src/share/vm/code/relocInfo.cpp

Sat, 09 Apr 2011 21:16:12 -0700

author
jrose
date
Sat, 09 Apr 2011 21:16:12 -0700
changeset 2750
6c97c830fb6f
parent 2708
1d1603768966
parent 2737
479b4b4b6950
child 4037
da91efe96a93
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/compiledIC.hpp"
    27 #include "code/nmethod.hpp"
    28 #include "code/relocInfo.hpp"
    29 #include "memory/resourceArea.hpp"
    30 #include "runtime/stubCodeGenerator.hpp"
    31 #include "utilities/copy.hpp"
    32 #ifdef TARGET_ARCH_x86
    33 # include "assembler_x86.inline.hpp"
    34 # include "nativeInst_x86.hpp"
    35 #endif
    36 #ifdef TARGET_ARCH_sparc
    37 # include "assembler_sparc.inline.hpp"
    38 # include "nativeInst_sparc.hpp"
    39 #endif
    40 #ifdef TARGET_ARCH_zero
    41 # include "assembler_zero.inline.hpp"
    42 # include "nativeInst_zero.hpp"
    43 #endif
    44 #ifdef TARGET_ARCH_arm
    45 # include "assembler_arm.inline.hpp"
    46 # include "nativeInst_arm.hpp"
    47 #endif
    48 #ifdef TARGET_ARCH_ppc
    49 # include "assembler_ppc.inline.hpp"
    50 # include "nativeInst_ppc.hpp"
    51 #endif
    54 const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
    57 // Implementation of relocInfo
    59 #ifdef ASSERT
    60 relocInfo::relocInfo(relocType t, int off, int f) {
    61   assert(t != data_prefix_tag, "cannot build a prefix this way");
    62   assert((t & type_mask) == t, "wrong type");
    63   assert((f & format_mask) == f, "wrong format");
    64   assert(off >= 0 && off < offset_limit(), "offset out off bounds");
    65   assert((off & (offset_unit-1)) == 0, "misaligned offset");
    66   (*this) = relocInfo(t, RAW_BITS, off, f);
    67 }
    68 #endif
    70 void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
    71   relocInfo* data = this+1;  // here's where the data might go
    72   dest->set_locs_end(data);  // sync end: the next call may read dest.locs_end
    73   reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
    74   relocInfo* data_limit = dest->locs_end();
    75   if (data_limit > data) {
    76     relocInfo suffix = (*this);
    77     data_limit = this->finish_prefix((short*) data_limit);
    78     // Finish up with the suffix.  (Hack note: pack_data_to might edit this.)
    79     *data_limit = suffix;
    80     dest->set_locs_end(data_limit+1);
    81   }
    82 }
    84 relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
    85   assert(sizeof(relocInfo) == sizeof(short), "change this code");
    86   short* p = (short*)(this+1);
    87   assert(prefix_limit >= p, "must be a valid span of data");
    88   int plen = prefix_limit - p;
    89   if (plen == 0) {
    90     debug_only(_value = 0xFFFF);
    91     return this;                         // no data: remove self completely
    92   }
    93   if (plen == 1 && fits_into_immediate(p[0])) {
    94     (*this) = immediate_relocInfo(p[0]); // move data inside self
    95     return this+1;
    96   }
    97   // cannot compact, so just update the count and return the limit pointer
    98   (*this) = prefix_relocInfo(plen);   // write new datalen
    99   assert(data() + datalen() == prefix_limit, "pointers must line up");
   100   return (relocInfo*)prefix_limit;
   101 }
   104 void relocInfo::set_type(relocType t) {
   105   int old_offset = addr_offset();
   106   int old_format = format();
   107   (*this) = relocInfo(t, old_offset, old_format);
   108   assert(type()==(int)t, "sanity check");
   109   assert(addr_offset()==old_offset, "sanity check");
   110   assert(format()==old_format, "sanity check");
   111 }
   114 void relocInfo::set_format(int f) {
   115   int old_offset = addr_offset();
   116   assert((f & format_mask) == f, "wrong format");
   117   _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
   118   assert(addr_offset()==old_offset, "sanity check");
   119 }
   122 void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
   123   bool found = false;
   124   while (itr->next() && !found) {
   125     if (itr->addr() == pc) {
   126       assert(itr->type()==old_type, "wrong relocInfo type found");
   127       itr->current()->set_type(new_type);
   128       found=true;
   129     }
   130   }
   131   assert(found, "no relocInfo found for pc");
   132 }
   135 void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
   136   change_reloc_info_for_address(itr, pc, old_type, none);
   137 }
   140 // ----------------------------------------------------------------------------------------------------
   141 // Implementation of RelocIterator
   143 void RelocIterator::initialize(nmethod* nm, address begin, address limit) {
   144   initialize_misc();
   146   if (nm == NULL && begin != NULL) {
   147     // allow nmethod to be deduced from beginning address
   148     CodeBlob* cb = CodeCache::find_blob(begin);
   149     nm = cb->as_nmethod_or_null();
   150   }
   151   assert(nm != NULL, "must be able to deduce nmethod from other arguments");
   153   _code    = nm;
   154   _current = nm->relocation_begin() - 1;
   155   _end     = nm->relocation_end();
   156   _addr    = nm->content_begin();
   158   // Initialize code sections.
   159   _section_start[CodeBuffer::SECT_CONSTS] = nm->consts_begin();
   160   _section_start[CodeBuffer::SECT_INSTS ] = nm->insts_begin() ;
   161   _section_start[CodeBuffer::SECT_STUBS ] = nm->stub_begin()  ;
   163   _section_end  [CodeBuffer::SECT_CONSTS] = nm->consts_end()  ;
   164   _section_end  [CodeBuffer::SECT_INSTS ] = nm->insts_end()   ;
   165   _section_end  [CodeBuffer::SECT_STUBS ] = nm->stub_end()    ;
   167   assert(!has_current(), "just checking");
   168   assert(begin == NULL || begin >= nm->code_begin(), "in bounds");
   169   assert(limit == NULL || limit <= nm->code_end(),   "in bounds");
   170   set_limits(begin, limit);
   171 }
   174 RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
   175   initialize_misc();
   177   _current = cs->locs_start()-1;
   178   _end     = cs->locs_end();
   179   _addr    = cs->start();
   180   _code    = NULL; // Not cb->blob();
   182   CodeBuffer* cb = cs->outer();
   183   assert((int) SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
   184   for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
   185     CodeSection* cs = cb->code_section(n);
   186     _section_start[n] = cs->start();
   187     _section_end  [n] = cs->end();
   188   }
   190   assert(!has_current(), "just checking");
   192   assert(begin == NULL || begin >= cs->start(), "in bounds");
   193   assert(limit == NULL || limit <= cs->end(),   "in bounds");
   194   set_limits(begin, limit);
   195 }
   198 enum { indexCardSize = 128 };
   199 struct RelocIndexEntry {
   200   jint addr_offset;          // offset from header_end of an addr()
   201   jint reloc_offset;         // offset from header_end of a relocInfo (prefix)
   202 };
   205 bool RelocIterator::addr_in_const() const {
   206   const int n = CodeBuffer::SECT_CONSTS;
   207   return section_start(n) <= addr() && addr() < section_end(n);
   208 }
   211 static inline int num_cards(int code_size) {
   212   return (code_size-1) / indexCardSize;
   213 }
   216 int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
   217   if (!UseRelocIndex)  return locs_size;   // no index
   218   code_size = round_to(code_size, oopSize);
   219   locs_size = round_to(locs_size, oopSize);
   220   int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
   221   // format of indexed relocs:
   222   //   relocation_begin:   relocInfo ...
   223   //   index:              (addr,reloc#) ...
   224   //                       indexSize           :relocation_end
   225   return locs_size + index_size + BytesPerInt;
   226 }
   229 void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
   230   address relocation_begin = (address)dest_begin;
   231   address relocation_end   = (address)dest_end;
   232   int     total_size       = relocation_end - relocation_begin;
   233   int     locs_size        = dest_count * sizeof(relocInfo);
   234   if (!UseRelocIndex) {
   235     Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
   236     return;
   237   }
   238   int     index_size       = total_size - locs_size - BytesPerInt;      // find out how much space is left
   239   int     ncards           = index_size / sizeof(RelocIndexEntry);
   240   assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
   241   assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
   242   jint*   index_size_addr  = (jint*)relocation_end - 1;
   244   assert(sizeof(jint) == BytesPerInt, "change this code");
   246   *index_size_addr = index_size;
   247   if (index_size != 0) {
   248     assert(index_size > 0, "checkin'");
   250     RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
   251     assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
   253     // walk over the relocations, and fill in index entries as we go
   254     RelocIterator iter;
   255     const address    initial_addr    = NULL;
   256     relocInfo* const initial_current = dest_begin - 1;  // biased by -1 like elsewhere
   258     iter._code    = NULL;
   259     iter._addr    = initial_addr;
   260     iter._limit   = (address)(intptr_t)(ncards * indexCardSize);
   261     iter._current = initial_current;
   262     iter._end     = dest_begin + dest_count;
   264     int i = 0;
   265     address next_card_addr = (address)indexCardSize;
   266     int addr_offset = 0;
   267     int reloc_offset = 0;
   268     while (true) {
   269       // Checkpoint the iterator before advancing it.
   270       addr_offset  = iter._addr    - initial_addr;
   271       reloc_offset = iter._current - initial_current;
   272       if (!iter.next())  break;
   273       while (iter.addr() >= next_card_addr) {
   274         index[i].addr_offset  = addr_offset;
   275         index[i].reloc_offset = reloc_offset;
   276         i++;
   277         next_card_addr += indexCardSize;
   278       }
   279     }
   280     while (i < ncards) {
   281       index[i].addr_offset  = addr_offset;
   282       index[i].reloc_offset = reloc_offset;
   283       i++;
   284     }
   285   }
   286 }
   289 void RelocIterator::set_limits(address begin, address limit) {
   290   int index_size = 0;
   291   if (UseRelocIndex && _code != NULL) {
   292     index_size = ((jint*)_end)[-1];
   293     _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
   294   }
   296   _limit = limit;
   298   // the limit affects this next stuff:
   299   if (begin != NULL) {
   300 #ifdef ASSERT
   301     // In ASSERT mode we do not actually use the index, but simply
   302     // check that its contents would have led us to the right answer.
   303     address addrCheck = _addr;
   304     relocInfo* infoCheck = _current;
   305 #endif // ASSERT
   306     if (index_size > 0) {
   307       // skip ahead
   308       RelocIndexEntry* index       = (RelocIndexEntry*)_end;
   309       RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
   310       assert(_addr == _code->code_begin(), "_addr must be unadjusted");
   311       int card = (begin - _addr) / indexCardSize;
   312       if (card > 0) {
   313         if (index+card-1 < index_limit)  index += card-1;
   314         else                             index = index_limit - 1;
   315 #ifdef ASSERT
   316         addrCheck = _addr    + index->addr_offset;
   317         infoCheck = _current + index->reloc_offset;
   318 #else
   319         // Advance the iterator immediately to the last valid state
   320         // for the previous card.  Calling "next" will then advance
   321         // it to the first item on the required card.
   322         _addr    += index->addr_offset;
   323         _current += index->reloc_offset;
   324 #endif // ASSERT
   325       }
   326     }
   328     relocInfo* backup;
   329     address    backup_addr;
   330     while (true) {
   331       backup      = _current;
   332       backup_addr = _addr;
   333 #ifdef ASSERT
   334       if (backup == infoCheck) {
   335         assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
   336       } else {
   337         assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
   338       }
   339 #endif // ASSERT
   340       if (!next() || addr() >= begin) break;
   341     }
   342     assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
   343     assert(infoCheck == NULL || infoCheck == backup,      "must have matched infoCheck");
   344     // At this point, either we are at the first matching record,
   345     // or else there is no such record, and !has_current().
   346     // In either case, revert to the immediatly preceding state.
   347     _current = backup;
   348     _addr    = backup_addr;
   349     set_has_current(false);
   350   }
   351 }
   354 void RelocIterator::set_limit(address limit) {
   355   address code_end = (address)code() + code()->size();
   356   assert(limit == NULL || limit <= code_end, "in bounds");
   357   _limit = limit;
   358 }
   361 void PatchingRelocIterator:: prepass() {
   362   // turn breakpoints off during patching
   363   _init_state = (*this);        // save cursor
   364   while (next()) {
   365     if (type() == relocInfo::breakpoint_type) {
   366       breakpoint_reloc()->set_active(false);
   367     }
   368   }
   369   (RelocIterator&)(*this) = _init_state;        // reset cursor for client
   370 }
   373 void PatchingRelocIterator:: postpass() {
   374   // turn breakpoints back on after patching
   375   (RelocIterator&)(*this) = _init_state;        // reset cursor again
   376   while (next()) {
   377     if (type() == relocInfo::breakpoint_type) {
   378       breakpoint_Relocation* bpt = breakpoint_reloc();
   379       bpt->set_active(bpt->enabled());
   380     }
   381   }
   382 }
   385 // All the strange bit-encodings are in here.
   386 // The idea is to encode relocation data which are small integers
   387 // very efficiently (a single extra halfword).  Larger chunks of
   388 // relocation data need a halfword header to hold their size.
   389 void RelocIterator::advance_over_prefix() {
   390   if (_current->is_datalen()) {
   391     _data    = (short*) _current->data();
   392     _datalen =          _current->datalen();
   393     _current += _datalen + 1;   // skip the embedded data & header
   394   } else {
   395     _databuf = _current->immediate();
   396     _data = &_databuf;
   397     _datalen = 1;
   398     _current++;                 // skip the header
   399   }
   400   // The client will see the following relocInfo, whatever that is.
   401   // It is the reloc to which the preceding data applies.
   402 }
   405 void RelocIterator::initialize_misc() {
   406   set_has_current(false);
   407   for (int i = (int) CodeBuffer::SECT_FIRST; i < (int) CodeBuffer::SECT_LIMIT; i++) {
   408     _section_start[i] = NULL;  // these will be lazily computed, if needed
   409     _section_end  [i] = NULL;
   410   }
   411 }
   414 Relocation* RelocIterator::reloc() {
   415   // (take the "switch" out-of-line)
   416   relocInfo::relocType t = type();
   417   if (false) {}
   418   #define EACH_TYPE(name)                             \
   419   else if (t == relocInfo::name##_type) {             \
   420     return name##_reloc();                            \
   421   }
   422   APPLY_TO_RELOCATIONS(EACH_TYPE);
   423   #undef EACH_TYPE
   424   assert(t == relocInfo::none, "must be padding");
   425   return new(_rh) Relocation();
   426 }
   429 //////// Methods for flyweight Relocation types
   432 RelocationHolder RelocationHolder::plus(int offset) const {
   433   if (offset != 0) {
   434     switch (type()) {
   435     case relocInfo::none:
   436       break;
   437     case relocInfo::oop_type:
   438       {
   439         oop_Relocation* r = (oop_Relocation*)reloc();
   440         return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
   441       }
   442     default:
   443       ShouldNotReachHere();
   444     }
   445   }
   446   return (*this);
   447 }
   450 void Relocation::guarantee_size() {
   451   guarantee(false, "Make _relocbuf bigger!");
   452 }
   454     // some relocations can compute their own values
   455 address Relocation::value() {
   456   ShouldNotReachHere();
   457   return NULL;
   458 }
   461 void Relocation::set_value(address x) {
   462   ShouldNotReachHere();
   463 }
   466 RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
   467   if (rtype == relocInfo::none)  return RelocationHolder::none;
   468   relocInfo ri = relocInfo(rtype, 0);
   469   RelocIterator itr;
   470   itr.set_current(ri);
   471   itr.reloc();
   472   return itr._rh;
   473 }
   475 int32_t Relocation::runtime_address_to_index(address runtime_address) {
   476   assert(!is_reloc_index((intptr_t)runtime_address), "must not look like an index");
   478   if (runtime_address == NULL)  return 0;
   480   StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
   481   if (p != NULL && p->begin() == runtime_address) {
   482     assert(is_reloc_index(p->index()), "there must not be too many stubs");
   483     return (int32_t)p->index();
   484   } else {
   485     // Known "miscellaneous" non-stub pointers:
   486     // os::get_polling_page(), SafepointSynchronize::address_of_state()
   487     if (PrintRelocations) {
   488       tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
   489     }
   490 #ifndef _LP64
   491     return (int32_t) (intptr_t)runtime_address;
   492 #else
   493     // didn't fit return non-index
   494     return -1;
   495 #endif /* _LP64 */
   496   }
   497 }
   500 address Relocation::index_to_runtime_address(int32_t index) {
   501   if (index == 0)  return NULL;
   503   if (is_reloc_index(index)) {
   504     StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
   505     assert(p != NULL, "there must be a stub for this index");
   506     return p->begin();
   507   } else {
   508 #ifndef _LP64
   509     // this only works on 32bit machines
   510     return (address) ((intptr_t) index);
   511 #else
   512     fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
   513     return NULL;
   514 #endif /* _LP64 */
   515   }
   516 }
   518 address Relocation::old_addr_for(address newa,
   519                                  const CodeBuffer* src, CodeBuffer* dest) {
   520   int sect = dest->section_index_of(newa);
   521   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
   522   address ostart = src->code_section(sect)->start();
   523   address nstart = dest->code_section(sect)->start();
   524   return ostart + (newa - nstart);
   525 }
   527 address Relocation::new_addr_for(address olda,
   528                                  const CodeBuffer* src, CodeBuffer* dest) {
   529   debug_only(const CodeBuffer* src0 = src);
   530   int sect = CodeBuffer::SECT_NONE;
   531   // Look for olda in the source buffer, and all previous incarnations
   532   // if the source buffer has been expanded.
   533   for (; src != NULL; src = src->before_expand()) {
   534     sect = src->section_index_of(olda);
   535     if (sect != CodeBuffer::SECT_NONE)  break;
   536   }
   537   guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
   538   address ostart = src->code_section(sect)->start();
   539   address nstart = dest->code_section(sect)->start();
   540   return nstart + (olda - ostart);
   541 }
   543 void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
   544   address addr0 = addr;
   545   if (addr0 == NULL || dest->allocates2(addr0))  return;
   546   CodeBuffer* cb = dest->outer();
   547   addr = new_addr_for(addr0, cb, cb);
   548   assert(allow_other_sections || dest->contains2(addr),
   549          "addr must be in required section");
   550 }
   553 void CallRelocation::set_destination(address x) {
   554   pd_set_call_destination(x);
   555 }
   557 void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   558   // Usually a self-relative reference to an external routine.
   559   // On some platforms, the reference is absolute (not self-relative).
   560   // The enhanced use of pd_call_destination sorts this all out.
   561   address orig_addr = old_addr_for(addr(), src, dest);
   562   address callee    = pd_call_destination(orig_addr);
   563   // Reassert the callee address, this time in the new copy of the code.
   564   pd_set_call_destination(callee);
   565 }
   568 //// pack/unpack methods
   570 void oop_Relocation::pack_data_to(CodeSection* dest) {
   571   short* p = (short*) dest->locs_end();
   572   p = pack_2_ints_to(p, _oop_index, _offset);
   573   dest->set_locs_end((relocInfo*) p);
   574 }
   577 void oop_Relocation::unpack_data() {
   578   unpack_2_ints(_oop_index, _offset);
   579 }
   582 void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
   583   short*  p     = (short*) dest->locs_end();
   584   address point =          dest->locs_point();
   586   // Try to make a pointer NULL first.
   587   if (_oop_limit >= point &&
   588       _oop_limit <= point + NativeCall::instruction_size) {
   589     _oop_limit = NULL;
   590   }
   591   // If the _oop_limit is NULL, it "defaults" to the end of the call.
   592   // See ic_call_Relocation::oop_limit() below.
   594   normalize_address(_first_oop, dest);
   595   normalize_address(_oop_limit, dest);
   596   jint x0 = scaled_offset_null_special(_first_oop, point);
   597   jint x1 = scaled_offset_null_special(_oop_limit, point);
   598   p = pack_2_ints_to(p, x0, x1);
   599   dest->set_locs_end((relocInfo*) p);
   600 }
   603 void virtual_call_Relocation::unpack_data() {
   604   jint x0, x1; unpack_2_ints(x0, x1);
   605   address point = addr();
   606   _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
   607   _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
   608 }
   611 void static_stub_Relocation::pack_data_to(CodeSection* dest) {
   612   short* p = (short*) dest->locs_end();
   613   CodeSection* insts = dest->outer()->insts();
   614   normalize_address(_static_call, insts);
   615   p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
   616   dest->set_locs_end((relocInfo*) p);
   617 }
   619 void static_stub_Relocation::unpack_data() {
   620   address base = binding()->section_start(CodeBuffer::SECT_INSTS);
   621   _static_call = address_from_scaled_offset(unpack_1_int(), base);
   622 }
   625 void external_word_Relocation::pack_data_to(CodeSection* dest) {
   626   short* p = (short*) dest->locs_end();
   627   int32_t index = runtime_address_to_index(_target);
   628 #ifndef _LP64
   629   p = pack_1_int_to(p, index);
   630 #else
   631   if (is_reloc_index(index)) {
   632     p = pack_2_ints_to(p, index, 0);
   633   } else {
   634     jlong t = (jlong) _target;
   635     int32_t lo = low(t);
   636     int32_t hi = high(t);
   637     p = pack_2_ints_to(p, lo, hi);
   638     DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
   639     assert(!is_reloc_index(t1) && (address) t1 == _target, "not symmetric");
   640   }
   641 #endif /* _LP64 */
   642   dest->set_locs_end((relocInfo*) p);
   643 }
   646 void external_word_Relocation::unpack_data() {
   647 #ifndef _LP64
   648   _target = index_to_runtime_address(unpack_1_int());
   649 #else
   650   int32_t lo, hi;
   651   unpack_2_ints(lo, hi);
   652   jlong t = jlong_from(hi, lo);;
   653   if (is_reloc_index(t)) {
   654     _target = index_to_runtime_address(t);
   655   } else {
   656     _target = (address) t;
   657   }
   658 #endif /* _LP64 */
   659 }
   662 void internal_word_Relocation::pack_data_to(CodeSection* dest) {
   663   short* p = (short*) dest->locs_end();
   664   normalize_address(_target, dest, true);
   666   // Check whether my target address is valid within this section.
   667   // If not, strengthen the relocation type to point to another section.
   668   int sindex = _section;
   669   if (sindex == CodeBuffer::SECT_NONE && _target != NULL
   670       && (!dest->allocates(_target) || _target == dest->locs_point())) {
   671     sindex = dest->outer()->section_index_of(_target);
   672     guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
   673     relocInfo* base = dest->locs_end() - 1;
   674     assert(base->type() == this->type(), "sanity");
   675     // Change the written type, to be section_word_type instead.
   676     base->set_type(relocInfo::section_word_type);
   677   }
   679   // Note: An internal_word relocation cannot refer to its own instruction,
   680   // because we reserve "0" to mean that the pointer itself is embedded
   681   // in the code stream.  We use a section_word relocation for such cases.
   683   if (sindex == CodeBuffer::SECT_NONE) {
   684     assert(type() == relocInfo::internal_word_type, "must be base class");
   685     guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
   686     jint x0 = scaled_offset_null_special(_target, dest->locs_point());
   687     assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
   688     p = pack_1_int_to(p, x0);
   689   } else {
   690     assert(_target != NULL, "sanity");
   691     CodeSection* sect = dest->outer()->code_section(sindex);
   692     guarantee(sect->allocates2(_target), "must be in correct section");
   693     address base = sect->start();
   694     jint offset = scaled_offset(_target, base);
   695     assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
   696     assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
   697     p = pack_1_int_to(p, (offset << section_width) | sindex);
   698   }
   700   dest->set_locs_end((relocInfo*) p);
   701 }
   704 void internal_word_Relocation::unpack_data() {
   705   jint x0 = unpack_1_int();
   706   _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
   707   _section = CodeBuffer::SECT_NONE;
   708 }
   711 void section_word_Relocation::unpack_data() {
   712   jint    x      = unpack_1_int();
   713   jint    offset = (x >> section_width);
   714   int     sindex = (x & ((1<<section_width)-1));
   715   address base   = binding()->section_start(sindex);
   717   _section = sindex;
   718   _target  = address_from_scaled_offset(offset, base);
   719 }
   722 void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
   723   short* p = (short*) dest->locs_end();
   724   address point = dest->locs_point();
   726   *p++ = _bits;
   728   assert(_target != NULL, "sanity");
   730   if (internal())  normalize_address(_target, dest);
   732   jint target_bits =
   733     (jint)( internal() ? scaled_offset           (_target, point)
   734                        : runtime_address_to_index(_target) );
   735   if (settable()) {
   736     // save space for set_target later
   737     p = add_jint(p, target_bits);
   738   } else {
   739     p = add_var_int(p, target_bits);
   740   }
   742   for (int i = 0; i < instrlen(); i++) {
   743     // put placeholder words until bytes can be saved
   744     p = add_short(p, (short)0x7777);
   745   }
   747   dest->set_locs_end((relocInfo*) p);
   748 }
   751 void breakpoint_Relocation::unpack_data() {
   752   _bits = live_bits();
   754   int targetlen = datalen() - 1 - instrlen();
   755   jint target_bits = 0;
   756   if (targetlen == 0)       target_bits = 0;
   757   else if (targetlen == 1)  target_bits = *(data()+1);
   758   else if (targetlen == 2)  target_bits = relocInfo::jint_from_data(data()+1);
   759   else                      { ShouldNotReachHere(); }
   761   _target = internal() ? address_from_scaled_offset(target_bits, addr())
   762                        : index_to_runtime_address  (target_bits);
   763 }
   766 //// miscellaneous methods
   767 oop* oop_Relocation::oop_addr() {
   768   int n = _oop_index;
   769   if (n == 0) {
   770     // oop is stored in the code stream
   771     return (oop*) pd_address_in_code();
   772   } else {
   773     // oop is stored in table at nmethod::oops_begin
   774     return code()->oop_addr_at(n);
   775   }
   776 }
   779 oop oop_Relocation::oop_value() {
   780   oop v = *oop_addr();
   781   // clean inline caches store a special pseudo-null
   782   if (v == (oop)Universe::non_oop_word())  v = NULL;
   783   return v;
   784 }
   787 void oop_Relocation::fix_oop_relocation() {
   788   if (!oop_is_immediate()) {
   789     // get the oop from the pool, and re-insert it into the instruction:
   790     set_value(value());
   791   }
   792 }
   795 void oop_Relocation::verify_oop_relocation() {
   796   if (!oop_is_immediate()) {
   797     // get the oop from the pool, and re-insert it into the instruction:
   798     verify_value(value());
   799   }
   800 }
   803 RelocIterator virtual_call_Relocation::parse_ic(nmethod* &nm, address &ic_call, address &first_oop,
   804                                                 oop* &oop_addr, bool *is_optimized) {
   805   assert(ic_call != NULL, "ic_call address must be set");
   806   assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
   807   if (nm == NULL) {
   808     CodeBlob* code;
   809     if (ic_call != NULL) {
   810       code = CodeCache::find_blob(ic_call);
   811     } else if (first_oop != NULL) {
   812       code = CodeCache::find_blob(first_oop);
   813     }
   814     nm = code->as_nmethod_or_null();
   815     assert(nm != NULL, "address to parse must be in nmethod");
   816   }
   817   assert(ic_call   == NULL || nm->contains(ic_call),   "must be in nmethod");
   818   assert(first_oop == NULL || nm->contains(first_oop), "must be in nmethod");
   820   address oop_limit = NULL;
   822   if (ic_call != NULL) {
   823     // search for the ic_call at the given address
   824     RelocIterator iter(nm, ic_call, ic_call+1);
   825     bool ret = iter.next();
   826     assert(ret == true, "relocInfo must exist at this address");
   827     assert(iter.addr() == ic_call, "must find ic_call");
   828     if (iter.type() == relocInfo::virtual_call_type) {
   829       virtual_call_Relocation* r = iter.virtual_call_reloc();
   830       first_oop = r->first_oop();
   831       oop_limit = r->oop_limit();
   832       *is_optimized = false;
   833     } else {
   834       assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
   835       *is_optimized = true;
   836       oop_addr = NULL;
   837       first_oop = NULL;
   838       return iter;
   839     }
   840   }
   842   // search for the first_oop, to get its oop_addr
   843   RelocIterator all_oops(nm, first_oop);
   844   RelocIterator iter = all_oops;
   845   iter.set_limit(first_oop+1);
   846   bool found_oop = false;
   847   while (iter.next()) {
   848     if (iter.type() == relocInfo::oop_type) {
   849       assert(iter.addr() == first_oop, "must find first_oop");
   850       oop_addr = iter.oop_reloc()->oop_addr();
   851       found_oop = true;
   852       break;
   853     }
   854   }
   855   assert(found_oop, "must find first_oop");
   857   bool did_reset = false;
   858   while (ic_call == NULL) {
   859     // search forward for the ic_call matching the given first_oop
   860     while (iter.next()) {
   861       if (iter.type() == relocInfo::virtual_call_type) {
   862         virtual_call_Relocation* r = iter.virtual_call_reloc();
   863         if (r->first_oop() == first_oop) {
   864           ic_call   = r->addr();
   865           oop_limit = r->oop_limit();
   866           break;
   867         }
   868       }
   869     }
   870     guarantee(!did_reset, "cannot find ic_call");
   871     iter = RelocIterator(nm); // search the whole nmethod
   872     did_reset = true;
   873   }
   875   assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
   876   all_oops.set_limit(oop_limit);
   877   return all_oops;
   878 }
   881 address virtual_call_Relocation::first_oop() {
   882   assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
   883   return _first_oop;
   884 }
   887 address virtual_call_Relocation::oop_limit() {
   888   if (_oop_limit == NULL)
   889     return addr() + NativeCall::instruction_size;
   890   else
   891     return _oop_limit;
   892 }
   896 void virtual_call_Relocation::clear_inline_cache() {
   897   // No stubs for ICs
   898   // Clean IC
   899   ResourceMark rm;
   900   CompiledIC* icache = CompiledIC_at(this);
   901   icache->set_to_clean();
   902 }
   905 void opt_virtual_call_Relocation::clear_inline_cache() {
   906   // No stubs for ICs
   907   // Clean IC
   908   ResourceMark rm;
   909   CompiledIC* icache = CompiledIC_at(this);
   910   icache->set_to_clean();
   911 }
   914 address opt_virtual_call_Relocation::static_stub() {
   915   // search for the static stub who points back to this static call
   916   address static_call_addr = addr();
   917   RelocIterator iter(code());
   918   while (iter.next()) {
   919     if (iter.type() == relocInfo::static_stub_type) {
   920       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
   921         return iter.addr();
   922       }
   923     }
   924   }
   925   return NULL;
   926 }
   929 void static_call_Relocation::clear_inline_cache() {
   930   // Safe call site info
   931   CompiledStaticCall* handler = compiledStaticCall_at(this);
   932   handler->set_to_clean();
   933 }
   936 address static_call_Relocation::static_stub() {
   937   // search for the static stub who points back to this static call
   938   address static_call_addr = addr();
   939   RelocIterator iter(code());
   940   while (iter.next()) {
   941     if (iter.type() == relocInfo::static_stub_type) {
   942       if (iter.static_stub_reloc()->static_call() == static_call_addr) {
   943         return iter.addr();
   944       }
   945     }
   946   }
   947   return NULL;
   948 }
   951 void static_stub_Relocation::clear_inline_cache() {
   952   // Call stub is only used when calling the interpreted code.
   953   // It does not really need to be cleared, except that we want to clean out the methodoop.
   954   CompiledStaticCall::set_stub_to_clean(this);
   955 }
   958 void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   959   address target = _target;
   960   if (target == NULL) {
   961     // An absolute embedded reference to an external location,
   962     // which means there is nothing to fix here.
   963     return;
   964   }
   965   // Probably this reference is absolute, not relative, so the
   966   // following is probably a no-op.
   967   assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
   968   set_value(target);
   969 }
   972 address external_word_Relocation::target() {
   973   address target = _target;
   974   if (target == NULL) {
   975     target = pd_get_address_from_code();
   976   }
   977   return target;
   978 }
   981 void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
   982   address target = _target;
   983   if (target == NULL) {
   984     if (addr_in_const()) {
   985       target = new_addr_for(*(address*)addr(), src, dest);
   986     } else {
   987       target = new_addr_for(pd_get_address_from_code(), src, dest);
   988     }
   989   }
   990   set_value(target);
   991 }
   994 address internal_word_Relocation::target() {
   995   address target = _target;
   996   if (target == NULL) {
   997     target = pd_get_address_from_code();
   998   }
   999   return target;
  1003 breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
  1004   bool active    = false;
  1005   bool enabled   = (kind == initialization);
  1006   bool removable = (kind != safepoint);
  1007   bool settable  = (target == NULL);
  1009   int bits = kind;
  1010   if (enabled)    bits |= enabled_state;
  1011   if (internal)   bits |= internal_attr;
  1012   if (removable)  bits |= removable_attr;
  1013   if (settable)   bits |= settable_attr;
  1015   _bits = bits | high_bit;
  1016   _target = target;
  1018   assert(this->kind()      == kind,      "kind encoded");
  1019   assert(this->enabled()   == enabled,   "enabled encoded");
  1020   assert(this->active()    == active,    "active encoded");
  1021   assert(this->internal()  == internal,  "internal encoded");
  1022   assert(this->removable() == removable, "removable encoded");
  1023   assert(this->settable()  == settable,  "settable encoded");
  1027 address breakpoint_Relocation::target() const {
  1028   return _target;
  1032 void breakpoint_Relocation::set_target(address x) {
  1033   assert(settable(), "must be settable");
  1034   jint target_bits =
  1035     (jint)(internal() ? scaled_offset           (x, addr())
  1036                       : runtime_address_to_index(x));
  1037   short* p = &live_bits() + 1;
  1038   p = add_jint(p, target_bits);
  1039   assert(p == instrs(), "new target must fit");
  1040   _target = x;
  1044 void breakpoint_Relocation::set_enabled(bool b) {
  1045   if (enabled() == b) return;
  1047   if (b) {
  1048     set_bits(bits() | enabled_state);
  1049   } else {
  1050     set_active(false);          // remove the actual breakpoint insn, if any
  1051     set_bits(bits() & ~enabled_state);
  1056 void breakpoint_Relocation::set_active(bool b) {
  1057   assert(!b || enabled(), "cannot activate a disabled breakpoint");
  1059   if (active() == b) return;
  1061   // %%% should probably seize a lock here (might not be the right lock)
  1062   //MutexLockerEx ml_patch(Patching_lock, true);
  1063   //if (active() == b)  return;         // recheck state after locking
  1065   if (b) {
  1066     set_bits(bits() | active_state);
  1067     if (instrlen() == 0)
  1068       fatal("breakpoints in original code must be undoable");
  1069     pd_swap_in_breakpoint (addr(), instrs(), instrlen());
  1070   } else {
  1071     set_bits(bits() & ~active_state);
  1072     pd_swap_out_breakpoint(addr(), instrs(), instrlen());
  1077 //---------------------------------------------------------------------------------
  1078 // Non-product code
  1080 #ifndef PRODUCT
  1082 static const char* reloc_type_string(relocInfo::relocType t) {
  1083   switch (t) {
  1084   #define EACH_CASE(name) \
  1085   case relocInfo::name##_type: \
  1086     return #name;
  1088   APPLY_TO_RELOCATIONS(EACH_CASE);
  1089   #undef EACH_CASE
  1091   case relocInfo::none:
  1092     return "none";
  1093   case relocInfo::data_prefix_tag:
  1094     return "prefix";
  1095   default:
  1096     return "UNKNOWN RELOC TYPE";
  1101 void RelocIterator::print_current() {
  1102   if (!has_current()) {
  1103     tty->print_cr("(no relocs)");
  1104     return;
  1106   tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT " offset=%d",
  1107              _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr, _current->addr_offset());
  1108   if (current()->format() != 0)
  1109     tty->print(" format=%d", current()->format());
  1110   if (datalen() == 1) {
  1111     tty->print(" data=%d", data()[0]);
  1112   } else if (datalen() > 0) {
  1113     tty->print(" data={");
  1114     for (int i = 0; i < datalen(); i++) {
  1115       tty->print("%04x", data()[i] & 0xFFFF);
  1117     tty->print("}");
  1119   tty->print("]");
  1120   switch (type()) {
  1121   case relocInfo::oop_type:
  1123       oop_Relocation* r = oop_reloc();
  1124       oop* oop_addr  = NULL;
  1125       oop  raw_oop   = NULL;
  1126       oop  oop_value = NULL;
  1127       if (code() != NULL || r->oop_is_immediate()) {
  1128         oop_addr  = r->oop_addr();
  1129         raw_oop   = *oop_addr;
  1130         oop_value = r->oop_value();
  1132       tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
  1133                  oop_addr, (address)raw_oop, r->offset());
  1134       // Do not print the oop by default--we want this routine to
  1135       // work even during GC or other inconvenient times.
  1136       if (WizardMode && oop_value != NULL) {
  1137         tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
  1138         oop_value->print_value_on(tty);
  1140       break;
  1142   case relocInfo::external_word_type:
  1143   case relocInfo::internal_word_type:
  1144   case relocInfo::section_word_type:
  1146       DataRelocation* r = (DataRelocation*) reloc();
  1147       tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
  1148       break;
  1150   case relocInfo::static_call_type:
  1151   case relocInfo::runtime_call_type:
  1153       CallRelocation* r = (CallRelocation*) reloc();
  1154       tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
  1155       break;
  1157   case relocInfo::virtual_call_type:
  1159       virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
  1160       tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
  1161                  r->destination(), r->first_oop(), r->oop_limit());
  1162       break;
  1164   case relocInfo::static_stub_type:
  1166       static_stub_Relocation* r = (static_stub_Relocation*) reloc();
  1167       tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
  1168       break;
  1171   tty->cr();
  1175 void RelocIterator::print() {
  1176   RelocIterator save_this = (*this);
  1177   relocInfo* scan = _current;
  1178   if (!has_current())  scan += 1;  // nothing to scan here!
  1180   bool skip_next = has_current();
  1181   bool got_next;
  1182   while (true) {
  1183     got_next = (skip_next || next());
  1184     skip_next = false;
  1186     tty->print("         @" INTPTR_FORMAT ": ", scan);
  1187     relocInfo* newscan = _current+1;
  1188     if (!has_current())  newscan -= 1;  // nothing to scan here!
  1189     while (scan < newscan) {
  1190       tty->print("%04x", *(short*)scan & 0xFFFF);
  1191       scan++;
  1193     tty->cr();
  1195     if (!got_next)  break;
  1196     print_current();
  1199   (*this) = save_this;
  1202 // For the debugger:
  1203 extern "C"
  1204 void print_blob_locs(nmethod* nm) {
  1205   nm->print();
  1206   RelocIterator iter(nm);
  1207   iter.print();
  1209 extern "C"
  1210 void print_buf_locs(CodeBuffer* cb) {
  1211   FlagSetting fs(PrintRelocations, true);
  1212   cb->print();
  1214 #endif // !PRODUCT

mercurial