src/share/vm/opto/escape.cpp

Thu, 26 Dec 2013 21:00:23 -0800

author
iveresov
date
Thu, 26 Dec 2013 21:00:23 -0800
changeset 6210
6d2fe9c23878
parent 5910
6171eb9da4fd
child 6637
87b5e00100fe
permissions
-rw-r--r--

8027388: JVM crashes with SIGSEGV (0xb) at pc=0x00000001077cbbf6
Summary: Make object non-scalarizable if it has field with multiple bases one of which is null
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "opto/c2compiler.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/compile.hpp"
    34 #include "opto/escape.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/rootnode.hpp"
    38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
    39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
    40   _collecting(true),
    41   _verify(false),
    42   _compile(C),
    43   _igvn(igvn),
    44   _node_map(C->comp_arena()) {
    45   // Add unknown java object.
    46   add_java_object(C->top(), PointsToNode::GlobalEscape);
    47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
    48   // Add ConP(#NULL) and ConN(#NULL) nodes.
    49   Node* oop_null = igvn->zerocon(T_OBJECT);
    50   assert(oop_null->_idx < nodes_size(), "should be created already");
    51   add_java_object(oop_null, PointsToNode::NoEscape);
    52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
    53   if (UseCompressedOops) {
    54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
    55     assert(noop_null->_idx < nodes_size(), "should be created already");
    56     map_ideal_node(noop_null, null_obj);
    57   }
    58   _pcmp_neq = NULL; // Should be initialized
    59   _pcmp_eq  = NULL;
    60 }
    62 bool ConnectionGraph::has_candidates(Compile *C) {
    63   // EA brings benefits only when the code has allocations and/or locks which
    64   // are represented by ideal Macro nodes.
    65   int cnt = C->macro_count();
    66   for (int i = 0; i < cnt; i++) {
    67     Node *n = C->macro_node(i);
    68     if (n->is_Allocate())
    69       return true;
    70     if (n->is_Lock()) {
    71       Node* obj = n->as_Lock()->obj_node()->uncast();
    72       if (!(obj->is_Parm() || obj->is_Con()))
    73         return true;
    74     }
    75     if (n->is_CallStaticJava() &&
    76         n->as_CallStaticJava()->is_boxing_method()) {
    77       return true;
    78     }
    79   }
    80   return false;
    81 }
    83 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
    84   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
    85   ResourceMark rm;
    87   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
    88   // to create space for them in ConnectionGraph::_nodes[].
    89   Node* oop_null = igvn->zerocon(T_OBJECT);
    90   Node* noop_null = igvn->zerocon(T_NARROWOOP);
    91   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
    92   // Perform escape analysis
    93   if (congraph->compute_escape()) {
    94     // There are non escaping objects.
    95     C->set_congraph(congraph);
    96   }
    97   // Cleanup.
    98   if (oop_null->outcnt() == 0)
    99     igvn->hash_delete(oop_null);
   100   if (noop_null->outcnt() == 0)
   101     igvn->hash_delete(noop_null);
   102 }
   104 bool ConnectionGraph::compute_escape() {
   105   Compile* C = _compile;
   106   PhaseGVN* igvn = _igvn;
   108   // Worklists used by EA.
   109   Unique_Node_List delayed_worklist;
   110   GrowableArray<Node*> alloc_worklist;
   111   GrowableArray<Node*> ptr_cmp_worklist;
   112   GrowableArray<Node*> storestore_worklist;
   113   GrowableArray<PointsToNode*>   ptnodes_worklist;
   114   GrowableArray<JavaObjectNode*> java_objects_worklist;
   115   GrowableArray<JavaObjectNode*> non_escaped_worklist;
   116   GrowableArray<FieldNode*>      oop_fields_worklist;
   117   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
   119   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
   121   // 1. Populate Connection Graph (CG) with PointsTo nodes.
   122   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
   123   // Initialize worklist
   124   if (C->root() != NULL) {
   125     ideal_nodes.push(C->root());
   126   }
   127   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
   128     Node* n = ideal_nodes.at(next);
   129     // Create PointsTo nodes and add them to Connection Graph. Called
   130     // only once per ideal node since ideal_nodes is Unique_Node list.
   131     add_node_to_connection_graph(n, &delayed_worklist);
   132     PointsToNode* ptn = ptnode_adr(n->_idx);
   133     if (ptn != NULL) {
   134       ptnodes_worklist.append(ptn);
   135       if (ptn->is_JavaObject()) {
   136         java_objects_worklist.append(ptn->as_JavaObject());
   137         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
   138             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
   139           // Only allocations and java static calls results are interesting.
   140           non_escaped_worklist.append(ptn->as_JavaObject());
   141         }
   142       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
   143         oop_fields_worklist.append(ptn->as_Field());
   144       }
   145     }
   146     if (n->is_MergeMem()) {
   147       // Collect all MergeMem nodes to add memory slices for
   148       // scalar replaceable objects in split_unique_types().
   149       _mergemem_worklist.append(n->as_MergeMem());
   150     } else if (OptimizePtrCompare && n->is_Cmp() &&
   151                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
   152       // Collect compare pointers nodes.
   153       ptr_cmp_worklist.append(n);
   154     } else if (n->is_MemBarStoreStore()) {
   155       // Collect all MemBarStoreStore nodes so that depending on the
   156       // escape status of the associated Allocate node some of them
   157       // may be eliminated.
   158       storestore_worklist.append(n);
   159     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
   160                (n->req() > MemBarNode::Precedent)) {
   161       record_for_optimizer(n);
   162 #ifdef ASSERT
   163     } else if (n->is_AddP()) {
   164       // Collect address nodes for graph verification.
   165       addp_worklist.append(n);
   166 #endif
   167     }
   168     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   169       Node* m = n->fast_out(i);   // Get user
   170       ideal_nodes.push(m);
   171     }
   172   }
   173   if (non_escaped_worklist.length() == 0) {
   174     _collecting = false;
   175     return false; // Nothing to do.
   176   }
   177   // Add final simple edges to graph.
   178   while(delayed_worklist.size() > 0) {
   179     Node* n = delayed_worklist.pop();
   180     add_final_edges(n);
   181   }
   182   int ptnodes_length = ptnodes_worklist.length();
   184 #ifdef ASSERT
   185   if (VerifyConnectionGraph) {
   186     // Verify that no new simple edges could be created and all
   187     // local vars has edges.
   188     _verify = true;
   189     for (int next = 0; next < ptnodes_length; ++next) {
   190       PointsToNode* ptn = ptnodes_worklist.at(next);
   191       add_final_edges(ptn->ideal_node());
   192       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
   193         ptn->dump();
   194         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
   195       }
   196     }
   197     _verify = false;
   198   }
   199 #endif
   201   // 2. Finish Graph construction by propagating references to all
   202   //    java objects through graph.
   203   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
   204                                  java_objects_worklist, oop_fields_worklist)) {
   205     // All objects escaped or hit time or iterations limits.
   206     _collecting = false;
   207     return false;
   208   }
   210   // 3. Adjust scalar_replaceable state of nonescaping objects and push
   211   //    scalar replaceable allocations on alloc_worklist for processing
   212   //    in split_unique_types().
   213   int non_escaped_length = non_escaped_worklist.length();
   214   for (int next = 0; next < non_escaped_length; next++) {
   215     JavaObjectNode* ptn = non_escaped_worklist.at(next);
   216     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
   217     Node* n = ptn->ideal_node();
   218     if (n->is_Allocate()) {
   219       n->as_Allocate()->_is_non_escaping = noescape;
   220     }
   221     if (n->is_CallStaticJava()) {
   222       n->as_CallStaticJava()->_is_non_escaping = noescape;
   223     }
   224     if (noescape && ptn->scalar_replaceable()) {
   225       adjust_scalar_replaceable_state(ptn);
   226       if (ptn->scalar_replaceable()) {
   227         alloc_worklist.append(ptn->ideal_node());
   228       }
   229     }
   230   }
   232 #ifdef ASSERT
   233   if (VerifyConnectionGraph) {
   234     // Verify that graph is complete - no new edges could be added or needed.
   235     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
   236                             java_objects_worklist, addp_worklist);
   237   }
   238   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
   239   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
   240          null_obj->edge_count() == 0 &&
   241          !null_obj->arraycopy_src() &&
   242          !null_obj->arraycopy_dst(), "sanity");
   243 #endif
   245   _collecting = false;
   247   } // TracePhase t3("connectionGraph")
   249   // 4. Optimize ideal graph based on EA information.
   250   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
   251   if (has_non_escaping_obj) {
   252     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
   253   }
   255 #ifndef PRODUCT
   256   if (PrintEscapeAnalysis) {
   257     dump(ptnodes_worklist); // Dump ConnectionGraph
   258   }
   259 #endif
   261   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
   262 #ifdef ASSERT
   263   if (VerifyConnectionGraph) {
   264     int alloc_length = alloc_worklist.length();
   265     for (int next = 0; next < alloc_length; ++next) {
   266       Node* n = alloc_worklist.at(next);
   267       PointsToNode* ptn = ptnode_adr(n->_idx);
   268       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
   269     }
   270   }
   271 #endif
   273   // 5. Separate memory graph for scalar replaceable allcations.
   274   if (has_scalar_replaceable_candidates &&
   275       C->AliasLevel() >= 3 && EliminateAllocations) {
   276     // Now use the escape information to create unique types for
   277     // scalar replaceable objects.
   278     split_unique_types(alloc_worklist);
   279     if (C->failing())  return false;
   280     C->print_method(PHASE_AFTER_EA, 2);
   282 #ifdef ASSERT
   283   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
   284     tty->print("=== No allocations eliminated for ");
   285     C->method()->print_short_name();
   286     if(!EliminateAllocations) {
   287       tty->print(" since EliminateAllocations is off ===");
   288     } else if(!has_scalar_replaceable_candidates) {
   289       tty->print(" since there are no scalar replaceable candidates ===");
   290     } else if(C->AliasLevel() < 3) {
   291       tty->print(" since AliasLevel < 3 ===");
   292     }
   293     tty->cr();
   294 #endif
   295   }
   296   return has_non_escaping_obj;
   297 }
   299 // Utility function for nodes that load an object
   300 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   301   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   302   // ThreadLocal has RawPtr type.
   303   const Type* t = _igvn->type(n);
   304   if (t->make_ptr() != NULL) {
   305     Node* adr = n->in(MemNode::Address);
   306 #ifdef ASSERT
   307     if (!adr->is_AddP()) {
   308       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
   309     } else {
   310       assert((ptnode_adr(adr->_idx) == NULL ||
   311               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
   312     }
   313 #endif
   314     add_local_var_and_edge(n, PointsToNode::NoEscape,
   315                            adr, delayed_worklist);
   316   }
   317 }
   319 // Populate Connection Graph with PointsTo nodes and create simple
   320 // connection graph edges.
   321 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   322   assert(!_verify, "this method sould not be called for verification");
   323   PhaseGVN* igvn = _igvn;
   324   uint n_idx = n->_idx;
   325   PointsToNode* n_ptn = ptnode_adr(n_idx);
   326   if (n_ptn != NULL)
   327     return; // No need to redefine PointsTo node during first iteration.
   329   if (n->is_Call()) {
   330     // Arguments to allocation and locking don't escape.
   331     if (n->is_AbstractLock()) {
   332       // Put Lock and Unlock nodes on IGVN worklist to process them during
   333       // first IGVN optimization when escape information is still available.
   334       record_for_optimizer(n);
   335     } else if (n->is_Allocate()) {
   336       add_call_node(n->as_Call());
   337       record_for_optimizer(n);
   338     } else {
   339       if (n->is_CallStaticJava()) {
   340         const char* name = n->as_CallStaticJava()->_name;
   341         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
   342           return; // Skip uncommon traps
   343       }
   344       // Don't mark as processed since call's arguments have to be processed.
   345       delayed_worklist->push(n);
   346       // Check if a call returns an object.
   347       if ((n->as_Call()->returns_pointer() &&
   348            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
   349           (n->is_CallStaticJava() &&
   350            n->as_CallStaticJava()->is_boxing_method())) {
   351         add_call_node(n->as_Call());
   352       }
   353     }
   354     return;
   355   }
   356   // Put this check here to process call arguments since some call nodes
   357   // point to phantom_obj.
   358   if (n_ptn == phantom_obj || n_ptn == null_obj)
   359     return; // Skip predefined nodes.
   361   int opcode = n->Opcode();
   362   switch (opcode) {
   363     case Op_AddP: {
   364       Node* base = get_addp_base(n);
   365       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   366       // Field nodes are created for all field types. They are used in
   367       // adjust_scalar_replaceable_state() and split_unique_types().
   368       // Note, non-oop fields will have only base edges in Connection
   369       // Graph because such fields are not used for oop loads and stores.
   370       int offset = address_offset(n, igvn);
   371       add_field(n, PointsToNode::NoEscape, offset);
   372       if (ptn_base == NULL) {
   373         delayed_worklist->push(n); // Process it later.
   374       } else {
   375         n_ptn = ptnode_adr(n_idx);
   376         add_base(n_ptn->as_Field(), ptn_base);
   377       }
   378       break;
   379     }
   380     case Op_CastX2P: {
   381       map_ideal_node(n, phantom_obj);
   382       break;
   383     }
   384     case Op_CastPP:
   385     case Op_CheckCastPP:
   386     case Op_EncodeP:
   387     case Op_DecodeN:
   388     case Op_EncodePKlass:
   389     case Op_DecodeNKlass: {
   390       add_local_var_and_edge(n, PointsToNode::NoEscape,
   391                              n->in(1), delayed_worklist);
   392       break;
   393     }
   394     case Op_CMoveP: {
   395       add_local_var(n, PointsToNode::NoEscape);
   396       // Do not add edges during first iteration because some could be
   397       // not defined yet.
   398       delayed_worklist->push(n);
   399       break;
   400     }
   401     case Op_ConP:
   402     case Op_ConN:
   403     case Op_ConNKlass: {
   404       // assume all oop constants globally escape except for null
   405       PointsToNode::EscapeState es;
   406       const Type* t = igvn->type(n);
   407       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
   408         es = PointsToNode::NoEscape;
   409       } else {
   410         es = PointsToNode::GlobalEscape;
   411       }
   412       add_java_object(n, es);
   413       break;
   414     }
   415     case Op_CreateEx: {
   416       // assume that all exception objects globally escape
   417       add_java_object(n, PointsToNode::GlobalEscape);
   418       break;
   419     }
   420     case Op_LoadKlass:
   421     case Op_LoadNKlass: {
   422       // Unknown class is loaded
   423       map_ideal_node(n, phantom_obj);
   424       break;
   425     }
   426     case Op_LoadP:
   427     case Op_LoadN:
   428     case Op_LoadPLocked: {
   429       add_objload_to_connection_graph(n, delayed_worklist);
   430       break;
   431     }
   432     case Op_Parm: {
   433       map_ideal_node(n, phantom_obj);
   434       break;
   435     }
   436     case Op_PartialSubtypeCheck: {
   437       // Produces Null or notNull and is used in only in CmpP so
   438       // phantom_obj could be used.
   439       map_ideal_node(n, phantom_obj); // Result is unknown
   440       break;
   441     }
   442     case Op_Phi: {
   443       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   444       // ThreadLocal has RawPtr type.
   445       const Type* t = n->as_Phi()->type();
   446       if (t->make_ptr() != NULL) {
   447         add_local_var(n, PointsToNode::NoEscape);
   448         // Do not add edges during first iteration because some could be
   449         // not defined yet.
   450         delayed_worklist->push(n);
   451       }
   452       break;
   453     }
   454     case Op_Proj: {
   455       // we are only interested in the oop result projection from a call
   456       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   457           n->in(0)->as_Call()->returns_pointer()) {
   458         add_local_var_and_edge(n, PointsToNode::NoEscape,
   459                                n->in(0), delayed_worklist);
   460       }
   461       break;
   462     }
   463     case Op_Rethrow: // Exception object escapes
   464     case Op_Return: {
   465       if (n->req() > TypeFunc::Parms &&
   466           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   467         // Treat Return value as LocalVar with GlobalEscape escape state.
   468         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   469                                n->in(TypeFunc::Parms), delayed_worklist);
   470       }
   471       break;
   472     }
   473     case Op_GetAndSetP:
   474     case Op_GetAndSetN: {
   475       add_objload_to_connection_graph(n, delayed_worklist);
   476       // fallthrough
   477     }
   478     case Op_StoreP:
   479     case Op_StoreN:
   480     case Op_StoreNKlass:
   481     case Op_StorePConditional:
   482     case Op_CompareAndSwapP:
   483     case Op_CompareAndSwapN: {
   484       Node* adr = n->in(MemNode::Address);
   485       const Type *adr_type = igvn->type(adr);
   486       adr_type = adr_type->make_ptr();
   487       if (adr_type == NULL) {
   488         break; // skip dead nodes
   489       }
   490       if (adr_type->isa_oopptr() ||
   491           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   492                         (adr_type == TypeRawPtr::NOTNULL &&
   493                          adr->in(AddPNode::Address)->is_Proj() &&
   494                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   495         delayed_worklist->push(n); // Process it later.
   496 #ifdef ASSERT
   497         assert(adr->is_AddP(), "expecting an AddP");
   498         if (adr_type == TypeRawPtr::NOTNULL) {
   499           // Verify a raw address for a store captured by Initialize node.
   500           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   501           assert(offs != Type::OffsetBot, "offset must be a constant");
   502         }
   503 #endif
   504       } else {
   505         // Ignore copy the displaced header to the BoxNode (OSR compilation).
   506         if (adr->is_BoxLock())
   507           break;
   508         // Stored value escapes in unsafe access.
   509         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   510           // Pointer stores in G1 barriers looks like unsafe access.
   511           // Ignore such stores to be able scalar replace non-escaping
   512           // allocations.
   513           if (UseG1GC && adr->is_AddP()) {
   514             Node* base = get_addp_base(adr);
   515             if (base->Opcode() == Op_LoadP &&
   516                 base->in(MemNode::Address)->is_AddP()) {
   517               adr = base->in(MemNode::Address);
   518               Node* tls = get_addp_base(adr);
   519               if (tls->Opcode() == Op_ThreadLocal) {
   520                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   521                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
   522                                      PtrQueue::byte_offset_of_buf())) {
   523                   break; // G1 pre barier previous oop value store.
   524                 }
   525                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
   526                                      PtrQueue::byte_offset_of_buf())) {
   527                   break; // G1 post barier card address store.
   528                 }
   529               }
   530             }
   531           }
   532           delayed_worklist->push(n); // Process unsafe access later.
   533           break;
   534         }
   535 #ifdef ASSERT
   536         n->dump(1);
   537         assert(false, "not unsafe or G1 barrier raw StoreP");
   538 #endif
   539       }
   540       break;
   541     }
   542     case Op_AryEq:
   543     case Op_StrComp:
   544     case Op_StrEquals:
   545     case Op_StrIndexOf:
   546     case Op_EncodeISOArray: {
   547       add_local_var(n, PointsToNode::ArgEscape);
   548       delayed_worklist->push(n); // Process it later.
   549       break;
   550     }
   551     case Op_ThreadLocal: {
   552       add_java_object(n, PointsToNode::ArgEscape);
   553       break;
   554     }
   555     default:
   556       ; // Do nothing for nodes not related to EA.
   557   }
   558   return;
   559 }
   561 #ifdef ASSERT
   562 #define ELSE_FAIL(name)                               \
   563       /* Should not be called for not pointer type. */  \
   564       n->dump(1);                                       \
   565       assert(false, name);                              \
   566       break;
   567 #else
   568 #define ELSE_FAIL(name) \
   569       break;
   570 #endif
   572 // Add final simple edges to graph.
   573 void ConnectionGraph::add_final_edges(Node *n) {
   574   PointsToNode* n_ptn = ptnode_adr(n->_idx);
   575 #ifdef ASSERT
   576   if (_verify && n_ptn->is_JavaObject())
   577     return; // This method does not change graph for JavaObject.
   578 #endif
   580   if (n->is_Call()) {
   581     process_call_arguments(n->as_Call());
   582     return;
   583   }
   584   assert(n->is_Store() || n->is_LoadStore() ||
   585          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
   586          "node should be registered already");
   587   int opcode = n->Opcode();
   588   switch (opcode) {
   589     case Op_AddP: {
   590       Node* base = get_addp_base(n);
   591       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   592       assert(ptn_base != NULL, "field's base should be registered");
   593       add_base(n_ptn->as_Field(), ptn_base);
   594       break;
   595     }
   596     case Op_CastPP:
   597     case Op_CheckCastPP:
   598     case Op_EncodeP:
   599     case Op_DecodeN:
   600     case Op_EncodePKlass:
   601     case Op_DecodeNKlass: {
   602       add_local_var_and_edge(n, PointsToNode::NoEscape,
   603                              n->in(1), NULL);
   604       break;
   605     }
   606     case Op_CMoveP: {
   607       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
   608         Node* in = n->in(i);
   609         if (in == NULL)
   610           continue;  // ignore NULL
   611         Node* uncast_in = in->uncast();
   612         if (uncast_in->is_top() || uncast_in == n)
   613           continue;  // ignore top or inputs which go back this node
   614         PointsToNode* ptn = ptnode_adr(in->_idx);
   615         assert(ptn != NULL, "node should be registered");
   616         add_edge(n_ptn, ptn);
   617       }
   618       break;
   619     }
   620     case Op_LoadP:
   621     case Op_LoadN:
   622     case Op_LoadPLocked: {
   623       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   624       // ThreadLocal has RawPtr type.
   625       const Type* t = _igvn->type(n);
   626       if (t->make_ptr() != NULL) {
   627         Node* adr = n->in(MemNode::Address);
   628         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   629         break;
   630       }
   631       ELSE_FAIL("Op_LoadP");
   632     }
   633     case Op_Phi: {
   634       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   635       // ThreadLocal has RawPtr type.
   636       const Type* t = n->as_Phi()->type();
   637       if (t->make_ptr() != NULL) {
   638         for (uint i = 1; i < n->req(); i++) {
   639           Node* in = n->in(i);
   640           if (in == NULL)
   641             continue;  // ignore NULL
   642           Node* uncast_in = in->uncast();
   643           if (uncast_in->is_top() || uncast_in == n)
   644             continue;  // ignore top or inputs which go back this node
   645           PointsToNode* ptn = ptnode_adr(in->_idx);
   646           assert(ptn != NULL, "node should be registered");
   647           add_edge(n_ptn, ptn);
   648         }
   649         break;
   650       }
   651       ELSE_FAIL("Op_Phi");
   652     }
   653     case Op_Proj: {
   654       // we are only interested in the oop result projection from a call
   655       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   656           n->in(0)->as_Call()->returns_pointer()) {
   657         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
   658         break;
   659       }
   660       ELSE_FAIL("Op_Proj");
   661     }
   662     case Op_Rethrow: // Exception object escapes
   663     case Op_Return: {
   664       if (n->req() > TypeFunc::Parms &&
   665           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   666         // Treat Return value as LocalVar with GlobalEscape escape state.
   667         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   668                                n->in(TypeFunc::Parms), NULL);
   669         break;
   670       }
   671       ELSE_FAIL("Op_Return");
   672     }
   673     case Op_StoreP:
   674     case Op_StoreN:
   675     case Op_StoreNKlass:
   676     case Op_StorePConditional:
   677     case Op_CompareAndSwapP:
   678     case Op_CompareAndSwapN:
   679     case Op_GetAndSetP:
   680     case Op_GetAndSetN: {
   681       Node* adr = n->in(MemNode::Address);
   682       const Type *adr_type = _igvn->type(adr);
   683       adr_type = adr_type->make_ptr();
   684 #ifdef ASSERT
   685       if (adr_type == NULL) {
   686         n->dump(1);
   687         assert(adr_type != NULL, "dead node should not be on list");
   688         break;
   689       }
   690 #endif
   691       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
   692         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   693       }
   694       if (adr_type->isa_oopptr() ||
   695           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   696                         (adr_type == TypeRawPtr::NOTNULL &&
   697                          adr->in(AddPNode::Address)->is_Proj() &&
   698                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   699         // Point Address to Value
   700         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   701         assert(adr_ptn != NULL &&
   702                adr_ptn->as_Field()->is_oop(), "node should be registered");
   703         Node *val = n->in(MemNode::ValueIn);
   704         PointsToNode* ptn = ptnode_adr(val->_idx);
   705         assert(ptn != NULL, "node should be registered");
   706         add_edge(adr_ptn, ptn);
   707         break;
   708       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   709         // Stored value escapes in unsafe access.
   710         Node *val = n->in(MemNode::ValueIn);
   711         PointsToNode* ptn = ptnode_adr(val->_idx);
   712         assert(ptn != NULL, "node should be registered");
   713         ptn->set_escape_state(PointsToNode::GlobalEscape);
   714         // Add edge to object for unsafe access with offset.
   715         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   716         assert(adr_ptn != NULL, "node should be registered");
   717         if (adr_ptn->is_Field()) {
   718           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
   719           add_edge(adr_ptn, ptn);
   720         }
   721         break;
   722       }
   723       ELSE_FAIL("Op_StoreP");
   724     }
   725     case Op_AryEq:
   726     case Op_StrComp:
   727     case Op_StrEquals:
   728     case Op_StrIndexOf:
   729     case Op_EncodeISOArray: {
   730       // char[] arrays passed to string intrinsic do not escape but
   731       // they are not scalar replaceable. Adjust escape state for them.
   732       // Start from in(2) edge since in(1) is memory edge.
   733       for (uint i = 2; i < n->req(); i++) {
   734         Node* adr = n->in(i);
   735         const Type* at = _igvn->type(adr);
   736         if (!adr->is_top() && at->isa_ptr()) {
   737           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
   738                  at->isa_ptr() != NULL, "expecting a pointer");
   739           if (adr->is_AddP()) {
   740             adr = get_addp_base(adr);
   741           }
   742           PointsToNode* ptn = ptnode_adr(adr->_idx);
   743           assert(ptn != NULL, "node should be registered");
   744           add_edge(n_ptn, ptn);
   745         }
   746       }
   747       break;
   748     }
   749     default: {
   750       // This method should be called only for EA specific nodes which may
   751       // miss some edges when they were created.
   752 #ifdef ASSERT
   753       n->dump(1);
   754 #endif
   755       guarantee(false, "unknown node");
   756     }
   757   }
   758   return;
   759 }
   761 void ConnectionGraph::add_call_node(CallNode* call) {
   762   assert(call->returns_pointer(), "only for call which returns pointer");
   763   uint call_idx = call->_idx;
   764   if (call->is_Allocate()) {
   765     Node* k = call->in(AllocateNode::KlassNode);
   766     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
   767     assert(kt != NULL, "TypeKlassPtr  required.");
   768     ciKlass* cik = kt->klass();
   769     PointsToNode::EscapeState es = PointsToNode::NoEscape;
   770     bool scalar_replaceable = true;
   771     if (call->is_AllocateArray()) {
   772       if (!cik->is_array_klass()) { // StressReflectiveCode
   773         es = PointsToNode::GlobalEscape;
   774       } else {
   775         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
   776         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
   777           // Not scalar replaceable if the length is not constant or too big.
   778           scalar_replaceable = false;
   779         }
   780       }
   781     } else {  // Allocate instance
   782       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
   783           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
   784          !cik->is_instance_klass() || // StressReflectiveCode
   785           cik->as_instance_klass()->has_finalizer()) {
   786         es = PointsToNode::GlobalEscape;
   787       }
   788     }
   789     add_java_object(call, es);
   790     PointsToNode* ptn = ptnode_adr(call_idx);
   791     if (!scalar_replaceable && ptn->scalar_replaceable()) {
   792       ptn->set_scalar_replaceable(false);
   793     }
   794   } else if (call->is_CallStaticJava()) {
   795     // Call nodes could be different types:
   796     //
   797     // 1. CallDynamicJavaNode (what happened during call is unknown):
   798     //
   799     //    - mapped to GlobalEscape JavaObject node if oop is returned;
   800     //
   801     //    - all oop arguments are escaping globally;
   802     //
   803     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
   804     //
   805     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
   806     //
   807     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
   808     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
   809     //      during call is returned;
   810     //    - mapped to ArgEscape LocalVar node pointed to object arguments
   811     //      which are returned and does not escape during call;
   812     //
   813     //    - oop arguments escaping status is defined by bytecode analysis;
   814     //
   815     // For a static call, we know exactly what method is being called.
   816     // Use bytecode estimator to record whether the call's return value escapes.
   817     ciMethod* meth = call->as_CallJava()->method();
   818     if (meth == NULL) {
   819       const char* name = call->as_CallStaticJava()->_name;
   820       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
   821       // Returns a newly allocated unescaped object.
   822       add_java_object(call, PointsToNode::NoEscape);
   823       ptnode_adr(call_idx)->set_scalar_replaceable(false);
   824     } else if (meth->is_boxing_method()) {
   825       // Returns boxing object
   826       PointsToNode::EscapeState es;
   827       vmIntrinsics::ID intr = meth->intrinsic_id();
   828       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
   829         // It does not escape if object is always allocated.
   830         es = PointsToNode::NoEscape;
   831       } else {
   832         // It escapes globally if object could be loaded from cache.
   833         es = PointsToNode::GlobalEscape;
   834       }
   835       add_java_object(call, es);
   836     } else {
   837       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
   838       call_analyzer->copy_dependencies(_compile->dependencies());
   839       if (call_analyzer->is_return_allocated()) {
   840         // Returns a newly allocated unescaped object, simply
   841         // update dependency information.
   842         // Mark it as NoEscape so that objects referenced by
   843         // it's fields will be marked as NoEscape at least.
   844         add_java_object(call, PointsToNode::NoEscape);
   845         ptnode_adr(call_idx)->set_scalar_replaceable(false);
   846       } else {
   847         // Determine whether any arguments are returned.
   848         const TypeTuple* d = call->tf()->domain();
   849         bool ret_arg = false;
   850         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   851           if (d->field_at(i)->isa_ptr() != NULL &&
   852               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
   853             ret_arg = true;
   854             break;
   855           }
   856         }
   857         if (ret_arg) {
   858           add_local_var(call, PointsToNode::ArgEscape);
   859         } else {
   860           // Returns unknown object.
   861           map_ideal_node(call, phantom_obj);
   862         }
   863       }
   864     }
   865   } else {
   866     // An other type of call, assume the worst case:
   867     // returned value is unknown and globally escapes.
   868     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
   869     map_ideal_node(call, phantom_obj);
   870   }
   871 }
   873 void ConnectionGraph::process_call_arguments(CallNode *call) {
   874     bool is_arraycopy = false;
   875     switch (call->Opcode()) {
   876 #ifdef ASSERT
   877     case Op_Allocate:
   878     case Op_AllocateArray:
   879     case Op_Lock:
   880     case Op_Unlock:
   881       assert(false, "should be done already");
   882       break;
   883 #endif
   884     case Op_CallLeafNoFP:
   885       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
   886                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
   887       // fall through
   888     case Op_CallLeaf: {
   889       // Stub calls, objects do not escape but they are not scale replaceable.
   890       // Adjust escape state for outgoing arguments.
   891       const TypeTuple * d = call->tf()->domain();
   892       bool src_has_oops = false;
   893       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   894         const Type* at = d->field_at(i);
   895         Node *arg = call->in(i);
   896         const Type *aat = _igvn->type(arg);
   897         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
   898           continue;
   899         if (arg->is_AddP()) {
   900           //
   901           // The inline_native_clone() case when the arraycopy stub is called
   902           // after the allocation before Initialize and CheckCastPP nodes.
   903           // Or normal arraycopy for object arrays case.
   904           //
   905           // Set AddP's base (Allocate) as not scalar replaceable since
   906           // pointer to the base (with offset) is passed as argument.
   907           //
   908           arg = get_addp_base(arg);
   909         }
   910         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   911         assert(arg_ptn != NULL, "should be registered");
   912         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
   913         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
   914           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
   915                  aat->isa_ptr() != NULL, "expecting an Ptr");
   916           bool arg_has_oops = aat->isa_oopptr() &&
   917                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
   918                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
   919           if (i == TypeFunc::Parms) {
   920             src_has_oops = arg_has_oops;
   921           }
   922           //
   923           // src or dst could be j.l.Object when other is basic type array:
   924           //
   925           //   arraycopy(char[],0,Object*,0,size);
   926           //   arraycopy(Object*,0,char[],0,size);
   927           //
   928           // Don't add edges in such cases.
   929           //
   930           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
   931                                        arg_has_oops && (i > TypeFunc::Parms);
   932 #ifdef ASSERT
   933           if (!(is_arraycopy ||
   934                 (call->as_CallLeaf()->_name != NULL &&
   935                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
   936                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
   937                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
   938                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
   939                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
   940                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
   941                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0)
   942                   ))) {
   943             call->dump();
   944             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
   945           }
   946 #endif
   947           // Always process arraycopy's destination object since
   948           // we need to add all possible edges to references in
   949           // source object.
   950           if (arg_esc >= PointsToNode::ArgEscape &&
   951               !arg_is_arraycopy_dest) {
   952             continue;
   953           }
   954           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   955           if (arg_is_arraycopy_dest) {
   956             Node* src = call->in(TypeFunc::Parms);
   957             if (src->is_AddP()) {
   958               src = get_addp_base(src);
   959             }
   960             PointsToNode* src_ptn = ptnode_adr(src->_idx);
   961             assert(src_ptn != NULL, "should be registered");
   962             if (arg_ptn != src_ptn) {
   963               // Special arraycopy edge:
   964               // A destination object's field can't have the source object
   965               // as base since objects escape states are not related.
   966               // Only escape state of destination object's fields affects
   967               // escape state of fields in source object.
   968               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
   969             }
   970           }
   971         }
   972       }
   973       break;
   974     }
   975     case Op_CallStaticJava: {
   976       // For a static call, we know exactly what method is being called.
   977       // Use bytecode estimator to record the call's escape affects
   978 #ifdef ASSERT
   979       const char* name = call->as_CallStaticJava()->_name;
   980       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
   981 #endif
   982       ciMethod* meth = call->as_CallJava()->method();
   983       if ((meth != NULL) && meth->is_boxing_method()) {
   984         break; // Boxing methods do not modify any oops.
   985       }
   986       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
   987       // fall-through if not a Java method or no analyzer information
   988       if (call_analyzer != NULL) {
   989         PointsToNode* call_ptn = ptnode_adr(call->_idx);
   990         const TypeTuple* d = call->tf()->domain();
   991         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   992           const Type* at = d->field_at(i);
   993           int k = i - TypeFunc::Parms;
   994           Node* arg = call->in(i);
   995           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   996           if (at->isa_ptr() != NULL &&
   997               call_analyzer->is_arg_returned(k)) {
   998             // The call returns arguments.
   999             if (call_ptn != NULL) { // Is call's result used?
  1000               assert(call_ptn->is_LocalVar(), "node should be registered");
  1001               assert(arg_ptn != NULL, "node should be registered");
  1002               add_edge(call_ptn, arg_ptn);
  1005           if (at->isa_oopptr() != NULL &&
  1006               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
  1007             if (!call_analyzer->is_arg_stack(k)) {
  1008               // The argument global escapes
  1009               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1010             } else {
  1011               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
  1012               if (!call_analyzer->is_arg_local(k)) {
  1013                 // The argument itself doesn't escape, but any fields might
  1014                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1019         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
  1020           // The call returns arguments.
  1021           assert(call_ptn->edge_count() > 0, "sanity");
  1022           if (!call_analyzer->is_return_local()) {
  1023             // Returns also unknown object.
  1024             add_edge(call_ptn, phantom_obj);
  1027         break;
  1030     default: {
  1031       // Fall-through here if not a Java method or no analyzer information
  1032       // or some other type of call, assume the worst case: all arguments
  1033       // globally escape.
  1034       const TypeTuple* d = call->tf()->domain();
  1035       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1036         const Type* at = d->field_at(i);
  1037         if (at->isa_oopptr() != NULL) {
  1038           Node* arg = call->in(i);
  1039           if (arg->is_AddP()) {
  1040             arg = get_addp_base(arg);
  1042           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
  1043           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
  1051 // Finish Graph construction.
  1052 bool ConnectionGraph::complete_connection_graph(
  1053                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1054                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1055                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1056                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
  1057   // Normally only 1-3 passes needed to build Connection Graph depending
  1058   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
  1059   // Set limit to 20 to catch situation when something did go wrong and
  1060   // bailout Escape Analysis.
  1061   // Also limit build time to 30 sec (60 in debug VM).
  1062 #define CG_BUILD_ITER_LIMIT 20
  1063 #ifdef ASSERT
  1064 #define CG_BUILD_TIME_LIMIT 60.0
  1065 #else
  1066 #define CG_BUILD_TIME_LIMIT 30.0
  1067 #endif
  1069   // Propagate GlobalEscape and ArgEscape escape states and check that
  1070   // we still have non-escaping objects. The method pushs on _worklist
  1071   // Field nodes which reference phantom_object.
  1072   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1073     return false; // Nothing to do.
  1075   // Now propagate references to all JavaObject nodes.
  1076   int java_objects_length = java_objects_worklist.length();
  1077   elapsedTimer time;
  1078   int new_edges = 1;
  1079   int iterations = 0;
  1080   do {
  1081     while ((new_edges > 0) &&
  1082           (iterations++   < CG_BUILD_ITER_LIMIT) &&
  1083           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1084       time.start();
  1085       new_edges = 0;
  1086       // Propagate references to phantom_object for nodes pushed on _worklist
  1087       // by find_non_escaped_objects() and find_field_value().
  1088       new_edges += add_java_object_edges(phantom_obj, false);
  1089       for (int next = 0; next < java_objects_length; ++next) {
  1090         JavaObjectNode* ptn = java_objects_worklist.at(next);
  1091         new_edges += add_java_object_edges(ptn, true);
  1093       if (new_edges > 0) {
  1094         // Update escape states on each iteration if graph was updated.
  1095         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1096           return false; // Nothing to do.
  1099       time.stop();
  1101     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
  1102         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1103       time.start();
  1104       // Find fields which have unknown value.
  1105       int fields_length = oop_fields_worklist.length();
  1106       for (int next = 0; next < fields_length; next++) {
  1107         FieldNode* field = oop_fields_worklist.at(next);
  1108         if (field->edge_count() == 0) {
  1109           new_edges += find_field_value(field);
  1110           // This code may added new edges to phantom_object.
  1111           // Need an other cycle to propagate references to phantom_object.
  1114       time.stop();
  1115     } else {
  1116       new_edges = 0; // Bailout
  1118   } while (new_edges > 0);
  1120   // Bailout if passed limits.
  1121   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
  1122       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
  1123     Compile* C = _compile;
  1124     if (C->log() != NULL) {
  1125       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
  1126       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
  1127       C->log()->end_elem(" limit'");
  1129     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
  1130            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
  1131     // Possible infinite build_connection_graph loop,
  1132     // bailout (no changes to ideal graph were made).
  1133     return false;
  1135 #ifdef ASSERT
  1136   if (Verbose && PrintEscapeAnalysis) {
  1137     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
  1138                   iterations, nodes_size(), ptnodes_worklist.length());
  1140 #endif
  1142 #undef CG_BUILD_ITER_LIMIT
  1143 #undef CG_BUILD_TIME_LIMIT
  1145   // Find fields initialized by NULL for non-escaping Allocations.
  1146   int non_escaped_length = non_escaped_worklist.length();
  1147   for (int next = 0; next < non_escaped_length; next++) {
  1148     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1149     PointsToNode::EscapeState es = ptn->escape_state();
  1150     assert(es <= PointsToNode::ArgEscape, "sanity");
  1151     if (es == PointsToNode::NoEscape) {
  1152       if (find_init_values(ptn, null_obj, _igvn) > 0) {
  1153         // Adding references to NULL object does not change escape states
  1154         // since it does not escape. Also no fields are added to NULL object.
  1155         add_java_object_edges(null_obj, false);
  1158     Node* n = ptn->ideal_node();
  1159     if (n->is_Allocate()) {
  1160       // The object allocated by this Allocate node will never be
  1161       // seen by an other thread. Mark it so that when it is
  1162       // expanded no MemBarStoreStore is added.
  1163       InitializeNode* ini = n->as_Allocate()->initialization();
  1164       if (ini != NULL)
  1165         ini->set_does_not_escape();
  1168   return true; // Finished graph construction.
  1171 // Propagate GlobalEscape and ArgEscape escape states to all nodes
  1172 // and check that we still have non-escaping java objects.
  1173 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
  1174                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
  1175   GrowableArray<PointsToNode*> escape_worklist;
  1176   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
  1177   int ptnodes_length = ptnodes_worklist.length();
  1178   for (int next = 0; next < ptnodes_length; ++next) {
  1179     PointsToNode* ptn = ptnodes_worklist.at(next);
  1180     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
  1181         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
  1182       escape_worklist.push(ptn);
  1185   // Set escape states to referenced nodes (edges list).
  1186   while (escape_worklist.length() > 0) {
  1187     PointsToNode* ptn = escape_worklist.pop();
  1188     PointsToNode::EscapeState es  = ptn->escape_state();
  1189     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
  1190     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
  1191         es >= PointsToNode::ArgEscape) {
  1192       // GlobalEscape or ArgEscape state of field means it has unknown value.
  1193       if (add_edge(ptn, phantom_obj)) {
  1194         // New edge was added
  1195         add_field_uses_to_worklist(ptn->as_Field());
  1198     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1199       PointsToNode* e = i.get();
  1200       if (e->is_Arraycopy()) {
  1201         assert(ptn->arraycopy_dst(), "sanity");
  1202         // Propagate only fields escape state through arraycopy edge.
  1203         if (e->fields_escape_state() < field_es) {
  1204           set_fields_escape_state(e, field_es);
  1205           escape_worklist.push(e);
  1207       } else if (es >= field_es) {
  1208         // fields_escape_state is also set to 'es' if it is less than 'es'.
  1209         if (e->escape_state() < es) {
  1210           set_escape_state(e, es);
  1211           escape_worklist.push(e);
  1213       } else {
  1214         // Propagate field escape state.
  1215         bool es_changed = false;
  1216         if (e->fields_escape_state() < field_es) {
  1217           set_fields_escape_state(e, field_es);
  1218           es_changed = true;
  1220         if ((e->escape_state() < field_es) &&
  1221             e->is_Field() && ptn->is_JavaObject() &&
  1222             e->as_Field()->is_oop()) {
  1223           // Change escape state of referenced fileds.
  1224           set_escape_state(e, field_es);
  1225           es_changed = true;;
  1226         } else if (e->escape_state() < es) {
  1227           set_escape_state(e, es);
  1228           es_changed = true;;
  1230         if (es_changed) {
  1231           escape_worklist.push(e);
  1236   // Remove escaped objects from non_escaped list.
  1237   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
  1238     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1239     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
  1240       non_escaped_worklist.delete_at(next);
  1242     if (ptn->escape_state() == PointsToNode::NoEscape) {
  1243       // Find fields in non-escaped allocations which have unknown value.
  1244       find_init_values(ptn, phantom_obj, NULL);
  1247   return (non_escaped_worklist.length() > 0);
  1250 // Add all references to JavaObject node by walking over all uses.
  1251 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
  1252   int new_edges = 0;
  1253   if (populate_worklist) {
  1254     // Populate _worklist by uses of jobj's uses.
  1255     for (UseIterator i(jobj); i.has_next(); i.next()) {
  1256       PointsToNode* use = i.get();
  1257       if (use->is_Arraycopy())
  1258         continue;
  1259       add_uses_to_worklist(use);
  1260       if (use->is_Field() && use->as_Field()->is_oop()) {
  1261         // Put on worklist all field's uses (loads) and
  1262         // related field nodes (same base and offset).
  1263         add_field_uses_to_worklist(use->as_Field());
  1267   while(_worklist.length() > 0) {
  1268     PointsToNode* use = _worklist.pop();
  1269     if (PointsToNode::is_base_use(use)) {
  1270       // Add reference from jobj to field and from field to jobj (field's base).
  1271       use = PointsToNode::get_use_node(use)->as_Field();
  1272       if (add_base(use->as_Field(), jobj)) {
  1273         new_edges++;
  1275       continue;
  1277     assert(!use->is_JavaObject(), "sanity");
  1278     if (use->is_Arraycopy()) {
  1279       if (jobj == null_obj) // NULL object does not have field edges
  1280         continue;
  1281       // Added edge from Arraycopy node to arraycopy's source java object
  1282       if (add_edge(use, jobj)) {
  1283         jobj->set_arraycopy_src();
  1284         new_edges++;
  1286       // and stop here.
  1287       continue;
  1289     if (!add_edge(use, jobj))
  1290       continue; // No new edge added, there was such edge already.
  1291     new_edges++;
  1292     if (use->is_LocalVar()) {
  1293       add_uses_to_worklist(use);
  1294       if (use->arraycopy_dst()) {
  1295         for (EdgeIterator i(use); i.has_next(); i.next()) {
  1296           PointsToNode* e = i.get();
  1297           if (e->is_Arraycopy()) {
  1298             if (jobj == null_obj) // NULL object does not have field edges
  1299               continue;
  1300             // Add edge from arraycopy's destination java object to Arraycopy node.
  1301             if (add_edge(jobj, e)) {
  1302               new_edges++;
  1303               jobj->set_arraycopy_dst();
  1308     } else {
  1309       // Added new edge to stored in field values.
  1310       // Put on worklist all field's uses (loads) and
  1311       // related field nodes (same base and offset).
  1312       add_field_uses_to_worklist(use->as_Field());
  1315   return new_edges;
  1318 // Put on worklist all related field nodes.
  1319 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
  1320   assert(field->is_oop(), "sanity");
  1321   int offset = field->offset();
  1322   add_uses_to_worklist(field);
  1323   // Loop over all bases of this field and push on worklist Field nodes
  1324   // with the same offset and base (since they may reference the same field).
  1325   for (BaseIterator i(field); i.has_next(); i.next()) {
  1326     PointsToNode* base = i.get();
  1327     add_fields_to_worklist(field, base);
  1328     // Check if the base was source object of arraycopy and go over arraycopy's
  1329     // destination objects since values stored to a field of source object are
  1330     // accessable by uses (loads) of fields of destination objects.
  1331     if (base->arraycopy_src()) {
  1332       for (UseIterator j(base); j.has_next(); j.next()) {
  1333         PointsToNode* arycp = j.get();
  1334         if (arycp->is_Arraycopy()) {
  1335           for (UseIterator k(arycp); k.has_next(); k.next()) {
  1336             PointsToNode* abase = k.get();
  1337             if (abase->arraycopy_dst() && abase != base) {
  1338               // Look for the same arracopy reference.
  1339               add_fields_to_worklist(field, abase);
  1348 // Put on worklist all related field nodes.
  1349 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
  1350   int offset = field->offset();
  1351   if (base->is_LocalVar()) {
  1352     for (UseIterator j(base); j.has_next(); j.next()) {
  1353       PointsToNode* f = j.get();
  1354       if (PointsToNode::is_base_use(f)) { // Field
  1355         f = PointsToNode::get_use_node(f);
  1356         if (f == field || !f->as_Field()->is_oop())
  1357           continue;
  1358         int offs = f->as_Field()->offset();
  1359         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1360           add_to_worklist(f);
  1364   } else {
  1365     assert(base->is_JavaObject(), "sanity");
  1366     if (// Skip phantom_object since it is only used to indicate that
  1367         // this field's content globally escapes.
  1368         (base != phantom_obj) &&
  1369         // NULL object node does not have fields.
  1370         (base != null_obj)) {
  1371       for (EdgeIterator i(base); i.has_next(); i.next()) {
  1372         PointsToNode* f = i.get();
  1373         // Skip arraycopy edge since store to destination object field
  1374         // does not update value in source object field.
  1375         if (f->is_Arraycopy()) {
  1376           assert(base->arraycopy_dst(), "sanity");
  1377           continue;
  1379         if (f == field || !f->as_Field()->is_oop())
  1380           continue;
  1381         int offs = f->as_Field()->offset();
  1382         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1383           add_to_worklist(f);
  1390 // Find fields which have unknown value.
  1391 int ConnectionGraph::find_field_value(FieldNode* field) {
  1392   // Escaped fields should have init value already.
  1393   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
  1394   int new_edges = 0;
  1395   for (BaseIterator i(field); i.has_next(); i.next()) {
  1396     PointsToNode* base = i.get();
  1397     if (base->is_JavaObject()) {
  1398       // Skip Allocate's fields which will be processed later.
  1399       if (base->ideal_node()->is_Allocate())
  1400         return 0;
  1401       assert(base == null_obj, "only NULL ptr base expected here");
  1404   if (add_edge(field, phantom_obj)) {
  1405     // New edge was added
  1406     new_edges++;
  1407     add_field_uses_to_worklist(field);
  1409   return new_edges;
  1412 // Find fields initializing values for allocations.
  1413 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
  1414   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
  1415   int new_edges = 0;
  1416   Node* alloc = pta->ideal_node();
  1417   if (init_val == phantom_obj) {
  1418     // Do nothing for Allocate nodes since its fields values are "known".
  1419     if (alloc->is_Allocate())
  1420       return 0;
  1421     assert(alloc->as_CallStaticJava(), "sanity");
  1422 #ifdef ASSERT
  1423     if (alloc->as_CallStaticJava()->method() == NULL) {
  1424       const char* name = alloc->as_CallStaticJava()->_name;
  1425       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
  1427 #endif
  1428     // Non-escaped allocation returned from Java or runtime call have
  1429     // unknown values in fields.
  1430     for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1431       PointsToNode* field = i.get();
  1432       if (field->is_Field() && field->as_Field()->is_oop()) {
  1433         if (add_edge(field, phantom_obj)) {
  1434           // New edge was added
  1435           new_edges++;
  1436           add_field_uses_to_worklist(field->as_Field());
  1440     return new_edges;
  1442   assert(init_val == null_obj, "sanity");
  1443   // Do nothing for Call nodes since its fields values are unknown.
  1444   if (!alloc->is_Allocate())
  1445     return 0;
  1447   InitializeNode* ini = alloc->as_Allocate()->initialization();
  1448   Compile* C = _compile;
  1449   bool visited_bottom_offset = false;
  1450   GrowableArray<int> offsets_worklist;
  1452   // Check if an oop field's initializing value is recorded and add
  1453   // a corresponding NULL if field's value if it is not recorded.
  1454   // Connection Graph does not record a default initialization by NULL
  1455   // captured by Initialize node.
  1456   //
  1457   for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1458     PointsToNode* field = i.get(); // Field (AddP)
  1459     if (!field->is_Field() || !field->as_Field()->is_oop())
  1460       continue; // Not oop field
  1461     int offset = field->as_Field()->offset();
  1462     if (offset == Type::OffsetBot) {
  1463       if (!visited_bottom_offset) {
  1464         // OffsetBot is used to reference array's element,
  1465         // always add reference to NULL to all Field nodes since we don't
  1466         // known which element is referenced.
  1467         if (add_edge(field, null_obj)) {
  1468           // New edge was added
  1469           new_edges++;
  1470           add_field_uses_to_worklist(field->as_Field());
  1471           visited_bottom_offset = true;
  1474     } else {
  1475       // Check only oop fields.
  1476       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
  1477       if (adr_type->isa_rawptr()) {
  1478 #ifdef ASSERT
  1479         // Raw pointers are used for initializing stores so skip it
  1480         // since it should be recorded already
  1481         Node* base = get_addp_base(field->ideal_node());
  1482         assert(adr_type->isa_rawptr() && base->is_Proj() &&
  1483                (base->in(0) == alloc),"unexpected pointer type");
  1484 #endif
  1485         continue;
  1487       if (!offsets_worklist.contains(offset)) {
  1488         offsets_worklist.append(offset);
  1489         Node* value = NULL;
  1490         if (ini != NULL) {
  1491           // StoreP::memory_type() == T_ADDRESS
  1492           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
  1493           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
  1494           // Make sure initializing store has the same type as this AddP.
  1495           // This AddP may reference non existing field because it is on a
  1496           // dead branch of bimorphic call which is not eliminated yet.
  1497           if (store != NULL && store->is_Store() &&
  1498               store->as_Store()->memory_type() == ft) {
  1499             value = store->in(MemNode::ValueIn);
  1500 #ifdef ASSERT
  1501             if (VerifyConnectionGraph) {
  1502               // Verify that AddP already points to all objects the value points to.
  1503               PointsToNode* val = ptnode_adr(value->_idx);
  1504               assert((val != NULL), "should be processed already");
  1505               PointsToNode* missed_obj = NULL;
  1506               if (val->is_JavaObject()) {
  1507                 if (!field->points_to(val->as_JavaObject())) {
  1508                   missed_obj = val;
  1510               } else {
  1511                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
  1512                   tty->print_cr("----------init store has invalid value -----");
  1513                   store->dump();
  1514                   val->dump();
  1515                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
  1517                 for (EdgeIterator j(val); j.has_next(); j.next()) {
  1518                   PointsToNode* obj = j.get();
  1519                   if (obj->is_JavaObject()) {
  1520                     if (!field->points_to(obj->as_JavaObject())) {
  1521                       missed_obj = obj;
  1522                       break;
  1527               if (missed_obj != NULL) {
  1528                 tty->print_cr("----------field---------------------------------");
  1529                 field->dump();
  1530                 tty->print_cr("----------missed referernce to object-----------");
  1531                 missed_obj->dump();
  1532                 tty->print_cr("----------object referernced by init store -----");
  1533                 store->dump();
  1534                 val->dump();
  1535                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
  1538 #endif
  1539           } else {
  1540             // There could be initializing stores which follow allocation.
  1541             // For example, a volatile field store is not collected
  1542             // by Initialize node.
  1543             //
  1544             // Need to check for dependent loads to separate such stores from
  1545             // stores which follow loads. For now, add initial value NULL so
  1546             // that compare pointers optimization works correctly.
  1549         if (value == NULL) {
  1550           // A field's initializing value was not recorded. Add NULL.
  1551           if (add_edge(field, null_obj)) {
  1552             // New edge was added
  1553             new_edges++;
  1554             add_field_uses_to_worklist(field->as_Field());
  1560   return new_edges;
  1563 // Adjust scalar_replaceable state after Connection Graph is built.
  1564 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
  1565   // Search for non-escaping objects which are not scalar replaceable
  1566   // and mark them to propagate the state to referenced objects.
  1568   // 1. An object is not scalar replaceable if the field into which it is
  1569   // stored has unknown offset (stored into unknown element of an array).
  1570   //
  1571   for (UseIterator i(jobj); i.has_next(); i.next()) {
  1572     PointsToNode* use = i.get();
  1573     assert(!use->is_Arraycopy(), "sanity");
  1574     if (use->is_Field()) {
  1575       FieldNode* field = use->as_Field();
  1576       assert(field->is_oop() && field->scalar_replaceable() &&
  1577              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
  1578       if (field->offset() == Type::OffsetBot) {
  1579         jobj->set_scalar_replaceable(false);
  1580         return;
  1582       // 2. An object is not scalar replaceable if the field into which it is
  1583       // stored has multiple bases one of which is null.
  1584       if (field->base_count() > 1) {
  1585         for (BaseIterator i(field); i.has_next(); i.next()) {
  1586           PointsToNode* base = i.get();
  1587           if (base == null_obj) {
  1588             jobj->set_scalar_replaceable(false);
  1589             return;
  1594     assert(use->is_Field() || use->is_LocalVar(), "sanity");
  1595     // 3. An object is not scalar replaceable if it is merged with other objects.
  1596     for (EdgeIterator j(use); j.has_next(); j.next()) {
  1597       PointsToNode* ptn = j.get();
  1598       if (ptn->is_JavaObject() && ptn != jobj) {
  1599         // Mark all objects.
  1600         jobj->set_scalar_replaceable(false);
  1601          ptn->set_scalar_replaceable(false);
  1604     if (!jobj->scalar_replaceable()) {
  1605       return;
  1609   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
  1610     // Non-escaping object node should point only to field nodes.
  1611     FieldNode* field = j.get()->as_Field();
  1612     int offset = field->as_Field()->offset();
  1614     // 4. An object is not scalar replaceable if it has a field with unknown
  1615     // offset (array's element is accessed in loop).
  1616     if (offset == Type::OffsetBot) {
  1617       jobj->set_scalar_replaceable(false);
  1618       return;
  1620     // 5. Currently an object is not scalar replaceable if a LoadStore node
  1621     // access its field since the field value is unknown after it.
  1622     //
  1623     Node* n = field->ideal_node();
  1624     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1625       if (n->fast_out(i)->is_LoadStore()) {
  1626         jobj->set_scalar_replaceable(false);
  1627         return;
  1631     // 6. Or the address may point to more then one object. This may produce
  1632     // the false positive result (set not scalar replaceable)
  1633     // since the flow-insensitive escape analysis can't separate
  1634     // the case when stores overwrite the field's value from the case
  1635     // when stores happened on different control branches.
  1636     //
  1637     // Note: it will disable scalar replacement in some cases:
  1638     //
  1639     //    Point p[] = new Point[1];
  1640     //    p[0] = new Point(); // Will be not scalar replaced
  1641     //
  1642     // but it will save us from incorrect optimizations in next cases:
  1643     //
  1644     //    Point p[] = new Point[1];
  1645     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1646     //
  1647     if (field->base_count() > 1) {
  1648       for (BaseIterator i(field); i.has_next(); i.next()) {
  1649         PointsToNode* base = i.get();
  1650         // Don't take into account LocalVar nodes which
  1651         // may point to only one object which should be also
  1652         // this field's base by now.
  1653         if (base->is_JavaObject() && base != jobj) {
  1654           // Mark all bases.
  1655           jobj->set_scalar_replaceable(false);
  1656           base->set_scalar_replaceable(false);
  1663 #ifdef ASSERT
  1664 void ConnectionGraph::verify_connection_graph(
  1665                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1666                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1667                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1668                          GrowableArray<Node*>& addp_worklist) {
  1669   // Verify that graph is complete - no new edges could be added.
  1670   int java_objects_length = java_objects_worklist.length();
  1671   int non_escaped_length  = non_escaped_worklist.length();
  1672   int new_edges = 0;
  1673   for (int next = 0; next < java_objects_length; ++next) {
  1674     JavaObjectNode* ptn = java_objects_worklist.at(next);
  1675     new_edges += add_java_object_edges(ptn, true);
  1677   assert(new_edges == 0, "graph was not complete");
  1678   // Verify that escape state is final.
  1679   int length = non_escaped_worklist.length();
  1680   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
  1681   assert((non_escaped_length == non_escaped_worklist.length()) &&
  1682          (non_escaped_length == length) &&
  1683          (_worklist.length() == 0), "escape state was not final");
  1685   // Verify fields information.
  1686   int addp_length = addp_worklist.length();
  1687   for (int next = 0; next < addp_length; ++next ) {
  1688     Node* n = addp_worklist.at(next);
  1689     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
  1690     if (field->is_oop()) {
  1691       // Verify that field has all bases
  1692       Node* base = get_addp_base(n);
  1693       PointsToNode* ptn = ptnode_adr(base->_idx);
  1694       if (ptn->is_JavaObject()) {
  1695         assert(field->has_base(ptn->as_JavaObject()), "sanity");
  1696       } else {
  1697         assert(ptn->is_LocalVar(), "sanity");
  1698         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1699           PointsToNode* e = i.get();
  1700           if (e->is_JavaObject()) {
  1701             assert(field->has_base(e->as_JavaObject()), "sanity");
  1705       // Verify that all fields have initializing values.
  1706       if (field->edge_count() == 0) {
  1707         tty->print_cr("----------field does not have references----------");
  1708         field->dump();
  1709         for (BaseIterator i(field); i.has_next(); i.next()) {
  1710           PointsToNode* base = i.get();
  1711           tty->print_cr("----------field has next base---------------------");
  1712           base->dump();
  1713           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
  1714             tty->print_cr("----------base has fields-------------------------");
  1715             for (EdgeIterator j(base); j.has_next(); j.next()) {
  1716               j.get()->dump();
  1718             tty->print_cr("----------base has references---------------------");
  1719             for (UseIterator j(base); j.has_next(); j.next()) {
  1720               j.get()->dump();
  1724         for (UseIterator i(field); i.has_next(); i.next()) {
  1725           i.get()->dump();
  1727         assert(field->edge_count() > 0, "sanity");
  1732 #endif
  1734 // Optimize ideal graph.
  1735 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
  1736                                            GrowableArray<Node*>& storestore_worklist) {
  1737   Compile* C = _compile;
  1738   PhaseIterGVN* igvn = _igvn;
  1739   if (EliminateLocks) {
  1740     // Mark locks before changing ideal graph.
  1741     int cnt = C->macro_count();
  1742     for( int i=0; i < cnt; i++ ) {
  1743       Node *n = C->macro_node(i);
  1744       if (n->is_AbstractLock()) { // Lock and Unlock nodes
  1745         AbstractLockNode* alock = n->as_AbstractLock();
  1746         if (!alock->is_non_esc_obj()) {
  1747           if (not_global_escape(alock->obj_node())) {
  1748             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
  1749             // The lock could be marked eliminated by lock coarsening
  1750             // code during first IGVN before EA. Replace coarsened flag
  1751             // to eliminate all associated locks/unlocks.
  1752             alock->set_non_esc_obj();
  1759   if (OptimizePtrCompare) {
  1760     // Add ConI(#CC_GT) and ConI(#CC_EQ).
  1761     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
  1762     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
  1763     // Optimize objects compare.
  1764     while (ptr_cmp_worklist.length() != 0) {
  1765       Node *n = ptr_cmp_worklist.pop();
  1766       Node *res = optimize_ptr_compare(n);
  1767       if (res != NULL) {
  1768 #ifndef PRODUCT
  1769         if (PrintOptimizePtrCompare) {
  1770           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
  1771           if (Verbose) {
  1772             n->dump(1);
  1775 #endif
  1776         igvn->replace_node(n, res);
  1779     // cleanup
  1780     if (_pcmp_neq->outcnt() == 0)
  1781       igvn->hash_delete(_pcmp_neq);
  1782     if (_pcmp_eq->outcnt()  == 0)
  1783       igvn->hash_delete(_pcmp_eq);
  1786   // For MemBarStoreStore nodes added in library_call.cpp, check
  1787   // escape status of associated AllocateNode and optimize out
  1788   // MemBarStoreStore node if the allocated object never escapes.
  1789   while (storestore_worklist.length() != 0) {
  1790     Node *n = storestore_worklist.pop();
  1791     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
  1792     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
  1793     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
  1794     if (not_global_escape(alloc)) {
  1795       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
  1796       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
  1797       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
  1798       igvn->register_new_node_with_optimizer(mb);
  1799       igvn->replace_node(storestore, mb);
  1804 // Optimize objects compare.
  1805 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
  1806   assert(OptimizePtrCompare, "sanity");
  1807   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
  1808   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
  1809   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
  1810   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
  1811   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
  1812   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
  1814   // Check simple cases first.
  1815   if (jobj1 != NULL) {
  1816     if (jobj1->escape_state() == PointsToNode::NoEscape) {
  1817       if (jobj1 == jobj2) {
  1818         // Comparing the same not escaping object.
  1819         return _pcmp_eq;
  1821       Node* obj = jobj1->ideal_node();
  1822       // Comparing not escaping allocation.
  1823       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1824           !ptn2->points_to(jobj1)) {
  1825         return _pcmp_neq; // This includes nullness check.
  1829   if (jobj2 != NULL) {
  1830     if (jobj2->escape_state() == PointsToNode::NoEscape) {
  1831       Node* obj = jobj2->ideal_node();
  1832       // Comparing not escaping allocation.
  1833       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1834           !ptn1->points_to(jobj2)) {
  1835         return _pcmp_neq; // This includes nullness check.
  1839   if (jobj1 != NULL && jobj1 != phantom_obj &&
  1840       jobj2 != NULL && jobj2 != phantom_obj &&
  1841       jobj1->ideal_node()->is_Con() &&
  1842       jobj2->ideal_node()->is_Con()) {
  1843     // Klass or String constants compare. Need to be careful with
  1844     // compressed pointers - compare types of ConN and ConP instead of nodes.
  1845     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
  1846     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
  1847     if (t1->make_ptr() == t2->make_ptr()) {
  1848       return _pcmp_eq;
  1849     } else {
  1850       return _pcmp_neq;
  1853   if (ptn1->meet(ptn2)) {
  1854     return NULL; // Sets are not disjoint
  1857   // Sets are disjoint.
  1858   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
  1859   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
  1860   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
  1861   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
  1862   if (set1_has_unknown_ptr && set2_has_null_ptr ||
  1863       set2_has_unknown_ptr && set1_has_null_ptr) {
  1864     // Check nullness of unknown object.
  1865     return NULL;
  1868   // Disjointness by itself is not sufficient since
  1869   // alias analysis is not complete for escaped objects.
  1870   // Disjoint sets are definitely unrelated only when
  1871   // at least one set has only not escaping allocations.
  1872   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
  1873     if (ptn1->non_escaping_allocation()) {
  1874       return _pcmp_neq;
  1877   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
  1878     if (ptn2->non_escaping_allocation()) {
  1879       return _pcmp_neq;
  1882   return NULL;
  1885 // Connection Graph constuction functions.
  1887 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
  1888   PointsToNode* ptadr = _nodes.at(n->_idx);
  1889   if (ptadr != NULL) {
  1890     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
  1891     return;
  1893   Compile* C = _compile;
  1894   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
  1895   _nodes.at_put(n->_idx, ptadr);
  1898 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
  1899   PointsToNode* ptadr = _nodes.at(n->_idx);
  1900   if (ptadr != NULL) {
  1901     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
  1902     return;
  1904   Compile* C = _compile;
  1905   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
  1906   _nodes.at_put(n->_idx, ptadr);
  1909 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
  1910   PointsToNode* ptadr = _nodes.at(n->_idx);
  1911   if (ptadr != NULL) {
  1912     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
  1913     return;
  1915   bool unsafe = false;
  1916   bool is_oop = is_oop_field(n, offset, &unsafe);
  1917   if (unsafe) {
  1918     es = PointsToNode::GlobalEscape;
  1920   Compile* C = _compile;
  1921   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
  1922   _nodes.at_put(n->_idx, field);
  1925 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
  1926                                     PointsToNode* src, PointsToNode* dst) {
  1927   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
  1928   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
  1929   PointsToNode* ptadr = _nodes.at(n->_idx);
  1930   if (ptadr != NULL) {
  1931     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
  1932     return;
  1934   Compile* C = _compile;
  1935   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
  1936   _nodes.at_put(n->_idx, ptadr);
  1937   // Add edge from arraycopy node to source object.
  1938   (void)add_edge(ptadr, src);
  1939   src->set_arraycopy_src();
  1940   // Add edge from destination object to arraycopy node.
  1941   (void)add_edge(dst, ptadr);
  1942   dst->set_arraycopy_dst();
  1945 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
  1946   const Type* adr_type = n->as_AddP()->bottom_type();
  1947   BasicType bt = T_INT;
  1948   if (offset == Type::OffsetBot) {
  1949     // Check only oop fields.
  1950     if (!adr_type->isa_aryptr() ||
  1951         (adr_type->isa_aryptr()->klass() == NULL) ||
  1952          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
  1953       // OffsetBot is used to reference array's element. Ignore first AddP.
  1954       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
  1955         bt = T_OBJECT;
  1958   } else if (offset != oopDesc::klass_offset_in_bytes()) {
  1959     if (adr_type->isa_instptr()) {
  1960       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
  1961       if (field != NULL) {
  1962         bt = field->layout_type();
  1963       } else {
  1964         // Check for unsafe oop field access
  1965         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1966           int opcode = n->fast_out(i)->Opcode();
  1967           if (opcode == Op_StoreP || opcode == Op_LoadP ||
  1968               opcode == Op_StoreN || opcode == Op_LoadN) {
  1969             bt = T_OBJECT;
  1970             (*unsafe) = true;
  1971             break;
  1975     } else if (adr_type->isa_aryptr()) {
  1976       if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1977         // Ignore array length load.
  1978       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
  1979         // Ignore first AddP.
  1980       } else {
  1981         const Type* elemtype = adr_type->isa_aryptr()->elem();
  1982         bt = elemtype->array_element_basic_type();
  1984     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
  1985       // Allocation initialization, ThreadLocal field access, unsafe access
  1986       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1987         int opcode = n->fast_out(i)->Opcode();
  1988         if (opcode == Op_StoreP || opcode == Op_LoadP ||
  1989             opcode == Op_StoreN || opcode == Op_LoadN) {
  1990           bt = T_OBJECT;
  1991           break;
  1996   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
  1999 // Returns unique pointed java object or NULL.
  2000 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
  2001   assert(!_collecting, "should not call when contructed graph");
  2002   // If the node was created after the escape computation we can't answer.
  2003   uint idx = n->_idx;
  2004   if (idx >= nodes_size()) {
  2005     return NULL;
  2007   PointsToNode* ptn = ptnode_adr(idx);
  2008   if (ptn->is_JavaObject()) {
  2009     return ptn->as_JavaObject();
  2011   assert(ptn->is_LocalVar(), "sanity");
  2012   // Check all java objects it points to.
  2013   JavaObjectNode* jobj = NULL;
  2014   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2015     PointsToNode* e = i.get();
  2016     if (e->is_JavaObject()) {
  2017       if (jobj == NULL) {
  2018         jobj = e->as_JavaObject();
  2019       } else if (jobj != e) {
  2020         return NULL;
  2024   return jobj;
  2027 // Return true if this node points only to non-escaping allocations.
  2028 bool PointsToNode::non_escaping_allocation() {
  2029   if (is_JavaObject()) {
  2030     Node* n = ideal_node();
  2031     if (n->is_Allocate() || n->is_CallStaticJava()) {
  2032       return (escape_state() == PointsToNode::NoEscape);
  2033     } else {
  2034       return false;
  2037   assert(is_LocalVar(), "sanity");
  2038   // Check all java objects it points to.
  2039   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2040     PointsToNode* e = i.get();
  2041     if (e->is_JavaObject()) {
  2042       Node* n = e->ideal_node();
  2043       if ((e->escape_state() != PointsToNode::NoEscape) ||
  2044           !(n->is_Allocate() || n->is_CallStaticJava())) {
  2045         return false;
  2049   return true;
  2052 // Return true if we know the node does not escape globally.
  2053 bool ConnectionGraph::not_global_escape(Node *n) {
  2054   assert(!_collecting, "should not call during graph construction");
  2055   // If the node was created after the escape computation we can't answer.
  2056   uint idx = n->_idx;
  2057   if (idx >= nodes_size()) {
  2058     return false;
  2060   PointsToNode* ptn = ptnode_adr(idx);
  2061   PointsToNode::EscapeState es = ptn->escape_state();
  2062   // If we have already computed a value, return it.
  2063   if (es >= PointsToNode::GlobalEscape)
  2064     return false;
  2065   if (ptn->is_JavaObject()) {
  2066     return true; // (es < PointsToNode::GlobalEscape);
  2068   assert(ptn->is_LocalVar(), "sanity");
  2069   // Check all java objects it points to.
  2070   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2071     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
  2072       return false;
  2074   return true;
  2078 // Helper functions
  2080 // Return true if this node points to specified node or nodes it points to.
  2081 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
  2082   if (is_JavaObject()) {
  2083     return (this == ptn);
  2085   assert(is_LocalVar() || is_Field(), "sanity");
  2086   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2087     if (i.get() == ptn)
  2088       return true;
  2090   return false;
  2093 // Return true if one node points to an other.
  2094 bool PointsToNode::meet(PointsToNode* ptn) {
  2095   if (this == ptn) {
  2096     return true;
  2097   } else if (ptn->is_JavaObject()) {
  2098     return this->points_to(ptn->as_JavaObject());
  2099   } else if (this->is_JavaObject()) {
  2100     return ptn->points_to(this->as_JavaObject());
  2102   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
  2103   int ptn_count =  ptn->edge_count();
  2104   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2105     PointsToNode* this_e = i.get();
  2106     for (int j = 0; j < ptn_count; j++) {
  2107       if (this_e == ptn->edge(j))
  2108         return true;
  2111   return false;
  2114 #ifdef ASSERT
  2115 // Return true if bases point to this java object.
  2116 bool FieldNode::has_base(JavaObjectNode* jobj) const {
  2117   for (BaseIterator i(this); i.has_next(); i.next()) {
  2118     if (i.get() == jobj)
  2119       return true;
  2121   return false;
  2123 #endif
  2125 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
  2126   const Type *adr_type = phase->type(adr);
  2127   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
  2128       adr->in(AddPNode::Address)->is_Proj() &&
  2129       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2130     // We are computing a raw address for a store captured by an Initialize
  2131     // compute an appropriate address type. AddP cases #3 and #5 (see below).
  2132     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2133     assert(offs != Type::OffsetBot ||
  2134            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
  2135            "offset must be a constant or it is initialization of array");
  2136     return offs;
  2138   const TypePtr *t_ptr = adr_type->isa_ptr();
  2139   assert(t_ptr != NULL, "must be a pointer type");
  2140   return t_ptr->offset();
  2143 Node* ConnectionGraph::get_addp_base(Node *addp) {
  2144   assert(addp->is_AddP(), "must be AddP");
  2145   //
  2146   // AddP cases for Base and Address inputs:
  2147   // case #1. Direct object's field reference:
  2148   //     Allocate
  2149   //       |
  2150   //     Proj #5 ( oop result )
  2151   //       |
  2152   //     CheckCastPP (cast to instance type)
  2153   //      | |
  2154   //     AddP  ( base == address )
  2155   //
  2156   // case #2. Indirect object's field reference:
  2157   //      Phi
  2158   //       |
  2159   //     CastPP (cast to instance type)
  2160   //      | |
  2161   //     AddP  ( base == address )
  2162   //
  2163   // case #3. Raw object's field reference for Initialize node:
  2164   //      Allocate
  2165   //        |
  2166   //      Proj #5 ( oop result )
  2167   //  top   |
  2168   //     \  |
  2169   //     AddP  ( base == top )
  2170   //
  2171   // case #4. Array's element reference:
  2172   //   {CheckCastPP | CastPP}
  2173   //     |  | |
  2174   //     |  AddP ( array's element offset )
  2175   //     |  |
  2176   //     AddP ( array's offset )
  2177   //
  2178   // case #5. Raw object's field reference for arraycopy stub call:
  2179   //          The inline_native_clone() case when the arraycopy stub is called
  2180   //          after the allocation before Initialize and CheckCastPP nodes.
  2181   //      Allocate
  2182   //        |
  2183   //      Proj #5 ( oop result )
  2184   //       | |
  2185   //       AddP  ( base == address )
  2186   //
  2187   // case #6. Constant Pool, ThreadLocal, CastX2P or
  2188   //          Raw object's field reference:
  2189   //      {ConP, ThreadLocal, CastX2P, raw Load}
  2190   //  top   |
  2191   //     \  |
  2192   //     AddP  ( base == top )
  2193   //
  2194   // case #7. Klass's field reference.
  2195   //      LoadKlass
  2196   //       | |
  2197   //       AddP  ( base == address )
  2198   //
  2199   // case #8. narrow Klass's field reference.
  2200   //      LoadNKlass
  2201   //       |
  2202   //      DecodeN
  2203   //       | |
  2204   //       AddP  ( base == address )
  2205   //
  2206   Node *base = addp->in(AddPNode::Base);
  2207   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
  2208     base = addp->in(AddPNode::Address);
  2209     while (base->is_AddP()) {
  2210       // Case #6 (unsafe access) may have several chained AddP nodes.
  2211       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
  2212       base = base->in(AddPNode::Address);
  2214     Node* uncast_base = base->uncast();
  2215     int opcode = uncast_base->Opcode();
  2216     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
  2217            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
  2218            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
  2219            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
  2221   return base;
  2224 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
  2225   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
  2226   Node* addp2 = addp->raw_out(0);
  2227   if (addp->outcnt() == 1 && addp2->is_AddP() &&
  2228       addp2->in(AddPNode::Base) == n &&
  2229       addp2->in(AddPNode::Address) == addp) {
  2230     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
  2231     //
  2232     // Find array's offset to push it on worklist first and
  2233     // as result process an array's element offset first (pushed second)
  2234     // to avoid CastPP for the array's offset.
  2235     // Otherwise the inserted CastPP (LocalVar) will point to what
  2236     // the AddP (Field) points to. Which would be wrong since
  2237     // the algorithm expects the CastPP has the same point as
  2238     // as AddP's base CheckCastPP (LocalVar).
  2239     //
  2240     //    ArrayAllocation
  2241     //     |
  2242     //    CheckCastPP
  2243     //     |
  2244     //    memProj (from ArrayAllocation CheckCastPP)
  2245     //     |  ||
  2246     //     |  ||   Int (element index)
  2247     //     |  ||    |   ConI (log(element size))
  2248     //     |  ||    |   /
  2249     //     |  ||   LShift
  2250     //     |  ||  /
  2251     //     |  AddP (array's element offset)
  2252     //     |  |
  2253     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
  2254     //     | / /
  2255     //     AddP (array's offset)
  2256     //      |
  2257     //     Load/Store (memory operation on array's element)
  2258     //
  2259     return addp2;
  2261   return NULL;
  2264 //
  2265 // Adjust the type and inputs of an AddP which computes the
  2266 // address of a field of an instance
  2267 //
  2268 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
  2269   PhaseGVN* igvn = _igvn;
  2270   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
  2271   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
  2272   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
  2273   if (t == NULL) {
  2274     // We are computing a raw address for a store captured by an Initialize
  2275     // compute an appropriate address type (cases #3 and #5).
  2276     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
  2277     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
  2278     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
  2279     assert(offs != Type::OffsetBot, "offset must be a constant");
  2280     t = base_t->add_offset(offs)->is_oopptr();
  2282   int inst_id =  base_t->instance_id();
  2283   assert(!t->is_known_instance() || t->instance_id() == inst_id,
  2284                              "old type must be non-instance or match new type");
  2286   // The type 't' could be subclass of 'base_t'.
  2287   // As result t->offset() could be large then base_t's size and it will
  2288   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
  2289   // constructor verifies correctness of the offset.
  2290   //
  2291   // It could happened on subclass's branch (from the type profiling
  2292   // inlining) which was not eliminated during parsing since the exactness
  2293   // of the allocation type was not propagated to the subclass type check.
  2294   //
  2295   // Or the type 't' could be not related to 'base_t' at all.
  2296   // It could happened when CHA type is different from MDO type on a dead path
  2297   // (for example, from instanceof check) which is not collapsed during parsing.
  2298   //
  2299   // Do nothing for such AddP node and don't process its users since
  2300   // this code branch will go away.
  2301   //
  2302   if (!t->is_known_instance() &&
  2303       !base_t->klass()->is_subtype_of(t->klass())) {
  2304      return false; // bail out
  2306   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
  2307   // Do NOT remove the next line: ensure a new alias index is allocated
  2308   // for the instance type. Note: C++ will not remove it since the call
  2309   // has side effect.
  2310   int alias_idx = _compile->get_alias_index(tinst);
  2311   igvn->set_type(addp, tinst);
  2312   // record the allocation in the node map
  2313   set_map(addp, get_map(base->_idx));
  2314   // Set addp's Base and Address to 'base'.
  2315   Node *abase = addp->in(AddPNode::Base);
  2316   Node *adr   = addp->in(AddPNode::Address);
  2317   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
  2318       adr->in(0)->_idx == (uint)inst_id) {
  2319     // Skip AddP cases #3 and #5.
  2320   } else {
  2321     assert(!abase->is_top(), "sanity"); // AddP case #3
  2322     if (abase != base) {
  2323       igvn->hash_delete(addp);
  2324       addp->set_req(AddPNode::Base, base);
  2325       if (abase == adr) {
  2326         addp->set_req(AddPNode::Address, base);
  2327       } else {
  2328         // AddP case #4 (adr is array's element offset AddP node)
  2329 #ifdef ASSERT
  2330         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
  2331         assert(adr->is_AddP() && atype != NULL &&
  2332                atype->instance_id() == inst_id, "array's element offset should be processed first");
  2333 #endif
  2335       igvn->hash_insert(addp);
  2338   // Put on IGVN worklist since at least addp's type was changed above.
  2339   record_for_optimizer(addp);
  2340   return true;
  2343 //
  2344 // Create a new version of orig_phi if necessary. Returns either the newly
  2345 // created phi or an existing phi.  Sets create_new to indicate whether a new
  2346 // phi was created.  Cache the last newly created phi in the node map.
  2347 //
  2348 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
  2349   Compile *C = _compile;
  2350   PhaseGVN* igvn = _igvn;
  2351   new_created = false;
  2352   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
  2353   // nothing to do if orig_phi is bottom memory or matches alias_idx
  2354   if (phi_alias_idx == alias_idx) {
  2355     return orig_phi;
  2357   // Have we recently created a Phi for this alias index?
  2358   PhiNode *result = get_map_phi(orig_phi->_idx);
  2359   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
  2360     return result;
  2362   // Previous check may fail when the same wide memory Phi was split into Phis
  2363   // for different memory slices. Search all Phis for this region.
  2364   if (result != NULL) {
  2365     Node* region = orig_phi->in(0);
  2366     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  2367       Node* phi = region->fast_out(i);
  2368       if (phi->is_Phi() &&
  2369           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
  2370         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
  2371         return phi->as_Phi();
  2375   if ((int) (C->live_nodes() + 2*NodeLimitFudgeFactor) > MaxNodeLimit) {
  2376     if (C->do_escape_analysis() == true && !C->failing()) {
  2377       // Retry compilation without escape analysis.
  2378       // If this is the first failure, the sentinel string will "stick"
  2379       // to the Compile object, and the C2Compiler will see it and retry.
  2380       C->record_failure(C2Compiler::retry_no_escape_analysis());
  2382     return NULL;
  2384   orig_phi_worklist.append_if_missing(orig_phi);
  2385   const TypePtr *atype = C->get_adr_type(alias_idx);
  2386   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
  2387   C->copy_node_notes_to(result, orig_phi);
  2388   igvn->set_type(result, result->bottom_type());
  2389   record_for_optimizer(result);
  2390   set_map(orig_phi, result);
  2391   new_created = true;
  2392   return result;
  2395 //
  2396 // Return a new version of Memory Phi "orig_phi" with the inputs having the
  2397 // specified alias index.
  2398 //
  2399 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
  2400   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
  2401   Compile *C = _compile;
  2402   PhaseGVN* igvn = _igvn;
  2403   bool new_phi_created;
  2404   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
  2405   if (!new_phi_created) {
  2406     return result;
  2408   GrowableArray<PhiNode *>  phi_list;
  2409   GrowableArray<uint>  cur_input;
  2410   PhiNode *phi = orig_phi;
  2411   uint idx = 1;
  2412   bool finished = false;
  2413   while(!finished) {
  2414     while (idx < phi->req()) {
  2415       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
  2416       if (mem != NULL && mem->is_Phi()) {
  2417         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
  2418         if (new_phi_created) {
  2419           // found an phi for which we created a new split, push current one on worklist and begin
  2420           // processing new one
  2421           phi_list.push(phi);
  2422           cur_input.push(idx);
  2423           phi = mem->as_Phi();
  2424           result = newphi;
  2425           idx = 1;
  2426           continue;
  2427         } else {
  2428           mem = newphi;
  2431       if (C->failing()) {
  2432         return NULL;
  2434       result->set_req(idx++, mem);
  2436 #ifdef ASSERT
  2437     // verify that the new Phi has an input for each input of the original
  2438     assert( phi->req() == result->req(), "must have same number of inputs.");
  2439     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
  2440 #endif
  2441     // Check if all new phi's inputs have specified alias index.
  2442     // Otherwise use old phi.
  2443     for (uint i = 1; i < phi->req(); i++) {
  2444       Node* in = result->in(i);
  2445       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
  2447     // we have finished processing a Phi, see if there are any more to do
  2448     finished = (phi_list.length() == 0 );
  2449     if (!finished) {
  2450       phi = phi_list.pop();
  2451       idx = cur_input.pop();
  2452       PhiNode *prev_result = get_map_phi(phi->_idx);
  2453       prev_result->set_req(idx++, result);
  2454       result = prev_result;
  2457   return result;
  2460 //
  2461 // The next methods are derived from methods in MemNode.
  2462 //
  2463 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
  2464   Node *mem = mmem;
  2465   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
  2466   // means an array I have not precisely typed yet.  Do not do any
  2467   // alias stuff with it any time soon.
  2468   if (toop->base() != Type::AnyPtr &&
  2469       !(toop->klass() != NULL &&
  2470         toop->klass()->is_java_lang_Object() &&
  2471         toop->offset() == Type::OffsetBot)) {
  2472     mem = mmem->memory_at(alias_idx);
  2473     // Update input if it is progress over what we have now
  2475   return mem;
  2478 //
  2479 // Move memory users to their memory slices.
  2480 //
  2481 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
  2482   Compile* C = _compile;
  2483   PhaseGVN* igvn = _igvn;
  2484   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
  2485   assert(tp != NULL, "ptr type");
  2486   int alias_idx = C->get_alias_index(tp);
  2487   int general_idx = C->get_general_index(alias_idx);
  2489   // Move users first
  2490   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2491     Node* use = n->fast_out(i);
  2492     if (use->is_MergeMem()) {
  2493       MergeMemNode* mmem = use->as_MergeMem();
  2494       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
  2495       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
  2496         continue; // Nothing to do
  2498       // Replace previous general reference to mem node.
  2499       uint orig_uniq = C->unique();
  2500       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2501       assert(orig_uniq == C->unique(), "no new nodes");
  2502       mmem->set_memory_at(general_idx, m);
  2503       --imax;
  2504       --i;
  2505     } else if (use->is_MemBar()) {
  2506       assert(!use->is_Initialize(), "initializing stores should not be moved");
  2507       if (use->req() > MemBarNode::Precedent &&
  2508           use->in(MemBarNode::Precedent) == n) {
  2509         // Don't move related membars.
  2510         record_for_optimizer(use);
  2511         continue;
  2513       tp = use->as_MemBar()->adr_type()->isa_ptr();
  2514       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
  2515           alias_idx == general_idx) {
  2516         continue; // Nothing to do
  2518       // Move to general memory slice.
  2519       uint orig_uniq = C->unique();
  2520       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2521       assert(orig_uniq == C->unique(), "no new nodes");
  2522       igvn->hash_delete(use);
  2523       imax -= use->replace_edge(n, m);
  2524       igvn->hash_insert(use);
  2525       record_for_optimizer(use);
  2526       --i;
  2527 #ifdef ASSERT
  2528     } else if (use->is_Mem()) {
  2529       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
  2530         // Don't move related cardmark.
  2531         continue;
  2533       // Memory nodes should have new memory input.
  2534       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
  2535       assert(tp != NULL, "ptr type");
  2536       int idx = C->get_alias_index(tp);
  2537       assert(get_map(use->_idx) != NULL || idx == alias_idx,
  2538              "Following memory nodes should have new memory input or be on the same memory slice");
  2539     } else if (use->is_Phi()) {
  2540       // Phi nodes should be split and moved already.
  2541       tp = use->as_Phi()->adr_type()->isa_ptr();
  2542       assert(tp != NULL, "ptr type");
  2543       int idx = C->get_alias_index(tp);
  2544       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
  2545     } else {
  2546       use->dump();
  2547       assert(false, "should not be here");
  2548 #endif
  2553 //
  2554 // Search memory chain of "mem" to find a MemNode whose address
  2555 // is the specified alias index.
  2556 //
  2557 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
  2558   if (orig_mem == NULL)
  2559     return orig_mem;
  2560   Compile* C = _compile;
  2561   PhaseGVN* igvn = _igvn;
  2562   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
  2563   bool is_instance = (toop != NULL) && toop->is_known_instance();
  2564   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  2565   Node *prev = NULL;
  2566   Node *result = orig_mem;
  2567   while (prev != result) {
  2568     prev = result;
  2569     if (result == start_mem)
  2570       break;  // hit one of our sentinels
  2571     if (result->is_Mem()) {
  2572       const Type *at = igvn->type(result->in(MemNode::Address));
  2573       if (at == Type::TOP)
  2574         break; // Dead
  2575       assert (at->isa_ptr() != NULL, "pointer type required.");
  2576       int idx = C->get_alias_index(at->is_ptr());
  2577       if (idx == alias_idx)
  2578         break; // Found
  2579       if (!is_instance && (at->isa_oopptr() == NULL ||
  2580                            !at->is_oopptr()->is_known_instance())) {
  2581         break; // Do not skip store to general memory slice.
  2583       result = result->in(MemNode::Memory);
  2585     if (!is_instance)
  2586       continue;  // don't search further for non-instance types
  2587     // skip over a call which does not affect this memory slice
  2588     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
  2589       Node *proj_in = result->in(0);
  2590       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
  2591         break;  // hit one of our sentinels
  2592       } else if (proj_in->is_Call()) {
  2593         CallNode *call = proj_in->as_Call();
  2594         if (!call->may_modify(toop, igvn)) {
  2595           result = call->in(TypeFunc::Memory);
  2597       } else if (proj_in->is_Initialize()) {
  2598         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
  2599         // Stop if this is the initialization for the object instance which
  2600         // which contains this memory slice, otherwise skip over it.
  2601         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
  2602           result = proj_in->in(TypeFunc::Memory);
  2604       } else if (proj_in->is_MemBar()) {
  2605         result = proj_in->in(TypeFunc::Memory);
  2607     } else if (result->is_MergeMem()) {
  2608       MergeMemNode *mmem = result->as_MergeMem();
  2609       result = step_through_mergemem(mmem, alias_idx, toop);
  2610       if (result == mmem->base_memory()) {
  2611         // Didn't find instance memory, search through general slice recursively.
  2612         result = mmem->memory_at(C->get_general_index(alias_idx));
  2613         result = find_inst_mem(result, alias_idx, orig_phis);
  2614         if (C->failing()) {
  2615           return NULL;
  2617         mmem->set_memory_at(alias_idx, result);
  2619     } else if (result->is_Phi() &&
  2620                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
  2621       Node *un = result->as_Phi()->unique_input(igvn);
  2622       if (un != NULL) {
  2623         orig_phis.append_if_missing(result->as_Phi());
  2624         result = un;
  2625       } else {
  2626         break;
  2628     } else if (result->is_ClearArray()) {
  2629       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
  2630         // Can not bypass initialization of the instance
  2631         // we are looking for.
  2632         break;
  2634       // Otherwise skip it (the call updated 'result' value).
  2635     } else if (result->Opcode() == Op_SCMemProj) {
  2636       Node* mem = result->in(0);
  2637       Node* adr = NULL;
  2638       if (mem->is_LoadStore()) {
  2639         adr = mem->in(MemNode::Address);
  2640       } else {
  2641         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
  2642         adr = mem->in(3); // Memory edge corresponds to destination array
  2644       const Type *at = igvn->type(adr);
  2645       if (at != Type::TOP) {
  2646         assert (at->isa_ptr() != NULL, "pointer type required.");
  2647         int idx = C->get_alias_index(at->is_ptr());
  2648         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
  2649         break;
  2651       result = mem->in(MemNode::Memory);
  2654   if (result->is_Phi()) {
  2655     PhiNode *mphi = result->as_Phi();
  2656     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
  2657     const TypePtr *t = mphi->adr_type();
  2658     if (!is_instance) {
  2659       // Push all non-instance Phis on the orig_phis worklist to update inputs
  2660       // during Phase 4 if needed.
  2661       orig_phis.append_if_missing(mphi);
  2662     } else if (C->get_alias_index(t) != alias_idx) {
  2663       // Create a new Phi with the specified alias index type.
  2664       result = split_memory_phi(mphi, alias_idx, orig_phis);
  2667   // the result is either MemNode, PhiNode, InitializeNode.
  2668   return result;
  2671 //
  2672 //  Convert the types of unescaped object to instance types where possible,
  2673 //  propagate the new type information through the graph, and update memory
  2674 //  edges and MergeMem inputs to reflect the new type.
  2675 //
  2676 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
  2677 //  The processing is done in 4 phases:
  2678 //
  2679 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
  2680 //            types for the CheckCastPP for allocations where possible.
  2681 //            Propagate the the new types through users as follows:
  2682 //               casts and Phi:  push users on alloc_worklist
  2683 //               AddP:  cast Base and Address inputs to the instance type
  2684 //                      push any AddP users on alloc_worklist and push any memnode
  2685 //                      users onto memnode_worklist.
  2686 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2687 //            search the Memory chain for a store with the appropriate type
  2688 //            address type.  If a Phi is found, create a new version with
  2689 //            the appropriate memory slices from each of the Phi inputs.
  2690 //            For stores, process the users as follows:
  2691 //               MemNode:  push on memnode_worklist
  2692 //               MergeMem: push on mergemem_worklist
  2693 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
  2694 //            moving the first node encountered of each  instance type to the
  2695 //            the input corresponding to its alias index.
  2696 //            appropriate memory slice.
  2697 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
  2698 //
  2699 // In the following example, the CheckCastPP nodes are the cast of allocation
  2700 // results and the allocation of node 29 is unescaped and eligible to be an
  2701 // instance type.
  2702 //
  2703 // We start with:
  2704 //
  2705 //     7 Parm #memory
  2706 //    10  ConI  "12"
  2707 //    19  CheckCastPP   "Foo"
  2708 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2709 //    29  CheckCastPP   "Foo"
  2710 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
  2711 //
  2712 //    40  StoreP  25   7  20   ... alias_index=4
  2713 //    50  StoreP  35  40  30   ... alias_index=4
  2714 //    60  StoreP  45  50  20   ... alias_index=4
  2715 //    70  LoadP    _  60  30   ... alias_index=4
  2716 //    80  Phi     75  50  60   Memory alias_index=4
  2717 //    90  LoadP    _  80  30   ... alias_index=4
  2718 //   100  LoadP    _  80  20   ... alias_index=4
  2719 //
  2720 //
  2721 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
  2722 // and creating a new alias index for node 30.  This gives:
  2723 //
  2724 //     7 Parm #memory
  2725 //    10  ConI  "12"
  2726 //    19  CheckCastPP   "Foo"
  2727 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2728 //    29  CheckCastPP   "Foo"  iid=24
  2729 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2730 //
  2731 //    40  StoreP  25   7  20   ... alias_index=4
  2732 //    50  StoreP  35  40  30   ... alias_index=6
  2733 //    60  StoreP  45  50  20   ... alias_index=4
  2734 //    70  LoadP    _  60  30   ... alias_index=6
  2735 //    80  Phi     75  50  60   Memory alias_index=4
  2736 //    90  LoadP    _  80  30   ... alias_index=6
  2737 //   100  LoadP    _  80  20   ... alias_index=4
  2738 //
  2739 // In phase 2, new memory inputs are computed for the loads and stores,
  2740 // And a new version of the phi is created.  In phase 4, the inputs to
  2741 // node 80 are updated and then the memory nodes are updated with the
  2742 // values computed in phase 2.  This results in:
  2743 //
  2744 //     7 Parm #memory
  2745 //    10  ConI  "12"
  2746 //    19  CheckCastPP   "Foo"
  2747 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2748 //    29  CheckCastPP   "Foo"  iid=24
  2749 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2750 //
  2751 //    40  StoreP  25  7   20   ... alias_index=4
  2752 //    50  StoreP  35  7   30   ... alias_index=6
  2753 //    60  StoreP  45  40  20   ... alias_index=4
  2754 //    70  LoadP    _  50  30   ... alias_index=6
  2755 //    80  Phi     75  40  60   Memory alias_index=4
  2756 //   120  Phi     75  50  50   Memory alias_index=6
  2757 //    90  LoadP    _ 120  30   ... alias_index=6
  2758 //   100  LoadP    _  80  20   ... alias_index=4
  2759 //
  2760 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
  2761   GrowableArray<Node *>  memnode_worklist;
  2762   GrowableArray<PhiNode *>  orig_phis;
  2763   PhaseIterGVN  *igvn = _igvn;
  2764   uint new_index_start = (uint) _compile->num_alias_types();
  2765   Arena* arena = Thread::current()->resource_area();
  2766   VectorSet visited(arena);
  2767   ideal_nodes.clear(); // Reset for use with set_map/get_map.
  2768   uint unique_old = _compile->unique();
  2770   //  Phase 1:  Process possible allocations from alloc_worklist.
  2771   //  Create instance types for the CheckCastPP for allocations where possible.
  2772   //
  2773   // (Note: don't forget to change the order of the second AddP node on
  2774   //  the alloc_worklist if the order of the worklist processing is changed,
  2775   //  see the comment in find_second_addp().)
  2776   //
  2777   while (alloc_worklist.length() != 0) {
  2778     Node *n = alloc_worklist.pop();
  2779     uint ni = n->_idx;
  2780     if (n->is_Call()) {
  2781       CallNode *alloc = n->as_Call();
  2782       // copy escape information to call node
  2783       PointsToNode* ptn = ptnode_adr(alloc->_idx);
  2784       PointsToNode::EscapeState es = ptn->escape_state();
  2785       // We have an allocation or call which returns a Java object,
  2786       // see if it is unescaped.
  2787       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
  2788         continue;
  2789       // Find CheckCastPP for the allocate or for the return value of a call
  2790       n = alloc->result_cast();
  2791       if (n == NULL) {            // No uses except Initialize node
  2792         if (alloc->is_Allocate()) {
  2793           // Set the scalar_replaceable flag for allocation
  2794           // so it could be eliminated if it has no uses.
  2795           alloc->as_Allocate()->_is_scalar_replaceable = true;
  2797         if (alloc->is_CallStaticJava()) {
  2798           // Set the scalar_replaceable flag for boxing method
  2799           // so it could be eliminated if it has no uses.
  2800           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2802         continue;
  2804       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
  2805         assert(!alloc->is_Allocate(), "allocation should have unique type");
  2806         continue;
  2809       // The inline code for Object.clone() casts the allocation result to
  2810       // java.lang.Object and then to the actual type of the allocated
  2811       // object. Detect this case and use the second cast.
  2812       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
  2813       // the allocation result is cast to java.lang.Object and then
  2814       // to the actual Array type.
  2815       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
  2816           && (alloc->is_AllocateArray() ||
  2817               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
  2818         Node *cast2 = NULL;
  2819         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2820           Node *use = n->fast_out(i);
  2821           if (use->is_CheckCastPP()) {
  2822             cast2 = use;
  2823             break;
  2826         if (cast2 != NULL) {
  2827           n = cast2;
  2828         } else {
  2829           // Non-scalar replaceable if the allocation type is unknown statically
  2830           // (reflection allocation), the object can't be restored during
  2831           // deoptimization without precise type.
  2832           continue;
  2835       if (alloc->is_Allocate()) {
  2836         // Set the scalar_replaceable flag for allocation
  2837         // so it could be eliminated.
  2838         alloc->as_Allocate()->_is_scalar_replaceable = true;
  2840       if (alloc->is_CallStaticJava()) {
  2841         // Set the scalar_replaceable flag for boxing method
  2842         // so it could be eliminated.
  2843         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2845       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
  2846       // in order for an object to be scalar-replaceable, it must be:
  2847       //   - a direct allocation (not a call returning an object)
  2848       //   - non-escaping
  2849       //   - eligible to be a unique type
  2850       //   - not determined to be ineligible by escape analysis
  2851       set_map(alloc, n);
  2852       set_map(n, alloc);
  2853       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
  2854       if (t == NULL)
  2855         continue;  // not a TypeOopPtr
  2856       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
  2857       igvn->hash_delete(n);
  2858       igvn->set_type(n,  tinst);
  2859       n->raise_bottom_type(tinst);
  2860       igvn->hash_insert(n);
  2861       record_for_optimizer(n);
  2862       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
  2864         // First, put on the worklist all Field edges from Connection Graph
  2865         // which is more accurate then putting immediate users from Ideal Graph.
  2866         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
  2867           PointsToNode* tgt = e.get();
  2868           Node* use = tgt->ideal_node();
  2869           assert(tgt->is_Field() && use->is_AddP(),
  2870                  "only AddP nodes are Field edges in CG");
  2871           if (use->outcnt() > 0) { // Don't process dead nodes
  2872             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  2873             if (addp2 != NULL) {
  2874               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2875               alloc_worklist.append_if_missing(addp2);
  2877             alloc_worklist.append_if_missing(use);
  2881         // An allocation may have an Initialize which has raw stores. Scan
  2882         // the users of the raw allocation result and push AddP users
  2883         // on alloc_worklist.
  2884         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  2885         assert (raw_result != NULL, "must have an allocation result");
  2886         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  2887           Node *use = raw_result->fast_out(i);
  2888           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  2889             Node* addp2 = find_second_addp(use, raw_result);
  2890             if (addp2 != NULL) {
  2891               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2892               alloc_worklist.append_if_missing(addp2);
  2894             alloc_worklist.append_if_missing(use);
  2895           } else if (use->is_MemBar()) {
  2896             memnode_worklist.append_if_missing(use);
  2900     } else if (n->is_AddP()) {
  2901       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
  2902       if (jobj == NULL || jobj == phantom_obj) {
  2903 #ifdef ASSERT
  2904         ptnode_adr(get_addp_base(n)->_idx)->dump();
  2905         ptnode_adr(n->_idx)->dump();
  2906         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2907 #endif
  2908         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2909         return;
  2911       Node *base = get_map(jobj->idx());  // CheckCastPP node
  2912       if (!split_AddP(n, base)) continue; // wrong type from dead path
  2913     } else if (n->is_Phi() ||
  2914                n->is_CheckCastPP() ||
  2915                n->is_EncodeP() ||
  2916                n->is_DecodeN() ||
  2917                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  2918       if (visited.test_set(n->_idx)) {
  2919         assert(n->is_Phi(), "loops only through Phi's");
  2920         continue;  // already processed
  2922       JavaObjectNode* jobj = unique_java_object(n);
  2923       if (jobj == NULL || jobj == phantom_obj) {
  2924 #ifdef ASSERT
  2925         ptnode_adr(n->_idx)->dump();
  2926         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2927 #endif
  2928         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2929         return;
  2930       } else {
  2931         Node *val = get_map(jobj->idx());   // CheckCastPP node
  2932         TypeNode *tn = n->as_Type();
  2933         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
  2934         assert(tinst != NULL && tinst->is_known_instance() &&
  2935                tinst->instance_id() == jobj->idx() , "instance type expected.");
  2937         const Type *tn_type = igvn->type(tn);
  2938         const TypeOopPtr *tn_t;
  2939         if (tn_type->isa_narrowoop()) {
  2940           tn_t = tn_type->make_ptr()->isa_oopptr();
  2941         } else {
  2942           tn_t = tn_type->isa_oopptr();
  2944         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
  2945           if (tn_type->isa_narrowoop()) {
  2946             tn_type = tinst->make_narrowoop();
  2947           } else {
  2948             tn_type = tinst;
  2950           igvn->hash_delete(tn);
  2951           igvn->set_type(tn, tn_type);
  2952           tn->set_type(tn_type);
  2953           igvn->hash_insert(tn);
  2954           record_for_optimizer(n);
  2955         } else {
  2956           assert(tn_type == TypePtr::NULL_PTR ||
  2957                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
  2958                  "unexpected type");
  2959           continue; // Skip dead path with different type
  2962     } else {
  2963       debug_only(n->dump();)
  2964       assert(false, "EA: unexpected node");
  2965       continue;
  2967     // push allocation's users on appropriate worklist
  2968     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2969       Node *use = n->fast_out(i);
  2970       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  2971         // Load/store to instance's field
  2972         memnode_worklist.append_if_missing(use);
  2973       } else if (use->is_MemBar()) {
  2974         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  2975           memnode_worklist.append_if_missing(use);
  2977       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  2978         Node* addp2 = find_second_addp(use, n);
  2979         if (addp2 != NULL) {
  2980           alloc_worklist.append_if_missing(addp2);
  2982         alloc_worklist.append_if_missing(use);
  2983       } else if (use->is_Phi() ||
  2984                  use->is_CheckCastPP() ||
  2985                  use->is_EncodeNarrowPtr() ||
  2986                  use->is_DecodeNarrowPtr() ||
  2987                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  2988         alloc_worklist.append_if_missing(use);
  2989 #ifdef ASSERT
  2990       } else if (use->is_Mem()) {
  2991         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
  2992       } else if (use->is_MergeMem()) {
  2993         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  2994       } else if (use->is_SafePoint()) {
  2995         // Look for MergeMem nodes for calls which reference unique allocation
  2996         // (through CheckCastPP nodes) even for debug info.
  2997         Node* m = use->in(TypeFunc::Memory);
  2998         if (m->is_MergeMem()) {
  2999           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3001       } else if (use->Opcode() == Op_EncodeISOArray) {
  3002         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3003           // EncodeISOArray overwrites destination array
  3004           memnode_worklist.append_if_missing(use);
  3006       } else {
  3007         uint op = use->Opcode();
  3008         if (!(op == Op_CmpP || op == Op_Conv2B ||
  3009               op == Op_CastP2X || op == Op_StoreCM ||
  3010               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
  3011               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3012           n->dump();
  3013           use->dump();
  3014           assert(false, "EA: missing allocation reference path");
  3016 #endif
  3021   // New alias types were created in split_AddP().
  3022   uint new_index_end = (uint) _compile->num_alias_types();
  3023   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
  3025   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  3026   //            compute new values for Memory inputs  (the Memory inputs are not
  3027   //            actually updated until phase 4.)
  3028   if (memnode_worklist.length() == 0)
  3029     return;  // nothing to do
  3030   while (memnode_worklist.length() != 0) {
  3031     Node *n = memnode_worklist.pop();
  3032     if (visited.test_set(n->_idx))
  3033       continue;
  3034     if (n->is_Phi() || n->is_ClearArray()) {
  3035       // we don't need to do anything, but the users must be pushed
  3036     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
  3037       // we don't need to do anything, but the users must be pushed
  3038       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
  3039       if (n == NULL)
  3040         continue;
  3041     } else if (n->Opcode() == Op_EncodeISOArray) {
  3042       // get the memory projection
  3043       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3044         Node *use = n->fast_out(i);
  3045         if (use->Opcode() == Op_SCMemProj) {
  3046           n = use;
  3047           break;
  3050       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3051     } else {
  3052       assert(n->is_Mem(), "memory node required.");
  3053       Node *addr = n->in(MemNode::Address);
  3054       const Type *addr_t = igvn->type(addr);
  3055       if (addr_t == Type::TOP)
  3056         continue;
  3057       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  3058       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  3059       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  3060       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
  3061       if (_compile->failing()) {
  3062         return;
  3064       if (mem != n->in(MemNode::Memory)) {
  3065         // We delay the memory edge update since we need old one in
  3066         // MergeMem code below when instances memory slices are separated.
  3067         set_map(n, mem);
  3069       if (n->is_Load()) {
  3070         continue;  // don't push users
  3071       } else if (n->is_LoadStore()) {
  3072         // get the memory projection
  3073         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3074           Node *use = n->fast_out(i);
  3075           if (use->Opcode() == Op_SCMemProj) {
  3076             n = use;
  3077             break;
  3080         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3083     // push user on appropriate worklist
  3084     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3085       Node *use = n->fast_out(i);
  3086       if (use->is_Phi() || use->is_ClearArray()) {
  3087         memnode_worklist.append_if_missing(use);
  3088       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
  3089         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
  3090           continue;
  3091         memnode_worklist.append_if_missing(use);
  3092       } else if (use->is_MemBar()) {
  3093         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  3094           memnode_worklist.append_if_missing(use);
  3096 #ifdef ASSERT
  3097       } else if(use->is_Mem()) {
  3098         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
  3099       } else if (use->is_MergeMem()) {
  3100         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3101       } else if (use->Opcode() == Op_EncodeISOArray) {
  3102         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3103           // EncodeISOArray overwrites destination array
  3104           memnode_worklist.append_if_missing(use);
  3106       } else {
  3107         uint op = use->Opcode();
  3108         if (!(op == Op_StoreCM ||
  3109               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
  3110                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
  3111               op == Op_AryEq || op == Op_StrComp ||
  3112               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3113           n->dump();
  3114           use->dump();
  3115           assert(false, "EA: missing memory path");
  3117 #endif
  3122   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  3123   //            Walk each memory slice moving the first node encountered of each
  3124   //            instance type to the the input corresponding to its alias index.
  3125   uint length = _mergemem_worklist.length();
  3126   for( uint next = 0; next < length; ++next ) {
  3127     MergeMemNode* nmm = _mergemem_worklist.at(next);
  3128     assert(!visited.test_set(nmm->_idx), "should not be visited before");
  3129     // Note: we don't want to use MergeMemStream here because we only want to
  3130     // scan inputs which exist at the start, not ones we add during processing.
  3131     // Note 2: MergeMem may already contains instance memory slices added
  3132     // during find_inst_mem() call when memory nodes were processed above.
  3133     igvn->hash_delete(nmm);
  3134     uint nslices = nmm->req();
  3135     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  3136       Node* mem = nmm->in(i);
  3137       Node* cur = NULL;
  3138       if (mem == NULL || mem->is_top())
  3139         continue;
  3140       // First, update mergemem by moving memory nodes to corresponding slices
  3141       // if their type became more precise since this mergemem was created.
  3142       while (mem->is_Mem()) {
  3143         const Type *at = igvn->type(mem->in(MemNode::Address));
  3144         if (at != Type::TOP) {
  3145           assert (at->isa_ptr() != NULL, "pointer type required.");
  3146           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  3147           if (idx == i) {
  3148             if (cur == NULL)
  3149               cur = mem;
  3150           } else {
  3151             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  3152               nmm->set_memory_at(idx, mem);
  3156         mem = mem->in(MemNode::Memory);
  3158       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  3159       // Find any instance of the current type if we haven't encountered
  3160       // already a memory slice of the instance along the memory chain.
  3161       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3162         if((uint)_compile->get_general_index(ni) == i) {
  3163           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  3164           if (nmm->is_empty_memory(m)) {
  3165             Node* result = find_inst_mem(mem, ni, orig_phis);
  3166             if (_compile->failing()) {
  3167               return;
  3169             nmm->set_memory_at(ni, result);
  3174     // Find the rest of instances values
  3175     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3176       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
  3177       Node* result = step_through_mergemem(nmm, ni, tinst);
  3178       if (result == nmm->base_memory()) {
  3179         // Didn't find instance memory, search through general slice recursively.
  3180         result = nmm->memory_at(_compile->get_general_index(ni));
  3181         result = find_inst_mem(result, ni, orig_phis);
  3182         if (_compile->failing()) {
  3183           return;
  3185         nmm->set_memory_at(ni, result);
  3188     igvn->hash_insert(nmm);
  3189     record_for_optimizer(nmm);
  3192   //  Phase 4:  Update the inputs of non-instance memory Phis and
  3193   //            the Memory input of memnodes
  3194   // First update the inputs of any non-instance Phi's from
  3195   // which we split out an instance Phi.  Note we don't have
  3196   // to recursively process Phi's encounted on the input memory
  3197   // chains as is done in split_memory_phi() since they  will
  3198   // also be processed here.
  3199   for (int j = 0; j < orig_phis.length(); j++) {
  3200     PhiNode *phi = orig_phis.at(j);
  3201     int alias_idx = _compile->get_alias_index(phi->adr_type());
  3202     igvn->hash_delete(phi);
  3203     for (uint i = 1; i < phi->req(); i++) {
  3204       Node *mem = phi->in(i);
  3205       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
  3206       if (_compile->failing()) {
  3207         return;
  3209       if (mem != new_mem) {
  3210         phi->set_req(i, new_mem);
  3213     igvn->hash_insert(phi);
  3214     record_for_optimizer(phi);
  3217   // Update the memory inputs of MemNodes with the value we computed
  3218   // in Phase 2 and move stores memory users to corresponding memory slices.
  3219   // Disable memory split verification code until the fix for 6984348.
  3220   // Currently it produces false negative results since it does not cover all cases.
  3221 #if 0 // ifdef ASSERT
  3222   visited.Reset();
  3223   Node_Stack old_mems(arena, _compile->unique() >> 2);
  3224 #endif
  3225   for (uint i = 0; i < ideal_nodes.size(); i++) {
  3226     Node*    n = ideal_nodes.at(i);
  3227     Node* nmem = get_map(n->_idx);
  3228     assert(nmem != NULL, "sanity");
  3229     if (n->is_Mem()) {
  3230 #if 0 // ifdef ASSERT
  3231       Node* old_mem = n->in(MemNode::Memory);
  3232       if (!visited.test_set(old_mem->_idx)) {
  3233         old_mems.push(old_mem, old_mem->outcnt());
  3235 #endif
  3236       assert(n->in(MemNode::Memory) != nmem, "sanity");
  3237       if (!n->is_Load()) {
  3238         // Move memory users of a store first.
  3239         move_inst_mem(n, orig_phis);
  3241       // Now update memory input
  3242       igvn->hash_delete(n);
  3243       n->set_req(MemNode::Memory, nmem);
  3244       igvn->hash_insert(n);
  3245       record_for_optimizer(n);
  3246     } else {
  3247       assert(n->is_Allocate() || n->is_CheckCastPP() ||
  3248              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
  3251 #if 0 // ifdef ASSERT
  3252   // Verify that memory was split correctly
  3253   while (old_mems.is_nonempty()) {
  3254     Node* old_mem = old_mems.node();
  3255     uint  old_cnt = old_mems.index();
  3256     old_mems.pop();
  3257     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
  3259 #endif
  3262 #ifndef PRODUCT
  3263 static const char *node_type_names[] = {
  3264   "UnknownType",
  3265   "JavaObject",
  3266   "LocalVar",
  3267   "Field",
  3268   "Arraycopy"
  3269 };
  3271 static const char *esc_names[] = {
  3272   "UnknownEscape",
  3273   "NoEscape",
  3274   "ArgEscape",
  3275   "GlobalEscape"
  3276 };
  3278 void PointsToNode::dump(bool print_state) const {
  3279   NodeType nt = node_type();
  3280   tty->print("%s ", node_type_names[(int) nt]);
  3281   if (print_state) {
  3282     EscapeState es = escape_state();
  3283     EscapeState fields_es = fields_escape_state();
  3284     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
  3285     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
  3286       tty->print("NSR ");
  3288   if (is_Field()) {
  3289     FieldNode* f = (FieldNode*)this;
  3290     if (f->is_oop())
  3291       tty->print("oop ");
  3292     if (f->offset() > 0)
  3293       tty->print("+%d ", f->offset());
  3294     tty->print("(");
  3295     for (BaseIterator i(f); i.has_next(); i.next()) {
  3296       PointsToNode* b = i.get();
  3297       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
  3299     tty->print(" )");
  3301   tty->print("[");
  3302   for (EdgeIterator i(this); i.has_next(); i.next()) {
  3303     PointsToNode* e = i.get();
  3304     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
  3306   tty->print(" [");
  3307   for (UseIterator i(this); i.has_next(); i.next()) {
  3308     PointsToNode* u = i.get();
  3309     bool is_base = false;
  3310     if (PointsToNode::is_base_use(u)) {
  3311       is_base = true;
  3312       u = PointsToNode::get_use_node(u)->as_Field();
  3314     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
  3316   tty->print(" ]]  ");
  3317   if (_node == NULL)
  3318     tty->print_cr("<null>");
  3319   else
  3320     _node->dump();
  3323 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
  3324   bool first = true;
  3325   int ptnodes_length = ptnodes_worklist.length();
  3326   for (int i = 0; i < ptnodes_length; i++) {
  3327     PointsToNode *ptn = ptnodes_worklist.at(i);
  3328     if (ptn == NULL || !ptn->is_JavaObject())
  3329       continue;
  3330     PointsToNode::EscapeState es = ptn->escape_state();
  3331     if ((es != PointsToNode::NoEscape) && !Verbose) {
  3332       continue;
  3334     Node* n = ptn->ideal_node();
  3335     if (n->is_Allocate() || (n->is_CallStaticJava() &&
  3336                              n->as_CallStaticJava()->is_boxing_method())) {
  3337       if (first) {
  3338         tty->cr();
  3339         tty->print("======== Connection graph for ");
  3340         _compile->method()->print_short_name();
  3341         tty->cr();
  3342         first = false;
  3344       ptn->dump();
  3345       // Print all locals and fields which reference this allocation
  3346       for (UseIterator j(ptn); j.has_next(); j.next()) {
  3347         PointsToNode* use = j.get();
  3348         if (use->is_LocalVar()) {
  3349           use->dump(Verbose);
  3350         } else if (Verbose) {
  3351           use->dump();
  3354       tty->cr();
  3358 #endif

mercurial