchronizer::inflate(Thread::current(), obj);
   931 }
   933 // Note that we could encounter some performance loss through false-sharing as
   934 // multiple locks occupy the same $ line.  Padding might be appropriate.
   936 #define NINFLATIONLOCKS 256
   937 static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
   939 static markOop ReadStableMark (oop obj) {
   940   markOop mark = obj->mark() ;
   941   if (!mark->is_being_inflated()) {
   942     return mark ;       // normal fast-path return
   943   }
   945   int its = 0 ;
   946   for (;;) {
   947     markOop mark = obj->mark() ;
   948     if (!mark->is_being_inflated()) {
   949       return mark ;    // normal fast-path return
   950     }
   952     // The object is being inflated by some other thread.
   953     // The caller of ReadStableMark() must wait for inflation to complete.
   954     // Avoid live-lock
   955     // TODO: consider calling SafepointSynchronize::do_call_back() while
   956     // spinning to see if there's a safepoint pending.  If so, immediately
   957     // yielding or blocking would be appropriate.  Avoid spinning while
   958     // there is a safepoint pending.
   959     // TODO: add inflation contention performance counters.
   960     // TODO: restrict the aggregate number of spinners.
   962     ++its ;
   963     if (its > 10000 || !os::is_MP()) {
   964        if (its & 1) {
   965          os::NakedYield() ;
   966          TEVENT (Inflate: INFLATING - yield) ;
   967        } else {
   968          // Note that the following code attenuates the livelock problem but is not
   969          // a complete remedy.  A more complete solution would require that the inflating
   970          // thread hold the associated inflation lock.  The following code simply restricts
   971          // the number of spinners to at most one.  We'll have N-2 threads blocked
   972          // on the inflationlock, 1 thread holding the inflation lock and using
   973          // a yield/park strategy, and 1 thread in the midst of inflation.
   974          // A more refined approach would be to change the encoding of INFLATING
   975          // to allow encapsulation of a native thread pointer.  Threads waiting for
   976          // inflation to complete would use CAS to push themselves onto a singly linked
   977          // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
   978          // and calling park().  When inflation was complete the thread that accomplished inflation
   979          // would detach the list and set the markword to inflated with a single CAS and
   980          // then for each thread on the list, set the flag and unpark() the thread.
   981          // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
   982          // wakes at most one thread whereas we need to wake the entire list.
   983          int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
   984          int YieldThenBlock = 0 ;
   985          assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
   986          assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
   987          Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
   988          while (obj->mark() == markOopDesc::INFLATING()) {
   989            // Beware: NakedYield() is advisory and has almost no effect on some platforms
   990            // so we periodically call Self->_ParkEvent->park(1).
   991            // We use a mixed spin/yield/block mechanism.
   992            if ((YieldThenBlock++) >= 16) {
   993               Thread::current()->_ParkEvent->park(1) ;
   994            } else {
   995               os::NakedYield() ;
   996            }
   997          }
   998          Thread::muxRelease (InflationLocks + ix ) ;
   999          TEVENT (Inflate: INFLATING - yield/park) ;
  1001     } else {
  1002        SpinPause() ;       // SMP-polite spinning
  1007 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
  1008   // Inflate mutates the heap ...
  1009   // Relaxing assertion for bug 6320749.
  1010   assert (Universe::verify_in_progress() ||
  1011           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1013   for (;;) {
  1014       const markOop mark = object->mark() ;
  1015       assert (!mark->has_bias_pattern(), "invariant") ;
  1017       // The mark can be in one of the following states:
  1018       // *  Inflated     - just return
  1019       // *  Stack-locked - coerce it to inflated
  1020       // *  INFLATING    - busy wait for conversion to complete
  1021       // *  Neutral      - aggressively inflate the object.
  1022       // *  BIASED       - Illegal.  We should never see this
  1024       // CASE: inflated
  1025       if (mark->has_monitor()) {
  1026           ObjectMonitor * inf = mark->monitor() ;
  1027           assert (inf->header()->is_neutral(), "invariant");
  1028           assert (inf->object() == object, "invariant") ;
  1029           assert (ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
  1030           return inf ;
  1033       // CASE: inflation in progress - inflating over a stack-lock.
  1034       // Some other thread is converting from stack-locked to inflated.
  1035       // Only that thread can complete inflation -- other threads must wait.
  1036       // The INFLATING value is transient.
  1037       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
  1038       // We could always eliminate polling by parking the thread on some auxiliary list.
  1039       if (mark == markOopDesc::INFLATING()) {
  1040          TEVENT (Inflate: spin while INFLATING) ;
  1041          ReadStableMark(object) ;
  1042          continue ;
  1045       // CASE: stack-locked
  1046       // Could be stack-locked either by this thread or by some other thread.
  1047       //
  1048       // Note that we allocate the objectmonitor speculatively, _before_ attempting
  1049       // to install INFLATING into the mark word.  We originally installed INFLATING,
  1050       // allocated the objectmonitor, and then finally STed the address of the
  1051       // objectmonitor into the mark.  This was correct, but artificially lengthened
  1052       // the interval in which INFLATED appeared in the mark, thus increasing
  1053       // the odds of inflation contention.
  1054       //
  1055       // We now use per-thread private objectmonitor free lists.
  1056       // These list are reprovisioned from the global free list outside the
  1057       // critical INFLATING...ST interval.  A thread can transfer
  1058       // multiple objectmonitors en-mass from the global free list to its local free list.
  1059       // This reduces coherency traffic and lock contention on the global free list.
  1060       // Using such local free lists, it doesn't matter if the omAlloc() call appears
  1061       // before or after the CAS(INFLATING) operation.
  1062       // See the comments in omAlloc().
  1064       if (mark->has_locker()) {
  1065           ObjectMonitor * m = omAlloc (Self) ;
  1066           // Optimistically prepare the objectmonitor - anticipate successful CAS
  1067           // We do this before the CAS in order to minimize the length of time
  1068           // in which INFLATING appears in the mark.
  1069           m->Recycle();
  1070           m->FreeNext      = NULL ;
  1071           m->_Responsible  = NULL ;
  1072           m->OwnerIsThread = 0 ;
  1073           m->_recursions   = 0 ;
  1074           m->_SpinDuration = Knob_SpinLimit ;   // Consider: maintain by type/class
  1076           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
  1077           if (cmp != mark) {
  1078              omRelease (Self, m) ;
  1079              continue ;       // Interference -- just retry
  1082           // We've successfully installed INFLATING (0) into the mark-word.
  1083           // This is the only case where 0 will appear in a mark-work.
  1084           // Only the singular thread that successfully swings the mark-word
  1085           // to 0 can perform (or more precisely, complete) inflation.
  1086           //
  1087           // Why do we CAS a 0 into the mark-word instead of just CASing the
  1088           // mark-word from the stack-locked value directly to the new inflated state?
  1089           // Consider what happens when a thread unlocks a stack-locked object.
  1090           // It attempts to use CAS to swing the displaced header value from the
  1091           // on-stack basiclock back into the object header.  Recall also that the
  1092           // header value (hashcode, etc) can reside in (a) the object header, or
  1093           // (b) a displaced header associated with the stack-lock, or (c) a displaced
  1094           // header in an objectMonitor.  The inflate() routine must copy the header
  1095           // value from the basiclock on the owner's stack to the objectMonitor, all
  1096           // the while preserving the hashCode stability invariants.  If the owner
  1097           // decides to release the lock while the value is 0, the unlock will fail
  1098           // and control will eventually pass from slow_exit() to inflate.  The owner
  1099           // will then spin, waiting for the 0 value to disappear.   Put another way,
  1100           // the 0 causes the owner to stall if the owner happens to try to
  1101           // drop the lock (restoring the header from the basiclock to the object)
  1102           // while inflation is in-progress.  This protocol avoids races that might
  1103           // would otherwise permit hashCode values to change or "flicker" for an object.
  1104           // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
  1105           // 0 serves as a "BUSY" inflate-in-progress indicator.
  1108           // fetch the displaced mark from the owner's stack.
  1109           // The owner can't die or unwind past the lock while our INFLATING
  1110           // object is in the mark.  Furthermore the owner can't complete
  1111           // an unlock on the object, either.
  1112           markOop dmw = mark->displaced_mark_helper() ;
  1113           assert (dmw->is_neutral(), "invariant") ;
  1115           // Setup monitor fields to proper values -- prepare the monitor
  1116           m->set_header(dmw) ;
  1118           // Optimization: if the mark->locker stack address is associated
  1119           // with this thread we could simply set m->_owner = Self and
  1120           // m->OwnerIsThread = 1. Note that a thread can inflate an object
  1121           // that it has stack-locked -- as might happen in wait() -- directly
  1122           // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
  1123           m->set_owner(mark->locker());
  1124           m->set_object(object);
  1125           // TODO-FIXME: assert BasicLock->dhw != 0.
  1127           // Must preserve store ordering. The monitor state must
  1128           // be stable at the time of publishing the monitor address.
  1129           guarantee (object->mark() == markOopDesc::INFLATING(), "invariant") ;
  1130           object->release_set_mark(markOopDesc::encode(m));
  1132           // Hopefully the performance counters are allocated on distinct cache lines
  1133           // to avoid false sharing on MP systems ...
  1134           if (_sync_Inflations != NULL) _sync_Inflations->inc() ;
  1135           TEVENT(Inflate: overwrite stacklock) ;
  1136           if (TraceMonitorInflation) {
  1137             if (object->is_instance()) {
  1138               ResourceMark rm;
  1139               tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1140                 (intptr_t) object, (intptr_t) object->mark(),
  1141                 Klass::cast(object->klass())->external_name());
  1144           return m ;
  1147       // CASE: neutral
  1148       // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
  1149       // If we know we're inflating for entry it's better to inflate by swinging a
  1150       // pre-locked objectMonitor pointer into the object header.   A successful
  1151       // CAS inflates the object *and* confers ownership to the inflating thread.
  1152       // In the current implementation we use a 2-step mechanism where we CAS()
  1153       // to inflate and then CAS() again to try to swing _owner from NULL to Self.
  1154       // An inflateTry() method that we could call from fast_enter() and slow_enter()
  1155       // would be useful.
  1157       assert (mark->is_neutral(), "invariant");
  1158       ObjectMonitor * m = omAlloc (Self) ;
  1159       // prepare m for installation - set monitor to initial state
  1160       m->Recycle();
  1161       m->set_header(mark);
  1162       m->set_owner(NULL);
  1163       m->set_object(object);
  1164       m->OwnerIsThread = 1 ;
  1165       m->_recursions   = 0 ;
  1166       m->FreeNext      = NULL ;
  1167       m->_Responsible  = NULL ;
  1168       m->_SpinDuration = Knob_SpinLimit ;       // consider: keep metastats by type/class
  1170       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
  1171           m->set_object (NULL) ;
  1172           m->set_owner  (NULL) ;
  1173           m->OwnerIsThread = 0 ;
  1174           m->Recycle() ;
  1175           omRelease (Self, m) ;
  1176           m = NULL ;
  1177           continue ;
  1178           // interference - the markword changed - just retry.
  1179           // The state-transitions are one-way, so there's no chance of
  1180           // live-lock -- "Inflated" is an absorbing state.
  1183       // Hopefully the performance counters are allocated on distinct
  1184       // cache lines to avoid false sharing on MP systems ...
  1185       if (_sync_Inflations != NULL) _sync_Inflations->inc() ;
  1186       TEVENT(Inflate: overwrite neutral) ;
  1187       if (TraceMonitorInflation) {
  1188         if (object->is_instance()) {
  1189           ResourceMark rm;
  1190           tty->print_cr("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1191             (intptr_t) object, (intptr_t) object->mark(),
  1192             Klass::cast(object->klass())->external_name());
  1195       return m ;
  1200 // This the fast monitor enter. The interpreter and compiler use
  1201 // some assembly copies of this code. Make sure update those code
  1202 // if the following function is changed. The implementation is
  1203 // extremely sensitive to race condition. Be careful.
  1205 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
  1206  if (UseBiasedLocking) {
  1207     if (!SafepointSynchronize::is_at_safepoint()) {
  1208       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
  1209       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
  1210         return;
  1212     } else {
  1213       assert(!attempt_rebias, "can not rebias toward VM thread");
  1214       BiasedLocking::revoke_at_safepoint(obj);
  1216     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1219  slow_enter (obj, lock, THREAD) ;
  1222 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
  1223   assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
  1224   // if displaced header is null, the previous enter is recursive enter, no-op
  1225   markOop dhw = lock->displaced_header();
  1226   markOop mark ;
  1227   if (dhw == NULL) {
  1228      // Recursive stack-lock.
  1229      // Diagnostics -- Could be: stack-locked, inflating, inflated.
  1230      mark = object->mark() ;
  1231      assert (!mark->is_neutral(), "invariant") ;
  1232      if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
  1233         assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
  1235      if (mark->has_monitor()) {
  1236         ObjectMonitor * m = mark->monitor() ;
  1237         assert(((oop)(m->object()))->mark() == mark, "invariant") ;
  1238         assert(m->is_entered(THREAD), "invariant") ;
  1240      return ;
  1243   mark = object->mark() ;
  1245   // If the object is stack-locked by the current thread, try to
  1246   // swing the displaced header from the box back to the mark.
  1247   if (mark == (markOop) lock) {
  1248      assert (dhw->is_neutral(), "invariant") ;
  1249      if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
  1250         TEVENT (fast_exit: release stacklock) ;
  1251         return;
  1255   ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
  1258 // This routine is used to handle interpreter/compiler slow case
  1259 // We don't need to use fast path here, because it must have been
  1260 // failed in the interpreter/compiler code.
  1261 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
  1262   markOop mark = obj->mark();
  1263   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
  1265   if (mark->is_neutral()) {
  1266     // Anticipate successful CAS -- the ST of the displaced mark must
  1267     // be visible <= the ST performed by the CAS.
  1268     lock->set_displaced_header(mark);
  1269     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
  1270       TEVENT (slow_enter: release stacklock) ;
  1271       return ;
  1273     // Fall through to inflate() ...
  1274   } else
  1275   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
  1276     assert(lock != mark->locker(), "must not re-lock the same lock");
  1277     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
  1278     lock->set_displaced_header(NULL);
  1279     return;
  1282 #if 0
  1283   // The following optimization isn't particularly useful.
  1284   if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
  1285     lock->set_displaced_header (NULL) ;
  1286     return ;
  1288 #endif
  1290   // The object header will never be displaced to this lock,
  1291   // so it does not matter what the value is, except that it
  1292   // must be non-zero to avoid looking like a re-entrant lock,
  1293   // and must not look locked either.
  1294   lock->set_displaced_header(markOopDesc::unused_mark());
  1295   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
  1298 // This routine is used to handle interpreter/compiler slow case
  1299 // We don't need to use fast path here, because it must have
  1300 // failed in the interpreter/compiler code. Simply use the heavy
  1301 // weight monitor should be ok, unless someone find otherwise.
  1302 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
  1303   fast_exit (object, lock, THREAD) ;
  1306 // NOTE: must use heavy weight monitor to handle jni monitor enter
  1307 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
  1308   // the current locking is from JNI instead of Java code
  1309   TEVENT (jni_enter) ;
  1310   if (UseBiasedLocking) {
  1311     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1312     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1314   THREAD->set_current_pending_monitor_is_from_java(false);
  1315   ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
  1316   THREAD->set_current_pending_monitor_is_from_java(true);
  1319 // NOTE: must use heavy weight monitor to handle jni monitor enter
  1320 bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
  1321   if (UseBiasedLocking) {
  1322     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1323     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1326   ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
  1327   return monitor->try_enter(THREAD);
  1331 // NOTE: must use heavy weight monitor to handle jni monitor exit
  1332 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
  1333   TEVENT (jni_exit) ;
  1334   if (UseBiasedLocking) {
  1335     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1337   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1339   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
  1340   // If this thread has locked the object, exit the monitor.  Note:  can't use
  1341   // monitor->check(CHECK); must exit even if an exception is pending.
  1342   if (monitor->check(THREAD)) {
  1343      monitor->exit(THREAD);
  1347 // complete_exit()/reenter() are used to wait on a nested lock
  1348 // i.e. to give up an outer lock completely and then re-enter
  1349 // Used when holding nested locks - lock acquisition order: lock1 then lock2
  1350 //  1) complete_exit lock1 - saving recursion count
  1351 //  2) wait on lock2
  1352 //  3) when notified on lock2, unlock lock2
  1353 //  4) reenter lock1 with original recursion count
  1354 //  5) lock lock2
  1355 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
  1356 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
  1357   TEVENT (complete_exit) ;
  1358   if (UseBiasedLocking) {
  1359     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1360     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1363   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
  1365   return monitor->complete_exit(THREAD);
  1368 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
  1369 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
  1370   TEVENT (reenter) ;
  1371   if (UseBiasedLocking) {
  1372     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1373     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1376   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
  1378   monitor->reenter(recursion, THREAD);
  1381 // This exists only as a workaround of dtrace bug 6254741
  1382 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
  1383   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
  1384   return 0;
  1387 // NOTE: must use heavy weight monitor to handle wait()
  1388 void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
  1389   if (UseBiasedLocking) {
  1390     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1391     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1393   if (millis < 0) {
  1394     TEVENT (wait - throw IAX) ;
  1395     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
  1397   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
  1398   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
  1399   monitor->wait(millis, true, THREAD);
  1401   /* This dummy call is in place to get around dtrace bug 6254741.  Once
  1402      that's fixed we can uncomment the following line and remove the call */
  1403   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
  1404   dtrace_waited_probe(monitor, obj, THREAD);
  1407 void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
  1408   if (UseBiasedLocking) {
  1409     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1410     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1412   if (millis < 0) {
  1413     TEVENT (wait - throw IAX) ;
  1414     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
  1416   ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
  1419 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
  1420  if (UseBiasedLocking) {
  1421     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1422     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1425   markOop mark = obj->mark();
  1426   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
  1427     return;
  1429   ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
  1432 // NOTE: see comment of notify()
  1433 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
  1434   if (UseBiasedLocking) {
  1435     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
  1436     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1439   markOop mark = obj->mark();
  1440   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
  1441     return;
  1443   ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
  1446 intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
  1447   if (UseBiasedLocking) {
  1448     // NOTE: many places throughout the JVM do not expect a safepoint
  1449     // to be taken here, in particular most operations on perm gen
  1450     // objects. However, we only ever bias Java instances and all of
  1451     // the call sites of identity_hash that might revoke biases have
  1452     // been checked to make sure they can handle a safepoint. The
  1453     // added check of the bias pattern is to avoid useless calls to
  1454     // thread-local storage.
  1455     if (obj->mark()->has_bias_pattern()) {
  1456       // Box and unbox the raw reference just in case we cause a STW safepoint.
  1457       Handle hobj (Self, obj) ;
  1458       // Relaxing assertion for bug 6320749.
  1459       assert (Universe::verify_in_progress() ||
  1460               !SafepointSynchronize::is_at_safepoint(),
  1461              "biases should not be seen by VM thread here");
  1462       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
  1463       obj = hobj() ;
  1464       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1468   // hashCode() is a heap mutator ...
  1469   // Relaxing assertion for bug 6320749.
  1470   assert (Universe::verify_in_progress() ||
  1471           !SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1472   assert (Universe::verify_in_progress() ||
  1473           Self->is_Java_thread() , "invariant") ;
  1474   assert (Universe::verify_in_progress() ||
  1475          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
  1477   ObjectMonitor* monitor = NULL;
  1478   markOop temp, test;
  1479   intptr_t hash;
  1480   markOop mark = ReadStableMark (obj);
  1482   // object should remain ineligible for biased locking
  1483   assert (!mark->has_bias_pattern(), "invariant") ;
  1485   if (mark->is_neutral()) {
  1486     hash = mark->hash();              // this is a normal header
  1487     if (hash) {                       // if it has hash, just return it
  1488       return hash;
  1490     hash = get_next_hash(Self, obj);  // allocate a new hash code
  1491     temp = mark->copy_set_hash(hash); // merge the hash code into header
  1492     // use (machine word version) atomic operation to install the hash
  1493     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
  1494     if (test == mark) {
  1495       return hash;
  1497     // If atomic operation failed, we must inflate the header
  1498     // into heavy weight monitor. We could add more code here
  1499     // for fast path, but it does not worth the complexity.
  1500   } else if (mark->has_monitor()) {
  1501     monitor = mark->monitor();
  1502     temp = monitor->header();
  1503     assert (temp->is_neutral(), "invariant") ;
  1504     hash = temp->hash();
  1505     if (hash) {
  1506       return hash;
  1508     // Skip to the following code to reduce code size
  1509   } else if (Self->is_lock_owned((address)mark->locker())) {
  1510     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
  1511     assert (temp->is_neutral(), "invariant") ;
  1512     hash = temp->hash();              // by current thread, check if the displaced
  1513     if (hash) {                       // header contains hash code
  1514       return hash;
  1516     // WARNING:
  1517     //   The displaced header is strictly immutable.
  1518     // It can NOT be changed in ANY cases. So we have
  1519     // to inflate the header into heavyweight monitor
  1520     // even the current thread owns the lock. The reason
  1521     // is the BasicLock (stack slot) will be asynchronously
  1522     // read by other threads during the inflate() function.
  1523     // Any change to stack may not propagate to other threads
  1524     // correctly.
  1527   // Inflate the monitor to set hash code
  1528   monitor = ObjectSynchronizer::inflate(Self, obj);
  1529   // Load displaced header and check it has hash code
  1530   mark = monitor->header();
  1531   assert (mark->is_neutral(), "invariant") ;
  1532   hash = mark->hash();
  1533   if (hash == 0) {
  1534     hash = get_next_hash(Self, obj);
  1535     temp = mark->copy_set_hash(hash); // merge hash code into header
  1536     assert (temp->is_neutral(), "invariant") ;
  1537     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
  1538     if (test != mark) {
  1539       // The only update to the header in the monitor (outside GC)
  1540       // is install the hash code. If someone add new usage of
  1541       // displaced header, please update this code
  1542       hash = test->hash();
  1543       assert (test->is_neutral(), "invariant") ;
  1544       assert (hash != 0, "Trivial unexpected object/monitor header usage.");
  1547   // We finally get the hash
  1548   return hash;
  1551 // Deprecated -- use FastHashCode() instead.
  1553 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
  1554   return FastHashCode (Thread::current(), obj()) ;
  1557 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
  1558                                                    Handle h_obj) {
  1559   if (UseBiasedLocking) {
  1560     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
  1561     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1564   assert(thread == JavaThread::current(), "Can only be called on current thread");
  1565   oop obj = h_obj();
  1567   markOop mark = ReadStableMark (obj) ;
  1569   // Uncontended case, header points to stack
  1570   if (mark->has_locker()) {
  1571     return thread->is_lock_owned((address)mark->locker());
  1573   // Contended case, header points to ObjectMonitor (tagged pointer)
  1574   if (mark->has_monitor()) {
  1575     ObjectMonitor* monitor = mark->monitor();
  1576     return monitor->is_entered(thread) != 0 ;
  1578   // Unlocked case, header in place
  1579   assert(mark->is_neutral(), "sanity check");
  1580   return false;
  1583 // Be aware of this method could revoke bias of the lock object.
  1584 // This method querys the ownership of the lock handle specified by 'h_obj'.
  1585 // If the current thread owns the lock, it returns owner_self. If no
  1586 // thread owns the lock, it returns owner_none. Otherwise, it will return
  1587 // ower_other.
  1588 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
  1589 (JavaThread *self, Handle h_obj) {
  1590   // The caller must beware this method can revoke bias, and
  1591   // revocation can result in a safepoint.
  1592   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
  1593   assert (self->thread_state() != _thread_blocked , "invariant") ;
  1595   // Possible mark states: neutral, biased, stack-locked, inflated
  1597   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
  1598     // CASE: biased
  1599     BiasedLocking::revoke_and_rebias(h_obj, false, self);
  1600     assert(!h_obj->mark()->has_bias_pattern(),
  1601            "biases should be revoked by now");
  1604   assert(self == JavaThread::current(), "Can only be called on current thread");
  1605   oop obj = h_obj();
  1606   markOop mark = ReadStableMark (obj) ;
  1608   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
  1609   if (mark->has_locker()) {
  1610     return self->is_lock_owned((address)mark->locker()) ?
  1611       owner_self : owner_other;
  1614   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
  1615   // The Object:ObjectMonitor relationship is stable as long as we're
  1616   // not at a safepoint.
  1617   if (mark->has_monitor()) {
  1618     void * owner = mark->monitor()->_owner ;
  1619     if (owner == NULL) return owner_none ;
  1620     return (owner == self ||
  1621             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
  1624   // CASE: neutral
  1625   assert(mark->is_neutral(), "sanity check");
  1626   return owner_none ;           // it's unlocked
  1629 // FIXME: jvmti should call this
  1630 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
  1631   if (UseBiasedLocking) {
  1632     if (SafepointSynchronize::is_at_safepoint()) {
  1633       BiasedLocking::revoke_at_safepoint(h_obj);
  1634     } else {
  1635       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
  1637     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
  1640   oop obj = h_obj();
  1641   address owner = NULL;
  1643   markOop mark = ReadStableMark (obj) ;
  1645   // Uncontended case, header points to stack
  1646   if (mark->has_locker()) {
  1647     owner = (address) mark->locker();
  1650   // Contended case, header points to ObjectMonitor (tagged pointer)
  1651   if (mark->has_monitor()) {
  1652     ObjectMonitor* monitor = mark->monitor();
  1653     assert(monitor != NULL, "monitor should be non-null");
  1654     owner = (address) monitor->owner();
  1657   if (owner != NULL) {
  1658     return Threads::owning_thread_from_monitor_owner(owner, doLock);
  1661   // Unlocked case, header in place
  1662   // Cannot have assertion since this object may have been
  1663   // locked by another thread when reaching here.
  1664   // assert(mark->is_neutral(), "sanity check");
  1666   return NULL;
  1669 // Iterate through monitor cache and attempt to release thread's monitors
  1670 // Gives up on a particular monitor if an exception occurs, but continues
  1671 // the overall iteration, swallowing the exception.
  1672 class ReleaseJavaMonitorsClosure: public MonitorClosure {
  1673 private:
  1674   TRAPS;
  1676 public:
  1677   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
  1678   void do_monitor(ObjectMonitor* mid) {
  1679     if (mid->owner() == THREAD) {
  1680       (void)mid->complete_exit(CHECK);
  1683 };
  1685 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
  1686 // ignored.  This is meant to be called during JNI thread detach which assumes
  1687 // all remaining monitors are heavyweight.  All exceptions are swallowed.
  1688 // Scanning the extant monitor list can be time consuming.
  1689 // A simple optimization is to add a per-thread flag that indicates a thread
  1690 // called jni_monitorenter() during its lifetime.
  1691 //
  1692 // Instead of No_Savepoint_Verifier it might be cheaper to
  1693 // use an idiom of the form:
  1694 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
  1695 //   <code that must not run at safepoint>
  1696 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
  1697 // Since the tests are extremely cheap we could leave them enabled
  1698 // for normal product builds.
  1700 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
  1701   assert(THREAD == JavaThread::current(), "must be current Java thread");
  1702   No_Safepoint_Verifier nsv ;
  1703   ReleaseJavaMonitorsClosure rjmc(THREAD);
  1704   Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
  1705   ObjectSynchronizer::monitors_iterate(&rjmc);
  1706   Thread::muxRelease(&ListLock);
  1707   THREAD->clear_pending_exception();
  1710 // Visitors ...
  1712 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
  1713   ObjectMonitor* block = gBlockList;
  1714   ObjectMonitor* mid;
  1715   while (block) {
  1716     assert(block->object() == CHAINMARKER, "must be a block header");
  1717     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
  1718       mid = block + i;
  1719       oop object = (oop) mid->object();
  1720       if (object != NULL) {
  1721         closure->do_monitor(mid);
  1724     block = (ObjectMonitor*) block->FreeNext;
  1728 void ObjectSynchronizer::oops_do(OopClosure* f) {
  1729   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  1730   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  1731     assert(block->object() == CHAINMARKER, "must be a block header");
  1732     for (int i = 1; i < _BLOCKSIZE; i++) {
  1733       ObjectMonitor* mid = &block[i];
  1734       if (mid->object() != NULL) {
  1735         f->do_oop((oop*)mid->object_addr());
  1741 // Deflate_idle_monitors() is called at all safepoints, immediately
  1742 // after all mutators are stopped, but before any objects have moved.
  1743 // It traverses the list of known monitors, deflating where possible.
  1744 // The scavenged monitor are returned to the monitor free list.
  1745 //
  1746 // Beware that we scavenge at *every* stop-the-world point.
  1747 // Having a large number of monitors in-circulation negatively
  1748 // impacts the performance of some applications (e.g., PointBase).
  1749 // Broadly, we want to minimize the # of monitors in circulation.
  1750 // Alternately, we could partition the active monitors into sub-lists
  1751 // of those that need scanning and those that do not.
  1752 // Specifically, we would add a new sub-list of objectmonitors
  1753 // that are in-circulation and potentially active.  deflate_idle_monitors()
  1754 // would scan only that list.  Other monitors could reside on a quiescent
  1755 // list.  Such sequestered monitors wouldn't need to be scanned by
  1756 // deflate_idle_monitors().  omAlloc() would first check the global free list,
  1757 // then the quiescent list, and, failing those, would allocate a new block.
  1758 // Deflate_idle_monitors() would scavenge and move monitors to the
  1759 // quiescent list.
  1760 //
  1761 // Perversely, the heap size -- and thus the STW safepoint rate --
  1762 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
  1763 // which in turn can mean large(r) numbers of objectmonitors in circulation.
  1764 // This is an unfortunate aspect of this design.
  1765 //
  1766 // Another refinement would be to refrain from calling deflate_idle_monitors()
  1767 // except at stop-the-world points associated with garbage collections.
  1768 //
  1769 // An even better solution would be to deflate on-the-fly, aggressively,
  1770 // at monitorexit-time as is done in EVM's metalock or Relaxed Locks.
  1772 void ObjectSynchronizer::deflate_idle_monitors() {
  1773   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
  1774   int nInuse = 0 ;              // currently associated with objects
  1775   int nInCirculation = 0 ;      // extant
  1776   int nScavenged = 0 ;          // reclaimed
  1778   ObjectMonitor * FreeHead = NULL ;  // Local SLL of scavenged monitors
  1779   ObjectMonitor * FreeTail = NULL ;
  1781   // Iterate over all extant monitors - Scavenge all idle monitors.
  1782   TEVENT (deflate_idle_monitors) ;
  1783   for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
  1784     assert(block->object() == CHAINMARKER, "must be a block header");
  1785     nInCirculation += _BLOCKSIZE ;
  1786     for (int i = 1 ; i < _BLOCKSIZE; i++) {
  1787       ObjectMonitor* mid = &block[i];
  1788       oop obj = (oop) mid->object();
  1790       if (obj == NULL) {
  1791         // The monitor is not associated with an object.
  1792         // The monitor should either be a thread-specific private
  1793         // free list or the global free list.
  1794         // obj == NULL IMPLIES mid->is_busy() == 0
  1795         guarantee (!mid->is_busy(), "invariant") ;
  1796         continue ;
  1799       // Normal case ... The monitor is associated with obj.
  1800       guarantee (obj->mark() == markOopDesc::encode(mid), "invariant") ;
  1801       guarantee (mid == obj->mark()->monitor(), "invariant");
  1802       guarantee (mid->header()->is_neutral(), "invariant");
  1804       if (mid->is_busy()) {
  1805          if (ClearResponsibleAtSTW) mid->_Responsible = NULL ;
  1806          nInuse ++ ;
  1807       } else {
  1808          // Deflate the monitor if it is no longer being used
  1809          // It's idle - scavenge and return to the global free list
  1810          // plain old deflation ...
  1811          TEVENT (deflate_idle_monitors - scavenge1) ;
  1812          if (TraceMonitorInflation) {
  1813            if (obj->is_instance()) {
  1814              ResourceMark rm;
  1815                tty->print_cr("Deflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
  1816                     (intptr_t) obj, (intptr_t) obj->mark(), Klass::cast(obj->klass())->external_name());
  1820          // Restore the header back to obj
  1821          obj->release_set_mark(mid->header());
  1822          mid->clear();
  1824          assert (mid->object() == NULL, "invariant") ;
  1826          // Move the object to the working free list defined by FreeHead,FreeTail.
  1827          mid->FreeNext = NULL ;
  1828          if (FreeHead == NULL) FreeHead = mid ;
  1829          if (FreeTail != NULL) FreeTail->FreeNext = mid ;
  1830          FreeTail = mid ;
  1831          nScavenged ++ ;
  1836   // Move the scavenged monitors back to the global free list.
  1837   // In theory we don't need the freelist lock as we're at a STW safepoint.
  1838   // omAlloc() and omFree() can only be called while a thread is _not in safepoint state.
  1839   // But it's remotely possible that omFlush() or release_monitors_owned_by_thread()
  1840   // might be called while not at a global STW safepoint.  In the interest of
  1841   // safety we protect the following access with ListLock.
  1842   // An even more conservative and prudent approach would be to guard
  1843   // the main loop in scavenge_idle_monitors() with ListLock.
  1844   if (FreeHead != NULL) {
  1845      guarantee (FreeTail != NULL && nScavenged > 0, "invariant") ;
  1846      assert (FreeTail->FreeNext == NULL, "invariant") ;
  1847      // constant-time list splice - prepend scavenged segment to gFreeList
  1848      Thread::muxAcquire (&ListLock, "scavenge - return") ;
  1849      FreeTail->FreeNext = gFreeList ;
  1850      gFreeList = FreeHead ;
  1851      Thread::muxRelease (&ListLock) ;
  1854   if (_sync_Deflations != NULL) _sync_Deflations->inc(nScavenged) ;
  1855   if (_sync_MonExtant  != NULL) _sync_MonExtant ->set_value(nInCirculation);
  1857   // TODO: Add objectMonitor leak detection.
  1858   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
  1859   GVars.stwRandom = os::random() ;
  1860   GVars.stwCycle ++ ;
  1863 // A macro is used below because there may already be a pending
  1864 // exception which should not abort the execution of the routines
  1865 // which use this (which is why we don't put this into check_slow and
  1866 // call it with a CHECK argument).
  1868 #define CHECK_OWNER()                                                             \
  1869   do {                                                                            \
  1870     if (THREAD != _owner) {                                                       \
  1871       if (THREAD->is_lock_owned((address) _owner)) {                              \
  1872         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
  1873         _recursions = 0;                                                          \
  1874         OwnerIsThread = 1 ;                                                       \
  1875       } else {                                                                    \
  1876         TEVENT (Throw IMSX) ;                                                     \
  1877         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
  1878       }                                                                           \
  1879     }                                                                             \
  1880   } while (false)
  1882 // TODO-FIXME: eliminate ObjectWaiters.  Replace this visitor/enumerator
  1883 // interface with a simple FirstWaitingThread(), NextWaitingThread() interface.
  1885 ObjectWaiter* ObjectMonitor::first_waiter() {
  1886   return _WaitSet;
  1889 ObjectWaiter* ObjectMonitor::next_waiter(ObjectWaiter* o) {
  1890   return o->_next;
  1893 Thread* ObjectMonitor::thread_of_waiter(ObjectWaiter* o) {
  1894   return o->_thread;
  1897 // initialize the monitor, exception the semaphore, all other fields
  1898 // are simple integers or pointers
  1899 ObjectMonitor::ObjectMonitor() {
  1900   _header       = NULL;
  1901   _count        = 0;
  1902   _waiters      = 0,
  1903   _recursions   = 0;
  1904   _object       = NULL;
  1905   _owner        = NULL;
  1906   _WaitSet      = NULL;
  1907   _WaitSetLock  = 0 ;
  1908   _Responsible  = NULL ;
  1909   _succ         = NULL ;
  1910   _cxq          = NULL ;
  1911   FreeNext      = NULL ;
  1912   _EntryList    = NULL ;
  1913   _SpinFreq     = 0 ;
  1914   _SpinClock    = 0 ;
  1915   OwnerIsThread = 0 ;
  1918 ObjectMonitor::~ObjectMonitor() {
  1919    // TODO: Add asserts ...
  1920    // _cxq == 0 _succ == NULL _owner == NULL _waiters == 0
  1921    // _count == 0 _EntryList  == NULL etc
  1924 intptr_t ObjectMonitor::is_busy() const {
  1925   // TODO-FIXME: merge _count and _waiters.
  1926   // TODO-FIXME: assert _owner == null implies _recursions = 0
  1927   // TODO-FIXME: assert _WaitSet != null implies _count > 0
  1928   return _count|_waiters|intptr_t(_owner)|intptr_t(_cxq)|intptr_t(_EntryList ) ;
  1931 void ObjectMonitor::Recycle () {
  1932   // TODO: add stronger asserts ...
  1933   // _cxq == 0 _succ == NULL _owner == NULL _waiters == 0
  1934   // _count == 0 EntryList  == NULL
  1935   // _recursions == 0 _WaitSet == NULL
  1936   // TODO: assert (is_busy()|_recursions) == 0
  1937   _succ          = NULL ;
  1938   _EntryList     = NULL ;
  1939   _cxq           = NULL ;
  1940   _WaitSet       = NULL ;
  1941   _recursions    = 0 ;
  1942   _SpinFreq      = 0 ;
  1943   _SpinClock     = 0 ;
  1944   OwnerIsThread  = 0 ;
  1947 // WaitSet management ...
  1949 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
  1950   assert(node != NULL, "should not dequeue NULL node");
  1951   assert(node->_prev == NULL, "node already in list");
  1952   assert(node->_next == NULL, "node already in list");
  1953   // put node at end of queue (circular doubly linked list)
  1954   if (_WaitSet == NULL) {
  1955     _WaitSet = node;
  1956     node->_prev = node;
  1957     node->_next = node;
  1958   } else {
  1959     ObjectWaiter* head = _WaitSet ;
  1960     ObjectWaiter* tail = head->_prev;
  1961     assert(tail->_next == head, "invariant check");
  1962     tail->_next = node;
  1963     head->_prev = node;
  1964     node->_next = head;
  1965     node->_prev = tail;
  1969 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
  1970   // dequeue the very first waiter
  1971   ObjectWaiter* waiter = _WaitSet;
  1972   if (waiter) {
  1973     DequeueSpecificWaiter(waiter);
  1975   return waiter;
  1978 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
  1979   assert(node != NULL, "should not dequeue NULL node");
  1980   assert(node->_prev != NULL, "node already removed from list");
  1981   assert(node->_next != NULL, "node already removed from list");
  1982   // when the waiter has woken up because of interrupt,
  1983   // timeout or other spurious wake-up, dequeue the
  1984   // waiter from waiting list
  1985   ObjectWaiter* next = node->_next;
  1986   if (next == node) {
  1987     assert(node->_prev == node, "invariant check");
  1988     _WaitSet = NULL;
  1989   } else {
  1990     ObjectWaiter* prev = node->_prev;
  1991     assert(prev->_next == node, "invariant check");
  1992     assert(next->_prev == node, "invariant check");
  1993     next->_prev = prev;
  1994     prev->_next = next;
  1995     if (_WaitSet == node) {
  1996       _WaitSet = next;
  1999   node->_next = NULL;
  2000   node->_prev = NULL;
  2003 static char * kvGet (char * kvList, const char * Key) {
  2004     if (kvList == NULL) return NULL ;
  2005     size_t n = strlen (Key) ;
  2006     char * Search ;
  2007     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
  2008         if (strncmp (Search, Key, n) == 0) {
  2009             if (Search[n] == '=') return Search + n + 1 ;
  2010             if (Search[n] == 0)   return (char *) "1" ;
  2013     return NULL ;
  2016 static int kvGetInt (char * kvList, const char * Key, int Default) {
  2017     char * v = kvGet (kvList, Key) ;
  2018     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
  2019     if (Knob_ReportSettings && v != NULL) {
  2020         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
  2021         ::fflush (stdout) ;
  2023     return rslt ;
  2026 // By convention we unlink a contending thread from EntryList|cxq immediately
  2027 // after the thread acquires the lock in ::enter().  Equally, we could defer
  2028 // unlinking the thread until ::exit()-time.
  2030 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
  2032     assert (_owner == Self, "invariant") ;
  2033     assert (SelfNode->_thread == Self, "invariant") ;
  2035     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
  2036         // Normal case: remove Self from the DLL EntryList .
  2037         // This is a constant-time operation.
  2038         ObjectWaiter * nxt = SelfNode->_next ;
  2039         ObjectWaiter * prv = SelfNode->_prev ;
  2040         if (nxt != NULL) nxt->_prev = prv ;
  2041         if (prv != NULL) prv->_next = nxt ;
  2042         if (SelfNode == _EntryList ) _EntryList = nxt ;
  2043         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  2044         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  2045         TEVENT (Unlink from EntryList) ;
  2046     } else {
  2047         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  2048         // Inopportune interleaving -- Self is still on the cxq.
  2049         // This usually means the enqueue of self raced an exiting thread.
  2050         // Normally we'll find Self near the front of the cxq, so
  2051         // dequeueing is typically fast.  If needbe we can accelerate
  2052         // this with some MCS/CHL-like bidirectional list hints and advisory
  2053         // back-links so dequeueing from the interior will normally operate
  2054         // in constant-time.
  2055         // Dequeue Self from either the head (with CAS) or from the interior
  2056         // with a linear-time scan and normal non-atomic memory operations.
  2057         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
  2058         // and then unlink Self from EntryList.  We have to drain eventually,
  2059         // so it might as well be now.
  2061         ObjectWaiter * v = _cxq ;
  2062         assert (v != NULL, "invariant") ;
  2063         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
  2064             // The CAS above can fail from interference IFF a "RAT" arrived.
  2065             // In that case Self must be in the interior and can no longer be
  2066             // at the head of cxq.
  2067             if (v == SelfNode) {
  2068                 assert (_cxq != v, "invariant") ;
  2069                 v = _cxq ;          // CAS above failed - start scan at head of list
  2071             ObjectWaiter * p ;
  2072             ObjectWaiter * q = NULL ;
  2073             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
  2074                 q = p ;
  2075                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  2077             assert (v != SelfNode,  "invariant") ;
  2078             assert (p == SelfNode,  "Node not found on cxq") ;
  2079             assert (p != _cxq,      "invariant") ;
  2080             assert (q != NULL,      "invariant") ;
  2081             assert (q->_next == p,  "invariant") ;
  2082             q->_next = p->_next ;
  2084         TEVENT (Unlink from cxq) ;
  2087     // Diagnostic hygiene ...
  2088     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
  2089     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
  2090     SelfNode->TState = ObjectWaiter::TS_RUN ;
  2093 // Caveat: TryLock() is not necessarily serializing if it returns failure.
  2094 // Callers must compensate as needed.
  2096 int ObjectMonitor::TryLock (Thread * Self) {
  2097    for (;;) {
  2098       void * own = _owner ;
  2099       if (own != NULL) return 0 ;
  2100       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
  2101          // Either guarantee _recursions == 0 or set _recursions = 0.
  2102          assert (_recursions == 0, "invariant") ;
  2103          assert (_owner == Self, "invariant") ;
  2104          // CONSIDER: set or assert that OwnerIsThread == 1
  2105          return 1 ;
  2107       // The lock had been free momentarily, but we lost the race to the lock.
  2108       // Interference -- the CAS failed.
  2109       // We can either return -1 or retry.
  2110       // Retry doesn't make as much sense because the lock was just acquired.
  2111       if (true) return -1 ;
  2115 // NotRunnable() -- informed spinning
  2116 //
  2117 // Don't bother spinning if the owner is not eligible to drop the lock.
  2118 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
  2119 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
  2120 // The thread must be runnable in order to drop the lock in timely fashion.
  2121 // If the _owner is not runnable then spinning will not likely be
  2122 // successful (profitable).
  2123 //
  2124 // Beware -- the thread referenced by _owner could have died
  2125 // so a simply fetch from _owner->_thread_state might trap.
  2126 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
  2127 // Because of the lifecycle issues the schedctl and _thread_state values
  2128 // observed by NotRunnable() might be garbage.  NotRunnable must
  2129 // tolerate this and consider the observed _thread_state value
  2130 // as advisory.
  2131 //
  2132 // Beware too, that _owner is sometimes a BasicLock address and sometimes
  2133 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
  2134 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
  2135 // with the LSB of _owner.  Another option would be to probablistically probe
  2136 // the putative _owner->TypeTag value.
  2137 //
  2138 // Checking _thread_state isn't perfect.  Even if the thread is
  2139 // in_java it might be blocked on a page-fault or have been preempted
  2140 // and sitting on a ready/dispatch queue.  _thread state in conjunction
  2141 // with schedctl.sc_state gives us a good picture of what the
  2142 // thread is doing, however.
  2143 //
  2144 // TODO: check schedctl.sc_state.
  2145 // We'll need to use SafeFetch32() to read from the schedctl block.
  2146 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
  2147 //
  2148 // The return value from NotRunnable() is *advisory* -- the
  2149 // result is based on sampling and is not necessarily coherent.
  2150 // The caller must tolerate false-negative and false-positive errors.
  2151 // Spinning, in general, is probabilistic anyway.
  2154 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
  2155     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
  2156     if (!OwnerIsThread) return 0 ;
  2158     if (ox == NULL) return 0 ;
  2160     // Avoid transitive spinning ...
  2161     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
  2162     // Immediately after T1 acquires L it's possible that T2, also
  2163     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
  2164     // This occurs transiently after T1 acquired L but before
  2165     // T1 managed to clear T1.Stalled.  T2 does not need to abort
  2166     // its spin in this circumstance.
  2167     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
  2169     if (BlockedOn == 1) return 1 ;
  2170     if (BlockedOn != 0) {
  2171       return BlockedOn != intptr_t(this) && _owner == ox ;
  2174     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
  2175     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
  2176     // consider also: jst != _thread_in_Java -- but that's overspecific.
  2177     return jst == _thread_blocked || jst == _thread_in_native ;
  2181 // Adaptive spin-then-block - rational spinning
  2182 //
  2183 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
  2184 // algorithm.  On high order SMP systems it would be better to start with
  2185 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
  2186 // a contending thread could enqueue itself on the cxq and then spin locally
  2187 // on a thread-specific variable such as its ParkEvent._Event flag.
  2188 // That's left as an exercise for the reader.  Note that global spinning is
  2189 // not problematic on Niagara, as the L2$ serves the interconnect and has both
  2190 // low latency and massive bandwidth.
  2191 //
  2192 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
  2193 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
  2194 // (duration) or we can fix the count at approximately the duration of
  2195 // a context switch and vary the frequency.   Of course we could also
  2196 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
  2197 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
  2198 //
  2199 // This implementation varies the duration "D", where D varies with
  2200 // the success rate of recent spin attempts. (D is capped at approximately
  2201 // length of a round-trip context switch).  The success rate for recent
  2202 // spin attempts is a good predictor of the success rate of future spin
  2203 // attempts.  The mechanism adapts automatically to varying critical
  2204 // section length (lock modality), system load and degree of parallelism.
  2205 // D is maintained per-monitor in _SpinDuration and is initialized
  2206 // optimistically.  Spin frequency is fixed at 100%.
  2207 //
  2208 // Note that _SpinDuration is volatile, but we update it without locks
  2209 // or atomics.  The code is designed so that _SpinDuration stays within
  2210 // a reasonable range even in the presence of races.  The arithmetic
  2211 // operations on _SpinDuration are closed over the domain of legal values,
  2212 // so at worst a race will install and older but still legal value.
  2213 // At the very worst this introduces some apparent non-determinism.
  2214 // We might spin when we shouldn't or vice-versa, but since the spin
  2215 // count are relatively short, even in the worst case, the effect is harmless.
  2216 //
  2217 // Care must be taken that a low "D" value does not become an
  2218 // an absorbing state.  Transient spinning failures -- when spinning
  2219 // is overall profitable -- should not cause the system to converge
  2220 // on low "D" values.  We want spinning to be stable and predictable
  2221 // and fairly responsive to change and at the same time we don't want
  2222 // it to oscillate, become metastable, be "too" non-deterministic,
  2223 // or converge on or enter undesirable stable absorbing states.
  2224 //
  2225 // We implement a feedback-based control system -- using past behavior
  2226 // to predict future behavior.  We face two issues: (a) if the
  2227 // input signal is random then the spin predictor won't provide optimal
  2228 // results, and (b) if the signal frequency is too high then the control
  2229 // system, which has some natural response lag, will "chase" the signal.
  2230 // (b) can arise from multimodal lock hold times.  Transient preemption
  2231 // can also result in apparent bimodal lock hold times.
  2232 // Although sub-optimal, neither condition is particularly harmful, as
  2233 // in the worst-case we'll spin when we shouldn't or vice-versa.
  2234 // The maximum spin duration is rather short so the failure modes aren't bad.
  2235 // To be conservative, I've tuned the gain in system to bias toward
  2236 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
  2237 // "rings" or oscillates between spinning and not spinning.  This happens
  2238 // when spinning is just on the cusp of profitability, however, so the
  2239 // situation is not dire.  The state is benign -- there's no need to add
  2240 // hysteresis control to damp the transition rate between spinning and
  2241 // not spinning.
  2242 //
  2243 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  2244 //
  2245 // Spin-then-block strategies ...
  2246 //
  2247 // Thoughts on ways to improve spinning :
  2248 //
  2249 // *  Periodically call {psr_}getloadavg() while spinning, and
  2250 //    permit unbounded spinning if the load average is <
  2251 //    the number of processors.  Beware, however, that getloadavg()
  2252 //    is exceptionally fast on solaris (about 1/10 the cost of a full
  2253 //    spin cycle, but quite expensive on linux.  Beware also, that
  2254 //    multiple JVMs could "ring" or oscillate in a feedback loop.
  2255 //    Sufficient damping would solve that problem.
  2256 //
  2257 // *  We currently use spin loops with iteration counters to approximate
  2258 //    spinning for some interval.  Given the availability of high-precision
  2259 //    time sources such as gethrtime(), %TICK, %STICK, RDTSC, etc., we should
  2260 //    someday reimplement the spin loops to duration-based instead of iteration-based.
  2261 //
  2262 // *  Don't spin if there are more than N = (CPUs/2) threads
  2263 //        currently spinning on the monitor (or globally).
  2264 //    That is, limit the number of concurrent spinners.
  2265 //    We might also limit the # of spinners in the JVM, globally.
  2266 //
  2267 // *  If a spinning thread observes _owner change hands it should
  2268 //    abort the spin (and park immediately) or at least debit
  2269 //    the spin counter by a large "penalty".
  2270 //
  2271 // *  Classically, the spin count is either K*(CPUs-1) or is a
  2272 //        simple constant that approximates the length of a context switch.
  2273 //    We currently use a value -- computed by a special utility -- that
  2274 //    approximates round-trip context switch times.
  2275 //
  2276 // *  Normally schedctl_start()/_stop() is used to advise the kernel
  2277 //    to avoid preempting threads that are running in short, bounded
  2278 //    critical sections.  We could use the schedctl hooks in an inverted
  2279 //    sense -- spinners would set the nopreempt flag, but poll the preempt
  2280 //    pending flag.  If a spinner observed a pending preemption it'd immediately
  2281 //    abort the spin and park.   As such, the schedctl service acts as
  2282 //    a preemption warning mechanism.
  2283 //
  2284 // *  In lieu of spinning, if the system is running below saturation
  2285 //    (that is, loadavg() << #cpus), we can instead suppress futile
  2286 //    wakeup throttling, or even wake more than one successor at exit-time.
  2287 //    The net effect is largely equivalent to spinning.  In both cases,
  2288 //    contending threads go ONPROC and opportunistically attempt to acquire
  2289 //    the lock, decreasing lock handover latency at the expense of wasted
  2290 //    cycles and context switching.
  2291 //
  2292 // *  We might to spin less after we've parked as the thread will
  2293 //    have less $ and TLB affinity with the processor.
  2294 //    Likewise, we might spin less if we come ONPROC on a different
  2295 //    processor or after a long period (>> rechose_interval).
  2296 //
  2297 // *  A table-driven state machine similar to Solaris' dispadmin scheduling
  2298 //    tables might be a better design.  Instead of encoding information in
  2299 //    _SpinDuration, _SpinFreq and _SpinClock we'd just use explicit,
  2300 //    discrete states.   Success or failure during a spin would drive
  2301 //    state transitions, and each state node would contain a spin count.
  2302 //
  2303 // *  If the processor is operating in a mode intended to conserve power
  2304 //    (such as Intel's SpeedStep) or to reduce thermal output (thermal
  2305 //    step-down mode) then the Java synchronization subsystem should
  2306 //    forgo spinning.
  2307 //
  2308 // *  The minimum spin duration should be approximately the worst-case
  2309 //    store propagation latency on the platform.  That is, the time
  2310 //    it takes a store on CPU A to become visible on CPU B, where A and
  2311 //    B are "distant".
  2312 //
  2313 // *  We might want to factor a thread's priority in the spin policy.
  2314 //    Threads with a higher priority might spin for slightly longer.
  2315 //    Similarly, if we use back-off in the TATAS loop, lower priority
  2316 //    threads might back-off longer.  We don't currently use a
  2317 //    thread's priority when placing it on the entry queue.  We may
  2318 //    want to consider doing so in future releases.
  2319 //
  2320 // *  We might transiently drop a thread's scheduling priority while it spins.
  2321 //    SCHED_BATCH on linux and FX scheduling class at priority=0 on Solaris
  2322 //    would suffice.  We could even consider letting the thread spin indefinitely at
  2323 //    a depressed or "idle" priority.  This brings up fairness issues, however --
  2324 //    in a saturated system a thread would with a reduced priority could languish
  2325 //    for extended periods on the ready queue.
  2326 //
  2327 // *  While spinning try to use the otherwise wasted time to help the VM make
  2328 //    progress:
  2329 //
  2330 //    -- YieldTo() the owner, if the owner is OFFPROC but ready
  2331 //       Done our remaining quantum directly to the ready thread.
  2332 //       This helps "push" the lock owner through the critical section.
  2333 //       It also tends to improve affinity/locality as the lock
  2334 //       "migrates" less frequently between CPUs.
  2335 //    -- Walk our own stack in anticipation of blocking.  Memoize the roots.
  2336 //    -- Perform strand checking for other thread.  Unpark potential strandees.
  2337 //    -- Help GC: trace or mark -- this would need to be a bounded unit of work.
  2338 //       Unfortunately this will pollute our $ and TLBs.  Recall that we
  2339 //       spin to avoid context switching -- context switching has an
  2340 //       immediate cost in latency, a disruptive cost to other strands on a CMT
  2341 //       processor, and an amortized cost because of the D$ and TLB cache
  2342 //       reload transient when the thread comes back ONPROC and repopulates
  2343 //       $s and TLBs.
  2344 //    -- call getloadavg() to see if the system is saturated.  It'd probably
  2345 //       make sense to call getloadavg() half way through the spin.
  2346 //       If the system isn't at full capacity the we'd simply reset
  2347 //       the spin counter to and extend the spin attempt.
  2348 //    -- Doug points out that we should use the same "helping" policy
  2349 //       in thread.yield().
  2350 //
  2351 // *  Try MONITOR-MWAIT on systems that support those instructions.
  2352 //
  2353 // *  The spin statistics that drive spin decisions & frequency are
  2354 //    maintained in the objectmonitor structure so if we deflate and reinflate
  2355 //    we lose spin state.  In practice this is not usually a concern
  2356 //    as the default spin state after inflation is aggressive (optimistic)
  2357 //    and tends toward spinning.  So in the worst case for a lock where
  2358 //    spinning is not profitable we may spin unnecessarily for a brief
  2359 //    period.  But then again, if a lock is contended it'll tend not to deflate
  2360 //    in the first place.
  2363 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
  2364 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
  2366 // Spinning: Fixed frequency (100%), vary duration
  2368 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
  2370     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
  2371     int ctr = Knob_FixedSpin ;
  2372     if (ctr != 0) {
  2373         while (--ctr >= 0) {
  2374             if (TryLock (Self) > 0) return 1 ;
  2375             SpinPause () ;
  2377         return 0 ;
  2380     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
  2381       if (TryLock(Self) > 0) {
  2382         // Increase _SpinDuration ...
  2383         // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2384         // Raising _SpurDuration to the poverty line is key.
  2385         int x = _SpinDuration ;
  2386         if (x < Knob_SpinLimit) {
  2387            if (x < Knob_Poverty) x = Knob_Poverty ;
  2388            _SpinDuration = x + Knob_BonusB ;
  2390         return 1 ;
  2392       SpinPause () ;
  2395     // Admission control - verify preconditions for spinning
  2396     //
  2397     // We always spin a little bit, just to prevent _SpinDuration == 0 from
  2398     // becoming an absorbing state.  Put another way, we spin briefly to
  2399     // sample, just in case the system load, parallelism, contention, or lock
  2400     // modality changed.
  2401     //
  2402     // Consider the following alternative:
  2403     // Periodically set _SpinDuration = _SpinLimit and try a long/full
  2404     // spin attempt.  "Periodically" might mean after a tally of
  2405     // the # of failed spin attempts (or iterations) reaches some threshold.
  2406     // This takes us into the realm of 1-out-of-N spinning, where we
  2407     // hold the duration constant but vary the frequency.
  2409     ctr = _SpinDuration  ;
  2410     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
  2411     if (ctr <= 0) return 0 ;
  2413     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
  2414     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
  2415        TEVENT (Spin abort - notrunnable [TOP]);
  2416        return 0 ;
  2419     int MaxSpin = Knob_MaxSpinners ;
  2420     if (MaxSpin >= 0) {
  2421        if (_Spinner > MaxSpin) {
  2422           TEVENT (Spin abort -- too many spinners) ;
  2423           return 0 ;
  2425        // Slighty racy, but benign ...
  2426        Adjust (&_Spinner, 1) ;
  2429     // We're good to spin ... spin ingress.
  2430     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
  2431     // when preparing to LD...CAS _owner, etc and the CAS is likely
  2432     // to succeed.
  2433     int hits    = 0 ;
  2434     int msk     = 0 ;
  2435     int caspty  = Knob_CASPenalty ;
  2436     int oxpty   = Knob_OXPenalty ;
  2437     int sss     = Knob_SpinSetSucc ;
  2438     if (sss && _succ == NULL ) _succ = Self ;
  2439     Thread * prv = NULL ;
  2441     // There are three ways to exit the following loop:
  2442     // 1.  A successful spin where this thread has acquired the lock.
  2443     // 2.  Spin failure with prejudice
  2444     // 3.  Spin failure without prejudice
  2446     while (--ctr >= 0) {
  2448       // Periodic polling -- Check for pending GC
  2449       // Threads may spin while they're unsafe.
  2450       // We don't want spinning threads to delay the JVM from reaching
  2451       // a stop-the-world safepoint or to steal cycles from GC.
  2452       // If we detect a pending safepoint we abort in order that
  2453       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
  2454       // this thread, if safe, doesn't steal cycles from GC.
  2455       // This is in keeping with the "no loitering in runtime" rule.
  2456       // We periodically check to see if there's a safepoint pending.
  2457       if ((ctr & 0xFF) == 0) {
  2458          if (SafepointSynchronize::do_call_back()) {
  2459             TEVENT (Spin: safepoint) ;
  2460             goto Abort ;           // abrupt spin egress
  2462          if (Knob_UsePause & 1) SpinPause () ;
  2464          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
  2465          if (hits > 50 && scb != NULL) {
  2466             int abend = (*scb)(SpinCallbackArgument, 0) ;
  2470       if (Knob_UsePause & 2) SpinPause() ;
  2472       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
  2473       // This is useful on classic SMP systems, but is of less utility on
  2474       // N1-style CMT platforms.
  2475       //
  2476       // Trade-off: lock acquisition latency vs coherency bandwidth.
  2477       // Lock hold times are typically short.  A histogram
  2478       // of successful spin attempts shows that we usually acquire
  2479       // the lock early in the spin.  That suggests we want to
  2480       // sample _owner frequently in the early phase of the spin,
  2481       // but then back-off and sample less frequently as the spin
  2482       // progresses.  The back-off makes a good citizen on SMP big
  2483       // SMP systems.  Oversampling _owner can consume excessive
  2484       // coherency bandwidth.  Relatedly, if we _oversample _owner we
  2485       // can inadvertently interfere with the the ST m->owner=null.
  2486       // executed by the lock owner.
  2487       if (ctr & msk) continue ;
  2488       ++hits ;
  2489       if ((hits & 0xF) == 0) {
  2490         // The 0xF, above, corresponds to the exponent.
  2491         // Consider: (msk+1)|msk
  2492         msk = ((msk << 2)|3) & BackOffMask ;
  2495       // Probe _owner with TATAS
  2496       // If this thread observes the monitor transition or flicker
  2497       // from locked to unlocked to locked, then the odds that this
  2498       // thread will acquire the lock in this spin attempt go down
  2499       // considerably.  The same argument applies if the CAS fails
  2500       // or if we observe _owner change from one non-null value to
  2501       // another non-null value.   In such cases we might abort
  2502       // the spin without prejudice or apply a "penalty" to the
  2503       // spin count-down variable "ctr", reducing it by 100, say.
  2505       Thread * ox = (Thread *) _owner ;
  2506       if (ox == NULL) {
  2507          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  2508          if (ox == NULL) {
  2509             // The CAS succeeded -- this thread acquired ownership
  2510             // Take care of some bookkeeping to exit spin state.
  2511             if (sss && _succ == Self) {
  2512                _succ = NULL ;
  2514             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
  2516             // Increase _SpinDuration :
  2517             // The spin was successful (profitable) so we tend toward
  2518             // longer spin attempts in the future.
  2519             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
  2520             // If we acquired the lock early in the spin cycle it
  2521             // makes sense to increase _SpinDuration proportionally.
  2522             // Note that we don't clamp SpinDuration precisely at SpinLimit.
  2523             int x = _SpinDuration ;
  2524             if (x < Knob_SpinLimit) {
  2525                 if (x < Knob_Poverty) x = Knob_Poverty ;
  2526                 _SpinDuration = x + Knob_Bonus ;
  2528             return 1 ;
  2531          // The CAS failed ... we can take any of the following actions:
  2532          // * penalize: ctr -= Knob_CASPenalty
  2533          // * exit spin with prejudice -- goto Abort;
  2534          // * exit spin without prejudice.
  2535          // * Since CAS is high-latency, retry again immediately.
  2536          prv = ox ;
  2537          TEVENT (Spin: cas failed) ;
  2538          if (caspty == -2) break ;
  2539          if (caspty == -1) goto Abort ;
  2540          ctr -= caspty ;
  2541          continue ;
  2544       // Did lock ownership change hands ?
  2545       if (ox != prv && prv != NULL ) {
  2546           TEVENT (spin: Owner changed)
  2547           if (oxpty == -2) break ;
  2548           if (oxpty == -1) goto Abort ;
  2549           ctr -= oxpty ;
  2551       prv = ox ;
  2553       // Abort the spin if the owner is not executing.
  2554       // The owner must be executing in order to drop the lock.
  2555       // Spinning while the owner is OFFPROC is idiocy.
  2556       // Consider: ctr -= RunnablePenalty ;
  2557       if (Knob_OState && NotRunnable (Self, ox)) {
  2558          TEVENT (Spin abort - notrunnable);
  2559          goto Abort ;
  2561       if (sss && _succ == NULL ) _succ = Self ;
  2564    // Spin failed with prejudice -- reduce _SpinDuration.
  2565    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
  2566    // AIMD is globally stable.
  2567    TEVENT (Spin failure) ;
  2569      int x = _SpinDuration ;
  2570      if (x > 0) {
  2571         // Consider an AIMD scheme like: x -= (x >> 3) + 100
  2572         // This is globally sample and tends to damp the response.
  2573         x -= Knob_Penalty ;
  2574         if (x < 0) x = 0 ;
  2575         _SpinDuration = x ;
  2579  Abort:
  2580    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
  2581    if (sss && _succ == Self) {
  2582       _succ = NULL ;
  2583       // Invariant: after setting succ=null a contending thread
  2584       // must recheck-retry _owner before parking.  This usually happens
  2585       // in the normal usage of TrySpin(), but it's safest
  2586       // to make TrySpin() as foolproof as possible.
  2587       OrderAccess::fence() ;
  2588       if (TryLock(Self) > 0) return 1 ;
  2590    return 0 ;
  2593 #define TrySpin TrySpin_VaryDuration
  2595 static void DeferredInitialize () {
  2596   if (InitDone > 0) return ;
  2597   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
  2598       while (InitDone != 1) ;
  2599       return ;
  2602   // One-shot global initialization ...
  2603   // The initialization is idempotent, so we don't need locks.
  2604   // In the future consider doing this via os::init_2().
  2605   // SyncKnobs consist of <Key>=<Value> pairs in the style
  2606   // of environment variables.  Start by converting ':' to NUL.
  2608   if (SyncKnobs == NULL) SyncKnobs = "" ;
  2610   size_t sz = strlen (SyncKnobs) ;
  2611   char * knobs = (char *) malloc (sz + 2) ;
  2612   if (knobs == NULL) {
  2613      vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
  2614      guarantee (0, "invariant") ;
  2616   strcpy (knobs, SyncKnobs) ;
  2617   knobs[sz+1] = 0 ;
  2618   for (char * p = knobs ; *p ; p++) {
  2619      if (*p == ':') *p = 0 ;
  2622   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
  2623   SETKNOB(ReportSettings) ;
  2624   SETKNOB(Verbose) ;
  2625   SETKNOB(FixedSpin) ;
  2626   SETKNOB(SpinLimit) ;
  2627   SETKNOB(SpinBase) ;
  2628   SETKNOB(SpinBackOff);
  2629   SETKNOB(CASPenalty) ;
  2630   SETKNOB(OXPenalty) ;
  2631   SETKNOB(LogSpins) ;
  2632   SETKNOB(SpinSetSucc) ;
  2633   SETKNOB(SuccEnabled) ;
  2634   SETKNOB(SuccRestrict) ;
  2635   SETKNOB(Penalty) ;
  2636   SETKNOB(Bonus) ;
  2637   SETKNOB(BonusB) ;
  2638   SETKNOB(Poverty) ;
  2639   SETKNOB(SpinAfterFutile) ;
  2640   SETKNOB(UsePause) ;
  2641   SETKNOB(SpinEarly) ;
  2642   SETKNOB(OState) ;
  2643   SETKNOB(MaxSpinners) ;
  2644   SETKNOB(PreSpin) ;
  2645   SETKNOB(ExitPolicy) ;
  2646   SETKNOB(QMode);
  2647   SETKNOB(ResetEvent) ;
  2648   SETKNOB(MoveNotifyee) ;
  2649   SETKNOB(FastHSSEC) ;
  2650   #undef SETKNOB
  2652   if (os::is_MP()) {
  2653      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
  2654      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
  2655      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
  2656   } else {
  2657      Knob_SpinLimit = 0 ;
  2658      Knob_SpinBase  = 0 ;
  2659      Knob_PreSpin   = 0 ;
  2660      Knob_FixedSpin = -1 ;
  2663   if (Knob_LogSpins == 0) {
  2664      ObjectSynchronizer::_sync_FailedSpins = NULL ;
  2667   free (knobs) ;
  2668   OrderAccess::fence() ;
  2669   InitDone = 1 ;
  2672 // Theory of operations -- Monitors lists, thread residency, etc:
  2673 //
  2674 // * A thread acquires ownership of a monitor by successfully
  2675 //   CAS()ing the _owner field from null to non-null.
  2676 //
  2677 // * Invariant: A thread appears on at most one monitor list --
  2678 //   cxq, EntryList or WaitSet -- at any one time.
  2679 //
  2680 // * Contending threads "push" themselves onto the cxq with CAS
  2681 //   and then spin/park.
  2682 //
  2683 // * After a contending thread eventually acquires the lock it must
  2684 //   dequeue itself from either the EntryList or the cxq.
  2685 //
  2686 // * The exiting thread identifies and unparks an "heir presumptive"
  2687 //   tentative successor thread on the EntryList.  Critically, the
  2688 //   exiting thread doesn't unlink the successor thread from the EntryList.
  2689 //   After having been unparked, the wakee will recontend for ownership of
  2690 //   the monitor.   The successor (wakee) will either acquire the lock or
  2691 //   re-park itself.
  2692 //
  2693 //   Succession is provided for by a policy of competitive handoff.
  2694 //   The exiting thread does _not_ grant or pass ownership to the
  2695 //   successor thread.  (This is also referred to as "handoff" succession").
  2696 //   Instead the exiting thread releases ownership and possibly wakes
  2697 //   a successor, so the successor can (re)compete for ownership of the lock.
  2698 //   If the EntryList is empty but the cxq is populated the exiting
  2699 //   thread will drain the cxq into the EntryList.  It does so by
  2700 //   by detaching the cxq (installing null with CAS) and folding
  2701 //   the threads from the cxq into the EntryList.  The EntryList is
  2702 //   doubly linked, while the cxq is singly linked because of the
  2703 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
  2704 //
  2705 // * Concurrency invariants:
  2706 //
  2707 //   -- only the monitor owner may access or mutate the EntryList.
  2708 //      The mutex property of the monitor itself protects the EntryList
  2709 //      from concurrent interference.
  2710 //   -- Only the monitor owner may detach the cxq.
  2711 //
  2712 // * The monitor entry list operations avoid locks, but strictly speaking
  2713 //   they're not lock-free.  Enter is lock-free, exit is not.
  2714 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
  2715 //
  2716 // * The cxq can have multiple concurrent "pushers" but only one concurrent
  2717 //   detaching thread.  This mechanism is immune from the ABA corruption.
  2718 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
  2719 //
  2720 // * Taken together, the cxq and the EntryList constitute or form a
  2721 //   single logical queue of threads stalled trying to acquire the lock.
  2722 //   We use two distinct lists to improve the odds of a constant-time
  2723 //   dequeue operation after acquisition (in the ::enter() epilog) and
  2724 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
  2725 //   A key desideratum is to minimize queue & monitor metadata manipulation
  2726 //   that occurs while holding the monitor lock -- that is, we want to
  2727 //   minimize monitor lock holds times.  Note that even a small amount of
  2728 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
  2729 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
  2730 //   locks and monitor metadata.
  2731 //
  2732 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
  2733 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
  2734 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
  2735 //   the unlocking thread notices that EntryList is null but _cxq is != null.
  2736 //
  2737 //   The EntryList is ordered by the prevailing queue discipline and
  2738 //   can be organized in any convenient fashion, such as a doubly-linked list or
  2739 //   a circular doubly-linked list.  Critically, we want insert and delete operations
  2740 //   to operate in constant-time.  If we need a priority queue then something akin
  2741 //   to Solaris' sleepq would work nicely.  Viz.,
  2742 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
  2743 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
  2744 //   drains the cxq into the EntryList, and orders or reorders the threads on the
  2745 //   EntryList accordingly.
  2746 //
  2747 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
  2748 //   somewhat similar to an elevator-scan.
  2749 //
  2750 // * The monitor synchronization subsystem avoids the use of native
  2751 //   synchronization primitives except for the narrow platform-specific
  2752 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
  2753 //   the semantics of park-unpark.  Put another way, this monitor implementation
  2754 //   depends only on atomic operations and park-unpark.  The monitor subsystem
  2755 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
  2756 //   underlying OS manages the READY<->RUN transitions.
  2757 //
  2758 // * Waiting threads reside on the WaitSet list -- wait() puts
  2759 //   the caller onto the WaitSet.
  2760 //
  2761 // * notify() or notifyAll() simply transfers threads from the WaitSet to
  2762 //   either the EntryList or cxq.  Subsequent exit() operations will
  2763 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
  2764 //   it's likely the notifyee would simply impale itself on the lock held
  2765 //   by the notifier.
  2766 //
  2767 // * An interesting alternative is to encode cxq as (List,LockByte) where
  2768 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
  2769 //   variable, like _recursions, in the scheme.  The threads or Events that form
  2770 //   the list would have to be aligned in 256-byte addresses.  A thread would
  2771 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
  2772 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
  2773 //   Note that is is *not* word-tearing, but it does presume that full-word
  2774 //   CAS operations are coherent with intermix with STB operations.  That's true
  2775 //   on most common processors.
  2776 //
  2777 // * See also http://blogs.sun.com/dave
  2780 void ATTR ObjectMonitor::EnterI (TRAPS) {
  2781     Thread * Self = THREAD ;
  2782     assert (Self->is_Java_thread(), "invariant") ;
  2783     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
  2785     // Try the lock - TATAS
  2786     if (TryLock (Self) > 0) {
  2787         assert (_succ != Self              , "invariant") ;
  2788         assert (_owner == Self             , "invariant") ;
  2789         assert (_Responsible != Self       , "invariant") ;
  2790         return ;
  2793     DeferredInitialize () ;
  2795     // We try one round of spinning *before* enqueueing Self.
  2796     //
  2797     // If the _owner is ready but OFFPROC we could use a YieldTo()
  2798     // operation to donate the remainder of this thread's quantum
  2799     // to the owner.  This has subtle but beneficial affinity
  2800     // effects.
  2802     if (TrySpin (Self) > 0) {
  2803         assert (_owner == Self        , "invariant") ;
  2804         assert (_succ != Self         , "invariant") ;
  2805         assert (_Responsible != Self  , "invariant") ;
  2806         return ;
  2809     // The Spin failed -- Enqueue and park the thread ...
  2810     assert (_succ  != Self            , "invariant") ;
  2811     assert (_owner != Self            , "invariant") ;
  2812     assert (_Responsible != Self      , "invariant") ;
  2814     // Enqueue "Self" on ObjectMonitor's _cxq.
  2815     //
  2816     // Node acts as a proxy for Self.
  2817     // As an aside, if were to ever rewrite the synchronization code mostly
  2818     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
  2819     // Java objects.  This would avoid awkward lifecycle and liveness issues,
  2820     // as well as eliminate a subset of ABA issues.
  2821     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
  2822     //
  2824     ObjectWaiter node(Self) ;
  2825     Self->_ParkEvent->reset() ;
  2826     node._prev   = (ObjectWaiter *) 0xBAD ;
  2827     node.TState  = ObjectWaiter::TS_CXQ ;
  2829     // Push "Self" onto the front of the _cxq.
  2830     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
  2831     // Note that spinning tends to reduce the rate at which threads
  2832     // enqueue and dequeue on EntryList|cxq.
  2833     ObjectWaiter * nxt ;
  2834     for (;;) {
  2835         node._next = nxt = _cxq ;
  2836         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
  2838         // Interference - the CAS failed because _cxq changed.  Just retry.
  2839         // As an optional optimization we retry the lock.
  2840         if (TryLock (Self) > 0) {
  2841             assert (_succ != Self         , "invariant") ;
  2842             assert (_owner == Self        , "invariant") ;
  2843             assert (_Responsible != Self  , "invariant") ;
  2844             return ;
  2848     // Check for cxq|EntryList edge transition to non-null.  This indicates
  2849     // the onset of contention.  While contention persists exiting threads
  2850     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
  2851     // operations revert to the faster 1-0 mode.  This enter operation may interleave
  2852     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
  2853     // arrange for one of the contending thread to use a timed park() operations
  2854     // to detect and recover from the race.  (Stranding is form of progress failure
  2855     // where the monitor is unlocked but all the contending threads remain parked).
  2856     // That is, at least one of the contended threads will periodically poll _owner.
  2857     // One of the contending threads will become the designated "Responsible" thread.
  2858     // The Responsible thread uses a timed park instead of a normal indefinite park
  2859     // operation -- it periodically wakes and checks for and recovers from potential
  2860     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
  2861     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
  2862     // be responsible for a monitor.
  2863     //
  2864     // Currently, one of the contended threads takes on the added role of "Responsible".
  2865     // A viable alternative would be to use a dedicated "stranding checker" thread
  2866     // that periodically iterated over all the threads (or active monitors) and unparked
  2867     // successors where there was risk of stranding.  This would help eliminate the
  2868     // timer scalability issues we see on some platforms as we'd only have one thread
  2869     // -- the checker -- parked on a timer.
  2871     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
  2872         // Try to assume the role of responsible thread for the monitor.
  2873         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
  2874         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
  2877     // The lock have been released while this thread was occupied queueing
  2878     // itself onto _cxq.  To close the race and avoid "stranding" and
  2879     // progress-liveness failure we must resample-retry _owner before parking.
  2880     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
  2881     // In this case the ST-MEMBAR is accomplished with CAS().
  2882     //
  2883     // TODO: Defer all thread state transitions until park-time.
  2884     // Since state transitions are heavy and inefficient we'd like
  2885     // to defer the state transitions until absolutely necessary,
  2886     // and in doing so avoid some transitions ...
  2888     TEVENT (Inflated enter - Contention) ;
  2889     int nWakeups = 0 ;
  2890     int RecheckInterval = 1 ;
  2892     for (;;) {
  2894         if (TryLock (Self) > 0) break ;
  2895         assert (_owner != Self, "invariant") ;
  2897         if ((SyncFlags & 2) && _Responsible == NULL) {
  2898            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
  2901         // park self
  2902         if (_Responsible == Self || (SyncFlags & 1)) {
  2903             TEVENT (Inflated enter - park TIMED) ;
  2904             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
  2905             // Increase the RecheckInterval, but clamp the value.
  2906             RecheckInterval *= 8 ;
  2907             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
  2908         } else {
  2909             TEVENT (Inflated enter - park UNTIMED) ;
  2910             Self->_ParkEvent->park() ;
  2913         if (TryLock(Self) > 0) break ;
  2915         // The lock is still contested.
  2916         // Keep a tally of the # of futile wakeups.
  2917         // Note that the counter is not protected by a lock or updated by atomics.
  2918         // That is by design - we trade "lossy" counters which are exposed to
  2919         // races during updates for a lower probe effect.
  2920         TEVENT (Inflated enter - Futile wakeup) ;
  2921         if (ObjectSynchronizer::_sync_FutileWakeups != NULL) {
  2922            ObjectSynchronizer::_sync_FutileWakeups->inc() ;
  2924         ++ nWakeups ;
  2926         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
  2927         // We can defer clearing _succ until after the spin completes
  2928         // TrySpin() must tolerate being called with _succ == Self.
  2929         // Try yet another round of adaptive spinning.
  2930         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
  2932         // We can find that we were unpark()ed and redesignated _succ while
  2933         // we were spinning.  That's harmless.  If we iterate and call park(),
  2934         // park() will consume the event and return immediately and we'll
  2935         // just spin again.  This pattern can repeat, leaving _succ to simply
  2936         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
  2937         // Alternately, we can sample fired() here, and if set, forgo spinning
  2938         // in the next iteration.
  2940         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
  2941            Self->_ParkEvent->reset() ;
  2942            OrderAccess::fence() ;
  2944         if (_succ == Self) _succ = NULL ;
  2946         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
  2947         OrderAccess::fence() ;
  2950     // Egress :
  2951     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
  2952     // Normally we'll find Self on the EntryList .
  2953     // From the perspective of the lock owner (this thread), the
  2954     // EntryList is stable and cxq is prepend-only.
  2955     // The head of cxq is volatile but the interior is stable.
  2956     // In addition, Self.TState is stable.
  2958     assert (_owner == Self      , "invariant") ;
  2959     assert (object() != NULL    , "invariant") ;
  2960     // I'd like to write:
  2961     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  2962     // but as we're at a safepoint that's not safe.
  2964     UnlinkAfterAcquire (Self, &node) ;
  2965     if (_succ == Self) _succ = NULL ;
  2967     assert (_succ != Self, "invariant") ;
  2968     if (_Responsible == Self) {
  2969         _Responsible = NULL ;
  2970         // Dekker pivot-point.
  2971         // Consider OrderAccess::storeload() here
  2973         // We may leave threads on cxq|EntryList without a designated
  2974         // "Responsible" thread.  This is benign.  When this thread subsequently
  2975         // exits the monitor it can "see" such preexisting "old" threads --
  2976         // threads that arrived on the cxq|EntryList before the fence, above --
  2977         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
  2978         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
  2979         // non-null and elect a new "Responsible" timer thread.
  2980         //
  2981         // This thread executes:
  2982         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
  2983         //    LD cxq|EntryList               (in subsequent exit)
  2984         //
  2985         // Entering threads in the slow/contended path execute:
  2986         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
  2987         //    The (ST cxq; MEMBAR) is accomplished with CAS().
  2988         //
  2989         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
  2990         // exit operation from floating above the ST Responsible=null.
  2991         //
  2992         // In *practice* however, EnterI() is always followed by some atomic
  2993         // operation such as the decrement of _count in ::enter().  Those atomics
  2994         // obviate the need for the explicit MEMBAR, above.
  2997     // We've acquired ownership with CAS().
  2998     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
  2999     // But since the CAS() this thread may have also stored into _succ,
  3000     // EntryList, cxq or Responsible.  These meta-data updates must be
  3001     // visible __before this thread subsequently drops the lock.
  3002     // Consider what could occur if we didn't enforce this constraint --
  3003     // STs to monitor meta-data and user-data could reorder with (become
  3004     // visible after) the ST in exit that drops ownership of the lock.
  3005     // Some other thread could then acquire the lock, but observe inconsistent
  3006     // or old monitor meta-data and heap data.  That violates the JMM.
  3007     // To that end, the 1-0 exit() operation must have at least STST|LDST
  3008     // "release" barrier semantics.  Specifically, there must be at least a
  3009     // STST|LDST barrier in exit() before the ST of null into _owner that drops
  3010     // the lock.   The barrier ensures that changes to monitor meta-data and data
  3011     // protected by the lock will be visible before we release the lock, and
  3012     // therefore before some other thread (CPU) has a chance to acquire the lock.
  3013     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
  3014     //
  3015     // Critically, any prior STs to _succ or EntryList must be visible before
  3016     // the ST of null into _owner in the *subsequent* (following) corresponding
  3017     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
  3018     // execute a serializing instruction.
  3020     if (SyncFlags & 8) {
  3021        OrderAccess::fence() ;
  3023     return ;
  3026 // ExitSuspendEquivalent:
  3027 // A faster alternate to handle_special_suspend_equivalent_condition()
  3028 //
  3029 // handle_special_suspend_equivalent_condition() unconditionally
  3030 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
  3031 // operations have high latency.  Note that in ::enter() we call HSSEC
  3032 // while holding the monitor, so we effectively lengthen the critical sections.
  3033 //
  3034 // There are a number of possible solutions:
  3035 //
  3036 // A.  To ameliorate the problem we might also defer state transitions
  3037 //     to as late as possible -- just prior to parking.
  3038 //     Given that, we'd call HSSEC after having returned from park(),
  3039 //     but before attempting to acquire the monitor.  This is only a
  3040 //     partial solution.  It avoids calling HSSEC while holding the
  3041 //     monitor (good), but it still increases successor reacquisition latency --
  3042 //     the interval between unparking a successor and the time the successor
  3043 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
  3044 //     If we use this technique we can also avoid EnterI()-exit() loop
  3045 //     in ::enter() where we iteratively drop the lock and then attempt
  3046 //     to reacquire it after suspending.
  3047 //
  3048 // B.  In the future we might fold all the suspend bits into a
  3049 //     composite per-thread suspend flag and then update it with CAS().
  3050 //     Alternately, a Dekker-like mechanism with multiple variables
  3051 //     would suffice:
  3052 //       ST Self->_suspend_equivalent = false
  3053 //       MEMBAR
  3054 //       LD Self_>_suspend_flags
  3055 //
  3058 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
  3059    int Mode = Knob_FastHSSEC ;
  3060    if (Mode && !jSelf->is_external_suspend()) {
  3061       assert (jSelf->is_suspend_equivalent(), "invariant") ;
  3062       jSelf->clear_suspend_equivalent() ;
  3063       if (2 == Mode) OrderAccess::storeload() ;
  3064       if (!jSelf->is_external_suspend()) return false ;
  3065       // We raced a suspension -- fall thru into the slow path
  3066       TEVENT (ExitSuspendEquivalent - raced) ;
  3067       jSelf->set_suspend_equivalent() ;
  3069    return jSelf->handle_special_suspend_equivalent_condition() ;
  3073 // ReenterI() is a specialized inline form of the latter half of the
  3074 // contended slow-path from EnterI().  We use ReenterI() only for
  3075 // monitor reentry in wait().
  3076 //
  3077 // In the future we should reconcile EnterI() and ReenterI(), adding
  3078 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
  3079 // loop accordingly.
  3081 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
  3082     assert (Self != NULL                , "invariant") ;
  3083     assert (SelfNode != NULL            , "invariant") ;
  3084     assert (SelfNode->_thread == Self   , "invariant") ;
  3085     assert (_waiters > 0                , "invariant") ;
  3086     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
  3087     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
  3088     JavaThread * jt = (JavaThread *) Self ;
  3090     int nWakeups = 0 ;
  3091     for (;;) {
  3092         ObjectWaiter::TStates v = SelfNode->TState ;
  3093         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  3094         assert    (_owner != Self, "invariant") ;
  3096         if (TryLock (Self) > 0) break ;
  3097         if (TrySpin (Self) > 0) break ;
  3099         TEVENT (Wait Reentry - parking) ;
  3101         // State transition wrappers around park() ...
  3102         // ReenterI() wisely defers state transitions until
  3103         // it's clear we must park the thread.
  3105            OSThreadContendState osts(Self->osthread());
  3106            ThreadBlockInVM tbivm(jt);
  3108            // cleared by handle_special_suspend_equivalent_condition()
  3109            // or java_suspend_self()
  3110            jt->set_suspend_equivalent();
  3111            if (SyncFlags & 1) {
  3112               Self->_ParkEvent->park ((jlong)1000) ;
  3113            } else {
  3114               Self->_ParkEvent->park () ;
  3117            // were we externally suspended while we were waiting?
  3118            for (;;) {
  3119               if (!ExitSuspendEquivalent (jt)) break ;
  3120               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
  3121               jt->java_suspend_self();
  3122               jt->set_suspend_equivalent();
  3126         // Try again, but just so we distinguish between futile wakeups and
  3127         // successful wakeups.  The following test isn't algorithmically
  3128         // necessary, but it helps us maintain sensible statistics.
  3129         if (TryLock(Self) > 0) break ;
  3131         // The lock is still contested.
  3132         // Keep a tally of the # of futile wakeups.
  3133         // Note that the counter is not protected by a lock or updated by atomics.
  3134         // That is by design - we trade "lossy" counters which are exposed to
  3135         // races during updates for a lower probe effect.
  3136         TEVENT (Wait Reentry - futile wakeup) ;
  3137         ++ nWakeups ;
  3139         // Assuming this is not a spurious wakeup we'll normally
  3140         // find that _succ == Self.
  3141         if (_succ == Self) _succ = NULL ;
  3143         // Invariant: after clearing _succ a contending thread
  3144         // *must* retry  _owner before parking.
  3145         OrderAccess::fence() ;
  3147         if (ObjectSynchronizer::_sync_FutileWakeups != NULL) {
  3148           ObjectSynchronizer::_sync_FutileWakeups->inc() ;
  3152     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
  3153     // Normally we'll find Self on the EntryList.
  3154     // Unlinking from the EntryList is constant-time and atomic-free.
  3155     // From the perspective of the lock owner (this thread), the
  3156     // EntryList is stable and cxq is prepend-only.
  3157     // The head of cxq is volatile but the interior is stable.
  3158     // In addition, Self.TState is stable.
  3160     assert (_owner == Self, "invariant") ;
  3161     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  3162     UnlinkAfterAcquire (Self, SelfNode) ;
  3163     if (_succ == Self) _succ = NULL ;
  3164     assert (_succ != Self, "invariant") ;
  3165     SelfNode->TState = ObjectWaiter::TS_RUN ;
  3166     OrderAccess::fence() ;      // see comments at the end of EnterI()
  3169 bool ObjectMonitor::try_enter(Thread* THREAD) {
  3170   if (THREAD != _owner) {
  3171     if (THREAD->is_lock_owned ((address)_owner)) {
  3172        assert(_recursions == 0, "internal state error");
  3173        _owner = THREAD ;
  3174        _recursions = 1 ;
  3175        OwnerIsThread = 1 ;
  3176        return true;
  3178     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  3179       return false;
  3181     return true;
  3182   } else {
  3183     _recursions++;
  3184     return true;
  3188 void ATTR ObjectMonitor::enter(TRAPS) {
  3189   // The following code is ordered to check the most common cases first
  3190   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
  3191   Thread * const Self = THREAD ;
  3192   void * cur ;
  3194   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
  3195   if (cur == NULL) {
  3196      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
  3197      assert (_recursions == 0   , "invariant") ;
  3198      assert (_owner      == Self, "invariant") ;
  3199      // CONSIDER: set or assert OwnerIsThread == 1
  3200      return ;
  3203   if (cur == Self) {
  3204      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
  3205      _recursions ++ ;
  3206      return ;
  3209   if (Self->is_lock_owned ((address)cur)) {
  3210     assert (_recursions == 0, "internal state error");
  3211     _recursions = 1 ;
  3212     // Commute owner from a thread-specific on-stack BasicLockObject address to
  3213     // a full-fledged "Thread *".
  3214     _owner = Self ;
  3215     OwnerIsThread = 1 ;
  3216     return ;
  3219   // We've encountered genuine contention.
  3220   assert (Self->_Stalled == 0, "invariant") ;
  3221   Self->_Stalled = intptr_t(this) ;
  3223   // Try one round of spinning *before* enqueueing Self
  3224   // and before going through the awkward and expensive state
  3225   // transitions.  The following spin is strictly optional ...
  3226   // Note that if we acquire the monitor from an initial spin
  3227   // we forgo posting JVMTI events and firing DTRACE probes.
  3228   if (Knob_SpinEarly && TrySpin (Self) > 0) {
  3229      assert (_owner == Self      , "invariant") ;
  3230      assert (_recursions == 0    , "invariant") ;
  3231      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  3232      Self->_Stalled = 0 ;
  3233      return ;
  3236   assert (_owner != Self          , "invariant") ;
  3237   assert (_succ  != Self          , "invariant") ;
  3238   assert (Self->is_Java_thread()  , "invariant") ;
  3239   JavaThread * jt = (JavaThread *) Self ;
  3240   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
  3241   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
  3242   assert (this->object() != NULL  , "invariant") ;
  3243   assert (_count >= 0, "invariant") ;
  3245   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
  3246   // Ensure the object-monitor relationship remains stable while there's contention.
  3247   Atomic::inc_ptr(&_count);
  3249   { // Change java thread status to indicate blocked on monitor enter.
  3250     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
  3252     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
  3253     if (JvmtiExport::should_post_monitor_contended_enter()) {
  3254       JvmtiExport::post_monitor_contended_enter(jt, this);
  3257     OSThreadContendState osts(Self->osthread());
  3258     ThreadBlockInVM tbivm(jt);
  3260     Self->set_current_pending_monitor(this);
  3262     // TODO-FIXME: change the following for(;;) loop to straight-line code.
  3263     for (;;) {
  3264       jt->set_suspend_equivalent();
  3265       // cleared by handle_special_suspend_equivalent_condition()
  3266       // or java_suspend_self()
  3268       EnterI (THREAD) ;
  3270       if (!ExitSuspendEquivalent(jt)) break ;
  3272       //
  3273       // We have acquired the contended monitor, but while we were
  3274       // waiting another thread suspended us. We don't want to enter
  3275       // the monitor while suspended because that would surprise the
  3276       // thread that suspended us.
  3277       //
  3278           _recursions = 0 ;
  3279       _succ = NULL ;
  3280       exit (Self) ;
  3282       jt->java_suspend_self();
  3284     Self->set_current_pending_monitor(NULL);
  3287   Atomic::dec_ptr(&_count);
  3288   assert (_count >= 0, "invariant") ;
  3289   Self->_Stalled = 0 ;
  3291   // Must either set _recursions = 0 or ASSERT _recursions == 0.
  3292   assert (_recursions == 0     , "invariant") ;
  3293   assert (_owner == Self       , "invariant") ;
  3294   assert (_succ  != Self       , "invariant") ;
  3295   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  3297   // The thread -- now the owner -- is back in vm mode.
  3298   // Report the glorious news via TI,DTrace and jvmstat.
  3299   // The probe effect is non-trivial.  All the reportage occurs
  3300   // while we hold the monitor, increasing the length of the critical
  3301   // section.  Amdahl's parallel speedup law comes vividly into play.
  3302   //
  3303   // Another option might be to aggregate the events (thread local or
  3304   // per-monitor aggregation) and defer reporting until a more opportune
  3305   // time -- such as next time some thread encounters contention but has
  3306   // yet to acquire the lock.  While spinning that thread could
  3307   // spinning we could increment JVMStat counters, etc.
  3309   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
  3310   if (JvmtiExport::should_post_monitor_contended_entered()) {
  3311     JvmtiExport::post_monitor_contended_entered(jt, this);
  3313   if (ObjectSynchronizer::_sync_ContendedLockAttempts != NULL) {
  3314      ObjectSynchronizer::_sync_ContendedLockAttempts->inc() ;
  3318 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
  3319    assert (_owner == Self, "invariant") ;
  3321    // Exit protocol:
  3322    // 1. ST _succ = wakee
  3323    // 2. membar #loadstore|#storestore;
  3324    // 2. ST _owner = NULL
  3325    // 3. unpark(wakee)
  3327    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
  3328    ParkEvent * Trigger = Wakee->_event ;
  3330    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
  3331    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
  3332    // out-of-scope (non-extant).
  3333    Wakee  = NULL ;
  3335    // Drop the lock
  3336    OrderAccess::release_store_ptr (&_owner, NULL) ;
  3337    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
  3339    // TODO-FIXME:
  3340    // If there's a safepoint pending the best policy would be to
  3341    // get _this thread to a safepoint and only wake the successor
  3342    // after the safepoint completed.  monitorexit uses a "leaf"
  3343    // state transition, however, so this thread can't become
  3344    // safe at this point in time.  (Its stack isn't walkable).
  3345    // The next best thing is to defer waking the successor by
  3346    // adding to a list of thread to be unparked after at the
  3347    // end of the forthcoming STW).
  3348    if (SafepointSynchronize::do_call_back()) {
  3349       TEVENT (unpark before SAFEPOINT) ;
  3352    // Possible optimizations ...
  3353    //
  3354    // * Consider: set Wakee->UnparkTime = timeNow()
  3355    //   When the thread wakes up it'll compute (timeNow() - Self->UnparkTime()).
  3356    //   By measuring recent ONPROC latency we can approximate the
  3357    //   system load.  In turn, we can feed that information back
  3358    //   into the spinning & succession policies.
  3359    //   (ONPROC latency correlates strongly with load).
  3360    //
  3361    // * Pull affinity:
  3362    //   If the wakee is cold then transiently setting it's affinity
  3363    //   to the current CPU is a good idea.
  3364    //   See http://j2se.east/~dice/PERSIST/050624-PullAffinity.txt
  3365    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
  3366    Trigger->unpark() ;
  3368    // Maintain stats and report events to JVMTI
  3369    if (ObjectSynchronizer::_sync_Parks != NULL) {
  3370       ObjectSynchronizer::_sync_Parks->inc() ;
  3375 // exit()
  3376 // ~~~~~~
  3377 // Note that the collector can't reclaim the objectMonitor or deflate
  3378 // the object out from underneath the thread calling ::exit() as the
  3379 // thread calling ::exit() never transitions to a stable state.
  3380 // This inhibits GC, which in turn inhibits asynchronous (and
  3381 // inopportune) reclamation of "this".
  3382 //
  3383 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
  3384 // There's one exception to the claim above, however.  EnterI() can call
  3385 // exit() to drop a lock if the acquirer has been externally suspended.
  3386 // In that case exit() is called with _thread_state as _thread_blocked,
  3387 // but the monitor's _count field is > 0, which inhibits reclamation.
  3388 //
  3389 // 1-0 exit
  3390 // ~~~~~~~~
  3391 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
  3392 // the fast-path operators have been optimized so the common ::exit()
  3393 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
  3394 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
  3395 // greatly improves latency -- MEMBAR and CAS having considerable local
  3396 // latency on modern processors -- but at the cost of "stranding".  Absent the
  3397 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
  3398 // ::enter() path, resulting in the entering thread being stranding
  3399 // and a progress-liveness failure.   Stranding is extremely rare.
  3400 // We use timers (timed park operations) & periodic polling to detect
  3401 // and recover from stranding.  Potentially stranded threads periodically
  3402 // wake up and poll the lock.  See the usage of the _Responsible variable.
  3403 //
  3404 // The CAS() in enter provides for safety and exclusion, while the CAS or
  3405 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
  3406 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
  3407 // We detect and recover from stranding with timers.
  3408 //
  3409 // If a thread transiently strands it'll park until (a) another
  3410 // thread acquires the lock and then drops the lock, at which time the
  3411 // exiting thread will notice and unpark the stranded thread, or, (b)
  3412 // the timer expires.  If the lock is high traffic then the stranding latency
  3413 // will be low due to (a).  If the lock is low traffic then the odds of
  3414 // stranding are lower, although the worst-case stranding latency
  3415 // is longer.  Critically, we don't want to put excessive load in the
  3416 // platform's timer subsystem.  We want to minimize both the timer injection
  3417 // rate (timers created/sec) as well as the number of timers active at
  3418 // any one time.  (more precisely, we want to minimize timer-seconds, which is
  3419 // the integral of the # of active timers at any instant over time).
  3420 // Both impinge on OS scalability.  Given that, at most one thread parked on
  3421 // a monitor will use a timer.
  3423 void ATTR ObjectMonitor::exit(TRAPS) {
  3424    Thread * Self = THREAD ;
  3425    if (THREAD != _owner) {
  3426      if (THREAD->is_lock_owned((address) _owner)) {
  3427        // Transmute _owner from a BasicLock pointer to a Thread address.
  3428        // We don't need to hold _mutex for this transition.
  3429        // Non-null to Non-null is safe as long as all readers can
  3430        // tolerate either flavor.
  3431        assert (_recursions == 0, "invariant") ;
  3432        _owner = THREAD ;
  3433        _recursions = 0 ;
  3434        OwnerIsThread = 1 ;
  3435      } else {
  3436        // NOTE: we need to handle unbalanced monitor enter/exit
  3437        // in native code by throwing an exception.
  3438        // TODO: Throw an IllegalMonitorStateException ?
  3439        TEVENT (Exit - Throw IMSX) ;
  3440        assert(false, "Non-balanced monitor enter/exit!");
  3441        if (false) {
  3442           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
  3444        return;
  3448    if (_recursions != 0) {
  3449      _recursions--;        // this is simple recursive enter
  3450      TEVENT (Inflated exit - recursive) ;
  3451      return ;
  3454    // Invariant: after setting Responsible=null an thread must execute
  3455    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
  3456    if ((SyncFlags & 4) == 0) {
  3457       _Responsible = NULL ;
  3460    for (;;) {
  3461       assert (THREAD == _owner, "invariant") ;
  3463       // Fast-path monitor exit:
  3464       //
  3465       // Observe the Dekker/Lamport duality:
  3466       // A thread in ::exit() executes:
  3467       //   ST Owner=null; MEMBAR; LD EntryList|cxq.
  3468       // A thread in the contended ::enter() path executes the complementary:
  3469       //   ST EntryList|cxq = nonnull; MEMBAR; LD Owner.
  3470       //
  3471       // Note that there's a benign race in the exit path.  We can drop the
  3472       // lock, another thread can reacquire the lock immediately, and we can
  3473       // then wake a thread unnecessarily (yet another flavor of futile wakeup).
  3474       // This is benign, and we've structured the code so the windows are short
  3475       // and the frequency of such futile wakeups is low.
  3476       //
  3477       // We could eliminate the race by encoding both the "LOCKED" state and
  3478       // the queue head in a single word.  Exit would then use either CAS to
  3479       // clear the LOCKED bit/byte.  This precludes the desirable 1-0 optimization,
  3480       // however.
  3481       //
  3482       // Possible fast-path ::exit() optimization:
  3483       // The current fast-path exit implementation fetches both cxq and EntryList.
  3484       // See also i486.ad fast_unlock().  Testing has shown that two LDs
  3485       // isn't measurably slower than a single LD on any platforms.
  3486       // Still, we could reduce the 2 LDs to one or zero by one of the following:
  3487       //
  3488       // - Use _count instead of cxq|EntryList
  3489       //   We intend to eliminate _count, however, when we switch
  3490       //   to on-the-fly deflation in ::exit() as is used in
  3491       //   Metalocks and RelaxedLocks.
  3492       //
  3493       // - Establish the invariant that cxq == null implies EntryList == null.
  3494       //   set cxq == EMPTY (1) to encode the state where cxq is empty
  3495       //   by EntryList != null.  EMPTY is a distinguished value.
  3496       //   The fast-path exit() would fetch cxq but not EntryList.
  3497       //
  3498       // - Encode succ as follows:
  3499       //   succ = t :  Thread t is the successor -- t is ready or is spinning.
  3500       //               Exiting thread does not need to wake a successor.
  3501       //   succ = 0 :  No successor required -> (EntryList|cxq) == null
  3502       //               Exiting thread does not need to wake a successor
  3503       //   succ = 1 :  Successor required    -> (EntryList|cxq) != null and
  3504       //               logically succ == null.
  3505       //               Exiting thread must wake a successor.
  3506       //
  3507       //   The 1-1 fast-exit path would appear as :
  3508       //     _owner = null ; membar ;
  3509       //     if (_succ == 1 && CAS (&_owner, null, Self) == null) goto SlowPath
  3510       //     goto FastPathDone ;
  3511       //
  3512       //   and the 1-0 fast-exit path would appear as:
  3513       //      if (_succ == 1) goto SlowPath
  3514       //      Owner = null ;
  3515       //      goto FastPathDone
  3516       //
  3517       // - Encode the LSB of _owner as 1 to indicate that exit()
  3518       //   must use the slow-path and make a successor ready.
  3519       //   (_owner & 1) == 0 IFF succ != null || (EntryList|cxq) == null
  3520       //   (_owner & 1) == 0 IFF succ == null && (EntryList|cxq) != null (obviously)
  3521       //   The 1-0 fast exit path would read:
  3522       //      if (_owner != Self) goto SlowPath
  3523       //      _owner = null
  3524       //      goto FastPathDone
  3526       if (Knob_ExitPolicy == 0) {
  3527          // release semantics: prior loads and stores from within the critical section
  3528          // must not float (reorder) past the following store that drops the lock.
  3529          // On SPARC that requires MEMBAR #loadstore|#storestore.
  3530          // But of course in TSO #loadstore|#storestore is not required.
  3531          // I'd like to write one of the following:
  3532          // A.  OrderAccess::release() ; _owner = NULL
  3533          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
  3534          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
  3535          // store into a _dummy variable.  That store is not needed, but can result
  3536          // in massive wasteful coherency traffic on classic SMP systems.
  3537          // Instead, I use release_store(), which is implemented as just a simple
  3538          // ST on x64, x86 and SPARC.
  3539          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  3540          OrderAccess::storeload() ;                         // See if we need to wake a successor
  3541          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  3542             TEVENT (Inflated exit - simple egress) ;
  3543             return ;
  3545          TEVENT (Inflated exit - complex egress) ;
  3547          // Normally the exiting thread is responsible for ensuring succession,
  3548          // but if other successors are ready or other entering threads are spinning
  3549          // then this thread can simply store NULL into _owner and exit without
  3550          // waking a successor.  The existence of spinners or ready successors
  3551          // guarantees proper succession (liveness).  Responsibility passes to the
  3552          // ready or running successors.  The exiting thread delegates the duty.
  3553          // More precisely, if a successor already exists this thread is absolved
  3554          // of the responsibility of waking (unparking) one.
  3555          //
  3556          // The _succ variable is critical to reducing futile wakeup frequency.
  3557          // _succ identifies the "heir presumptive" thread that has been made
  3558          // ready (unparked) but that has not yet run.  We need only one such
  3559          // successor thread to guarantee progress.
  3560          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
  3561          // section 3.3 "Futile Wakeup Throttling" for details.
  3562          //
  3563          // Note that spinners in Enter() also set _succ non-null.
  3564          // In the current implementation spinners opportunistically set
  3565          // _succ so that exiting threads might avoid waking a successor.
  3566          // Another less appealing alternative would be for the exiting thread
  3567          // to drop the lock and then spin briefly to see if a spinner managed
  3568          // to acquire the lock.  If so, the exiting thread could exit
  3569          // immediately without waking a successor, otherwise the exiting
  3570          // thread would need to dequeue and wake a successor.
  3571          // (Note that we'd need to make the post-drop spin short, but no
  3572          // shorter than the worst-case round-trip cache-line migration time.
  3573          // The dropped lock needs to become visible to the spinner, and then
  3574          // the acquisition of the lock by the spinner must become visible to
  3575          // the exiting thread).
  3576          //
  3578          // It appears that an heir-presumptive (successor) must be made ready.
  3579          // Only the current lock owner can manipulate the EntryList or
  3580          // drain _cxq, so we need to reacquire the lock.  If we fail
  3581          // to reacquire the lock the responsibility for ensuring succession
  3582          // falls to the new owner.
  3583          //
  3584          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  3585             return ;
  3587          TEVENT (Exit - Reacquired) ;
  3588       } else {
  3589          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
  3590             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
  3591             OrderAccess::storeload() ;
  3592             // Ratify the previously observed values.
  3593             if (_cxq == NULL || _succ != NULL) {
  3594                 TEVENT (Inflated exit - simple egress) ;
  3595                 return ;
  3598             // inopportune interleaving -- the exiting thread (this thread)
  3599             // in the fast-exit path raced an entering thread in the slow-enter
  3600             // path.
  3601             // We have two choices:
  3602             // A.  Try to reacquire the lock.
  3603             //     If the CAS() fails return immediately, otherwise
  3604             //     we either restart/rerun the exit operation, or simply
  3605             //     fall-through into the code below which wakes a successor.
  3606             // B.  If the elements forming the EntryList|cxq are TSM
  3607             //     we could simply unpark() the lead thread and return
  3608             //     without having set _succ.
  3609             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
  3610                TEVENT (Inflated exit - reacquired succeeded) ;
  3611                return ;
  3613             TEVENT (Inflated exit - reacquired failed) ;
  3614          } else {
  3615             TEVENT (Inflated exit - complex egress) ;
  3619       guarantee (_owner == THREAD, "invariant") ;
  3621       // Select an appropriate successor ("heir presumptive") from the EntryList
  3622       // and make it ready.  Generally we just wake the head of EntryList .
  3623       // There's no algorithmic constraint that we use the head - it's just
  3624       // a policy decision.   Note that the thread at head of the EntryList
  3625       // remains at the head until it acquires the lock.  This means we'll
  3626       // repeatedly wake the same thread until it manages to grab the lock.
  3627       // This is generally a good policy - if we're seeing lots of futile wakeups
  3628       // at least we're waking/rewaking a thread that's like to be hot or warm
  3629       // (have residual D$ and TLB affinity).
  3630       //
  3631       // "Wakeup locality" optimization:
  3632       // http://j2se.east/~dice/PERSIST/040825-WakeLocality.txt
  3633       // In the future we'll try to bias the selection mechanism
  3634       // to preferentially pick a thread that recently ran on
  3635       // a processor element that shares cache with the CPU on which
  3636       // the exiting thread is running.   We need access to Solaris'
  3637       // schedctl.sc_cpu to make that work.
  3638       //
  3639       ObjectWaiter * w = NULL ;
  3640       int QMode = Knob_QMode ;
  3642       if (QMode == 2 && _cxq != NULL) {
  3643           // QMode == 2 : cxq has precedence over EntryList.
  3644           // Try to directly wake a successor from the cxq.
  3645           // If successful, the successor will need to unlink itself from cxq.
  3646           w = _cxq ;
  3647           assert (w != NULL, "invariant") ;
  3648           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  3649           ExitEpilog (Self, w) ;
  3650           return ;
  3653       if (QMode == 3 && _cxq != NULL) {
  3654           // Aggressively drain cxq into EntryList at the first opportunity.
  3655           // This policy ensure that recently-run threads live at the head of EntryList.
  3656           // Drain _cxq into EntryList - bulk transfer.
  3657           // First, detach _cxq.
  3658           // The following loop is tantamount to: w = swap (&cxq, NULL)
  3659           w = _cxq ;
  3660           for (;;) {
  3661              assert (w != NULL, "Invariant") ;
  3662              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  3663              if (u == w) break ;
  3664              w = u ;
  3666           assert (w != NULL              , "invariant") ;
  3668           ObjectWaiter * q = NULL ;
  3669           ObjectWaiter * p ;
  3670           for (p = w ; p != NULL ; p = p->_next) {
  3671               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  3672               p->TState = ObjectWaiter::TS_ENTER ;
  3673               p->_prev = q ;
  3674               q = p ;
  3677           // Append the RATs to the EntryList
  3678           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
  3679           ObjectWaiter * Tail ;
  3680           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
  3681           if (Tail == NULL) {
  3682               _EntryList = w ;
  3683           } else {
  3684               Tail->_next = w ;
  3685               w->_prev = Tail ;
  3688           // Fall thru into code that tries to wake a successor from EntryList
  3691       if (QMode == 4 && _cxq != NULL) {
  3692           // Aggressively drain cxq into EntryList at the first opportunity.
  3693           // This policy ensure that recently-run threads live at the head of EntryList.
  3695           // Drain _cxq into EntryList - bulk transfer.
  3696           // First, detach _cxq.
  3697           // The following loop is tantamount to: w = swap (&cxq, NULL)
  3698           w = _cxq ;
  3699           for (;;) {
  3700              assert (w != NULL, "Invariant") ;
  3701              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  3702              if (u == w) break ;
  3703              w = u ;
  3705           assert (w != NULL              , "invariant") ;
  3707           ObjectWaiter * q = NULL ;
  3708           ObjectWaiter * p ;
  3709           for (p = w ; p != NULL ; p = p->_next) {
  3710               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  3711               p->TState = ObjectWaiter::TS_ENTER ;
  3712               p->_prev = q ;
  3713               q = p ;
  3716           // Prepend the RATs to the EntryList
  3717           if (_EntryList != NULL) {
  3718               q->_next = _EntryList ;
  3719               _EntryList->_prev = q ;
  3721           _EntryList = w ;
  3723           // Fall thru into code that tries to wake a successor from EntryList
  3726       w = _EntryList  ;
  3727       if (w != NULL) {
  3728           // I'd like to write: guarantee (w->_thread != Self).
  3729           // But in practice an exiting thread may find itself on the EntryList.
  3730           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
  3731           // then calls exit().  Exit release the lock by setting O._owner to NULL.
  3732           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
  3733           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
  3734           // release the lock "O".  T2 resumes immediately after the ST of null into
  3735           // _owner, above.  T2 notices that the EntryList is populated, so it
  3736           // reacquires the lock and then finds itself on the EntryList.
  3737           // Given all that, we have to tolerate the circumstance where "w" is
  3738           // associated with Self.
  3739           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  3740           ExitEpilog (Self, w) ;
  3741           return ;
  3744       // If we find that both _cxq and EntryList are null then just
  3745       // re-run the exit protocol from the top.
  3746       w = _cxq ;
  3747       if (w == NULL) continue ;
  3749       // Drain _cxq into EntryList - bulk transfer.
  3750       // First, detach _cxq.
  3751       // The following loop is tantamount to: w = swap (&cxq, NULL)
  3752       for (;;) {
  3753           assert (w != NULL, "Invariant") ;
  3754           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
  3755           if (u == w) break ;
  3756           w = u ;
  3758       TEVENT (Inflated exit - drain cxq into EntryList) ;
  3760       assert (w != NULL              , "invariant") ;
  3761       assert (_EntryList  == NULL    , "invariant") ;
  3763       // Convert the LIFO SLL anchored by _cxq into a DLL.
  3764       // The list reorganization step operates in O(LENGTH(w)) time.
  3765       // It's critical that this step operate quickly as
  3766       // "Self" still holds the outer-lock, restricting parallelism
  3767       // and effectively lengthening the critical section.
  3768       // Invariant: s chases t chases u.
  3769       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
  3770       // we have faster access to the tail.
  3772       if (QMode == 1) {
  3773          // QMode == 1 : drain cxq to EntryList, reversing order
  3774          // We also reverse the order of the list.
  3775          ObjectWaiter * s = NULL ;
  3776          ObjectWaiter * t = w ;
  3777          ObjectWaiter * u = NULL ;
  3778          while (t != NULL) {
  3779              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
  3780              t->TState = ObjectWaiter::TS_ENTER ;
  3781              u = t->_next ;
  3782              t->_prev = u ;
  3783              t->_next = s ;
  3784              s = t;
  3785              t = u ;
  3787          _EntryList  = s ;
  3788          assert (s != NULL, "invariant") ;
  3789       } else {
  3790          // QMode == 0 or QMode == 2
  3791          _EntryList = w ;
  3792          ObjectWaiter * q = NULL ;
  3793          ObjectWaiter * p ;
  3794          for (p = w ; p != NULL ; p = p->_next) {
  3795              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
  3796              p->TState = ObjectWaiter::TS_ENTER ;
  3797              p->_prev = q ;
  3798              q = p ;
  3802       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
  3803       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
  3805       // See if we can abdicate to a spinner instead of waking a thread.
  3806       // A primary goal of the implementation is to reduce the
  3807       // context-switch rate.
  3808       if (_succ != NULL) continue;
  3810       w = _EntryList  ;
  3811       if (w != NULL) {
  3812           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  3813           ExitEpilog (Self, w) ;
  3814           return ;
  3818 // complete_exit exits a lock returning recursion count
  3819 // complete_exit/reenter operate as a wait without waiting
  3820 // complete_exit requires an inflated monitor
  3821 // The _owner field is not always the Thread addr even with an
  3822 // inflated monitor, e.g. the monitor can be inflated by a non-owning
  3823 // thread due to contention.
  3824 intptr_t ObjectMonitor::complete_exit(TRAPS) {
  3825    Thread * const Self = THREAD;
  3826    assert(Self->is_Java_thread(), "Must be Java thread!");
  3827    JavaThread *jt = (JavaThread *)THREAD;
  3829    DeferredInitialize();
  3831    if (THREAD != _owner) {
  3832     if (THREAD->is_lock_owned ((address)_owner)) {
  3833        assert(_recursions == 0, "internal state error");
  3834        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
  3835        _recursions = 0 ;
  3836        OwnerIsThread = 1 ;
  3840    guarantee(Self == _owner, "complete_exit not owner");
  3841    intptr_t save = _recursions; // record the old recursion count
  3842    _recursions = 0;        // set the recursion level to be 0
  3843    exit (Self) ;           // exit the monitor
  3844    guarantee (_owner != Self, "invariant");
  3845    return save;
  3848 // reenter() enters a lock and sets recursion count
  3849 // complete_exit/reenter operate as a wait without waiting
  3850 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
  3851    Thread * const Self = THREAD;
  3852    assert(Self->is_Java_thread(), "Must be Java thread!");
  3853    JavaThread *jt = (JavaThread *)THREAD;
  3855    guarantee(_owner != Self, "reenter already owner");
  3856    enter (THREAD);       // enter the monitor
  3857    guarantee (_recursions == 0, "reenter recursion");
  3858    _recursions = recursions;
  3859    return;
  3862 // Note: a subset of changes to ObjectMonitor::wait()
  3863 // will need to be replicated in complete_exit above
  3864 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
  3865    Thread * const Self = THREAD ;
  3866    assert(Self->is_Java_thread(), "Must be Java thread!");
  3867    JavaThread *jt = (JavaThread *)THREAD;
  3869    DeferredInitialize () ;
  3871    // Throw IMSX or IEX.
  3872    CHECK_OWNER();
  3874    // check for a pending interrupt
  3875    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  3876      // post monitor waited event.  Note that this is past-tense, we are done waiting.
  3877      if (JvmtiExport::should_post_monitor_waited()) {
  3878         // Note: 'false' parameter is passed here because the
  3879         // wait was not timed out due to thread interrupt.
  3880         JvmtiExport::post_monitor_waited(jt, this, false);
  3882      TEVENT (Wait - Throw IEX) ;
  3883      THROW(vmSymbols::java_lang_InterruptedException());
  3884      return ;
  3886    TEVENT (Wait) ;
  3888    assert (Self->_Stalled == 0, "invariant") ;
  3889    Self->_Stalled = intptr_t(this) ;
  3890    jt->set_current_waiting_monitor(this);
  3892    // create a node to be put into the queue
  3893    // Critically, after we reset() the event but prior to park(), we must check
  3894    // for a pending interrupt.
  3895    ObjectWaiter node(Self);
  3896    node.TState = ObjectWaiter::TS_WAIT ;
  3897    Self->_ParkEvent->reset() ;
  3898    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
  3900    // Enter the waiting queue, which is a circular doubly linked list in this case
  3901    // but it could be a priority queue or any data structure.
  3902    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
  3903    // by the the owner of the monitor *except* in the case where park()
  3904    // returns because of a timeout of interrupt.  Contention is exceptionally rare
  3905    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
  3907    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
  3908    AddWaiter (&node) ;
  3909    Thread::SpinRelease (&_WaitSetLock) ;
  3911    if ((SyncFlags & 4) == 0) {
  3912       _Responsible = NULL ;
  3914    intptr_t save = _recursions; // record the old recursion count
  3915    _waiters++;                  // increment the number of waiters
  3916    _recursions = 0;             // set the recursion level to be 1
  3917    exit (Self) ;                    // exit the monitor
  3918    guarantee (_owner != Self, "invariant") ;
  3920    // As soon as the ObjectMonitor's ownership is dropped in the exit()
  3921    // call above, another thread can enter() the ObjectMonitor, do the
  3922    // notify(), and exit() the ObjectMonitor. If the other thread's
  3923    // exit() call chooses this thread as the successor and the unpark()
  3924    // call happens to occur while this thread is posting a
  3925    // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
  3926    // handler using RawMonitors and consuming the unpark().
  3927    //
  3928    // To avoid the problem, we re-post the event. This does no harm
  3929    // even if the original unpark() was not consumed because we are the
  3930    // chosen successor for this monitor.
  3931    if (node._notified != 0 && _succ == Self) {
  3932       node._event->unpark();
  3935    // The thread is on the WaitSet list - now park() it.
  3936    // On MP systems it's conceivable that a brief spin before we park
  3937    // could be profitable.
  3938    //
  3939    // TODO-FIXME: change the following logic to a loop of the form
  3940    //   while (!timeout && !interrupted && _notified == 0) park()
  3942    int ret = OS_OK ;
  3943    int WasNotified = 0 ;
  3944    { // State transition wrappers
  3945      OSThread* osthread = Self->osthread();
  3946      OSThreadWaitState osts(osthread, true);
  3948        ThreadBlockInVM tbivm(jt);
  3949        // Thread is in thread_blocked state and oop access is unsafe.
  3950        jt->set_suspend_equivalent();
  3952        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
  3953            // Intentionally empty
  3954        } else
  3955        if (node._notified == 0) {
  3956          if (millis <= 0) {
  3957             Self->_ParkEvent->park () ;
  3958          } else {
  3959             ret = Self->_ParkEvent->park (millis) ;
  3963        // were we externally suspended while we were waiting?
  3964        if (ExitSuspendEquivalent (jt)) {
  3965           // TODO-FIXME: add -- if succ == Self then succ = null.
  3966           jt->java_suspend_self();
  3969      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
  3972      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
  3973      // from the WaitSet to the EntryList.
  3974      // See if we need to remove Node from the WaitSet.
  3975      // We use double-checked locking to avoid grabbing _WaitSetLock
  3976      // if the thread is not on the wait queue.
  3977      //
  3978      // Note that we don't need a fence before the fetch of TState.
  3979      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
  3980      // written by the is thread. (perhaps the fetch might even be satisfied
  3981      // by a look-aside into the processor's own store buffer, although given
  3982      // the length of the code path between the prior ST and this load that's
  3983      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
  3984      // then we'll acquire the lock and then re-fetch a fresh TState value.
  3985      // That is, we fail toward safety.
  3987      if (node.TState == ObjectWaiter::TS_WAIT) {
  3988          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
  3989          if (node.TState == ObjectWaiter::TS_WAIT) {
  3990             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
  3991             assert(node._notified == 0, "invariant");
  3992             node.TState = ObjectWaiter::TS_RUN ;
  3994          Thread::SpinRelease (&_WaitSetLock) ;
  3997      // The thread is now either on off-list (TS_RUN),
  3998      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
  3999      // The Node's TState variable is stable from the perspective of this thread.
  4000      // No other threads will asynchronously modify TState.
  4001      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
  4002      OrderAccess::loadload() ;
  4003      if (_succ == Self) _succ = NULL ;
  4004      WasNotified = node._notified ;
  4006      // Reentry phase -- reacquire the monitor.
  4007      // re-enter contended monitor after object.wait().
  4008      // retain OBJECT_WAIT state until re-enter successfully completes
  4009      // Thread state is thread_in_vm and oop access is again safe,
  4010      // although the raw address of the object may have changed.
  4011      // (Don't cache naked oops over safepoints, of course).
  4013      // post monitor waited event. Note that this is past-tense, we are done waiting.
  4014      if (JvmtiExport::should_post_monitor_waited()) {
  4015        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
  4017      OrderAccess::fence() ;
  4019      assert (Self->_Stalled != 0, "invariant") ;
  4020      Self->_Stalled = 0 ;
  4022      assert (_owner != Self, "invariant") ;
  4023      ObjectWaiter::TStates v = node.TState ;
  4024      if (v == ObjectWaiter::TS_RUN) {
  4025          enter (Self) ;
  4026      } else {
  4027          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
  4028          ReenterI (Self, &node) ;
  4029          node.wait_reenter_end(this);
  4032      // Self has reacquired the lock.
  4033      // Lifecycle - the node representing Self must not appear on any queues.
  4034      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
  4035      // want residual elements associated with this thread left on any lists.
  4036      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  4037      assert    (_owner == Self, "invariant") ;
  4038      assert    (_succ != Self , "invariant") ;
  4039    } // OSThreadWaitState()
  4041    jt->set_current_waiting_monitor(NULL);
  4043    guarantee (_recursions == 0, "invariant") ;
  4044    _recursions = save;     // restore the old recursion count
  4045    _waiters--;             // decrement the number of waiters
  4047    // Verify a few postconditions
  4048    assert (_owner == Self       , "invariant") ;
  4049    assert (_succ  != Self       , "invariant") ;
  4050    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
  4052    if (SyncFlags & 32) {
  4053       OrderAccess::fence() ;
  4056    // check if the notification happened
  4057    if (!WasNotified) {
  4058      // no, it could be timeout or Thread.interrupt() or both
  4059      // check for interrupt event, otherwise it is timeout
  4060      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
  4061        TEVENT (Wait - throw IEX from epilog) ;
  4062        THROW(vmSymbols::java_lang_InterruptedException());
  4066    // NOTE: Spurious wake up will be consider as timeout.
  4067    // Monitor notify has precedence over thread interrupt.
  4071 // Consider:
  4072 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
  4073 // then instead of transferring a thread from the WaitSet to the EntryList
  4074 // we might just dequeue a thread from the WaitSet and directly unpark() it.
  4076 void ObjectMonitor::notify(TRAPS) {
  4077   CHECK_OWNER();
  4078   if (_WaitSet == NULL) {
  4079      TEVENT (Empty-Notify) ;
  4080      return ;
  4082   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
  4084   int Policy = Knob_MoveNotifyee ;
  4086   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
  4087   ObjectWaiter * iterator = DequeueWaiter() ;
  4088   if (iterator != NULL) {
  4089      TEVENT (Notify1 - Transfer) ;
  4090      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  4091      guarantee (iterator->_notified == 0, "invariant") ;
  4092      // Disposition - what might we do with iterator ?
  4093      // a.  add it directly to the EntryList - either tail or head.
  4094      // b.  push it onto the front of the _cxq.
  4095      // For now we use (a).
  4096      if (Policy != 4) {
  4097         iterator->TState = ObjectWaiter::TS_ENTER ;
  4099      iterator->_notified = 1 ;
  4101      ObjectWaiter * List = _EntryList ;
  4102      if (List != NULL) {
  4103         assert (List->_prev == NULL, "invariant") ;
  4104         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  4105         assert (List != iterator, "invariant") ;
  4108      if (Policy == 0) {       // prepend to EntryList
  4109          if (List == NULL) {
  4110              iterator->_next = iterator->_prev = NULL ;
  4111              _EntryList = iterator ;
  4112          } else {
  4113              List->_prev = iterator ;
  4114              iterator->_next = List ;
  4115              iterator->_prev = NULL ;
  4116              _EntryList = iterator ;
  4118      } else
  4119      if (Policy == 1) {      // append to EntryList
  4120          if (List == NULL) {
  4121              iterator->_next = iterator->_prev = NULL ;
  4122              _EntryList = iterator ;
  4123          } else {
  4124             // CONSIDER:  finding the tail currently requires a linear-time walk of
  4125             // the EntryList.  We can make tail access constant-time by converting to
  4126             // a CDLL instead of using our current DLL.
  4127             ObjectWaiter * Tail ;
  4128             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  4129             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  4130             Tail->_next = iterator ;
  4131             iterator->_prev = Tail ;
  4132             iterator->_next = NULL ;
  4134      } else
  4135      if (Policy == 2) {      // prepend to cxq
  4136          // prepend to cxq
  4137          if (List == NULL) {
  4138              iterator->_next = iterator->_prev = NULL ;
  4139              _EntryList = iterator ;
  4140          } else {
  4141             iterator->TState = ObjectWaiter::TS_CXQ ;
  4142             for (;;) {
  4143                 ObjectWaiter * Front = _cxq ;
  4144                 iterator->_next = Front ;
  4145                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  4146                     break ;
  4150      } else
  4151      if (Policy == 3) {      // append to cxq
  4152         iterator->TState = ObjectWaiter::TS_CXQ ;
  4153         for (;;) {
  4154             ObjectWaiter * Tail ;
  4155             Tail = _cxq ;
  4156             if (Tail == NULL) {
  4157                 iterator->_next = NULL ;
  4158                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  4159                    break ;
  4161             } else {
  4162                 while (Tail->_next != NULL) Tail = Tail->_next ;
  4163                 Tail->_next = iterator ;
  4164                 iterator->_prev = Tail ;
  4165                 iterator->_next = NULL ;
  4166                 break ;
  4169      } else {
  4170         ParkEvent * ev = iterator->_event ;
  4171         iterator->TState = ObjectWaiter::TS_RUN ;
  4172         OrderAccess::fence() ;
  4173         ev->unpark() ;
  4176      if (Policy < 4) {
  4177        iterator->wait_reenter_begin(this);
  4180      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  4181      // move the add-to-EntryList operation, above, outside the critical section
  4182      // protected by _WaitSetLock.  In practice that's not useful.  With the
  4183      // exception of  wait() timeouts and interrupts the monitor owner
  4184      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  4185      // on _WaitSetLock so it's not profitable to reduce the length of the
  4186      // critical section.
  4189   Thread::SpinRelease (&_WaitSetLock) ;
  4191   if (iterator != NULL && ObjectSynchronizer::_sync_Notifications != NULL) {
  4192      ObjectSynchronizer::_sync_Notifications->inc() ;
  4197 void ObjectMonitor::notifyAll(TRAPS) {
  4198   CHECK_OWNER();
  4199   ObjectWaiter* iterator;
  4200   if (_WaitSet == NULL) {
  4201       TEVENT (Empty-NotifyAll) ;
  4202       return ;
  4204   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
  4206   int Policy = Knob_MoveNotifyee ;
  4207   int Tally = 0 ;
  4208   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
  4210   for (;;) {
  4211      iterator = DequeueWaiter () ;
  4212      if (iterator == NULL) break ;
  4213      TEVENT (NotifyAll - Transfer1) ;
  4214      ++Tally ;
  4216      // Disposition - what might we do with iterator ?
  4217      // a.  add it directly to the EntryList - either tail or head.
  4218      // b.  push it onto the front of the _cxq.
  4219      // For now we use (a).
  4220      //
  4221      // TODO-FIXME: currently notifyAll() transfers the waiters one-at-a-time from the waitset
  4222      // to the EntryList.  This could be done more efficiently with a single bulk transfer,
  4223      // but in practice it's not time-critical.  Beware too, that in prepend-mode we invert the
  4224      // order of the waiters.  Lets say that the waitset is "ABCD" and the EntryList is "XYZ".
  4225      // After a notifyAll() in prepend mode the waitset will be empty and the EntryList will
  4226      // be "DCBAXYZ".
  4228      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
  4229      guarantee (iterator->_notified == 0, "invariant") ;
  4230      iterator->_notified = 1 ;
  4231      if (Policy != 4) {
  4232         iterator->TState = ObjectWaiter::TS_ENTER ;
  4235      ObjectWaiter * List = _EntryList ;
  4236      if (List != NULL) {
  4237         assert (List->_prev == NULL, "invariant") ;
  4238         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  4239         assert (List != iterator, "invariant") ;
  4242      if (Policy == 0) {       // prepend to EntryList
  4243          if (List == NULL) {
  4244              iterator->_next = iterator->_prev = NULL ;
  4245              _EntryList = iterator ;
  4246          } else {
  4247              List->_prev = iterator ;
  4248              iterator->_next = List ;
  4249              iterator->_prev = NULL ;
  4250              _EntryList = iterator ;
  4252      } else
  4253      if (Policy == 1) {      // append to EntryList
  4254          if (List == NULL) {
  4255              iterator->_next = iterator->_prev = NULL ;
  4256              _EntryList = iterator ;
  4257          } else {
  4258             // CONSIDER:  finding the tail currently requires a linear-time walk of
  4259             // the EntryList.  We can make tail access constant-time by converting to
  4260             // a CDLL instead of using our current DLL.
  4261             ObjectWaiter * Tail ;
  4262             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
  4263             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
  4264             Tail->_next = iterator ;
  4265             iterator->_prev = Tail ;
  4266             iterator->_next = NULL ;
  4268      } else
  4269      if (Policy == 2) {      // prepend to cxq
  4270          // prepend to cxq
  4271          iterator->TState = ObjectWaiter::TS_CXQ ;
  4272          for (;;) {
  4273              ObjectWaiter * Front = _cxq ;
  4274              iterator->_next = Front ;
  4275              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
  4276                  break ;
  4279      } else
  4280      if (Policy == 3) {      // append to cxq
  4281         iterator->TState = ObjectWaiter::TS_CXQ ;
  4282         for (;;) {
  4283             ObjectWaiter * Tail ;
  4284             Tail = _cxq ;
  4285             if (Tail == NULL) {
  4286                 iterator->_next = NULL ;
  4287                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
  4288                    break ;
  4290             } else {
  4291                 while (Tail->_next != NULL) Tail = Tail->_next ;
  4292                 Tail->_next = iterator ;
  4293                 iterator->_prev = Tail ;
  4294                 iterator->_next = NULL ;
  4295                 break ;
  4298      } else {
  4299         ParkEvent * ev = iterator->_event ;
  4300         iterator->TState = ObjectWaiter::TS_RUN ;
  4301         OrderAccess::fence() ;
  4302         ev->unpark() ;
  4305      if (Policy < 4) {
  4306        iterator->wait_reenter_begin(this);
  4309      // _WaitSetLock protects the wait queue, not the EntryList.  We could
  4310      // move the add-to-EntryList operation, above, outside the critical section
  4311      // protected by _WaitSetLock.  In practice that's not useful.  With the
  4312      // exception of  wait() timeouts and interrupts the monitor owner
  4313      // is the only thread that grabs _WaitSetLock.  There's almost no contention
  4314      // on _WaitSetLock so it's not profitable to reduce the length of the
  4315      // critical section.
  4318   Thread::SpinRelease (&_WaitSetLock) ;
  4320   if (Tally != 0 && ObjectSynchronizer::_sync_Notifications != NULL) {
  4321      ObjectSynchronizer::_sync_Notifications->inc(Tally) ;
  4325 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
  4326 // TODO-FIXME: remove check_slow() -- it's likely dead.
  4328 void ObjectMonitor::check_slow(TRAPS) {
  4329   TEVENT (check_slow - throw IMSX) ;
  4330   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
  4331   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
  4335 // -------------------------------------------------------------------------
  4336 // The raw monitor subsystem is entirely distinct from normal
  4337 // java-synchronization or jni-synchronization.  raw monitors are not
  4338 // associated with objects.  They can be implemented in any manner
  4339 // that makes sense.  The original implementors decided to piggy-back
  4340 // the raw-monitor implementation on the existing Java objectMonitor mechanism.
  4341 // This flaw needs to fixed.  We should reimplement raw monitors as sui-generis.
  4342 // Specifically, we should not implement raw monitors via java monitors.
  4343 // Time permitting, we should disentangle and deconvolve the two implementations
  4344 // and move the resulting raw monitor implementation over to the JVMTI directories.
  4345 // Ideally, the raw monitor implementation would be built on top of
  4346 // park-unpark and nothing else.
  4347 //
  4348 // raw monitors are used mainly by JVMTI
  4349 // The raw monitor implementation borrows the ObjectMonitor structure,
  4350 // but the operators are degenerate and extremely simple.
  4351 //
  4352 // Mixed use of a single objectMonitor instance -- as both a raw monitor
  4353 // and a normal java monitor -- is not permissible.
  4354 //
  4355 // Note that we use the single RawMonitor_lock to protect queue operations for
  4356 // _all_ raw monitors.  This is a scalability impediment, but since raw monitor usage
  4357 // is deprecated and rare, this is not of concern.  The RawMonitor_lock can not
  4358 // be held indefinitely.  The critical sections must be short and bounded.
  4359 //
  4360 // -------------------------------------------------------------------------
  4362 int ObjectMonitor::SimpleEnter (Thread * Self) {
  4363   for (;;) {
  4364     if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
  4365        return OS_OK ;
  4368     ObjectWaiter Node (Self) ;
  4369     Self->_ParkEvent->reset() ;     // strictly optional
  4370     Node.TState = ObjectWaiter::TS_ENTER ;
  4372     RawMonitor_lock->lock_without_safepoint_check() ;
  4373     Node._next  = _EntryList ;
  4374     _EntryList  = &Node ;
  4375     OrderAccess::fence() ;
  4376     if (_owner == NULL && Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
  4377         _EntryList = Node._next ;
  4378         RawMonitor_lock->unlock() ;
  4379         return OS_OK ;
  4381     RawMonitor_lock->unlock() ;
  4382     while (Node.TState == ObjectWaiter::TS_ENTER) {
  4383        Self->_ParkEvent->park() ;
  4388 int ObjectMonitor::SimpleExit (Thread * Self) {
  4389   guarantee (_owner == Self, "invariant") ;
  4390   OrderAccess::release_store_ptr (&_owner, NULL) ;
  4391   OrderAccess::fence() ;
  4392   if (_EntryList == NULL) return OS_OK ;
  4393   ObjectWaiter * w ;
  4395   RawMonitor_lock->lock_without_safepoint_check() ;
  4396   w = _EntryList ;
  4397   if (w != NULL) {
  4398       _EntryList = w->_next ;
  4400   RawMonitor_lock->unlock() ;
  4401   if (w != NULL) {
  4402       guarantee (w ->TState == ObjectWaiter::TS_ENTER, "invariant") ;
  4403       ParkEvent * ev = w->_event ;
  4404       w->TState = ObjectWaiter::TS_RUN ;
  4405       OrderAccess::fence() ;
  4406       ev->unpark() ;
  4408   return OS_OK ;
  4411 int ObjectMonitor::SimpleWait (Thread * Self, jlong millis) {
  4412   guarantee (_owner == Self  , "invariant") ;
  4413   guarantee (_recursions == 0, "invariant") ;
  4415   ObjectWaiter Node (Self) ;
  4416   Node._notified = 0 ;
  4417   Node.TState    = ObjectWaiter::TS_WAIT ;
  4419   RawMonitor_lock->lock_without_safepoint_check() ;
  4420   Node._next     = _WaitSet ;
  4421   _WaitSet       = &Node ;
  4422   RawMonitor_lock->unlock() ;
  4424   SimpleExit (Self) ;
  4425   guarantee (_owner != Self, "invariant") ;
  4427   int ret = OS_OK ;
  4428   if (millis <= 0) {
  4429     Self->_ParkEvent->park();
  4430   } else {
  4431     ret = Self->_ParkEvent->park(millis);
  4434   // If thread still resides on the waitset then unlink it.
  4435   // Double-checked locking -- the usage is safe in this context
  4436   // as we TState is volatile and the lock-unlock operators are
  4437   // serializing (barrier-equivalent).
  4439   if (Node.TState == ObjectWaiter::TS_WAIT) {
  4440     RawMonitor_lock->lock_without_safepoint_check() ;
  4441     if (Node.TState == ObjectWaiter::TS_WAIT) {
  4442       // Simple O(n) unlink, but performance isn't critical here.
  4443       ObjectWaiter * p ;
  4444       ObjectWaiter * q = NULL ;
  4445       for (p = _WaitSet ; p != &Node; p = p->_next) {
  4446          q = p ;
  4448       guarantee (p == &Node, "invariant") ;
  4449       if (q == NULL) {
  4450         guarantee (p == _WaitSet, "invariant") ;
  4451         _WaitSet = p->_next ;
  4452       } else {
  4453         guarantee (p == q->_next, "invariant") ;
  4454         q->_next = p->_next ;
  4456       Node.TState = ObjectWaiter::TS_RUN ;
  4458     RawMonitor_lock->unlock() ;
  4461   guarantee (Node.TState == ObjectWaiter::TS_RUN, "invariant") ;
  4462   SimpleEnter (Self) ;
  4464   guarantee (_owner == Self, "invariant") ;
  4465   guarantee (_recursions == 0, "invariant") ;
  4466   return ret ;
  4469 int ObjectMonitor::SimpleNotify (Thread * Self, bool All) {
  4470   guarantee (_owner == Self, "invariant") ;
  4471   if (_WaitSet == NULL) return OS_OK ;
  4473   // We have two options:
  4474   // A. Transfer the threads from the WaitSet to the EntryList
  4475   // B. Remove the thread from the WaitSet and unpark() it.
  4476   //
  4477   // We use (B), which is crude and results in lots of futile
  4478   // context switching.  In particular (B) induces lots of contention.
  4480   ParkEvent * ev = NULL ;       // consider using a small auto array ...
  4481   RawMonitor_lock->lock_without_safepoint_check() ;
  4482   for (;;) {
  4483       ObjectWaiter * w = _WaitSet ;
  4484       if (w == NULL) break ;
  4485       _WaitSet = w->_next ;
  4486       if (ev != NULL) { ev->unpark(); ev = NULL; }
  4487       ev = w->_event ;
  4488       OrderAccess::loadstore() ;
  4489       w->TState = ObjectWaiter::TS_RUN ;
  4490       OrderAccess::storeload();
  4491       if (!All) break ;
  4493   RawMonitor_lock->unlock() ;
  4494   if (ev != NULL) ev->unpark();
  4495   return OS_OK ;
  4498 // Any JavaThread will enter here with state _thread_blocked
  4499 int ObjectMonitor::raw_enter(TRAPS) {
  4500   TEVENT (raw_enter) ;
  4501   void * Contended ;
  4503   // don't enter raw monitor if thread is being externally suspended, it will
  4504   // surprise the suspender if a "suspended" thread can still enter monitor
  4505   JavaThread * jt = (JavaThread *)THREAD;
  4506   if (THREAD->is_Java_thread()) {
  4507     jt->SR_lock()->lock_without_safepoint_check();
  4508     while (jt->is_external_suspend()) {
  4509       jt->SR_lock()->unlock();
  4510       jt->java_suspend_self();
  4511       jt->SR_lock()->lock_without_safepoint_check();
  4513     // guarded by SR_lock to avoid racing with new external suspend requests.
  4514     Contended = Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) ;
  4515     jt->SR_lock()->unlock();
  4516   } else {
  4517     Contended = Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) ;
  4520   if (Contended == THREAD) {
  4521      _recursions ++ ;
  4522      return OM_OK ;
  4525   if (Contended == NULL) {
  4526      guarantee (_owner == THREAD, "invariant") ;
  4527      guarantee (_recursions == 0, "invariant") ;
  4528      return OM_OK ;
  4531   THREAD->set_current_pending_monitor(this);
  4533   if (!THREAD->is_Java_thread()) {
  4534      // No other non-Java threads besides VM thread would acquire
  4535      // a raw monitor.
  4536      assert(THREAD->is_VM_thread(), "must be VM thread");
  4537      SimpleEnter (THREAD) ;
  4538    } else {
  4539      guarantee (jt->thread_state() == _thread_blocked, "invariant") ;
  4540      for (;;) {
  4541        jt->set_suspend_equivalent();
  4542        // cleared by handle_special_suspend_equivalent_condition() or
  4543        // java_suspend_self()
  4544        SimpleEnter (THREAD) ;
  4546        // were we externally suspended while we were waiting?
  4547        if (!jt->handle_special_suspend_equivalent_condition()) break ;
  4549        // This thread was externally suspended
  4550        //
  4551        // This logic isn't needed for JVMTI raw monitors,
  4552        // but doesn't hurt just in case the suspend rules change. This
  4553            // logic is needed for the ObjectMonitor.wait() reentry phase.
  4554            // We have reentered the contended monitor, but while we were
  4555            // waiting another thread suspended us. We don't want to reenter
  4556            // the monitor while suspended because that would surprise the
  4557            // thread that suspended us.
  4558            //
  4559            // Drop the lock -
  4560        SimpleExit (THREAD) ;
  4562            jt->java_suspend_self();
  4565      assert(_owner == THREAD, "Fatal error with monitor owner!");
  4566      assert(_recursions == 0, "Fatal error with monitor recursions!");
  4569   THREAD->set_current_pending_monitor(NULL);
  4570   guarantee (_recursions == 0, "invariant") ;
  4571   return OM_OK;
  4574 // Used mainly for JVMTI raw monitor implementation
  4575 // Also used for ObjectMonitor::wait().
  4576 int ObjectMonitor::raw_exit(TRAPS) {
  4577   TEVENT (raw_exit) ;
  4578   if (THREAD != _owner) {
  4579     return OM_ILLEGAL_MONITOR_STATE;
  4581   if (_recursions > 0) {
  4582     --_recursions ;
  4583     return OM_OK ;
  4586   void * List = _EntryList ;
  4587   SimpleExit (THREAD) ;
  4589   return OM_OK;
  4592 // Used for JVMTI raw monitor implementation.
  4593 // All JavaThreads will enter here with state _thread_blocked
  4595 int ObjectMonitor::raw_wait(jlong millis, bool interruptible, TRAPS) {
  4596   TEVENT (raw_wait) ;
  4597   if (THREAD != _owner) {
  4598     return OM_ILLEGAL_MONITOR_STATE;
  4601   // To avoid spurious wakeups we reset the parkevent -- This is strictly optional.
  4602   // The caller must be able to tolerate spurious returns from raw_wait().
  4603   THREAD->_ParkEvent->reset() ;
  4604   OrderAccess::fence() ;
  4606   // check interrupt event
  4607   if (interruptible && Thread::is_interrupted(THREAD, true)) {
  4608     return OM_INTERRUPTED;
  4611   intptr_t save = _recursions ;
  4612   _recursions = 0 ;
  4613   _waiters ++ ;
  4614   if (THREAD->is_Java_thread()) {
  4615     guarantee (((JavaThread *) THREAD)->thread_state() == _thread_blocked, "invariant") ;
  4616     ((JavaThread *)THREAD)->set_suspend_equivalent();
  4618   int rv = SimpleWait (THREAD, millis) ;
  4619   _recursions = save ;
  4620   _waiters -- ;
  4622   guarantee (THREAD == _owner, "invariant") ;
  4623   if (THREAD->is_Java_thread()) {
  4624      JavaThread * jSelf = (JavaThread *) THREAD ;
  4625      for (;;) {
  4626         if (!jSelf->handle_special_suspend_equivalent_condition()) break ;
  4627         SimpleExit (THREAD) ;
  4628         jSelf->java_suspend_self();
  4629         SimpleEnter (THREAD) ;
  4630         jSelf->set_suspend_equivalent() ;
  4633   guarantee (THREAD == _owner, "invariant") ;
  4635   if (interruptible && Thread::is_interrupted(THREAD, true)) {
  4636     return OM_INTERRUPTED;
  4638   return OM_OK ;
  4641 int ObjectMonitor::raw_notify(TRAPS) {
  4642   TEVENT (raw_notify) ;
  4643   if (THREAD != _owner) {
  4644     return OM_ILLEGAL_MONITOR_STATE;
  4646   SimpleNotify (THREAD, false) ;
  4647   return OM_OK;
  4650 int ObjectMonitor::raw_notifyAll(TRAPS) {
  4651   TEVENT (raw_notifyAll) ;
  4652   if (THREAD != _owner) {
  4653     return OM_ILLEGAL_MONITOR_STATE;
  4655   SimpleNotify (THREAD, true) ;
  4656   return OM_OK;
  4659 #ifndef PRODUCT
  4660 void ObjectMonitor::verify() {
  4663 void ObjectMonitor::print() {
  4665 #endif
  4667 //------------------------------------------------------------------------------
  4668 // Non-product code
  4670 #ifndef PRODUCT
  4672 void ObjectSynchronizer::trace_locking(Handle locking_obj, bool is_compiled,
  4673                                        bool is_method, bool is_locking) {
  4674   // Don't know what to do here
  4677 // Verify all monitors in the monitor cache, the verification is weak.
  4678 void ObjectSynchronizer::verify() {
  4679   ObjectMonitor* block = gBlockList;
  4680   ObjectMonitor* mid;
  4681   while (block) {
  4682     assert(block->object() == CHAINMARKER, "must be a block header");
  4683     for (int i = 1; i < _BLOCKSIZE; i++) {
  4684       mid = block + i;
  4685       oop object = (oop) mid->object();
  4686       if (object != NULL) {
  4687         mid->verify();
  4690     block = (ObjectMonitor*) block->FreeNext;
  4694 // Check if monitor belongs to the monitor cache
  4695 // The list is grow-only so it's *relatively* safe to traverse
  4696 // the list of extant blocks without taking a lock.
  4698 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
  4699   ObjectMonitor* block = gBlockList;
  4701   while (block) {
  4702     assert(block->object() == CHAINMARKER, "must be a block header");
  4703     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
  4704       address mon = (address) monitor;
  4705       address blk = (address) block;
  4706       size_t diff = mon - blk;
  4707       assert((diff % sizeof(ObjectMonitor)) == 0, "check");
  4708       return 1;
  4710     block = (ObjectMonitor*) block->FreeNext;
  4712   return 0;
  4715 #endif

mercurial