src/cpu/x86/vm/stubGenerator_x86_32.cpp

Wed, 09 Feb 2011 15:02:23 -0800

author
never
date
Wed, 09 Feb 2011 15:02:23 -0800
changeset 2569
6bbaedb03534
parent 2552
638119ce7cfd
child 2595
d89a22843c62
permissions
-rw-r--r--

7016474: string compare intrinsic improvements
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_x86.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "nativeInst_x86.hpp"
    30 #include "oops/instanceOop.hpp"
    31 #include "oops/methodOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/frame.inline.hpp"
    36 #include "runtime/handles.inline.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubCodeGenerator.hpp"
    39 #include "runtime/stubRoutines.hpp"
    40 #include "utilities/top.hpp"
    41 #ifdef TARGET_OS_FAMILY_linux
    42 # include "thread_linux.inline.hpp"
    43 #endif
    44 #ifdef TARGET_OS_FAMILY_solaris
    45 # include "thread_solaris.inline.hpp"
    46 #endif
    47 #ifdef TARGET_OS_FAMILY_windows
    48 # include "thread_windows.inline.hpp"
    49 #endif
    50 #ifdef COMPILER2
    51 #include "opto/runtime.hpp"
    52 #endif
    54 // Declaration and definition of StubGenerator (no .hpp file).
    55 // For a more detailed description of the stub routine structure
    56 // see the comment in stubRoutines.hpp
    58 #define __ _masm->
    59 #define a__ ((Assembler*)_masm)->
    61 #ifdef PRODUCT
    62 #define BLOCK_COMMENT(str) /* nothing */
    63 #else
    64 #define BLOCK_COMMENT(str) __ block_comment(str)
    65 #endif
    67 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    69 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
    70 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
    72 // -------------------------------------------------------------------------------------------------------------------------
    73 // Stub Code definitions
    75 static address handle_unsafe_access() {
    76   JavaThread* thread = JavaThread::current();
    77   address pc  = thread->saved_exception_pc();
    78   // pc is the instruction which we must emulate
    79   // doing a no-op is fine:  return garbage from the load
    80   // therefore, compute npc
    81   address npc = Assembler::locate_next_instruction(pc);
    83   // request an async exception
    84   thread->set_pending_unsafe_access_error();
    86   // return address of next instruction to execute
    87   return npc;
    88 }
    90 class StubGenerator: public StubCodeGenerator {
    91  private:
    93 #ifdef PRODUCT
    94 #define inc_counter_np(counter) (0)
    95 #else
    96   void inc_counter_np_(int& counter) {
    97     __ incrementl(ExternalAddress((address)&counter));
    98   }
    99 #define inc_counter_np(counter) \
   100   BLOCK_COMMENT("inc_counter " #counter); \
   101   inc_counter_np_(counter);
   102 #endif //PRODUCT
   104   void inc_copy_counter_np(BasicType t) {
   105 #ifndef PRODUCT
   106     switch (t) {
   107     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
   108     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
   109     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
   110     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
   111     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
   112     }
   113     ShouldNotReachHere();
   114 #endif //PRODUCT
   115   }
   117   //------------------------------------------------------------------------------------------------------------------------
   118   // Call stubs are used to call Java from C
   119   //
   120   //    [ return_from_Java     ] <--- rsp
   121   //    [ argument word n      ]
   122   //      ...
   123   // -N [ argument word 1      ]
   124   // -7 [ Possible padding for stack alignment ]
   125   // -6 [ Possible padding for stack alignment ]
   126   // -5 [ Possible padding for stack alignment ]
   127   // -4 [ mxcsr save           ] <--- rsp_after_call
   128   // -3 [ saved rbx,            ]
   129   // -2 [ saved rsi            ]
   130   // -1 [ saved rdi            ]
   131   //  0 [ saved rbp,            ] <--- rbp,
   132   //  1 [ return address       ]
   133   //  2 [ ptr. to call wrapper ]
   134   //  3 [ result               ]
   135   //  4 [ result_type          ]
   136   //  5 [ method               ]
   137   //  6 [ entry_point          ]
   138   //  7 [ parameters           ]
   139   //  8 [ parameter_size       ]
   140   //  9 [ thread               ]
   143   address generate_call_stub(address& return_address) {
   144     StubCodeMark mark(this, "StubRoutines", "call_stub");
   145     address start = __ pc();
   147     // stub code parameters / addresses
   148     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
   149     bool  sse_save = false;
   150     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
   151     const int     locals_count_in_bytes  (4*wordSize);
   152     const Address mxcsr_save    (rbp, -4 * wordSize);
   153     const Address saved_rbx     (rbp, -3 * wordSize);
   154     const Address saved_rsi     (rbp, -2 * wordSize);
   155     const Address saved_rdi     (rbp, -1 * wordSize);
   156     const Address result        (rbp,  3 * wordSize);
   157     const Address result_type   (rbp,  4 * wordSize);
   158     const Address method        (rbp,  5 * wordSize);
   159     const Address entry_point   (rbp,  6 * wordSize);
   160     const Address parameters    (rbp,  7 * wordSize);
   161     const Address parameter_size(rbp,  8 * wordSize);
   162     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
   163     sse_save =  UseSSE > 0;
   165     // stub code
   166     __ enter();
   167     __ movptr(rcx, parameter_size);              // parameter counter
   168     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
   169     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
   170     __ subptr(rsp, rcx);
   171     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
   173     // save rdi, rsi, & rbx, according to C calling conventions
   174     __ movptr(saved_rdi, rdi);
   175     __ movptr(saved_rsi, rsi);
   176     __ movptr(saved_rbx, rbx);
   177     // save and initialize %mxcsr
   178     if (sse_save) {
   179       Label skip_ldmx;
   180       __ stmxcsr(mxcsr_save);
   181       __ movl(rax, mxcsr_save);
   182       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   183       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   184       __ cmp32(rax, mxcsr_std);
   185       __ jcc(Assembler::equal, skip_ldmx);
   186       __ ldmxcsr(mxcsr_std);
   187       __ bind(skip_ldmx);
   188     }
   190     // make sure the control word is correct.
   191     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   193 #ifdef ASSERT
   194     // make sure we have no pending exceptions
   195     { Label L;
   196       __ movptr(rcx, thread);
   197       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   198       __ jcc(Assembler::equal, L);
   199       __ stop("StubRoutines::call_stub: entered with pending exception");
   200       __ bind(L);
   201     }
   202 #endif
   204     // pass parameters if any
   205     BLOCK_COMMENT("pass parameters if any");
   206     Label parameters_done;
   207     __ movl(rcx, parameter_size);  // parameter counter
   208     __ testl(rcx, rcx);
   209     __ jcc(Assembler::zero, parameters_done);
   211     // parameter passing loop
   213     Label loop;
   214     // Copy Java parameters in reverse order (receiver last)
   215     // Note that the argument order is inverted in the process
   216     // source is rdx[rcx: N-1..0]
   217     // dest   is rsp[rbx: 0..N-1]
   219     __ movptr(rdx, parameters);          // parameter pointer
   220     __ xorptr(rbx, rbx);
   222     __ BIND(loop);
   224     // get parameter
   225     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
   226     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
   227                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
   228     __ increment(rbx);
   229     __ decrement(rcx);
   230     __ jcc(Assembler::notZero, loop);
   232     // call Java function
   233     __ BIND(parameters_done);
   234     __ movptr(rbx, method);           // get methodOop
   235     __ movptr(rax, entry_point);      // get entry_point
   236     __ mov(rsi, rsp);                 // set sender sp
   237     BLOCK_COMMENT("call Java function");
   238     __ call(rax);
   240     BLOCK_COMMENT("call_stub_return_address:");
   241     return_address = __ pc();
   243 #ifdef COMPILER2
   244     {
   245       Label L_skip;
   246       if (UseSSE >= 2) {
   247         __ verify_FPU(0, "call_stub_return");
   248       } else {
   249         for (int i = 1; i < 8; i++) {
   250           __ ffree(i);
   251         }
   253         // UseSSE <= 1 so double result should be left on TOS
   254         __ movl(rsi, result_type);
   255         __ cmpl(rsi, T_DOUBLE);
   256         __ jcc(Assembler::equal, L_skip);
   257         if (UseSSE == 0) {
   258           // UseSSE == 0 so float result should be left on TOS
   259           __ cmpl(rsi, T_FLOAT);
   260           __ jcc(Assembler::equal, L_skip);
   261         }
   262         __ ffree(0);
   263       }
   264       __ BIND(L_skip);
   265     }
   266 #endif // COMPILER2
   268     // store result depending on type
   269     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   270     __ movptr(rdi, result);
   271     Label is_long, is_float, is_double, exit;
   272     __ movl(rsi, result_type);
   273     __ cmpl(rsi, T_LONG);
   274     __ jcc(Assembler::equal, is_long);
   275     __ cmpl(rsi, T_FLOAT);
   276     __ jcc(Assembler::equal, is_float);
   277     __ cmpl(rsi, T_DOUBLE);
   278     __ jcc(Assembler::equal, is_double);
   280     // handle T_INT case
   281     __ movl(Address(rdi, 0), rax);
   282     __ BIND(exit);
   284     // check that FPU stack is empty
   285     __ verify_FPU(0, "generate_call_stub");
   287     // pop parameters
   288     __ lea(rsp, rsp_after_call);
   290     // restore %mxcsr
   291     if (sse_save) {
   292       __ ldmxcsr(mxcsr_save);
   293     }
   295     // restore rdi, rsi and rbx,
   296     __ movptr(rbx, saved_rbx);
   297     __ movptr(rsi, saved_rsi);
   298     __ movptr(rdi, saved_rdi);
   299     __ addptr(rsp, 4*wordSize);
   301     // return
   302     __ pop(rbp);
   303     __ ret(0);
   305     // handle return types different from T_INT
   306     __ BIND(is_long);
   307     __ movl(Address(rdi, 0 * wordSize), rax);
   308     __ movl(Address(rdi, 1 * wordSize), rdx);
   309     __ jmp(exit);
   311     __ BIND(is_float);
   312     // interpreter uses xmm0 for return values
   313     if (UseSSE >= 1) {
   314       __ movflt(Address(rdi, 0), xmm0);
   315     } else {
   316       __ fstp_s(Address(rdi, 0));
   317     }
   318     __ jmp(exit);
   320     __ BIND(is_double);
   321     // interpreter uses xmm0 for return values
   322     if (UseSSE >= 2) {
   323       __ movdbl(Address(rdi, 0), xmm0);
   324     } else {
   325       __ fstp_d(Address(rdi, 0));
   326     }
   327     __ jmp(exit);
   329     return start;
   330   }
   333   //------------------------------------------------------------------------------------------------------------------------
   334   // Return point for a Java call if there's an exception thrown in Java code.
   335   // The exception is caught and transformed into a pending exception stored in
   336   // JavaThread that can be tested from within the VM.
   337   //
   338   // Note: Usually the parameters are removed by the callee. In case of an exception
   339   //       crossing an activation frame boundary, that is not the case if the callee
   340   //       is compiled code => need to setup the rsp.
   341   //
   342   // rax,: exception oop
   344   address generate_catch_exception() {
   345     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   346     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
   347     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
   348     address start = __ pc();
   350     // get thread directly
   351     __ movptr(rcx, thread);
   352 #ifdef ASSERT
   353     // verify that threads correspond
   354     { Label L;
   355       __ get_thread(rbx);
   356       __ cmpptr(rbx, rcx);
   357       __ jcc(Assembler::equal, L);
   358       __ stop("StubRoutines::catch_exception: threads must correspond");
   359       __ bind(L);
   360     }
   361 #endif
   362     // set pending exception
   363     __ verify_oop(rax);
   364     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
   365     __ lea(Address(rcx, Thread::exception_file_offset   ()),
   366            ExternalAddress((address)__FILE__));
   367     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
   368     // complete return to VM
   369     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
   370     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   372     return start;
   373   }
   376   //------------------------------------------------------------------------------------------------------------------------
   377   // Continuation point for runtime calls returning with a pending exception.
   378   // The pending exception check happened in the runtime or native call stub.
   379   // The pending exception in Thread is converted into a Java-level exception.
   380   //
   381   // Contract with Java-level exception handlers:
   382   // rax: exception
   383   // rdx: throwing pc
   384   //
   385   // NOTE: At entry of this stub, exception-pc must be on stack !!
   387   address generate_forward_exception() {
   388     StubCodeMark mark(this, "StubRoutines", "forward exception");
   389     address start = __ pc();
   390     const Register thread = rcx;
   392     // other registers used in this stub
   393     const Register exception_oop = rax;
   394     const Register handler_addr  = rbx;
   395     const Register exception_pc  = rdx;
   397     // Upon entry, the sp points to the return address returning into Java
   398     // (interpreted or compiled) code; i.e., the return address becomes the
   399     // throwing pc.
   400     //
   401     // Arguments pushed before the runtime call are still on the stack but
   402     // the exception handler will reset the stack pointer -> ignore them.
   403     // A potential result in registers can be ignored as well.
   405 #ifdef ASSERT
   406     // make sure this code is only executed if there is a pending exception
   407     { Label L;
   408       __ get_thread(thread);
   409       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   410       __ jcc(Assembler::notEqual, L);
   411       __ stop("StubRoutines::forward exception: no pending exception (1)");
   412       __ bind(L);
   413     }
   414 #endif
   416     // compute exception handler into rbx,
   417     __ get_thread(thread);
   418     __ movptr(exception_pc, Address(rsp, 0));
   419     BLOCK_COMMENT("call exception_handler_for_return_address");
   420     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
   421     __ mov(handler_addr, rax);
   423     // setup rax & rdx, remove return address & clear pending exception
   424     __ get_thread(thread);
   425     __ pop(exception_pc);
   426     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
   427     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
   429 #ifdef ASSERT
   430     // make sure exception is set
   431     { Label L;
   432       __ testptr(exception_oop, exception_oop);
   433       __ jcc(Assembler::notEqual, L);
   434       __ stop("StubRoutines::forward exception: no pending exception (2)");
   435       __ bind(L);
   436     }
   437 #endif
   439     // Verify that there is really a valid exception in RAX.
   440     __ verify_oop(exception_oop);
   442     // Restore SP from BP if the exception PC is a MethodHandle call site.
   443     __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
   444     __ cmovptr(Assembler::notEqual, rsp, rbp);
   446     // continue at exception handler (return address removed)
   447     // rax: exception
   448     // rbx: exception handler
   449     // rdx: throwing pc
   450     __ jmp(handler_addr);
   452     return start;
   453   }
   456   //----------------------------------------------------------------------------------------------------
   457   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
   458   //
   459   // xchg exists as far back as 8086, lock needed for MP only
   460   // Stack layout immediately after call:
   461   //
   462   // 0 [ret addr ] <--- rsp
   463   // 1 [  ex     ]
   464   // 2 [  dest   ]
   465   //
   466   // Result:   *dest <- ex, return (old *dest)
   467   //
   468   // Note: win32 does not currently use this code
   470   address generate_atomic_xchg() {
   471     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   472     address start = __ pc();
   474     __ push(rdx);
   475     Address exchange(rsp, 2 * wordSize);
   476     Address dest_addr(rsp, 3 * wordSize);
   477     __ movl(rax, exchange);
   478     __ movptr(rdx, dest_addr);
   479     __ xchgl(rax, Address(rdx, 0));
   480     __ pop(rdx);
   481     __ ret(0);
   483     return start;
   484   }
   486   //----------------------------------------------------------------------------------------------------
   487   // Support for void verify_mxcsr()
   488   //
   489   // This routine is used with -Xcheck:jni to verify that native
   490   // JNI code does not return to Java code without restoring the
   491   // MXCSR register to our expected state.
   494   address generate_verify_mxcsr() {
   495     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   496     address start = __ pc();
   498     const Address mxcsr_save(rsp, 0);
   500     if (CheckJNICalls && UseSSE > 0 ) {
   501       Label ok_ret;
   502       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
   503       __ push(rax);
   504       __ subptr(rsp, wordSize);      // allocate a temp location
   505       __ stmxcsr(mxcsr_save);
   506       __ movl(rax, mxcsr_save);
   507       __ andl(rax, MXCSR_MASK);
   508       __ cmp32(rax, mxcsr_std);
   509       __ jcc(Assembler::equal, ok_ret);
   511       __ warn("MXCSR changed by native JNI code.");
   513       __ ldmxcsr(mxcsr_std);
   515       __ bind(ok_ret);
   516       __ addptr(rsp, wordSize);
   517       __ pop(rax);
   518     }
   520     __ ret(0);
   522     return start;
   523   }
   526   //---------------------------------------------------------------------------
   527   // Support for void verify_fpu_cntrl_wrd()
   528   //
   529   // This routine is used with -Xcheck:jni to verify that native
   530   // JNI code does not return to Java code without restoring the
   531   // FP control word to our expected state.
   533   address generate_verify_fpu_cntrl_wrd() {
   534     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
   535     address start = __ pc();
   537     const Address fpu_cntrl_wrd_save(rsp, 0);
   539     if (CheckJNICalls) {
   540       Label ok_ret;
   541       __ push(rax);
   542       __ subptr(rsp, wordSize);      // allocate a temp location
   543       __ fnstcw(fpu_cntrl_wrd_save);
   544       __ movl(rax, fpu_cntrl_wrd_save);
   545       __ andl(rax, FPU_CNTRL_WRD_MASK);
   546       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
   547       __ cmp32(rax, fpu_std);
   548       __ jcc(Assembler::equal, ok_ret);
   550       __ warn("Floating point control word changed by native JNI code.");
   552       __ fldcw(fpu_std);
   554       __ bind(ok_ret);
   555       __ addptr(rsp, wordSize);
   556       __ pop(rax);
   557     }
   559     __ ret(0);
   561     return start;
   562   }
   564   //---------------------------------------------------------------------------
   565   // Wrapper for slow-case handling of double-to-integer conversion
   566   // d2i or f2i fast case failed either because it is nan or because
   567   // of under/overflow.
   568   // Input:  FPU TOS: float value
   569   // Output: rax, (rdx): integer (long) result
   571   address generate_d2i_wrapper(BasicType t, address fcn) {
   572     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
   573     address start = __ pc();
   575   // Capture info about frame layout
   576   enum layout { FPUState_off         = 0,
   577                 rbp_off              = FPUStateSizeInWords,
   578                 rdi_off,
   579                 rsi_off,
   580                 rcx_off,
   581                 rbx_off,
   582                 saved_argument_off,
   583                 saved_argument_off2, // 2nd half of double
   584                 framesize
   585   };
   587   assert(FPUStateSizeInWords == 27, "update stack layout");
   589     // Save outgoing argument to stack across push_FPU_state()
   590     __ subptr(rsp, wordSize * 2);
   591     __ fstp_d(Address(rsp, 0));
   593     // Save CPU & FPU state
   594     __ push(rbx);
   595     __ push(rcx);
   596     __ push(rsi);
   597     __ push(rdi);
   598     __ push(rbp);
   599     __ push_FPU_state();
   601     // push_FPU_state() resets the FP top of stack
   602     // Load original double into FP top of stack
   603     __ fld_d(Address(rsp, saved_argument_off * wordSize));
   604     // Store double into stack as outgoing argument
   605     __ subptr(rsp, wordSize*2);
   606     __ fst_d(Address(rsp, 0));
   608     // Prepare FPU for doing math in C-land
   609     __ empty_FPU_stack();
   610     // Call the C code to massage the double.  Result in EAX
   611     if (t == T_INT)
   612       { BLOCK_COMMENT("SharedRuntime::d2i"); }
   613     else if (t == T_LONG)
   614       { BLOCK_COMMENT("SharedRuntime::d2l"); }
   615     __ call_VM_leaf( fcn, 2 );
   617     // Restore CPU & FPU state
   618     __ pop_FPU_state();
   619     __ pop(rbp);
   620     __ pop(rdi);
   621     __ pop(rsi);
   622     __ pop(rcx);
   623     __ pop(rbx);
   624     __ addptr(rsp, wordSize * 2);
   626     __ ret(0);
   628     return start;
   629   }
   632   //---------------------------------------------------------------------------
   633   // The following routine generates a subroutine to throw an asynchronous
   634   // UnknownError when an unsafe access gets a fault that could not be
   635   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
   636   address generate_handler_for_unsafe_access() {
   637     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   638     address start = __ pc();
   640     __ push(0);                       // hole for return address-to-be
   641     __ pusha();                       // push registers
   642     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   643     BLOCK_COMMENT("call handle_unsafe_access");
   644     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   645     __ movptr(next_pc, rax);          // stuff next address
   646     __ popa();
   647     __ ret(0);                        // jump to next address
   649     return start;
   650   }
   653   //----------------------------------------------------------------------------------------------------
   654   // Non-destructive plausibility checks for oops
   656   address generate_verify_oop() {
   657     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   658     address start = __ pc();
   660     // Incoming arguments on stack after saving rax,:
   661     //
   662     // [tos    ]: saved rdx
   663     // [tos + 1]: saved EFLAGS
   664     // [tos + 2]: return address
   665     // [tos + 3]: char* error message
   666     // [tos + 4]: oop   object to verify
   667     // [tos + 5]: saved rax, - saved by caller and bashed
   669     Label exit, error;
   670     __ pushf();
   671     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   672     __ push(rdx);                                // save rdx
   673     // make sure object is 'reasonable'
   674     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
   675     __ testptr(rax, rax);
   676     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
   678     // Check if the oop is in the right area of memory
   679     const int oop_mask = Universe::verify_oop_mask();
   680     const int oop_bits = Universe::verify_oop_bits();
   681     __ mov(rdx, rax);
   682     __ andptr(rdx, oop_mask);
   683     __ cmpptr(rdx, oop_bits);
   684     __ jcc(Assembler::notZero, error);
   686     // make sure klass is 'reasonable'
   687     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
   688     __ testptr(rax, rax);
   689     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
   691     // Check if the klass is in the right area of memory
   692     const int klass_mask = Universe::verify_klass_mask();
   693     const int klass_bits = Universe::verify_klass_bits();
   694     __ mov(rdx, rax);
   695     __ andptr(rdx, klass_mask);
   696     __ cmpptr(rdx, klass_bits);
   697     __ jcc(Assembler::notZero, error);
   699     // make sure klass' klass is 'reasonable'
   700     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
   701     __ testptr(rax, rax);
   702     __ jcc(Assembler::zero, error);              // if klass' klass is NULL it is broken
   704     __ mov(rdx, rax);
   705     __ andptr(rdx, klass_mask);
   706     __ cmpptr(rdx, klass_bits);
   707     __ jcc(Assembler::notZero, error);           // if klass not in right area
   708                                                  // of memory it is broken too.
   710     // return if everything seems ok
   711     __ bind(exit);
   712     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   713     __ pop(rdx);                                 // restore rdx
   714     __ popf();                                   // restore EFLAGS
   715     __ ret(3 * wordSize);                        // pop arguments
   717     // handle errors
   718     __ bind(error);
   719     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
   720     __ pop(rdx);                                 // get saved rdx back
   721     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
   722     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
   723     BLOCK_COMMENT("call MacroAssembler::debug");
   724     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
   725     __ popa();
   726     __ ret(3 * wordSize);                        // pop arguments
   727     return start;
   728   }
   730   //
   731   //  Generate pre-barrier for array stores
   732   //
   733   //  Input:
   734   //     start   -  starting address
   735   //     count   -  element count
   736   void  gen_write_ref_array_pre_barrier(Register start, Register count) {
   737     assert_different_registers(start, count);
   738     BarrierSet* bs = Universe::heap()->barrier_set();
   739     switch (bs->kind()) {
   740       case BarrierSet::G1SATBCT:
   741       case BarrierSet::G1SATBCTLogging:
   742         {
   743           __ pusha();                      // push registers
   744           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
   745                           start, count);
   746           __ popa();
   747         }
   748         break;
   749       case BarrierSet::CardTableModRef:
   750       case BarrierSet::CardTableExtension:
   751       case BarrierSet::ModRef:
   752         break;
   753       default      :
   754         ShouldNotReachHere();
   756     }
   757   }
   760   //
   761   // Generate a post-barrier for an array store
   762   //
   763   //     start    -  starting address
   764   //     count    -  element count
   765   //
   766   //  The two input registers are overwritten.
   767   //
   768   void  gen_write_ref_array_post_barrier(Register start, Register count) {
   769     BarrierSet* bs = Universe::heap()->barrier_set();
   770     assert_different_registers(start, count);
   771     switch (bs->kind()) {
   772       case BarrierSet::G1SATBCT:
   773       case BarrierSet::G1SATBCTLogging:
   774         {
   775           __ pusha();                      // push registers
   776           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
   777                           start, count);
   778           __ popa();
   779         }
   780         break;
   782       case BarrierSet::CardTableModRef:
   783       case BarrierSet::CardTableExtension:
   784         {
   785           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
   786           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
   788           Label L_loop;
   789           const Register end = count;  // elements count; end == start+count-1
   790           assert_different_registers(start, end);
   792           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
   793           __ shrptr(start, CardTableModRefBS::card_shift);
   794           __ shrptr(end,   CardTableModRefBS::card_shift);
   795           __ subptr(end, start); // end --> count
   796         __ BIND(L_loop);
   797           intptr_t disp = (intptr_t) ct->byte_map_base;
   798           Address cardtable(start, count, Address::times_1, disp);
   799           __ movb(cardtable, 0);
   800           __ decrement(count);
   801           __ jcc(Assembler::greaterEqual, L_loop);
   802         }
   803         break;
   804       case BarrierSet::ModRef:
   805         break;
   806       default      :
   807         ShouldNotReachHere();
   809     }
   810   }
   813   // Copy 64 bytes chunks
   814   //
   815   // Inputs:
   816   //   from        - source array address
   817   //   to_from     - destination array address - from
   818   //   qword_count - 8-bytes element count, negative
   819   //
   820   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
   821     assert( UseSSE >= 2, "supported cpu only" );
   822     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   823     // Copy 64-byte chunks
   824     __ jmpb(L_copy_64_bytes);
   825     __ align(OptoLoopAlignment);
   826   __ BIND(L_copy_64_bytes_loop);
   828     if(UseUnalignedLoadStores) {
   829       __ movdqu(xmm0, Address(from, 0));
   830       __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
   831       __ movdqu(xmm1, Address(from, 16));
   832       __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
   833       __ movdqu(xmm2, Address(from, 32));
   834       __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
   835       __ movdqu(xmm3, Address(from, 48));
   836       __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
   838     } else {
   839       __ movq(xmm0, Address(from, 0));
   840       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
   841       __ movq(xmm1, Address(from, 8));
   842       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
   843       __ movq(xmm2, Address(from, 16));
   844       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
   845       __ movq(xmm3, Address(from, 24));
   846       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
   847       __ movq(xmm4, Address(from, 32));
   848       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
   849       __ movq(xmm5, Address(from, 40));
   850       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
   851       __ movq(xmm6, Address(from, 48));
   852       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
   853       __ movq(xmm7, Address(from, 56));
   854       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
   855     }
   857     __ addl(from, 64);
   858   __ BIND(L_copy_64_bytes);
   859     __ subl(qword_count, 8);
   860     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   861     __ addl(qword_count, 8);
   862     __ jccb(Assembler::zero, L_exit);
   863     //
   864     // length is too short, just copy qwords
   865     //
   866   __ BIND(L_copy_8_bytes);
   867     __ movq(xmm0, Address(from, 0));
   868     __ movq(Address(from, to_from, Address::times_1), xmm0);
   869     __ addl(from, 8);
   870     __ decrement(qword_count);
   871     __ jcc(Assembler::greater, L_copy_8_bytes);
   872   __ BIND(L_exit);
   873   }
   875   // Copy 64 bytes chunks
   876   //
   877   // Inputs:
   878   //   from        - source array address
   879   //   to_from     - destination array address - from
   880   //   qword_count - 8-bytes element count, negative
   881   //
   882   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
   883     assert( VM_Version::supports_mmx(), "supported cpu only" );
   884     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
   885     // Copy 64-byte chunks
   886     __ jmpb(L_copy_64_bytes);
   887     __ align(OptoLoopAlignment);
   888   __ BIND(L_copy_64_bytes_loop);
   889     __ movq(mmx0, Address(from, 0));
   890     __ movq(mmx1, Address(from, 8));
   891     __ movq(mmx2, Address(from, 16));
   892     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
   893     __ movq(mmx3, Address(from, 24));
   894     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
   895     __ movq(mmx4, Address(from, 32));
   896     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
   897     __ movq(mmx5, Address(from, 40));
   898     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
   899     __ movq(mmx6, Address(from, 48));
   900     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
   901     __ movq(mmx7, Address(from, 56));
   902     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
   903     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
   904     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
   905     __ addptr(from, 64);
   906   __ BIND(L_copy_64_bytes);
   907     __ subl(qword_count, 8);
   908     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
   909     __ addl(qword_count, 8);
   910     __ jccb(Assembler::zero, L_exit);
   911     //
   912     // length is too short, just copy qwords
   913     //
   914   __ BIND(L_copy_8_bytes);
   915     __ movq(mmx0, Address(from, 0));
   916     __ movq(Address(from, to_from, Address::times_1), mmx0);
   917     __ addptr(from, 8);
   918     __ decrement(qword_count);
   919     __ jcc(Assembler::greater, L_copy_8_bytes);
   920   __ BIND(L_exit);
   921     __ emms();
   922   }
   924   address generate_disjoint_copy(BasicType t, bool aligned,
   925                                  Address::ScaleFactor sf,
   926                                  address* entry, const char *name) {
   927     __ align(CodeEntryAlignment);
   928     StubCodeMark mark(this, "StubRoutines", name);
   929     address start = __ pc();
   931     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
   932     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
   934     int shift = Address::times_ptr - sf;
   936     const Register from     = rsi;  // source array address
   937     const Register to       = rdi;  // destination array address
   938     const Register count    = rcx;  // elements count
   939     const Register to_from  = to;   // (to - from)
   940     const Register saved_to = rdx;  // saved destination array address
   942     __ enter(); // required for proper stackwalking of RuntimeStub frame
   943     __ push(rsi);
   944     __ push(rdi);
   945     __ movptr(from , Address(rsp, 12+ 4));
   946     __ movptr(to   , Address(rsp, 12+ 8));
   947     __ movl(count, Address(rsp, 12+ 12));
   948     if (t == T_OBJECT) {
   949       __ testl(count, count);
   950       __ jcc(Assembler::zero, L_0_count);
   951       gen_write_ref_array_pre_barrier(to, count);
   952       __ mov(saved_to, to);          // save 'to'
   953     }
   955     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
   956     BLOCK_COMMENT("Entry:");
   958     __ subptr(to, from); // to --> to_from
   959     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
   960     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
   961     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
   962       // align source address at 4 bytes address boundary
   963       if (t == T_BYTE) {
   964         // One byte misalignment happens only for byte arrays
   965         __ testl(from, 1);
   966         __ jccb(Assembler::zero, L_skip_align1);
   967         __ movb(rax, Address(from, 0));
   968         __ movb(Address(from, to_from, Address::times_1, 0), rax);
   969         __ increment(from);
   970         __ decrement(count);
   971       __ BIND(L_skip_align1);
   972       }
   973       // Two bytes misalignment happens only for byte and short (char) arrays
   974       __ testl(from, 2);
   975       __ jccb(Assembler::zero, L_skip_align2);
   976       __ movw(rax, Address(from, 0));
   977       __ movw(Address(from, to_from, Address::times_1, 0), rax);
   978       __ addptr(from, 2);
   979       __ subl(count, 1<<(shift-1));
   980     __ BIND(L_skip_align2);
   981     }
   982     if (!VM_Version::supports_mmx()) {
   983       __ mov(rax, count);      // save 'count'
   984       __ shrl(count, shift); // bytes count
   985       __ addptr(to_from, from);// restore 'to'
   986       __ rep_mov();
   987       __ subptr(to_from, from);// restore 'to_from'
   988       __ mov(count, rax);      // restore 'count'
   989       __ jmpb(L_copy_2_bytes); // all dwords were copied
   990     } else {
   991       if (!UseUnalignedLoadStores) {
   992         // align to 8 bytes, we know we are 4 byte aligned to start
   993         __ testptr(from, 4);
   994         __ jccb(Assembler::zero, L_copy_64_bytes);
   995         __ movl(rax, Address(from, 0));
   996         __ movl(Address(from, to_from, Address::times_1, 0), rax);
   997         __ addptr(from, 4);
   998         __ subl(count, 1<<shift);
   999       }
  1000     __ BIND(L_copy_64_bytes);
  1001       __ mov(rax, count);
  1002       __ shrl(rax, shift+1);  // 8 bytes chunk count
  1003       //
  1004       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
  1005       //
  1006       if (UseXMMForArrayCopy) {
  1007         xmm_copy_forward(from, to_from, rax);
  1008       } else {
  1009         mmx_copy_forward(from, to_from, rax);
  1012     // copy tailing dword
  1013   __ BIND(L_copy_4_bytes);
  1014     __ testl(count, 1<<shift);
  1015     __ jccb(Assembler::zero, L_copy_2_bytes);
  1016     __ movl(rax, Address(from, 0));
  1017     __ movl(Address(from, to_from, Address::times_1, 0), rax);
  1018     if (t == T_BYTE || t == T_SHORT) {
  1019       __ addptr(from, 4);
  1020     __ BIND(L_copy_2_bytes);
  1021       // copy tailing word
  1022       __ testl(count, 1<<(shift-1));
  1023       __ jccb(Assembler::zero, L_copy_byte);
  1024       __ movw(rax, Address(from, 0));
  1025       __ movw(Address(from, to_from, Address::times_1, 0), rax);
  1026       if (t == T_BYTE) {
  1027         __ addptr(from, 2);
  1028       __ BIND(L_copy_byte);
  1029         // copy tailing byte
  1030         __ testl(count, 1);
  1031         __ jccb(Assembler::zero, L_exit);
  1032         __ movb(rax, Address(from, 0));
  1033         __ movb(Address(from, to_from, Address::times_1, 0), rax);
  1034       __ BIND(L_exit);
  1035       } else {
  1036       __ BIND(L_copy_byte);
  1038     } else {
  1039     __ BIND(L_copy_2_bytes);
  1042     if (t == T_OBJECT) {
  1043       __ movl(count, Address(rsp, 12+12)); // reread 'count'
  1044       __ mov(to, saved_to); // restore 'to'
  1045       gen_write_ref_array_post_barrier(to, count);
  1046     __ BIND(L_0_count);
  1048     inc_copy_counter_np(t);
  1049     __ pop(rdi);
  1050     __ pop(rsi);
  1051     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1052     __ xorptr(rax, rax); // return 0
  1053     __ ret(0);
  1054     return start;
  1058   address generate_fill(BasicType t, bool aligned, const char *name) {
  1059     __ align(CodeEntryAlignment);
  1060     StubCodeMark mark(this, "StubRoutines", name);
  1061     address start = __ pc();
  1063     BLOCK_COMMENT("Entry:");
  1065     const Register to       = rdi;  // source array address
  1066     const Register value    = rdx;  // value
  1067     const Register count    = rsi;  // elements count
  1069     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1070     __ push(rsi);
  1071     __ push(rdi);
  1072     __ movptr(to   , Address(rsp, 12+ 4));
  1073     __ movl(value, Address(rsp, 12+ 8));
  1074     __ movl(count, Address(rsp, 12+ 12));
  1076     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
  1078     __ pop(rdi);
  1079     __ pop(rsi);
  1080     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1081     __ ret(0);
  1082     return start;
  1085   address generate_conjoint_copy(BasicType t, bool aligned,
  1086                                  Address::ScaleFactor sf,
  1087                                  address nooverlap_target,
  1088                                  address* entry, const char *name) {
  1089     __ align(CodeEntryAlignment);
  1090     StubCodeMark mark(this, "StubRoutines", name);
  1091     address start = __ pc();
  1093     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
  1094     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
  1096     int shift = Address::times_ptr - sf;
  1098     const Register src   = rax;  // source array address
  1099     const Register dst   = rdx;  // destination array address
  1100     const Register from  = rsi;  // source array address
  1101     const Register to    = rdi;  // destination array address
  1102     const Register count = rcx;  // elements count
  1103     const Register end   = rax;  // array end address
  1105     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1106     __ push(rsi);
  1107     __ push(rdi);
  1108     __ movptr(src  , Address(rsp, 12+ 4));   // from
  1109     __ movptr(dst  , Address(rsp, 12+ 8));   // to
  1110     __ movl2ptr(count, Address(rsp, 12+12)); // count
  1111     if (t == T_OBJECT) {
  1112        gen_write_ref_array_pre_barrier(dst, count);
  1115     if (entry != NULL) {
  1116       *entry = __ pc(); // Entry point from generic arraycopy stub.
  1117       BLOCK_COMMENT("Entry:");
  1120     if (t == T_OBJECT) {
  1121       __ testl(count, count);
  1122       __ jcc(Assembler::zero, L_0_count);
  1124     __ mov(from, src);
  1125     __ mov(to  , dst);
  1127     // arrays overlap test
  1128     RuntimeAddress nooverlap(nooverlap_target);
  1129     __ cmpptr(dst, src);
  1130     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
  1131     __ jump_cc(Assembler::belowEqual, nooverlap);
  1132     __ cmpptr(dst, end);
  1133     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1135     // copy from high to low
  1136     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1137     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
  1138     if (t == T_BYTE || t == T_SHORT) {
  1139       // Align the end of destination array at 4 bytes address boundary
  1140       __ lea(end, Address(dst, count, sf, 0));
  1141       if (t == T_BYTE) {
  1142         // One byte misalignment happens only for byte arrays
  1143         __ testl(end, 1);
  1144         __ jccb(Assembler::zero, L_skip_align1);
  1145         __ decrement(count);
  1146         __ movb(rdx, Address(from, count, sf, 0));
  1147         __ movb(Address(to, count, sf, 0), rdx);
  1148       __ BIND(L_skip_align1);
  1150       // Two bytes misalignment happens only for byte and short (char) arrays
  1151       __ testl(end, 2);
  1152       __ jccb(Assembler::zero, L_skip_align2);
  1153       __ subptr(count, 1<<(shift-1));
  1154       __ movw(rdx, Address(from, count, sf, 0));
  1155       __ movw(Address(to, count, sf, 0), rdx);
  1156     __ BIND(L_skip_align2);
  1157       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
  1158       __ jcc(Assembler::below, L_copy_4_bytes);
  1161     if (!VM_Version::supports_mmx()) {
  1162       __ std();
  1163       __ mov(rax, count); // Save 'count'
  1164       __ mov(rdx, to);    // Save 'to'
  1165       __ lea(rsi, Address(from, count, sf, -4));
  1166       __ lea(rdi, Address(to  , count, sf, -4));
  1167       __ shrptr(count, shift); // bytes count
  1168       __ rep_mov();
  1169       __ cld();
  1170       __ mov(count, rax); // restore 'count'
  1171       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
  1172       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
  1173       __ mov(to, rdx);   // restore 'to'
  1174       __ jmpb(L_copy_2_bytes); // all dword were copied
  1175    } else {
  1176       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
  1177       __ testptr(end, 4);
  1178       __ jccb(Assembler::zero, L_copy_8_bytes);
  1179       __ subl(count, 1<<shift);
  1180       __ movl(rdx, Address(from, count, sf, 0));
  1181       __ movl(Address(to, count, sf, 0), rdx);
  1182       __ jmpb(L_copy_8_bytes);
  1184       __ align(OptoLoopAlignment);
  1185       // Move 8 bytes
  1186     __ BIND(L_copy_8_bytes_loop);
  1187       if (UseXMMForArrayCopy) {
  1188         __ movq(xmm0, Address(from, count, sf, 0));
  1189         __ movq(Address(to, count, sf, 0), xmm0);
  1190       } else {
  1191         __ movq(mmx0, Address(from, count, sf, 0));
  1192         __ movq(Address(to, count, sf, 0), mmx0);
  1194     __ BIND(L_copy_8_bytes);
  1195       __ subl(count, 2<<shift);
  1196       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1197       __ addl(count, 2<<shift);
  1198       if (!UseXMMForArrayCopy) {
  1199         __ emms();
  1202   __ BIND(L_copy_4_bytes);
  1203     // copy prefix qword
  1204     __ testl(count, 1<<shift);
  1205     __ jccb(Assembler::zero, L_copy_2_bytes);
  1206     __ movl(rdx, Address(from, count, sf, -4));
  1207     __ movl(Address(to, count, sf, -4), rdx);
  1209     if (t == T_BYTE || t == T_SHORT) {
  1210         __ subl(count, (1<<shift));
  1211       __ BIND(L_copy_2_bytes);
  1212         // copy prefix dword
  1213         __ testl(count, 1<<(shift-1));
  1214         __ jccb(Assembler::zero, L_copy_byte);
  1215         __ movw(rdx, Address(from, count, sf, -2));
  1216         __ movw(Address(to, count, sf, -2), rdx);
  1217         if (t == T_BYTE) {
  1218           __ subl(count, 1<<(shift-1));
  1219         __ BIND(L_copy_byte);
  1220           // copy prefix byte
  1221           __ testl(count, 1);
  1222           __ jccb(Assembler::zero, L_exit);
  1223           __ movb(rdx, Address(from, 0));
  1224           __ movb(Address(to, 0), rdx);
  1225         __ BIND(L_exit);
  1226         } else {
  1227         __ BIND(L_copy_byte);
  1229     } else {
  1230     __ BIND(L_copy_2_bytes);
  1232     if (t == T_OBJECT) {
  1233       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
  1234       gen_write_ref_array_post_barrier(to, count);
  1235     __ BIND(L_0_count);
  1237     inc_copy_counter_np(t);
  1238     __ pop(rdi);
  1239     __ pop(rsi);
  1240     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1241     __ xorptr(rax, rax); // return 0
  1242     __ ret(0);
  1243     return start;
  1247   address generate_disjoint_long_copy(address* entry, const char *name) {
  1248     __ align(CodeEntryAlignment);
  1249     StubCodeMark mark(this, "StubRoutines", name);
  1250     address start = __ pc();
  1252     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1253     const Register from       = rax;  // source array address
  1254     const Register to         = rdx;  // destination array address
  1255     const Register count      = rcx;  // elements count
  1256     const Register to_from    = rdx;  // (to - from)
  1258     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1259     __ movptr(from , Address(rsp, 8+0));       // from
  1260     __ movptr(to   , Address(rsp, 8+4));       // to
  1261     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1263     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
  1264     BLOCK_COMMENT("Entry:");
  1266     __ subptr(to, from); // to --> to_from
  1267     if (VM_Version::supports_mmx()) {
  1268       if (UseXMMForArrayCopy) {
  1269         xmm_copy_forward(from, to_from, count);
  1270       } else {
  1271         mmx_copy_forward(from, to_from, count);
  1273     } else {
  1274       __ jmpb(L_copy_8_bytes);
  1275       __ align(OptoLoopAlignment);
  1276     __ BIND(L_copy_8_bytes_loop);
  1277       __ fild_d(Address(from, 0));
  1278       __ fistp_d(Address(from, to_from, Address::times_1));
  1279       __ addptr(from, 8);
  1280     __ BIND(L_copy_8_bytes);
  1281       __ decrement(count);
  1282       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1284     inc_copy_counter_np(T_LONG);
  1285     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1286     __ xorptr(rax, rax); // return 0
  1287     __ ret(0);
  1288     return start;
  1291   address generate_conjoint_long_copy(address nooverlap_target,
  1292                                       address* entry, const char *name) {
  1293     __ align(CodeEntryAlignment);
  1294     StubCodeMark mark(this, "StubRoutines", name);
  1295     address start = __ pc();
  1297     Label L_copy_8_bytes, L_copy_8_bytes_loop;
  1298     const Register from       = rax;  // source array address
  1299     const Register to         = rdx;  // destination array address
  1300     const Register count      = rcx;  // elements count
  1301     const Register end_from   = rax;  // source array end address
  1303     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1304     __ movptr(from , Address(rsp, 8+0));       // from
  1305     __ movptr(to   , Address(rsp, 8+4));       // to
  1306     __ movl2ptr(count, Address(rsp, 8+8));     // count
  1308     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1309     BLOCK_COMMENT("Entry:");
  1311     // arrays overlap test
  1312     __ cmpptr(to, from);
  1313     RuntimeAddress nooverlap(nooverlap_target);
  1314     __ jump_cc(Assembler::belowEqual, nooverlap);
  1315     __ lea(end_from, Address(from, count, Address::times_8, 0));
  1316     __ cmpptr(to, end_from);
  1317     __ movptr(from, Address(rsp, 8));  // from
  1318     __ jump_cc(Assembler::aboveEqual, nooverlap);
  1320     __ jmpb(L_copy_8_bytes);
  1322     __ align(OptoLoopAlignment);
  1323   __ BIND(L_copy_8_bytes_loop);
  1324     if (VM_Version::supports_mmx()) {
  1325       if (UseXMMForArrayCopy) {
  1326         __ movq(xmm0, Address(from, count, Address::times_8));
  1327         __ movq(Address(to, count, Address::times_8), xmm0);
  1328       } else {
  1329         __ movq(mmx0, Address(from, count, Address::times_8));
  1330         __ movq(Address(to, count, Address::times_8), mmx0);
  1332     } else {
  1333       __ fild_d(Address(from, count, Address::times_8));
  1334       __ fistp_d(Address(to, count, Address::times_8));
  1336   __ BIND(L_copy_8_bytes);
  1337     __ decrement(count);
  1338     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
  1340     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
  1341       __ emms();
  1343     inc_copy_counter_np(T_LONG);
  1344     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1345     __ xorptr(rax, rax); // return 0
  1346     __ ret(0);
  1347     return start;
  1351   // Helper for generating a dynamic type check.
  1352   // The sub_klass must be one of {rbx, rdx, rsi}.
  1353   // The temp is killed.
  1354   void generate_type_check(Register sub_klass,
  1355                            Address& super_check_offset_addr,
  1356                            Address& super_klass_addr,
  1357                            Register temp,
  1358                            Label* L_success, Label* L_failure) {
  1359     BLOCK_COMMENT("type_check:");
  1361     Label L_fallthrough;
  1362 #define LOCAL_JCC(assembler_con, label_ptr)                             \
  1363     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
  1364     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
  1366     // The following is a strange variation of the fast path which requires
  1367     // one less register, because needed values are on the argument stack.
  1368     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
  1369     //                                  L_success, L_failure, NULL);
  1370     assert_different_registers(sub_klass, temp);
  1372     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  1373                      Klass::secondary_super_cache_offset_in_bytes());
  1375     // if the pointers are equal, we are done (e.g., String[] elements)
  1376     __ cmpptr(sub_klass, super_klass_addr);
  1377     LOCAL_JCC(Assembler::equal, L_success);
  1379     // check the supertype display:
  1380     __ movl2ptr(temp, super_check_offset_addr);
  1381     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
  1382     __ movptr(temp, super_check_addr); // load displayed supertype
  1383     __ cmpptr(temp, super_klass_addr); // test the super type
  1384     LOCAL_JCC(Assembler::equal, L_success);
  1386     // if it was a primary super, we can just fail immediately
  1387     __ cmpl(super_check_offset_addr, sc_offset);
  1388     LOCAL_JCC(Assembler::notEqual, L_failure);
  1390     // The repne_scan instruction uses fixed registers, which will get spilled.
  1391     // We happen to know this works best when super_klass is in rax.
  1392     Register super_klass = temp;
  1393     __ movptr(super_klass, super_klass_addr);
  1394     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
  1395                                      L_success, L_failure);
  1397     __ bind(L_fallthrough);
  1399     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
  1400     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
  1402 #undef LOCAL_JCC
  1405   //
  1406   //  Generate checkcasting array copy stub
  1407   //
  1408   //  Input:
  1409   //    4(rsp)   - source array address
  1410   //    8(rsp)   - destination array address
  1411   //   12(rsp)   - element count, can be zero
  1412   //   16(rsp)   - size_t ckoff (super_check_offset)
  1413   //   20(rsp)   - oop ckval (super_klass)
  1414   //
  1415   //  Output:
  1416   //    rax, ==  0  -  success
  1417   //    rax, == -1^K - failure, where K is partial transfer count
  1418   //
  1419   address generate_checkcast_copy(const char *name, address* entry) {
  1420     __ align(CodeEntryAlignment);
  1421     StubCodeMark mark(this, "StubRoutines", name);
  1422     address start = __ pc();
  1424     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  1426     // register use:
  1427     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
  1428     //  rdi, rsi      -- element access (oop, klass)
  1429     //  rbx,           -- temp
  1430     const Register from       = rax;    // source array address
  1431     const Register to         = rdx;    // destination array address
  1432     const Register length     = rcx;    // elements count
  1433     const Register elem       = rdi;    // each oop copied
  1434     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
  1435     const Register temp       = rbx;    // lone remaining temp
  1437     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1439     __ push(rsi);
  1440     __ push(rdi);
  1441     __ push(rbx);
  1443     Address   from_arg(rsp, 16+ 4);     // from
  1444     Address     to_arg(rsp, 16+ 8);     // to
  1445     Address length_arg(rsp, 16+12);     // elements count
  1446     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
  1447     Address  ckval_arg(rsp, 16+20);     // super_klass
  1449     // Load up:
  1450     __ movptr(from,     from_arg);
  1451     __ movptr(to,         to_arg);
  1452     __ movl2ptr(length, length_arg);
  1454     *entry = __ pc(); // Entry point from generic arraycopy stub.
  1455     BLOCK_COMMENT("Entry:");
  1457     //---------------------------------------------------------------
  1458     // Assembler stub will be used for this call to arraycopy
  1459     // if the two arrays are subtypes of Object[] but the
  1460     // destination array type is not equal to or a supertype
  1461     // of the source type.  Each element must be separately
  1462     // checked.
  1464     // Loop-invariant addresses.  They are exclusive end pointers.
  1465     Address end_from_addr(from, length, Address::times_ptr, 0);
  1466     Address   end_to_addr(to,   length, Address::times_ptr, 0);
  1468     Register end_from = from;           // re-use
  1469     Register end_to   = to;             // re-use
  1470     Register count    = length;         // re-use
  1472     // Loop-variant addresses.  They assume post-incremented count < 0.
  1473     Address from_element_addr(end_from, count, Address::times_ptr, 0);
  1474     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
  1475     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
  1477     // Copy from low to high addresses, indexed from the end of each array.
  1478     gen_write_ref_array_pre_barrier(to, count);
  1479     __ lea(end_from, end_from_addr);
  1480     __ lea(end_to,   end_to_addr);
  1481     assert(length == count, "");        // else fix next line:
  1482     __ negptr(count);                   // negate and test the length
  1483     __ jccb(Assembler::notZero, L_load_element);
  1485     // Empty array:  Nothing to do.
  1486     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  1487     __ jmp(L_done);
  1489     // ======== begin loop ========
  1490     // (Loop is rotated; its entry is L_load_element.)
  1491     // Loop control:
  1492     //   for (count = -count; count != 0; count++)
  1493     // Base pointers src, dst are biased by 8*count,to last element.
  1494     __ align(OptoLoopAlignment);
  1496     __ BIND(L_store_element);
  1497     __ movptr(to_element_addr, elem);     // store the oop
  1498     __ increment(count);                // increment the count toward zero
  1499     __ jccb(Assembler::zero, L_do_card_marks);
  1501     // ======== loop entry is here ========
  1502     __ BIND(L_load_element);
  1503     __ movptr(elem, from_element_addr);   // load the oop
  1504     __ testptr(elem, elem);
  1505     __ jccb(Assembler::zero, L_store_element);
  1507     // (Could do a trick here:  Remember last successful non-null
  1508     // element stored and make a quick oop equality check on it.)
  1510     __ movptr(elem_klass, elem_klass_addr); // query the object klass
  1511     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
  1512                         &L_store_element, NULL);
  1513       // (On fall-through, we have failed the element type check.)
  1514     // ======== end loop ========
  1516     // It was a real error; we must depend on the caller to finish the job.
  1517     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
  1518     // Emit GC store barriers for the oops we have copied (length_arg + count),
  1519     // and report their number to the caller.
  1520     __ addl(count, length_arg);         // transfers = (length - remaining)
  1521     __ movl2ptr(rax, count);            // save the value
  1522     __ notptr(rax);                     // report (-1^K) to caller
  1523     __ movptr(to, to_arg);              // reload
  1524     assert_different_registers(to, count, rax);
  1525     gen_write_ref_array_post_barrier(to, count);
  1526     __ jmpb(L_done);
  1528     // Come here on success only.
  1529     __ BIND(L_do_card_marks);
  1530     __ movl2ptr(count, length_arg);
  1531     __ movptr(to, to_arg);                // reload
  1532     gen_write_ref_array_post_barrier(to, count);
  1533     __ xorptr(rax, rax);                  // return 0 on success
  1535     // Common exit point (success or failure).
  1536     __ BIND(L_done);
  1537     __ pop(rbx);
  1538     __ pop(rdi);
  1539     __ pop(rsi);
  1540     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  1541     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1542     __ ret(0);
  1544     return start;
  1547   //
  1548   //  Generate 'unsafe' array copy stub
  1549   //  Though just as safe as the other stubs, it takes an unscaled
  1550   //  size_t argument instead of an element count.
  1551   //
  1552   //  Input:
  1553   //    4(rsp)   - source array address
  1554   //    8(rsp)   - destination array address
  1555   //   12(rsp)   - byte count, can be zero
  1556   //
  1557   //  Output:
  1558   //    rax, ==  0  -  success
  1559   //    rax, == -1  -  need to call System.arraycopy
  1560   //
  1561   // Examines the alignment of the operands and dispatches
  1562   // to a long, int, short, or byte copy loop.
  1563   //
  1564   address generate_unsafe_copy(const char *name,
  1565                                address byte_copy_entry,
  1566                                address short_copy_entry,
  1567                                address int_copy_entry,
  1568                                address long_copy_entry) {
  1570     Label L_long_aligned, L_int_aligned, L_short_aligned;
  1572     __ align(CodeEntryAlignment);
  1573     StubCodeMark mark(this, "StubRoutines", name);
  1574     address start = __ pc();
  1576     const Register from       = rax;  // source array address
  1577     const Register to         = rdx;  // destination array address
  1578     const Register count      = rcx;  // elements count
  1580     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1581     __ push(rsi);
  1582     __ push(rdi);
  1583     Address  from_arg(rsp, 12+ 4);      // from
  1584     Address    to_arg(rsp, 12+ 8);      // to
  1585     Address count_arg(rsp, 12+12);      // byte count
  1587     // Load up:
  1588     __ movptr(from ,  from_arg);
  1589     __ movptr(to   ,    to_arg);
  1590     __ movl2ptr(count, count_arg);
  1592     // bump this on entry, not on exit:
  1593     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  1595     const Register bits = rsi;
  1596     __ mov(bits, from);
  1597     __ orptr(bits, to);
  1598     __ orptr(bits, count);
  1600     __ testl(bits, BytesPerLong-1);
  1601     __ jccb(Assembler::zero, L_long_aligned);
  1603     __ testl(bits, BytesPerInt-1);
  1604     __ jccb(Assembler::zero, L_int_aligned);
  1606     __ testl(bits, BytesPerShort-1);
  1607     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  1609     __ BIND(L_short_aligned);
  1610     __ shrptr(count, LogBytesPerShort); // size => short_count
  1611     __ movl(count_arg, count);          // update 'count'
  1612     __ jump(RuntimeAddress(short_copy_entry));
  1614     __ BIND(L_int_aligned);
  1615     __ shrptr(count, LogBytesPerInt); // size => int_count
  1616     __ movl(count_arg, count);          // update 'count'
  1617     __ jump(RuntimeAddress(int_copy_entry));
  1619     __ BIND(L_long_aligned);
  1620     __ shrptr(count, LogBytesPerLong); // size => qword_count
  1621     __ movl(count_arg, count);          // update 'count'
  1622     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1623     __ pop(rsi);
  1624     __ jump(RuntimeAddress(long_copy_entry));
  1626     return start;
  1630   // Perform range checks on the proposed arraycopy.
  1631   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  1632   void arraycopy_range_checks(Register src,
  1633                               Register src_pos,
  1634                               Register dst,
  1635                               Register dst_pos,
  1636                               Address& length,
  1637                               Label& L_failed) {
  1638     BLOCK_COMMENT("arraycopy_range_checks:");
  1639     const Register src_end = src_pos;   // source array end position
  1640     const Register dst_end = dst_pos;   // destination array end position
  1641     __ addl(src_end, length); // src_pos + length
  1642     __ addl(dst_end, length); // dst_pos + length
  1644     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
  1645     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
  1646     __ jcc(Assembler::above, L_failed);
  1648     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
  1649     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  1650     __ jcc(Assembler::above, L_failed);
  1652     BLOCK_COMMENT("arraycopy_range_checks done");
  1656   //
  1657   //  Generate generic array copy stubs
  1658   //
  1659   //  Input:
  1660   //     4(rsp)    -  src oop
  1661   //     8(rsp)    -  src_pos
  1662   //    12(rsp)    -  dst oop
  1663   //    16(rsp)    -  dst_pos
  1664   //    20(rsp)    -  element count
  1665   //
  1666   //  Output:
  1667   //    rax, ==  0  -  success
  1668   //    rax, == -1^K - failure, where K is partial transfer count
  1669   //
  1670   address generate_generic_copy(const char *name,
  1671                                 address entry_jbyte_arraycopy,
  1672                                 address entry_jshort_arraycopy,
  1673                                 address entry_jint_arraycopy,
  1674                                 address entry_oop_arraycopy,
  1675                                 address entry_jlong_arraycopy,
  1676                                 address entry_checkcast_arraycopy) {
  1677     Label L_failed, L_failed_0, L_objArray;
  1679     { int modulus = CodeEntryAlignment;
  1680       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  1681       int advance = target - (__ offset() % modulus);
  1682       if (advance < 0)  advance += modulus;
  1683       if (advance > 0)  __ nop(advance);
  1685     StubCodeMark mark(this, "StubRoutines", name);
  1687     // Short-hop target to L_failed.  Makes for denser prologue code.
  1688     __ BIND(L_failed_0);
  1689     __ jmp(L_failed);
  1690     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  1692     __ align(CodeEntryAlignment);
  1693     address start = __ pc();
  1695     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1696     __ push(rsi);
  1697     __ push(rdi);
  1699     // bump this on entry, not on exit:
  1700     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  1702     // Input values
  1703     Address SRC     (rsp, 12+ 4);
  1704     Address SRC_POS (rsp, 12+ 8);
  1705     Address DST     (rsp, 12+12);
  1706     Address DST_POS (rsp, 12+16);
  1707     Address LENGTH  (rsp, 12+20);
  1709     //-----------------------------------------------------------------------
  1710     // Assembler stub will be used for this call to arraycopy
  1711     // if the following conditions are met:
  1712     //
  1713     // (1) src and dst must not be null.
  1714     // (2) src_pos must not be negative.
  1715     // (3) dst_pos must not be negative.
  1716     // (4) length  must not be negative.
  1717     // (5) src klass and dst klass should be the same and not NULL.
  1718     // (6) src and dst should be arrays.
  1719     // (7) src_pos + length must not exceed length of src.
  1720     // (8) dst_pos + length must not exceed length of dst.
  1721     //
  1723     const Register src     = rax;       // source array oop
  1724     const Register src_pos = rsi;
  1725     const Register dst     = rdx;       // destination array oop
  1726     const Register dst_pos = rdi;
  1727     const Register length  = rcx;       // transfer count
  1729     //  if (src == NULL) return -1;
  1730     __ movptr(src, SRC);      // src oop
  1731     __ testptr(src, src);
  1732     __ jccb(Assembler::zero, L_failed_0);
  1734     //  if (src_pos < 0) return -1;
  1735     __ movl2ptr(src_pos, SRC_POS);  // src_pos
  1736     __ testl(src_pos, src_pos);
  1737     __ jccb(Assembler::negative, L_failed_0);
  1739     //  if (dst == NULL) return -1;
  1740     __ movptr(dst, DST);      // dst oop
  1741     __ testptr(dst, dst);
  1742     __ jccb(Assembler::zero, L_failed_0);
  1744     //  if (dst_pos < 0) return -1;
  1745     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
  1746     __ testl(dst_pos, dst_pos);
  1747     __ jccb(Assembler::negative, L_failed_0);
  1749     //  if (length < 0) return -1;
  1750     __ movl2ptr(length, LENGTH);   // length
  1751     __ testl(length, length);
  1752     __ jccb(Assembler::negative, L_failed_0);
  1754     //  if (src->klass() == NULL) return -1;
  1755     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
  1756     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
  1757     const Register rcx_src_klass = rcx;    // array klass
  1758     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
  1760 #ifdef ASSERT
  1761     //  assert(src->klass() != NULL);
  1762     BLOCK_COMMENT("assert klasses not null");
  1763     { Label L1, L2;
  1764       __ testptr(rcx_src_klass, rcx_src_klass);
  1765       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
  1766       __ bind(L1);
  1767       __ stop("broken null klass");
  1768       __ bind(L2);
  1769       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
  1770       __ jccb(Assembler::equal, L1);      // this would be broken also
  1771       BLOCK_COMMENT("assert done");
  1773 #endif //ASSERT
  1775     // Load layout helper (32-bits)
  1776     //
  1777     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  1778     // 32        30    24            16              8     2                 0
  1779     //
  1780     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  1781     //
  1783     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  1784                     Klass::layout_helper_offset_in_bytes();
  1785     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
  1787     // Handle objArrays completely differently...
  1788     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  1789     __ cmpl(src_klass_lh_addr, objArray_lh);
  1790     __ jcc(Assembler::equal, L_objArray);
  1792     //  if (src->klass() != dst->klass()) return -1;
  1793     __ cmpptr(rcx_src_klass, dst_klass_addr);
  1794     __ jccb(Assembler::notEqual, L_failed_0);
  1796     const Register rcx_lh = rcx;  // layout helper
  1797     assert(rcx_lh == rcx_src_klass, "known alias");
  1798     __ movl(rcx_lh, src_klass_lh_addr);
  1800     //  if (!src->is_Array()) return -1;
  1801     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
  1802     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
  1804     // At this point, it is known to be a typeArray (array_tag 0x3).
  1805 #ifdef ASSERT
  1806     { Label L;
  1807       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  1808       __ jcc(Assembler::greaterEqual, L); // signed cmp
  1809       __ stop("must be a primitive array");
  1810       __ bind(L);
  1812 #endif
  1814     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
  1815     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1817     // typeArrayKlass
  1818     //
  1819     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  1820     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  1821     //
  1822     const Register rsi_offset = rsi; // array offset
  1823     const Register src_array  = src; // src array offset
  1824     const Register dst_array  = dst; // dst array offset
  1825     const Register rdi_elsize = rdi; // log2 element size
  1827     __ mov(rsi_offset, rcx_lh);
  1828     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
  1829     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
  1830     __ addptr(src_array, rsi_offset);  // src array offset
  1831     __ addptr(dst_array, rsi_offset);  // dst array offset
  1832     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
  1834     // next registers should be set before the jump to corresponding stub
  1835     const Register from       = src; // source array address
  1836     const Register to         = dst; // destination array address
  1837     const Register count      = rcx; // elements count
  1838     // some of them should be duplicated on stack
  1839 #define FROM   Address(rsp, 12+ 4)
  1840 #define TO     Address(rsp, 12+ 8)   // Not used now
  1841 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
  1843     BLOCK_COMMENT("scale indexes to element size");
  1844     __ movl2ptr(rsi, SRC_POS);  // src_pos
  1845     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
  1846     assert(src_array == from, "");
  1847     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
  1848     __ movl2ptr(rdi, DST_POS);  // dst_pos
  1849     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
  1850     assert(dst_array == to, "");
  1851     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
  1852     __ movptr(FROM, from);      // src_addr
  1853     __ mov(rdi_elsize, rcx_lh); // log2 elsize
  1854     __ movl2ptr(count, LENGTH); // elements count
  1856     BLOCK_COMMENT("choose copy loop based on element size");
  1857     __ cmpl(rdi_elsize, 0);
  1859     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
  1860     __ cmpl(rdi_elsize, LogBytesPerShort);
  1861     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
  1862     __ cmpl(rdi_elsize, LogBytesPerInt);
  1863     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
  1864 #ifdef ASSERT
  1865     __ cmpl(rdi_elsize, LogBytesPerLong);
  1866     __ jccb(Assembler::notEqual, L_failed);
  1867 #endif
  1868     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
  1869     __ pop(rsi);
  1870     __ jump(RuntimeAddress(entry_jlong_arraycopy));
  1872   __ BIND(L_failed);
  1873     __ xorptr(rax, rax);
  1874     __ notptr(rax); // return -1
  1875     __ pop(rdi);
  1876     __ pop(rsi);
  1877     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1878     __ ret(0);
  1880     // objArrayKlass
  1881   __ BIND(L_objArray);
  1882     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
  1884     Label L_plain_copy, L_checkcast_copy;
  1885     //  test array classes for subtyping
  1886     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
  1887     __ jccb(Assembler::notEqual, L_checkcast_copy);
  1889     // Identically typed arrays can be copied without element-wise checks.
  1890     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
  1891     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1893   __ BIND(L_plain_copy);
  1894     __ movl2ptr(count, LENGTH); // elements count
  1895     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
  1896     __ lea(from, Address(src, src_pos, Address::times_ptr,
  1897                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  1898     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
  1899     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
  1900                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  1901     __ movptr(FROM,  from);   // src_addr
  1902     __ movptr(TO,    to);     // dst_addr
  1903     __ movl(COUNT, count);  // count
  1904     __ jump(RuntimeAddress(entry_oop_arraycopy));
  1906   __ BIND(L_checkcast_copy);
  1907     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
  1909       // Handy offsets:
  1910       int  ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  1911                         objArrayKlass::element_klass_offset_in_bytes());
  1912       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  1913                         Klass::super_check_offset_offset_in_bytes());
  1915       Register rsi_dst_klass = rsi;
  1916       Register rdi_temp      = rdi;
  1917       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
  1918       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
  1919       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
  1921       // Before looking at dst.length, make sure dst is also an objArray.
  1922       __ movptr(rsi_dst_klass, dst_klass_addr);
  1923       __ cmpl(dst_klass_lh_addr, objArray_lh);
  1924       __ jccb(Assembler::notEqual, L_failed);
  1926       // It is safe to examine both src.length and dst.length.
  1927       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
  1928       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
  1929       // (Now src_pos and dst_pos are killed, but not src and dst.)
  1931       // We'll need this temp (don't forget to pop it after the type check).
  1932       __ push(rbx);
  1933       Register rbx_src_klass = rbx;
  1935       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
  1936       __ movptr(rsi_dst_klass, dst_klass_addr);
  1937       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
  1938       Label L_fail_array_check;
  1939       generate_type_check(rbx_src_klass,
  1940                           super_check_offset_addr, dst_klass_addr,
  1941                           rdi_temp, NULL, &L_fail_array_check);
  1942       // (On fall-through, we have passed the array type check.)
  1943       __ pop(rbx);
  1944       __ jmp(L_plain_copy);
  1946       __ BIND(L_fail_array_check);
  1947       // Reshuffle arguments so we can call checkcast_arraycopy:
  1949       // match initial saves for checkcast_arraycopy
  1950       // push(rsi);    // already done; see above
  1951       // push(rdi);    // already done; see above
  1952       // push(rbx);    // already done; see above
  1954       // Marshal outgoing arguments now, freeing registers.
  1955       Address   from_arg(rsp, 16+ 4);   // from
  1956       Address     to_arg(rsp, 16+ 8);   // to
  1957       Address length_arg(rsp, 16+12);   // elements count
  1958       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
  1959       Address  ckval_arg(rsp, 16+20);   // super_klass
  1961       Address SRC_POS_arg(rsp, 16+ 8);
  1962       Address DST_POS_arg(rsp, 16+16);
  1963       Address  LENGTH_arg(rsp, 16+20);
  1964       // push rbx, changed the incoming offsets (why not just use rbp,??)
  1965       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
  1967       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
  1968       __ movl2ptr(length, LENGTH_arg);    // reload elements count
  1969       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
  1970       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
  1972       __ movptr(ckval_arg, rbx);          // destination element type
  1973       __ movl(rbx, Address(rbx, sco_offset));
  1974       __ movl(ckoff_arg, rbx);          // corresponding class check offset
  1976       __ movl(length_arg, length);      // outgoing length argument
  1978       __ lea(from, Address(src, src_pos, Address::times_ptr,
  1979                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1980       __ movptr(from_arg, from);
  1982       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
  1983                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  1984       __ movptr(to_arg, to);
  1985       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
  1988     return start;
  1991   void generate_arraycopy_stubs() {
  1992     address entry;
  1993     address entry_jbyte_arraycopy;
  1994     address entry_jshort_arraycopy;
  1995     address entry_jint_arraycopy;
  1996     address entry_oop_arraycopy;
  1997     address entry_jlong_arraycopy;
  1998     address entry_checkcast_arraycopy;
  2000     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
  2001         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
  2002                                "arrayof_jbyte_disjoint_arraycopy");
  2003     StubRoutines::_arrayof_jbyte_arraycopy =
  2004         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
  2005                                NULL, "arrayof_jbyte_arraycopy");
  2006     StubRoutines::_jbyte_disjoint_arraycopy =
  2007         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
  2008                                "jbyte_disjoint_arraycopy");
  2009     StubRoutines::_jbyte_arraycopy =
  2010         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
  2011                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
  2013     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
  2014         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
  2015                                "arrayof_jshort_disjoint_arraycopy");
  2016     StubRoutines::_arrayof_jshort_arraycopy =
  2017         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
  2018                                NULL, "arrayof_jshort_arraycopy");
  2019     StubRoutines::_jshort_disjoint_arraycopy =
  2020         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
  2021                                "jshort_disjoint_arraycopy");
  2022     StubRoutines::_jshort_arraycopy =
  2023         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
  2024                                &entry_jshort_arraycopy, "jshort_arraycopy");
  2026     // Next arrays are always aligned on 4 bytes at least.
  2027     StubRoutines::_jint_disjoint_arraycopy =
  2028         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
  2029                                "jint_disjoint_arraycopy");
  2030     StubRoutines::_jint_arraycopy =
  2031         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
  2032                                &entry_jint_arraycopy, "jint_arraycopy");
  2034     StubRoutines::_oop_disjoint_arraycopy =
  2035         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
  2036                                "oop_disjoint_arraycopy");
  2037     StubRoutines::_oop_arraycopy =
  2038         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
  2039                                &entry_oop_arraycopy, "oop_arraycopy");
  2041     StubRoutines::_jlong_disjoint_arraycopy =
  2042         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
  2043     StubRoutines::_jlong_arraycopy =
  2044         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
  2045                                     "jlong_arraycopy");
  2047     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
  2048     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
  2049     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
  2050     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
  2051     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
  2052     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
  2054     StubRoutines::_arrayof_jint_disjoint_arraycopy  =
  2055         StubRoutines::_jint_disjoint_arraycopy;
  2056     StubRoutines::_arrayof_oop_disjoint_arraycopy   =
  2057         StubRoutines::_oop_disjoint_arraycopy;
  2058     StubRoutines::_arrayof_jlong_disjoint_arraycopy =
  2059         StubRoutines::_jlong_disjoint_arraycopy;
  2061     StubRoutines::_arrayof_jint_arraycopy  = StubRoutines::_jint_arraycopy;
  2062     StubRoutines::_arrayof_oop_arraycopy   = StubRoutines::_oop_arraycopy;
  2063     StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
  2065     StubRoutines::_checkcast_arraycopy =
  2066         generate_checkcast_copy("checkcast_arraycopy",
  2067                                   &entry_checkcast_arraycopy);
  2069     StubRoutines::_unsafe_arraycopy =
  2070         generate_unsafe_copy("unsafe_arraycopy",
  2071                                entry_jbyte_arraycopy,
  2072                                entry_jshort_arraycopy,
  2073                                entry_jint_arraycopy,
  2074                                entry_jlong_arraycopy);
  2076     StubRoutines::_generic_arraycopy =
  2077         generate_generic_copy("generic_arraycopy",
  2078                                entry_jbyte_arraycopy,
  2079                                entry_jshort_arraycopy,
  2080                                entry_jint_arraycopy,
  2081                                entry_oop_arraycopy,
  2082                                entry_jlong_arraycopy,
  2083                                entry_checkcast_arraycopy);
  2086   void generate_math_stubs() {
  2088       StubCodeMark mark(this, "StubRoutines", "log");
  2089       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
  2091       __ fld_d(Address(rsp, 4));
  2092       __ flog();
  2093       __ ret(0);
  2096       StubCodeMark mark(this, "StubRoutines", "log10");
  2097       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
  2099       __ fld_d(Address(rsp, 4));
  2100       __ flog10();
  2101       __ ret(0);
  2104       StubCodeMark mark(this, "StubRoutines", "sin");
  2105       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
  2107       __ fld_d(Address(rsp, 4));
  2108       __ trigfunc('s');
  2109       __ ret(0);
  2112       StubCodeMark mark(this, "StubRoutines", "cos");
  2113       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
  2115       __ fld_d(Address(rsp, 4));
  2116       __ trigfunc('c');
  2117       __ ret(0);
  2120       StubCodeMark mark(this, "StubRoutines", "tan");
  2121       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
  2123       __ fld_d(Address(rsp, 4));
  2124       __ trigfunc('t');
  2125       __ ret(0);
  2128     // The intrinsic version of these seem to return the same value as
  2129     // the strict version.
  2130     StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
  2131     StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
  2134  public:
  2135   // Information about frame layout at time of blocking runtime call.
  2136   // Note that we only have to preserve callee-saved registers since
  2137   // the compilers are responsible for supplying a continuation point
  2138   // if they expect all registers to be preserved.
  2139   enum layout {
  2140     thread_off,    // last_java_sp
  2141     rbp_off,       // callee saved register
  2142     ret_pc,
  2143     framesize
  2144   };
  2146  private:
  2148 #undef  __
  2149 #define __ masm->
  2151   //------------------------------------------------------------------------------------------------------------------------
  2152   // Continuation point for throwing of implicit exceptions that are not handled in
  2153   // the current activation. Fabricates an exception oop and initiates normal
  2154   // exception dispatching in this frame.
  2155   //
  2156   // Previously the compiler (c2) allowed for callee save registers on Java calls.
  2157   // This is no longer true after adapter frames were removed but could possibly
  2158   // be brought back in the future if the interpreter code was reworked and it
  2159   // was deemed worthwhile. The comment below was left to describe what must
  2160   // happen here if callee saves were resurrected. As it stands now this stub
  2161   // could actually be a vanilla BufferBlob and have now oopMap at all.
  2162   // Since it doesn't make much difference we've chosen to leave it the
  2163   // way it was in the callee save days and keep the comment.
  2165   // If we need to preserve callee-saved values we need a callee-saved oop map and
  2166   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  2167   // If the compiler needs all registers to be preserved between the fault
  2168   // point and the exception handler then it must assume responsibility for that in
  2169   // AbstractCompiler::continuation_for_implicit_null_exception or
  2170   // continuation_for_implicit_division_by_zero_exception. All other implicit
  2171   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  2172   // either at call sites or otherwise assume that stack unwinding will be initiated,
  2173   // so caller saved registers were assumed volatile in the compiler.
  2174   address generate_throw_exception(const char* name, address runtime_entry,
  2175                                    bool restore_saved_exception_pc) {
  2177     int insts_size = 256;
  2178     int locs_size  = 32;
  2180     CodeBuffer code(name, insts_size, locs_size);
  2181     OopMapSet* oop_maps  = new OopMapSet();
  2182     MacroAssembler* masm = new MacroAssembler(&code);
  2184     address start = __ pc();
  2186     // This is an inlined and slightly modified version of call_VM
  2187     // which has the ability to fetch the return PC out of
  2188     // thread-local storage and also sets up last_Java_sp slightly
  2189     // differently than the real call_VM
  2190     Register java_thread = rbx;
  2191     __ get_thread(java_thread);
  2192     if (restore_saved_exception_pc) {
  2193       __ movptr(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
  2194       __ push(rax);
  2197     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2199     // pc and rbp, already pushed
  2200     __ subptr(rsp, (framesize-2) * wordSize); // prolog
  2202     // Frame is now completed as far as size and linkage.
  2204     int frame_complete = __ pc() - start;
  2206     // push java thread (becomes first argument of C function)
  2207     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
  2209     // Set up last_Java_sp and last_Java_fp
  2210     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
  2212     // Call runtime
  2213     BLOCK_COMMENT("call runtime_entry");
  2214     __ call(RuntimeAddress(runtime_entry));
  2215     // Generate oop map
  2216     OopMap* map =  new OopMap(framesize, 0);
  2217     oop_maps->add_gc_map(__ pc() - start, map);
  2219     // restore the thread (cannot use the pushed argument since arguments
  2220     // may be overwritten by C code generated by an optimizing compiler);
  2221     // however can use the register value directly if it is callee saved.
  2222     __ get_thread(java_thread);
  2224     __ reset_last_Java_frame(java_thread, true, false);
  2226     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2228     // check for pending exceptions
  2229 #ifdef ASSERT
  2230     Label L;
  2231     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
  2232     __ jcc(Assembler::notEqual, L);
  2233     __ should_not_reach_here();
  2234     __ bind(L);
  2235 #endif /* ASSERT */
  2236     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2239     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
  2240     return stub->entry_point();
  2244   void create_control_words() {
  2245     // Round to nearest, 53-bit mode, exceptions masked
  2246     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
  2247     // Round to zero, 53-bit mode, exception mased
  2248     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
  2249     // Round to nearest, 24-bit mode, exceptions masked
  2250     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
  2251     // Round to nearest, 64-bit mode, exceptions masked
  2252     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
  2253     // Round to nearest, 64-bit mode, exceptions masked
  2254     StubRoutines::_mxcsr_std           = 0x1F80;
  2255     // Note: the following two constants are 80-bit values
  2256     //       layout is critical for correct loading by FPU.
  2257     // Bias for strict fp multiply/divide
  2258     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
  2259     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
  2260     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
  2261     // Un-Bias for strict fp multiply/divide
  2262     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
  2263     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
  2264     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  2267   //---------------------------------------------------------------------------
  2268   // Initialization
  2270   void generate_initial() {
  2271     // Generates all stubs and initializes the entry points
  2273     //------------------------------------------------------------------------------------------------------------------------
  2274     // entry points that exist in all platforms
  2275     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
  2276     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
  2277     StubRoutines::_forward_exception_entry      = generate_forward_exception();
  2279     StubRoutines::_call_stub_entry              =
  2280       generate_call_stub(StubRoutines::_call_stub_return_address);
  2281     // is referenced by megamorphic call
  2282     StubRoutines::_catch_exception_entry        = generate_catch_exception();
  2284     // These are currently used by Solaris/Intel
  2285     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
  2287     StubRoutines::_handler_for_unsafe_access_entry =
  2288       generate_handler_for_unsafe_access();
  2290     // platform dependent
  2291     create_control_words();
  2293     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
  2294     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
  2295     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
  2296                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
  2297     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
  2298                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  2302   void generate_all() {
  2303     // Generates all stubs and initializes the entry points
  2305     // These entry points require SharedInfo::stack0 to be set up in non-core builds
  2306     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
  2307     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
  2308     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
  2309     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
  2310     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
  2311     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
  2312     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
  2314     //------------------------------------------------------------------------------------------------------------------------
  2315     // entry points that are platform specific
  2317     // support for verify_oop (must happen after universe_init)
  2318     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
  2320     // arraycopy stubs used by compilers
  2321     generate_arraycopy_stubs();
  2323     generate_math_stubs();
  2327  public:
  2328   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2329     if (all) {
  2330       generate_all();
  2331     } else {
  2332       generate_initial();
  2335 }; // end class declaration
  2338 void StubGenerator_generate(CodeBuffer* code, bool all) {
  2339   StubGenerator g(code, all);

mercurial