src/cpu/sparc/vm/stubGenerator_sparc.cpp

Wed, 07 Jan 2009 11:23:28 -0800

author
kvn
date
Wed, 07 Jan 2009 11:23:28 -0800
changeset 986
6c4cda924d2e
parent 857
05db98ed59ba
child 1077
660978a2a31a
permissions
-rw-r--r--

6790182: matcher.cpp:1375: assert(false,"bad AD file")
Summary: Add a match rule for regD_low in regD definition.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_stubGenerator_sparc.cpp.incl"
    28 // Declaration and definition of StubGenerator (no .hpp file).
    29 // For a more detailed description of the stub routine structure
    30 // see the comment in stubRoutines.hpp.
    32 #define __ _masm->
    34 #ifdef PRODUCT
    35 #define BLOCK_COMMENT(str) /* nothing */
    36 #else
    37 #define BLOCK_COMMENT(str) __ block_comment(str)
    38 #endif
    40 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    42 // Note:  The register L7 is used as L7_thread_cache, and may not be used
    43 //        any other way within this module.
    46 static const Register& Lstub_temp = L2;
    48 // -------------------------------------------------------------------------------------------------------------------------
    49 // Stub Code definitions
    51 static address handle_unsafe_access() {
    52   JavaThread* thread = JavaThread::current();
    53   address pc  = thread->saved_exception_pc();
    54   address npc = thread->saved_exception_npc();
    55   // pc is the instruction which we must emulate
    56   // doing a no-op is fine:  return garbage from the load
    58   // request an async exception
    59   thread->set_pending_unsafe_access_error();
    61   // return address of next instruction to execute
    62   return npc;
    63 }
    65 class StubGenerator: public StubCodeGenerator {
    66  private:
    68 #ifdef PRODUCT
    69 #define inc_counter_np(a,b,c) (0)
    70 #else
    71   void inc_counter_np_(int& counter, Register t1, Register t2) {
    72     Address counter_addr(t2, (address) &counter);
    73     __ sethi(counter_addr);
    74     __ ld(counter_addr, t1);
    75     __ inc(t1);
    76     __ st(t1, counter_addr);
    77   }
    78 #define inc_counter_np(counter, t1, t2) \
    79   BLOCK_COMMENT("inc_counter " #counter); \
    80   inc_counter_np_(counter, t1, t2);
    81 #endif
    83   //----------------------------------------------------------------------------------------------------
    84   // Call stubs are used to call Java from C
    86   address generate_call_stub(address& return_pc) {
    87     StubCodeMark mark(this, "StubRoutines", "call_stub");
    88     address start = __ pc();
    90     // Incoming arguments:
    91     //
    92     // o0         : call wrapper address
    93     // o1         : result (address)
    94     // o2         : result type
    95     // o3         : method
    96     // o4         : (interpreter) entry point
    97     // o5         : parameters (address)
    98     // [sp + 0x5c]: parameter size (in words)
    99     // [sp + 0x60]: thread
   100     //
   101     // +---------------+ <--- sp + 0
   102     // |               |
   103     // . reg save area .
   104     // |               |
   105     // +---------------+ <--- sp + 0x40
   106     // |               |
   107     // . extra 7 slots .
   108     // |               |
   109     // +---------------+ <--- sp + 0x5c
   110     // |  param. size  |
   111     // +---------------+ <--- sp + 0x60
   112     // |    thread     |
   113     // +---------------+
   114     // |               |
   116     // note: if the link argument position changes, adjust
   117     //       the code in frame::entry_frame_call_wrapper()
   119     const Argument link           = Argument(0, false); // used only for GC
   120     const Argument result         = Argument(1, false);
   121     const Argument result_type    = Argument(2, false);
   122     const Argument method         = Argument(3, false);
   123     const Argument entry_point    = Argument(4, false);
   124     const Argument parameters     = Argument(5, false);
   125     const Argument parameter_size = Argument(6, false);
   126     const Argument thread         = Argument(7, false);
   128     // setup thread register
   129     __ ld_ptr(thread.as_address(), G2_thread);
   130     __ reinit_heapbase();
   132 #ifdef ASSERT
   133     // make sure we have no pending exceptions
   134     { const Register t = G3_scratch;
   135       Label L;
   136       __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
   137       __ br_null(t, false, Assembler::pt, L);
   138       __ delayed()->nop();
   139       __ stop("StubRoutines::call_stub: entered with pending exception");
   140       __ bind(L);
   141     }
   142 #endif
   144     // create activation frame & allocate space for parameters
   145     { const Register t = G3_scratch;
   146       __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
   147       __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
   148       __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
   149       __ sll(t, Interpreter::logStackElementSize(), t);                    // compute number of bytes
   150       __ neg(t);                                                // negate so it can be used with save
   151       __ save(SP, t, SP);                                       // setup new frame
   152     }
   154     // +---------------+ <--- sp + 0
   155     // |               |
   156     // . reg save area .
   157     // |               |
   158     // +---------------+ <--- sp + 0x40
   159     // |               |
   160     // . extra 7 slots .
   161     // |               |
   162     // +---------------+ <--- sp + 0x5c
   163     // |  empty slot   |      (only if parameter size is even)
   164     // +---------------+
   165     // |               |
   166     // .  parameters   .
   167     // |               |
   168     // +---------------+ <--- fp + 0
   169     // |               |
   170     // . reg save area .
   171     // |               |
   172     // +---------------+ <--- fp + 0x40
   173     // |               |
   174     // . extra 7 slots .
   175     // |               |
   176     // +---------------+ <--- fp + 0x5c
   177     // |  param. size  |
   178     // +---------------+ <--- fp + 0x60
   179     // |    thread     |
   180     // +---------------+
   181     // |               |
   183     // pass parameters if any
   184     BLOCK_COMMENT("pass parameters if any");
   185     { const Register src = parameters.as_in().as_register();
   186       const Register dst = Lentry_args;
   187       const Register tmp = G3_scratch;
   188       const Register cnt = G4_scratch;
   190       // test if any parameters & setup of Lentry_args
   191       Label exit;
   192       __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
   193       __ add( FP, STACK_BIAS, dst );
   194       __ tst(cnt);
   195       __ br(Assembler::zero, false, Assembler::pn, exit);
   196       __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args
   198       // copy parameters if any
   199       Label loop;
   200       __ BIND(loop);
   201       // Store tag first.
   202       if (TaggedStackInterpreter) {
   203         __ ld_ptr(src, 0, tmp);
   204         __ add(src, BytesPerWord, src);  // get next
   205         __ st_ptr(tmp, dst, Interpreter::tag_offset_in_bytes());
   206       }
   207       // Store parameter value
   208       __ ld_ptr(src, 0, tmp);
   209       __ add(src, BytesPerWord, src);
   210       __ st_ptr(tmp, dst, Interpreter::value_offset_in_bytes());
   211       __ deccc(cnt);
   212       __ br(Assembler::greater, false, Assembler::pt, loop);
   213       __ delayed()->sub(dst, Interpreter::stackElementSize(), dst);
   215       // done
   216       __ BIND(exit);
   217     }
   219     // setup parameters, method & call Java function
   220 #ifdef ASSERT
   221     // layout_activation_impl checks it's notion of saved SP against
   222     // this register, so if this changes update it as well.
   223     const Register saved_SP = Lscratch;
   224     __ mov(SP, saved_SP);                               // keep track of SP before call
   225 #endif
   227     // setup parameters
   228     const Register t = G3_scratch;
   229     __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
   230     __ sll(t, Interpreter::logStackElementSize(), t);            // compute number of bytes
   231     __ sub(FP, t, Gargs);                              // setup parameter pointer
   232 #ifdef _LP64
   233     __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
   234 #endif
   235     __ mov(SP, O5_savedSP);
   238     // do the call
   239     //
   240     // the following register must be setup:
   241     //
   242     // G2_thread
   243     // G5_method
   244     // Gargs
   245     BLOCK_COMMENT("call Java function");
   246     __ jmpl(entry_point.as_in().as_register(), G0, O7);
   247     __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method
   249     BLOCK_COMMENT("call_stub_return_address:");
   250     return_pc = __ pc();
   252     // The callee, if it wasn't interpreted, can return with SP changed so
   253     // we can no longer assert of change of SP.
   255     // store result depending on type
   256     // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
   257     //  is treated as T_INT)
   258     { const Register addr = result     .as_in().as_register();
   259       const Register type = result_type.as_in().as_register();
   260       Label is_long, is_float, is_double, is_object, exit;
   261       __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
   262       __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
   263       __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
   264       __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
   265       __ delayed()->nop();
   267       // store int result
   268       __ st(O0, addr, G0);
   270       __ BIND(exit);
   271       __ ret();
   272       __ delayed()->restore();
   274       __ BIND(is_object);
   275       __ ba(false, exit);
   276       __ delayed()->st_ptr(O0, addr, G0);
   278       __ BIND(is_float);
   279       __ ba(false, exit);
   280       __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
   282       __ BIND(is_double);
   283       __ ba(false, exit);
   284       __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
   286       __ BIND(is_long);
   287 #ifdef _LP64
   288       __ ba(false, exit);
   289       __ delayed()->st_long(O0, addr, G0);      // store entire long
   290 #else
   291 #if defined(COMPILER2)
   292   // All return values are where we want them, except for Longs.  C2 returns
   293   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   294   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   295   // build we simply always use G1.
   296   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   297   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   298   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   300       __ ba(false, exit);
   301       __ delayed()->stx(G1, addr, G0);  // store entire long
   302 #else
   303       __ st(O1, addr, BytesPerInt);
   304       __ ba(false, exit);
   305       __ delayed()->st(O0, addr, G0);
   306 #endif /* COMPILER2 */
   307 #endif /* _LP64 */
   308      }
   309      return start;
   310   }
   313   //----------------------------------------------------------------------------------------------------
   314   // Return point for a Java call if there's an exception thrown in Java code.
   315   // The exception is caught and transformed into a pending exception stored in
   316   // JavaThread that can be tested from within the VM.
   317   //
   318   // Oexception: exception oop
   320   address generate_catch_exception() {
   321     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   323     address start = __ pc();
   324     // verify that thread corresponds
   325     __ verify_thread();
   327     const Register& temp_reg = Gtemp;
   328     Address pending_exception_addr    (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   329     Address exception_file_offset_addr(G2_thread, 0, in_bytes(Thread::exception_file_offset   ()));
   330     Address exception_line_offset_addr(G2_thread, 0, in_bytes(Thread::exception_line_offset   ()));
   332     // set pending exception
   333     __ verify_oop(Oexception);
   334     __ st_ptr(Oexception, pending_exception_addr);
   335     __ set((intptr_t)__FILE__, temp_reg);
   336     __ st_ptr(temp_reg, exception_file_offset_addr);
   337     __ set((intptr_t)__LINE__, temp_reg);
   338     __ st(temp_reg, exception_line_offset_addr);
   340     // complete return to VM
   341     assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
   343     Address stub_ret(temp_reg, StubRoutines::_call_stub_return_address);
   344     __ jump_to(stub_ret);
   345     __ delayed()->nop();
   347     return start;
   348   }
   351   //----------------------------------------------------------------------------------------------------
   352   // Continuation point for runtime calls returning with a pending exception
   353   // The pending exception check happened in the runtime or native call stub
   354   // The pending exception in Thread is converted into a Java-level exception
   355   //
   356   // Contract with Java-level exception handler: O0 = exception
   357   //                                             O1 = throwing pc
   359   address generate_forward_exception() {
   360     StubCodeMark mark(this, "StubRoutines", "forward_exception");
   361     address start = __ pc();
   363     // Upon entry, O7 has the return address returning into Java
   364     // (interpreted or compiled) code; i.e. the return address
   365     // becomes the throwing pc.
   367     const Register& handler_reg = Gtemp;
   369     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   371 #ifdef ASSERT
   372     // make sure that this code is only executed if there is a pending exception
   373     { Label L;
   374       __ ld_ptr(exception_addr, Gtemp);
   375       __ br_notnull(Gtemp, false, Assembler::pt, L);
   376       __ delayed()->nop();
   377       __ stop("StubRoutines::forward exception: no pending exception (1)");
   378       __ bind(L);
   379     }
   380 #endif
   382     // compute exception handler into handler_reg
   383     __ get_thread();
   384     __ ld_ptr(exception_addr, Oexception);
   385     __ verify_oop(Oexception);
   386     __ save_frame(0);             // compensates for compiler weakness
   387     __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
   388     BLOCK_COMMENT("call exception_handler_for_return_address");
   389     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Lscratch);
   390     __ mov(O0, handler_reg);
   391     __ restore();                 // compensates for compiler weakness
   393     __ ld_ptr(exception_addr, Oexception);
   394     __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
   396 #ifdef ASSERT
   397     // make sure exception is set
   398     { Label L;
   399       __ br_notnull(Oexception, false, Assembler::pt, L);
   400       __ delayed()->nop();
   401       __ stop("StubRoutines::forward exception: no pending exception (2)");
   402       __ bind(L);
   403     }
   404 #endif
   405     // jump to exception handler
   406     __ jmp(handler_reg, 0);
   407     // clear pending exception
   408     __ delayed()->st_ptr(G0, exception_addr);
   410     return start;
   411   }
   414   //------------------------------------------------------------------------------------------------------------------------
   415   // Continuation point for throwing of implicit exceptions that are not handled in
   416   // the current activation. Fabricates an exception oop and initiates normal
   417   // exception dispatching in this frame. Only callee-saved registers are preserved
   418   // (through the normal register window / RegisterMap handling).
   419   // If the compiler needs all registers to be preserved between the fault
   420   // point and the exception handler then it must assume responsibility for that in
   421   // AbstractCompiler::continuation_for_implicit_null_exception or
   422   // continuation_for_implicit_division_by_zero_exception. All other implicit
   423   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
   424   // either at call sites or otherwise assume that stack unwinding will be initiated,
   425   // so caller saved registers were assumed volatile in the compiler.
   427   // Note that we generate only this stub into a RuntimeStub, because it needs to be
   428   // properly traversed and ignored during GC, so we change the meaning of the "__"
   429   // macro within this method.
   430 #undef __
   431 #define __ masm->
   433   address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
   434 #ifdef ASSERT
   435     int insts_size = VerifyThread ? 1 * K : 600;
   436 #else
   437     int insts_size = VerifyThread ? 1 * K : 256;
   438 #endif /* ASSERT */
   439     int locs_size  = 32;
   441     CodeBuffer      code(name, insts_size, locs_size);
   442     MacroAssembler* masm = new MacroAssembler(&code);
   444     __ verify_thread();
   446     // This is an inlined and slightly modified version of call_VM
   447     // which has the ability to fetch the return PC out of thread-local storage
   448     __ assert_not_delayed();
   450     // Note that we always push a frame because on the SPARC
   451     // architecture, for all of our implicit exception kinds at call
   452     // sites, the implicit exception is taken before the callee frame
   453     // is pushed.
   454     __ save_frame(0);
   456     int frame_complete = __ offset();
   458     if (restore_saved_exception_pc) {
   459       Address saved_exception_pc(G2_thread, 0, in_bytes(JavaThread::saved_exception_pc_offset()));
   460       __ ld_ptr(saved_exception_pc, I7);
   461       __ sub(I7, frame::pc_return_offset, I7);
   462     }
   464     // Note that we always have a runtime stub frame on the top of stack by this point
   465     Register last_java_sp = SP;
   466     // 64-bit last_java_sp is biased!
   467     __ set_last_Java_frame(last_java_sp, G0);
   468     if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
   469     __ save_thread(noreg);
   470     // do the call
   471     BLOCK_COMMENT("call runtime_entry");
   472     __ call(runtime_entry, relocInfo::runtime_call_type);
   473     if (!VerifyThread)
   474       __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
   475     else
   476       __ delayed()->nop();             // (thread already passed)
   477     __ restore_thread(noreg);
   478     __ reset_last_Java_frame();
   480     // check for pending exceptions. use Gtemp as scratch register.
   481 #ifdef ASSERT
   482     Label L;
   484     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   485     Register scratch_reg = Gtemp;
   486     __ ld_ptr(exception_addr, scratch_reg);
   487     __ br_notnull(scratch_reg, false, Assembler::pt, L);
   488     __ delayed()->nop();
   489     __ should_not_reach_here();
   490     __ bind(L);
   491 #endif // ASSERT
   492     BLOCK_COMMENT("call forward_exception_entry");
   493     __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   494     // we use O7 linkage so that forward_exception_entry has the issuing PC
   495     __ delayed()->restore();
   497     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
   498     return stub->entry_point();
   499   }
   501 #undef __
   502 #define __ _masm->
   505   // Generate a routine that sets all the registers so we
   506   // can tell if the stop routine prints them correctly.
   507   address generate_test_stop() {
   508     StubCodeMark mark(this, "StubRoutines", "test_stop");
   509     address start = __ pc();
   511     int i;
   513     __ save_frame(0);
   515     static jfloat zero = 0.0, one = 1.0;
   517     // put addr in L0, then load through L0 to F0
   518     __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
   519     __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
   521     // use add to put 2..18 in F2..F18
   522     for ( i = 2;  i <= 18;  ++i ) {
   523       __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
   524     }
   526     // Now put double 2 in F16, double 18 in F18
   527     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
   528     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
   530     // use add to put 20..32 in F20..F32
   531     for (i = 20; i < 32; i += 2) {
   532       __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
   533     }
   535     // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
   536     for ( i = 0; i < 8; ++i ) {
   537       if (i < 6) {
   538         __ set(     i, as_iRegister(i));
   539         __ set(16 + i, as_oRegister(i));
   540         __ set(24 + i, as_gRegister(i));
   541       }
   542       __ set( 8 + i, as_lRegister(i));
   543     }
   545     __ stop("testing stop");
   548     __ ret();
   549     __ delayed()->restore();
   551     return start;
   552   }
   555   address generate_stop_subroutine() {
   556     StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
   557     address start = __ pc();
   559     __ stop_subroutine();
   561     return start;
   562   }
   564   address generate_flush_callers_register_windows() {
   565     StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
   566     address start = __ pc();
   568     __ flush_windows();
   569     __ retl(false);
   570     __ delayed()->add( FP, STACK_BIAS, O0 );
   571     // The returned value must be a stack pointer whose register save area
   572     // is flushed, and will stay flushed while the caller executes.
   574     return start;
   575   }
   577   // Helper functions for v8 atomic operations.
   578   //
   579   void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
   580     if (mark_oop_reg == noreg) {
   581       address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
   582       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   583     } else {
   584       assert(scratch_reg != noreg, "just checking");
   585       address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
   586       __ set((intptr_t)lock_ptr, lock_ptr_reg);
   587       __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
   588       __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
   589     }
   590   }
   592   void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   594     get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
   595     __ set(StubRoutines::Sparc::locked, lock_reg);
   596     // Initialize yield counter
   597     __ mov(G0,yield_reg);
   599     __ BIND(retry);
   600     __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
   601     __ br(Assembler::less, false, Assembler::pt, dontyield);
   602     __ delayed()->nop();
   604     // This code can only be called from inside the VM, this
   605     // stub is only invoked from Atomic::add().  We do not
   606     // want to use call_VM, because _last_java_sp and such
   607     // must already be set.
   608     //
   609     // Save the regs and make space for a C call
   610     __ save(SP, -96, SP);
   611     __ save_all_globals_into_locals();
   612     BLOCK_COMMENT("call os::naked_sleep");
   613     __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
   614     __ delayed()->nop();
   615     __ restore_globals_from_locals();
   616     __ restore();
   617     // reset the counter
   618     __ mov(G0,yield_reg);
   620     __ BIND(dontyield);
   622     // try to get lock
   623     __ swap(lock_ptr_reg, 0, lock_reg);
   625     // did we get the lock?
   626     __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
   627     __ br(Assembler::notEqual, true, Assembler::pn, retry);
   628     __ delayed()->add(yield_reg,1,yield_reg);
   630     // yes, got lock. do the operation here.
   631   }
   633   void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
   634     __ st(lock_reg, lock_ptr_reg, 0); // unlock
   635   }
   637   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
   638   //
   639   // Arguments :
   640   //
   641   //      exchange_value: O0
   642   //      dest:           O1
   643   //
   644   // Results:
   645   //
   646   //     O0: the value previously stored in dest
   647   //
   648   address generate_atomic_xchg() {
   649     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   650     address start = __ pc();
   652     if (UseCASForSwap) {
   653       // Use CAS instead of swap, just in case the MP hardware
   654       // prefers to work with just one kind of synch. instruction.
   655       Label retry;
   656       __ BIND(retry);
   657       __ mov(O0, O3);       // scratch copy of exchange value
   658       __ ld(O1, 0, O2);     // observe the previous value
   659       // try to replace O2 with O3
   660       __ cas_under_lock(O1, O2, O3,
   661       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   662       __ cmp(O2, O3);
   663       __ br(Assembler::notEqual, false, Assembler::pn, retry);
   664       __ delayed()->nop();
   666       __ retl(false);
   667       __ delayed()->mov(O2, O0);  // report previous value to caller
   669     } else {
   670       if (VM_Version::v9_instructions_work()) {
   671         __ retl(false);
   672         __ delayed()->swap(O1, 0, O0);
   673       } else {
   674         const Register& lock_reg = O2;
   675         const Register& lock_ptr_reg = O3;
   676         const Register& yield_reg = O4;
   678         Label retry;
   679         Label dontyield;
   681         generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   682         // got the lock, do the swap
   683         __ swap(O1, 0, O0);
   685         generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   686         __ retl(false);
   687         __ delayed()->nop();
   688       }
   689     }
   691     return start;
   692   }
   695   // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
   696   //
   697   // Arguments :
   698   //
   699   //      exchange_value: O0
   700   //      dest:           O1
   701   //      compare_value:  O2
   702   //
   703   // Results:
   704   //
   705   //     O0: the value previously stored in dest
   706   //
   707   // Overwrites (v8): O3,O4,O5
   708   //
   709   address generate_atomic_cmpxchg() {
   710     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   711     address start = __ pc();
   713     // cmpxchg(dest, compare_value, exchange_value)
   714     __ cas_under_lock(O1, O2, O0,
   715       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
   716     __ retl(false);
   717     __ delayed()->nop();
   719     return start;
   720   }
   722   // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
   723   //
   724   // Arguments :
   725   //
   726   //      exchange_value: O1:O0
   727   //      dest:           O2
   728   //      compare_value:  O4:O3
   729   //
   730   // Results:
   731   //
   732   //     O1:O0: the value previously stored in dest
   733   //
   734   // This only works on V9, on V8 we don't generate any
   735   // code and just return NULL.
   736   //
   737   // Overwrites: G1,G2,G3
   738   //
   739   address generate_atomic_cmpxchg_long() {
   740     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   741     address start = __ pc();
   743     if (!VM_Version::supports_cx8())
   744         return NULL;;
   745     __ sllx(O0, 32, O0);
   746     __ srl(O1, 0, O1);
   747     __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
   748     __ sllx(O3, 32, O3);
   749     __ srl(O4, 0, O4);
   750     __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
   751     __ casx(O2, O3, O0);
   752     __ srl(O0, 0, O1);    // unpacked return value in O1:O0
   753     __ retl(false);
   754     __ delayed()->srlx(O0, 32, O0);
   756     return start;
   757   }
   760   // Support for jint Atomic::add(jint add_value, volatile jint* dest).
   761   //
   762   // Arguments :
   763   //
   764   //      add_value: O0   (e.g., +1 or -1)
   765   //      dest:      O1
   766   //
   767   // Results:
   768   //
   769   //     O0: the new value stored in dest
   770   //
   771   // Overwrites (v9): O3
   772   // Overwrites (v8): O3,O4,O5
   773   //
   774   address generate_atomic_add() {
   775     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   776     address start = __ pc();
   777     __ BIND(_atomic_add_stub);
   779     if (VM_Version::v9_instructions_work()) {
   780       Label(retry);
   781       __ BIND(retry);
   783       __ lduw(O1, 0, O2);
   784       __ add(O0,   O2, O3);
   785       __ cas(O1,   O2, O3);
   786       __ cmp(      O2, O3);
   787       __ br(Assembler::notEqual, false, Assembler::pn, retry);
   788       __ delayed()->nop();
   789       __ retl(false);
   790       __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
   791     } else {
   792       const Register& lock_reg = O2;
   793       const Register& lock_ptr_reg = O3;
   794       const Register& value_reg = O4;
   795       const Register& yield_reg = O5;
   797       Label(retry);
   798       Label(dontyield);
   800       generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   801       // got lock, do the increment
   802       __ ld(O1, 0, value_reg);
   803       __ add(O0, value_reg, value_reg);
   804       __ st(value_reg, O1, 0);
   806       // %%% only for RMO and PSO
   807       __ membar(Assembler::StoreStore);
   809       generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
   811       __ retl(false);
   812       __ delayed()->mov(value_reg, O0);
   813     }
   815     return start;
   816   }
   817   Label _atomic_add_stub;  // called from other stubs
   820   // Support for void OrderAccess::fence().
   821   //
   822   address generate_fence() {
   823     StubCodeMark mark(this, "StubRoutines", "fence");
   824     address start = __ pc();
   826     __ membar(Assembler::Membar_mask_bits(Assembler::LoadLoad  | Assembler::LoadStore |
   827                                           Assembler::StoreLoad | Assembler::StoreStore));
   828     __ retl(false);
   829     __ delayed()->nop();
   831     return start;
   832   }
   835   //------------------------------------------------------------------------------------------------------------------------
   836   // The following routine generates a subroutine to throw an asynchronous
   837   // UnknownError when an unsafe access gets a fault that could not be
   838   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   839   //
   840   // Arguments :
   841   //
   842   //      trapping PC:    O7
   843   //
   844   // Results:
   845   //     posts an asynchronous exception, skips the trapping instruction
   846   //
   848   address generate_handler_for_unsafe_access() {
   849     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   850     address start = __ pc();
   852     const int preserve_register_words = (64 * 2);
   853     Address preserve_addr(FP, 0, (-preserve_register_words * wordSize) + STACK_BIAS);
   855     Register Lthread = L7_thread_cache;
   856     int i;
   858     __ save_frame(0);
   859     __ mov(G1, L1);
   860     __ mov(G2, L2);
   861     __ mov(G3, L3);
   862     __ mov(G4, L4);
   863     __ mov(G5, L5);
   864     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   865       __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
   866     }
   868     address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
   869     BLOCK_COMMENT("call handle_unsafe_access");
   870     __ call(entry_point, relocInfo::runtime_call_type);
   871     __ delayed()->nop();
   873     __ mov(L1, G1);
   874     __ mov(L2, G2);
   875     __ mov(L3, G3);
   876     __ mov(L4, G4);
   877     __ mov(L5, G5);
   878     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
   879       __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
   880     }
   882     __ verify_thread();
   884     __ jmp(O0, 0);
   885     __ delayed()->restore();
   887     return start;
   888   }
   891   // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
   892   // Arguments :
   893   //
   894   //      ret  : O0, returned
   895   //      icc/xcc: set as O0 (depending on wordSize)
   896   //      sub  : O1, argument, not changed
   897   //      super: O2, argument, not changed
   898   //      raddr: O7, blown by call
   899   address generate_partial_subtype_check() {
   900     __ align(CodeEntryAlignment);
   901     StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
   902     address start = __ pc();
   903     Label loop, miss;
   905     // Compare super with sub directly, since super is not in its own SSA.
   906     // The compiler used to emit this test, but we fold it in here,
   907     // to increase overall code density, with no real loss of speed.
   908     { Label L;
   909       __ cmp(O1, O2);
   910       __ brx(Assembler::notEqual, false, Assembler::pt, L);
   911       __ delayed()->nop();
   912       __ retl();
   913       __ delayed()->addcc(G0,0,O0); // set Z flags, zero result
   914       __ bind(L);
   915     }
   917 #if defined(COMPILER2) && !defined(_LP64)
   918     // Do not use a 'save' because it blows the 64-bit O registers.
   919     __ add(SP,-4*wordSize,SP);  // Make space for 4 temps (stack must be 2 words aligned)
   920     __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
   921     __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
   922     __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
   923     __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
   924     Register Rret   = O0;
   925     Register Rsub   = O1;
   926     Register Rsuper = O2;
   927 #else
   928     __ save_frame(0);
   929     Register Rret   = I0;
   930     Register Rsub   = I1;
   931     Register Rsuper = I2;
   932 #endif
   934     Register L0_ary_len = L0;
   935     Register L1_ary_ptr = L1;
   936     Register L2_super   = L2;
   937     Register L3_index   = L3;
   939 #ifdef _LP64
   940     Register L4_ooptmp  = L4;
   942     if (UseCompressedOops) {
   943       // this must be under UseCompressedOops check, as we rely upon fact
   944       // that L4 not clobbered in C2 on 32-bit platforms, where we do explicit save
   945       // on stack, see several lines above
   946       __ encode_heap_oop(Rsuper, L4_ooptmp);
   947     }
   948 #endif
   950     inc_counter_np(SharedRuntime::_partial_subtype_ctr, L0, L1);
   952     __ ld_ptr( Rsub, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), L3 );
   953     __ lduw(L3,arrayOopDesc::length_offset_in_bytes(),L0_ary_len);
   954     __ add(L3,arrayOopDesc::base_offset_in_bytes(T_OBJECT),L1_ary_ptr);
   955     __ clr(L3_index);           // zero index
   956     // Load a little early; will load 1 off the end of the array.
   957     // Ok for now; revisit if we have other uses of this routine.
   958     if (UseCompressedOops) {
   959       __ lduw(L1_ary_ptr,0,L2_super);// Will load a little early
   960     } else {
   961       __ ld_ptr(L1_ary_ptr,0,L2_super);// Will load a little early
   962     }
   964     assert(heapOopSize != 0, "heapOopSize should be initialized");
   965     // The scan loop
   966     __ BIND(loop);
   967     __ add(L1_ary_ptr, heapOopSize, L1_ary_ptr); // Bump by OOP size
   968     __ cmp(L3_index,L0_ary_len);
   969     __ br(Assembler::equal,false,Assembler::pn,miss);
   970     __ delayed()->inc(L3_index); // Bump index
   972     if (UseCompressedOops) {
   973 #ifdef  _LP64
   974       __ subcc(L2_super,L4_ooptmp,Rret);   // Check for match; zero in Rret for a hit
   975       __ br( Assembler::notEqual, false, Assembler::pt, loop );
   976       __ delayed()->lduw(L1_ary_ptr,0,L2_super);// Will load a little early
   977 #else
   978       ShouldNotReachHere();
   979 #endif
   980     } else {
   981       __ subcc(L2_super,Rsuper,Rret);   // Check for match; zero in Rret for a hit
   982       __ brx( Assembler::notEqual, false, Assembler::pt, loop );
   983       __ delayed()->ld_ptr(L1_ary_ptr,0,L2_super);// Will load a little early
   984     }
   986     // Got a hit; report success; set cache.  Cache load doesn't
   987     // happen here; for speed it is directly emitted by the compiler.
   988     __ st_ptr( Rsuper, Rsub, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
   990 #if defined(COMPILER2) && !defined(_LP64)
   991     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
   992     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
   993     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
   994     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
   995     __ retl();                  // Result in Rret is zero; flags set to Z
   996     __ delayed()->add(SP,4*wordSize,SP);
   997 #else
   998     __ ret();                   // Result in Rret is zero; flags set to Z
   999     __ delayed()->restore();
  1000 #endif
  1002     // Hit or miss falls through here
  1003     __ BIND(miss);
  1004     __ addcc(G0,1,Rret);        // set NZ flags, NZ result
  1006 #if defined(COMPILER2) && !defined(_LP64)
  1007     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
  1008     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
  1009     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
  1010     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
  1011     __ retl();                  // Result in Rret is != 0; flags set to NZ
  1012     __ delayed()->add(SP,4*wordSize,SP);
  1013 #else
  1014     __ ret();                   // Result in Rret is != 0; flags set to NZ
  1015     __ delayed()->restore();
  1016 #endif
  1018     return start;
  1022   // Called from MacroAssembler::verify_oop
  1023   //
  1024   address generate_verify_oop_subroutine() {
  1025     StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
  1027     address start = __ pc();
  1029     __ verify_oop_subroutine();
  1031     return start;
  1034   static address disjoint_byte_copy_entry;
  1035   static address disjoint_short_copy_entry;
  1036   static address disjoint_int_copy_entry;
  1037   static address disjoint_long_copy_entry;
  1038   static address disjoint_oop_copy_entry;
  1040   static address byte_copy_entry;
  1041   static address short_copy_entry;
  1042   static address int_copy_entry;
  1043   static address long_copy_entry;
  1044   static address oop_copy_entry;
  1046   static address checkcast_copy_entry;
  1048   //
  1049   // Verify that a register contains clean 32-bits positive value
  1050   // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
  1051   //
  1052   //  Input:
  1053   //    Rint  -  32-bits value
  1054   //    Rtmp  -  scratch
  1055   //
  1056   void assert_clean_int(Register Rint, Register Rtmp) {
  1057 #if defined(ASSERT) && defined(_LP64)
  1058     __ signx(Rint, Rtmp);
  1059     __ cmp(Rint, Rtmp);
  1060     __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
  1061 #endif
  1064   //
  1065   //  Generate overlap test for array copy stubs
  1066   //
  1067   //  Input:
  1068   //    O0    -  array1
  1069   //    O1    -  array2
  1070   //    O2    -  element count
  1071   //
  1072   //  Kills temps:  O3, O4
  1073   //
  1074   void array_overlap_test(address no_overlap_target, int log2_elem_size) {
  1075     assert(no_overlap_target != NULL, "must be generated");
  1076     array_overlap_test(no_overlap_target, NULL, log2_elem_size);
  1078   void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
  1079     array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
  1081   void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
  1082     const Register from       = O0;
  1083     const Register to         = O1;
  1084     const Register count      = O2;
  1085     const Register to_from    = O3; // to - from
  1086     const Register byte_count = O4; // count << log2_elem_size
  1088       __ subcc(to, from, to_from);
  1089       __ sll_ptr(count, log2_elem_size, byte_count);
  1090       if (NOLp == NULL)
  1091         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
  1092       else
  1093         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
  1094       __ delayed()->cmp(to_from, byte_count);
  1095       if (NOLp == NULL)
  1096         __ brx(Assembler::greaterEqual, false, Assembler::pt, no_overlap_target);
  1097       else
  1098         __ brx(Assembler::greaterEqual, false, Assembler::pt, (*NOLp));
  1099       __ delayed()->nop();
  1102   //
  1103   //  Generate pre-write barrier for array.
  1104   //
  1105   //  Input:
  1106   //     addr     - register containing starting address
  1107   //     count    - register containing element count
  1108   //     tmp      - scratch register
  1109   //
  1110   //  The input registers are overwritten.
  1111   //
  1112   void gen_write_ref_array_pre_barrier(Register addr, Register count) {
  1113     BarrierSet* bs = Universe::heap()->barrier_set();
  1114     if (bs->has_write_ref_pre_barrier()) {
  1115       assert(bs->has_write_ref_array_pre_opt(),
  1116              "Else unsupported barrier set.");
  1118       __ save_frame(0);
  1119       // Save the necessary global regs... will be used after.
  1120       if (addr->is_global()) {
  1121         __ mov(addr, L0);
  1123       if (count->is_global()) {
  1124         __ mov(count, L1);
  1126       __ mov(addr->after_save(), O0);
  1127       // Get the count into O1
  1128       __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
  1129       __ delayed()->mov(count->after_save(), O1);
  1130       if (addr->is_global()) {
  1131         __ mov(L0, addr);
  1133       if (count->is_global()) {
  1134         __ mov(L1, count);
  1136       __ restore();
  1139   //
  1140   //  Generate post-write barrier for array.
  1141   //
  1142   //  Input:
  1143   //     addr     - register containing starting address
  1144   //     count    - register containing element count
  1145   //     tmp      - scratch register
  1146   //
  1147   //  The input registers are overwritten.
  1148   //
  1149   void gen_write_ref_array_post_barrier(Register addr, Register count,
  1150                                    Register tmp) {
  1151     BarrierSet* bs = Universe::heap()->barrier_set();
  1153     switch (bs->kind()) {
  1154       case BarrierSet::G1SATBCT:
  1155       case BarrierSet::G1SATBCTLogging:
  1157           // Get some new fresh output registers.
  1158           __ save_frame(0);
  1159           __ mov(addr->after_save(), O0);
  1160           __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
  1161           __ delayed()->mov(count->after_save(), O1);
  1162           __ restore();
  1164         break;
  1165       case BarrierSet::CardTableModRef:
  1166       case BarrierSet::CardTableExtension:
  1168           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1169           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1170           assert_different_registers(addr, count, tmp);
  1172           Label L_loop;
  1174           __ sll_ptr(count, LogBytesPerHeapOop, count);
  1175           __ sub(count, BytesPerHeapOop, count);
  1176           __ add(count, addr, count);
  1177           // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
  1178           __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
  1179           __ srl_ptr(count, CardTableModRefBS::card_shift, count);
  1180           __ sub(count, addr, count);
  1181           Address rs(tmp, (address)ct->byte_map_base);
  1182           __ load_address(rs);
  1183         __ BIND(L_loop);
  1184           __ stb(G0, rs.base(), addr);
  1185           __ subcc(count, 1, count);
  1186           __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1187           __ delayed()->add(addr, 1, addr);
  1190         break;
  1191       case BarrierSet::ModRef:
  1192         break;
  1193       default      :
  1194         ShouldNotReachHere();
  1200   // Copy big chunks forward with shift
  1201   //
  1202   // Inputs:
  1203   //   from      - source arrays
  1204   //   to        - destination array aligned to 8-bytes
  1205   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1206   //   count_dec - elements count's decrement equivalent to 16 bytes
  1207   //   L_copy_bytes - copy exit label
  1208   //
  1209   void copy_16_bytes_forward_with_shift(Register from, Register to,
  1210                      Register count, int count_dec, Label& L_copy_bytes) {
  1211     Label L_loop, L_aligned_copy, L_copy_last_bytes;
  1213     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1214       __ andcc(from, 7, G1); // misaligned bytes
  1215       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1216       __ delayed()->nop();
  1218     const Register left_shift  = G1; // left  shift bit counter
  1219     const Register right_shift = G5; // right shift bit counter
  1221       __ sll(G1, LogBitsPerByte, left_shift);
  1222       __ mov(64, right_shift);
  1223       __ sub(right_shift, left_shift, right_shift);
  1225     //
  1226     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1227     // to form 2 aligned 8-bytes chunks to store.
  1228     //
  1229       __ deccc(count, count_dec); // Pre-decrement 'count'
  1230       __ andn(from, 7, from);     // Align address
  1231       __ ldx(from, 0, O3);
  1232       __ inc(from, 8);
  1233       __ align(16);
  1234     __ BIND(L_loop);
  1235       __ ldx(from, 0, O4);
  1236       __ deccc(count, count_dec); // Can we do next iteration after this one?
  1237       __ ldx(from, 8, G4);
  1238       __ inc(to, 16);
  1239       __ inc(from, 16);
  1240       __ sllx(O3, left_shift,  O3);
  1241       __ srlx(O4, right_shift, G3);
  1242       __ bset(G3, O3);
  1243       __ stx(O3, to, -16);
  1244       __ sllx(O4, left_shift,  O4);
  1245       __ srlx(G4, right_shift, G3);
  1246       __ bset(G3, O4);
  1247       __ stx(O4, to, -8);
  1248       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1249       __ delayed()->mov(G4, O3);
  1251       __ inccc(count, count_dec>>1 ); // + 8 bytes
  1252       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1253       __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1255       // copy 8 bytes, part of them already loaded in O3
  1256       __ ldx(from, 0, O4);
  1257       __ inc(to, 8);
  1258       __ inc(from, 8);
  1259       __ sllx(O3, left_shift,  O3);
  1260       __ srlx(O4, right_shift, G3);
  1261       __ bset(O3, G3);
  1262       __ stx(G3, to, -8);
  1264     __ BIND(L_copy_last_bytes);
  1265       __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
  1266       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1267       __ delayed()->sub(from, right_shift, from);       // restore address
  1269     __ BIND(L_aligned_copy);
  1272   // Copy big chunks backward with shift
  1273   //
  1274   // Inputs:
  1275   //   end_from  - source arrays end address
  1276   //   end_to    - destination array end address aligned to 8-bytes
  1277   //   count     - elements count to copy >= the count equivalent to 16 bytes
  1278   //   count_dec - elements count's decrement equivalent to 16 bytes
  1279   //   L_aligned_copy - aligned copy exit label
  1280   //   L_copy_bytes   - copy exit label
  1281   //
  1282   void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
  1283                      Register count, int count_dec,
  1284                      Label& L_aligned_copy, Label& L_copy_bytes) {
  1285     Label L_loop, L_copy_last_bytes;
  1287     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
  1288       __ andcc(end_from, 7, G1); // misaligned bytes
  1289       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1290       __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
  1292     const Register left_shift  = G1; // left  shift bit counter
  1293     const Register right_shift = G5; // right shift bit counter
  1295       __ sll(G1, LogBitsPerByte, left_shift);
  1296       __ mov(64, right_shift);
  1297       __ sub(right_shift, left_shift, right_shift);
  1299     //
  1300     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1301     // to form 2 aligned 8-bytes chunks to store.
  1302     //
  1303       __ andn(end_from, 7, end_from);     // Align address
  1304       __ ldx(end_from, 0, O3);
  1305       __ align(16);
  1306     __ BIND(L_loop);
  1307       __ ldx(end_from, -8, O4);
  1308       __ deccc(count, count_dec); // Can we do next iteration after this one?
  1309       __ ldx(end_from, -16, G4);
  1310       __ dec(end_to, 16);
  1311       __ dec(end_from, 16);
  1312       __ srlx(O3, right_shift, O3);
  1313       __ sllx(O4, left_shift,  G3);
  1314       __ bset(G3, O3);
  1315       __ stx(O3, end_to, 8);
  1316       __ srlx(O4, right_shift, O4);
  1317       __ sllx(G4, left_shift,  G3);
  1318       __ bset(G3, O4);
  1319       __ stx(O4, end_to, 0);
  1320       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
  1321       __ delayed()->mov(G4, O3);
  1323       __ inccc(count, count_dec>>1 ); // + 8 bytes
  1324       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
  1325       __ delayed()->inc(count, count_dec>>1); // restore 'count'
  1327       // copy 8 bytes, part of them already loaded in O3
  1328       __ ldx(end_from, -8, O4);
  1329       __ dec(end_to, 8);
  1330       __ dec(end_from, 8);
  1331       __ srlx(O3, right_shift, O3);
  1332       __ sllx(O4, left_shift,  G3);
  1333       __ bset(O3, G3);
  1334       __ stx(G3, end_to, 0);
  1336     __ BIND(L_copy_last_bytes);
  1337       __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
  1338       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
  1339       __ delayed()->add(end_from, left_shift, end_from); // restore address
  1342   //
  1343   //  Generate stub for disjoint byte copy.  If "aligned" is true, the
  1344   //  "from" and "to" addresses are assumed to be heapword aligned.
  1345   //
  1346   // Arguments for generated stub:
  1347   //      from:  O0
  1348   //      to:    O1
  1349   //      count: O2 treated as signed
  1350   //
  1351   address generate_disjoint_byte_copy(bool aligned, const char * name) {
  1352     __ align(CodeEntryAlignment);
  1353     StubCodeMark mark(this, "StubRoutines", name);
  1354     address start = __ pc();
  1356     Label L_skip_alignment, L_align;
  1357     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1359     const Register from      = O0;   // source array address
  1360     const Register to        = O1;   // destination array address
  1361     const Register count     = O2;   // elements count
  1362     const Register offset    = O5;   // offset from start of arrays
  1363     // O3, O4, G3, G4 are used as temp registers
  1365     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1367     if (!aligned)  disjoint_byte_copy_entry = __ pc();
  1368     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1369     if (!aligned)  BLOCK_COMMENT("Entry:");
  1371     // for short arrays, just do single element copy
  1372     __ cmp(count, 23); // 16 + 7
  1373     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1374     __ delayed()->mov(G0, offset);
  1376     if (aligned) {
  1377       // 'aligned' == true when it is known statically during compilation
  1378       // of this arraycopy call site that both 'from' and 'to' addresses
  1379       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1380       //
  1381       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1382       // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
  1383       //
  1384 #ifndef _LP64
  1385       // copy a 4-bytes word if necessary to align 'to' to 8 bytes
  1386       __ andcc(to, 7, G0);
  1387       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
  1388       __ delayed()->ld(from, 0, O3);
  1389       __ inc(from, 4);
  1390       __ inc(to, 4);
  1391       __ dec(count, 4);
  1392       __ st(O3, to, -4);
  1393     __ BIND(L_skip_alignment);
  1394 #endif
  1395     } else {
  1396       // copy bytes to align 'to' on 8 byte boundary
  1397       __ andcc(to, 7, G1); // misaligned bytes
  1398       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1399       __ delayed()->neg(G1);
  1400       __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
  1401       __ sub(count, G1, count);
  1402     __ BIND(L_align);
  1403       __ ldub(from, 0, O3);
  1404       __ deccc(G1);
  1405       __ inc(from);
  1406       __ stb(O3, to, 0);
  1407       __ br(Assembler::notZero, false, Assembler::pt, L_align);
  1408       __ delayed()->inc(to);
  1409     __ BIND(L_skip_alignment);
  1411 #ifdef _LP64
  1412     if (!aligned)
  1413 #endif
  1415       // Copy with shift 16 bytes per iteration if arrays do not have
  1416       // the same alignment mod 8, otherwise fall through to the next
  1417       // code for aligned copy.
  1418       // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
  1419       // Also jump over aligned copy after the copy with shift completed.
  1421       copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
  1424     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1425       __ and3(count, 7, G4); // Save count
  1426       __ srl(count, 3, count);
  1427      generate_disjoint_long_copy_core(aligned);
  1428       __ mov(G4, count);     // Restore count
  1430     // copy tailing bytes
  1431     __ BIND(L_copy_byte);
  1432       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1433       __ delayed()->nop();
  1434       __ align(16);
  1435     __ BIND(L_copy_byte_loop);
  1436       __ ldub(from, offset, O3);
  1437       __ deccc(count);
  1438       __ stb(O3, to, offset);
  1439       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
  1440       __ delayed()->inc(offset);
  1442     __ BIND(L_exit);
  1443       // O3, O4 are used as temp registers
  1444       inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1445       __ retl();
  1446       __ delayed()->mov(G0, O0); // return 0
  1447     return start;
  1450   //
  1451   //  Generate stub for conjoint byte copy.  If "aligned" is true, the
  1452   //  "from" and "to" addresses are assumed to be heapword aligned.
  1453   //
  1454   // Arguments for generated stub:
  1455   //      from:  O0
  1456   //      to:    O1
  1457   //      count: O2 treated as signed
  1458   //
  1459   address generate_conjoint_byte_copy(bool aligned, const char * name) {
  1460     // Do reverse copy.
  1462     __ align(CodeEntryAlignment);
  1463     StubCodeMark mark(this, "StubRoutines", name);
  1464     address start = __ pc();
  1465     address nooverlap_target = aligned ?
  1466         StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
  1467         disjoint_byte_copy_entry;
  1469     Label L_skip_alignment, L_align, L_aligned_copy;
  1470     Label L_copy_byte, L_copy_byte_loop, L_exit;
  1472     const Register from      = O0;   // source array address
  1473     const Register to        = O1;   // destination array address
  1474     const Register count     = O2;   // elements count
  1475     const Register end_from  = from; // source array end address
  1476     const Register end_to    = to;   // destination array end address
  1478     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1480     if (!aligned)  byte_copy_entry = __ pc();
  1481     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1482     if (!aligned)  BLOCK_COMMENT("Entry:");
  1484     array_overlap_test(nooverlap_target, 0);
  1486     __ add(to, count, end_to);       // offset after last copied element
  1488     // for short arrays, just do single element copy
  1489     __ cmp(count, 23); // 16 + 7
  1490     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
  1491     __ delayed()->add(from, count, end_from);
  1494       // Align end of arrays since they could be not aligned even
  1495       // when arrays itself are aligned.
  1497       // copy bytes to align 'end_to' on 8 byte boundary
  1498       __ andcc(end_to, 7, G1); // misaligned bytes
  1499       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1500       __ delayed()->nop();
  1501       __ sub(count, G1, count);
  1502     __ BIND(L_align);
  1503       __ dec(end_from);
  1504       __ dec(end_to);
  1505       __ ldub(end_from, 0, O3);
  1506       __ deccc(G1);
  1507       __ brx(Assembler::notZero, false, Assembler::pt, L_align);
  1508       __ delayed()->stb(O3, end_to, 0);
  1509     __ BIND(L_skip_alignment);
  1511 #ifdef _LP64
  1512     if (aligned) {
  1513       // Both arrays are aligned to 8-bytes in 64-bits VM.
  1514       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  1515       // in unaligned case.
  1516       __ dec(count, 16);
  1517     } else
  1518 #endif
  1520       // Copy with shift 16 bytes per iteration if arrays do not have
  1521       // the same alignment mod 8, otherwise jump to the next
  1522       // code for aligned copy (and substracting 16 from 'count' before jump).
  1523       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1524       // Also jump over aligned copy after the copy with shift completed.
  1526       copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
  1527                                         L_aligned_copy, L_copy_byte);
  1529     // copy 4 elements (16 bytes) at a time
  1530       __ align(16);
  1531     __ BIND(L_aligned_copy);
  1532       __ dec(end_from, 16);
  1533       __ ldx(end_from, 8, O3);
  1534       __ ldx(end_from, 0, O4);
  1535       __ dec(end_to, 16);
  1536       __ deccc(count, 16);
  1537       __ stx(O3, end_to, 8);
  1538       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1539       __ delayed()->stx(O4, end_to, 0);
  1540       __ inc(count, 16);
  1542     // copy 1 element (2 bytes) at a time
  1543     __ BIND(L_copy_byte);
  1544       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1545       __ delayed()->nop();
  1546       __ align(16);
  1547     __ BIND(L_copy_byte_loop);
  1548       __ dec(end_from);
  1549       __ dec(end_to);
  1550       __ ldub(end_from, 0, O4);
  1551       __ deccc(count);
  1552       __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
  1553       __ delayed()->stb(O4, end_to, 0);
  1555     __ BIND(L_exit);
  1556     // O3, O4 are used as temp registers
  1557     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
  1558     __ retl();
  1559     __ delayed()->mov(G0, O0); // return 0
  1560     return start;
  1563   //
  1564   //  Generate stub for disjoint short copy.  If "aligned" is true, the
  1565   //  "from" and "to" addresses are assumed to be heapword aligned.
  1566   //
  1567   // Arguments for generated stub:
  1568   //      from:  O0
  1569   //      to:    O1
  1570   //      count: O2 treated as signed
  1571   //
  1572   address generate_disjoint_short_copy(bool aligned, const char * name) {
  1573     __ align(CodeEntryAlignment);
  1574     StubCodeMark mark(this, "StubRoutines", name);
  1575     address start = __ pc();
  1577     Label L_skip_alignment, L_skip_alignment2;
  1578     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1580     const Register from      = O0;   // source array address
  1581     const Register to        = O1;   // destination array address
  1582     const Register count     = O2;   // elements count
  1583     const Register offset    = O5;   // offset from start of arrays
  1584     // O3, O4, G3, G4 are used as temp registers
  1586     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1588     if (!aligned)  disjoint_short_copy_entry = __ pc();
  1589     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1590     if (!aligned)  BLOCK_COMMENT("Entry:");
  1592     // for short arrays, just do single element copy
  1593     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1594     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1595     __ delayed()->mov(G0, offset);
  1597     if (aligned) {
  1598       // 'aligned' == true when it is known statically during compilation
  1599       // of this arraycopy call site that both 'from' and 'to' addresses
  1600       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1601       //
  1602       // Aligned arrays have 4 bytes alignment in 32-bits VM
  1603       // and 8 bytes - in 64-bits VM.
  1604       //
  1605 #ifndef _LP64
  1606       // copy a 2-elements word if necessary to align 'to' to 8 bytes
  1607       __ andcc(to, 7, G0);
  1608       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1609       __ delayed()->ld(from, 0, O3);
  1610       __ inc(from, 4);
  1611       __ inc(to, 4);
  1612       __ dec(count, 2);
  1613       __ st(O3, to, -4);
  1614     __ BIND(L_skip_alignment);
  1615 #endif
  1616     } else {
  1617       // copy 1 element if necessary to align 'to' on an 4 bytes
  1618       __ andcc(to, 3, G0);
  1619       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1620       __ delayed()->lduh(from, 0, O3);
  1621       __ inc(from, 2);
  1622       __ inc(to, 2);
  1623       __ dec(count);
  1624       __ sth(O3, to, -2);
  1625     __ BIND(L_skip_alignment);
  1627       // copy 2 elements to align 'to' on an 8 byte boundary
  1628       __ andcc(to, 7, G0);
  1629       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1630       __ delayed()->lduh(from, 0, O3);
  1631       __ dec(count, 2);
  1632       __ lduh(from, 2, O4);
  1633       __ inc(from, 4);
  1634       __ inc(to, 4);
  1635       __ sth(O3, to, -4);
  1636       __ sth(O4, to, -2);
  1637     __ BIND(L_skip_alignment2);
  1639 #ifdef _LP64
  1640     if (!aligned)
  1641 #endif
  1643       // Copy with shift 16 bytes per iteration if arrays do not have
  1644       // the same alignment mod 8, otherwise fall through to the next
  1645       // code for aligned copy.
  1646       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1647       // Also jump over aligned copy after the copy with shift completed.
  1649       copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
  1652     // Both array are 8 bytes aligned, copy 16 bytes at a time
  1653       __ and3(count, 3, G4); // Save
  1654       __ srl(count, 2, count);
  1655      generate_disjoint_long_copy_core(aligned);
  1656       __ mov(G4, count); // restore
  1658     // copy 1 element at a time
  1659     __ BIND(L_copy_2_bytes);
  1660       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1661       __ delayed()->nop();
  1662       __ align(16);
  1663     __ BIND(L_copy_2_bytes_loop);
  1664       __ lduh(from, offset, O3);
  1665       __ deccc(count);
  1666       __ sth(O3, to, offset);
  1667       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
  1668       __ delayed()->inc(offset, 2);
  1670     __ BIND(L_exit);
  1671       // O3, O4 are used as temp registers
  1672       inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  1673       __ retl();
  1674       __ delayed()->mov(G0, O0); // return 0
  1675     return start;
  1678   //
  1679   //  Generate stub for conjoint short copy.  If "aligned" is true, the
  1680   //  "from" and "to" addresses are assumed to be heapword aligned.
  1681   //
  1682   // Arguments for generated stub:
  1683   //      from:  O0
  1684   //      to:    O1
  1685   //      count: O2 treated as signed
  1686   //
  1687   address generate_conjoint_short_copy(bool aligned, const char * name) {
  1688     // Do reverse copy.
  1690     __ align(CodeEntryAlignment);
  1691     StubCodeMark mark(this, "StubRoutines", name);
  1692     address start = __ pc();
  1693     address nooverlap_target = aligned ?
  1694         StubRoutines::arrayof_jshort_disjoint_arraycopy() :
  1695         disjoint_short_copy_entry;
  1697     Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
  1698     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
  1700     const Register from      = O0;   // source array address
  1701     const Register to        = O1;   // destination array address
  1702     const Register count     = O2;   // elements count
  1703     const Register end_from  = from; // source array end address
  1704     const Register end_to    = to;   // destination array end address
  1706     const Register byte_count = O3;  // bytes count to copy
  1708     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1710     if (!aligned)  short_copy_entry = __ pc();
  1711     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1712     if (!aligned)  BLOCK_COMMENT("Entry:");
  1714     array_overlap_test(nooverlap_target, 1);
  1716     __ sllx(count, LogBytesPerShort, byte_count);
  1717     __ add(to, byte_count, end_to);  // offset after last copied element
  1719     // for short arrays, just do single element copy
  1720     __ cmp(count, 11); // 8 + 3  (22 bytes)
  1721     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
  1722     __ delayed()->add(from, byte_count, end_from);
  1725       // Align end of arrays since they could be not aligned even
  1726       // when arrays itself are aligned.
  1728       // copy 1 element if necessary to align 'end_to' on an 4 bytes
  1729       __ andcc(end_to, 3, G0);
  1730       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1731       __ delayed()->lduh(end_from, -2, O3);
  1732       __ dec(end_from, 2);
  1733       __ dec(end_to, 2);
  1734       __ dec(count);
  1735       __ sth(O3, end_to, 0);
  1736     __ BIND(L_skip_alignment);
  1738       // copy 2 elements to align 'end_to' on an 8 byte boundary
  1739       __ andcc(end_to, 7, G0);
  1740       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
  1741       __ delayed()->lduh(end_from, -2, O3);
  1742       __ dec(count, 2);
  1743       __ lduh(end_from, -4, O4);
  1744       __ dec(end_from, 4);
  1745       __ dec(end_to, 4);
  1746       __ sth(O3, end_to, 2);
  1747       __ sth(O4, end_to, 0);
  1748     __ BIND(L_skip_alignment2);
  1750 #ifdef _LP64
  1751     if (aligned) {
  1752       // Both arrays are aligned to 8-bytes in 64-bits VM.
  1753       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
  1754       // in unaligned case.
  1755       __ dec(count, 8);
  1756     } else
  1757 #endif
  1759       // Copy with shift 16 bytes per iteration if arrays do not have
  1760       // the same alignment mod 8, otherwise jump to the next
  1761       // code for aligned copy (and substracting 8 from 'count' before jump).
  1762       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
  1763       // Also jump over aligned copy after the copy with shift completed.
  1765       copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
  1766                                         L_aligned_copy, L_copy_2_bytes);
  1768     // copy 4 elements (16 bytes) at a time
  1769       __ align(16);
  1770     __ BIND(L_aligned_copy);
  1771       __ dec(end_from, 16);
  1772       __ ldx(end_from, 8, O3);
  1773       __ ldx(end_from, 0, O4);
  1774       __ dec(end_to, 16);
  1775       __ deccc(count, 8);
  1776       __ stx(O3, end_to, 8);
  1777       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  1778       __ delayed()->stx(O4, end_to, 0);
  1779       __ inc(count, 8);
  1781     // copy 1 element (2 bytes) at a time
  1782     __ BIND(L_copy_2_bytes);
  1783       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1784       __ delayed()->nop();
  1785     __ BIND(L_copy_2_bytes_loop);
  1786       __ dec(end_from, 2);
  1787       __ dec(end_to, 2);
  1788       __ lduh(end_from, 0, O4);
  1789       __ deccc(count);
  1790       __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
  1791       __ delayed()->sth(O4, end_to, 0);
  1793     __ BIND(L_exit);
  1794     // O3, O4 are used as temp registers
  1795     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
  1796     __ retl();
  1797     __ delayed()->mov(G0, O0); // return 0
  1798     return start;
  1801   //
  1802   //  Generate core code for disjoint int copy (and oop copy on 32-bit).
  1803   //  If "aligned" is true, the "from" and "to" addresses are assumed
  1804   //  to be heapword aligned.
  1805   //
  1806   // Arguments:
  1807   //      from:  O0
  1808   //      to:    O1
  1809   //      count: O2 treated as signed
  1810   //
  1811   void generate_disjoint_int_copy_core(bool aligned) {
  1813     Label L_skip_alignment, L_aligned_copy;
  1814     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  1816     const Register from      = O0;   // source array address
  1817     const Register to        = O1;   // destination array address
  1818     const Register count     = O2;   // elements count
  1819     const Register offset    = O5;   // offset from start of arrays
  1820     // O3, O4, G3, G4 are used as temp registers
  1822     // 'aligned' == true when it is known statically during compilation
  1823     // of this arraycopy call site that both 'from' and 'to' addresses
  1824     // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
  1825     //
  1826     // Aligned arrays have 4 bytes alignment in 32-bits VM
  1827     // and 8 bytes - in 64-bits VM.
  1828     //
  1829 #ifdef _LP64
  1830     if (!aligned)
  1831 #endif
  1833       // The next check could be put under 'ifndef' since the code in
  1834       // generate_disjoint_long_copy_core() has own checks and set 'offset'.
  1836       // for short arrays, just do single element copy
  1837       __ cmp(count, 5); // 4 + 1 (20 bytes)
  1838       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  1839       __ delayed()->mov(G0, offset);
  1841       // copy 1 element to align 'to' on an 8 byte boundary
  1842       __ andcc(to, 7, G0);
  1843       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1844       __ delayed()->ld(from, 0, O3);
  1845       __ inc(from, 4);
  1846       __ inc(to, 4);
  1847       __ dec(count);
  1848       __ st(O3, to, -4);
  1849     __ BIND(L_skip_alignment);
  1851     // if arrays have same alignment mod 8, do 4 elements copy
  1852       __ andcc(from, 7, G0);
  1853       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1854       __ delayed()->ld(from, 0, O3);
  1856     //
  1857     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1858     // to form 2 aligned 8-bytes chunks to store.
  1859     //
  1860     // copy_16_bytes_forward_with_shift() is not used here since this
  1861     // code is more optimal.
  1863     // copy with shift 4 elements (16 bytes) at a time
  1864       __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4
  1866       __ align(16);
  1867     __ BIND(L_copy_16_bytes);
  1868       __ ldx(from, 4, O4);
  1869       __ deccc(count, 4); // Can we do next iteration after this one?
  1870       __ ldx(from, 12, G4);
  1871       __ inc(to, 16);
  1872       __ inc(from, 16);
  1873       __ sllx(O3, 32, O3);
  1874       __ srlx(O4, 32, G3);
  1875       __ bset(G3, O3);
  1876       __ stx(O3, to, -16);
  1877       __ sllx(O4, 32, O4);
  1878       __ srlx(G4, 32, G3);
  1879       __ bset(G3, O4);
  1880       __ stx(O4, to, -8);
  1881       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  1882       __ delayed()->mov(G4, O3);
  1884       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  1885       __ delayed()->inc(count, 4); // restore 'count'
  1887     __ BIND(L_aligned_copy);
  1889     // copy 4 elements (16 bytes) at a time
  1890       __ and3(count, 1, G4); // Save
  1891       __ srl(count, 1, count);
  1892      generate_disjoint_long_copy_core(aligned);
  1893       __ mov(G4, count);     // Restore
  1895     // copy 1 element at a time
  1896     __ BIND(L_copy_4_bytes);
  1897       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  1898       __ delayed()->nop();
  1899     __ BIND(L_copy_4_bytes_loop);
  1900       __ ld(from, offset, O3);
  1901       __ deccc(count);
  1902       __ st(O3, to, offset);
  1903       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
  1904       __ delayed()->inc(offset, 4);
  1905     __ BIND(L_exit);
  1908   //
  1909   //  Generate stub for disjoint int copy.  If "aligned" is true, the
  1910   //  "from" and "to" addresses are assumed to be heapword aligned.
  1911   //
  1912   // Arguments for generated stub:
  1913   //      from:  O0
  1914   //      to:    O1
  1915   //      count: O2 treated as signed
  1916   //
  1917   address generate_disjoint_int_copy(bool aligned, const char * name) {
  1918     __ align(CodeEntryAlignment);
  1919     StubCodeMark mark(this, "StubRoutines", name);
  1920     address start = __ pc();
  1922     const Register count = O2;
  1923     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  1925     if (!aligned)  disjoint_int_copy_entry = __ pc();
  1926     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1927     if (!aligned)  BLOCK_COMMENT("Entry:");
  1929     generate_disjoint_int_copy_core(aligned);
  1931     // O3, O4 are used as temp registers
  1932     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  1933     __ retl();
  1934     __ delayed()->mov(G0, O0); // return 0
  1935     return start;
  1938   //
  1939   //  Generate core code for conjoint int copy (and oop copy on 32-bit).
  1940   //  If "aligned" is true, the "from" and "to" addresses are assumed
  1941   //  to be heapword aligned.
  1942   //
  1943   // Arguments:
  1944   //      from:  O0
  1945   //      to:    O1
  1946   //      count: O2 treated as signed
  1947   //
  1948   void generate_conjoint_int_copy_core(bool aligned) {
  1949     // Do reverse copy.
  1951     Label L_skip_alignment, L_aligned_copy;
  1952     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
  1954     const Register from      = O0;   // source array address
  1955     const Register to        = O1;   // destination array address
  1956     const Register count     = O2;   // elements count
  1957     const Register end_from  = from; // source array end address
  1958     const Register end_to    = to;   // destination array end address
  1959     // O3, O4, O5, G3 are used as temp registers
  1961     const Register byte_count = O3;  // bytes count to copy
  1963       __ sllx(count, LogBytesPerInt, byte_count);
  1964       __ add(to, byte_count, end_to); // offset after last copied element
  1966       __ cmp(count, 5); // for short arrays, just do single element copy
  1967       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
  1968       __ delayed()->add(from, byte_count, end_from);
  1970     // copy 1 element to align 'to' on an 8 byte boundary
  1971       __ andcc(end_to, 7, G0);
  1972       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
  1973       __ delayed()->nop();
  1974       __ dec(count);
  1975       __ dec(end_from, 4);
  1976       __ dec(end_to,   4);
  1977       __ ld(end_from, 0, O4);
  1978       __ st(O4, end_to, 0);
  1979     __ BIND(L_skip_alignment);
  1981     // Check if 'end_from' and 'end_to' has the same alignment.
  1982       __ andcc(end_from, 7, G0);
  1983       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
  1984       __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
  1986     // copy with shift 4 elements (16 bytes) at a time
  1987     //
  1988     // Load 2 aligned 8-bytes chunks and use one from previous iteration
  1989     // to form 2 aligned 8-bytes chunks to store.
  1990     //
  1991       __ ldx(end_from, -4, O3);
  1992       __ align(16);
  1993     __ BIND(L_copy_16_bytes);
  1994       __ ldx(end_from, -12, O4);
  1995       __ deccc(count, 4);
  1996       __ ldx(end_from, -20, O5);
  1997       __ dec(end_to, 16);
  1998       __ dec(end_from, 16);
  1999       __ srlx(O3, 32, O3);
  2000       __ sllx(O4, 32, G3);
  2001       __ bset(G3, O3);
  2002       __ stx(O3, end_to, 8);
  2003       __ srlx(O4, 32, O4);
  2004       __ sllx(O5, 32, G3);
  2005       __ bset(O4, G3);
  2006       __ stx(G3, end_to, 0);
  2007       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2008       __ delayed()->mov(O5, O3);
  2010       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
  2011       __ delayed()->inc(count, 4);
  2013     // copy 4 elements (16 bytes) at a time
  2014       __ align(16);
  2015     __ BIND(L_aligned_copy);
  2016       __ dec(end_from, 16);
  2017       __ ldx(end_from, 8, O3);
  2018       __ ldx(end_from, 0, O4);
  2019       __ dec(end_to, 16);
  2020       __ deccc(count, 4);
  2021       __ stx(O3, end_to, 8);
  2022       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
  2023       __ delayed()->stx(O4, end_to, 0);
  2024       __ inc(count, 4);
  2026     // copy 1 element (4 bytes) at a time
  2027     __ BIND(L_copy_4_bytes);
  2028       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
  2029       __ delayed()->nop();
  2030     __ BIND(L_copy_4_bytes_loop);
  2031       __ dec(end_from, 4);
  2032       __ dec(end_to, 4);
  2033       __ ld(end_from, 0, O4);
  2034       __ deccc(count);
  2035       __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
  2036       __ delayed()->st(O4, end_to, 0);
  2037     __ BIND(L_exit);
  2040   //
  2041   //  Generate stub for conjoint int copy.  If "aligned" is true, the
  2042   //  "from" and "to" addresses are assumed to be heapword aligned.
  2043   //
  2044   // Arguments for generated stub:
  2045   //      from:  O0
  2046   //      to:    O1
  2047   //      count: O2 treated as signed
  2048   //
  2049   address generate_conjoint_int_copy(bool aligned, const char * name) {
  2050     __ align(CodeEntryAlignment);
  2051     StubCodeMark mark(this, "StubRoutines", name);
  2052     address start = __ pc();
  2054     address nooverlap_target = aligned ?
  2055         StubRoutines::arrayof_jint_disjoint_arraycopy() :
  2056         disjoint_int_copy_entry;
  2058     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2060     if (!aligned)  int_copy_entry = __ pc();
  2061     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2062     if (!aligned)  BLOCK_COMMENT("Entry:");
  2064     array_overlap_test(nooverlap_target, 2);
  2066     generate_conjoint_int_copy_core(aligned);
  2068     // O3, O4 are used as temp registers
  2069     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
  2070     __ retl();
  2071     __ delayed()->mov(G0, O0); // return 0
  2072     return start;
  2075   //
  2076   //  Generate core code for disjoint long copy (and oop copy on 64-bit).
  2077   //  "aligned" is ignored, because we must make the stronger
  2078   //  assumption that both addresses are always 64-bit aligned.
  2079   //
  2080   // Arguments:
  2081   //      from:  O0
  2082   //      to:    O1
  2083   //      count: O2 treated as signed
  2084   //
  2085   void generate_disjoint_long_copy_core(bool aligned) {
  2086     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2087     const Register from    = O0;  // source array address
  2088     const Register to      = O1;  // destination array address
  2089     const Register count   = O2;  // elements count
  2090     const Register offset0 = O4;  // element offset
  2091     const Register offset8 = O5;  // next element offset
  2093       __ deccc(count, 2);
  2094       __ mov(G0, offset0);   // offset from start of arrays (0)
  2095       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
  2096       __ delayed()->add(offset0, 8, offset8);
  2097       __ align(16);
  2098     __ BIND(L_copy_16_bytes);
  2099       __ ldx(from, offset0, O3);
  2100       __ ldx(from, offset8, G3);
  2101       __ deccc(count, 2);
  2102       __ stx(O3, to, offset0);
  2103       __ inc(offset0, 16);
  2104       __ stx(G3, to, offset8);
  2105       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
  2106       __ delayed()->inc(offset8, 16);
  2108     __ BIND(L_copy_8_bytes);
  2109       __ inccc(count, 2);
  2110       __ brx(Assembler::zero, true, Assembler::pn, L_exit );
  2111       __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
  2112       __ ldx(from, offset0, O3);
  2113       __ stx(O3, to, offset0);
  2114     __ BIND(L_exit);
  2117   //
  2118   //  Generate stub for disjoint long copy.
  2119   //  "aligned" is ignored, because we must make the stronger
  2120   //  assumption that both addresses are always 64-bit aligned.
  2121   //
  2122   // Arguments for generated stub:
  2123   //      from:  O0
  2124   //      to:    O1
  2125   //      count: O2 treated as signed
  2126   //
  2127   address generate_disjoint_long_copy(bool aligned, const char * name) {
  2128     __ align(CodeEntryAlignment);
  2129     StubCodeMark mark(this, "StubRoutines", name);
  2130     address start = __ pc();
  2132     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2134     if (!aligned)  disjoint_long_copy_entry = __ pc();
  2135     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2136     if (!aligned)  BLOCK_COMMENT("Entry:");
  2138     generate_disjoint_long_copy_core(aligned);
  2140     // O3, O4 are used as temp registers
  2141     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2142     __ retl();
  2143     __ delayed()->mov(G0, O0); // return 0
  2144     return start;
  2147   //
  2148   //  Generate core code for conjoint long copy (and oop copy on 64-bit).
  2149   //  "aligned" is ignored, because we must make the stronger
  2150   //  assumption that both addresses are always 64-bit aligned.
  2151   //
  2152   // Arguments:
  2153   //      from:  O0
  2154   //      to:    O1
  2155   //      count: O2 treated as signed
  2156   //
  2157   void generate_conjoint_long_copy_core(bool aligned) {
  2158     // Do reverse copy.
  2159     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
  2160     const Register from    = O0;  // source array address
  2161     const Register to      = O1;  // destination array address
  2162     const Register count   = O2;  // elements count
  2163     const Register offset8 = O4;  // element offset
  2164     const Register offset0 = O5;  // previous element offset
  2166       __ subcc(count, 1, count);
  2167       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
  2168       __ delayed()->sllx(count, LogBytesPerLong, offset8);
  2169       __ sub(offset8, 8, offset0);
  2170       __ align(16);
  2171     __ BIND(L_copy_16_bytes);
  2172       __ ldx(from, offset8, O2);
  2173       __ ldx(from, offset0, O3);
  2174       __ stx(O2, to, offset8);
  2175       __ deccc(offset8, 16);      // use offset8 as counter
  2176       __ stx(O3, to, offset0);
  2177       __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
  2178       __ delayed()->dec(offset0, 16);
  2180     __ BIND(L_copy_8_bytes);
  2181       __ brx(Assembler::negative, false, Assembler::pn, L_exit );
  2182       __ delayed()->nop();
  2183       __ ldx(from, 0, O3);
  2184       __ stx(O3, to, 0);
  2185     __ BIND(L_exit);
  2188   //  Generate stub for conjoint long copy.
  2189   //  "aligned" is ignored, because we must make the stronger
  2190   //  assumption that both addresses are always 64-bit aligned.
  2191   //
  2192   // Arguments for generated stub:
  2193   //      from:  O0
  2194   //      to:    O1
  2195   //      count: O2 treated as signed
  2196   //
  2197   address generate_conjoint_long_copy(bool aligned, const char * name) {
  2198     __ align(CodeEntryAlignment);
  2199     StubCodeMark mark(this, "StubRoutines", name);
  2200     address start = __ pc();
  2202     assert(!aligned, "usage");
  2203     address nooverlap_target = disjoint_long_copy_entry;
  2205     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
  2207     if (!aligned)  long_copy_entry = __ pc();
  2208     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2209     if (!aligned)  BLOCK_COMMENT("Entry:");
  2211     array_overlap_test(nooverlap_target, 3);
  2213     generate_conjoint_long_copy_core(aligned);
  2215     // O3, O4 are used as temp registers
  2216     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
  2217     __ retl();
  2218     __ delayed()->mov(G0, O0); // return 0
  2219     return start;
  2222   //  Generate stub for disjoint oop copy.  If "aligned" is true, the
  2223   //  "from" and "to" addresses are assumed to be heapword aligned.
  2224   //
  2225   // Arguments for generated stub:
  2226   //      from:  O0
  2227   //      to:    O1
  2228   //      count: O2 treated as signed
  2229   //
  2230   address generate_disjoint_oop_copy(bool aligned, const char * name) {
  2232     const Register from  = O0;  // source array address
  2233     const Register to    = O1;  // destination array address
  2234     const Register count = O2;  // elements count
  2236     __ align(CodeEntryAlignment);
  2237     StubCodeMark mark(this, "StubRoutines", name);
  2238     address start = __ pc();
  2240     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2242     if (!aligned)  disjoint_oop_copy_entry = __ pc();
  2243     // caller can pass a 64-bit byte count here
  2244     if (!aligned)  BLOCK_COMMENT("Entry:");
  2246     // save arguments for barrier generation
  2247     __ mov(to, G1);
  2248     __ mov(count, G5);
  2249     gen_write_ref_array_pre_barrier(G1, G5);
  2250   #ifdef _LP64
  2251     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2252     if (UseCompressedOops) {
  2253       generate_disjoint_int_copy_core(aligned);
  2254     } else {
  2255       generate_disjoint_long_copy_core(aligned);
  2257   #else
  2258     generate_disjoint_int_copy_core(aligned);
  2259   #endif
  2260     // O0 is used as temp register
  2261     gen_write_ref_array_post_barrier(G1, G5, O0);
  2263     // O3, O4 are used as temp registers
  2264     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2265     __ retl();
  2266     __ delayed()->mov(G0, O0); // return 0
  2267     return start;
  2270   //  Generate stub for conjoint oop copy.  If "aligned" is true, the
  2271   //  "from" and "to" addresses are assumed to be heapword aligned.
  2272   //
  2273   // Arguments for generated stub:
  2274   //      from:  O0
  2275   //      to:    O1
  2276   //      count: O2 treated as signed
  2277   //
  2278   address generate_conjoint_oop_copy(bool aligned, const char * name) {
  2280     const Register from  = O0;  // source array address
  2281     const Register to    = O1;  // destination array address
  2282     const Register count = O2;  // elements count
  2284     __ align(CodeEntryAlignment);
  2285     StubCodeMark mark(this, "StubRoutines", name);
  2286     address start = __ pc();
  2288     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
  2290     if (!aligned)  oop_copy_entry = __ pc();
  2291     // caller can pass a 64-bit byte count here
  2292     if (!aligned)  BLOCK_COMMENT("Entry:");
  2294     // save arguments for barrier generation
  2295     __ mov(to, G1);
  2296     __ mov(count, G5);
  2298     gen_write_ref_array_pre_barrier(G1, G5);
  2300     address nooverlap_target = aligned ?
  2301         StubRoutines::arrayof_oop_disjoint_arraycopy() :
  2302         disjoint_oop_copy_entry;
  2304     array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
  2306   #ifdef _LP64
  2307     if (UseCompressedOops) {
  2308       generate_conjoint_int_copy_core(aligned);
  2309     } else {
  2310       generate_conjoint_long_copy_core(aligned);
  2312   #else
  2313     generate_conjoint_int_copy_core(aligned);
  2314   #endif
  2316     // O0 is used as temp register
  2317     gen_write_ref_array_post_barrier(G1, G5, O0);
  2319     // O3, O4 are used as temp registers
  2320     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
  2321     __ retl();
  2322     __ delayed()->mov(G0, O0); // return 0
  2323     return start;
  2327   // Helper for generating a dynamic type check.
  2328   // Smashes only the given temp registers.
  2329   void generate_type_check(Register sub_klass,
  2330                            Register super_check_offset,
  2331                            Register super_klass,
  2332                            Register temp,
  2333                            Label& L_success,
  2334                            Register deccc_hack = noreg) {
  2335     assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
  2337     BLOCK_COMMENT("type_check:");
  2339     Label L_miss;
  2341     assert_clean_int(super_check_offset, temp);
  2343     // maybe decrement caller's trip count:
  2344 #define DELAY_SLOT delayed();   \
  2345     { if (deccc_hack == noreg) __ nop(); else __ deccc(deccc_hack); }
  2347     // if the pointers are equal, we are done (e.g., String[] elements)
  2348     __ cmp(sub_klass, super_klass);
  2349     __ brx(Assembler::equal, true, Assembler::pt, L_success);
  2350     __ DELAY_SLOT;
  2352     // check the supertype display:
  2353     __ ld_ptr(sub_klass, super_check_offset, temp); // query the super type
  2354     __ cmp(super_klass,                      temp); // test the super type
  2355     __ brx(Assembler::equal, true, Assembler::pt, L_success);
  2356     __ DELAY_SLOT;
  2358     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  2359                      Klass::secondary_super_cache_offset_in_bytes());
  2360     __ cmp(super_klass, sc_offset);
  2361     __ brx(Assembler::notEqual, true, Assembler::pt, L_miss);
  2362     __ delayed()->nop();
  2364     __ save_frame(0);
  2365     __ mov(sub_klass->after_save(), O1);
  2366     // mov(super_klass->after_save(), O2); //fill delay slot
  2367     assert(StubRoutines::Sparc::_partial_subtype_check != NULL, "order of generation");
  2368     __ call(StubRoutines::Sparc::_partial_subtype_check);
  2369     __ delayed()->mov(super_klass->after_save(), O2);
  2370     __ restore();
  2372     // Upon return, the condition codes are already set.
  2373     __ brx(Assembler::equal, true, Assembler::pt, L_success);
  2374     __ DELAY_SLOT;
  2376 #undef DELAY_SLOT
  2378     // Fall through on failure!
  2379     __ BIND(L_miss);
  2383   //  Generate stub for checked oop copy.
  2384   //
  2385   // Arguments for generated stub:
  2386   //      from:  O0
  2387   //      to:    O1
  2388   //      count: O2 treated as signed
  2389   //      ckoff: O3 (super_check_offset)
  2390   //      ckval: O4 (super_klass)
  2391   //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
  2392   //
  2393   address generate_checkcast_copy(const char* name) {
  2395     const Register O0_from   = O0;      // source array address
  2396     const Register O1_to     = O1;      // destination array address
  2397     const Register O2_count  = O2;      // elements count
  2398     const Register O3_ckoff  = O3;      // super_check_offset
  2399     const Register O4_ckval  = O4;      // super_klass
  2401     const Register O5_offset = O5;      // loop var, with stride wordSize
  2402     const Register G1_remain = G1;      // loop var, with stride -1
  2403     const Register G3_oop    = G3;      // actual oop copied
  2404     const Register G4_klass  = G4;      // oop._klass
  2405     const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]
  2407     __ align(CodeEntryAlignment);
  2408     StubCodeMark mark(this, "StubRoutines", name);
  2409     address start = __ pc();
  2411     gen_write_ref_array_pre_barrier(O1, O2);
  2413 #ifdef ASSERT
  2414     // We sometimes save a frame (see partial_subtype_check below).
  2415     // If this will cause trouble, let's fail now instead of later.
  2416     __ save_frame(0);
  2417     __ restore();
  2418 #endif
  2420 #ifdef ASSERT
  2421     // caller guarantees that the arrays really are different
  2422     // otherwise, we would have to make conjoint checks
  2423     { Label L;
  2424       __ mov(O3, G1);           // spill: overlap test smashes O3
  2425       __ mov(O4, G4);           // spill: overlap test smashes O4
  2426       array_overlap_test(L, LogBytesPerHeapOop);
  2427       __ stop("checkcast_copy within a single array");
  2428       __ bind(L);
  2429       __ mov(G1, O3);
  2430       __ mov(G4, O4);
  2432 #endif //ASSERT
  2434     assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.
  2436     checkcast_copy_entry = __ pc();
  2437     // caller can pass a 64-bit byte count here (from generic stub)
  2438     BLOCK_COMMENT("Entry:");
  2440     Label load_element, store_element, do_card_marks, fail, done;
  2441     __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
  2442     __ brx(Assembler::notZero, false, Assembler::pt, load_element);
  2443     __ delayed()->mov(G0, O5_offset);   // offset from start of arrays
  2445     // Empty array:  Nothing to do.
  2446     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2447     __ retl();
  2448     __ delayed()->set(0, O0);           // return 0 on (trivial) success
  2450     // ======== begin loop ========
  2451     // (Loop is rotated; its entry is load_element.)
  2452     // Loop variables:
  2453     //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
  2454     //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
  2455     //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
  2456     __ align(16);
  2458     __ bind(store_element);
  2459     // deccc(G1_remain);                // decrement the count (hoisted)
  2460     __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
  2461     __ inc(O5_offset, heapOopSize);     // step to next offset
  2462     __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
  2463     __ delayed()->set(0, O0);           // return -1 on success
  2465     // ======== loop entry is here ========
  2466     __ bind(load_element);
  2467     __ load_heap_oop(O0_from, O5_offset, G3_oop);  // load the oop
  2468     __ br_null(G3_oop, true, Assembler::pt, store_element);
  2469     __ delayed()->deccc(G1_remain);     // decrement the count
  2471     __ load_klass(G3_oop, G4_klass); // query the object klass
  2473     generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
  2474                         // branch to this on success:
  2475                         store_element,
  2476                         // decrement this on success:
  2477                         G1_remain);
  2478     // ======== end loop ========
  2480     // It was a real error; we must depend on the caller to finish the job.
  2481     // Register G1 has number of *remaining* oops, O2 number of *total* oops.
  2482     // Emit GC store barriers for the oops we have copied (O2 minus G1),
  2483     // and report their number to the caller.
  2484     __ bind(fail);
  2485     __ subcc(O2_count, G1_remain, O2_count);
  2486     __ brx(Assembler::zero, false, Assembler::pt, done);
  2487     __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller
  2489     __ bind(do_card_marks);
  2490     gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]
  2492     __ bind(done);
  2493     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
  2494     __ retl();
  2495     __ delayed()->nop();             // return value in 00
  2497     return start;
  2501   //  Generate 'unsafe' array copy stub
  2502   //  Though just as safe as the other stubs, it takes an unscaled
  2503   //  size_t argument instead of an element count.
  2504   //
  2505   // Arguments for generated stub:
  2506   //      from:  O0
  2507   //      to:    O1
  2508   //      count: O2 byte count, treated as ssize_t, can be zero
  2509   //
  2510   // Examines the alignment of the operands and dispatches
  2511   // to a long, int, short, or byte copy loop.
  2512   //
  2513   address generate_unsafe_copy(const char* name) {
  2515     const Register O0_from   = O0;      // source array address
  2516     const Register O1_to     = O1;      // destination array address
  2517     const Register O2_count  = O2;      // elements count
  2519     const Register G1_bits   = G1;      // test copy of low bits
  2521     __ align(CodeEntryAlignment);
  2522     StubCodeMark mark(this, "StubRoutines", name);
  2523     address start = __ pc();
  2525     // bump this on entry, not on exit:
  2526     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
  2528     __ or3(O0_from, O1_to, G1_bits);
  2529     __ or3(O2_count,       G1_bits, G1_bits);
  2531     __ btst(BytesPerLong-1, G1_bits);
  2532     __ br(Assembler::zero, true, Assembler::pt,
  2533           long_copy_entry, relocInfo::runtime_call_type);
  2534     // scale the count on the way out:
  2535     __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
  2537     __ btst(BytesPerInt-1, G1_bits);
  2538     __ br(Assembler::zero, true, Assembler::pt,
  2539           int_copy_entry, relocInfo::runtime_call_type);
  2540     // scale the count on the way out:
  2541     __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
  2543     __ btst(BytesPerShort-1, G1_bits);
  2544     __ br(Assembler::zero, true, Assembler::pt,
  2545           short_copy_entry, relocInfo::runtime_call_type);
  2546     // scale the count on the way out:
  2547     __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
  2549     __ br(Assembler::always, false, Assembler::pt,
  2550           byte_copy_entry, relocInfo::runtime_call_type);
  2551     __ delayed()->nop();
  2553     return start;
  2557   // Perform range checks on the proposed arraycopy.
  2558   // Kills the two temps, but nothing else.
  2559   // Also, clean the sign bits of src_pos and dst_pos.
  2560   void arraycopy_range_checks(Register src,     // source array oop (O0)
  2561                               Register src_pos, // source position (O1)
  2562                               Register dst,     // destination array oo (O2)
  2563                               Register dst_pos, // destination position (O3)
  2564                               Register length,  // length of copy (O4)
  2565                               Register temp1, Register temp2,
  2566                               Label& L_failed) {
  2567     BLOCK_COMMENT("arraycopy_range_checks:");
  2569     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  2571     const Register array_length = temp1;  // scratch
  2572     const Register end_pos      = temp2;  // scratch
  2574     // Note:  This next instruction may be in the delay slot of a branch:
  2575     __ add(length, src_pos, end_pos);  // src_pos + length
  2576     __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
  2577     __ cmp(end_pos, array_length);
  2578     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2580     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  2581     __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
  2582     __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
  2583     __ cmp(end_pos, array_length);
  2584     __ br(Assembler::greater, false, Assembler::pn, L_failed);
  2586     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2587     // Move with sign extension can be used since they are positive.
  2588     __ delayed()->signx(src_pos, src_pos);
  2589     __ signx(dst_pos, dst_pos);
  2591     BLOCK_COMMENT("arraycopy_range_checks done");
  2595   //
  2596   //  Generate generic array copy stubs
  2597   //
  2598   //  Input:
  2599   //    O0    -  src oop
  2600   //    O1    -  src_pos
  2601   //    O2    -  dst oop
  2602   //    O3    -  dst_pos
  2603   //    O4    -  element count
  2604   //
  2605   //  Output:
  2606   //    O0 ==  0  -  success
  2607   //    O0 == -1  -  need to call System.arraycopy
  2608   //
  2609   address generate_generic_copy(const char *name) {
  2611     Label L_failed, L_objArray;
  2613     // Input registers
  2614     const Register src      = O0;  // source array oop
  2615     const Register src_pos  = O1;  // source position
  2616     const Register dst      = O2;  // destination array oop
  2617     const Register dst_pos  = O3;  // destination position
  2618     const Register length   = O4;  // elements count
  2620     // registers used as temp
  2621     const Register G3_src_klass = G3; // source array klass
  2622     const Register G4_dst_klass = G4; // destination array klass
  2623     const Register G5_lh        = G5; // layout handler
  2624     const Register O5_temp      = O5;
  2626     __ align(CodeEntryAlignment);
  2627     StubCodeMark mark(this, "StubRoutines", name);
  2628     address start = __ pc();
  2630     // bump this on entry, not on exit:
  2631     inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
  2633     // In principle, the int arguments could be dirty.
  2634     //assert_clean_int(src_pos, G1);
  2635     //assert_clean_int(dst_pos, G1);
  2636     //assert_clean_int(length, G1);
  2638     //-----------------------------------------------------------------------
  2639     // Assembler stubs will be used for this call to arraycopy
  2640     // if the following conditions are met:
  2641     //
  2642     // (1) src and dst must not be null.
  2643     // (2) src_pos must not be negative.
  2644     // (3) dst_pos must not be negative.
  2645     // (4) length  must not be negative.
  2646     // (5) src klass and dst klass should be the same and not NULL.
  2647     // (6) src and dst should be arrays.
  2648     // (7) src_pos + length must not exceed length of src.
  2649     // (8) dst_pos + length must not exceed length of dst.
  2650     BLOCK_COMMENT("arraycopy initial argument checks");
  2652     //  if (src == NULL) return -1;
  2653     __ br_null(src, false, Assembler::pn, L_failed);
  2655     //  if (src_pos < 0) return -1;
  2656     __ delayed()->tst(src_pos);
  2657     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2658     __ delayed()->nop();
  2660     //  if (dst == NULL) return -1;
  2661     __ br_null(dst, false, Assembler::pn, L_failed);
  2663     //  if (dst_pos < 0) return -1;
  2664     __ delayed()->tst(dst_pos);
  2665     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2667     //  if (length < 0) return -1;
  2668     __ delayed()->tst(length);
  2669     __ br(Assembler::negative, false, Assembler::pn, L_failed);
  2671     BLOCK_COMMENT("arraycopy argument klass checks");
  2672     //  get src->klass()
  2673     if (UseCompressedOops) {
  2674       __ delayed()->nop(); // ??? not good
  2675       __ load_klass(src, G3_src_klass);
  2676     } else {
  2677       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
  2680 #ifdef ASSERT
  2681     //  assert(src->klass() != NULL);
  2682     BLOCK_COMMENT("assert klasses not null");
  2683     { Label L_a, L_b;
  2684       __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
  2685       __ delayed()->nop();
  2686       __ bind(L_a);
  2687       __ stop("broken null klass");
  2688       __ bind(L_b);
  2689       __ load_klass(dst, G4_dst_klass);
  2690       __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
  2691       __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
  2692       BLOCK_COMMENT("assert done");
  2694 #endif
  2696     // Load layout helper
  2697     //
  2698     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2699     // 32        30    24            16              8     2                 0
  2700     //
  2701     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2702     //
  2704     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2705                     Klass::layout_helper_offset_in_bytes();
  2707     // Load 32-bits signed value. Use br() instruction with it to check icc.
  2708     __ lduw(G3_src_klass, lh_offset, G5_lh);
  2710     if (UseCompressedOops) {
  2711       __ load_klass(dst, G4_dst_klass);
  2713     // Handle objArrays completely differently...
  2714     juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2715     __ set(objArray_lh, O5_temp);
  2716     __ cmp(G5_lh,       O5_temp);
  2717     __ br(Assembler::equal, false, Assembler::pt, L_objArray);
  2718     if (UseCompressedOops) {
  2719       __ delayed()->nop();
  2720     } else {
  2721       __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
  2724     //  if (src->klass() != dst->klass()) return -1;
  2725     __ cmp(G3_src_klass, G4_dst_klass);
  2726     __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
  2727     __ delayed()->nop();
  2729     //  if (!src->is_Array()) return -1;
  2730     __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
  2731     __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
  2733     // At this point, it is known to be a typeArray (array_tag 0x3).
  2734 #ifdef ASSERT
  2735     __ delayed()->nop();
  2736     { Label L;
  2737       jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
  2738       __ set(lh_prim_tag_in_place, O5_temp);
  2739       __ cmp(G5_lh,                O5_temp);
  2740       __ br(Assembler::greaterEqual, false, Assembler::pt, L);
  2741       __ delayed()->nop();
  2742       __ stop("must be a primitive array");
  2743       __ bind(L);
  2745 #else
  2746     __ delayed();                               // match next insn to prev branch
  2747 #endif
  2749     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  2750                            O5_temp, G4_dst_klass, L_failed);
  2752     // typeArrayKlass
  2753     //
  2754     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2755     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2756     //
  2758     const Register G4_offset = G4_dst_klass;    // array offset
  2759     const Register G3_elsize = G3_src_klass;    // log2 element size
  2761     __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
  2762     __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
  2763     __ add(src, G4_offset, src);       // src array offset
  2764     __ add(dst, G4_offset, dst);       // dst array offset
  2765     __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
  2767     // next registers should be set before the jump to corresponding stub
  2768     const Register from     = O0;  // source array address
  2769     const Register to       = O1;  // destination array address
  2770     const Register count    = O2;  // elements count
  2772     // 'from', 'to', 'count' registers should be set in this order
  2773     // since they are the same as 'src', 'src_pos', 'dst'.
  2775     BLOCK_COMMENT("scale indexes to element size");
  2776     __ sll_ptr(src_pos, G3_elsize, src_pos);
  2777     __ sll_ptr(dst_pos, G3_elsize, dst_pos);
  2778     __ add(src, src_pos, from);       // src_addr
  2779     __ add(dst, dst_pos, to);         // dst_addr
  2781     BLOCK_COMMENT("choose copy loop based on element size");
  2782     __ cmp(G3_elsize, 0);
  2783     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
  2784     __ delayed()->signx(length, count); // length
  2786     __ cmp(G3_elsize, LogBytesPerShort);
  2787     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
  2788     __ delayed()->signx(length, count); // length
  2790     __ cmp(G3_elsize, LogBytesPerInt);
  2791     __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
  2792     __ delayed()->signx(length, count); // length
  2793 #ifdef ASSERT
  2794     { Label L;
  2795       __ cmp(G3_elsize, LogBytesPerLong);
  2796       __ br(Assembler::equal, false, Assembler::pt, L);
  2797       __ delayed()->nop();
  2798       __ stop("must be long copy, but elsize is wrong");
  2799       __ bind(L);
  2801 #endif
  2802     __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
  2803     __ delayed()->signx(length, count); // length
  2805     // objArrayKlass
  2806   __ BIND(L_objArray);
  2807     // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
  2809     Label L_plain_copy, L_checkcast_copy;
  2810     //  test array classes for subtyping
  2811     __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
  2812     __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
  2813     __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
  2815     // Identically typed arrays can be copied without element-wise checks.
  2816     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  2817                            O5_temp, G5_lh, L_failed);
  2819     __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  2820     __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  2821     __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  2822     __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  2823     __ add(src, src_pos, from);       // src_addr
  2824     __ add(dst, dst_pos, to);         // dst_addr
  2825   __ BIND(L_plain_copy);
  2826     __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
  2827     __ delayed()->signx(length, count); // length
  2829   __ BIND(L_checkcast_copy);
  2830     // live at this point:  G3_src_klass, G4_dst_klass
  2832       // Before looking at dst.length, make sure dst is also an objArray.
  2833       // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
  2834       __ cmp(G5_lh,                    O5_temp);
  2835       __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
  2837       // It is safe to examine both src.length and dst.length.
  2838       __ delayed();                             // match next insn to prev branch
  2839       arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
  2840                              O5_temp, G5_lh, L_failed);
  2842       // Marshal the base address arguments now, freeing registers.
  2843       __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
  2844       __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
  2845       __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
  2846       __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
  2847       __ add(src, src_pos, from);               // src_addr
  2848       __ add(dst, dst_pos, to);                 // dst_addr
  2849       __ signx(length, count);                  // length (reloaded)
  2851       Register sco_temp = O3;                   // this register is free now
  2852       assert_different_registers(from, to, count, sco_temp,
  2853                                  G4_dst_klass, G3_src_klass);
  2855       // Generate the type check.
  2856       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2857                         Klass::super_check_offset_offset_in_bytes());
  2858       __ lduw(G4_dst_klass, sco_offset, sco_temp);
  2859       generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
  2860                           O5_temp, L_plain_copy);
  2862       // Fetch destination element klass from the objArrayKlass header.
  2863       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  2864                        objArrayKlass::element_klass_offset_in_bytes());
  2866       // the checkcast_copy loop needs two extra arguments:
  2867       __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
  2868       // lduw(O4, sco_offset, O3);              // sco of elem klass
  2870       __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
  2871       __ delayed()->lduw(O4, sco_offset, O3);
  2874   __ BIND(L_failed);
  2875     __ retl();
  2876     __ delayed()->sub(G0, 1, O0); // return -1
  2877     return start;
  2880   void generate_arraycopy_stubs() {
  2882     // Note:  the disjoint stubs must be generated first, some of
  2883     //        the conjoint stubs use them.
  2884     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
  2885     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
  2886     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
  2887     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
  2888     StubRoutines::_oop_disjoint_arraycopy    = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
  2889     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
  2890     StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
  2891     StubRoutines::_arrayof_jint_disjoint_arraycopy   = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
  2892     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
  2893     StubRoutines::_arrayof_oop_disjoint_arraycopy    =  generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");
  2895     StubRoutines::_jbyte_arraycopy  = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
  2896     StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
  2897     StubRoutines::_jint_arraycopy   = generate_conjoint_int_copy(false, "jint_arraycopy");
  2898     StubRoutines::_jlong_arraycopy  = generate_conjoint_long_copy(false, "jlong_arraycopy");
  2899     StubRoutines::_oop_arraycopy    = generate_conjoint_oop_copy(false, "oop_arraycopy");
  2900     StubRoutines::_arrayof_jbyte_arraycopy    = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
  2901     StubRoutines::_arrayof_jshort_arraycopy   = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
  2902 #ifdef _LP64
  2903     // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
  2904     StubRoutines::_arrayof_jint_arraycopy     = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
  2905   #else
  2906     StubRoutines::_arrayof_jint_arraycopy     = StubRoutines::_jint_arraycopy;
  2907 #endif
  2908     StubRoutines::_arrayof_jlong_arraycopy    = StubRoutines::_jlong_arraycopy;
  2909     StubRoutines::_arrayof_oop_arraycopy      = StubRoutines::_oop_arraycopy;
  2911     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
  2912     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
  2913     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
  2916   void generate_initial() {
  2917     // Generates all stubs and initializes the entry points
  2919     //------------------------------------------------------------------------------------------------------------------------
  2920     // entry points that exist in all platforms
  2921     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2922     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2923     StubRoutines::_forward_exception_entry                 = generate_forward_exception();
  2925     StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
  2926     StubRoutines::_catch_exception_entry                   = generate_catch_exception();
  2928     //------------------------------------------------------------------------------------------------------------------------
  2929     // entry points that are platform specific
  2930     StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();
  2932     StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
  2933     StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
  2935 #if !defined(COMPILER2) && !defined(_LP64)
  2936     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  2937     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  2938     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  2939     StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
  2940     StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
  2941     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  2942     StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
  2943     StubRoutines::_fence_entry               = generate_fence();
  2944 #endif  // COMPILER2 !=> _LP64
  2946     StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
  2950   void generate_all() {
  2951     // Generates all stubs and initializes the entry points
  2953     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2954     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  2955     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  2956     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  2957     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  2958     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  2959     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  2961     StubRoutines::_handler_for_unsafe_access_entry =
  2962       generate_handler_for_unsafe_access();
  2964     // support for verify_oop (must happen after universe_init)
  2965     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();
  2967     // arraycopy stubs used by compilers
  2968     generate_arraycopy_stubs();
  2972  public:
  2973   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2974     // replace the standard masm with a special one:
  2975     _masm = new MacroAssembler(code);
  2977     _stub_count = !all ? 0x100 : 0x200;
  2978     if (all) {
  2979       generate_all();
  2980     } else {
  2981       generate_initial();
  2984     // make sure this stub is available for all local calls
  2985     if (_atomic_add_stub.is_unbound()) {
  2986       // generate a second time, if necessary
  2987       (void) generate_atomic_add();
  2992  private:
  2993   int _stub_count;
  2994   void stub_prolog(StubCodeDesc* cdesc) {
  2995     # ifdef ASSERT
  2996       // put extra information in the stub code, to make it more readable
  2997 #ifdef _LP64
  2998 // Write the high part of the address
  2999 // [RGV] Check if there is a dependency on the size of this prolog
  3000       __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
  3001 #endif
  3002       __ emit_data((intptr_t)cdesc,    relocInfo::none);
  3003       __ emit_data(++_stub_count, relocInfo::none);
  3004     # endif
  3005     align(true);
  3008   void align(bool at_header = false) {
  3009     // %%%%% move this constant somewhere else
  3010     // UltraSPARC cache line size is 8 instructions:
  3011     const unsigned int icache_line_size = 32;
  3012     const unsigned int icache_half_line_size = 16;
  3014     if (at_header) {
  3015       while ((intptr_t)(__ pc()) % icache_line_size != 0) {
  3016         __ emit_data(0, relocInfo::none);
  3018     } else {
  3019       while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
  3020         __ nop();
  3025 }; // end class declaration
  3028 address StubGenerator::disjoint_byte_copy_entry  = NULL;
  3029 address StubGenerator::disjoint_short_copy_entry = NULL;
  3030 address StubGenerator::disjoint_int_copy_entry   = NULL;
  3031 address StubGenerator::disjoint_long_copy_entry  = NULL;
  3032 address StubGenerator::disjoint_oop_copy_entry   = NULL;
  3034 address StubGenerator::byte_copy_entry  = NULL;
  3035 address StubGenerator::short_copy_entry = NULL;
  3036 address StubGenerator::int_copy_entry   = NULL;
  3037 address StubGenerator::long_copy_entry  = NULL;
  3038 address StubGenerator::oop_copy_entry   = NULL;
  3040 address StubGenerator::checkcast_copy_entry = NULL;
  3042 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3043   StubGenerator g(code, all);

mercurial