src/cpu/sparc/vm/assembler_sparc.inline.hpp

Wed, 07 Jan 2009 11:23:28 -0800

author
kvn
date
Wed, 07 Jan 2009 11:23:28 -0800
changeset 986
6c4cda924d2e
parent 435
a61af66fc99e
child 1057
56aae7be60d4
permissions
-rw-r--r--

6790182: matcher.cpp:1375: assert(false,"bad AD file")
Summary: Add a match rule for regD_low in regD definition.
Reviewed-by: never

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
    26   jint& stub_inst = *(jint*) branch;
    27   stub_inst = patched_branch(target - branch, stub_inst, 0);
    28 }
    30 #ifndef PRODUCT
    31 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
    32   jint stub_inst = *(jint*) branch;
    33   print_instruction(stub_inst);
    34   ::tty->print("%s", " (unresolved)");
    35 }
    36 #endif // PRODUCT
    38 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
    41 // inlines for SPARC assembler -- dmu 5/97
    43 inline void Assembler::check_delay() {
    44 # ifdef CHECK_DELAY
    45   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
    46   delay_state = no_delay;
    47 # endif
    48 }
    50 inline void Assembler::emit_long(int x) {
    51   check_delay();
    52   AbstractAssembler::emit_long(x);
    53 }
    55 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
    56   relocate(rtype);
    57   emit_long(x);
    58 }
    60 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
    61   relocate(rspec);
    62   emit_long(x);
    63 }
    66 inline void Assembler::add(    Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
    67 inline void Assembler::add(    Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
    68 inline void Assembler::add(    Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
    69 inline void Assembler::add(    const Address& a, Register d, int offset) { add( a.base(), a.disp() + offset, d, a.rspec(offset)); }
    71 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
    72 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
    74 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    75 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
    77 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    78 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
    80 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    81 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
    83 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
    84 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
    86 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
    87 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
    89 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
    90 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
    92 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
    93 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
    95 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
    96 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
    98 inline void Assembler::jmpl( Address& a, Register d, int offset) { jmpl( a.base(), a.disp() + offset, d, a.rspec(offset)); }
   101 inline void Assembler::ldf(    FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
   102 inline void Assembler::ldf(    FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   104 inline void Assembler::ldf(    FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
   106 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   107 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   108 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
   109 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   111 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
   112 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   113 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
   114 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   115 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
   116 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   118 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
   119 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   121 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
   122 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   123 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
   124 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   125 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
   126 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   127 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
   128 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   129 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
   130 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   132 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
   133 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   134 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
   135 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   137 #ifdef _LP64
   138 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
   139 inline void Assembler::ld(  Register s1, Register s2, Register d) { ldsw( s1, s2, d); }
   140 inline void Assembler::ld(  Register s1, int simm13a, Register d) { ldsw( s1, simm13a, d); }
   141 #else
   142 inline void Assembler::ld(  Register s1, Register s2, Register d) { lduw( s1, s2, d); }
   143 inline void Assembler::ld(  Register s1, int simm13a, Register d) { lduw( s1, simm13a, d); }
   144 #endif
   147 inline void Assembler::ld(   const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ld(   a.base(), a.disp() + offset, d ); }
   148 inline void Assembler::ldsb( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsb( a.base(), a.disp() + offset, d ); }
   149 inline void Assembler::ldsh( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsh( a.base(), a.disp() + offset, d ); }
   150 inline void Assembler::ldsw( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldsw( a.base(), a.disp() + offset, d ); }
   151 inline void Assembler::ldub( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldub( a.base(), a.disp() + offset, d ); }
   152 inline void Assembler::lduh( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); lduh( a.base(), a.disp() + offset, d ); }
   153 inline void Assembler::lduw( const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); lduw( a.base(), a.disp() + offset, d ); }
   154 inline void Assembler::ldd(  const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldd(  a.base(), a.disp() + offset, d ); }
   155 inline void Assembler::ldx(  const Address& a, Register d, int offset ) { relocate(a.rspec(offset)); ldx(  a.base(), a.disp() + offset, d ); }
   158 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
   159 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   162 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
   163 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   165 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
   168 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
   169 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
   171 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
   173   // pp 222
   175 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
   176 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   178 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
   180 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   181 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   182 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
   183 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   185   // p 226
   187 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
   188 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   189 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
   190 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   191 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
   192 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   195 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
   196 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   197 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
   198 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   200 inline void Assembler::st(  Register d, Register s1, Register s2) { stw(d, s1, s2); }
   201 inline void Assembler::st(  Register d, Register s1, int simm13a) { stw(d, s1, simm13a); }
   203 inline void Assembler::stb( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stb( d, a.base(), a.disp() + offset); }
   204 inline void Assembler::sth( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); sth( d, a.base(), a.disp() + offset); }
   205 inline void Assembler::stw( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stw( d, a.base(), a.disp() + offset); }
   206 inline void Assembler::st(  Register d, const Address& a, int offset) { relocate(a.rspec(offset)); st(  d, a.base(), a.disp() + offset); }
   207 inline void Assembler::std( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); std( d, a.base(), a.disp() + offset); }
   208 inline void Assembler::stx( Register d, const Address& a, int offset) { relocate(a.rspec(offset)); stx( d, a.base(), a.disp() + offset); }
   210 // v8 p 99
   212 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
   213 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   214 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
   215 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   216 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
   217 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   218 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
   219 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   222 // pp 231
   224 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
   225 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
   227 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
   230 // Use the right loads/stores for the platform
   231 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
   232 #ifdef _LP64
   233   Assembler::ldx( s1, s2, d);
   234 #else
   235   Assembler::ld(  s1, s2, d);
   236 #endif
   237 }
   239 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
   240 #ifdef _LP64
   241   Assembler::ldx( s1, simm13a, d);
   242 #else
   243   Assembler::ld(  s1, simm13a, d);
   244 #endif
   245 }
   247 inline void MacroAssembler::ld_ptr( const Address& a, Register d, int offset ) {
   248 #ifdef _LP64
   249   Assembler::ldx(  a, d, offset );
   250 #else
   251   Assembler::ld(   a, d, offset );
   252 #endif
   253 }
   255 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
   256 #ifdef _LP64
   257   Assembler::stx( d, s1, s2);
   258 #else
   259   Assembler::st( d, s1, s2);
   260 #endif
   261 }
   263 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
   264 #ifdef _LP64
   265   Assembler::stx( d, s1, simm13a);
   266 #else
   267   Assembler::st( d, s1, simm13a);
   268 #endif
   269 }
   271 inline void MacroAssembler::st_ptr(  Register d, const Address& a, int offset) {
   272 #ifdef _LP64
   273   Assembler::stx(  d, a, offset);
   274 #else
   275   Assembler::st(  d, a, offset);
   276 #endif
   277 }
   279 // Use the right loads/stores for the platform
   280 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
   281 #ifdef _LP64
   282   Assembler::ldx(s1, s2, d);
   283 #else
   284   Assembler::ldd(s1, s2, d);
   285 #endif
   286 }
   288 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
   289 #ifdef _LP64
   290   Assembler::ldx(s1, simm13a, d);
   291 #else
   292   Assembler::ldd(s1, simm13a, d);
   293 #endif
   294 }
   296 inline void MacroAssembler::ld_long( const Address& a, Register d, int offset ) {
   297 #ifdef _LP64
   298   Assembler::ldx(a, d, offset );
   299 #else
   300   Assembler::ldd(a, d, offset );
   301 #endif
   302 }
   304 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
   305 #ifdef _LP64
   306   Assembler::stx(d, s1, s2);
   307 #else
   308   Assembler::std(d, s1, s2);
   309 #endif
   310 }
   312 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
   313 #ifdef _LP64
   314   Assembler::stx(d, s1, simm13a);
   315 #else
   316   Assembler::std(d, s1, simm13a);
   317 #endif
   318 }
   320 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
   321 #ifdef _LP64
   322   Assembler::stx(d, a, offset);
   323 #else
   324   Assembler::std(d, a, offset);
   325 #endif
   326 }
   328 // Functions for isolating 64 bit shifts for LP64
   330 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
   331 #ifdef _LP64
   332   Assembler::sllx(s1, s2, d);
   333 #else
   334   Assembler::sll(s1, s2, d);
   335 #endif
   336 }
   338 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
   339 #ifdef _LP64
   340   Assembler::sllx(s1, imm6a, d);
   341 #else
   342   Assembler::sll(s1, imm6a, d);
   343 #endif
   344 }
   346 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
   347 #ifdef _LP64
   348   Assembler::srlx(s1, s2, d);
   349 #else
   350   Assembler::srl(s1, s2, d);
   351 #endif
   352 }
   354 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
   355 #ifdef _LP64
   356   Assembler::srlx(s1, imm6a, d);
   357 #else
   358   Assembler::srl(s1, imm6a, d);
   359 #endif
   360 }
   362 // Use the right branch for the platform
   364 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   365   if (VM_Version::v9_instructions_work())
   366     Assembler::bp(c, a, icc, p, d, rt);
   367   else
   368     Assembler::br(c, a, d, rt);
   369 }
   371 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
   372   br(c, a, p, target(L));
   373 }
   376 // Branch that tests either xcc or icc depending on the
   377 // architecture compiled (LP64 or not)
   378 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   379 #ifdef _LP64
   380     Assembler::bp(c, a, xcc, p, d, rt);
   381 #else
   382     MacroAssembler::br(c, a, p, d, rt);
   383 #endif
   384 }
   386 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
   387   brx(c, a, p, target(L));
   388 }
   390 inline void MacroAssembler::ba( bool a, Label& L ) {
   391   br(always, a, pt, L);
   392 }
   394 // Warning: V9 only functions
   395 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   396   Assembler::bp(c, a, cc, p, d, rt);
   397 }
   399 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   400   Assembler::bp(c, a, cc, p, L);
   401 }
   403 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
   404   if (VM_Version::v9_instructions_work())
   405     fbp(c, a, fcc0, p, d, rt);
   406   else
   407     Assembler::fb(c, a, d, rt);
   408 }
   410 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
   411   fb(c, a, p, target(L));
   412 }
   414 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
   415   Assembler::fbp(c, a, cc, p, d, rt);
   416 }
   418 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
   419   Assembler::fbp(c, a, cc, p, L);
   420 }
   422 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
   423 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
   425 // Call with a check to see if we need to deal with the added
   426 // expense of relocation and if we overflow the displacement
   427 // of the quick call instruction./
   428 // Check to see if we have to deal with relocations
   429 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
   430 #ifdef _LP64
   431   intptr_t disp;
   432   // NULL is ok because it will be relocated later.
   433   // Must change NULL to a reachable address in order to
   434   // pass asserts here and in wdisp.
   435   if ( d == NULL )
   436     d = pc();
   438   // Is this address within range of the call instruction?
   439   // If not, use the expensive instruction sequence
   440   disp = (intptr_t)d - (intptr_t)pc();
   441   if ( disp != (intptr_t)(int32_t)disp ) {
   442     relocate(rt);
   443     Address dest(O7, (address)d);
   444     sethi(dest, /*ForceRelocatable=*/ true);
   445     jmpl(dest, O7);
   446   }
   447   else {
   448     Assembler::call( d, rt );
   449   }
   450 #else
   451   Assembler::call( d, rt );
   452 #endif
   453 }
   455 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
   456   MacroAssembler::call( target(L), rt);
   457 }
   461 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
   462 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
   464 // prefetch instruction
   465 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
   466   if (VM_Version::v9_instructions_work())
   467     Assembler::bp( never, true, xcc, pt, d, rt );
   468 }
   469 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
   472 // clobbers o7 on V8!!
   473 // returns delta from gotten pc to addr after
   474 inline int MacroAssembler::get_pc( Register d ) {
   475   int x = offset();
   476   if (VM_Version::v9_instructions_work())
   477     rdpc(d);
   478   else {
   479     Label lbl;
   480     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
   481     if (d == O7)  delayed()->nop();
   482     else          delayed()->mov(O7, d);
   483     bind(lbl);
   484   }
   485   return offset() - x;
   486 }
   489 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
   492 // Loads the current PC of the following instruction as an immediate value in
   493 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
   494 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
   495   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
   496 #ifdef _LP64
   497   Unimplemented();
   498 #else
   499   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   500   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
   501 #endif
   502   return thepc;
   503 }
   505 inline void MacroAssembler::load_address( Address& a, int offset ) {
   506   assert_not_delayed();
   507 #ifdef _LP64
   508   sethi(a);
   509   add(a, a.base(), offset);
   510 #else
   511   if (a.hi() == 0 && a.rtype() == relocInfo::none) {
   512     set(a.disp() + offset, a.base());
   513   }
   514   else {
   515     sethi(a);
   516     add(a, a.base(), offset);
   517   }
   518 #endif
   519 }
   522 inline void MacroAssembler::split_disp( Address& a, Register temp ) {
   523   assert_not_delayed();
   524   a = a.split_disp();
   525   Assembler::sethi(a.hi(), temp, a.rspec());
   526   add(a.base(), temp, a.base());
   527 }
   530 inline void MacroAssembler::load_contents( Address& a, Register d, int offset ) {
   531   assert_not_delayed();
   532   sethi(a);
   533   ld(a, d, offset);
   534 }
   537 inline void MacroAssembler::load_ptr_contents( Address& a, Register d, int offset ) {
   538   assert_not_delayed();
   539   sethi(a);
   540   ld_ptr(a, d, offset);
   541 }
   544 inline void MacroAssembler::store_contents( Register s, Address& a, int offset ) {
   545   assert_not_delayed();
   546   sethi(a);
   547   st(s, a, offset);
   548 }
   551 inline void MacroAssembler::store_ptr_contents( Register s, Address& a, int offset ) {
   552   assert_not_delayed();
   553   sethi(a);
   554   st_ptr(s, a, offset);
   555 }
   558 // This code sequence is relocatable to any address, even on LP64.
   559 inline void MacroAssembler::jumpl_to( Address& a, Register d, int offset ) {
   560   assert_not_delayed();
   561   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   562   // variable length instruction streams.
   563   sethi(a, /*ForceRelocatable=*/ true);
   564   jmpl(a, d, offset);
   565 }
   568 inline void MacroAssembler::jump_to( Address& a, int offset ) {
   569   jumpl_to( a, G0, offset );
   570 }
   573 inline void MacroAssembler::set_oop( jobject obj, Register d ) {
   574   set_oop(allocate_oop_address(obj, d));
   575 }
   578 inline void MacroAssembler::set_oop_constant( jobject obj, Register d ) {
   579   set_oop(constant_oop_address(obj, d));
   580 }
   583 inline void MacroAssembler::set_oop( Address obj_addr ) {
   584   assert(obj_addr.rspec().type()==relocInfo::oop_type, "must be an oop reloc");
   585   load_address(obj_addr);
   586 }
   589 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
   590   if (a.is_register())
   591     mov(a.as_register(), d);
   592   else
   593     ld (a.as_address(),  d);
   594 }
   596 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
   597   if (a.is_register())
   598     mov(s, a.as_register());
   599   else
   600     st_ptr (s, a.as_address());         // ABI says everything is right justified.
   601 }
   603 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
   604   if (a.is_register())
   605     mov(s, a.as_register());
   606   else
   607     st_ptr (s, a.as_address());
   608 }
   611 #ifdef _LP64
   612 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
   613   if (a.is_float_register())
   614 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
   615     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
   616   else
   617     // Floats are stored in the high half of the stack entry
   618     // The low half is undefined per the ABI.
   619     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
   620 }
   622 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
   623   if (a.is_float_register())
   624 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
   625     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
   626   else
   627     stf(FloatRegisterImpl::D, s, a.as_address());
   628 }
   630 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
   631   if (a.is_register())
   632     mov(s, a.as_register());
   633   else
   634     stx(s, a.as_address());
   635 }
   636 #endif
   638 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
   639 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
   640 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
   641 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
   643 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
   644 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
   645 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
   646 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
   648 // returns if membar generates anything, obviously this code should mirror
   649 // membar below.
   650 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
   651   if( !os::is_MP() ) return false;  // Not needed on single CPU
   652   if( VM_Version::v9_instructions_work() ) {
   653     const Membar_mask_bits effective_mask =
   654         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   655     return (effective_mask != 0);
   656   } else {
   657     return true;
   658   }
   659 }
   661 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
   662   // Uniprocessors do not need memory barriers
   663   if (!os::is_MP()) return;
   664   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
   665   // 8.4.4.3, a.31 and a.50.
   666   if( VM_Version::v9_instructions_work() ) {
   667     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
   668     // of the mmask subfield of const7a that does anything that isn't done
   669     // implicitly is StoreLoad.
   670     const Membar_mask_bits effective_mask =
   671         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
   672     if ( effective_mask != 0 ) {
   673       Assembler::membar( effective_mask );
   674     }
   675   } else {
   676     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
   677     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
   678     // which guarantees that all stores behave as if an stbar were issued just after
   679     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
   680     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
   681     // it can't be specified by stbar, nor have I come up with a way to simulate it.
   682     //
   683     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
   684     // space.  Put one here to be on the safe side.
   685     Assembler::ldstub(SP, 0, G0);
   686   }
   687 }

mercurial