src/os/bsd/vm/os_bsd.cpp

Wed, 07 Nov 2012 17:53:02 -0500

author
bpittore
date
Wed, 07 Nov 2012 17:53:02 -0500
changeset 4261
6cb0d32b828b
parent 4229
0af5da0c9d9d
child 4299
f34d701e952e
child 4318
cd3d6a6b95d9
permissions
-rw-r--r--

8001185: parsing of sun.boot.library.path in os::dll_build_name somewhat broken
Summary: dll_dir can contain multiple paths, need to parse them correctly when loading agents
Reviewed-by: dholmes, dlong
Contributed-by: bill.pittore@oracle.com

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // no precompiled headers
    26 #include "classfile/classLoader.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "classfile/vmSymbols.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/compileBroker.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "jvm_bsd.h"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/filemap.hpp"
    36 #include "mutex_bsd.inline.hpp"
    37 #include "oops/oop.inline.hpp"
    38 #include "os_share_bsd.hpp"
    39 #include "prims/jniFastGetField.hpp"
    40 #include "prims/jvm.h"
    41 #include "prims/jvm_misc.hpp"
    42 #include "runtime/arguments.hpp"
    43 #include "runtime/extendedPC.hpp"
    44 #include "runtime/globals.hpp"
    45 #include "runtime/interfaceSupport.hpp"
    46 #include "runtime/java.hpp"
    47 #include "runtime/javaCalls.hpp"
    48 #include "runtime/mutexLocker.hpp"
    49 #include "runtime/objectMonitor.hpp"
    50 #include "runtime/osThread.hpp"
    51 #include "runtime/perfMemory.hpp"
    52 #include "runtime/sharedRuntime.hpp"
    53 #include "runtime/statSampler.hpp"
    54 #include "runtime/stubRoutines.hpp"
    55 #include "runtime/threadCritical.hpp"
    56 #include "runtime/timer.hpp"
    57 #include "services/attachListener.hpp"
    58 #include "services/runtimeService.hpp"
    59 #include "thread_bsd.inline.hpp"
    60 #include "utilities/decoder.hpp"
    61 #include "utilities/defaultStream.hpp"
    62 #include "utilities/events.hpp"
    63 #include "utilities/growableArray.hpp"
    64 #include "utilities/vmError.hpp"
    65 #ifdef TARGET_ARCH_x86
    66 # include "assembler_x86.inline.hpp"
    67 # include "nativeInst_x86.hpp"
    68 #endif
    69 #ifdef TARGET_ARCH_sparc
    70 # include "assembler_sparc.inline.hpp"
    71 # include "nativeInst_sparc.hpp"
    72 #endif
    73 #ifdef TARGET_ARCH_zero
    74 # include "assembler_zero.inline.hpp"
    75 # include "nativeInst_zero.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_arm
    78 # include "assembler_arm.inline.hpp"
    79 # include "nativeInst_arm.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_ppc
    82 # include "assembler_ppc.inline.hpp"
    83 # include "nativeInst_ppc.hpp"
    84 #endif
    86 // put OS-includes here
    87 # include <sys/types.h>
    88 # include <sys/mman.h>
    89 # include <sys/stat.h>
    90 # include <sys/select.h>
    91 # include <pthread.h>
    92 # include <signal.h>
    93 # include <errno.h>
    94 # include <dlfcn.h>
    95 # include <stdio.h>
    96 # include <unistd.h>
    97 # include <sys/resource.h>
    98 # include <pthread.h>
    99 # include <sys/stat.h>
   100 # include <sys/time.h>
   101 # include <sys/times.h>
   102 # include <sys/utsname.h>
   103 # include <sys/socket.h>
   104 # include <sys/wait.h>
   105 # include <time.h>
   106 # include <pwd.h>
   107 # include <poll.h>
   108 # include <semaphore.h>
   109 # include <fcntl.h>
   110 # include <string.h>
   111 # include <sys/param.h>
   112 # include <sys/sysctl.h>
   113 # include <sys/ipc.h>
   114 # include <sys/shm.h>
   115 #ifndef __APPLE__
   116 # include <link.h>
   117 #endif
   118 # include <stdint.h>
   119 # include <inttypes.h>
   120 # include <sys/ioctl.h>
   122 #if defined(__FreeBSD__) || defined(__NetBSD__)
   123 # include <elf.h>
   124 #endif
   126 #ifdef __APPLE__
   127 # include <mach/mach.h> // semaphore_* API
   128 # include <mach-o/dyld.h>
   129 # include <sys/proc_info.h>
   130 # include <objc/objc-auto.h>
   131 #endif
   133 #ifndef MAP_ANONYMOUS
   134 #define MAP_ANONYMOUS MAP_ANON
   135 #endif
   137 #define MAX_PATH    (2 * K)
   139 // for timer info max values which include all bits
   140 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
   142 #define LARGEPAGES_BIT (1 << 6)
   143 ////////////////////////////////////////////////////////////////////////////////
   144 // global variables
   145 julong os::Bsd::_physical_memory = 0;
   148 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
   149 pthread_t os::Bsd::_main_thread;
   150 int os::Bsd::_page_size = -1;
   152 static jlong initial_time_count=0;
   154 static int clock_tics_per_sec = 100;
   156 // For diagnostics to print a message once. see run_periodic_checks
   157 static sigset_t check_signal_done;
   158 static bool check_signals = true;
   160 static pid_t _initial_pid = 0;
   162 /* Signal number used to suspend/resume a thread */
   164 /* do not use any signal number less than SIGSEGV, see 4355769 */
   165 static int SR_signum = SIGUSR2;
   166 sigset_t SR_sigset;
   169 ////////////////////////////////////////////////////////////////////////////////
   170 // utility functions
   172 static int SR_initialize();
   173 static int SR_finalize();
   175 julong os::available_memory() {
   176   return Bsd::available_memory();
   177 }
   179 julong os::Bsd::available_memory() {
   180   // XXXBSD: this is just a stopgap implementation
   181   return physical_memory() >> 2;
   182 }
   184 julong os::physical_memory() {
   185   return Bsd::physical_memory();
   186 }
   188 julong os::allocatable_physical_memory(julong size) {
   189 #ifdef _LP64
   190   return size;
   191 #else
   192   julong result = MIN2(size, (julong)3800*M);
   193    if (!is_allocatable(result)) {
   194      // See comments under solaris for alignment considerations
   195      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
   196      result =  MIN2(size, reasonable_size);
   197    }
   198    return result;
   199 #endif // _LP64
   200 }
   202 ////////////////////////////////////////////////////////////////////////////////
   203 // environment support
   205 bool os::getenv(const char* name, char* buf, int len) {
   206   const char* val = ::getenv(name);
   207   if (val != NULL && strlen(val) < (size_t)len) {
   208     strcpy(buf, val);
   209     return true;
   210   }
   211   if (len > 0) buf[0] = 0;  // return a null string
   212   return false;
   213 }
   216 // Return true if user is running as root.
   218 bool os::have_special_privileges() {
   219   static bool init = false;
   220   static bool privileges = false;
   221   if (!init) {
   222     privileges = (getuid() != geteuid()) || (getgid() != getegid());
   223     init = true;
   224   }
   225   return privileges;
   226 }
   230 // Cpu architecture string
   231 #if   defined(ZERO)
   232 static char cpu_arch[] = ZERO_LIBARCH;
   233 #elif defined(IA64)
   234 static char cpu_arch[] = "ia64";
   235 #elif defined(IA32)
   236 static char cpu_arch[] = "i386";
   237 #elif defined(AMD64)
   238 static char cpu_arch[] = "amd64";
   239 #elif defined(ARM)
   240 static char cpu_arch[] = "arm";
   241 #elif defined(PPC)
   242 static char cpu_arch[] = "ppc";
   243 #elif defined(SPARC)
   244 #  ifdef _LP64
   245 static char cpu_arch[] = "sparcv9";
   246 #  else
   247 static char cpu_arch[] = "sparc";
   248 #  endif
   249 #else
   250 #error Add appropriate cpu_arch setting
   251 #endif
   253 // Compiler variant
   254 #ifdef COMPILER2
   255 #define COMPILER_VARIANT "server"
   256 #else
   257 #define COMPILER_VARIANT "client"
   258 #endif
   261 void os::Bsd::initialize_system_info() {
   262   int mib[2];
   263   size_t len;
   264   int cpu_val;
   265   u_long mem_val;
   267   /* get processors count via hw.ncpus sysctl */
   268   mib[0] = CTL_HW;
   269   mib[1] = HW_NCPU;
   270   len = sizeof(cpu_val);
   271   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
   272        set_processor_count(cpu_val);
   273   }
   274   else {
   275        set_processor_count(1);   // fallback
   276   }
   278   /* get physical memory via hw.usermem sysctl (hw.usermem is used
   279    * instead of hw.physmem because we need size of allocatable memory
   280    */
   281   mib[0] = CTL_HW;
   282   mib[1] = HW_USERMEM;
   283   len = sizeof(mem_val);
   284   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1)
   285        _physical_memory = mem_val;
   286   else
   287        _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
   289 #ifdef __OpenBSD__
   290   {
   291        // limit _physical_memory memory view on OpenBSD since
   292        // datasize rlimit restricts us anyway.
   293        struct rlimit limits;
   294        getrlimit(RLIMIT_DATA, &limits);
   295        _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
   296   }
   297 #endif
   298 }
   300 #ifdef __APPLE__
   301 static const char *get_home() {
   302   const char *home_dir = ::getenv("HOME");
   303   if ((home_dir == NULL) || (*home_dir == '\0')) {
   304     struct passwd *passwd_info = getpwuid(geteuid());
   305     if (passwd_info != NULL) {
   306       home_dir = passwd_info->pw_dir;
   307     }
   308   }
   310   return home_dir;
   311 }
   312 #endif
   314 void os::init_system_properties_values() {
   315 //  char arch[12];
   316 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
   318   // The next steps are taken in the product version:
   319   //
   320   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
   321   // This library should be located at:
   322   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
   323   //
   324   // If "/jre/lib/" appears at the right place in the path, then we
   325   // assume libjvm[_g].so is installed in a JDK and we use this path.
   326   //
   327   // Otherwise exit with message: "Could not create the Java virtual machine."
   328   //
   329   // The following extra steps are taken in the debugging version:
   330   //
   331   // If "/jre/lib/" does NOT appear at the right place in the path
   332   // instead of exit check for $JAVA_HOME environment variable.
   333   //
   334   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
   335   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
   336   // it looks like libjvm[_g].so is installed there
   337   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
   338   //
   339   // Otherwise exit.
   340   //
   341   // Important note: if the location of libjvm.so changes this
   342   // code needs to be changed accordingly.
   344   // The next few definitions allow the code to be verbatim:
   345 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
   346 #define getenv(n) ::getenv(n)
   348 /*
   349  * See ld(1):
   350  *      The linker uses the following search paths to locate required
   351  *      shared libraries:
   352  *        1: ...
   353  *        ...
   354  *        7: The default directories, normally /lib and /usr/lib.
   355  */
   356 #ifndef DEFAULT_LIBPATH
   357 #define DEFAULT_LIBPATH "/lib:/usr/lib"
   358 #endif
   360 #define EXTENSIONS_DIR  "/lib/ext"
   361 #define ENDORSED_DIR    "/lib/endorsed"
   362 #define REG_DIR         "/usr/java/packages"
   364 #ifdef __APPLE__
   365 #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
   366 #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
   367         const char *user_home_dir = get_home();
   368         // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
   369         int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
   370             sizeof(SYS_EXTENSIONS_DIRS);
   371 #endif
   373   {
   374     /* sysclasspath, java_home, dll_dir */
   375     {
   376         char *home_path;
   377         char *dll_path;
   378         char *pslash;
   379         char buf[MAXPATHLEN];
   380         os::jvm_path(buf, sizeof(buf));
   382         // Found the full path to libjvm.so.
   383         // Now cut the path to <java_home>/jre if we can.
   384         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
   385         pslash = strrchr(buf, '/');
   386         if (pslash != NULL)
   387             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
   388         dll_path = malloc(strlen(buf) + 1);
   389         if (dll_path == NULL)
   390             return;
   391         strcpy(dll_path, buf);
   392         Arguments::set_dll_dir(dll_path);
   394         if (pslash != NULL) {
   395             pslash = strrchr(buf, '/');
   396             if (pslash != NULL) {
   397                 *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
   398 #ifndef __APPLE__
   399                 pslash = strrchr(buf, '/');
   400                 if (pslash != NULL)
   401                     *pslash = '\0';   /* get rid of /lib */
   402 #endif
   403             }
   404         }
   406         home_path = malloc(strlen(buf) + 1);
   407         if (home_path == NULL)
   408             return;
   409         strcpy(home_path, buf);
   410         Arguments::set_java_home(home_path);
   412         if (!set_boot_path('/', ':'))
   413             return;
   414     }
   416     /*
   417      * Where to look for native libraries
   418      *
   419      * Note: Due to a legacy implementation, most of the library path
   420      * is set in the launcher.  This was to accomodate linking restrictions
   421      * on legacy Bsd implementations (which are no longer supported).
   422      * Eventually, all the library path setting will be done here.
   423      *
   424      * However, to prevent the proliferation of improperly built native
   425      * libraries, the new path component /usr/java/packages is added here.
   426      * Eventually, all the library path setting will be done here.
   427      */
   428     {
   429         char *ld_library_path;
   431         /*
   432          * Construct the invariant part of ld_library_path. Note that the
   433          * space for the colon and the trailing null are provided by the
   434          * nulls included by the sizeof operator (so actually we allocate
   435          * a byte more than necessary).
   436          */
   437 #ifdef __APPLE__
   438         ld_library_path = (char *) malloc(system_ext_size);
   439         sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
   440 #else
   441         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
   442             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
   443         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
   444 #endif
   446         /*
   447          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
   448          * should always exist (until the legacy problem cited above is
   449          * addressed).
   450          */
   451 #ifdef __APPLE__
   452         // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
   453         char *l = getenv("JAVA_LIBRARY_PATH");
   454         if (l != NULL) {
   455             char *t = ld_library_path;
   456             /* That's +1 for the colon and +1 for the trailing '\0' */
   457             ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
   458             sprintf(ld_library_path, "%s:%s", l, t);
   459             free(t);
   460         }
   462         char *v = getenv("DYLD_LIBRARY_PATH");
   463 #else
   464         char *v = getenv("LD_LIBRARY_PATH");
   465 #endif
   466         if (v != NULL) {
   467             char *t = ld_library_path;
   468             /* That's +1 for the colon and +1 for the trailing '\0' */
   469             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
   470             sprintf(ld_library_path, "%s:%s", v, t);
   471             free(t);
   472         }
   474 #ifdef __APPLE__
   475         // Apple's Java6 has "." at the beginning of java.library.path.
   476         // OpenJDK on Windows has "." at the end of java.library.path.
   477         // OpenJDK on Linux and Solaris don't have "." in java.library.path
   478         // at all. To ease the transition from Apple's Java6 to OpenJDK7,
   479         // "." is appended to the end of java.library.path. Yes, this
   480         // could cause a change in behavior, but Apple's Java6 behavior
   481         // can be achieved by putting "." at the beginning of the
   482         // JAVA_LIBRARY_PATH environment variable.
   483         {
   484             char *t = ld_library_path;
   485             // that's +3 for appending ":." and the trailing '\0'
   486             ld_library_path = (char *) malloc(strlen(t) + 3);
   487             sprintf(ld_library_path, "%s:%s", t, ".");
   488             free(t);
   489         }
   490 #endif
   492         Arguments::set_library_path(ld_library_path);
   493     }
   495     /*
   496      * Extensions directories.
   497      *
   498      * Note that the space for the colon and the trailing null are provided
   499      * by the nulls included by the sizeof operator (so actually one byte more
   500      * than necessary is allocated).
   501      */
   502     {
   503 #ifdef __APPLE__
   504         char *buf = malloc(strlen(Arguments::get_java_home()) +
   505             sizeof(EXTENSIONS_DIR) + system_ext_size);
   506         sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
   507             SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
   508 #else
   509         char *buf = malloc(strlen(Arguments::get_java_home()) +
   510             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
   511         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
   512             Arguments::get_java_home());
   513 #endif
   515         Arguments::set_ext_dirs(buf);
   516     }
   518     /* Endorsed standards default directory. */
   519     {
   520         char * buf;
   521         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
   522         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
   523         Arguments::set_endorsed_dirs(buf);
   524     }
   525   }
   527 #ifdef __APPLE__
   528 #undef SYS_EXTENSIONS_DIR
   529 #endif
   530 #undef malloc
   531 #undef getenv
   532 #undef EXTENSIONS_DIR
   533 #undef ENDORSED_DIR
   535   // Done
   536   return;
   537 }
   539 ////////////////////////////////////////////////////////////////////////////////
   540 // breakpoint support
   542 void os::breakpoint() {
   543   BREAKPOINT;
   544 }
   546 extern "C" void breakpoint() {
   547   // use debugger to set breakpoint here
   548 }
   550 ////////////////////////////////////////////////////////////////////////////////
   551 // signal support
   553 debug_only(static bool signal_sets_initialized = false);
   554 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
   556 bool os::Bsd::is_sig_ignored(int sig) {
   557       struct sigaction oact;
   558       sigaction(sig, (struct sigaction*)NULL, &oact);
   559       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
   560                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
   561       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
   562            return true;
   563       else
   564            return false;
   565 }
   567 void os::Bsd::signal_sets_init() {
   568   // Should also have an assertion stating we are still single-threaded.
   569   assert(!signal_sets_initialized, "Already initialized");
   570   // Fill in signals that are necessarily unblocked for all threads in
   571   // the VM. Currently, we unblock the following signals:
   572   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
   573   //                         by -Xrs (=ReduceSignalUsage));
   574   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
   575   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
   576   // the dispositions or masks wrt these signals.
   577   // Programs embedding the VM that want to use the above signals for their
   578   // own purposes must, at this time, use the "-Xrs" option to prevent
   579   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
   580   // (See bug 4345157, and other related bugs).
   581   // In reality, though, unblocking these signals is really a nop, since
   582   // these signals are not blocked by default.
   583   sigemptyset(&unblocked_sigs);
   584   sigemptyset(&allowdebug_blocked_sigs);
   585   sigaddset(&unblocked_sigs, SIGILL);
   586   sigaddset(&unblocked_sigs, SIGSEGV);
   587   sigaddset(&unblocked_sigs, SIGBUS);
   588   sigaddset(&unblocked_sigs, SIGFPE);
   589   sigaddset(&unblocked_sigs, SR_signum);
   591   if (!ReduceSignalUsage) {
   592    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
   593       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
   594       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   595    }
   596    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
   597       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
   598       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   599    }
   600    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
   601       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
   602       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   603    }
   604   }
   605   // Fill in signals that are blocked by all but the VM thread.
   606   sigemptyset(&vm_sigs);
   607   if (!ReduceSignalUsage)
   608     sigaddset(&vm_sigs, BREAK_SIGNAL);
   609   debug_only(signal_sets_initialized = true);
   611 }
   613 // These are signals that are unblocked while a thread is running Java.
   614 // (For some reason, they get blocked by default.)
   615 sigset_t* os::Bsd::unblocked_signals() {
   616   assert(signal_sets_initialized, "Not initialized");
   617   return &unblocked_sigs;
   618 }
   620 // These are the signals that are blocked while a (non-VM) thread is
   621 // running Java. Only the VM thread handles these signals.
   622 sigset_t* os::Bsd::vm_signals() {
   623   assert(signal_sets_initialized, "Not initialized");
   624   return &vm_sigs;
   625 }
   627 // These are signals that are blocked during cond_wait to allow debugger in
   628 sigset_t* os::Bsd::allowdebug_blocked_signals() {
   629   assert(signal_sets_initialized, "Not initialized");
   630   return &allowdebug_blocked_sigs;
   631 }
   633 void os::Bsd::hotspot_sigmask(Thread* thread) {
   635   //Save caller's signal mask before setting VM signal mask
   636   sigset_t caller_sigmask;
   637   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
   639   OSThread* osthread = thread->osthread();
   640   osthread->set_caller_sigmask(caller_sigmask);
   642   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
   644   if (!ReduceSignalUsage) {
   645     if (thread->is_VM_thread()) {
   646       // Only the VM thread handles BREAK_SIGNAL ...
   647       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
   648     } else {
   649       // ... all other threads block BREAK_SIGNAL
   650       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
   651     }
   652   }
   653 }
   656 //////////////////////////////////////////////////////////////////////////////
   657 // create new thread
   659 static address highest_vm_reserved_address();
   661 // check if it's safe to start a new thread
   662 static bool _thread_safety_check(Thread* thread) {
   663   return true;
   664 }
   666 #ifdef __APPLE__
   667 // library handle for calling objc_registerThreadWithCollector()
   668 // without static linking to the libobjc library
   669 #define OBJC_LIB "/usr/lib/libobjc.dylib"
   670 #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
   671 typedef void (*objc_registerThreadWithCollector_t)();
   672 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
   673 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
   674 #endif
   676 // Thread start routine for all newly created threads
   677 static void *java_start(Thread *thread) {
   678   // Try to randomize the cache line index of hot stack frames.
   679   // This helps when threads of the same stack traces evict each other's
   680   // cache lines. The threads can be either from the same JVM instance, or
   681   // from different JVM instances. The benefit is especially true for
   682   // processors with hyperthreading technology.
   683   static int counter = 0;
   684   int pid = os::current_process_id();
   685   alloca(((pid ^ counter++) & 7) * 128);
   687   ThreadLocalStorage::set_thread(thread);
   689   OSThread* osthread = thread->osthread();
   690   Monitor* sync = osthread->startThread_lock();
   692   // non floating stack BsdThreads needs extra check, see above
   693   if (!_thread_safety_check(thread)) {
   694     // notify parent thread
   695     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   696     osthread->set_state(ZOMBIE);
   697     sync->notify_all();
   698     return NULL;
   699   }
   701 #ifdef __APPLE__
   702   // thread_id is mach thread on macos
   703   osthread->set_thread_id(::mach_thread_self());
   704 #else
   705   // thread_id is pthread_id on BSD
   706   osthread->set_thread_id(::pthread_self());
   707 #endif
   708   // initialize signal mask for this thread
   709   os::Bsd::hotspot_sigmask(thread);
   711   // initialize floating point control register
   712   os::Bsd::init_thread_fpu_state();
   714 #ifdef __APPLE__
   715   // register thread with objc gc
   716   if (objc_registerThreadWithCollectorFunction != NULL) {
   717     objc_registerThreadWithCollectorFunction();
   718   }
   719 #endif
   721   // handshaking with parent thread
   722   {
   723     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
   725     // notify parent thread
   726     osthread->set_state(INITIALIZED);
   727     sync->notify_all();
   729     // wait until os::start_thread()
   730     while (osthread->get_state() == INITIALIZED) {
   731       sync->wait(Mutex::_no_safepoint_check_flag);
   732     }
   733   }
   735   // call one more level start routine
   736   thread->run();
   738   return 0;
   739 }
   741 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
   742   assert(thread->osthread() == NULL, "caller responsible");
   744   // Allocate the OSThread object
   745   OSThread* osthread = new OSThread(NULL, NULL);
   746   if (osthread == NULL) {
   747     return false;
   748   }
   750   // set the correct thread state
   751   osthread->set_thread_type(thr_type);
   753   // Initial state is ALLOCATED but not INITIALIZED
   754   osthread->set_state(ALLOCATED);
   756   thread->set_osthread(osthread);
   758   // init thread attributes
   759   pthread_attr_t attr;
   760   pthread_attr_init(&attr);
   761   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
   763   // stack size
   764   if (os::Bsd::supports_variable_stack_size()) {
   765     // calculate stack size if it's not specified by caller
   766     if (stack_size == 0) {
   767       stack_size = os::Bsd::default_stack_size(thr_type);
   769       switch (thr_type) {
   770       case os::java_thread:
   771         // Java threads use ThreadStackSize which default value can be
   772         // changed with the flag -Xss
   773         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
   774         stack_size = JavaThread::stack_size_at_create();
   775         break;
   776       case os::compiler_thread:
   777         if (CompilerThreadStackSize > 0) {
   778           stack_size = (size_t)(CompilerThreadStackSize * K);
   779           break;
   780         } // else fall through:
   781           // use VMThreadStackSize if CompilerThreadStackSize is not defined
   782       case os::vm_thread:
   783       case os::pgc_thread:
   784       case os::cgc_thread:
   785       case os::watcher_thread:
   786         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
   787         break;
   788       }
   789     }
   791     stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
   792     pthread_attr_setstacksize(&attr, stack_size);
   793   } else {
   794     // let pthread_create() pick the default value.
   795   }
   797   ThreadState state;
   799   {
   800     pthread_t tid;
   801     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
   803     pthread_attr_destroy(&attr);
   805     if (ret != 0) {
   806       if (PrintMiscellaneous && (Verbose || WizardMode)) {
   807         perror("pthread_create()");
   808       }
   809       // Need to clean up stuff we've allocated so far
   810       thread->set_osthread(NULL);
   811       delete osthread;
   812       return false;
   813     }
   815     // Store pthread info into the OSThread
   816     osthread->set_pthread_id(tid);
   818     // Wait until child thread is either initialized or aborted
   819     {
   820       Monitor* sync_with_child = osthread->startThread_lock();
   821       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   822       while ((state = osthread->get_state()) == ALLOCATED) {
   823         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
   824       }
   825     }
   827   }
   829   // Aborted due to thread limit being reached
   830   if (state == ZOMBIE) {
   831       thread->set_osthread(NULL);
   832       delete osthread;
   833       return false;
   834   }
   836   // The thread is returned suspended (in state INITIALIZED),
   837   // and is started higher up in the call chain
   838   assert(state == INITIALIZED, "race condition");
   839   return true;
   840 }
   842 /////////////////////////////////////////////////////////////////////////////
   843 // attach existing thread
   845 // bootstrap the main thread
   846 bool os::create_main_thread(JavaThread* thread) {
   847   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
   848   return create_attached_thread(thread);
   849 }
   851 bool os::create_attached_thread(JavaThread* thread) {
   852 #ifdef ASSERT
   853     thread->verify_not_published();
   854 #endif
   856   // Allocate the OSThread object
   857   OSThread* osthread = new OSThread(NULL, NULL);
   859   if (osthread == NULL) {
   860     return false;
   861   }
   863   // Store pthread info into the OSThread
   864 #ifdef __APPLE__
   865   osthread->set_thread_id(::mach_thread_self());
   866 #else
   867   osthread->set_thread_id(::pthread_self());
   868 #endif
   869   osthread->set_pthread_id(::pthread_self());
   871   // initialize floating point control register
   872   os::Bsd::init_thread_fpu_state();
   874   // Initial thread state is RUNNABLE
   875   osthread->set_state(RUNNABLE);
   877   thread->set_osthread(osthread);
   879   // initialize signal mask for this thread
   880   // and save the caller's signal mask
   881   os::Bsd::hotspot_sigmask(thread);
   883   return true;
   884 }
   886 void os::pd_start_thread(Thread* thread) {
   887   OSThread * osthread = thread->osthread();
   888   assert(osthread->get_state() != INITIALIZED, "just checking");
   889   Monitor* sync_with_child = osthread->startThread_lock();
   890   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
   891   sync_with_child->notify();
   892 }
   894 // Free Bsd resources related to the OSThread
   895 void os::free_thread(OSThread* osthread) {
   896   assert(osthread != NULL, "osthread not set");
   898   if (Thread::current()->osthread() == osthread) {
   899     // Restore caller's signal mask
   900     sigset_t sigmask = osthread->caller_sigmask();
   901     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   902    }
   904   delete osthread;
   905 }
   907 //////////////////////////////////////////////////////////////////////////////
   908 // thread local storage
   910 int os::allocate_thread_local_storage() {
   911   pthread_key_t key;
   912   int rslt = pthread_key_create(&key, NULL);
   913   assert(rslt == 0, "cannot allocate thread local storage");
   914   return (int)key;
   915 }
   917 // Note: This is currently not used by VM, as we don't destroy TLS key
   918 // on VM exit.
   919 void os::free_thread_local_storage(int index) {
   920   int rslt = pthread_key_delete((pthread_key_t)index);
   921   assert(rslt == 0, "invalid index");
   922 }
   924 void os::thread_local_storage_at_put(int index, void* value) {
   925   int rslt = pthread_setspecific((pthread_key_t)index, value);
   926   assert(rslt == 0, "pthread_setspecific failed");
   927 }
   929 extern "C" Thread* get_thread() {
   930   return ThreadLocalStorage::thread();
   931 }
   934 ////////////////////////////////////////////////////////////////////////////////
   935 // time support
   937 // Time since start-up in seconds to a fine granularity.
   938 // Used by VMSelfDestructTimer and the MemProfiler.
   939 double os::elapsedTime() {
   941   return (double)(os::elapsed_counter()) * 0.000001;
   942 }
   944 jlong os::elapsed_counter() {
   945   timeval time;
   946   int status = gettimeofday(&time, NULL);
   947   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
   948 }
   950 jlong os::elapsed_frequency() {
   951   return (1000 * 1000);
   952 }
   954 // XXX: For now, code this as if BSD does not support vtime.
   955 bool os::supports_vtime() { return false; }
   956 bool os::enable_vtime()   { return false; }
   957 bool os::vtime_enabled()  { return false; }
   958 double os::elapsedVTime() {
   959   // better than nothing, but not much
   960   return elapsedTime();
   961 }
   963 jlong os::javaTimeMillis() {
   964   timeval time;
   965   int status = gettimeofday(&time, NULL);
   966   assert(status != -1, "bsd error");
   967   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
   968 }
   970 #ifndef CLOCK_MONOTONIC
   971 #define CLOCK_MONOTONIC (1)
   972 #endif
   974 #ifdef __APPLE__
   975 void os::Bsd::clock_init() {
   976         // XXXDARWIN: Investigate replacement monotonic clock
   977 }
   978 #else
   979 void os::Bsd::clock_init() {
   980   struct timespec res;
   981   struct timespec tp;
   982   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
   983       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
   984     // yes, monotonic clock is supported
   985     _clock_gettime = ::clock_gettime;
   986   }
   987 }
   988 #endif
   991 jlong os::javaTimeNanos() {
   992   if (Bsd::supports_monotonic_clock()) {
   993     struct timespec tp;
   994     int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
   995     assert(status == 0, "gettime error");
   996     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
   997     return result;
   998   } else {
   999     timeval time;
  1000     int status = gettimeofday(&time, NULL);
  1001     assert(status != -1, "bsd error");
  1002     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
  1003     return 1000 * usecs;
  1007 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  1008   if (Bsd::supports_monotonic_clock()) {
  1009     info_ptr->max_value = ALL_64_BITS;
  1011     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
  1012     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
  1013     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  1014   } else {
  1015     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
  1016     info_ptr->max_value = ALL_64_BITS;
  1018     // gettimeofday is a real time clock so it skips
  1019     info_ptr->may_skip_backward = true;
  1020     info_ptr->may_skip_forward = true;
  1023   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
  1026 // Return the real, user, and system times in seconds from an
  1027 // arbitrary fixed point in the past.
  1028 bool os::getTimesSecs(double* process_real_time,
  1029                       double* process_user_time,
  1030                       double* process_system_time) {
  1031   struct tms ticks;
  1032   clock_t real_ticks = times(&ticks);
  1034   if (real_ticks == (clock_t) (-1)) {
  1035     return false;
  1036   } else {
  1037     double ticks_per_second = (double) clock_tics_per_sec;
  1038     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
  1039     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
  1040     *process_real_time = ((double) real_ticks) / ticks_per_second;
  1042     return true;
  1047 char * os::local_time_string(char *buf, size_t buflen) {
  1048   struct tm t;
  1049   time_t long_time;
  1050   time(&long_time);
  1051   localtime_r(&long_time, &t);
  1052   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
  1053                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
  1054                t.tm_hour, t.tm_min, t.tm_sec);
  1055   return buf;
  1058 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  1059   return localtime_r(clock, res);
  1062 ////////////////////////////////////////////////////////////////////////////////
  1063 // runtime exit support
  1065 // Note: os::shutdown() might be called very early during initialization, or
  1066 // called from signal handler. Before adding something to os::shutdown(), make
  1067 // sure it is async-safe and can handle partially initialized VM.
  1068 void os::shutdown() {
  1070   // allow PerfMemory to attempt cleanup of any persistent resources
  1071   perfMemory_exit();
  1073   // needs to remove object in file system
  1074   AttachListener::abort();
  1076   // flush buffered output, finish log files
  1077   ostream_abort();
  1079   // Check for abort hook
  1080   abort_hook_t abort_hook = Arguments::abort_hook();
  1081   if (abort_hook != NULL) {
  1082     abort_hook();
  1087 // Note: os::abort() might be called very early during initialization, or
  1088 // called from signal handler. Before adding something to os::abort(), make
  1089 // sure it is async-safe and can handle partially initialized VM.
  1090 void os::abort(bool dump_core) {
  1091   os::shutdown();
  1092   if (dump_core) {
  1093 #ifndef PRODUCT
  1094     fdStream out(defaultStream::output_fd());
  1095     out.print_raw("Current thread is ");
  1096     char buf[16];
  1097     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
  1098     out.print_raw_cr(buf);
  1099     out.print_raw_cr("Dumping core ...");
  1100 #endif
  1101     ::abort(); // dump core
  1104   ::exit(1);
  1107 // Die immediately, no exit hook, no abort hook, no cleanup.
  1108 void os::die() {
  1109   // _exit() on BsdThreads only kills current thread
  1110   ::abort();
  1113 // unused on bsd for now.
  1114 void os::set_error_file(const char *logfile) {}
  1117 // This method is a copy of JDK's sysGetLastErrorString
  1118 // from src/solaris/hpi/src/system_md.c
  1120 size_t os::lasterror(char *buf, size_t len) {
  1122   if (errno == 0)  return 0;
  1124   const char *s = ::strerror(errno);
  1125   size_t n = ::strlen(s);
  1126   if (n >= len) {
  1127     n = len - 1;
  1129   ::strncpy(buf, s, n);
  1130   buf[n] = '\0';
  1131   return n;
  1134 intx os::current_thread_id() {
  1135 #ifdef __APPLE__
  1136   return (intx)::mach_thread_self();
  1137 #else
  1138   return (intx)::pthread_self();
  1139 #endif
  1141 int os::current_process_id() {
  1143   // Under the old bsd thread library, bsd gives each thread
  1144   // its own process id. Because of this each thread will return
  1145   // a different pid if this method were to return the result
  1146   // of getpid(2). Bsd provides no api that returns the pid
  1147   // of the launcher thread for the vm. This implementation
  1148   // returns a unique pid, the pid of the launcher thread
  1149   // that starts the vm 'process'.
  1151   // Under the NPTL, getpid() returns the same pid as the
  1152   // launcher thread rather than a unique pid per thread.
  1153   // Use gettid() if you want the old pre NPTL behaviour.
  1155   // if you are looking for the result of a call to getpid() that
  1156   // returns a unique pid for the calling thread, then look at the
  1157   // OSThread::thread_id() method in osThread_bsd.hpp file
  1159   return (int)(_initial_pid ? _initial_pid : getpid());
  1162 // DLL functions
  1164 #define JNI_LIB_PREFIX "lib"
  1165 #ifdef __APPLE__
  1166 #define JNI_LIB_SUFFIX ".dylib"
  1167 #else
  1168 #define JNI_LIB_SUFFIX ".so"
  1169 #endif
  1171 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
  1173 // This must be hard coded because it's the system's temporary
  1174 // directory not the java application's temp directory, ala java.io.tmpdir.
  1175 #ifdef __APPLE__
  1176 // macosx has a secure per-user temporary directory
  1177 char temp_path_storage[PATH_MAX];
  1178 const char* os::get_temp_directory() {
  1179   static char *temp_path = NULL;
  1180   if (temp_path == NULL) {
  1181     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
  1182     if (pathSize == 0 || pathSize > PATH_MAX) {
  1183       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
  1185     temp_path = temp_path_storage;
  1187   return temp_path;
  1189 #else /* __APPLE__ */
  1190 const char* os::get_temp_directory() { return "/tmp"; }
  1191 #endif /* __APPLE__ */
  1193 static bool file_exists(const char* filename) {
  1194   struct stat statbuf;
  1195   if (filename == NULL || strlen(filename) == 0) {
  1196     return false;
  1198   return os::stat(filename, &statbuf) == 0;
  1201 bool os::dll_build_name(char* buffer, size_t buflen,
  1202                         const char* pname, const char* fname) {
  1203   bool retval = false;
  1204   // Copied from libhpi
  1205   const size_t pnamelen = pname ? strlen(pname) : 0;
  1207   // Return error on buffer overflow.
  1208   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
  1209     return retval;
  1212   if (pnamelen == 0) {
  1213     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
  1214     retval = true;
  1215   } else if (strchr(pname, *os::path_separator()) != NULL) {
  1216     int n;
  1217     char** pelements = split_path(pname, &n);
  1218     for (int i = 0 ; i < n ; i++) {
  1219       // Really shouldn't be NULL, but check can't hurt
  1220       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
  1221         continue; // skip the empty path values
  1223       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
  1224           pelements[i], fname);
  1225       if (file_exists(buffer)) {
  1226         retval = true;
  1227         break;
  1230     // release the storage
  1231     for (int i = 0 ; i < n ; i++) {
  1232       if (pelements[i] != NULL) {
  1233         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
  1236     if (pelements != NULL) {
  1237       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
  1239   } else {
  1240     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
  1241     retval = true;
  1243   return retval;
  1246 const char* os::get_current_directory(char *buf, int buflen) {
  1247   return getcwd(buf, buflen);
  1250 // check if addr is inside libjvm[_g].so
  1251 bool os::address_is_in_vm(address addr) {
  1252   static address libjvm_base_addr;
  1253   Dl_info dlinfo;
  1255   if (libjvm_base_addr == NULL) {
  1256     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
  1257     libjvm_base_addr = (address)dlinfo.dli_fbase;
  1258     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  1261   if (dladdr((void *)addr, &dlinfo)) {
  1262     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  1265   return false;
  1269 #define MACH_MAXSYMLEN 256
  1271 bool os::dll_address_to_function_name(address addr, char *buf,
  1272                                       int buflen, int *offset) {
  1273   Dl_info dlinfo;
  1274   char localbuf[MACH_MAXSYMLEN];
  1276   // dladdr will find names of dynamic functions only, but does
  1277   // it set dli_fbase with mach_header address when it "fails" ?
  1278   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
  1279     if (buf != NULL) {
  1280       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
  1281         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
  1284     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
  1285     return true;
  1286   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
  1287     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
  1288        buf, buflen, offset, dlinfo.dli_fname)) {
  1289        return true;
  1293   // Handle non-dymanic manually:
  1294   if (dlinfo.dli_fbase != NULL &&
  1295       Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset, dlinfo.dli_fbase)) {
  1296     if(!Decoder::demangle(localbuf, buf, buflen)) {
  1297       jio_snprintf(buf, buflen, "%s", localbuf);
  1299     return true;
  1301   if (buf != NULL) buf[0] = '\0';
  1302   if (offset != NULL) *offset = -1;
  1303   return false;
  1306 // ported from solaris version
  1307 bool os::dll_address_to_library_name(address addr, char* buf,
  1308                                      int buflen, int* offset) {
  1309   Dl_info dlinfo;
  1311   if (dladdr((void*)addr, &dlinfo)){
  1312      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
  1313      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
  1314      return true;
  1315   } else {
  1316      if (buf) buf[0] = '\0';
  1317      if (offset) *offset = -1;
  1318      return false;
  1322 // Loads .dll/.so and
  1323 // in case of error it checks if .dll/.so was built for the
  1324 // same architecture as Hotspot is running on
  1326 #ifdef __APPLE__
  1327 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
  1328   void * result= ::dlopen(filename, RTLD_LAZY);
  1329   if (result != NULL) {
  1330     // Successful loading
  1331     return result;
  1334   // Read system error message into ebuf
  1335   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1336   ebuf[ebuflen-1]='\0';
  1338   return NULL;
  1340 #else
  1341 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
  1343   void * result= ::dlopen(filename, RTLD_LAZY);
  1344   if (result != NULL) {
  1345     // Successful loading
  1346     return result;
  1349   Elf32_Ehdr elf_head;
  1351   // Read system error message into ebuf
  1352   // It may or may not be overwritten below
  1353   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  1354   ebuf[ebuflen-1]='\0';
  1355   int diag_msg_max_length=ebuflen-strlen(ebuf);
  1356   char* diag_msg_buf=ebuf+strlen(ebuf);
  1358   if (diag_msg_max_length==0) {
  1359     // No more space in ebuf for additional diagnostics message
  1360     return NULL;
  1364   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
  1366   if (file_descriptor < 0) {
  1367     // Can't open library, report dlerror() message
  1368     return NULL;
  1371   bool failed_to_read_elf_head=
  1372     (sizeof(elf_head)!=
  1373         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
  1375   ::close(file_descriptor);
  1376   if (failed_to_read_elf_head) {
  1377     // file i/o error - report dlerror() msg
  1378     return NULL;
  1381   typedef struct {
  1382     Elf32_Half  code;         // Actual value as defined in elf.h
  1383     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
  1384     char        elf_class;    // 32 or 64 bit
  1385     char        endianess;    // MSB or LSB
  1386     char*       name;         // String representation
  1387   } arch_t;
  1389   #ifndef EM_486
  1390   #define EM_486          6               /* Intel 80486 */
  1391   #endif
  1393   #ifndef EM_MIPS_RS3_LE
  1394   #define EM_MIPS_RS3_LE  10              /* MIPS */
  1395   #endif
  1397   #ifndef EM_PPC64
  1398   #define EM_PPC64        21              /* PowerPC64 */
  1399   #endif
  1401   #ifndef EM_S390
  1402   #define EM_S390         22              /* IBM System/390 */
  1403   #endif
  1405   #ifndef EM_IA_64
  1406   #define EM_IA_64        50              /* HP/Intel IA-64 */
  1407   #endif
  1409   #ifndef EM_X86_64
  1410   #define EM_X86_64       62              /* AMD x86-64 */
  1411   #endif
  1413   static const arch_t arch_array[]={
  1414     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1415     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
  1416     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
  1417     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
  1418     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1419     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
  1420     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
  1421     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
  1422     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
  1423     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
  1424     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
  1425     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
  1426     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
  1427     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
  1428     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
  1429     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  1430   };
  1432   #if  (defined IA32)
  1433     static  Elf32_Half running_arch_code=EM_386;
  1434   #elif   (defined AMD64)
  1435     static  Elf32_Half running_arch_code=EM_X86_64;
  1436   #elif  (defined IA64)
  1437     static  Elf32_Half running_arch_code=EM_IA_64;
  1438   #elif  (defined __sparc) && (defined _LP64)
  1439     static  Elf32_Half running_arch_code=EM_SPARCV9;
  1440   #elif  (defined __sparc) && (!defined _LP64)
  1441     static  Elf32_Half running_arch_code=EM_SPARC;
  1442   #elif  (defined __powerpc64__)
  1443     static  Elf32_Half running_arch_code=EM_PPC64;
  1444   #elif  (defined __powerpc__)
  1445     static  Elf32_Half running_arch_code=EM_PPC;
  1446   #elif  (defined ARM)
  1447     static  Elf32_Half running_arch_code=EM_ARM;
  1448   #elif  (defined S390)
  1449     static  Elf32_Half running_arch_code=EM_S390;
  1450   #elif  (defined ALPHA)
  1451     static  Elf32_Half running_arch_code=EM_ALPHA;
  1452   #elif  (defined MIPSEL)
  1453     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  1454   #elif  (defined PARISC)
  1455     static  Elf32_Half running_arch_code=EM_PARISC;
  1456   #elif  (defined MIPS)
  1457     static  Elf32_Half running_arch_code=EM_MIPS;
  1458   #elif  (defined M68K)
  1459     static  Elf32_Half running_arch_code=EM_68K;
  1460   #else
  1461     #error Method os::dll_load requires that one of following is defined:\
  1462          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  1463   #endif
  1465   // Identify compatability class for VM's architecture and library's architecture
  1466   // Obtain string descriptions for architectures
  1468   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  1469   int running_arch_index=-1;
  1471   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
  1472     if (running_arch_code == arch_array[i].code) {
  1473       running_arch_index    = i;
  1475     if (lib_arch.code == arch_array[i].code) {
  1476       lib_arch.compat_class = arch_array[i].compat_class;
  1477       lib_arch.name         = arch_array[i].name;
  1481   assert(running_arch_index != -1,
  1482     "Didn't find running architecture code (running_arch_code) in arch_array");
  1483   if (running_arch_index == -1) {
  1484     // Even though running architecture detection failed
  1485     // we may still continue with reporting dlerror() message
  1486     return NULL;
  1489   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
  1490     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
  1491     return NULL;
  1494 #ifndef S390
  1495   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
  1496     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
  1497     return NULL;
  1499 #endif // !S390
  1501   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
  1502     if ( lib_arch.name!=NULL ) {
  1503       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1504         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
  1505         lib_arch.name, arch_array[running_arch_index].name);
  1506     } else {
  1507       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
  1508       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
  1509         lib_arch.code,
  1510         arch_array[running_arch_index].name);
  1514   return NULL;
  1516 #endif /* !__APPLE__ */
  1518 // XXX: Do we need a lock around this as per Linux?
  1519 void* os::dll_lookup(void* handle, const char* name) {
  1520   return dlsym(handle, name);
  1524 static bool _print_ascii_file(const char* filename, outputStream* st) {
  1525   int fd = ::open(filename, O_RDONLY);
  1526   if (fd == -1) {
  1527      return false;
  1530   char buf[32];
  1531   int bytes;
  1532   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
  1533     st->print_raw(buf, bytes);
  1536   ::close(fd);
  1538   return true;
  1541 void os::print_dll_info(outputStream *st) {
  1542    st->print_cr("Dynamic libraries:");
  1543 #ifdef RTLD_DI_LINKMAP
  1544     Dl_info dli;
  1545     void *handle;
  1546     Link_map *map;
  1547     Link_map *p;
  1549     if (!dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli)) {
  1550         st->print_cr("Error: Cannot print dynamic libraries.");
  1551         return;
  1553     handle = dlopen(dli.dli_fname, RTLD_LAZY);
  1554     if (handle == NULL) {
  1555         st->print_cr("Error: Cannot print dynamic libraries.");
  1556         return;
  1558     dlinfo(handle, RTLD_DI_LINKMAP, &map);
  1559     if (map == NULL) {
  1560         st->print_cr("Error: Cannot print dynamic libraries.");
  1561         return;
  1564     while (map->l_prev != NULL)
  1565         map = map->l_prev;
  1567     while (map != NULL) {
  1568         st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
  1569         map = map->l_next;
  1572     dlclose(handle);
  1573 #elif defined(__APPLE__)
  1574     uint32_t count;
  1575     uint32_t i;
  1577     count = _dyld_image_count();
  1578     for (i = 1; i < count; i++) {
  1579         const char *name = _dyld_get_image_name(i);
  1580         intptr_t slide = _dyld_get_image_vmaddr_slide(i);
  1581         st->print_cr(PTR_FORMAT " \t%s", slide, name);
  1583 #else
  1584    st->print_cr("Error: Cannot print dynamic libraries.");
  1585 #endif
  1588 void os::print_os_info_brief(outputStream* st) {
  1589   st->print("Bsd");
  1591   os::Posix::print_uname_info(st);
  1594 void os::print_os_info(outputStream* st) {
  1595   st->print("OS:");
  1596   st->print("Bsd");
  1598   os::Posix::print_uname_info(st);
  1600   os::Posix::print_rlimit_info(st);
  1602   os::Posix::print_load_average(st);
  1605 void os::pd_print_cpu_info(outputStream* st) {
  1606   // Nothing to do for now.
  1609 void os::print_memory_info(outputStream* st) {
  1611   st->print("Memory:");
  1612   st->print(" %dk page", os::vm_page_size()>>10);
  1614   st->print(", physical " UINT64_FORMAT "k",
  1615             os::physical_memory() >> 10);
  1616   st->print("(" UINT64_FORMAT "k free)",
  1617             os::available_memory() >> 10);
  1618   st->cr();
  1620   // meminfo
  1621   st->print("\n/proc/meminfo:\n");
  1622   _print_ascii_file("/proc/meminfo", st);
  1623   st->cr();
  1626 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
  1627 // but they're the same for all the bsd arch that we support
  1628 // and they're the same for solaris but there's no common place to put this.
  1629 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
  1630                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
  1631                           "ILL_COPROC", "ILL_BADSTK" };
  1633 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
  1634                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
  1635                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
  1637 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
  1639 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
  1641 void os::print_siginfo(outputStream* st, void* siginfo) {
  1642   st->print("siginfo:");
  1644   const int buflen = 100;
  1645   char buf[buflen];
  1646   siginfo_t *si = (siginfo_t*)siginfo;
  1647   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  1648   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
  1649     st->print("si_errno=%s", buf);
  1650   } else {
  1651     st->print("si_errno=%d", si->si_errno);
  1653   const int c = si->si_code;
  1654   assert(c > 0, "unexpected si_code");
  1655   switch (si->si_signo) {
  1656   case SIGILL:
  1657     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
  1658     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  1659     break;
  1660   case SIGFPE:
  1661     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
  1662     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  1663     break;
  1664   case SIGSEGV:
  1665     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
  1666     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  1667     break;
  1668   case SIGBUS:
  1669     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
  1670     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
  1671     break;
  1672   default:
  1673     st->print(", si_code=%d", si->si_code);
  1674     // no si_addr
  1677   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
  1678       UseSharedSpaces) {
  1679     FileMapInfo* mapinfo = FileMapInfo::current_info();
  1680     if (mapinfo->is_in_shared_space(si->si_addr)) {
  1681       st->print("\n\nError accessing class data sharing archive."   \
  1682                 " Mapped file inaccessible during execution, "      \
  1683                 " possible disk/network problem.");
  1686   st->cr();
  1690 static void print_signal_handler(outputStream* st, int sig,
  1691                                  char* buf, size_t buflen);
  1693 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  1694   st->print_cr("Signal Handlers:");
  1695   print_signal_handler(st, SIGSEGV, buf, buflen);
  1696   print_signal_handler(st, SIGBUS , buf, buflen);
  1697   print_signal_handler(st, SIGFPE , buf, buflen);
  1698   print_signal_handler(st, SIGPIPE, buf, buflen);
  1699   print_signal_handler(st, SIGXFSZ, buf, buflen);
  1700   print_signal_handler(st, SIGILL , buf, buflen);
  1701   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  1702   print_signal_handler(st, SR_signum, buf, buflen);
  1703   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  1704   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  1705   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  1706   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
  1709 static char saved_jvm_path[MAXPATHLEN] = {0};
  1711 // Find the full path to the current module, libjvm or libjvm_g
  1712 void os::jvm_path(char *buf, jint buflen) {
  1713   // Error checking.
  1714   if (buflen < MAXPATHLEN) {
  1715     assert(false, "must use a large-enough buffer");
  1716     buf[0] = '\0';
  1717     return;
  1719   // Lazy resolve the path to current module.
  1720   if (saved_jvm_path[0] != 0) {
  1721     strcpy(buf, saved_jvm_path);
  1722     return;
  1725   char dli_fname[MAXPATHLEN];
  1726   bool ret = dll_address_to_library_name(
  1727                 CAST_FROM_FN_PTR(address, os::jvm_path),
  1728                 dli_fname, sizeof(dli_fname), NULL);
  1729   assert(ret != 0, "cannot locate libjvm");
  1730   char *rp = realpath(dli_fname, buf);
  1731   if (rp == NULL)
  1732     return;
  1734   if (Arguments::created_by_gamma_launcher()) {
  1735     // Support for the gamma launcher.  Typical value for buf is
  1736     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
  1737     // the right place in the string, then assume we are installed in a JDK and
  1738     // we're done.  Otherwise, check for a JAVA_HOME environment variable and
  1739     // construct a path to the JVM being overridden.
  1741     const char *p = buf + strlen(buf) - 1;
  1742     for (int count = 0; p > buf && count < 5; ++count) {
  1743       for (--p; p > buf && *p != '/'; --p)
  1744         /* empty */ ;
  1747     if (strncmp(p, "/jre/lib/", 9) != 0) {
  1748       // Look for JAVA_HOME in the environment.
  1749       char* java_home_var = ::getenv("JAVA_HOME");
  1750       if (java_home_var != NULL && java_home_var[0] != 0) {
  1751         char* jrelib_p;
  1752         int len;
  1754         // Check the current module name "libjvm" or "libjvm_g".
  1755         p = strrchr(buf, '/');
  1756         assert(strstr(p, "/libjvm") == p, "invalid library name");
  1757         p = strstr(p, "_g") ? "_g" : "";
  1759         rp = realpath(java_home_var, buf);
  1760         if (rp == NULL)
  1761           return;
  1763         // determine if this is a legacy image or modules image
  1764         // modules image doesn't have "jre" subdirectory
  1765         len = strlen(buf);
  1766         jrelib_p = buf + len;
  1768         // Add the appropriate library subdir
  1769         snprintf(jrelib_p, buflen-len, "/jre/lib");
  1770         if (0 != access(buf, F_OK)) {
  1771           snprintf(jrelib_p, buflen-len, "/lib");
  1774         // Add the appropriate client or server subdir
  1775         len = strlen(buf);
  1776         jrelib_p = buf + len;
  1777         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
  1778         if (0 != access(buf, F_OK)) {
  1779           snprintf(jrelib_p, buflen-len, "");
  1782         // If the path exists within JAVA_HOME, add the JVM library name
  1783         // to complete the path to JVM being overridden.  Otherwise fallback
  1784         // to the path to the current library.
  1785         if (0 == access(buf, F_OK)) {
  1786           // Use current module name "libjvm[_g]" instead of
  1787           // "libjvm"debug_only("_g")"" since for fastdebug version
  1788           // we should have "libjvm" but debug_only("_g") adds "_g"!
  1789           len = strlen(buf);
  1790           snprintf(buf + len, buflen-len, "/libjvm%s%s", p, JNI_LIB_SUFFIX);
  1791         } else {
  1792           // Fall back to path of current library
  1793           rp = realpath(dli_fname, buf);
  1794           if (rp == NULL)
  1795             return;
  1801   strcpy(saved_jvm_path, buf);
  1804 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  1805   // no prefix required, not even "_"
  1808 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  1809   // no suffix required
  1812 ////////////////////////////////////////////////////////////////////////////////
  1813 // sun.misc.Signal support
  1815 static volatile jint sigint_count = 0;
  1817 static void
  1818 UserHandler(int sig, void *siginfo, void *context) {
  1819   // 4511530 - sem_post is serialized and handled by the manager thread. When
  1820   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  1821   // don't want to flood the manager thread with sem_post requests.
  1822   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
  1823       return;
  1825   // Ctrl-C is pressed during error reporting, likely because the error
  1826   // handler fails to abort. Let VM die immediately.
  1827   if (sig == SIGINT && is_error_reported()) {
  1828      os::die();
  1831   os::signal_notify(sig);
  1834 void* os::user_handler() {
  1835   return CAST_FROM_FN_PTR(void*, UserHandler);
  1838 extern "C" {
  1839   typedef void (*sa_handler_t)(int);
  1840   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
  1843 void* os::signal(int signal_number, void* handler) {
  1844   struct sigaction sigAct, oldSigAct;
  1846   sigfillset(&(sigAct.sa_mask));
  1847   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  1848   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
  1850   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
  1851     // -1 means registration failed
  1852     return (void *)-1;
  1855   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
  1858 void os::signal_raise(int signal_number) {
  1859   ::raise(signal_number);
  1862 /*
  1863  * The following code is moved from os.cpp for making this
  1864  * code platform specific, which it is by its very nature.
  1865  */
  1867 // Will be modified when max signal is changed to be dynamic
  1868 int os::sigexitnum_pd() {
  1869   return NSIG;
  1872 // a counter for each possible signal value
  1873 static volatile jint pending_signals[NSIG+1] = { 0 };
  1875 // Bsd(POSIX) specific hand shaking semaphore.
  1876 #ifdef __APPLE__
  1877 static semaphore_t sig_sem;
  1878 #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
  1879 #define SEM_WAIT(sem)           semaphore_wait(sem);
  1880 #define SEM_POST(sem)           semaphore_signal(sem);
  1881 #else
  1882 static sem_t sig_sem;
  1883 #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
  1884 #define SEM_WAIT(sem)           sem_wait(&sem);
  1885 #define SEM_POST(sem)           sem_post(&sem);
  1886 #endif
  1888 void os::signal_init_pd() {
  1889   // Initialize signal structures
  1890   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
  1892   // Initialize signal semaphore
  1893   ::SEM_INIT(sig_sem, 0);
  1896 void os::signal_notify(int sig) {
  1897   Atomic::inc(&pending_signals[sig]);
  1898   ::SEM_POST(sig_sem);
  1901 static int check_pending_signals(bool wait) {
  1902   Atomic::store(0, &sigint_count);
  1903   for (;;) {
  1904     for (int i = 0; i < NSIG + 1; i++) {
  1905       jint n = pending_signals[i];
  1906       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
  1907         return i;
  1910     if (!wait) {
  1911       return -1;
  1913     JavaThread *thread = JavaThread::current();
  1914     ThreadBlockInVM tbivm(thread);
  1916     bool threadIsSuspended;
  1917     do {
  1918       thread->set_suspend_equivalent();
  1919       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  1920       ::SEM_WAIT(sig_sem);
  1922       // were we externally suspended while we were waiting?
  1923       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
  1924       if (threadIsSuspended) {
  1925         //
  1926         // The semaphore has been incremented, but while we were waiting
  1927         // another thread suspended us. We don't want to continue running
  1928         // while suspended because that would surprise the thread that
  1929         // suspended us.
  1930         //
  1931         ::SEM_POST(sig_sem);
  1933         thread->java_suspend_self();
  1935     } while (threadIsSuspended);
  1939 int os::signal_lookup() {
  1940   return check_pending_signals(false);
  1943 int os::signal_wait() {
  1944   return check_pending_signals(true);
  1947 ////////////////////////////////////////////////////////////////////////////////
  1948 // Virtual Memory
  1950 int os::vm_page_size() {
  1951   // Seems redundant as all get out
  1952   assert(os::Bsd::page_size() != -1, "must call os::init");
  1953   return os::Bsd::page_size();
  1956 // Solaris allocates memory by pages.
  1957 int os::vm_allocation_granularity() {
  1958   assert(os::Bsd::page_size() != -1, "must call os::init");
  1959   return os::Bsd::page_size();
  1962 // Rationale behind this function:
  1963 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
  1964 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
  1965 //  samples for JITted code. Here we create private executable mapping over the code cache
  1966 //  and then we can use standard (well, almost, as mapping can change) way to provide
  1967 //  info for the reporting script by storing timestamp and location of symbol
  1968 void bsd_wrap_code(char* base, size_t size) {
  1969   static volatile jint cnt = 0;
  1971   if (!UseOprofile) {
  1972     return;
  1975   char buf[PATH_MAX + 1];
  1976   int num = Atomic::add(1, &cnt);
  1978   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
  1979            os::get_temp_directory(), os::current_process_id(), num);
  1980   unlink(buf);
  1982   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
  1984   if (fd != -1) {
  1985     off_t rv = ::lseek(fd, size-2, SEEK_SET);
  1986     if (rv != (off_t)-1) {
  1987       if (::write(fd, "", 1) == 1) {
  1988         mmap(base, size,
  1989              PROT_READ|PROT_WRITE|PROT_EXEC,
  1990              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
  1993     ::close(fd);
  1994     unlink(buf);
  1998 // NOTE: Bsd kernel does not really reserve the pages for us.
  1999 //       All it does is to check if there are enough free pages
  2000 //       left at the time of mmap(). This could be a potential
  2001 //       problem.
  2002 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  2003   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  2004 #ifdef __OpenBSD__
  2005   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
  2006   return ::mprotect(addr, size, prot) == 0;
  2007 #else
  2008   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
  2009                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  2010   return res != (uintptr_t) MAP_FAILED;
  2011 #endif
  2015 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
  2016                        bool exec) {
  2017   return commit_memory(addr, size, exec);
  2020 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2023 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  2024   ::madvise(addr, bytes, MADV_DONTNEED);
  2027 void os::numa_make_global(char *addr, size_t bytes) {
  2030 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  2033 bool os::numa_topology_changed()   { return false; }
  2035 size_t os::numa_get_groups_num() {
  2036   return 1;
  2039 int os::numa_get_group_id() {
  2040   return 0;
  2043 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  2044   if (size > 0) {
  2045     ids[0] = 0;
  2046     return 1;
  2048   return 0;
  2051 bool os::get_page_info(char *start, page_info* info) {
  2052   return false;
  2055 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  2056   return end;
  2060 bool os::pd_uncommit_memory(char* addr, size_t size) {
  2061 #ifdef __OpenBSD__
  2062   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
  2063   return ::mprotect(addr, size, PROT_NONE) == 0;
  2064 #else
  2065   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
  2066                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  2067   return res  != (uintptr_t) MAP_FAILED;
  2068 #endif
  2071 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  2072   return os::commit_memory(addr, size);
  2075 // If this is a growable mapping, remove the guard pages entirely by
  2076 // munmap()ping them.  If not, just call uncommit_memory().
  2077 bool os::remove_stack_guard_pages(char* addr, size_t size) {
  2078   return os::uncommit_memory(addr, size);
  2081 static address _highest_vm_reserved_address = NULL;
  2083 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
  2084 // at 'requested_addr'. If there are existing memory mappings at the same
  2085 // location, however, they will be overwritten. If 'fixed' is false,
  2086 // 'requested_addr' is only treated as a hint, the return value may or
  2087 // may not start from the requested address. Unlike Bsd mmap(), this
  2088 // function returns NULL to indicate failure.
  2089 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  2090   char * addr;
  2091   int flags;
  2093   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  2094   if (fixed) {
  2095     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
  2096     flags |= MAP_FIXED;
  2099   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  2100   // to PROT_EXEC if executable when we commit the page.
  2101   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
  2102                        flags, -1, 0);
  2104   if (addr != MAP_FAILED) {
  2105     // anon_mmap() should only get called during VM initialization,
  2106     // don't need lock (actually we can skip locking even it can be called
  2107     // from multiple threads, because _highest_vm_reserved_address is just a
  2108     // hint about the upper limit of non-stack memory regions.)
  2109     if ((address)addr + bytes > _highest_vm_reserved_address) {
  2110       _highest_vm_reserved_address = (address)addr + bytes;
  2114   return addr == MAP_FAILED ? NULL : addr;
  2117 // Don't update _highest_vm_reserved_address, because there might be memory
  2118 // regions above addr + size. If so, releasing a memory region only creates
  2119 // a hole in the address space, it doesn't help prevent heap-stack collision.
  2120 //
  2121 static int anon_munmap(char * addr, size_t size) {
  2122   return ::munmap(addr, size) == 0;
  2125 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
  2126                          size_t alignment_hint) {
  2127   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
  2130 bool os::pd_release_memory(char* addr, size_t size) {
  2131   return anon_munmap(addr, size);
  2134 static address highest_vm_reserved_address() {
  2135   return _highest_vm_reserved_address;
  2138 static bool bsd_mprotect(char* addr, size_t size, int prot) {
  2139   // Bsd wants the mprotect address argument to be page aligned.
  2140   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
  2142   // According to SUSv3, mprotect() should only be used with mappings
  2143   // established by mmap(), and mmap() always maps whole pages. Unaligned
  2144   // 'addr' likely indicates problem in the VM (e.g. trying to change
  2145   // protection of malloc'ed or statically allocated memory). Check the
  2146   // caller if you hit this assert.
  2147   assert(addr == bottom, "sanity check");
  2149   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
  2150   return ::mprotect(bottom, size, prot) == 0;
  2153 // Set protections specified
  2154 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
  2155                         bool is_committed) {
  2156   unsigned int p = 0;
  2157   switch (prot) {
  2158   case MEM_PROT_NONE: p = PROT_NONE; break;
  2159   case MEM_PROT_READ: p = PROT_READ; break;
  2160   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  2161   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  2162   default:
  2163     ShouldNotReachHere();
  2165   // is_committed is unused.
  2166   return bsd_mprotect(addr, bytes, p);
  2169 bool os::guard_memory(char* addr, size_t size) {
  2170   return bsd_mprotect(addr, size, PROT_NONE);
  2173 bool os::unguard_memory(char* addr, size_t size) {
  2174   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
  2177 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  2178   return false;
  2181 /*
  2182 * Set the coredump_filter bits to include largepages in core dump (bit 6)
  2184 * From the coredump_filter documentation:
  2186 * - (bit 0) anonymous private memory
  2187 * - (bit 1) anonymous shared memory
  2188 * - (bit 2) file-backed private memory
  2189 * - (bit 3) file-backed shared memory
  2190 * - (bit 4) ELF header pages in file-backed private memory areas (it is
  2191 *           effective only if the bit 2 is cleared)
  2192 * - (bit 5) hugetlb private memory
  2193 * - (bit 6) hugetlb shared memory
  2194 */
  2195 static void set_coredump_filter(void) {
  2196   FILE *f;
  2197   long cdm;
  2199   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
  2200     return;
  2203   if (fscanf(f, "%lx", &cdm) != 1) {
  2204     fclose(f);
  2205     return;
  2208   rewind(f);
  2210   if ((cdm & LARGEPAGES_BIT) == 0) {
  2211     cdm |= LARGEPAGES_BIT;
  2212     fprintf(f, "%#lx", cdm);
  2215   fclose(f);
  2218 // Large page support
  2220 static size_t _large_page_size = 0;
  2222 void os::large_page_init() {
  2226 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  2227   // "exec" is passed in but not used.  Creating the shared image for
  2228   // the code cache doesn't have an SHM_X executable permission to check.
  2229   assert(UseLargePages && UseSHM, "only for SHM large pages");
  2231   key_t key = IPC_PRIVATE;
  2232   char *addr;
  2234   bool warn_on_failure = UseLargePages &&
  2235                         (!FLAG_IS_DEFAULT(UseLargePages) ||
  2236                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
  2237                         );
  2238   char msg[128];
  2240   // Create a large shared memory region to attach to based on size.
  2241   // Currently, size is the total size of the heap
  2242   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
  2243   if (shmid == -1) {
  2244      // Possible reasons for shmget failure:
  2245      // 1. shmmax is too small for Java heap.
  2246      //    > check shmmax value: cat /proc/sys/kernel/shmmax
  2247      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
  2248      // 2. not enough large page memory.
  2249      //    > check available large pages: cat /proc/meminfo
  2250      //    > increase amount of large pages:
  2251      //          echo new_value > /proc/sys/vm/nr_hugepages
  2252      //      Note 1: different Bsd may use different name for this property,
  2253      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
  2254      //      Note 2: it's possible there's enough physical memory available but
  2255      //            they are so fragmented after a long run that they can't
  2256      //            coalesce into large pages. Try to reserve large pages when
  2257      //            the system is still "fresh".
  2258      if (warn_on_failure) {
  2259        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
  2260        warning(msg);
  2262      return NULL;
  2265   // attach to the region
  2266   addr = (char*)shmat(shmid, req_addr, 0);
  2267   int err = errno;
  2269   // Remove shmid. If shmat() is successful, the actual shared memory segment
  2270   // will be deleted when it's detached by shmdt() or when the process
  2271   // terminates. If shmat() is not successful this will remove the shared
  2272   // segment immediately.
  2273   shmctl(shmid, IPC_RMID, NULL);
  2275   if ((intptr_t)addr == -1) {
  2276      if (warn_on_failure) {
  2277        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
  2278        warning(msg);
  2280      return NULL;
  2283   return addr;
  2286 bool os::release_memory_special(char* base, size_t bytes) {
  2287   // detaching the SHM segment will also delete it, see reserve_memory_special()
  2288   int rslt = shmdt(base);
  2289   return rslt == 0;
  2292 size_t os::large_page_size() {
  2293   return _large_page_size;
  2296 // HugeTLBFS allows application to commit large page memory on demand;
  2297 // with SysV SHM the entire memory region must be allocated as shared
  2298 // memory.
  2299 bool os::can_commit_large_page_memory() {
  2300   return UseHugeTLBFS;
  2303 bool os::can_execute_large_page_memory() {
  2304   return UseHugeTLBFS;
  2307 // Reserve memory at an arbitrary address, only if that area is
  2308 // available (and not reserved for something else).
  2310 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  2311   const int max_tries = 10;
  2312   char* base[max_tries];
  2313   size_t size[max_tries];
  2314   const size_t gap = 0x000000;
  2316   // Assert only that the size is a multiple of the page size, since
  2317   // that's all that mmap requires, and since that's all we really know
  2318   // about at this low abstraction level.  If we need higher alignment,
  2319   // we can either pass an alignment to this method or verify alignment
  2320   // in one of the methods further up the call chain.  See bug 5044738.
  2321   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
  2323   // Repeatedly allocate blocks until the block is allocated at the
  2324   // right spot. Give up after max_tries. Note that reserve_memory() will
  2325   // automatically update _highest_vm_reserved_address if the call is
  2326   // successful. The variable tracks the highest memory address every reserved
  2327   // by JVM. It is used to detect heap-stack collision if running with
  2328   // fixed-stack BsdThreads. Because here we may attempt to reserve more
  2329   // space than needed, it could confuse the collision detecting code. To
  2330   // solve the problem, save current _highest_vm_reserved_address and
  2331   // calculate the correct value before return.
  2332   address old_highest = _highest_vm_reserved_address;
  2334   // Bsd mmap allows caller to pass an address as hint; give it a try first,
  2335   // if kernel honors the hint then we can return immediately.
  2336   char * addr = anon_mmap(requested_addr, bytes, false);
  2337   if (addr == requested_addr) {
  2338      return requested_addr;
  2341   if (addr != NULL) {
  2342      // mmap() is successful but it fails to reserve at the requested address
  2343      anon_munmap(addr, bytes);
  2346   int i;
  2347   for (i = 0; i < max_tries; ++i) {
  2348     base[i] = reserve_memory(bytes);
  2350     if (base[i] != NULL) {
  2351       // Is this the block we wanted?
  2352       if (base[i] == requested_addr) {
  2353         size[i] = bytes;
  2354         break;
  2357       // Does this overlap the block we wanted? Give back the overlapped
  2358       // parts and try again.
  2360       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
  2361       if (top_overlap >= 0 && top_overlap < bytes) {
  2362         unmap_memory(base[i], top_overlap);
  2363         base[i] += top_overlap;
  2364         size[i] = bytes - top_overlap;
  2365       } else {
  2366         size_t bottom_overlap = base[i] + bytes - requested_addr;
  2367         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
  2368           unmap_memory(requested_addr, bottom_overlap);
  2369           size[i] = bytes - bottom_overlap;
  2370         } else {
  2371           size[i] = bytes;
  2377   // Give back the unused reserved pieces.
  2379   for (int j = 0; j < i; ++j) {
  2380     if (base[j] != NULL) {
  2381       unmap_memory(base[j], size[j]);
  2385   if (i < max_tries) {
  2386     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
  2387     return requested_addr;
  2388   } else {
  2389     _highest_vm_reserved_address = old_highest;
  2390     return NULL;
  2394 size_t os::read(int fd, void *buf, unsigned int nBytes) {
  2395   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
  2398 // TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
  2399 // Solaris uses poll(), bsd uses park().
  2400 // Poll() is likely a better choice, assuming that Thread.interrupt()
  2401 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
  2402 // SIGSEGV, see 4355769.
  2404 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  2405   assert(thread == Thread::current(),  "thread consistency check");
  2407   ParkEvent * const slp = thread->_SleepEvent ;
  2408   slp->reset() ;
  2409   OrderAccess::fence() ;
  2411   if (interruptible) {
  2412     jlong prevtime = javaTimeNanos();
  2414     for (;;) {
  2415       if (os::is_interrupted(thread, true)) {
  2416         return OS_INTRPT;
  2419       jlong newtime = javaTimeNanos();
  2421       if (newtime - prevtime < 0) {
  2422         // time moving backwards, should only happen if no monotonic clock
  2423         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2424         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
  2425       } else {
  2426         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  2429       if(millis <= 0) {
  2430         return OS_OK;
  2433       prevtime = newtime;
  2436         assert(thread->is_Java_thread(), "sanity check");
  2437         JavaThread *jt = (JavaThread *) thread;
  2438         ThreadBlockInVM tbivm(jt);
  2439         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
  2441         jt->set_suspend_equivalent();
  2442         // cleared by handle_special_suspend_equivalent_condition() or
  2443         // java_suspend_self() via check_and_wait_while_suspended()
  2445         slp->park(millis);
  2447         // were we externally suspended while we were waiting?
  2448         jt->check_and_wait_while_suspended();
  2451   } else {
  2452     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  2453     jlong prevtime = javaTimeNanos();
  2455     for (;;) {
  2456       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
  2457       // the 1st iteration ...
  2458       jlong newtime = javaTimeNanos();
  2460       if (newtime - prevtime < 0) {
  2461         // time moving backwards, should only happen if no monotonic clock
  2462         // not a guarantee() because JVM should not abort on kernel/glibc bugs
  2463         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
  2464       } else {
  2465         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
  2468       if(millis <= 0) break ;
  2470       prevtime = newtime;
  2471       slp->park(millis);
  2473     return OS_OK ;
  2477 int os::naked_sleep() {
  2478   // %% make the sleep time an integer flag. for now use 1 millisec.
  2479   return os::sleep(Thread::current(), 1, false);
  2482 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
  2483 void os::infinite_sleep() {
  2484   while (true) {    // sleep forever ...
  2485     ::sleep(100);   // ... 100 seconds at a time
  2489 // Used to convert frequent JVM_Yield() to nops
  2490 bool os::dont_yield() {
  2491   return DontYieldALot;
  2494 void os::yield() {
  2495   sched_yield();
  2498 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
  2500 void os::yield_all(int attempts) {
  2501   // Yields to all threads, including threads with lower priorities
  2502   // Threads on Bsd are all with same priority. The Solaris style
  2503   // os::yield_all() with nanosleep(1ms) is not necessary.
  2504   sched_yield();
  2507 // Called from the tight loops to possibly influence time-sharing heuristics
  2508 void os::loop_breaker(int attempts) {
  2509   os::yield_all(attempts);
  2512 ////////////////////////////////////////////////////////////////////////////////
  2513 // thread priority support
  2515 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
  2516 // only supports dynamic priority, static priority must be zero. For real-time
  2517 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
  2518 // However, for large multi-threaded applications, SCHED_RR is not only slower
  2519 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
  2520 // of 5 runs - Sep 2005).
  2521 //
  2522 // The following code actually changes the niceness of kernel-thread/LWP. It
  2523 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
  2524 // not the entire user process, and user level threads are 1:1 mapped to kernel
  2525 // threads. It has always been the case, but could change in the future. For
  2526 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
  2527 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
  2529 #if !defined(__APPLE__)
  2530 int os::java_to_os_priority[CriticalPriority + 1] = {
  2531   19,              // 0 Entry should never be used
  2533    0,              // 1 MinPriority
  2534    3,              // 2
  2535    6,              // 3
  2537   10,              // 4
  2538   15,              // 5 NormPriority
  2539   18,              // 6
  2541   21,              // 7
  2542   25,              // 8
  2543   28,              // 9 NearMaxPriority
  2545   31,              // 10 MaxPriority
  2547   31               // 11 CriticalPriority
  2548 };
  2549 #else
  2550 /* Using Mach high-level priority assignments */
  2551 int os::java_to_os_priority[CriticalPriority + 1] = {
  2552    0,              // 0 Entry should never be used (MINPRI_USER)
  2554   27,              // 1 MinPriority
  2555   28,              // 2
  2556   29,              // 3
  2558   30,              // 4
  2559   31,              // 5 NormPriority (BASEPRI_DEFAULT)
  2560   32,              // 6
  2562   33,              // 7
  2563   34,              // 8
  2564   35,              // 9 NearMaxPriority
  2566   36,              // 10 MaxPriority
  2568   36               // 11 CriticalPriority
  2569 };
  2570 #endif
  2572 static int prio_init() {
  2573   if (ThreadPriorityPolicy == 1) {
  2574     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
  2575     // if effective uid is not root. Perhaps, a more elegant way of doing
  2576     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
  2577     if (geteuid() != 0) {
  2578       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
  2579         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
  2581       ThreadPriorityPolicy = 0;
  2584   if (UseCriticalJavaThreadPriority) {
  2585     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  2587   return 0;
  2590 OSReturn os::set_native_priority(Thread* thread, int newpri) {
  2591   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
  2593 #ifdef __OpenBSD__
  2594   // OpenBSD pthread_setprio starves low priority threads
  2595   return OS_OK;
  2596 #elif defined(__FreeBSD__)
  2597   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
  2598 #elif defined(__APPLE__) || defined(__NetBSD__)
  2599   struct sched_param sp;
  2600   int policy;
  2601   pthread_t self = pthread_self();
  2603   if (pthread_getschedparam(self, &policy, &sp) != 0)
  2604     return OS_ERR;
  2606   sp.sched_priority = newpri;
  2607   if (pthread_setschedparam(self, policy, &sp) != 0)
  2608     return OS_ERR;
  2610   return OS_OK;
  2611 #else
  2612   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  2613   return (ret == 0) ? OS_OK : OS_ERR;
  2614 #endif
  2617 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  2618   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
  2619     *priority_ptr = java_to_os_priority[NormPriority];
  2620     return OS_OK;
  2623   errno = 0;
  2624 #if defined(__OpenBSD__) || defined(__FreeBSD__)
  2625   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
  2626 #elif defined(__APPLE__) || defined(__NetBSD__)
  2627   int policy;
  2628   struct sched_param sp;
  2630   pthread_getschedparam(pthread_self(), &policy, &sp);
  2631   *priority_ptr = sp.sched_priority;
  2632 #else
  2633   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  2634 #endif
  2635   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
  2638 // Hint to the underlying OS that a task switch would not be good.
  2639 // Void return because it's a hint and can fail.
  2640 void os::hint_no_preempt() {}
  2642 ////////////////////////////////////////////////////////////////////////////////
  2643 // suspend/resume support
  2645 //  the low-level signal-based suspend/resume support is a remnant from the
  2646 //  old VM-suspension that used to be for java-suspension, safepoints etc,
  2647 //  within hotspot. Now there is a single use-case for this:
  2648 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
  2649 //      that runs in the watcher thread.
  2650 //  The remaining code is greatly simplified from the more general suspension
  2651 //  code that used to be used.
  2652 //
  2653 //  The protocol is quite simple:
  2654 //  - suspend:
  2655 //      - sends a signal to the target thread
  2656 //      - polls the suspend state of the osthread using a yield loop
  2657 //      - target thread signal handler (SR_handler) sets suspend state
  2658 //        and blocks in sigsuspend until continued
  2659 //  - resume:
  2660 //      - sets target osthread state to continue
  2661 //      - sends signal to end the sigsuspend loop in the SR_handler
  2662 //
  2663 //  Note that the SR_lock plays no role in this suspend/resume protocol.
  2664 //
  2666 static void resume_clear_context(OSThread *osthread) {
  2667   osthread->set_ucontext(NULL);
  2668   osthread->set_siginfo(NULL);
  2670   // notify the suspend action is completed, we have now resumed
  2671   osthread->sr.clear_suspended();
  2674 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  2675   osthread->set_ucontext(context);
  2676   osthread->set_siginfo(siginfo);
  2679 //
  2680 // Handler function invoked when a thread's execution is suspended or
  2681 // resumed. We have to be careful that only async-safe functions are
  2682 // called here (Note: most pthread functions are not async safe and
  2683 // should be avoided.)
  2684 //
  2685 // Note: sigwait() is a more natural fit than sigsuspend() from an
  2686 // interface point of view, but sigwait() prevents the signal hander
  2687 // from being run. libpthread would get very confused by not having
  2688 // its signal handlers run and prevents sigwait()'s use with the
  2689 // mutex granting granting signal.
  2690 //
  2691 // Currently only ever called on the VMThread
  2692 //
  2693 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  2694   // Save and restore errno to avoid confusing native code with EINTR
  2695   // after sigsuspend.
  2696   int old_errno = errno;
  2698   Thread* thread = Thread::current();
  2699   OSThread* osthread = thread->osthread();
  2700   assert(thread->is_VM_thread(), "Must be VMThread");
  2701   // read current suspend action
  2702   int action = osthread->sr.suspend_action();
  2703   if (action == SR_SUSPEND) {
  2704     suspend_save_context(osthread, siginfo, context);
  2706     // Notify the suspend action is about to be completed. do_suspend()
  2707     // waits until SR_SUSPENDED is set and then returns. We will wait
  2708     // here for a resume signal and that completes the suspend-other
  2709     // action. do_suspend/do_resume is always called as a pair from
  2710     // the same thread - so there are no races
  2712     // notify the caller
  2713     osthread->sr.set_suspended();
  2715     sigset_t suspend_set;  // signals for sigsuspend()
  2717     // get current set of blocked signals and unblock resume signal
  2718     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
  2719     sigdelset(&suspend_set, SR_signum);
  2721     // wait here until we are resumed
  2722     do {
  2723       sigsuspend(&suspend_set);
  2724       // ignore all returns until we get a resume signal
  2725     } while (osthread->sr.suspend_action() != SR_CONTINUE);
  2727     resume_clear_context(osthread);
  2729   } else {
  2730     assert(action == SR_CONTINUE, "unexpected sr action");
  2731     // nothing special to do - just leave the handler
  2734   errno = old_errno;
  2738 static int SR_initialize() {
  2739   struct sigaction act;
  2740   char *s;
  2741   /* Get signal number to use for suspend/resume */
  2742   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
  2743     int sig = ::strtol(s, 0, 10);
  2744     if (sig > 0 || sig < NSIG) {
  2745         SR_signum = sig;
  2749   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
  2750         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
  2752   sigemptyset(&SR_sigset);
  2753   sigaddset(&SR_sigset, SR_signum);
  2755   /* Set up signal handler for suspend/resume */
  2756   act.sa_flags = SA_RESTART|SA_SIGINFO;
  2757   act.sa_handler = (void (*)(int)) SR_handler;
  2759   // SR_signum is blocked by default.
  2760   // 4528190 - We also need to block pthread restart signal (32 on all
  2761   // supported Bsd platforms). Note that BsdThreads need to block
  2762   // this signal for all threads to work properly. So we don't have
  2763   // to use hard-coded signal number when setting up the mask.
  2764   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
  2766   if (sigaction(SR_signum, &act, 0) == -1) {
  2767     return -1;
  2770   // Save signal flag
  2771   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
  2772   return 0;
  2775 static int SR_finalize() {
  2776   return 0;
  2780 // returns true on success and false on error - really an error is fatal
  2781 // but this seems the normal response to library errors
  2782 static bool do_suspend(OSThread* osthread) {
  2783   // mark as suspended and send signal
  2784   osthread->sr.set_suspend_action(SR_SUSPEND);
  2785   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  2786   assert_status(status == 0, status, "pthread_kill");
  2788   // check status and wait until notified of suspension
  2789   if (status == 0) {
  2790     for (int i = 0; !osthread->sr.is_suspended(); i++) {
  2791       os::yield_all(i);
  2793     osthread->sr.set_suspend_action(SR_NONE);
  2794     return true;
  2796   else {
  2797     osthread->sr.set_suspend_action(SR_NONE);
  2798     return false;
  2802 static void do_resume(OSThread* osthread) {
  2803   assert(osthread->sr.is_suspended(), "thread should be suspended");
  2804   osthread->sr.set_suspend_action(SR_CONTINUE);
  2806   int status = pthread_kill(osthread->pthread_id(), SR_signum);
  2807   assert_status(status == 0, status, "pthread_kill");
  2808   // check status and wait unit notified of resumption
  2809   if (status == 0) {
  2810     for (int i = 0; osthread->sr.is_suspended(); i++) {
  2811       os::yield_all(i);
  2814   osthread->sr.set_suspend_action(SR_NONE);
  2817 ////////////////////////////////////////////////////////////////////////////////
  2818 // interrupt support
  2820 void os::interrupt(Thread* thread) {
  2821   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  2822     "possibility of dangling Thread pointer");
  2824   OSThread* osthread = thread->osthread();
  2826   if (!osthread->interrupted()) {
  2827     osthread->set_interrupted(true);
  2828     // More than one thread can get here with the same value of osthread,
  2829     // resulting in multiple notifications.  We do, however, want the store
  2830     // to interrupted() to be visible to other threads before we execute unpark().
  2831     OrderAccess::fence();
  2832     ParkEvent * const slp = thread->_SleepEvent ;
  2833     if (slp != NULL) slp->unpark() ;
  2836   // For JSR166. Unpark even if interrupt status already was set
  2837   if (thread->is_Java_thread())
  2838     ((JavaThread*)thread)->parker()->unpark();
  2840   ParkEvent * ev = thread->_ParkEvent ;
  2841   if (ev != NULL) ev->unpark() ;
  2845 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  2846   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
  2847     "possibility of dangling Thread pointer");
  2849   OSThread* osthread = thread->osthread();
  2851   bool interrupted = osthread->interrupted();
  2853   if (interrupted && clear_interrupted) {
  2854     osthread->set_interrupted(false);
  2855     // consider thread->_SleepEvent->reset() ... optional optimization
  2858   return interrupted;
  2861 ///////////////////////////////////////////////////////////////////////////////////
  2862 // signal handling (except suspend/resume)
  2864 // This routine may be used by user applications as a "hook" to catch signals.
  2865 // The user-defined signal handler must pass unrecognized signals to this
  2866 // routine, and if it returns true (non-zero), then the signal handler must
  2867 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
  2868 // routine will never retun false (zero), but instead will execute a VM panic
  2869 // routine kill the process.
  2870 //
  2871 // If this routine returns false, it is OK to call it again.  This allows
  2872 // the user-defined signal handler to perform checks either before or after
  2873 // the VM performs its own checks.  Naturally, the user code would be making
  2874 // a serious error if it tried to handle an exception (such as a null check
  2875 // or breakpoint) that the VM was generating for its own correct operation.
  2876 //
  2877 // This routine may recognize any of the following kinds of signals:
  2878 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
  2879 // It should be consulted by handlers for any of those signals.
  2880 //
  2881 // The caller of this routine must pass in the three arguments supplied
  2882 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
  2883 // field of the structure passed to sigaction().  This routine assumes that
  2884 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
  2885 //
  2886 // Note that the VM will print warnings if it detects conflicting signal
  2887 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
  2888 //
  2889 extern "C" JNIEXPORT int
  2890 JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
  2891                         void* ucontext, int abort_if_unrecognized);
  2893 void signalHandler(int sig, siginfo_t* info, void* uc) {
  2894   assert(info != NULL && uc != NULL, "it must be old kernel");
  2895   JVM_handle_bsd_signal(sig, info, uc, true);
  2899 // This boolean allows users to forward their own non-matching signals
  2900 // to JVM_handle_bsd_signal, harmlessly.
  2901 bool os::Bsd::signal_handlers_are_installed = false;
  2903 // For signal-chaining
  2904 struct sigaction os::Bsd::sigact[MAXSIGNUM];
  2905 unsigned int os::Bsd::sigs = 0;
  2906 bool os::Bsd::libjsig_is_loaded = false;
  2907 typedef struct sigaction *(*get_signal_t)(int);
  2908 get_signal_t os::Bsd::get_signal_action = NULL;
  2910 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
  2911   struct sigaction *actp = NULL;
  2913   if (libjsig_is_loaded) {
  2914     // Retrieve the old signal handler from libjsig
  2915     actp = (*get_signal_action)(sig);
  2917   if (actp == NULL) {
  2918     // Retrieve the preinstalled signal handler from jvm
  2919     actp = get_preinstalled_handler(sig);
  2922   return actp;
  2925 static bool call_chained_handler(struct sigaction *actp, int sig,
  2926                                  siginfo_t *siginfo, void *context) {
  2927   // Call the old signal handler
  2928   if (actp->sa_handler == SIG_DFL) {
  2929     // It's more reasonable to let jvm treat it as an unexpected exception
  2930     // instead of taking the default action.
  2931     return false;
  2932   } else if (actp->sa_handler != SIG_IGN) {
  2933     if ((actp->sa_flags & SA_NODEFER) == 0) {
  2934       // automaticlly block the signal
  2935       sigaddset(&(actp->sa_mask), sig);
  2938     sa_handler_t hand;
  2939     sa_sigaction_t sa;
  2940     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
  2941     // retrieve the chained handler
  2942     if (siginfo_flag_set) {
  2943       sa = actp->sa_sigaction;
  2944     } else {
  2945       hand = actp->sa_handler;
  2948     if ((actp->sa_flags & SA_RESETHAND) != 0) {
  2949       actp->sa_handler = SIG_DFL;
  2952     // try to honor the signal mask
  2953     sigset_t oset;
  2954     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
  2956     // call into the chained handler
  2957     if (siginfo_flag_set) {
  2958       (*sa)(sig, siginfo, context);
  2959     } else {
  2960       (*hand)(sig);
  2963     // restore the signal mask
  2964     pthread_sigmask(SIG_SETMASK, &oset, 0);
  2966   // Tell jvm's signal handler the signal is taken care of.
  2967   return true;
  2970 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  2971   bool chained = false;
  2972   // signal-chaining
  2973   if (UseSignalChaining) {
  2974     struct sigaction *actp = get_chained_signal_action(sig);
  2975     if (actp != NULL) {
  2976       chained = call_chained_handler(actp, sig, siginfo, context);
  2979   return chained;
  2982 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
  2983   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
  2984     return &sigact[sig];
  2986   return NULL;
  2989 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  2990   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  2991   sigact[sig] = oldAct;
  2992   sigs |= (unsigned int)1 << sig;
  2995 // for diagnostic
  2996 int os::Bsd::sigflags[MAXSIGNUM];
  2998 int os::Bsd::get_our_sigflags(int sig) {
  2999   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3000   return sigflags[sig];
  3003 void os::Bsd::set_our_sigflags(int sig, int flags) {
  3004   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3005   sigflags[sig] = flags;
  3008 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
  3009   // Check for overwrite.
  3010   struct sigaction oldAct;
  3011   sigaction(sig, (struct sigaction*)NULL, &oldAct);
  3013   void* oldhand = oldAct.sa_sigaction
  3014                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
  3015                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  3016   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
  3017       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
  3018       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
  3019     if (AllowUserSignalHandlers || !set_installed) {
  3020       // Do not overwrite; user takes responsibility to forward to us.
  3021       return;
  3022     } else if (UseSignalChaining) {
  3023       // save the old handler in jvm
  3024       save_preinstalled_handler(sig, oldAct);
  3025       // libjsig also interposes the sigaction() call below and saves the
  3026       // old sigaction on it own.
  3027     } else {
  3028       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
  3029                     "%#lx for signal %d.", (long)oldhand, sig));
  3033   struct sigaction sigAct;
  3034   sigfillset(&(sigAct.sa_mask));
  3035   sigAct.sa_handler = SIG_DFL;
  3036   if (!set_installed) {
  3037     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3038   } else {
  3039     sigAct.sa_sigaction = signalHandler;
  3040     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  3042   // Save flags, which are set by ours
  3043   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  3044   sigflags[sig] = sigAct.sa_flags;
  3046   int ret = sigaction(sig, &sigAct, &oldAct);
  3047   assert(ret == 0, "check");
  3049   void* oldhand2  = oldAct.sa_sigaction
  3050                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
  3051                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  3052   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
  3055 // install signal handlers for signals that HotSpot needs to
  3056 // handle in order to support Java-level exception handling.
  3058 void os::Bsd::install_signal_handlers() {
  3059   if (!signal_handlers_are_installed) {
  3060     signal_handlers_are_installed = true;
  3062     // signal-chaining
  3063     typedef void (*signal_setting_t)();
  3064     signal_setting_t begin_signal_setting = NULL;
  3065     signal_setting_t end_signal_setting = NULL;
  3066     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3067                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
  3068     if (begin_signal_setting != NULL) {
  3069       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
  3070                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
  3071       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
  3072                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
  3073       libjsig_is_loaded = true;
  3074       assert(UseSignalChaining, "should enable signal-chaining");
  3076     if (libjsig_is_loaded) {
  3077       // Tell libjsig jvm is setting signal handlers
  3078       (*begin_signal_setting)();
  3081     set_signal_handler(SIGSEGV, true);
  3082     set_signal_handler(SIGPIPE, true);
  3083     set_signal_handler(SIGBUS, true);
  3084     set_signal_handler(SIGILL, true);
  3085     set_signal_handler(SIGFPE, true);
  3086     set_signal_handler(SIGXFSZ, true);
  3088 #if defined(__APPLE__)
  3089     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
  3090     // signals caught and handled by the JVM. To work around this, we reset the mach task
  3091     // signal handler that's placed on our process by CrashReporter. This disables
  3092     // CrashReporter-based reporting.
  3093     //
  3094     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
  3095     // on caught fatal signals.
  3096     //
  3097     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
  3098     // handlers. By replacing the existing task exception handler, we disable gdb's mach
  3099     // exception handling, while leaving the standard BSD signal handlers functional.
  3100     kern_return_t kr;
  3101     kr = task_set_exception_ports(mach_task_self(),
  3102         EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
  3103         MACH_PORT_NULL,
  3104         EXCEPTION_STATE_IDENTITY,
  3105         MACHINE_THREAD_STATE);
  3107     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
  3108 #endif
  3110     if (libjsig_is_loaded) {
  3111       // Tell libjsig jvm finishes setting signal handlers
  3112       (*end_signal_setting)();
  3115     // We don't activate signal checker if libjsig is in place, we trust ourselves
  3116     // and if UserSignalHandler is installed all bets are off
  3117     if (CheckJNICalls) {
  3118       if (libjsig_is_loaded) {
  3119         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
  3120         check_signals = false;
  3122       if (AllowUserSignalHandlers) {
  3123         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
  3124         check_signals = false;
  3131 /////
  3132 // glibc on Bsd platform uses non-documented flag
  3133 // to indicate, that some special sort of signal
  3134 // trampoline is used.
  3135 // We will never set this flag, and we should
  3136 // ignore this flag in our diagnostic
  3137 #ifdef SIGNIFICANT_SIGNAL_MASK
  3138 #undef SIGNIFICANT_SIGNAL_MASK
  3139 #endif
  3140 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
  3142 static const char* get_signal_handler_name(address handler,
  3143                                            char* buf, int buflen) {
  3144   int offset;
  3145   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  3146   if (found) {
  3147     // skip directory names
  3148     const char *p1, *p2;
  3149     p1 = buf;
  3150     size_t len = strlen(os::file_separator());
  3151     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
  3152     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  3153   } else {
  3154     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  3156   return buf;
  3159 static void print_signal_handler(outputStream* st, int sig,
  3160                                  char* buf, size_t buflen) {
  3161   struct sigaction sa;
  3163   sigaction(sig, NULL, &sa);
  3165   // See comment for SIGNIFICANT_SIGNAL_MASK define
  3166   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3168   st->print("%s: ", os::exception_name(sig, buf, buflen));
  3170   address handler = (sa.sa_flags & SA_SIGINFO)
  3171     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
  3172     : CAST_FROM_FN_PTR(address, sa.sa_handler);
  3174   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
  3175     st->print("SIG_DFL");
  3176   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
  3177     st->print("SIG_IGN");
  3178   } else {
  3179     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  3182   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
  3184   address rh = VMError::get_resetted_sighandler(sig);
  3185   // May be, handler was resetted by VMError?
  3186   if(rh != NULL) {
  3187     handler = rh;
  3188     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  3191   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
  3193   // Check: is it our handler?
  3194   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
  3195      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
  3196     // It is our signal handler
  3197     // check for flags, reset system-used one!
  3198     if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
  3199       st->print(
  3200                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
  3201                 os::Bsd::get_our_sigflags(sig));
  3204   st->cr();
  3208 #define DO_SIGNAL_CHECK(sig) \
  3209   if (!sigismember(&check_signal_done, sig)) \
  3210     os::Bsd::check_signal_handler(sig)
  3212 // This method is a periodic task to check for misbehaving JNI applications
  3213 // under CheckJNI, we can add any periodic checks here
  3215 void os::run_periodic_checks() {
  3217   if (check_signals == false) return;
  3219   // SEGV and BUS if overridden could potentially prevent
  3220   // generation of hs*.log in the event of a crash, debugging
  3221   // such a case can be very challenging, so we absolutely
  3222   // check the following for a good measure:
  3223   DO_SIGNAL_CHECK(SIGSEGV);
  3224   DO_SIGNAL_CHECK(SIGILL);
  3225   DO_SIGNAL_CHECK(SIGFPE);
  3226   DO_SIGNAL_CHECK(SIGBUS);
  3227   DO_SIGNAL_CHECK(SIGPIPE);
  3228   DO_SIGNAL_CHECK(SIGXFSZ);
  3231   // ReduceSignalUsage allows the user to override these handlers
  3232   // see comments at the very top and jvm_solaris.h
  3233   if (!ReduceSignalUsage) {
  3234     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
  3235     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
  3236     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
  3237     DO_SIGNAL_CHECK(BREAK_SIGNAL);
  3240   DO_SIGNAL_CHECK(SR_signum);
  3241   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
  3244 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
  3246 static os_sigaction_t os_sigaction = NULL;
  3248 void os::Bsd::check_signal_handler(int sig) {
  3249   char buf[O_BUFLEN];
  3250   address jvmHandler = NULL;
  3253   struct sigaction act;
  3254   if (os_sigaction == NULL) {
  3255     // only trust the default sigaction, in case it has been interposed
  3256     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
  3257     if (os_sigaction == NULL) return;
  3260   os_sigaction(sig, (struct sigaction*)NULL, &act);
  3263   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
  3265   address thisHandler = (act.sa_flags & SA_SIGINFO)
  3266     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
  3267     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
  3270   switch(sig) {
  3271   case SIGSEGV:
  3272   case SIGBUS:
  3273   case SIGFPE:
  3274   case SIGPIPE:
  3275   case SIGILL:
  3276   case SIGXFSZ:
  3277     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
  3278     break;
  3280   case SHUTDOWN1_SIGNAL:
  3281   case SHUTDOWN2_SIGNAL:
  3282   case SHUTDOWN3_SIGNAL:
  3283   case BREAK_SIGNAL:
  3284     jvmHandler = (address)user_handler();
  3285     break;
  3287   case INTERRUPT_SIGNAL:
  3288     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
  3289     break;
  3291   default:
  3292     if (sig == SR_signum) {
  3293       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
  3294     } else {
  3295       return;
  3297     break;
  3300   if (thisHandler != jvmHandler) {
  3301     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
  3302     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
  3303     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
  3304     // No need to check this sig any longer
  3305     sigaddset(&check_signal_done, sig);
  3306   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
  3307     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
  3308     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
  3309     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
  3310     // No need to check this sig any longer
  3311     sigaddset(&check_signal_done, sig);
  3314   // Dump all the signal
  3315   if (sigismember(&check_signal_done, sig)) {
  3316     print_signal_handlers(tty, buf, O_BUFLEN);
  3320 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
  3322 extern bool signal_name(int signo, char* buf, size_t len);
  3324 const char* os::exception_name(int exception_code, char* buf, size_t size) {
  3325   if (0 < exception_code && exception_code <= SIGRTMAX) {
  3326     // signal
  3327     if (!signal_name(exception_code, buf, size)) {
  3328       jio_snprintf(buf, size, "SIG%d", exception_code);
  3330     return buf;
  3331   } else {
  3332     return NULL;
  3336 // this is called _before_ the most of global arguments have been parsed
  3337 void os::init(void) {
  3338   char dummy;   /* used to get a guess on initial stack address */
  3339 //  first_hrtime = gethrtime();
  3341   // With BsdThreads the JavaMain thread pid (primordial thread)
  3342   // is different than the pid of the java launcher thread.
  3343   // So, on Bsd, the launcher thread pid is passed to the VM
  3344   // via the sun.java.launcher.pid property.
  3345   // Use this property instead of getpid() if it was correctly passed.
  3346   // See bug 6351349.
  3347   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
  3349   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
  3351   clock_tics_per_sec = CLK_TCK;
  3353   init_random(1234567);
  3355   ThreadCritical::initialize();
  3357   Bsd::set_page_size(getpagesize());
  3358   if (Bsd::page_size() == -1) {
  3359     fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
  3360                   strerror(errno)));
  3362   init_page_sizes((size_t) Bsd::page_size());
  3364   Bsd::initialize_system_info();
  3366   // main_thread points to the aboriginal thread
  3367   Bsd::_main_thread = pthread_self();
  3369   Bsd::clock_init();
  3370   initial_time_count = os::elapsed_counter();
  3372 #ifdef __APPLE__
  3373   // XXXDARWIN
  3374   // Work around the unaligned VM callbacks in hotspot's
  3375   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
  3376   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
  3377   // alignment when doing symbol lookup. To work around this, we force early
  3378   // binding of all symbols now, thus binding when alignment is known-good.
  3379   _dyld_bind_fully_image_containing_address((const void *) &os::init);
  3380 #endif
  3383 // To install functions for atexit system call
  3384 extern "C" {
  3385   static void perfMemory_exit_helper() {
  3386     perfMemory_exit();
  3390 // this is called _after_ the global arguments have been parsed
  3391 jint os::init_2(void)
  3393   // Allocate a single page and mark it as readable for safepoint polling
  3394   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3395   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
  3397   os::set_polling_page( polling_page );
  3399 #ifndef PRODUCT
  3400   if(Verbose && PrintMiscellaneous)
  3401     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
  3402 #endif
  3404   if (!UseMembar) {
  3405     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  3406     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
  3407     os::set_memory_serialize_page( mem_serialize_page );
  3409 #ifndef PRODUCT
  3410     if(Verbose && PrintMiscellaneous)
  3411       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
  3412 #endif
  3415   os::large_page_init();
  3417   // initialize suspend/resume support - must do this before signal_sets_init()
  3418   if (SR_initialize() != 0) {
  3419     perror("SR_initialize failed");
  3420     return JNI_ERR;
  3423   Bsd::signal_sets_init();
  3424   Bsd::install_signal_handlers();
  3426   // Check minimum allowable stack size for thread creation and to initialize
  3427   // the java system classes, including StackOverflowError - depends on page
  3428   // size.  Add a page for compiler2 recursion in main thread.
  3429   // Add in 2*BytesPerWord times page size to account for VM stack during
  3430   // class initialization depending on 32 or 64 bit VM.
  3431   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
  3432             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
  3433                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
  3435   size_t threadStackSizeInBytes = ThreadStackSize * K;
  3436   if (threadStackSizeInBytes != 0 &&
  3437       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
  3438         tty->print_cr("\nThe stack size specified is too small, "
  3439                       "Specify at least %dk",
  3440                       os::Bsd::min_stack_allowed/ K);
  3441         return JNI_ERR;
  3444   // Make the stack size a multiple of the page size so that
  3445   // the yellow/red zones can be guarded.
  3446   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
  3447         vm_page_size()));
  3449   if (MaxFDLimit) {
  3450     // set the number of file descriptors to max. print out error
  3451     // if getrlimit/setrlimit fails but continue regardless.
  3452     struct rlimit nbr_files;
  3453     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
  3454     if (status != 0) {
  3455       if (PrintMiscellaneous && (Verbose || WizardMode))
  3456         perror("os::init_2 getrlimit failed");
  3457     } else {
  3458       nbr_files.rlim_cur = nbr_files.rlim_max;
  3460 #ifdef __APPLE__
  3461       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
  3462       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
  3463       // be used instead
  3464       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
  3465 #endif
  3467       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
  3468       if (status != 0) {
  3469         if (PrintMiscellaneous && (Verbose || WizardMode))
  3470           perror("os::init_2 setrlimit failed");
  3475   // at-exit methods are called in the reverse order of their registration.
  3476   // atexit functions are called on return from main or as a result of a
  3477   // call to exit(3C). There can be only 32 of these functions registered
  3478   // and atexit() does not set errno.
  3480   if (PerfAllowAtExitRegistration) {
  3481     // only register atexit functions if PerfAllowAtExitRegistration is set.
  3482     // atexit functions can be delayed until process exit time, which
  3483     // can be problematic for embedded VM situations. Embedded VMs should
  3484     // call DestroyJavaVM() to assure that VM resources are released.
  3486     // note: perfMemory_exit_helper atexit function may be removed in
  3487     // the future if the appropriate cleanup code can be added to the
  3488     // VM_Exit VMOperation's doit method.
  3489     if (atexit(perfMemory_exit_helper) != 0) {
  3490       warning("os::init2 atexit(perfMemory_exit_helper) failed");
  3494   // initialize thread priority policy
  3495   prio_init();
  3497 #ifdef __APPLE__
  3498   // dynamically link to objective c gc registration
  3499   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
  3500   if (handleLibObjc != NULL) {
  3501     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
  3503 #endif
  3505   return JNI_OK;
  3508 // this is called at the end of vm_initialization
  3509 void os::init_3(void) { }
  3511 // Mark the polling page as unreadable
  3512 void os::make_polling_page_unreadable(void) {
  3513   if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
  3514     fatal("Could not disable polling page");
  3515 };
  3517 // Mark the polling page as readable
  3518 void os::make_polling_page_readable(void) {
  3519   if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
  3520     fatal("Could not enable polling page");
  3522 };
  3524 int os::active_processor_count() {
  3525   return _processor_count;
  3528 void os::set_native_thread_name(const char *name) {
  3529 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
  3530   // This is only supported in Snow Leopard and beyond
  3531   if (name != NULL) {
  3532     // Add a "Java: " prefix to the name
  3533     char buf[MAXTHREADNAMESIZE];
  3534     snprintf(buf, sizeof(buf), "Java: %s", name);
  3535     pthread_setname_np(buf);
  3537 #endif
  3540 bool os::distribute_processes(uint length, uint* distribution) {
  3541   // Not yet implemented.
  3542   return false;
  3545 bool os::bind_to_processor(uint processor_id) {
  3546   // Not yet implemented.
  3547   return false;
  3550 ///
  3552 // Suspends the target using the signal mechanism and then grabs the PC before
  3553 // resuming the target. Used by the flat-profiler only
  3554 ExtendedPC os::get_thread_pc(Thread* thread) {
  3555   // Make sure that it is called by the watcher for the VMThread
  3556   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  3557   assert(thread->is_VM_thread(), "Can only be called for VMThread");
  3559   ExtendedPC epc;
  3561   OSThread* osthread = thread->osthread();
  3562   if (do_suspend(osthread)) {
  3563     if (osthread->ucontext() != NULL) {
  3564       epc = os::Bsd::ucontext_get_pc(osthread->ucontext());
  3565     } else {
  3566       // NULL context is unexpected, double-check this is the VMThread
  3567       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
  3569     do_resume(osthread);
  3571   // failure means pthread_kill failed for some reason - arguably this is
  3572   // a fatal problem, but such problems are ignored elsewhere
  3574   return epc;
  3577 int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
  3579   return pthread_cond_timedwait(_cond, _mutex, _abstime);
  3582 ////////////////////////////////////////////////////////////////////////////////
  3583 // debug support
  3585 static address same_page(address x, address y) {
  3586   int page_bits = -os::vm_page_size();
  3587   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
  3588     return x;
  3589   else if (x > y)
  3590     return (address)(intptr_t(y) | ~page_bits) + 1;
  3591   else
  3592     return (address)(intptr_t(y) & page_bits);
  3595 bool os::find(address addr, outputStream* st) {
  3596   Dl_info dlinfo;
  3597   memset(&dlinfo, 0, sizeof(dlinfo));
  3598   if (dladdr(addr, &dlinfo)) {
  3599     st->print(PTR_FORMAT ": ", addr);
  3600     if (dlinfo.dli_sname != NULL) {
  3601       st->print("%s+%#x", dlinfo.dli_sname,
  3602                  addr - (intptr_t)dlinfo.dli_saddr);
  3603     } else if (dlinfo.dli_fname) {
  3604       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
  3605     } else {
  3606       st->print("<absolute address>");
  3608     if (dlinfo.dli_fname) {
  3609       st->print(" in %s", dlinfo.dli_fname);
  3611     if (dlinfo.dli_fbase) {
  3612       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
  3614     st->cr();
  3616     if (Verbose) {
  3617       // decode some bytes around the PC
  3618       address begin = same_page(addr-40, addr);
  3619       address end   = same_page(addr+40, addr);
  3620       address       lowest = (address) dlinfo.dli_sname;
  3621       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
  3622       if (begin < lowest)  begin = lowest;
  3623       Dl_info dlinfo2;
  3624       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
  3625           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
  3626         end = (address) dlinfo2.dli_saddr;
  3627       Disassembler::decode(begin, end, st);
  3629     return true;
  3631   return false;
  3634 ////////////////////////////////////////////////////////////////////////////////
  3635 // misc
  3637 // This does not do anything on Bsd. This is basically a hook for being
  3638 // able to use structured exception handling (thread-local exception filters)
  3639 // on, e.g., Win32.
  3640 void
  3641 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
  3642                          JavaCallArguments* args, Thread* thread) {
  3643   f(value, method, args, thread);
  3646 void os::print_statistics() {
  3649 int os::message_box(const char* title, const char* message) {
  3650   int i;
  3651   fdStream err(defaultStream::error_fd());
  3652   for (i = 0; i < 78; i++) err.print_raw("=");
  3653   err.cr();
  3654   err.print_raw_cr(title);
  3655   for (i = 0; i < 78; i++) err.print_raw("-");
  3656   err.cr();
  3657   err.print_raw_cr(message);
  3658   for (i = 0; i < 78; i++) err.print_raw("=");
  3659   err.cr();
  3661   char buf[16];
  3662   // Prevent process from exiting upon "read error" without consuming all CPU
  3663   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
  3665   return buf[0] == 'y' || buf[0] == 'Y';
  3668 int os::stat(const char *path, struct stat *sbuf) {
  3669   char pathbuf[MAX_PATH];
  3670   if (strlen(path) > MAX_PATH - 1) {
  3671     errno = ENAMETOOLONG;
  3672     return -1;
  3674   os::native_path(strcpy(pathbuf, path));
  3675   return ::stat(pathbuf, sbuf);
  3678 bool os::check_heap(bool force) {
  3679   return true;
  3682 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  3683   return ::vsnprintf(buf, count, format, args);
  3686 // Is a (classpath) directory empty?
  3687 bool os::dir_is_empty(const char* path) {
  3688   DIR *dir = NULL;
  3689   struct dirent *ptr;
  3691   dir = opendir(path);
  3692   if (dir == NULL) return true;
  3694   /* Scan the directory */
  3695   bool result = true;
  3696   char buf[sizeof(struct dirent) + MAX_PATH];
  3697   while (result && (ptr = ::readdir(dir)) != NULL) {
  3698     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
  3699       result = false;
  3702   closedir(dir);
  3703   return result;
  3706 // This code originates from JDK's sysOpen and open64_w
  3707 // from src/solaris/hpi/src/system_md.c
  3709 #ifndef O_DELETE
  3710 #define O_DELETE 0x10000
  3711 #endif
  3713 // Open a file. Unlink the file immediately after open returns
  3714 // if the specified oflag has the O_DELETE flag set.
  3715 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
  3717 int os::open(const char *path, int oflag, int mode) {
  3719   if (strlen(path) > MAX_PATH - 1) {
  3720     errno = ENAMETOOLONG;
  3721     return -1;
  3723   int fd;
  3724   int o_delete = (oflag & O_DELETE);
  3725   oflag = oflag & ~O_DELETE;
  3727   fd = ::open(path, oflag, mode);
  3728   if (fd == -1) return -1;
  3730   //If the open succeeded, the file might still be a directory
  3732     struct stat buf;
  3733     int ret = ::fstat(fd, &buf);
  3734     int st_mode = buf.st_mode;
  3736     if (ret != -1) {
  3737       if ((st_mode & S_IFMT) == S_IFDIR) {
  3738         errno = EISDIR;
  3739         ::close(fd);
  3740         return -1;
  3742     } else {
  3743       ::close(fd);
  3744       return -1;
  3748     /*
  3749      * All file descriptors that are opened in the JVM and not
  3750      * specifically destined for a subprocess should have the
  3751      * close-on-exec flag set.  If we don't set it, then careless 3rd
  3752      * party native code might fork and exec without closing all
  3753      * appropriate file descriptors (e.g. as we do in closeDescriptors in
  3754      * UNIXProcess.c), and this in turn might:
  3756      * - cause end-of-file to fail to be detected on some file
  3757      *   descriptors, resulting in mysterious hangs, or
  3759      * - might cause an fopen in the subprocess to fail on a system
  3760      *   suffering from bug 1085341.
  3762      * (Yes, the default setting of the close-on-exec flag is a Unix
  3763      * design flaw)
  3765      * See:
  3766      * 1085341: 32-bit stdio routines should support file descriptors >255
  3767      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
  3768      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
  3769      */
  3770 #ifdef FD_CLOEXEC
  3772         int flags = ::fcntl(fd, F_GETFD);
  3773         if (flags != -1)
  3774             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
  3776 #endif
  3778   if (o_delete != 0) {
  3779     ::unlink(path);
  3781   return fd;
  3785 // create binary file, rewriting existing file if required
  3786 int os::create_binary_file(const char* path, bool rewrite_existing) {
  3787   int oflags = O_WRONLY | O_CREAT;
  3788   if (!rewrite_existing) {
  3789     oflags |= O_EXCL;
  3791   return ::open(path, oflags, S_IREAD | S_IWRITE);
  3794 // return current position of file pointer
  3795 jlong os::current_file_offset(int fd) {
  3796   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
  3799 // move file pointer to the specified offset
  3800 jlong os::seek_to_file_offset(int fd, jlong offset) {
  3801   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
  3804 // This code originates from JDK's sysAvailable
  3805 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
  3807 int os::available(int fd, jlong *bytes) {
  3808   jlong cur, end;
  3809   int mode;
  3810   struct stat buf;
  3812   if (::fstat(fd, &buf) >= 0) {
  3813     mode = buf.st_mode;
  3814     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
  3815       /*
  3816       * XXX: is the following call interruptible? If so, this might
  3817       * need to go through the INTERRUPT_IO() wrapper as for other
  3818       * blocking, interruptible calls in this file.
  3819       */
  3820       int n;
  3821       if (::ioctl(fd, FIONREAD, &n) >= 0) {
  3822         *bytes = n;
  3823         return 1;
  3827   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
  3828     return 0;
  3829   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
  3830     return 0;
  3831   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
  3832     return 0;
  3834   *bytes = end - cur;
  3835   return 1;
  3838 int os::socket_available(int fd, jint *pbytes) {
  3839    if (fd < 0)
  3840      return OS_OK;
  3842    int ret;
  3844    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
  3846    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  3847    // is expected to return 0 on failure and 1 on success to the jdk.
  3849    return (ret == OS_ERR) ? 0 : 1;
  3852 // Map a block of memory.
  3853 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
  3854                      char *addr, size_t bytes, bool read_only,
  3855                      bool allow_exec) {
  3856   int prot;
  3857   int flags;
  3859   if (read_only) {
  3860     prot = PROT_READ;
  3861     flags = MAP_SHARED;
  3862   } else {
  3863     prot = PROT_READ | PROT_WRITE;
  3864     flags = MAP_PRIVATE;
  3867   if (allow_exec) {
  3868     prot |= PROT_EXEC;
  3871   if (addr != NULL) {
  3872     flags |= MAP_FIXED;
  3875   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
  3876                                      fd, file_offset);
  3877   if (mapped_address == MAP_FAILED) {
  3878     return NULL;
  3880   return mapped_address;
  3884 // Remap a block of memory.
  3885 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
  3886                        char *addr, size_t bytes, bool read_only,
  3887                        bool allow_exec) {
  3888   // same as map_memory() on this OS
  3889   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
  3890                         allow_exec);
  3894 // Unmap a block of memory.
  3895 bool os::pd_unmap_memory(char* addr, size_t bytes) {
  3896   return munmap(addr, bytes) == 0;
  3899 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
  3900 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
  3901 // of a thread.
  3902 //
  3903 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
  3904 // the fast estimate available on the platform.
  3906 jlong os::current_thread_cpu_time() {
  3907 #ifdef __APPLE__
  3908   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
  3909 #endif
  3912 jlong os::thread_cpu_time(Thread* thread) {
  3915 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  3916 #ifdef __APPLE__
  3917   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
  3918 #endif
  3921 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  3922 #ifdef __APPLE__
  3923   struct thread_basic_info tinfo;
  3924   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
  3925   kern_return_t kr;
  3926   thread_t mach_thread;
  3928   mach_thread = thread->osthread()->thread_id();
  3929   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
  3930   if (kr != KERN_SUCCESS)
  3931     return -1;
  3933   if (user_sys_cpu_time) {
  3934     jlong nanos;
  3935     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
  3936     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
  3937     return nanos;
  3938   } else {
  3939     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
  3941 #endif
  3945 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3946   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  3947   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  3948   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  3949   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  3952 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  3953   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  3954   info_ptr->may_skip_backward = false;     // elapsed time not wall time
  3955   info_ptr->may_skip_forward = false;      // elapsed time not wall time
  3956   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
  3959 bool os::is_thread_cpu_time_supported() {
  3960 #ifdef __APPLE__
  3961   return true;
  3962 #else
  3963   return false;
  3964 #endif
  3967 // System loadavg support.  Returns -1 if load average cannot be obtained.
  3968 // Bsd doesn't yet have a (official) notion of processor sets,
  3969 // so just return the system wide load average.
  3970 int os::loadavg(double loadavg[], int nelem) {
  3971   return ::getloadavg(loadavg, nelem);
  3974 void os::pause() {
  3975   char filename[MAX_PATH];
  3976   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
  3977     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  3978   } else {
  3979     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  3982   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  3983   if (fd != -1) {
  3984     struct stat buf;
  3985     ::close(fd);
  3986     while (::stat(filename, &buf) == 0) {
  3987       (void)::poll(NULL, 0, 100);
  3989   } else {
  3990     jio_fprintf(stderr,
  3991       "Could not open pause file '%s', continuing immediately.\n", filename);
  3996 // Refer to the comments in os_solaris.cpp park-unpark.
  3997 //
  3998 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
  3999 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
  4000 // For specifics regarding the bug see GLIBC BUGID 261237 :
  4001 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
  4002 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
  4003 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
  4004 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
  4005 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
  4006 // and monitorenter when we're using 1-0 locking.  All those operations may result in
  4007 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
  4008 // of libpthread avoids the problem, but isn't practical.
  4009 //
  4010 // Possible remedies:
  4011 //
  4012 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
  4013 //      This is palliative and probabilistic, however.  If the thread is preempted
  4014 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
  4015 //      than the minimum period may have passed, and the abstime may be stale (in the
  4016 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
  4017 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
  4018 //
  4019 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
  4020 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
  4021 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
  4022 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
  4023 //      thread.
  4024 //
  4025 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
  4026 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
  4027 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
  4028 //      This also works well.  In fact it avoids kernel-level scalability impediments
  4029 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
  4030 //      timers in a graceful fashion.
  4031 //
  4032 // 4.   When the abstime value is in the past it appears that control returns
  4033 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
  4034 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
  4035 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
  4036 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
  4037 //      It may be possible to avoid reinitialization by checking the return
  4038 //      value from pthread_cond_timedwait().  In addition to reinitializing the
  4039 //      condvar we must establish the invariant that cond_signal() is only called
  4040 //      within critical sections protected by the adjunct mutex.  This prevents
  4041 //      cond_signal() from "seeing" a condvar that's in the midst of being
  4042 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
  4043 //      desirable signal-after-unlock optimization that avoids futile context switching.
  4044 //
  4045 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
  4046 //      structure when a condvar is used or initialized.  cond_destroy()  would
  4047 //      release the helper structure.  Our reinitialize-after-timedwait fix
  4048 //      put excessive stress on malloc/free and locks protecting the c-heap.
  4049 //
  4050 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
  4051 // It may be possible to refine (4) by checking the kernel and NTPL verisons
  4052 // and only enabling the work-around for vulnerable environments.
  4054 // utility to compute the abstime argument to timedwait:
  4055 // millis is the relative timeout time
  4056 // abstime will be the absolute timeout time
  4057 // TODO: replace compute_abstime() with unpackTime()
  4059 static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
  4060   if (millis < 0)  millis = 0;
  4061   struct timeval now;
  4062   int status = gettimeofday(&now, NULL);
  4063   assert(status == 0, "gettimeofday");
  4064   jlong seconds = millis / 1000;
  4065   millis %= 1000;
  4066   if (seconds > 50000000) { // see man cond_timedwait(3T)
  4067     seconds = 50000000;
  4069   abstime->tv_sec = now.tv_sec  + seconds;
  4070   long       usec = now.tv_usec + millis * 1000;
  4071   if (usec >= 1000000) {
  4072     abstime->tv_sec += 1;
  4073     usec -= 1000000;
  4075   abstime->tv_nsec = usec * 1000;
  4076   return abstime;
  4080 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
  4081 // Conceptually TryPark() should be equivalent to park(0).
  4083 int os::PlatformEvent::TryPark() {
  4084   for (;;) {
  4085     const int v = _Event ;
  4086     guarantee ((v == 0) || (v == 1), "invariant") ;
  4087     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  4091 void os::PlatformEvent::park() {       // AKA "down()"
  4092   // Invariant: Only the thread associated with the Event/PlatformEvent
  4093   // may call park().
  4094   // TODO: assert that _Assoc != NULL or _Assoc == Self
  4095   int v ;
  4096   for (;;) {
  4097       v = _Event ;
  4098       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4100   guarantee (v >= 0, "invariant") ;
  4101   if (v == 0) {
  4102      // Do this the hard way by blocking ...
  4103      int status = pthread_mutex_lock(_mutex);
  4104      assert_status(status == 0, status, "mutex_lock");
  4105      guarantee (_nParked == 0, "invariant") ;
  4106      ++ _nParked ;
  4107      while (_Event < 0) {
  4108         status = pthread_cond_wait(_cond, _mutex);
  4109         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
  4110         // Treat this the same as if the wait was interrupted
  4111         if (status == ETIMEDOUT) { status = EINTR; }
  4112         assert_status(status == 0 || status == EINTR, status, "cond_wait");
  4114      -- _nParked ;
  4116     // In theory we could move the ST of 0 into _Event past the unlock(),
  4117     // but then we'd need a MEMBAR after the ST.
  4118     _Event = 0 ;
  4119      status = pthread_mutex_unlock(_mutex);
  4120      assert_status(status == 0, status, "mutex_unlock");
  4122   guarantee (_Event >= 0, "invariant") ;
  4125 int os::PlatformEvent::park(jlong millis) {
  4126   guarantee (_nParked == 0, "invariant") ;
  4128   int v ;
  4129   for (;;) {
  4130       v = _Event ;
  4131       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  4133   guarantee (v >= 0, "invariant") ;
  4134   if (v != 0) return OS_OK ;
  4136   // We do this the hard way, by blocking the thread.
  4137   // Consider enforcing a minimum timeout value.
  4138   struct timespec abst;
  4139   compute_abstime(&abst, millis);
  4141   int ret = OS_TIMEOUT;
  4142   int status = pthread_mutex_lock(_mutex);
  4143   assert_status(status == 0, status, "mutex_lock");
  4144   guarantee (_nParked == 0, "invariant") ;
  4145   ++_nParked ;
  4147   // Object.wait(timo) will return because of
  4148   // (a) notification
  4149   // (b) timeout
  4150   // (c) thread.interrupt
  4151   //
  4152   // Thread.interrupt and object.notify{All} both call Event::set.
  4153   // That is, we treat thread.interrupt as a special case of notification.
  4154   // The underlying Solaris implementation, cond_timedwait, admits
  4155   // spurious/premature wakeups, but the JLS/JVM spec prevents the
  4156   // JVM from making those visible to Java code.  As such, we must
  4157   // filter out spurious wakeups.  We assume all ETIME returns are valid.
  4158   //
  4159   // TODO: properly differentiate simultaneous notify+interrupt.
  4160   // In that case, we should propagate the notify to another waiter.
  4162   while (_Event < 0) {
  4163     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
  4164     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4165       pthread_cond_destroy (_cond);
  4166       pthread_cond_init (_cond, NULL) ;
  4168     assert_status(status == 0 || status == EINTR ||
  4169                   status == ETIMEDOUT,
  4170                   status, "cond_timedwait");
  4171     if (!FilterSpuriousWakeups) break ;                 // previous semantics
  4172     if (status == ETIMEDOUT) break ;
  4173     // We consume and ignore EINTR and spurious wakeups.
  4175   --_nParked ;
  4176   if (_Event >= 0) {
  4177      ret = OS_OK;
  4179   _Event = 0 ;
  4180   status = pthread_mutex_unlock(_mutex);
  4181   assert_status(status == 0, status, "mutex_unlock");
  4182   assert (_nParked == 0, "invariant") ;
  4183   return ret;
  4186 void os::PlatformEvent::unpark() {
  4187   int v, AnyWaiters ;
  4188   for (;;) {
  4189       v = _Event ;
  4190       if (v > 0) {
  4191          // The LD of _Event could have reordered or be satisfied
  4192          // by a read-aside from this processor's write buffer.
  4193          // To avoid problems execute a barrier and then
  4194          // ratify the value.
  4195          OrderAccess::fence() ;
  4196          if (_Event == v) return ;
  4197          continue ;
  4199       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  4201   if (v < 0) {
  4202      // Wait for the thread associated with the event to vacate
  4203      int status = pthread_mutex_lock(_mutex);
  4204      assert_status(status == 0, status, "mutex_lock");
  4205      AnyWaiters = _nParked ;
  4206      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
  4207      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
  4208         AnyWaiters = 0 ;
  4209         pthread_cond_signal (_cond);
  4211      status = pthread_mutex_unlock(_mutex);
  4212      assert_status(status == 0, status, "mutex_unlock");
  4213      if (AnyWaiters != 0) {
  4214         status = pthread_cond_signal(_cond);
  4215         assert_status(status == 0, status, "cond_signal");
  4219   // Note that we signal() _after dropping the lock for "immortal" Events.
  4220   // This is safe and avoids a common class of  futile wakeups.  In rare
  4221   // circumstances this can cause a thread to return prematurely from
  4222   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  4223   // simply re-test the condition and re-park itself.
  4227 // JSR166
  4228 // -------------------------------------------------------
  4230 /*
  4231  * The solaris and bsd implementations of park/unpark are fairly
  4232  * conservative for now, but can be improved. They currently use a
  4233  * mutex/condvar pair, plus a a count.
  4234  * Park decrements count if > 0, else does a condvar wait.  Unpark
  4235  * sets count to 1 and signals condvar.  Only one thread ever waits
  4236  * on the condvar. Contention seen when trying to park implies that someone
  4237  * is unparking you, so don't wait. And spurious returns are fine, so there
  4238  * is no need to track notifications.
  4239  */
  4241 #define MAX_SECS 100000000
  4242 /*
  4243  * This code is common to bsd and solaris and will be moved to a
  4244  * common place in dolphin.
  4246  * The passed in time value is either a relative time in nanoseconds
  4247  * or an absolute time in milliseconds. Either way it has to be unpacked
  4248  * into suitable seconds and nanoseconds components and stored in the
  4249  * given timespec structure.
  4250  * Given time is a 64-bit value and the time_t used in the timespec is only
  4251  * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
  4252  * overflow if times way in the future are given. Further on Solaris versions
  4253  * prior to 10 there is a restriction (see cond_timedwait) that the specified
  4254  * number of seconds, in abstime, is less than current_time  + 100,000,000.
  4255  * As it will be 28 years before "now + 100000000" will overflow we can
  4256  * ignore overflow and just impose a hard-limit on seconds using the value
  4257  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
  4258  * years from "now".
  4259  */
  4261 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
  4262   assert (time > 0, "convertTime");
  4264   struct timeval now;
  4265   int status = gettimeofday(&now, NULL);
  4266   assert(status == 0, "gettimeofday");
  4268   time_t max_secs = now.tv_sec + MAX_SECS;
  4270   if (isAbsolute) {
  4271     jlong secs = time / 1000;
  4272     if (secs > max_secs) {
  4273       absTime->tv_sec = max_secs;
  4275     else {
  4276       absTime->tv_sec = secs;
  4278     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  4280   else {
  4281     jlong secs = time / NANOSECS_PER_SEC;
  4282     if (secs >= MAX_SECS) {
  4283       absTime->tv_sec = max_secs;
  4284       absTime->tv_nsec = 0;
  4286     else {
  4287       absTime->tv_sec = now.tv_sec + secs;
  4288       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
  4289       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
  4290         absTime->tv_nsec -= NANOSECS_PER_SEC;
  4291         ++absTime->tv_sec; // note: this must be <= max_secs
  4295   assert(absTime->tv_sec >= 0, "tv_sec < 0");
  4296   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  4297   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  4298   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
  4301 void Parker::park(bool isAbsolute, jlong time) {
  4302   // Optional fast-path check:
  4303   // Return immediately if a permit is available.
  4304   if (_counter > 0) {
  4305       _counter = 0 ;
  4306       OrderAccess::fence();
  4307       return ;
  4310   Thread* thread = Thread::current();
  4311   assert(thread->is_Java_thread(), "Must be JavaThread");
  4312   JavaThread *jt = (JavaThread *)thread;
  4314   // Optional optimization -- avoid state transitions if there's an interrupt pending.
  4315   // Check interrupt before trying to wait
  4316   if (Thread::is_interrupted(thread, false)) {
  4317     return;
  4320   // Next, demultiplex/decode time arguments
  4321   struct timespec absTime;
  4322   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
  4323     return;
  4325   if (time > 0) {
  4326     unpackTime(&absTime, isAbsolute, time);
  4330   // Enter safepoint region
  4331   // Beware of deadlocks such as 6317397.
  4332   // The per-thread Parker:: mutex is a classic leaf-lock.
  4333   // In particular a thread must never block on the Threads_lock while
  4334   // holding the Parker:: mutex.  If safepoints are pending both the
  4335   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  4336   ThreadBlockInVM tbivm(jt);
  4338   // Don't wait if cannot get lock since interference arises from
  4339   // unblocking.  Also. check interrupt before trying wait
  4340   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
  4341     return;
  4344   int status ;
  4345   if (_counter > 0)  { // no wait needed
  4346     _counter = 0;
  4347     status = pthread_mutex_unlock(_mutex);
  4348     assert (status == 0, "invariant") ;
  4349     OrderAccess::fence();
  4350     return;
  4353 #ifdef ASSERT
  4354   // Don't catch signals while blocked; let the running threads have the signals.
  4355   // (This allows a debugger to break into the running thread.)
  4356   sigset_t oldsigs;
  4357   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
  4358   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
  4359 #endif
  4361   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  4362   jt->set_suspend_equivalent();
  4363   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
  4365   if (time == 0) {
  4366     status = pthread_cond_wait (_cond, _mutex) ;
  4367   } else {
  4368     status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
  4369     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
  4370       pthread_cond_destroy (_cond) ;
  4371       pthread_cond_init    (_cond, NULL);
  4374   assert_status(status == 0 || status == EINTR ||
  4375                 status == ETIMEDOUT,
  4376                 status, "cond_timedwait");
  4378 #ifdef ASSERT
  4379   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
  4380 #endif
  4382   _counter = 0 ;
  4383   status = pthread_mutex_unlock(_mutex) ;
  4384   assert_status(status == 0, status, "invariant") ;
  4385   // If externally suspended while waiting, re-suspend
  4386   if (jt->handle_special_suspend_equivalent_condition()) {
  4387     jt->java_suspend_self();
  4390   OrderAccess::fence();
  4393 void Parker::unpark() {
  4394   int s, status ;
  4395   status = pthread_mutex_lock(_mutex);
  4396   assert (status == 0, "invariant") ;
  4397   s = _counter;
  4398   _counter = 1;
  4399   if (s < 1) {
  4400      if (WorkAroundNPTLTimedWaitHang) {
  4401         status = pthread_cond_signal (_cond) ;
  4402         assert (status == 0, "invariant") ;
  4403         status = pthread_mutex_unlock(_mutex);
  4404         assert (status == 0, "invariant") ;
  4405      } else {
  4406         status = pthread_mutex_unlock(_mutex);
  4407         assert (status == 0, "invariant") ;
  4408         status = pthread_cond_signal (_cond) ;
  4409         assert (status == 0, "invariant") ;
  4411   } else {
  4412     pthread_mutex_unlock(_mutex);
  4413     assert (status == 0, "invariant") ;
  4418 /* Darwin has no "environ" in a dynamic library. */
  4419 #ifdef __APPLE__
  4420 #include <crt_externs.h>
  4421 #define environ (*_NSGetEnviron())
  4422 #else
  4423 extern char** environ;
  4424 #endif
  4426 // Run the specified command in a separate process. Return its exit value,
  4427 // or -1 on failure (e.g. can't fork a new process).
  4428 // Unlike system(), this function can be called from signal handler. It
  4429 // doesn't block SIGINT et al.
  4430 int os::fork_and_exec(char* cmd) {
  4431   const char * argv[4] = {"sh", "-c", cmd, NULL};
  4433   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
  4434   // pthread_atfork handlers and reset pthread library. All we need is a
  4435   // separate process to execve. Make a direct syscall to fork process.
  4436   // On IA64 there's no fork syscall, we have to use fork() and hope for
  4437   // the best...
  4438   pid_t pid = fork();
  4440   if (pid < 0) {
  4441     // fork failed
  4442     return -1;
  4444   } else if (pid == 0) {
  4445     // child process
  4447     // execve() in BsdThreads will call pthread_kill_other_threads_np()
  4448     // first to kill every thread on the thread list. Because this list is
  4449     // not reset by fork() (see notes above), execve() will instead kill
  4450     // every thread in the parent process. We know this is the only thread
  4451     // in the new process, so make a system call directly.
  4452     // IA64 should use normal execve() from glibc to match the glibc fork()
  4453     // above.
  4454     execve("/bin/sh", (char* const*)argv, environ);
  4456     // execve failed
  4457     _exit(-1);
  4459   } else  {
  4460     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
  4461     // care about the actual exit code, for now.
  4463     int status;
  4465     // Wait for the child process to exit.  This returns immediately if
  4466     // the child has already exited. */
  4467     while (waitpid(pid, &status, 0) < 0) {
  4468         switch (errno) {
  4469         case ECHILD: return 0;
  4470         case EINTR: break;
  4471         default: return -1;
  4475     if (WIFEXITED(status)) {
  4476        // The child exited normally; get its exit code.
  4477        return WEXITSTATUS(status);
  4478     } else if (WIFSIGNALED(status)) {
  4479        // The child exited because of a signal
  4480        // The best value to return is 0x80 + signal number,
  4481        // because that is what all Unix shells do, and because
  4482        // it allows callers to distinguish between process exit and
  4483        // process death by signal.
  4484        return 0x80 + WTERMSIG(status);
  4485     } else {
  4486        // Unknown exit code; pass it through
  4487        return status;
  4492 // is_headless_jre()
  4493 //
  4494 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
  4495 // in order to report if we are running in a headless jre
  4496 //
  4497 // Since JDK8 xawt/libmawt.so was moved into the same directory
  4498 // as libawt.so, and renamed libawt_xawt.so
  4499 //
  4500 bool os::is_headless_jre() {
  4501     struct stat statbuf;
  4502     char buf[MAXPATHLEN];
  4503     char libmawtpath[MAXPATHLEN];
  4504     const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
  4505     const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
  4506     char *p;
  4508     // Get path to libjvm.so
  4509     os::jvm_path(buf, sizeof(buf));
  4511     // Get rid of libjvm.so
  4512     p = strrchr(buf, '/');
  4513     if (p == NULL) return false;
  4514     else *p = '\0';
  4516     // Get rid of client or server
  4517     p = strrchr(buf, '/');
  4518     if (p == NULL) return false;
  4519     else *p = '\0';
  4521     // check xawt/libmawt.so
  4522     strcpy(libmawtpath, buf);
  4523     strcat(libmawtpath, xawtstr);
  4524     if (::stat(libmawtpath, &statbuf) == 0) return false;
  4526     // check libawt_xawt.so
  4527     strcpy(libmawtpath, buf);
  4528     strcat(libmawtpath, new_xawtstr);
  4529     if (::stat(libmawtpath, &statbuf) == 0) return false;
  4531     return true;
  4534 // Get the default path to the core file
  4535 // Returns the length of the string
  4536 int os::get_core_path(char* buffer, size_t bufferSize) {
  4537   int n = jio_snprintf(buffer, bufferSize, "/cores");
  4539   // Truncate if theoretical string was longer than bufferSize
  4540   n = MIN2(n, (int)bufferSize);
  4542   return n;

mercurial