src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Mon, 01 Feb 2010 17:35:05 -0700

author
dcubed
date
Mon, 01 Feb 2010 17:35:05 -0700
changeset 1648
6deeaebad47a
parent 1495
323bd24c6520
child 1651
7f8790caccb0
permissions
-rw-r--r--

6902182: 4/4 Starting with jdwp agent should not incur performance penalty
Summary: Rename can_post_exceptions support to can_post_on_exceptions. Add support for should_post_on_exceptions flag to permit per JavaThread optimizations.
Reviewed-by: never, kvn, dcubed
Contributed-by: tom.deneau@amd.com

     1 /*
     2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
    28 #define __ _masm->
    31 //------------------------------------------------------------
    34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    35   if (opr->is_constant()) {
    36     LIR_Const* constant = opr->as_constant_ptr();
    37     switch (constant->type()) {
    38       case T_INT: {
    39         jint value = constant->as_jint();
    40         return Assembler::is_simm13(value);
    41       }
    43       default:
    44         return false;
    45     }
    46   }
    47   return false;
    48 }
    51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    52   switch (op->code()) {
    53     case lir_null_check:
    54     return true;
    57     case lir_add:
    58     case lir_ushr:
    59     case lir_shr:
    60     case lir_shl:
    61       // integer shifts and adds are always one instruction
    62       return op->result_opr()->is_single_cpu();
    65     case lir_move: {
    66       LIR_Op1* op1 = op->as_Op1();
    67       LIR_Opr src = op1->in_opr();
    68       LIR_Opr dst = op1->result_opr();
    70       if (src == dst) {
    71         NEEDS_CLEANUP;
    72         // this works around a problem where moves with the same src and dst
    73         // end up in the delay slot and then the assembler swallows the mov
    74         // since it has no effect and then it complains because the delay slot
    75         // is empty.  returning false stops the optimizer from putting this in
    76         // the delay slot
    77         return false;
    78       }
    80       // don't put moves involving oops into the delay slot since the VerifyOops code
    81       // will make it much larger than a single instruction.
    82       if (VerifyOops) {
    83         return false;
    84       }
    86       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    87           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
    88         return false;
    89       }
    91       if (dst->is_register()) {
    92         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
    93           return !PatchALot;
    94         } else if (src->is_single_stack()) {
    95           return true;
    96         }
    97       }
    99       if (src->is_register()) {
   100         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   101           return !PatchALot;
   102         } else if (dst->is_single_stack()) {
   103           return true;
   104         }
   105       }
   107       if (dst->is_register() &&
   108           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   109            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   110         return true;
   111       }
   113       return false;
   114     }
   116     default:
   117       return false;
   118   }
   119   ShouldNotReachHere();
   120 }
   123 LIR_Opr LIR_Assembler::receiverOpr() {
   124   return FrameMap::O0_oop_opr;
   125 }
   128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   129   return FrameMap::I0_oop_opr;
   130 }
   133 LIR_Opr LIR_Assembler::osrBufferPointer() {
   134   return FrameMap::I0_opr;
   135 }
   138 int LIR_Assembler::initial_frame_size_in_bytes() {
   139   return in_bytes(frame_map()->framesize_in_bytes());
   140 }
   143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   144 // we fetch the class of the receiver (O0) and compare it with the cached class.
   145 // If they do not match we jump to slow case.
   146 int LIR_Assembler::check_icache() {
   147   int offset = __ offset();
   148   __ inline_cache_check(O0, G5_inline_cache_reg);
   149   return offset;
   150 }
   153 void LIR_Assembler::osr_entry() {
   154   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   155   //
   156   //   1. Create a new compiled activation.
   157   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   158   //      at the osr_bci; it is not initialized.
   159   //   3. Jump to the continuation address in compiled code to resume execution.
   161   // OSR entry point
   162   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   163   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   164   ValueStack* entry_state = osr_entry->end()->state();
   165   int number_of_locks = entry_state->locks_size();
   167   // Create a frame for the compiled activation.
   168   __ build_frame(initial_frame_size_in_bytes());
   170   // OSR buffer is
   171   //
   172   // locals[nlocals-1..0]
   173   // monitors[number_of_locks-1..0]
   174   //
   175   // locals is a direct copy of the interpreter frame so in the osr buffer
   176   // so first slot in the local array is the last local from the interpreter
   177   // and last slot is local[0] (receiver) from the interpreter
   178   //
   179   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   180   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   181   // in the interpreter frame (the method lock if a sync method)
   183   // Initialize monitors in the compiled activation.
   184   //   I0: pointer to osr buffer
   185   //
   186   // All other registers are dead at this point and the locals will be
   187   // copied into place by code emitted in the IR.
   189   Register OSR_buf = osrBufferPointer()->as_register();
   190   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   191     int monitor_offset = BytesPerWord * method()->max_locals() +
   192       (2 * BytesPerWord) * (number_of_locks - 1);
   193     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   194     // the OSR buffer using 2 word entries: first the lock and then
   195     // the oop.
   196     for (int i = 0; i < number_of_locks; i++) {
   197       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   198 #ifdef ASSERT
   199       // verify the interpreter's monitor has a non-null object
   200       {
   201         Label L;
   202         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   203         __ cmp(G0, O7);
   204         __ br(Assembler::notEqual, false, Assembler::pt, L);
   205         __ delayed()->nop();
   206         __ stop("locked object is NULL");
   207         __ bind(L);
   208       }
   209 #endif // ASSERT
   210       // Copy the lock field into the compiled activation.
   211       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   212       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   213       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   214       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   215     }
   216   }
   217 }
   220 // Optimized Library calls
   221 // This is the fast version of java.lang.String.compare; it has not
   222 // OSR-entry and therefore, we generate a slow version for OSR's
   223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   224   Register str0 = left->as_register();
   225   Register str1 = right->as_register();
   227   Label Ldone;
   229   Register result = dst->as_register();
   230   {
   231     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
   232     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
   233     // Also, get string0.count-string1.count in o7 and get the condition code set
   234     // Note: some instructions have been hoisted for better instruction scheduling
   236     Register tmp0 = L0;
   237     Register tmp1 = L1;
   238     Register tmp2 = L2;
   240     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   241     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   242     int  count_offset = java_lang_String:: count_offset_in_bytes();
   244     __ ld_ptr(str0, value_offset, tmp0);
   245     __ ld(str0, offset_offset, tmp2);
   246     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   247     __ ld(str0, count_offset, str0);
   248     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   250     // str1 may be null
   251     add_debug_info_for_null_check_here(info);
   253     __ ld_ptr(str1, value_offset, tmp1);
   254     __ add(tmp0, tmp2, tmp0);
   256     __ ld(str1, offset_offset, tmp2);
   257     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   258     __ ld(str1, count_offset, str1);
   259     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   260     __ subcc(str0, str1, O7);
   261     __ add(tmp1, tmp2, tmp1);
   262   }
   264   {
   265     // Compute the minimum of the string lengths, scale it and store it in limit
   266     Register count0 = I0;
   267     Register count1 = I1;
   268     Register limit  = L3;
   270     Label Lskip;
   271     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   272     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   273     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   274     __ bind(Lskip);
   276     // If either string is empty (or both of them) the result is the difference in lengths
   277     __ cmp(limit, 0);
   278     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   279     __ delayed()->mov(O7, result);  // result is difference in lengths
   280   }
   282   {
   283     // Neither string is empty
   284     Label Lloop;
   286     Register base0 = L0;
   287     Register base1 = L1;
   288     Register chr0  = I0;
   289     Register chr1  = I1;
   290     Register limit = L3;
   292     // Shift base0 and base1 to the end of the arrays, negate limit
   293     __ add(base0, limit, base0);
   294     __ add(base1, limit, base1);
   295     __ neg(limit);  // limit = -min{string0.count, strin1.count}
   297     __ lduh(base0, limit, chr0);
   298     __ bind(Lloop);
   299     __ lduh(base1, limit, chr1);
   300     __ subcc(chr0, chr1, chr0);
   301     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   302     assert(chr0 == result, "result must be pre-placed");
   303     __ delayed()->inccc(limit, sizeof(jchar));
   304     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   305     __ delayed()->lduh(base0, limit, chr0);
   306   }
   308   // If strings are equal up to min length, return the length difference.
   309   __ mov(O7, result);
   311   // Otherwise, return the difference between the first mismatched chars.
   312   __ bind(Ldone);
   313 }
   316 // --------------------------------------------------------------------------------------------
   318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   319   if (!GenerateSynchronizationCode) return;
   321   Register obj_reg = obj_opr->as_register();
   322   Register lock_reg = lock_opr->as_register();
   324   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   325   Register reg = mon_addr.base();
   326   int offset = mon_addr.disp();
   327   // compute pointer to BasicLock
   328   if (mon_addr.is_simm13()) {
   329     __ add(reg, offset, lock_reg);
   330   }
   331   else {
   332     __ set(offset, lock_reg);
   333     __ add(reg, lock_reg, lock_reg);
   334   }
   335   // unlock object
   336   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   337   // _slow_case_stubs->append(slow_case);
   338   // temporary fix: must be created after exceptionhandler, therefore as call stub
   339   _slow_case_stubs->append(slow_case);
   340   if (UseFastLocking) {
   341     // try inlined fast unlocking first, revert to slow locking if it fails
   342     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   343     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   344     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   345   } else {
   346     // always do slow unlocking
   347     // note: the slow unlocking code could be inlined here, however if we use
   348     //       slow unlocking, speed doesn't matter anyway and this solution is
   349     //       simpler and requires less duplicated code - additionally, the
   350     //       slow unlocking code is the same in either case which simplifies
   351     //       debugging
   352     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   353     __ delayed()->nop();
   354   }
   355   // done
   356   __ bind(*slow_case->continuation());
   357 }
   360 void LIR_Assembler::emit_exception_handler() {
   361   // if the last instruction is a call (typically to do a throw which
   362   // is coming at the end after block reordering) the return address
   363   // must still point into the code area in order to avoid assertion
   364   // failures when searching for the corresponding bci => add a nop
   365   // (was bug 5/14/1999 - gri)
   366   __ nop();
   368   // generate code for exception handler
   369   ciMethod* method = compilation()->method();
   371   address handler_base = __ start_a_stub(exception_handler_size);
   373   if (handler_base == NULL) {
   374     // not enough space left for the handler
   375     bailout("exception handler overflow");
   376     return;
   377   }
   378 #ifdef ASSERT
   379   int offset = code_offset();
   380 #endif // ASSERT
   381   compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
   384   if (compilation()->has_exception_handlers() || compilation()->env()->jvmti_can_post_on_exceptions()) {
   385     __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
   386     __ delayed()->nop();
   387   }
   389   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   390   __ delayed()->nop();
   391   debug_only(__ stop("should have gone to the caller");)
   392   assert(code_offset() - offset <= exception_handler_size, "overflow");
   394   __ end_a_stub();
   395 }
   397 void LIR_Assembler::emit_deopt_handler() {
   398   // if the last instruction is a call (typically to do a throw which
   399   // is coming at the end after block reordering) the return address
   400   // must still point into the code area in order to avoid assertion
   401   // failures when searching for the corresponding bci => add a nop
   402   // (was bug 5/14/1999 - gri)
   403   __ nop();
   405   // generate code for deopt handler
   406   ciMethod* method = compilation()->method();
   407   address handler_base = __ start_a_stub(deopt_handler_size);
   408   if (handler_base == NULL) {
   409     // not enough space left for the handler
   410     bailout("deopt handler overflow");
   411     return;
   412   }
   413 #ifdef ASSERT
   414   int offset = code_offset();
   415 #endif // ASSERT
   416   compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
   418   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   420   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   421   __ delayed()->nop();
   423   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   425   debug_only(__ stop("should have gone to the caller");)
   427   __ end_a_stub();
   428 }
   431 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   432   if (o == NULL) {
   433     __ set(NULL_WORD, reg);
   434   } else {
   435     int oop_index = __ oop_recorder()->find_index(o);
   436     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   437     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   438   }
   439 }
   442 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   443   // Allocate a new index in oop table to hold the oop once it's been patched
   444   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   445   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   447   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   448   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   449   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   450   // NULL will be dynamically patched later and the patched value may be large.  We must
   451   // therefore generate the sethi/add as a placeholders
   452   __ patchable_set(addrlit, reg);
   454   patching_epilog(patch, lir_patch_normal, reg, info);
   455 }
   458 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   459   Register Rdividend = op->in_opr1()->as_register();
   460   Register Rdivisor  = noreg;
   461   Register Rscratch  = op->in_opr3()->as_register();
   462   Register Rresult   = op->result_opr()->as_register();
   463   int divisor = -1;
   465   if (op->in_opr2()->is_register()) {
   466     Rdivisor = op->in_opr2()->as_register();
   467   } else {
   468     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   469     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   470   }
   472   assert(Rdividend != Rscratch, "");
   473   assert(Rdivisor  != Rscratch, "");
   474   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   476   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   477     // convert division by a power of two into some shifts and logical operations
   478     if (op->code() == lir_idiv) {
   479       if (divisor == 2) {
   480         __ srl(Rdividend, 31, Rscratch);
   481       } else {
   482         __ sra(Rdividend, 31, Rscratch);
   483         __ and3(Rscratch, divisor - 1, Rscratch);
   484       }
   485       __ add(Rdividend, Rscratch, Rscratch);
   486       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   487       return;
   488     } else {
   489       if (divisor == 2) {
   490         __ srl(Rdividend, 31, Rscratch);
   491       } else {
   492         __ sra(Rdividend, 31, Rscratch);
   493         __ and3(Rscratch, divisor - 1,Rscratch);
   494       }
   495       __ add(Rdividend, Rscratch, Rscratch);
   496       __ andn(Rscratch, divisor - 1,Rscratch);
   497       __ sub(Rdividend, Rscratch, Rresult);
   498       return;
   499     }
   500   }
   502   __ sra(Rdividend, 31, Rscratch);
   503   __ wry(Rscratch);
   504   if (!VM_Version::v9_instructions_work()) {
   505     // v9 doesn't require these nops
   506     __ nop();
   507     __ nop();
   508     __ nop();
   509     __ nop();
   510   }
   512   add_debug_info_for_div0_here(op->info());
   514   if (Rdivisor != noreg) {
   515     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   516   } else {
   517     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   518     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   519   }
   521   Label skip;
   522   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   523   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   524   __ bind(skip);
   526   if (op->code() == lir_irem) {
   527     if (Rdivisor != noreg) {
   528       __ smul(Rscratch, Rdivisor, Rscratch);
   529     } else {
   530       __ smul(Rscratch, divisor, Rscratch);
   531     }
   532     __ sub(Rdividend, Rscratch, Rresult);
   533   }
   534 }
   537 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   538 #ifdef ASSERT
   539   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   540   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   541   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   542 #endif
   543   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   545   if (op->cond() == lir_cond_always) {
   546     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   547   } else if (op->code() == lir_cond_float_branch) {
   548     assert(op->ublock() != NULL, "must have unordered successor");
   549     bool is_unordered = (op->ublock() == op->block());
   550     Assembler::Condition acond;
   551     switch (op->cond()) {
   552       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   553       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   554       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   555       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   556       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   557       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   558       default :                         ShouldNotReachHere();
   559     };
   561     if (!VM_Version::v9_instructions_work()) {
   562       __ nop();
   563     }
   564     __ fb( acond, false, Assembler::pn, *(op->label()));
   565   } else {
   566     assert (op->code() == lir_branch, "just checking");
   568     Assembler::Condition acond;
   569     switch (op->cond()) {
   570       case lir_cond_equal:        acond = Assembler::equal;                break;
   571       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   572       case lir_cond_less:         acond = Assembler::less;                 break;
   573       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   574       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   575       case lir_cond_greater:      acond = Assembler::greater;              break;
   576       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   577       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   578       default:                         ShouldNotReachHere();
   579     };
   581     // sparc has different condition codes for testing 32-bit
   582     // vs. 64-bit values.  We could always test xcc is we could
   583     // guarantee that 32-bit loads always sign extended but that isn't
   584     // true and since sign extension isn't free, it would impose a
   585     // slight cost.
   586 #ifdef _LP64
   587     if  (op->type() == T_INT) {
   588       __ br(acond, false, Assembler::pn, *(op->label()));
   589     } else
   590 #endif
   591       __ brx(acond, false, Assembler::pn, *(op->label()));
   592   }
   593   // The peephole pass fills the delay slot
   594 }
   597 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   598   Bytecodes::Code code = op->bytecode();
   599   LIR_Opr dst = op->result_opr();
   601   switch(code) {
   602     case Bytecodes::_i2l: {
   603       Register rlo  = dst->as_register_lo();
   604       Register rhi  = dst->as_register_hi();
   605       Register rval = op->in_opr()->as_register();
   606 #ifdef _LP64
   607       __ sra(rval, 0, rlo);
   608 #else
   609       __ mov(rval, rlo);
   610       __ sra(rval, BitsPerInt-1, rhi);
   611 #endif
   612       break;
   613     }
   614     case Bytecodes::_i2d:
   615     case Bytecodes::_i2f: {
   616       bool is_double = (code == Bytecodes::_i2d);
   617       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   618       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   619       FloatRegister rsrc = op->in_opr()->as_float_reg();
   620       if (rsrc != rdst) {
   621         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   622       }
   623       __ fitof(w, rdst, rdst);
   624       break;
   625     }
   626     case Bytecodes::_f2i:{
   627       FloatRegister rsrc = op->in_opr()->as_float_reg();
   628       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   629       Label L;
   630       // result must be 0 if value is NaN; test by comparing value to itself
   631       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   632       if (!VM_Version::v9_instructions_work()) {
   633         __ nop();
   634       }
   635       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   636       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   637       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   638       // move integer result from float register to int register
   639       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   640       __ bind (L);
   641       break;
   642     }
   643     case Bytecodes::_l2i: {
   644       Register rlo  = op->in_opr()->as_register_lo();
   645       Register rhi  = op->in_opr()->as_register_hi();
   646       Register rdst = dst->as_register();
   647 #ifdef _LP64
   648       __ sra(rlo, 0, rdst);
   649 #else
   650       __ mov(rlo, rdst);
   651 #endif
   652       break;
   653     }
   654     case Bytecodes::_d2f:
   655     case Bytecodes::_f2d: {
   656       bool is_double = (code == Bytecodes::_f2d);
   657       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   658       LIR_Opr val = op->in_opr();
   659       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   660       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   661       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   662       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   663       __ ftof(vw, dw, rval, rdst);
   664       break;
   665     }
   666     case Bytecodes::_i2s:
   667     case Bytecodes::_i2b: {
   668       Register rval = op->in_opr()->as_register();
   669       Register rdst = dst->as_register();
   670       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   671       __ sll (rval, shift, rdst);
   672       __ sra (rdst, shift, rdst);
   673       break;
   674     }
   675     case Bytecodes::_i2c: {
   676       Register rval = op->in_opr()->as_register();
   677       Register rdst = dst->as_register();
   678       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   679       __ sll (rval, shift, rdst);
   680       __ srl (rdst, shift, rdst);
   681       break;
   682     }
   684     default: ShouldNotReachHere();
   685   }
   686 }
   689 void LIR_Assembler::align_call(LIR_Code) {
   690   // do nothing since all instructions are word aligned on sparc
   691 }
   694 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
   695   __ call(entry, rtype);
   696   // the peephole pass fills the delay slot
   697 }
   700 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
   701   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   702   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   703   __ relocate(rspec);
   704   __ call(entry, relocInfo::none);
   705   // the peephole pass fills the delay slot
   706 }
   709 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
   710   add_debug_info_for_null_check_here(info);
   711   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
   712   if (__ is_simm13(vtable_offset) ) {
   713     __ ld_ptr(G3_scratch, vtable_offset, G5_method);
   714   } else {
   715     // This will generate 2 instructions
   716     __ set(vtable_offset, G5_method);
   717     // ld_ptr, set_hi, set
   718     __ ld_ptr(G3_scratch, G5_method, G5_method);
   719   }
   720   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   721   __ callr(G3_scratch, G0);
   722   // the peephole pass fills the delay slot
   723 }
   726 // load with 32-bit displacement
   727 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
   728   int load_offset = code_offset();
   729   if (Assembler::is_simm13(disp)) {
   730     if (info != NULL) add_debug_info_for_null_check_here(info);
   731     switch(ld_type) {
   732       case T_BOOLEAN: // fall through
   733       case T_BYTE  : __ ldsb(s, disp, d); break;
   734       case T_CHAR  : __ lduh(s, disp, d); break;
   735       case T_SHORT : __ ldsh(s, disp, d); break;
   736       case T_INT   : __ ld(s, disp, d); break;
   737       case T_ADDRESS:// fall through
   738       case T_ARRAY : // fall through
   739       case T_OBJECT: __ ld_ptr(s, disp, d); break;
   740       default      : ShouldNotReachHere();
   741     }
   742   } else {
   743     __ set(disp, O7);
   744     if (info != NULL) add_debug_info_for_null_check_here(info);
   745     load_offset = code_offset();
   746     switch(ld_type) {
   747       case T_BOOLEAN: // fall through
   748       case T_BYTE  : __ ldsb(s, O7, d); break;
   749       case T_CHAR  : __ lduh(s, O7, d); break;
   750       case T_SHORT : __ ldsh(s, O7, d); break;
   751       case T_INT   : __ ld(s, O7, d); break;
   752       case T_ADDRESS:// fall through
   753       case T_ARRAY : // fall through
   754       case T_OBJECT: __ ld_ptr(s, O7, d); break;
   755       default      : ShouldNotReachHere();
   756     }
   757   }
   758   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
   759   return load_offset;
   760 }
   763 // store with 32-bit displacement
   764 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   765   if (Assembler::is_simm13(offset)) {
   766     if (info != NULL)  add_debug_info_for_null_check_here(info);
   767     switch (type) {
   768       case T_BOOLEAN: // fall through
   769       case T_BYTE  : __ stb(value, base, offset); break;
   770       case T_CHAR  : __ sth(value, base, offset); break;
   771       case T_SHORT : __ sth(value, base, offset); break;
   772       case T_INT   : __ stw(value, base, offset); break;
   773       case T_ADDRESS:// fall through
   774       case T_ARRAY : // fall through
   775       case T_OBJECT: __ st_ptr(value, base, offset); break;
   776       default      : ShouldNotReachHere();
   777     }
   778   } else {
   779     __ set(offset, O7);
   780     if (info != NULL) add_debug_info_for_null_check_here(info);
   781     switch (type) {
   782       case T_BOOLEAN: // fall through
   783       case T_BYTE  : __ stb(value, base, O7); break;
   784       case T_CHAR  : __ sth(value, base, O7); break;
   785       case T_SHORT : __ sth(value, base, O7); break;
   786       case T_INT   : __ stw(value, base, O7); break;
   787       case T_ADDRESS:// fall through
   788       case T_ARRAY : //fall through
   789       case T_OBJECT: __ st_ptr(value, base, O7); break;
   790       default      : ShouldNotReachHere();
   791     }
   792   }
   793   // Note: Do the store before verification as the code might be patched!
   794   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
   795 }
   798 // load float with 32-bit displacement
   799 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
   800   FloatRegisterImpl::Width w;
   801   switch(ld_type) {
   802     case T_FLOAT : w = FloatRegisterImpl::S; break;
   803     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   804     default      : ShouldNotReachHere();
   805   }
   807   if (Assembler::is_simm13(disp)) {
   808     if (info != NULL) add_debug_info_for_null_check_here(info);
   809     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
   810       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
   811       __ ldf(FloatRegisterImpl::S, s, disp               , d);
   812     } else {
   813       __ ldf(w, s, disp, d);
   814     }
   815   } else {
   816     __ set(disp, O7);
   817     if (info != NULL) add_debug_info_for_null_check_here(info);
   818     __ ldf(w, s, O7, d);
   819   }
   820 }
   823 // store float with 32-bit displacement
   824 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   825   FloatRegisterImpl::Width w;
   826   switch(type) {
   827     case T_FLOAT : w = FloatRegisterImpl::S; break;
   828     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   829     default      : ShouldNotReachHere();
   830   }
   832   if (Assembler::is_simm13(offset)) {
   833     if (info != NULL) add_debug_info_for_null_check_here(info);
   834     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
   835       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
   836       __ stf(FloatRegisterImpl::S, value             , base, offset);
   837     } else {
   838       __ stf(w, value, base, offset);
   839     }
   840   } else {
   841     __ set(offset, O7);
   842     if (info != NULL) add_debug_info_for_null_check_here(info);
   843     __ stf(w, value, O7, base);
   844   }
   845 }
   848 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
   849   int store_offset;
   850   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   851     assert(!unaligned, "can't handle this");
   852     // for offsets larger than a simm13 we setup the offset in O7
   853     __ set(offset, O7);
   854     store_offset = store(from_reg, base, O7, type);
   855   } else {
   856     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   857     store_offset = code_offset();
   858     switch (type) {
   859       case T_BOOLEAN: // fall through
   860       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   861       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   862       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   863       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   864       case T_LONG  :
   865 #ifdef _LP64
   866         if (unaligned || PatchALot) {
   867           __ srax(from_reg->as_register_lo(), 32, O7);
   868           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   869           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   870         } else {
   871           __ stx(from_reg->as_register_lo(), base, offset);
   872         }
   873 #else
   874         assert(Assembler::is_simm13(offset + 4), "must be");
   875         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   876         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   877 #endif
   878         break;
   879       case T_ADDRESS:// fall through
   880       case T_ARRAY : // fall through
   881       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
   882       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   883       case T_DOUBLE:
   884         {
   885           FloatRegister reg = from_reg->as_double_reg();
   886           // split unaligned stores
   887           if (unaligned || PatchALot) {
   888             assert(Assembler::is_simm13(offset + 4), "must be");
   889             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   890             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   891           } else {
   892             __ stf(FloatRegisterImpl::D, reg, base, offset);
   893           }
   894           break;
   895         }
   896       default      : ShouldNotReachHere();
   897     }
   898   }
   899   return store_offset;
   900 }
   903 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
   904   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   905   int store_offset = code_offset();
   906   switch (type) {
   907     case T_BOOLEAN: // fall through
   908     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   909     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   910     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   911     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   912     case T_LONG  :
   913 #ifdef _LP64
   914       __ stx(from_reg->as_register_lo(), base, disp);
   915 #else
   916       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   917       __ std(from_reg->as_register_hi(), base, disp);
   918 #endif
   919       break;
   920     case T_ADDRESS:// fall through
   921     case T_ARRAY : // fall through
   922     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
   923     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   924     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   925     default      : ShouldNotReachHere();
   926   }
   927   return store_offset;
   928 }
   931 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
   932   int load_offset;
   933   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   934     assert(base != O7, "destroying register");
   935     assert(!unaligned, "can't handle this");
   936     // for offsets larger than a simm13 we setup the offset in O7
   937     __ set(offset, O7);
   938     load_offset = load(base, O7, to_reg, type);
   939   } else {
   940     load_offset = code_offset();
   941     switch(type) {
   942       case T_BOOLEAN: // fall through
   943       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   944       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   945       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   946       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   947       case T_LONG  :
   948         if (!unaligned) {
   949 #ifdef _LP64
   950           __ ldx(base, offset, to_reg->as_register_lo());
   951 #else
   952           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   953                  "must be sequential");
   954           __ ldd(base, offset, to_reg->as_register_hi());
   955 #endif
   956         } else {
   957 #ifdef _LP64
   958           assert(base != to_reg->as_register_lo(), "can't handle this");
   959           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   960           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   961           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   962           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   963           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   964 #else
   965           if (base == to_reg->as_register_lo()) {
   966             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   967             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   968           } else {
   969             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   970             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   971           }
   972 #endif
   973         }
   974         break;
   975       case T_ADDRESS:// fall through
   976       case T_ARRAY : // fall through
   977       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
   978       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
   979       case T_DOUBLE:
   980         {
   981           FloatRegister reg = to_reg->as_double_reg();
   982           // split unaligned loads
   983           if (unaligned || PatchALot) {
   984             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
   985             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
   986           } else {
   987             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
   988           }
   989           break;
   990         }
   991       default      : ShouldNotReachHere();
   992     }
   993     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
   994   }
   995   return load_offset;
   996 }
   999 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
  1000   int load_offset = code_offset();
  1001   switch(type) {
  1002     case T_BOOLEAN: // fall through
  1003     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
  1004     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
  1005     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
  1006     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
  1007     case T_ADDRESS:// fall through
  1008     case T_ARRAY : // fall through
  1009     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1010     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1011     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1012     case T_LONG  :
  1013 #ifdef _LP64
  1014       __ ldx(base, disp, to_reg->as_register_lo());
  1015 #else
  1016       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1017              "must be sequential");
  1018       __ ldd(base, disp, to_reg->as_register_hi());
  1019 #endif
  1020       break;
  1021     default      : ShouldNotReachHere();
  1023   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1024   return load_offset;
  1028 // load/store with an Address
  1029 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
  1030   load(a.base(), a.disp() + offset, d, ld_type, info);
  1034 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1035   store(value, dest.base(), dest.disp() + offset, type, info);
  1039 // loadf/storef with an Address
  1040 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
  1041   load(a.base(), a.disp() + offset, d, ld_type, info);
  1045 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1046   store(value, dest.base(), dest.disp() + offset, type, info);
  1050 // load/store with an Address
  1051 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
  1052   load(as_Address(a), d, ld_type, info);
  1056 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1057   store(value, as_Address(dest), type, info);
  1061 // loadf/storef with an Address
  1062 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
  1063   load(as_Address(a), d, ld_type, info);
  1067 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1068   store(value, as_Address(dest), type, info);
  1072 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1073   LIR_Const* c = src->as_constant_ptr();
  1074   switch (c->type()) {
  1075     case T_INT:
  1076     case T_FLOAT: {
  1077       Register src_reg = O7;
  1078       int value = c->as_jint_bits();
  1079       if (value == 0) {
  1080         src_reg = G0;
  1081       } else {
  1082         __ set(value, O7);
  1084       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1085       __ stw(src_reg, addr.base(), addr.disp());
  1086       break;
  1088     case T_OBJECT: {
  1089       Register src_reg = O7;
  1090       jobject2reg(c->as_jobject(), src_reg);
  1091       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1092       __ st_ptr(src_reg, addr.base(), addr.disp());
  1093       break;
  1095     case T_LONG:
  1096     case T_DOUBLE: {
  1097       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1099       Register tmp = O7;
  1100       int value_lo = c->as_jint_lo_bits();
  1101       if (value_lo == 0) {
  1102         tmp = G0;
  1103       } else {
  1104         __ set(value_lo, O7);
  1106       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1107       int value_hi = c->as_jint_hi_bits();
  1108       if (value_hi == 0) {
  1109         tmp = G0;
  1110       } else {
  1111         __ set(value_hi, O7);
  1113       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1114       break;
  1116     default:
  1117       Unimplemented();
  1122 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
  1123   LIR_Const* c = src->as_constant_ptr();
  1124   LIR_Address* addr     = dest->as_address_ptr();
  1125   Register base = addr->base()->as_pointer_register();
  1127   if (info != NULL) {
  1128     add_debug_info_for_null_check_here(info);
  1130   switch (c->type()) {
  1131     case T_INT:
  1132     case T_FLOAT: {
  1133       LIR_Opr tmp = FrameMap::O7_opr;
  1134       int value = c->as_jint_bits();
  1135       if (value == 0) {
  1136         tmp = FrameMap::G0_opr;
  1137       } else if (Assembler::is_simm13(value)) {
  1138         __ set(value, O7);
  1140       if (addr->index()->is_valid()) {
  1141         assert(addr->disp() == 0, "must be zero");
  1142         store(tmp, base, addr->index()->as_pointer_register(), type);
  1143       } else {
  1144         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1145         store(tmp, base, addr->disp(), type);
  1147       break;
  1149     case T_LONG:
  1150     case T_DOUBLE: {
  1151       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1152       assert(Assembler::is_simm13(addr->disp()) &&
  1153              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1155       Register tmp = O7;
  1156       int value_lo = c->as_jint_lo_bits();
  1157       if (value_lo == 0) {
  1158         tmp = G0;
  1159       } else {
  1160         __ set(value_lo, O7);
  1162       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
  1163       int value_hi = c->as_jint_hi_bits();
  1164       if (value_hi == 0) {
  1165         tmp = G0;
  1166       } else {
  1167         __ set(value_hi, O7);
  1169       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
  1170       break;
  1172     case T_OBJECT: {
  1173       jobject obj = c->as_jobject();
  1174       LIR_Opr tmp;
  1175       if (obj == NULL) {
  1176         tmp = FrameMap::G0_opr;
  1177       } else {
  1178         tmp = FrameMap::O7_opr;
  1179         jobject2reg(c->as_jobject(), O7);
  1181       // handle either reg+reg or reg+disp address
  1182       if (addr->index()->is_valid()) {
  1183         assert(addr->disp() == 0, "must be zero");
  1184         store(tmp, base, addr->index()->as_pointer_register(), type);
  1185       } else {
  1186         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1187         store(tmp, base, addr->disp(), type);
  1190       break;
  1192     default:
  1193       Unimplemented();
  1198 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1199   LIR_Const* c = src->as_constant_ptr();
  1200   LIR_Opr to_reg = dest;
  1202   switch (c->type()) {
  1203     case T_INT:
  1205         jint con = c->as_jint();
  1206         if (to_reg->is_single_cpu()) {
  1207           assert(patch_code == lir_patch_none, "no patching handled here");
  1208           __ set(con, to_reg->as_register());
  1209         } else {
  1210           ShouldNotReachHere();
  1211           assert(to_reg->is_single_fpu(), "wrong register kind");
  1213           __ set(con, O7);
  1214           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1215           __ st(O7, temp_slot);
  1216           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1219       break;
  1221     case T_LONG:
  1223         jlong con = c->as_jlong();
  1225         if (to_reg->is_double_cpu()) {
  1226 #ifdef _LP64
  1227           __ set(con,  to_reg->as_register_lo());
  1228 #else
  1229           __ set(low(con),  to_reg->as_register_lo());
  1230           __ set(high(con), to_reg->as_register_hi());
  1231 #endif
  1232 #ifdef _LP64
  1233         } else if (to_reg->is_single_cpu()) {
  1234           __ set(con, to_reg->as_register());
  1235 #endif
  1236         } else {
  1237           ShouldNotReachHere();
  1238           assert(to_reg->is_double_fpu(), "wrong register kind");
  1239           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1240           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1241           __ set(low(con),  O7);
  1242           __ st(O7, temp_slot_lo);
  1243           __ set(high(con), O7);
  1244           __ st(O7, temp_slot_hi);
  1245           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1248       break;
  1250     case T_OBJECT:
  1252         if (patch_code == lir_patch_none) {
  1253           jobject2reg(c->as_jobject(), to_reg->as_register());
  1254         } else {
  1255           jobject2reg_with_patching(to_reg->as_register(), info);
  1258       break;
  1260     case T_FLOAT:
  1262         address const_addr = __ float_constant(c->as_jfloat());
  1263         if (const_addr == NULL) {
  1264           bailout("const section overflow");
  1265           break;
  1267         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1268         AddressLiteral const_addrlit(const_addr, rspec);
  1269         if (to_reg->is_single_fpu()) {
  1270           __ patchable_sethi(const_addrlit, O7);
  1271           __ relocate(rspec);
  1272           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1274         } else {
  1275           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1277           __ set(const_addrlit, O7);
  1278           load(O7, 0, to_reg->as_register(), T_INT);
  1281       break;
  1283     case T_DOUBLE:
  1285         address const_addr = __ double_constant(c->as_jdouble());
  1286         if (const_addr == NULL) {
  1287           bailout("const section overflow");
  1288           break;
  1290         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1292         if (to_reg->is_double_fpu()) {
  1293           AddressLiteral const_addrlit(const_addr, rspec);
  1294           __ patchable_sethi(const_addrlit, O7);
  1295           __ relocate(rspec);
  1296           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1297         } else {
  1298           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1299 #ifdef _LP64
  1300           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1301 #else
  1302           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1303           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1304 #endif
  1308       break;
  1310     default:
  1311       ShouldNotReachHere();
  1315 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1316   Register reg = addr->base()->as_register();
  1317   return Address(reg, addr->disp());
  1321 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1322   switch (type) {
  1323     case T_INT:
  1324     case T_FLOAT: {
  1325       Register tmp = O7;
  1326       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1327       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1328       __ lduw(from.base(), from.disp(), tmp);
  1329       __ stw(tmp, to.base(), to.disp());
  1330       break;
  1332     case T_OBJECT: {
  1333       Register tmp = O7;
  1334       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1335       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1336       __ ld_ptr(from.base(), from.disp(), tmp);
  1337       __ st_ptr(tmp, to.base(), to.disp());
  1338       break;
  1340     case T_LONG:
  1341     case T_DOUBLE: {
  1342       Register tmp = O7;
  1343       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1344       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1345       __ lduw(from.base(), from.disp(), tmp);
  1346       __ stw(tmp, to.base(), to.disp());
  1347       __ lduw(from.base(), from.disp() + 4, tmp);
  1348       __ stw(tmp, to.base(), to.disp() + 4);
  1349       break;
  1352     default:
  1353       ShouldNotReachHere();
  1358 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1359   Address base = as_Address(addr);
  1360   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1364 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1365   Address base = as_Address(addr);
  1366   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1370 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1371                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
  1373   LIR_Address* addr = src_opr->as_address_ptr();
  1374   LIR_Opr to_reg = dest;
  1376   Register src = addr->base()->as_pointer_register();
  1377   Register disp_reg = noreg;
  1378   int disp_value = addr->disp();
  1379   bool needs_patching = (patch_code != lir_patch_none);
  1381   if (addr->base()->type() == T_OBJECT) {
  1382     __ verify_oop(src);
  1385   PatchingStub* patch = NULL;
  1386   if (needs_patching) {
  1387     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1388     assert(!to_reg->is_double_cpu() ||
  1389            patch_code == lir_patch_none ||
  1390            patch_code == lir_patch_normal, "patching doesn't match register");
  1393   if (addr->index()->is_illegal()) {
  1394     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1395       if (needs_patching) {
  1396         __ patchable_set(0, O7);
  1397       } else {
  1398         __ set(disp_value, O7);
  1400       disp_reg = O7;
  1402   } else if (unaligned || PatchALot) {
  1403     __ add(src, addr->index()->as_register(), O7);
  1404     src = O7;
  1405   } else {
  1406     disp_reg = addr->index()->as_pointer_register();
  1407     assert(disp_value == 0, "can't handle 3 operand addresses");
  1410   // remember the offset of the load.  The patching_epilog must be done
  1411   // before the call to add_debug_info, otherwise the PcDescs don't get
  1412   // entered in increasing order.
  1413   int offset = code_offset();
  1415   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1416   if (disp_reg == noreg) {
  1417     offset = load(src, disp_value, to_reg, type, unaligned);
  1418   } else {
  1419     assert(!unaligned, "can't handle this");
  1420     offset = load(src, disp_reg, to_reg, type);
  1423   if (patch != NULL) {
  1424     patching_epilog(patch, patch_code, src, info);
  1427   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1431 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1432   LIR_Address* addr = src->as_address_ptr();
  1433   Address from_addr = as_Address(addr);
  1435   if (VM_Version::has_v9()) {
  1436     __ prefetch(from_addr, Assembler::severalReads);
  1441 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1442   LIR_Address* addr = src->as_address_ptr();
  1443   Address from_addr = as_Address(addr);
  1445   if (VM_Version::has_v9()) {
  1446     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1451 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1452   Address addr;
  1453   if (src->is_single_word()) {
  1454     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1455   } else if (src->is_double_word())  {
  1456     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1459   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1460   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
  1464 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1465   Address addr;
  1466   if (dest->is_single_word()) {
  1467     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1468   } else if (dest->is_double_word())  {
  1469     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1471   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1472   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
  1476 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1477   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1478     if (from_reg->is_double_fpu()) {
  1479       // double to double moves
  1480       assert(to_reg->is_double_fpu(), "should match");
  1481       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1482     } else {
  1483       // float to float moves
  1484       assert(to_reg->is_single_fpu(), "should match");
  1485       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1487   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1488     if (from_reg->is_double_cpu()) {
  1489 #ifdef _LP64
  1490       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1491 #else
  1492       assert(to_reg->is_double_cpu() &&
  1493              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1494              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1495              "should both be long and not overlap");
  1496       // long to long moves
  1497       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1498       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1499 #endif
  1500 #ifdef _LP64
  1501     } else if (to_reg->is_double_cpu()) {
  1502       // int to int moves
  1503       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1504 #endif
  1505     } else {
  1506       // int to int moves
  1507       __ mov(from_reg->as_register(), to_reg->as_register());
  1509   } else {
  1510     ShouldNotReachHere();
  1512   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1513     __ verify_oop(to_reg->as_register());
  1518 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1519                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1520                             bool unaligned) {
  1521   LIR_Address* addr = dest->as_address_ptr();
  1523   Register src = addr->base()->as_pointer_register();
  1524   Register disp_reg = noreg;
  1525   int disp_value = addr->disp();
  1526   bool needs_patching = (patch_code != lir_patch_none);
  1528   if (addr->base()->is_oop_register()) {
  1529     __ verify_oop(src);
  1532   PatchingStub* patch = NULL;
  1533   if (needs_patching) {
  1534     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1535     assert(!from_reg->is_double_cpu() ||
  1536            patch_code == lir_patch_none ||
  1537            patch_code == lir_patch_normal, "patching doesn't match register");
  1540   if (addr->index()->is_illegal()) {
  1541     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1542       if (needs_patching) {
  1543         __ patchable_set(0, O7);
  1544       } else {
  1545         __ set(disp_value, O7);
  1547       disp_reg = O7;
  1549   } else if (unaligned || PatchALot) {
  1550     __ add(src, addr->index()->as_register(), O7);
  1551     src = O7;
  1552   } else {
  1553     disp_reg = addr->index()->as_pointer_register();
  1554     assert(disp_value == 0, "can't handle 3 operand addresses");
  1557   // remember the offset of the store.  The patching_epilog must be done
  1558   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1559   // entered in increasing order.
  1560   int offset;
  1562   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1563   if (disp_reg == noreg) {
  1564     offset = store(from_reg, src, disp_value, type, unaligned);
  1565   } else {
  1566     assert(!unaligned, "can't handle this");
  1567     offset = store(from_reg, src, disp_reg, type);
  1570   if (patch != NULL) {
  1571     patching_epilog(patch, patch_code, src, info);
  1574   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1578 void LIR_Assembler::return_op(LIR_Opr result) {
  1579   // the poll may need a register so just pick one that isn't the return register
  1580 #ifdef TIERED
  1581   if (result->type_field() == LIR_OprDesc::long_type) {
  1582     // Must move the result to G1
  1583     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1584     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1585     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1586     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1588 #endif // TIERED
  1589   __ set((intptr_t)os::get_polling_page(), L0);
  1590   __ relocate(relocInfo::poll_return_type);
  1591   __ ld_ptr(L0, 0, G0);
  1592   __ ret();
  1593   __ delayed()->restore();
  1597 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1598   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1599   if (info != NULL) {
  1600     add_debug_info_for_branch(info);
  1601   } else {
  1602     __ relocate(relocInfo::poll_type);
  1605   int offset = __ offset();
  1606   __ ld_ptr(tmp->as_register(), 0, G0);
  1608   return offset;
  1612 void LIR_Assembler::emit_static_call_stub() {
  1613   address call_pc = __ pc();
  1614   address stub = __ start_a_stub(call_stub_size);
  1615   if (stub == NULL) {
  1616     bailout("static call stub overflow");
  1617     return;
  1620   int start = __ offset();
  1621   __ relocate(static_stub_Relocation::spec(call_pc));
  1623   __ set_oop(NULL, G5);
  1624   // must be set to -1 at code generation time
  1625   AddressLiteral addrlit(-1);
  1626   __ jump_to(addrlit, G3);
  1627   __ delayed()->nop();
  1629   assert(__ offset() - start <= call_stub_size, "stub too big");
  1630   __ end_a_stub();
  1634 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1635   if (opr1->is_single_fpu()) {
  1636     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1637   } else if (opr1->is_double_fpu()) {
  1638     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1639   } else if (opr1->is_single_cpu()) {
  1640     if (opr2->is_constant()) {
  1641       switch (opr2->as_constant_ptr()->type()) {
  1642         case T_INT:
  1643           { jint con = opr2->as_constant_ptr()->as_jint();
  1644             if (Assembler::is_simm13(con)) {
  1645               __ cmp(opr1->as_register(), con);
  1646             } else {
  1647               __ set(con, O7);
  1648               __ cmp(opr1->as_register(), O7);
  1651           break;
  1653         case T_OBJECT:
  1654           // there are only equal/notequal comparisions on objects
  1655           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1656             if (con == NULL) {
  1657               __ cmp(opr1->as_register(), 0);
  1658             } else {
  1659               jobject2reg(con, O7);
  1660               __ cmp(opr1->as_register(), O7);
  1663           break;
  1665         default:
  1666           ShouldNotReachHere();
  1667           break;
  1669     } else {
  1670       if (opr2->is_address()) {
  1671         LIR_Address * addr = opr2->as_address_ptr();
  1672         BasicType type = addr->type();
  1673         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1674         else                    __ ld(as_Address(addr), O7);
  1675         __ cmp(opr1->as_register(), O7);
  1676       } else {
  1677         __ cmp(opr1->as_register(), opr2->as_register());
  1680   } else if (opr1->is_double_cpu()) {
  1681     Register xlo = opr1->as_register_lo();
  1682     Register xhi = opr1->as_register_hi();
  1683     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1684       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1685 #ifdef _LP64
  1686       __ orcc(xhi, G0, G0);
  1687 #else
  1688       __ orcc(xhi, xlo, G0);
  1689 #endif
  1690     } else if (opr2->is_register()) {
  1691       Register ylo = opr2->as_register_lo();
  1692       Register yhi = opr2->as_register_hi();
  1693 #ifdef _LP64
  1694       __ cmp(xlo, ylo);
  1695 #else
  1696       __ subcc(xlo, ylo, xlo);
  1697       __ subccc(xhi, yhi, xhi);
  1698       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1699         __ orcc(xhi, xlo, G0);
  1701 #endif
  1702     } else {
  1703       ShouldNotReachHere();
  1705   } else if (opr1->is_address()) {
  1706     LIR_Address * addr = opr1->as_address_ptr();
  1707     BasicType type = addr->type();
  1708     assert (opr2->is_constant(), "Checking");
  1709     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1710     else                    __ ld(as_Address(addr), O7);
  1711     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1712   } else {
  1713     ShouldNotReachHere();
  1718 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1719   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1720     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1721     if (left->is_single_fpu()) {
  1722       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1723     } else if (left->is_double_fpu()) {
  1724       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1725     } else {
  1726       ShouldNotReachHere();
  1728   } else if (code == lir_cmp_l2i) {
  1729     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1730             right->as_register_hi(), right->as_register_lo(),
  1731             dst->as_register());
  1732   } else {
  1733     ShouldNotReachHere();
  1738 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1740   Assembler::Condition acond;
  1741   switch (condition) {
  1742     case lir_cond_equal:        acond = Assembler::equal;        break;
  1743     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1744     case lir_cond_less:         acond = Assembler::less;         break;
  1745     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1746     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1747     case lir_cond_greater:      acond = Assembler::greater;      break;
  1748     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1749     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1750     default:                         ShouldNotReachHere();
  1751   };
  1753   if (opr1->is_constant() && opr1->type() == T_INT) {
  1754     Register dest = result->as_register();
  1755     // load up first part of constant before branch
  1756     // and do the rest in the delay slot.
  1757     if (!Assembler::is_simm13(opr1->as_jint())) {
  1758       __ sethi(opr1->as_jint(), dest);
  1760   } else if (opr1->is_constant()) {
  1761     const2reg(opr1, result, lir_patch_none, NULL);
  1762   } else if (opr1->is_register()) {
  1763     reg2reg(opr1, result);
  1764   } else if (opr1->is_stack()) {
  1765     stack2reg(opr1, result, result->type());
  1766   } else {
  1767     ShouldNotReachHere();
  1769   Label skip;
  1770   __ br(acond, false, Assembler::pt, skip);
  1771   if (opr1->is_constant() && opr1->type() == T_INT) {
  1772     Register dest = result->as_register();
  1773     if (Assembler::is_simm13(opr1->as_jint())) {
  1774       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1775     } else {
  1776       // the sethi has been done above, so just put in the low 10 bits
  1777       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1779   } else {
  1780     // can't do anything useful in the delay slot
  1781     __ delayed()->nop();
  1783   if (opr2->is_constant()) {
  1784     const2reg(opr2, result, lir_patch_none, NULL);
  1785   } else if (opr2->is_register()) {
  1786     reg2reg(opr2, result);
  1787   } else if (opr2->is_stack()) {
  1788     stack2reg(opr2, result, result->type());
  1789   } else {
  1790     ShouldNotReachHere();
  1792   __ bind(skip);
  1796 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1797   assert(info == NULL, "unused on this code path");
  1798   assert(left->is_register(), "wrong items state");
  1799   assert(dest->is_register(), "wrong items state");
  1801   if (right->is_register()) {
  1802     if (dest->is_float_kind()) {
  1804       FloatRegister lreg, rreg, res;
  1805       FloatRegisterImpl::Width w;
  1806       if (right->is_single_fpu()) {
  1807         w = FloatRegisterImpl::S;
  1808         lreg = left->as_float_reg();
  1809         rreg = right->as_float_reg();
  1810         res  = dest->as_float_reg();
  1811       } else {
  1812         w = FloatRegisterImpl::D;
  1813         lreg = left->as_double_reg();
  1814         rreg = right->as_double_reg();
  1815         res  = dest->as_double_reg();
  1818       switch (code) {
  1819         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1820         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1821         case lir_mul: // fall through
  1822         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1823         case lir_div: // fall through
  1824         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1825         default: ShouldNotReachHere();
  1828     } else if (dest->is_double_cpu()) {
  1829 #ifdef _LP64
  1830       Register dst_lo = dest->as_register_lo();
  1831       Register op1_lo = left->as_pointer_register();
  1832       Register op2_lo = right->as_pointer_register();
  1834       switch (code) {
  1835         case lir_add:
  1836           __ add(op1_lo, op2_lo, dst_lo);
  1837           break;
  1839         case lir_sub:
  1840           __ sub(op1_lo, op2_lo, dst_lo);
  1841           break;
  1843         default: ShouldNotReachHere();
  1845 #else
  1846       Register op1_lo = left->as_register_lo();
  1847       Register op1_hi = left->as_register_hi();
  1848       Register op2_lo = right->as_register_lo();
  1849       Register op2_hi = right->as_register_hi();
  1850       Register dst_lo = dest->as_register_lo();
  1851       Register dst_hi = dest->as_register_hi();
  1853       switch (code) {
  1854         case lir_add:
  1855           __ addcc(op1_lo, op2_lo, dst_lo);
  1856           __ addc (op1_hi, op2_hi, dst_hi);
  1857           break;
  1859         case lir_sub:
  1860           __ subcc(op1_lo, op2_lo, dst_lo);
  1861           __ subc (op1_hi, op2_hi, dst_hi);
  1862           break;
  1864         default: ShouldNotReachHere();
  1866 #endif
  1867     } else {
  1868       assert (right->is_single_cpu(), "Just Checking");
  1870       Register lreg = left->as_register();
  1871       Register res  = dest->as_register();
  1872       Register rreg = right->as_register();
  1873       switch (code) {
  1874         case lir_add:  __ add  (lreg, rreg, res); break;
  1875         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1876         case lir_mul:  __ mult (lreg, rreg, res); break;
  1877         default: ShouldNotReachHere();
  1880   } else {
  1881     assert (right->is_constant(), "must be constant");
  1883     if (dest->is_single_cpu()) {
  1884       Register lreg = left->as_register();
  1885       Register res  = dest->as_register();
  1886       int    simm13 = right->as_constant_ptr()->as_jint();
  1888       switch (code) {
  1889         case lir_add:  __ add  (lreg, simm13, res); break;
  1890         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1891         case lir_mul:  __ mult (lreg, simm13, res); break;
  1892         default: ShouldNotReachHere();
  1894     } else {
  1895       Register lreg = left->as_pointer_register();
  1896       Register res  = dest->as_register_lo();
  1897       long con = right->as_constant_ptr()->as_jlong();
  1898       assert(Assembler::is_simm13(con), "must be simm13");
  1900       switch (code) {
  1901         case lir_add:  __ add  (lreg, (int)con, res); break;
  1902         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1903         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1904         default: ShouldNotReachHere();
  1911 void LIR_Assembler::fpop() {
  1912   // do nothing
  1916 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1917   switch (code) {
  1918     case lir_sin:
  1919     case lir_tan:
  1920     case lir_cos: {
  1921       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1922       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1923       break;
  1925     case lir_sqrt: {
  1926       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1927       FloatRegister src_reg = value->as_double_reg();
  1928       FloatRegister dst_reg = dest->as_double_reg();
  1929       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1930       break;
  1932     case lir_abs: {
  1933       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1934       FloatRegister src_reg = value->as_double_reg();
  1935       FloatRegister dst_reg = dest->as_double_reg();
  1936       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1937       break;
  1939     default: {
  1940       ShouldNotReachHere();
  1941       break;
  1947 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1948   if (right->is_constant()) {
  1949     if (dest->is_single_cpu()) {
  1950       int simm13 = right->as_constant_ptr()->as_jint();
  1951       switch (code) {
  1952         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1953         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1954         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1955         default: ShouldNotReachHere();
  1957     } else {
  1958       long c = right->as_constant_ptr()->as_jlong();
  1959       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1960       int simm13 = (int)c;
  1961       switch (code) {
  1962         case lir_logic_and:
  1963 #ifndef _LP64
  1964           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1965 #endif
  1966           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1967           break;
  1969         case lir_logic_or:
  1970 #ifndef _LP64
  1971           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1972 #endif
  1973           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1974           break;
  1976         case lir_logic_xor:
  1977 #ifndef _LP64
  1978           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  1979 #endif
  1980           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  1981           break;
  1983         default: ShouldNotReachHere();
  1986   } else {
  1987     assert(right->is_register(), "right should be in register");
  1989     if (dest->is_single_cpu()) {
  1990       switch (code) {
  1991         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1992         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  1993         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  1994         default: ShouldNotReachHere();
  1996     } else {
  1997 #ifdef _LP64
  1998       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  1999                                                                         left->as_register_lo();
  2000       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2001                                                                           right->as_register_lo();
  2003       switch (code) {
  2004         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2005         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2006         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2007         default: ShouldNotReachHere();
  2009 #else
  2010       switch (code) {
  2011         case lir_logic_and:
  2012           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2013           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2014           break;
  2016         case lir_logic_or:
  2017           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2018           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2019           break;
  2021         case lir_logic_xor:
  2022           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2023           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2024           break;
  2026         default: ShouldNotReachHere();
  2028 #endif
  2034 int LIR_Assembler::shift_amount(BasicType t) {
  2035   int elem_size = type2aelembytes(t);
  2036   switch (elem_size) {
  2037     case 1 : return 0;
  2038     case 2 : return 1;
  2039     case 4 : return 2;
  2040     case 8 : return 3;
  2042   ShouldNotReachHere();
  2043   return -1;
  2047 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
  2048   assert(exceptionOop->as_register() == Oexception, "should match");
  2049   assert(unwind || exceptionPC->as_register() == Oissuing_pc, "should match");
  2051   info->add_register_oop(exceptionOop);
  2053   if (unwind) {
  2054     __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
  2055     __ delayed()->nop();
  2056   } else {
  2057     // reuse the debug info from the safepoint poll for the throw op itself
  2058     address pc_for_athrow  = __ pc();
  2059     int pc_for_athrow_offset = __ offset();
  2060     RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2061     __ set(pc_for_athrow, Oissuing_pc, rspec);
  2062     add_call_info(pc_for_athrow_offset, info); // for exception handler
  2064     __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2065     __ delayed()->nop();
  2070 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2071   Register src = op->src()->as_register();
  2072   Register dst = op->dst()->as_register();
  2073   Register src_pos = op->src_pos()->as_register();
  2074   Register dst_pos = op->dst_pos()->as_register();
  2075   Register length  = op->length()->as_register();
  2076   Register tmp = op->tmp()->as_register();
  2077   Register tmp2 = O7;
  2079   int flags = op->flags();
  2080   ciArrayKlass* default_type = op->expected_type();
  2081   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2082   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2084   // set up the arraycopy stub information
  2085   ArrayCopyStub* stub = op->stub();
  2087   // always do stub if no type information is available.  it's ok if
  2088   // the known type isn't loaded since the code sanity checks
  2089   // in debug mode and the type isn't required when we know the exact type
  2090   // also check that the type is an array type.
  2091   // We also, for now, always call the stub if the barrier set requires a
  2092   // write_ref_pre barrier (which the stub does, but none of the optimized
  2093   // cases currently does).
  2094   if (op->expected_type() == NULL ||
  2095       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
  2096     __ mov(src,     O0);
  2097     __ mov(src_pos, O1);
  2098     __ mov(dst,     O2);
  2099     __ mov(dst_pos, O3);
  2100     __ mov(length,  O4);
  2101     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2103     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
  2104     __ delayed()->nop();
  2105     __ bind(*stub->continuation());
  2106     return;
  2109   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2111   // make sure src and dst are non-null and load array length
  2112   if (flags & LIR_OpArrayCopy::src_null_check) {
  2113     __ tst(src);
  2114     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2115     __ delayed()->nop();
  2118   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2119     __ tst(dst);
  2120     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2121     __ delayed()->nop();
  2124   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2125     // test src_pos register
  2126     __ tst(src_pos);
  2127     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2128     __ delayed()->nop();
  2131   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2132     // test dst_pos register
  2133     __ tst(dst_pos);
  2134     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2135     __ delayed()->nop();
  2138   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2139     // make sure length isn't negative
  2140     __ tst(length);
  2141     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2142     __ delayed()->nop();
  2145   if (flags & LIR_OpArrayCopy::src_range_check) {
  2146     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2147     __ add(length, src_pos, tmp);
  2148     __ cmp(tmp2, tmp);
  2149     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2150     __ delayed()->nop();
  2153   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2154     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2155     __ add(length, dst_pos, tmp);
  2156     __ cmp(tmp2, tmp);
  2157     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2158     __ delayed()->nop();
  2161   if (flags & LIR_OpArrayCopy::type_check) {
  2162     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2163     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2164     __ cmp(tmp, tmp2);
  2165     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2166     __ delayed()->nop();
  2169 #ifdef ASSERT
  2170   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2171     // Sanity check the known type with the incoming class.  For the
  2172     // primitive case the types must match exactly with src.klass and
  2173     // dst.klass each exactly matching the default type.  For the
  2174     // object array case, if no type check is needed then either the
  2175     // dst type is exactly the expected type and the src type is a
  2176     // subtype which we can't check or src is the same array as dst
  2177     // but not necessarily exactly of type default_type.
  2178     Label known_ok, halt;
  2179     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2180     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2181     if (basic_type != T_OBJECT) {
  2182       __ cmp(tmp, tmp2);
  2183       __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2184       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2185       __ cmp(tmp, tmp2);
  2186       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2187       __ delayed()->nop();
  2188     } else {
  2189       __ cmp(tmp, tmp2);
  2190       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2191       __ delayed()->cmp(src, dst);
  2192       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2193       __ delayed()->nop();
  2195     __ bind(halt);
  2196     __ stop("incorrect type information in arraycopy");
  2197     __ bind(known_ok);
  2199 #endif
  2201   int shift = shift_amount(basic_type);
  2203   Register src_ptr = O0;
  2204   Register dst_ptr = O1;
  2205   Register len     = O2;
  2207   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2208   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
  2209   if (shift == 0) {
  2210     __ add(src_ptr, src_pos, src_ptr);
  2211   } else {
  2212     __ sll(src_pos, shift, tmp);
  2213     __ add(src_ptr, tmp, src_ptr);
  2216   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2217   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
  2218   if (shift == 0) {
  2219     __ add(dst_ptr, dst_pos, dst_ptr);
  2220   } else {
  2221     __ sll(dst_pos, shift, tmp);
  2222     __ add(dst_ptr, tmp, dst_ptr);
  2225   if (basic_type != T_OBJECT) {
  2226     if (shift == 0) {
  2227       __ mov(length, len);
  2228     } else {
  2229       __ sll(length, shift, len);
  2231     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
  2232   } else {
  2233     // oop_arraycopy takes a length in number of elements, so don't scale it.
  2234     __ mov(length, len);
  2235     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
  2238   __ bind(*stub->continuation());
  2242 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2243   if (dest->is_single_cpu()) {
  2244 #ifdef _LP64
  2245     if (left->type() == T_OBJECT) {
  2246       switch (code) {
  2247         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2248         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2249         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2250         default: ShouldNotReachHere();
  2252     } else
  2253 #endif
  2254       switch (code) {
  2255         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2256         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2257         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2258         default: ShouldNotReachHere();
  2260   } else {
  2261 #ifdef _LP64
  2262     switch (code) {
  2263       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2264       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2265       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2266       default: ShouldNotReachHere();
  2268 #else
  2269     switch (code) {
  2270       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2271       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2272       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2273       default: ShouldNotReachHere();
  2275 #endif
  2280 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2281 #ifdef _LP64
  2282   if (left->type() == T_OBJECT) {
  2283     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2284     Register l = left->as_register();
  2285     Register d = dest->as_register_lo();
  2286     switch (code) {
  2287       case lir_shl:  __ sllx  (l, count, d); break;
  2288       case lir_shr:  __ srax  (l, count, d); break;
  2289       case lir_ushr: __ srlx  (l, count, d); break;
  2290       default: ShouldNotReachHere();
  2292     return;
  2294 #endif
  2296   if (dest->is_single_cpu()) {
  2297     count = count & 0x1F; // Java spec
  2298     switch (code) {
  2299       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2300       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2301       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2302       default: ShouldNotReachHere();
  2304   } else if (dest->is_double_cpu()) {
  2305     count = count & 63; // Java spec
  2306     switch (code) {
  2307       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2308       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2309       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2310       default: ShouldNotReachHere();
  2312   } else {
  2313     ShouldNotReachHere();
  2318 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2319   assert(op->tmp1()->as_register()  == G1 &&
  2320          op->tmp2()->as_register()  == G3 &&
  2321          op->tmp3()->as_register()  == G4 &&
  2322          op->obj()->as_register()   == O0 &&
  2323          op->klass()->as_register() == G5, "must be");
  2324   if (op->init_check()) {
  2325     __ ld(op->klass()->as_register(),
  2326           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
  2327           op->tmp1()->as_register());
  2328     add_debug_info_for_null_check_here(op->stub()->info());
  2329     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2330     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2331     __ delayed()->nop();
  2333   __ allocate_object(op->obj()->as_register(),
  2334                      op->tmp1()->as_register(),
  2335                      op->tmp2()->as_register(),
  2336                      op->tmp3()->as_register(),
  2337                      op->header_size(),
  2338                      op->object_size(),
  2339                      op->klass()->as_register(),
  2340                      *op->stub()->entry());
  2341   __ bind(*op->stub()->continuation());
  2342   __ verify_oop(op->obj()->as_register());
  2346 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2347   assert(op->tmp1()->as_register()  == G1 &&
  2348          op->tmp2()->as_register()  == G3 &&
  2349          op->tmp3()->as_register()  == G4 &&
  2350          op->tmp4()->as_register()  == O1 &&
  2351          op->klass()->as_register() == G5, "must be");
  2352   if (UseSlowPath ||
  2353       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2354       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2355     __ br(Assembler::always, false, Assembler::pn, *op->stub()->entry());
  2356     __ delayed()->nop();
  2357   } else {
  2358     __ allocate_array(op->obj()->as_register(),
  2359                       op->len()->as_register(),
  2360                       op->tmp1()->as_register(),
  2361                       op->tmp2()->as_register(),
  2362                       op->tmp3()->as_register(),
  2363                       arrayOopDesc::header_size(op->type()),
  2364                       type2aelembytes(op->type()),
  2365                       op->klass()->as_register(),
  2366                       *op->stub()->entry());
  2368   __ bind(*op->stub()->continuation());
  2372 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2373   LIR_Code code = op->code();
  2374   if (code == lir_store_check) {
  2375     Register value = op->object()->as_register();
  2376     Register array = op->array()->as_register();
  2377     Register k_RInfo = op->tmp1()->as_register();
  2378     Register klass_RInfo = op->tmp2()->as_register();
  2379     Register Rtmp1 = op->tmp3()->as_register();
  2381     __ verify_oop(value);
  2383     CodeStub* stub = op->stub();
  2384     Label done;
  2385     __ cmp(value, 0);
  2386     __ br(Assembler::equal, false, Assembler::pn, done);
  2387     __ delayed()->nop();
  2388     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
  2389     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2391     // get instance klass
  2392     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
  2393     // perform the fast part of the checking logic
  2394     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
  2396     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2397     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2398     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2399     __ delayed()->nop();
  2400     __ cmp(G3, 0);
  2401     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2402     __ delayed()->nop();
  2403     __ bind(done);
  2404   } else if (op->code() == lir_checkcast) {
  2405     // we always need a stub for the failure case.
  2406     CodeStub* stub = op->stub();
  2407     Register obj = op->object()->as_register();
  2408     Register k_RInfo = op->tmp1()->as_register();
  2409     Register klass_RInfo = op->tmp2()->as_register();
  2410     Register dst = op->result_opr()->as_register();
  2411     Register Rtmp1 = op->tmp3()->as_register();
  2412     ciKlass* k = op->klass();
  2414     if (obj == k_RInfo) {
  2415       k_RInfo = klass_RInfo;
  2416       klass_RInfo = obj;
  2418     if (op->profiled_method() != NULL) {
  2419       ciMethod* method = op->profiled_method();
  2420       int bci          = op->profiled_bci();
  2422       // We need two temporaries to perform this operation on SPARC,
  2423       // so to keep things simple we perform a redundant test here
  2424       Label profile_done;
  2425       __ cmp(obj, 0);
  2426       __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
  2427       __ delayed()->nop();
  2428       // Object is null; update methodDataOop
  2429       ciMethodData* md = method->method_data();
  2430       if (md == NULL) {
  2431         bailout("out of memory building methodDataOop");
  2432         return;
  2434       ciProfileData* data = md->bci_to_data(bci);
  2435       assert(data != NULL,       "need data for checkcast");
  2436       assert(data->is_BitData(), "need BitData for checkcast");
  2437       Register mdo      = k_RInfo;
  2438       Register data_val = Rtmp1;
  2439       jobject2reg(md->constant_encoding(), mdo);
  2441       int mdo_offset_bias = 0;
  2442       if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2443         // The offset is large so bias the mdo by the base of the slot so
  2444         // that the ld can use simm13s to reference the slots of the data
  2445         mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2446         __ set(mdo_offset_bias, data_val);
  2447         __ add(mdo, data_val, mdo);
  2451       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2452       __ ldub(flags_addr, data_val);
  2453       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2454       __ stb(data_val, flags_addr);
  2455       __ bind(profile_done);
  2458     Label done;
  2459     // patching may screw with our temporaries on sparc,
  2460     // so let's do it before loading the class
  2461     if (k->is_loaded()) {
  2462       jobject2reg(k->constant_encoding(), k_RInfo);
  2463     } else {
  2464       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2466     assert(obj != k_RInfo, "must be different");
  2467     __ cmp(obj, 0);
  2468     __ br(Assembler::equal, false, Assembler::pn, done);
  2469     __ delayed()->nop();
  2471     // get object class
  2472     // not a safepoint as obj null check happens earlier
  2473     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2474     if (op->fast_check()) {
  2475       assert_different_registers(klass_RInfo, k_RInfo);
  2476       __ cmp(k_RInfo, klass_RInfo);
  2477       __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2478       __ delayed()->nop();
  2479       __ bind(done);
  2480     } else {
  2481       bool need_slow_path = true;
  2482       if (k->is_loaded()) {
  2483         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2484           need_slow_path = false;
  2485         // perform the fast part of the checking logic
  2486         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2487                                          (need_slow_path ? &done : NULL),
  2488                                          stub->entry(), NULL,
  2489                                          RegisterOrConstant(k->super_check_offset()));
  2490       } else {
  2491         // perform the fast part of the checking logic
  2492         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
  2493                                          &done, stub->entry(), NULL);
  2495       if (need_slow_path) {
  2496         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2497         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2498         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2499         __ delayed()->nop();
  2500         __ cmp(G3, 0);
  2501         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2502         __ delayed()->nop();
  2504       __ bind(done);
  2506     __ mov(obj, dst);
  2507   } else if (code == lir_instanceof) {
  2508     Register obj = op->object()->as_register();
  2509     Register k_RInfo = op->tmp1()->as_register();
  2510     Register klass_RInfo = op->tmp2()->as_register();
  2511     Register dst = op->result_opr()->as_register();
  2512     Register Rtmp1 = op->tmp3()->as_register();
  2513     ciKlass* k = op->klass();
  2515     Label done;
  2516     if (obj == k_RInfo) {
  2517       k_RInfo = klass_RInfo;
  2518       klass_RInfo = obj;
  2520     // patching may screw with our temporaries on sparc,
  2521     // so let's do it before loading the class
  2522     if (k->is_loaded()) {
  2523       jobject2reg(k->constant_encoding(), k_RInfo);
  2524     } else {
  2525       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2527     assert(obj != k_RInfo, "must be different");
  2528     __ cmp(obj, 0);
  2529     __ br(Assembler::equal, true, Assembler::pn, done);
  2530     __ delayed()->set(0, dst);
  2532     // get object class
  2533     // not a safepoint as obj null check happens earlier
  2534     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2535     if (op->fast_check()) {
  2536       __ cmp(k_RInfo, klass_RInfo);
  2537       __ br(Assembler::equal, true, Assembler::pt, done);
  2538       __ delayed()->set(1, dst);
  2539       __ set(0, dst);
  2540       __ bind(done);
  2541     } else {
  2542       bool need_slow_path = true;
  2543       if (k->is_loaded()) {
  2544         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2545           need_slow_path = false;
  2546         // perform the fast part of the checking logic
  2547         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
  2548                                          (need_slow_path ? &done : NULL),
  2549                                          (need_slow_path ? &done : NULL), NULL,
  2550                                          RegisterOrConstant(k->super_check_offset()),
  2551                                          dst);
  2552       } else {
  2553         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  2554         // perform the fast part of the checking logic
  2555         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
  2556                                          &done, &done, NULL,
  2557                                          RegisterOrConstant(-1),
  2558                                          dst);
  2560       if (need_slow_path) {
  2561         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2562         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2563         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2564         __ delayed()->nop();
  2565         __ mov(G3, dst);
  2567       __ bind(done);
  2569   } else {
  2570     ShouldNotReachHere();
  2576 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2577   if (op->code() == lir_cas_long) {
  2578     assert(VM_Version::supports_cx8(), "wrong machine");
  2579     Register addr = op->addr()->as_pointer_register();
  2580     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2581     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2582     Register new_value_lo = op->new_value()->as_register_lo();
  2583     Register new_value_hi = op->new_value()->as_register_hi();
  2584     Register t1 = op->tmp1()->as_register();
  2585     Register t2 = op->tmp2()->as_register();
  2586 #ifdef _LP64
  2587     __ mov(cmp_value_lo, t1);
  2588     __ mov(new_value_lo, t2);
  2589 #else
  2590     // move high and low halves of long values into single registers
  2591     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2592     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2593     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2594     __ sllx(new_value_hi, 32, t2);
  2595     __ srl(new_value_lo, 0, new_value_lo);
  2596     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2597 #endif
  2598     // perform the compare and swap operation
  2599     __ casx(addr, t1, t2);
  2600     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2601     // overwritten with the original value in "addr" and will be equal to t1.
  2602     __ cmp(t1, t2);
  2604   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2605     Register addr = op->addr()->as_pointer_register();
  2606     Register cmp_value = op->cmp_value()->as_register();
  2607     Register new_value = op->new_value()->as_register();
  2608     Register t1 = op->tmp1()->as_register();
  2609     Register t2 = op->tmp2()->as_register();
  2610     __ mov(cmp_value, t1);
  2611     __ mov(new_value, t2);
  2612 #ifdef _LP64
  2613     if (op->code() == lir_cas_obj) {
  2614       __ casx(addr, t1, t2);
  2615     } else
  2616 #endif
  2618         __ cas(addr, t1, t2);
  2620     __ cmp(t1, t2);
  2621   } else {
  2622     Unimplemented();
  2626 void LIR_Assembler::set_24bit_FPU() {
  2627   Unimplemented();
  2631 void LIR_Assembler::reset_FPU() {
  2632   Unimplemented();
  2636 void LIR_Assembler::breakpoint() {
  2637   __ breakpoint_trap();
  2641 void LIR_Assembler::push(LIR_Opr opr) {
  2642   Unimplemented();
  2646 void LIR_Assembler::pop(LIR_Opr opr) {
  2647   Unimplemented();
  2651 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2652   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2653   Register dst = dst_opr->as_register();
  2654   Register reg = mon_addr.base();
  2655   int offset = mon_addr.disp();
  2656   // compute pointer to BasicLock
  2657   if (mon_addr.is_simm13()) {
  2658     __ add(reg, offset, dst);
  2659   } else {
  2660     __ set(offset, dst);
  2661     __ add(dst, reg, dst);
  2666 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2667   Register obj = op->obj_opr()->as_register();
  2668   Register hdr = op->hdr_opr()->as_register();
  2669   Register lock = op->lock_opr()->as_register();
  2671   // obj may not be an oop
  2672   if (op->code() == lir_lock) {
  2673     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2674     if (UseFastLocking) {
  2675       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2676       // add debug info for NullPointerException only if one is possible
  2677       if (op->info() != NULL) {
  2678         add_debug_info_for_null_check_here(op->info());
  2680       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2681     } else {
  2682       // always do slow locking
  2683       // note: the slow locking code could be inlined here, however if we use
  2684       //       slow locking, speed doesn't matter anyway and this solution is
  2685       //       simpler and requires less duplicated code - additionally, the
  2686       //       slow locking code is the same in either case which simplifies
  2687       //       debugging
  2688       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2689       __ delayed()->nop();
  2691   } else {
  2692     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2693     if (UseFastLocking) {
  2694       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2695       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2696     } else {
  2697       // always do slow unlocking
  2698       // note: the slow unlocking code could be inlined here, however if we use
  2699       //       slow unlocking, speed doesn't matter anyway and this solution is
  2700       //       simpler and requires less duplicated code - additionally, the
  2701       //       slow unlocking code is the same in either case which simplifies
  2702       //       debugging
  2703       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2704       __ delayed()->nop();
  2707   __ bind(*op->stub()->continuation());
  2711 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2712   ciMethod* method = op->profiled_method();
  2713   int bci          = op->profiled_bci();
  2715   // Update counter for all call types
  2716   ciMethodData* md = method->method_data();
  2717   if (md == NULL) {
  2718     bailout("out of memory building methodDataOop");
  2719     return;
  2721   ciProfileData* data = md->bci_to_data(bci);
  2722   assert(data->is_CounterData(), "need CounterData for calls");
  2723   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2724   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2725   Register mdo  = op->mdo()->as_register();
  2726   Register tmp1 = op->tmp1()->as_register();
  2727   jobject2reg(md->constant_encoding(), mdo);
  2728   int mdo_offset_bias = 0;
  2729   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2730                             data->size_in_bytes())) {
  2731     // The offset is large so bias the mdo by the base of the slot so
  2732     // that the ld can use simm13s to reference the slots of the data
  2733     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2734     __ set(mdo_offset_bias, O7);
  2735     __ add(mdo, O7, mdo);
  2738   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2739   __ lduw(counter_addr, tmp1);
  2740   __ add(tmp1, DataLayout::counter_increment, tmp1);
  2741   __ stw(tmp1, counter_addr);
  2742   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2743   // Perform additional virtual call profiling for invokevirtual and
  2744   // invokeinterface bytecodes
  2745   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  2746       Tier1ProfileVirtualCalls) {
  2747     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  2748     Register recv = op->recv()->as_register();
  2749     assert_different_registers(mdo, tmp1, recv);
  2750     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  2751     ciKlass* known_klass = op->known_holder();
  2752     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  2753       // We know the type that will be seen at this call site; we can
  2754       // statically update the methodDataOop rather than needing to do
  2755       // dynamic tests on the receiver type
  2757       // NOTE: we should probably put a lock around this search to
  2758       // avoid collisions by concurrent compilations
  2759       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  2760       uint i;
  2761       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2762         ciKlass* receiver = vc_data->receiver(i);
  2763         if (known_klass->equals(receiver)) {
  2764           Address data_addr(mdo, md->byte_offset_of_slot(data,
  2765                                                          VirtualCallData::receiver_count_offset(i)) -
  2766                             mdo_offset_bias);
  2767           __ lduw(data_addr, tmp1);
  2768           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2769           __ stw(tmp1, data_addr);
  2770           return;
  2774       // Receiver type not found in profile data; select an empty slot
  2776       // Note that this is less efficient than it should be because it
  2777       // always does a write to the receiver part of the
  2778       // VirtualCallData rather than just the first time
  2779       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2780         ciKlass* receiver = vc_data->receiver(i);
  2781         if (receiver == NULL) {
  2782           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2783                             mdo_offset_bias);
  2784           jobject2reg(known_klass->constant_encoding(), tmp1);
  2785           __ st_ptr(tmp1, recv_addr);
  2786           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2787                             mdo_offset_bias);
  2788           __ lduw(data_addr, tmp1);
  2789           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2790           __ stw(tmp1, data_addr);
  2791           return;
  2794     } else {
  2795       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2796       Label update_done;
  2797       uint i;
  2798       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2799         Label next_test;
  2800         // See if the receiver is receiver[n].
  2801         Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2802                               mdo_offset_bias);
  2803         __ ld_ptr(receiver_addr, tmp1);
  2804         __ verify_oop(tmp1);
  2805         __ cmp(recv, tmp1);
  2806         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2807         __ delayed()->nop();
  2808         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2809                           mdo_offset_bias);
  2810         __ lduw(data_addr, tmp1);
  2811         __ add(tmp1, DataLayout::counter_increment, tmp1);
  2812         __ stw(tmp1, data_addr);
  2813         __ br(Assembler::always, false, Assembler::pt, update_done);
  2814         __ delayed()->nop();
  2815         __ bind(next_test);
  2818       // Didn't find receiver; find next empty slot and fill it in
  2819       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2820         Label next_test;
  2821         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2822                           mdo_offset_bias);
  2823         load(recv_addr, tmp1, T_OBJECT);
  2824         __ tst(tmp1);
  2825         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2826         __ delayed()->nop();
  2827         __ st_ptr(recv, recv_addr);
  2828         __ set(DataLayout::counter_increment, tmp1);
  2829         __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2830                   mdo_offset_bias);
  2831         if (i < (VirtualCallData::row_limit() - 1)) {
  2832           __ br(Assembler::always, false, Assembler::pt, update_done);
  2833           __ delayed()->nop();
  2835         __ bind(next_test);
  2838       __ bind(update_done);
  2844 void LIR_Assembler::align_backward_branch_target() {
  2845   __ align(16);
  2849 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  2850   // make sure we are expecting a delay
  2851   // this has the side effect of clearing the delay state
  2852   // so we can use _masm instead of _masm->delayed() to do the
  2853   // code generation.
  2854   __ delayed();
  2856   // make sure we only emit one instruction
  2857   int offset = code_offset();
  2858   op->delay_op()->emit_code(this);
  2859 #ifdef ASSERT
  2860   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  2861     op->delay_op()->print();
  2863   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  2864          "only one instruction can go in a delay slot");
  2865 #endif
  2867   // we may also be emitting the call info for the instruction
  2868   // which we are the delay slot of.
  2869   CodeEmitInfo * call_info = op->call_info();
  2870   if (call_info) {
  2871     add_call_info(code_offset(), call_info);
  2874   if (VerifyStackAtCalls) {
  2875     _masm->sub(FP, SP, O7);
  2876     _masm->cmp(O7, initial_frame_size_in_bytes());
  2877     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  2882 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  2883   assert(left->is_register(), "can only handle registers");
  2885   if (left->is_single_cpu()) {
  2886     __ neg(left->as_register(), dest->as_register());
  2887   } else if (left->is_single_fpu()) {
  2888     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  2889   } else if (left->is_double_fpu()) {
  2890     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  2891   } else {
  2892     assert (left->is_double_cpu(), "Must be a long");
  2893     Register Rlow = left->as_register_lo();
  2894     Register Rhi = left->as_register_hi();
  2895 #ifdef _LP64
  2896     __ sub(G0, Rlow, dest->as_register_lo());
  2897 #else
  2898     __ subcc(G0, Rlow, dest->as_register_lo());
  2899     __ subc (G0, Rhi,  dest->as_register_hi());
  2900 #endif
  2905 void LIR_Assembler::fxch(int i) {
  2906   Unimplemented();
  2909 void LIR_Assembler::fld(int i) {
  2910   Unimplemented();
  2913 void LIR_Assembler::ffree(int i) {
  2914   Unimplemented();
  2917 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  2918                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  2920   // if tmp is invalid, then the function being called doesn't destroy the thread
  2921   if (tmp->is_valid()) {
  2922     __ save_thread(tmp->as_register());
  2924   __ call(dest, relocInfo::runtime_call_type);
  2925   __ delayed()->nop();
  2926   if (info != NULL) {
  2927     add_call_info_here(info);
  2929   if (tmp->is_valid()) {
  2930     __ restore_thread(tmp->as_register());
  2933 #ifdef ASSERT
  2934   __ verify_thread();
  2935 #endif // ASSERT
  2939 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  2940 #ifdef _LP64
  2941   ShouldNotReachHere();
  2942 #endif
  2944   NEEDS_CLEANUP;
  2945   if (type == T_LONG) {
  2946     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  2948     // (extended to allow indexed as well as constant displaced for JSR-166)
  2949     Register idx = noreg; // contains either constant offset or index
  2951     int disp = mem_addr->disp();
  2952     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  2953       if (!Assembler::is_simm13(disp)) {
  2954         idx = O7;
  2955         __ set(disp, idx);
  2957     } else {
  2958       assert(disp == 0, "not both indexed and disp");
  2959       idx = mem_addr->index()->as_register();
  2962     int null_check_offset = -1;
  2964     Register base = mem_addr->base()->as_register();
  2965     if (src->is_register() && dest->is_address()) {
  2966       // G4 is high half, G5 is low half
  2967       if (VM_Version::v9_instructions_work()) {
  2968         // clear the top bits of G5, and scale up G4
  2969         __ srl (src->as_register_lo(),  0, G5);
  2970         __ sllx(src->as_register_hi(), 32, G4);
  2971         // combine the two halves into the 64 bits of G4
  2972         __ or3(G4, G5, G4);
  2973         null_check_offset = __ offset();
  2974         if (idx == noreg) {
  2975           __ stx(G4, base, disp);
  2976         } else {
  2977           __ stx(G4, base, idx);
  2979       } else {
  2980         __ mov (src->as_register_hi(), G4);
  2981         __ mov (src->as_register_lo(), G5);
  2982         null_check_offset = __ offset();
  2983         if (idx == noreg) {
  2984           __ std(G4, base, disp);
  2985         } else {
  2986           __ std(G4, base, idx);
  2989     } else if (src->is_address() && dest->is_register()) {
  2990       null_check_offset = __ offset();
  2991       if (VM_Version::v9_instructions_work()) {
  2992         if (idx == noreg) {
  2993           __ ldx(base, disp, G5);
  2994         } else {
  2995           __ ldx(base, idx, G5);
  2997         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  2998         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  2999       } else {
  3000         if (idx == noreg) {
  3001           __ ldd(base, disp, G4);
  3002         } else {
  3003           __ ldd(base, idx, G4);
  3005         // G4 is high half, G5 is low half
  3006         __ mov (G4, dest->as_register_hi());
  3007         __ mov (G5, dest->as_register_lo());
  3009     } else {
  3010       Unimplemented();
  3012     if (info != NULL) {
  3013       add_debug_info_for_null_check(null_check_offset, info);
  3016   } else {
  3017     // use normal move for all other volatiles since they don't need
  3018     // special handling to remain atomic.
  3019     move_op(src, dest, type, lir_patch_none, info, false, false);
  3023 void LIR_Assembler::membar() {
  3024   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3025   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3028 void LIR_Assembler::membar_acquire() {
  3029   // no-op on TSO
  3032 void LIR_Assembler::membar_release() {
  3033   // no-op on TSO
  3036 // Macro to Pack two sequential registers containing 32 bit values
  3037 // into a single 64 bit register.
  3038 // rs and rs->successor() are packed into rd
  3039 // rd and rs may be the same register.
  3040 // Note: rs and rs->successor() are destroyed.
  3041 void LIR_Assembler::pack64( Register rs, Register rd ) {
  3042   __ sllx(rs, 32, rs);
  3043   __ srl(rs->successor(), 0, rs->successor());
  3044   __ or3(rs, rs->successor(), rd);
  3047 // Macro to unpack a 64 bit value in a register into
  3048 // two sequential registers.
  3049 // rd is unpacked into rd and rd->successor()
  3050 void LIR_Assembler::unpack64( Register rd ) {
  3051   __ mov(rd, rd->successor());
  3052   __ srax(rd, 32, rd);
  3053   __ sra(rd->successor(), 0, rd->successor());
  3057 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3058   LIR_Address* addr = addr_opr->as_address_ptr();
  3059   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3060   __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
  3064 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3065   assert(result_reg->is_register(), "check");
  3066   __ mov(G2_thread, result_reg->as_register());
  3070 void LIR_Assembler::peephole(LIR_List* lir) {
  3071   LIR_OpList* inst = lir->instructions_list();
  3072   for (int i = 0; i < inst->length(); i++) {
  3073     LIR_Op* op = inst->at(i);
  3074     switch (op->code()) {
  3075       case lir_cond_float_branch:
  3076       case lir_branch: {
  3077         LIR_OpBranch* branch = op->as_OpBranch();
  3078         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3079         LIR_Op* delay_op = NULL;
  3080         // we'd like to be able to pull following instructions into
  3081         // this slot but we don't know enough to do it safely yet so
  3082         // only optimize block to block control flow.
  3083         if (LIRFillDelaySlots && branch->block()) {
  3084           LIR_Op* prev = inst->at(i - 1);
  3085           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3086             // swap previous instruction into delay slot
  3087             inst->at_put(i - 1, op);
  3088             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3089 #ifndef PRODUCT
  3090             if (LIRTracePeephole) {
  3091               tty->print_cr("delayed");
  3092               inst->at(i - 1)->print();
  3093               inst->at(i)->print();
  3095 #endif
  3096             continue;
  3100         if (!delay_op) {
  3101           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3103         inst->insert_before(i + 1, delay_op);
  3104         break;
  3106       case lir_static_call:
  3107       case lir_virtual_call:
  3108       case lir_icvirtual_call:
  3109       case lir_optvirtual_call: {
  3110         LIR_Op* delay_op = NULL;
  3111         LIR_Op* prev = inst->at(i - 1);
  3112         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3113             (op->code() != lir_virtual_call ||
  3114              !prev->result_opr()->is_single_cpu() ||
  3115              prev->result_opr()->as_register() != O0) &&
  3116             LIR_Assembler::is_single_instruction(prev)) {
  3117           // Only moves without info can be put into the delay slot.
  3118           // Also don't allow the setup of the receiver in the delay
  3119           // slot for vtable calls.
  3120           inst->at_put(i - 1, op);
  3121           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3122 #ifndef PRODUCT
  3123           if (LIRTracePeephole) {
  3124             tty->print_cr("delayed");
  3125             inst->at(i - 1)->print();
  3126             inst->at(i)->print();
  3128 #endif
  3129           continue;
  3132         if (!delay_op) {
  3133           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3134           inst->insert_before(i + 1, delay_op);
  3136         break;
  3145 #undef __

mercurial