src/cpu/sparc/vm/templateTable_sparc.cpp

Tue, 21 Apr 2009 11:16:30 -0700

author
twisti
date
Tue, 21 Apr 2009 11:16:30 -0700
changeset 1162
6b2273dd6fa9
parent 1040
98cb887364d3
child 1163
85656c8fa13f
permissions
-rw-r--r--

6822110: Add AddressLiteral class on SPARC
Summary: The Address class on SPARC currently handles both, addresses and address literals, what makes the Address class more complicated than it has to be.
Reviewed-by: never, kvn

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_templateTable_sparc.cpp.incl"
    28 #ifndef CC_INTERP
    29 #define __ _masm->
    31 // Misc helpers
    33 // Do an oop store like *(base + index + offset) = val
    34 // index can be noreg,
    35 static void do_oop_store(InterpreterMacroAssembler* _masm,
    36                          Register base,
    37                          Register index,
    38                          int offset,
    39                          Register val,
    40                          Register tmp,
    41                          BarrierSet::Name barrier,
    42                          bool precise) {
    43   assert(tmp != val && tmp != base && tmp != index, "register collision");
    44   assert(index == noreg || offset == 0, "only one offset");
    45   switch (barrier) {
    46 #ifndef SERIALGC
    47     case BarrierSet::G1SATBCT:
    48     case BarrierSet::G1SATBCTLogging:
    49       {
    50         __ g1_write_barrier_pre( base, index, offset, tmp, /*preserve_o_regs*/true);
    51         if (index == noreg ) {
    52           assert(Assembler::is_simm13(offset), "fix this code");
    53           __ store_heap_oop(val, base, offset);
    54         } else {
    55           __ store_heap_oop(val, base, index);
    56         }
    58         // No need for post barrier if storing NULL
    59         if (val != G0) {
    60           if (precise) {
    61             if (index == noreg) {
    62               __ add(base, offset, base);
    63             } else {
    64               __ add(base, index, base);
    65             }
    66           }
    67           __ g1_write_barrier_post(base, val, tmp);
    68         }
    69       }
    70       break;
    71 #endif // SERIALGC
    72     case BarrierSet::CardTableModRef:
    73     case BarrierSet::CardTableExtension:
    74       {
    75         if (index == noreg ) {
    76           assert(Assembler::is_simm13(offset), "fix this code");
    77           __ store_heap_oop(val, base, offset);
    78         } else {
    79           __ store_heap_oop(val, base, index);
    80         }
    81         // No need for post barrier if storing NULL
    82         if (val != G0) {
    83           if (precise) {
    84             if (index == noreg) {
    85               __ add(base, offset, base);
    86             } else {
    87               __ add(base, index, base);
    88             }
    89           }
    90           __ card_write_barrier_post(base, val, tmp);
    91         }
    92       }
    93       break;
    94     case BarrierSet::ModRef:
    95     case BarrierSet::Other:
    96       ShouldNotReachHere();
    97       break;
    98     default      :
    99       ShouldNotReachHere();
   101   }
   102 }
   105 //----------------------------------------------------------------------------------------------------
   106 // Platform-dependent initialization
   108 void TemplateTable::pd_initialize() {
   109   // (none)
   110 }
   113 //----------------------------------------------------------------------------------------------------
   114 // Condition conversion
   115 Assembler::Condition ccNot(TemplateTable::Condition cc) {
   116   switch (cc) {
   117     case TemplateTable::equal        : return Assembler::notEqual;
   118     case TemplateTable::not_equal    : return Assembler::equal;
   119     case TemplateTable::less         : return Assembler::greaterEqual;
   120     case TemplateTable::less_equal   : return Assembler::greater;
   121     case TemplateTable::greater      : return Assembler::lessEqual;
   122     case TemplateTable::greater_equal: return Assembler::less;
   123   }
   124   ShouldNotReachHere();
   125   return Assembler::zero;
   126 }
   128 //----------------------------------------------------------------------------------------------------
   129 // Miscelaneous helper routines
   132 Address TemplateTable::at_bcp(int offset) {
   133   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   134   return Address(Lbcp, offset);
   135 }
   138 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register Rbyte_code,
   139                                    Register Rscratch,
   140                                    bool load_bc_into_scratch /*=true*/) {
   141   // With sharing on, may need to test methodOop flag.
   142   if (!RewriteBytecodes) return;
   143   if (load_bc_into_scratch) __ set(bc, Rbyte_code);
   144   Label patch_done;
   145   if (JvmtiExport::can_post_breakpoint()) {
   146     Label fast_patch;
   147     __ ldub(at_bcp(0), Rscratch);
   148     __ cmp(Rscratch, Bytecodes::_breakpoint);
   149     __ br(Assembler::notEqual, false, Assembler::pt, fast_patch);
   150     __ delayed()->nop();  // don't bother to hoist the stb here
   151     // perform the quickening, slowly, in the bowels of the breakpoint table
   152     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), Lmethod, Lbcp, Rbyte_code);
   153     __ ba(false, patch_done);
   154     __ delayed()->nop();
   155     __ bind(fast_patch);
   156   }
   157 #ifdef ASSERT
   158   Bytecodes::Code orig_bytecode =  Bytecodes::java_code(bc);
   159   Label okay;
   160   __ ldub(at_bcp(0), Rscratch);
   161   __ cmp(Rscratch, orig_bytecode);
   162   __ br(Assembler::equal, false, Assembler::pt, okay);
   163   __ delayed() ->cmp(Rscratch, Rbyte_code);
   164   __ br(Assembler::equal, false, Assembler::pt, okay);
   165   __ delayed()->nop();
   166   __ stop("Rewriting wrong bytecode location");
   167   __ bind(okay);
   168 #endif
   169   __ stb(Rbyte_code, at_bcp(0));
   170   __ bind(patch_done);
   171 }
   173 //----------------------------------------------------------------------------------------------------
   174 // Individual instructions
   176 void TemplateTable::nop() {
   177   transition(vtos, vtos);
   178   // nothing to do
   179 }
   181 void TemplateTable::shouldnotreachhere() {
   182   transition(vtos, vtos);
   183   __ stop("shouldnotreachhere bytecode");
   184 }
   186 void TemplateTable::aconst_null() {
   187   transition(vtos, atos);
   188   __ clr(Otos_i);
   189 }
   192 void TemplateTable::iconst(int value) {
   193   transition(vtos, itos);
   194   __ set(value, Otos_i);
   195 }
   198 void TemplateTable::lconst(int value) {
   199   transition(vtos, ltos);
   200   assert(value >= 0, "check this code");
   201 #ifdef _LP64
   202   __ set(value, Otos_l);
   203 #else
   204   __ set(value, Otos_l2);
   205   __ clr( Otos_l1);
   206 #endif
   207 }
   210 void TemplateTable::fconst(int value) {
   211   transition(vtos, ftos);
   212   static float zero = 0.0, one = 1.0, two = 2.0;
   213   float* p;
   214   switch( value ) {
   215    default: ShouldNotReachHere();
   216    case 0:  p = &zero;  break;
   217    case 1:  p = &one;   break;
   218    case 2:  p = &two;   break;
   219   }
   220   AddressLiteral a(p);
   221   __ sethi(a, G3_scratch);
   222   __ ldf(FloatRegisterImpl::S, G3_scratch, a.low10(), Ftos_f);
   223 }
   226 void TemplateTable::dconst(int value) {
   227   transition(vtos, dtos);
   228   static double zero = 0.0, one = 1.0;
   229   double* p;
   230   switch( value ) {
   231    default: ShouldNotReachHere();
   232    case 0:  p = &zero;  break;
   233    case 1:  p = &one;   break;
   234   }
   235   AddressLiteral a(p);
   236   __ sethi(a, G3_scratch);
   237   __ ldf(FloatRegisterImpl::D, G3_scratch, a.low10(), Ftos_d);
   238 }
   241 // %%%%% Should factore most snippet templates across platforms
   243 void TemplateTable::bipush() {
   244   transition(vtos, itos);
   245   __ ldsb( at_bcp(1), Otos_i );
   246 }
   248 void TemplateTable::sipush() {
   249   transition(vtos, itos);
   250   __ get_2_byte_integer_at_bcp(1, G3_scratch, Otos_i, InterpreterMacroAssembler::Signed);
   251 }
   253 void TemplateTable::ldc(bool wide) {
   254   transition(vtos, vtos);
   255   Label call_ldc, notInt, notString, notClass, exit;
   257   if (wide) {
   258     __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   259   } else {
   260     __ ldub(Lbcp, 1, O1);
   261   }
   262   __ get_cpool_and_tags(O0, O2);
   264   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   265   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   267   // get type from tags
   268   __ add(O2, tags_offset, O2);
   269   __ ldub(O2, O1, O2);
   270   __ cmp(O2, JVM_CONSTANT_UnresolvedString);    // unresolved string? If so, must resolve
   271   __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
   272   __ delayed()->nop();
   274   __ cmp(O2, JVM_CONSTANT_UnresolvedClass);     // unresolved class? If so, must resolve
   275   __ brx(Assembler::equal, true, Assembler::pt, call_ldc);
   276   __ delayed()->nop();
   278   __ cmp(O2, JVM_CONSTANT_UnresolvedClassInError);     // unresolved class in error state
   279   __ brx(Assembler::equal, true, Assembler::pn, call_ldc);
   280   __ delayed()->nop();
   282   __ cmp(O2, JVM_CONSTANT_Class);      // need to call vm to get java mirror of the class
   283   __ brx(Assembler::notEqual, true, Assembler::pt, notClass);
   284   __ delayed()->add(O0, base_offset, O0);
   286   __ bind(call_ldc);
   287   __ set(wide, O1);
   288   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), O1);
   289   __ push(atos);
   290   __ ba(false, exit);
   291   __ delayed()->nop();
   293   __ bind(notClass);
   294  // __ add(O0, base_offset, O0);
   295   __ sll(O1, LogBytesPerWord, O1);
   296   __ cmp(O2, JVM_CONSTANT_Integer);
   297   __ brx(Assembler::notEqual, true, Assembler::pt, notInt);
   298   __ delayed()->cmp(O2, JVM_CONSTANT_String);
   299   __ ld(O0, O1, Otos_i);
   300   __ push(itos);
   301   __ ba(false, exit);
   302   __ delayed()->nop();
   304   __ bind(notInt);
   305  // __ cmp(O2, JVM_CONSTANT_String);
   306   __ brx(Assembler::notEqual, true, Assembler::pt, notString);
   307   __ delayed()->ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   308   __ ld_ptr(O0, O1, Otos_i);
   309   __ verify_oop(Otos_i);
   310   __ push(atos);
   311   __ ba(false, exit);
   312   __ delayed()->nop();
   314   __ bind(notString);
   315  // __ ldf(FloatRegisterImpl::S, O0, O1, Ftos_f);
   316   __ push(ftos);
   318   __ bind(exit);
   319 }
   321 void TemplateTable::ldc2_w() {
   322   transition(vtos, vtos);
   323   Label retry, resolved, Long, exit;
   325   __ bind(retry);
   326   __ get_2_byte_integer_at_bcp(1, G3_scratch, O1, InterpreterMacroAssembler::Unsigned);
   327   __ get_cpool_and_tags(O0, O2);
   329   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   330   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   331   // get type from tags
   332   __ add(O2, tags_offset, O2);
   333   __ ldub(O2, O1, O2);
   335   __ sll(O1, LogBytesPerWord, O1);
   336   __ add(O0, O1, G3_scratch);
   338   __ cmp(O2, JVM_CONSTANT_Double);
   339   __ brx(Assembler::notEqual, false, Assembler::pt, Long);
   340   __ delayed()->nop();
   341   // A double can be placed at word-aligned locations in the constant pool.
   342   // Check out Conversions.java for an example.
   343   // Also constantPoolOopDesc::header_size() is 20, which makes it very difficult
   344   // to double-align double on the constant pool.  SG, 11/7/97
   345 #ifdef _LP64
   346   __ ldf(FloatRegisterImpl::D, G3_scratch, base_offset, Ftos_d);
   347 #else
   348   FloatRegister f = Ftos_d;
   349   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset, f);
   350   __ ldf(FloatRegisterImpl::S, G3_scratch, base_offset + sizeof(jdouble)/2,
   351          f->successor());
   352 #endif
   353   __ push(dtos);
   354   __ ba(false, exit);
   355   __ delayed()->nop();
   357   __ bind(Long);
   358 #ifdef _LP64
   359   __ ldx(G3_scratch, base_offset, Otos_l);
   360 #else
   361   __ ld(G3_scratch, base_offset, Otos_l);
   362   __ ld(G3_scratch, base_offset + sizeof(jlong)/2, Otos_l->successor());
   363 #endif
   364   __ push(ltos);
   366   __ bind(exit);
   367 }
   370 void TemplateTable::locals_index(Register reg, int offset) {
   371   __ ldub( at_bcp(offset), reg );
   372 }
   375 void TemplateTable::locals_index_wide(Register reg) {
   376   // offset is 2, not 1, because Lbcp points to wide prefix code
   377   __ get_2_byte_integer_at_bcp(2, G4_scratch, reg, InterpreterMacroAssembler::Unsigned);
   378 }
   380 void TemplateTable::iload() {
   381   transition(vtos, itos);
   382   // Rewrite iload,iload  pair into fast_iload2
   383   //         iload,caload pair into fast_icaload
   384   if (RewriteFrequentPairs) {
   385     Label rewrite, done;
   387     // get next byte
   388     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_iload)), G3_scratch);
   390     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   391     // last two iloads in a pair.  Comparing against fast_iload means that
   392     // the next bytecode is neither an iload or a caload, and therefore
   393     // an iload pair.
   394     __ cmp(G3_scratch, (int)Bytecodes::_iload);
   395     __ br(Assembler::equal, false, Assembler::pn, done);
   396     __ delayed()->nop();
   398     __ cmp(G3_scratch, (int)Bytecodes::_fast_iload);
   399     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   400     __ delayed()->set(Bytecodes::_fast_iload2, G4_scratch);
   402     __ cmp(G3_scratch, (int)Bytecodes::_caload);
   403     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   404     __ delayed()->set(Bytecodes::_fast_icaload, G4_scratch);
   406     __ set(Bytecodes::_fast_iload, G4_scratch);  // don't check again
   407     // rewrite
   408     // G4_scratch: fast bytecode
   409     __ bind(rewrite);
   410     patch_bytecode(Bytecodes::_iload, G4_scratch, G3_scratch, false);
   411     __ bind(done);
   412   }
   414   // Get the local value into tos
   415   locals_index(G3_scratch);
   416   __ access_local_int( G3_scratch, Otos_i );
   417 }
   419 void TemplateTable::fast_iload2() {
   420   transition(vtos, itos);
   421   locals_index(G3_scratch);
   422   __ access_local_int( G3_scratch, Otos_i );
   423   __ push_i();
   424   locals_index(G3_scratch, 3);  // get next bytecode's local index.
   425   __ access_local_int( G3_scratch, Otos_i );
   426 }
   428 void TemplateTable::fast_iload() {
   429   transition(vtos, itos);
   430   locals_index(G3_scratch);
   431   __ access_local_int( G3_scratch, Otos_i );
   432 }
   434 void TemplateTable::lload() {
   435   transition(vtos, ltos);
   436   locals_index(G3_scratch);
   437   __ access_local_long( G3_scratch, Otos_l );
   438 }
   441 void TemplateTable::fload() {
   442   transition(vtos, ftos);
   443   locals_index(G3_scratch);
   444   __ access_local_float( G3_scratch, Ftos_f );
   445 }
   448 void TemplateTable::dload() {
   449   transition(vtos, dtos);
   450   locals_index(G3_scratch);
   451   __ access_local_double( G3_scratch, Ftos_d );
   452 }
   455 void TemplateTable::aload() {
   456   transition(vtos, atos);
   457   locals_index(G3_scratch);
   458   __ access_local_ptr( G3_scratch, Otos_i);
   459 }
   462 void TemplateTable::wide_iload() {
   463   transition(vtos, itos);
   464   locals_index_wide(G3_scratch);
   465   __ access_local_int( G3_scratch, Otos_i );
   466 }
   469 void TemplateTable::wide_lload() {
   470   transition(vtos, ltos);
   471   locals_index_wide(G3_scratch);
   472   __ access_local_long( G3_scratch, Otos_l );
   473 }
   476 void TemplateTable::wide_fload() {
   477   transition(vtos, ftos);
   478   locals_index_wide(G3_scratch);
   479   __ access_local_float( G3_scratch, Ftos_f );
   480 }
   483 void TemplateTable::wide_dload() {
   484   transition(vtos, dtos);
   485   locals_index_wide(G3_scratch);
   486   __ access_local_double( G3_scratch, Ftos_d );
   487 }
   490 void TemplateTable::wide_aload() {
   491   transition(vtos, atos);
   492   locals_index_wide(G3_scratch);
   493   __ access_local_ptr( G3_scratch, Otos_i );
   494   __ verify_oop(Otos_i);
   495 }
   498 void TemplateTable::iaload() {
   499   transition(itos, itos);
   500   // Otos_i: index
   501   // tos: array
   502   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   503   __ ld(O3, arrayOopDesc::base_offset_in_bytes(T_INT), Otos_i);
   504 }
   507 void TemplateTable::laload() {
   508   transition(itos, ltos);
   509   // Otos_i: index
   510   // O2: array
   511   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   512   __ ld_long(O3, arrayOopDesc::base_offset_in_bytes(T_LONG), Otos_l);
   513 }
   516 void TemplateTable::faload() {
   517   transition(itos, ftos);
   518   // Otos_i: index
   519   // O2: array
   520   __ index_check(O2, Otos_i, LogBytesPerInt, G3_scratch, O3);
   521   __ ldf(FloatRegisterImpl::S, O3, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Ftos_f);
   522 }
   525 void TemplateTable::daload() {
   526   transition(itos, dtos);
   527   // Otos_i: index
   528   // O2: array
   529   __ index_check(O2, Otos_i, LogBytesPerLong, G3_scratch, O3);
   530   __ ldf(FloatRegisterImpl::D, O3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Ftos_d);
   531 }
   534 void TemplateTable::aaload() {
   535   transition(itos, atos);
   536   // Otos_i: index
   537   // tos: array
   538   __ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
   539   __ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
   540   __ verify_oop(Otos_i);
   541 }
   544 void TemplateTable::baload() {
   545   transition(itos, itos);
   546   // Otos_i: index
   547   // tos: array
   548   __ index_check(O2, Otos_i, 0, G3_scratch, O3);
   549   __ ldsb(O3, arrayOopDesc::base_offset_in_bytes(T_BYTE), Otos_i);
   550 }
   553 void TemplateTable::caload() {
   554   transition(itos, itos);
   555   // Otos_i: index
   556   // tos: array
   557   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   558   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   559 }
   561 void TemplateTable::fast_icaload() {
   562   transition(vtos, itos);
   563   // Otos_i: index
   564   // tos: array
   565   locals_index(G3_scratch);
   566   __ access_local_int( G3_scratch, Otos_i );
   567   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   568   __ lduh(O3, arrayOopDesc::base_offset_in_bytes(T_CHAR), Otos_i);
   569 }
   572 void TemplateTable::saload() {
   573   transition(itos, itos);
   574   // Otos_i: index
   575   // tos: array
   576   __ index_check(O2, Otos_i, LogBytesPerShort, G3_scratch, O3);
   577   __ ldsh(O3, arrayOopDesc::base_offset_in_bytes(T_SHORT), Otos_i);
   578 }
   581 void TemplateTable::iload(int n) {
   582   transition(vtos, itos);
   583   debug_only(__ verify_local_tag(frame::TagValue, Llocals, Otos_i, n));
   584   __ ld( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   585 }
   588 void TemplateTable::lload(int n) {
   589   transition(vtos, ltos);
   590   assert(n+1 < Argument::n_register_parameters, "would need more code");
   591   debug_only(__ verify_local_tag(frame::TagCategory2, Llocals, Otos_l, n));
   592   __ load_unaligned_long(Llocals, Interpreter::local_offset_in_bytes(n+1), Otos_l);
   593 }
   596 void TemplateTable::fload(int n) {
   597   transition(vtos, ftos);
   598   assert(n < Argument::n_register_parameters, "would need more code");
   599   debug_only(__ verify_local_tag(frame::TagValue, Llocals, G3_scratch, n));
   600   __ ldf( FloatRegisterImpl::S, Llocals, Interpreter::local_offset_in_bytes(n),     Ftos_f );
   601 }
   604 void TemplateTable::dload(int n) {
   605   transition(vtos, dtos);
   606   FloatRegister dst = Ftos_d;
   607   debug_only(__ verify_local_tag(frame::TagCategory2, Llocals, G3_scratch, n));
   608   __ load_unaligned_double(Llocals, Interpreter::local_offset_in_bytes(n+1), dst);
   609 }
   612 void TemplateTable::aload(int n) {
   613   transition(vtos, atos);
   614   debug_only(__ verify_local_tag(frame::TagReference, Llocals, Otos_i, n));
   615   __ ld_ptr( Llocals, Interpreter::local_offset_in_bytes(n), Otos_i );
   616 }
   619 void TemplateTable::aload_0() {
   620   transition(vtos, atos);
   622   // According to bytecode histograms, the pairs:
   623   //
   624   // _aload_0, _fast_igetfield (itos)
   625   // _aload_0, _fast_agetfield (atos)
   626   // _aload_0, _fast_fgetfield (ftos)
   627   //
   628   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   629   // bytecode checks the next bytecode and then rewrites the current
   630   // bytecode into a pair bytecode; otherwise it rewrites the current
   631   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   632   //
   633   if (RewriteFrequentPairs) {
   634     Label rewrite, done;
   636     // get next byte
   637     __ ldub(at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)), G3_scratch);
   639     // do actual aload_0
   640     aload(0);
   642     // if _getfield then wait with rewrite
   643     __ cmp(G3_scratch, (int)Bytecodes::_getfield);
   644     __ br(Assembler::equal, false, Assembler::pn, done);
   645     __ delayed()->nop();
   647     // if _igetfield then rewrite to _fast_iaccess_0
   648     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   649     __ cmp(G3_scratch, (int)Bytecodes::_fast_igetfield);
   650     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   651     __ delayed()->set(Bytecodes::_fast_iaccess_0, G4_scratch);
   653     // if _agetfield then rewrite to _fast_aaccess_0
   654     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   655     __ cmp(G3_scratch, (int)Bytecodes::_fast_agetfield);
   656     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   657     __ delayed()->set(Bytecodes::_fast_aaccess_0, G4_scratch);
   659     // if _fgetfield then rewrite to _fast_faccess_0
   660     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   661     __ cmp(G3_scratch, (int)Bytecodes::_fast_fgetfield);
   662     __ br(Assembler::equal, false, Assembler::pn, rewrite);
   663     __ delayed()->set(Bytecodes::_fast_faccess_0, G4_scratch);
   665     // else rewrite to _fast_aload0
   666     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "adjust fast bytecode def");
   667     __ set(Bytecodes::_fast_aload_0, G4_scratch);
   669     // rewrite
   670     // G4_scratch: fast bytecode
   671     __ bind(rewrite);
   672     patch_bytecode(Bytecodes::_aload_0, G4_scratch, G3_scratch, false);
   673     __ bind(done);
   674   } else {
   675     aload(0);
   676   }
   677 }
   680 void TemplateTable::istore() {
   681   transition(itos, vtos);
   682   locals_index(G3_scratch);
   683   __ store_local_int( G3_scratch, Otos_i );
   684 }
   687 void TemplateTable::lstore() {
   688   transition(ltos, vtos);
   689   locals_index(G3_scratch);
   690   __ store_local_long( G3_scratch, Otos_l );
   691 }
   694 void TemplateTable::fstore() {
   695   transition(ftos, vtos);
   696   locals_index(G3_scratch);
   697   __ store_local_float( G3_scratch, Ftos_f );
   698 }
   701 void TemplateTable::dstore() {
   702   transition(dtos, vtos);
   703   locals_index(G3_scratch);
   704   __ store_local_double( G3_scratch, Ftos_d );
   705 }
   708 void TemplateTable::astore() {
   709   transition(vtos, vtos);
   710   // astore tos can also be a returnAddress, so load and store the tag too
   711   __ load_ptr_and_tag(0, Otos_i, Otos_l2);
   712   __ inc(Lesp, Interpreter::stackElementSize());
   713   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   714   locals_index(G3_scratch);
   715   __ store_local_ptr( G3_scratch, Otos_i, Otos_l2 );
   716 }
   719 void TemplateTable::wide_istore() {
   720   transition(vtos, vtos);
   721   __ pop_i();
   722   locals_index_wide(G3_scratch);
   723   __ store_local_int( G3_scratch, Otos_i );
   724 }
   727 void TemplateTable::wide_lstore() {
   728   transition(vtos, vtos);
   729   __ pop_l();
   730   locals_index_wide(G3_scratch);
   731   __ store_local_long( G3_scratch, Otos_l );
   732 }
   735 void TemplateTable::wide_fstore() {
   736   transition(vtos, vtos);
   737   __ pop_f();
   738   locals_index_wide(G3_scratch);
   739   __ store_local_float( G3_scratch, Ftos_f );
   740 }
   743 void TemplateTable::wide_dstore() {
   744   transition(vtos, vtos);
   745   __ pop_d();
   746   locals_index_wide(G3_scratch);
   747   __ store_local_double( G3_scratch, Ftos_d );
   748 }
   751 void TemplateTable::wide_astore() {
   752   transition(vtos, vtos);
   753   // astore tos can also be a returnAddress, so load and store the tag too
   754   __ load_ptr_and_tag(0, Otos_i, Otos_l2);
   755   __ inc(Lesp, Interpreter::stackElementSize());
   756   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   757   locals_index_wide(G3_scratch);
   758   __ store_local_ptr( G3_scratch, Otos_i, Otos_l2 );
   759 }
   762 void TemplateTable::iastore() {
   763   transition(itos, vtos);
   764   __ pop_i(O2); // index
   765   // Otos_i: val
   766   // O3: array
   767   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   768   __ st(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_INT));
   769 }
   772 void TemplateTable::lastore() {
   773   transition(ltos, vtos);
   774   __ pop_i(O2); // index
   775   // Otos_l: val
   776   // O3: array
   777   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   778   __ st_long(Otos_l, O2, arrayOopDesc::base_offset_in_bytes(T_LONG));
   779 }
   782 void TemplateTable::fastore() {
   783   transition(ftos, vtos);
   784   __ pop_i(O2); // index
   785   // Ftos_f: val
   786   // O3: array
   787   __ index_check(O3, O2, LogBytesPerInt, G3_scratch, O2);
   788   __ stf(FloatRegisterImpl::S, Ftos_f, O2, arrayOopDesc::base_offset_in_bytes(T_FLOAT));
   789 }
   792 void TemplateTable::dastore() {
   793   transition(dtos, vtos);
   794   __ pop_i(O2); // index
   795   // Fos_d: val
   796   // O3: array
   797   __ index_check(O3, O2, LogBytesPerLong, G3_scratch, O2);
   798   __ stf(FloatRegisterImpl::D, Ftos_d, O2, arrayOopDesc::base_offset_in_bytes(T_DOUBLE));
   799 }
   802 void TemplateTable::aastore() {
   803   Label store_ok, is_null, done;
   804   transition(vtos, vtos);
   805   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
   806   __ ld(Lesp, Interpreter::expr_offset_in_bytes(1), O2);         // get index
   807   __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(2), O3);     // get array
   808   // Otos_i: val
   809   // O2: index
   810   // O3: array
   811   __ verify_oop(Otos_i);
   812   __ index_check_without_pop(O3, O2, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O1);
   814   // do array store check - check for NULL value first
   815   __ br_null( Otos_i, false, Assembler::pn, is_null );
   816   __ delayed()->nop();
   818   __ load_klass(O3, O4); // get array klass
   819   __ load_klass(Otos_i, O5); // get value klass
   821   // do fast instanceof cache test
   823   __ ld_ptr(O4,     sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes(),  O4);
   825   assert(Otos_i == O0, "just checking");
   827   // Otos_i:    value
   828   // O1:        addr - offset
   829   // O2:        index
   830   // O3:        array
   831   // O4:        array element klass
   832   // O5:        value klass
   834   // Address element(O1, 0, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   836   // Generate a fast subtype check.  Branch to store_ok if no
   837   // failure.  Throw if failure.
   838   __ gen_subtype_check( O5, O4, G3_scratch, G4_scratch, G1_scratch, store_ok );
   840   // Not a subtype; so must throw exception
   841   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ArrayStoreException_entry, G3_scratch );
   843   // Store is OK.
   844   __ bind(store_ok);
   845   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
   847   __ ba(false,done);
   848   __ delayed()->inc(Lesp, 3* Interpreter::stackElementSize()); // adj sp (pops array, index and value)
   850   __ bind(is_null);
   851   do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
   853   __ profile_null_seen(G3_scratch);
   854   __ inc(Lesp, 3* Interpreter::stackElementSize());     // adj sp (pops array, index and value)
   855   __ bind(done);
   856 }
   859 void TemplateTable::bastore() {
   860   transition(itos, vtos);
   861   __ pop_i(O2); // index
   862   // Otos_i: val
   863   // O3: array
   864   __ index_check(O3, O2, 0, G3_scratch, O2);
   865   __ stb(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_BYTE));
   866 }
   869 void TemplateTable::castore() {
   870   transition(itos, vtos);
   871   __ pop_i(O2); // index
   872   // Otos_i: val
   873   // O3: array
   874   __ index_check(O3, O2, LogBytesPerShort, G3_scratch, O2);
   875   __ sth(Otos_i, O2, arrayOopDesc::base_offset_in_bytes(T_CHAR));
   876 }
   879 void TemplateTable::sastore() {
   880   // %%%%% Factor across platform
   881   castore();
   882 }
   885 void TemplateTable::istore(int n) {
   886   transition(itos, vtos);
   887   __ tag_local(frame::TagValue, Llocals, Otos_i, n);
   888   __ st(Otos_i, Llocals, Interpreter::local_offset_in_bytes(n));
   889 }
   892 void TemplateTable::lstore(int n) {
   893   transition(ltos, vtos);
   894   assert(n+1 < Argument::n_register_parameters, "only handle register cases");
   895   __ tag_local(frame::TagCategory2, Llocals, Otos_l, n);
   896   __ store_unaligned_long(Otos_l, Llocals, Interpreter::local_offset_in_bytes(n+1));
   898 }
   901 void TemplateTable::fstore(int n) {
   902   transition(ftos, vtos);
   903   assert(n < Argument::n_register_parameters, "only handle register cases");
   904   __ tag_local(frame::TagValue, Llocals, Otos_l, n);
   905   __ stf(FloatRegisterImpl::S, Ftos_f, Llocals, Interpreter::local_offset_in_bytes(n));
   906 }
   909 void TemplateTable::dstore(int n) {
   910   transition(dtos, vtos);
   911   FloatRegister src = Ftos_d;
   912   __ tag_local(frame::TagCategory2, Llocals, Otos_l, n);
   913   __ store_unaligned_double(src, Llocals, Interpreter::local_offset_in_bytes(n+1));
   914 }
   917 void TemplateTable::astore(int n) {
   918   transition(vtos, vtos);
   919   // astore tos can also be a returnAddress, so load and store the tag too
   920   __ load_ptr_and_tag(0, Otos_i, Otos_l2);
   921   __ inc(Lesp, Interpreter::stackElementSize());
   922   __ verify_oop_or_return_address(Otos_i, G3_scratch);
   923   __ store_local_ptr( n, Otos_i, Otos_l2 );
   924 }
   927 void TemplateTable::pop() {
   928   transition(vtos, vtos);
   929   __ inc(Lesp, Interpreter::stackElementSize());
   930 }
   933 void TemplateTable::pop2() {
   934   transition(vtos, vtos);
   935   __ inc(Lesp, 2 * Interpreter::stackElementSize());
   936 }
   939 void TemplateTable::dup() {
   940   transition(vtos, vtos);
   941   // stack: ..., a
   942   // load a and tag
   943   __ load_ptr_and_tag(0, Otos_i, Otos_l2);
   944   __ push_ptr(Otos_i, Otos_l2);
   945   // stack: ..., a, a
   946 }
   949 void TemplateTable::dup_x1() {
   950   transition(vtos, vtos);
   951   // stack: ..., a, b
   952   __ load_ptr_and_tag(1, G3_scratch, G4_scratch);   // get a
   953   __ load_ptr_and_tag(0, Otos_l1, Otos_l2);         // get b
   954   __ store_ptr_and_tag(1, Otos_l1, Otos_l2);        // put b
   955   __ store_ptr_and_tag(0, G3_scratch, G4_scratch);  // put a - like swap
   956   __ push_ptr(Otos_l1, Otos_l2);                    // push b
   957   // stack: ..., b, a, b
   958 }
   961 void TemplateTable::dup_x2() {
   962   transition(vtos, vtos);
   963   // stack: ..., a, b, c
   964   // get c and push on stack, reuse registers
   965   __ load_ptr_and_tag(0, G3_scratch, G4_scratch);     // get c
   966   __ push_ptr(G3_scratch, G4_scratch);               // push c with tag
   967   // stack: ..., a, b, c, c  (c in reg)  (Lesp - 4)
   968   // (stack offsets n+1 now)
   969   __ load_ptr_and_tag(3, Otos_l1, Otos_l2);          // get a
   970   __ store_ptr_and_tag(3, G3_scratch, G4_scratch);   // put c at 3
   971   // stack: ..., c, b, c, c  (a in reg)
   972   __ load_ptr_and_tag(2, G3_scratch, G4_scratch);    // get b
   973   __ store_ptr_and_tag(2, Otos_l1, Otos_l2);         // put a at 2
   974   // stack: ..., c, a, c, c  (b in reg)
   975   __ store_ptr_and_tag(1, G3_scratch, G4_scratch);   // put b at 1
   976   // stack: ..., c, a, b, c
   977 }
   980 void TemplateTable::dup2() {
   981   transition(vtos, vtos);
   982   __ load_ptr_and_tag(1, G3_scratch, G4_scratch);     // get a
   983   __ load_ptr_and_tag(0, Otos_l1, Otos_l2);           // get b
   984   __ push_ptr(G3_scratch, G4_scratch);                // push a
   985   __ push_ptr(Otos_l1, Otos_l2);                      // push b
   986   // stack: ..., a, b, a, b
   987 }
   990 void TemplateTable::dup2_x1() {
   991   transition(vtos, vtos);
   992   // stack: ..., a, b, c
   993   __ load_ptr_and_tag(1, Lscratch, G1_scratch);       // get b
   994   __ load_ptr_and_tag(2, Otos_l1, Otos_l2);           // get a
   995   __ store_ptr_and_tag(2, Lscratch, G1_scratch);      // put b at a
   996   // stack: ..., b, b, c
   997   __ load_ptr_and_tag(0, G3_scratch, G4_scratch);     // get c
   998   __ store_ptr_and_tag(1, G3_scratch, G4_scratch);    // put c at b
   999   // stack: ..., b, c, c
  1000   __ store_ptr_and_tag(0, Otos_l1, Otos_l2);          // put a at c
  1001   // stack: ..., b, c, a
  1002   __ push_ptr(Lscratch, G1_scratch);                  // push b
  1003   __ push_ptr(G3_scratch, G4_scratch);                // push c
  1004   // stack: ..., b, c, a, b, c
  1008 // The spec says that these types can be a mixture of category 1 (1 word)
  1009 // types and/or category 2 types (long and doubles)
  1010 void TemplateTable::dup2_x2() {
  1011   transition(vtos, vtos);
  1012   // stack: ..., a, b, c, d
  1013   __ load_ptr_and_tag(1, Lscratch, G1_scratch);       // get c
  1014   __ load_ptr_and_tag(3, Otos_l1, Otos_l2);           // get a
  1015   __ store_ptr_and_tag(3, Lscratch, G1_scratch);      // put c at 3
  1016   __ store_ptr_and_tag(1, Otos_l1, Otos_l2);          // put a at 1
  1017   // stack: ..., c, b, a, d
  1018   __ load_ptr_and_tag(2, G3_scratch, G4_scratch);     // get b
  1019   __ load_ptr_and_tag(0, Otos_l1, Otos_l2);           // get d
  1020   __ store_ptr_and_tag(0, G3_scratch, G4_scratch);    // put b at 0
  1021   __ store_ptr_and_tag(2, Otos_l1, Otos_l2);          // put d at 2
  1022   // stack: ..., c, d, a, b
  1023   __ push_ptr(Lscratch, G1_scratch);                  // push c
  1024   __ push_ptr(Otos_l1, Otos_l2);                      // push d
  1025   // stack: ..., c, d, a, b, c, d
  1029 void TemplateTable::swap() {
  1030   transition(vtos, vtos);
  1031   // stack: ..., a, b
  1032   __ load_ptr_and_tag(1, G3_scratch, G4_scratch);     // get a
  1033   __ load_ptr_and_tag(0, Otos_l1, Otos_l2);           // get b
  1034   __ store_ptr_and_tag(0, G3_scratch, G4_scratch);    // put b
  1035   __ store_ptr_and_tag(1, Otos_l1, Otos_l2);          // put a
  1036   // stack: ..., b, a
  1040 void TemplateTable::iop2(Operation op) {
  1041   transition(itos, itos);
  1042   __ pop_i(O1);
  1043   switch (op) {
  1044    case  add:  __  add(O1, Otos_i, Otos_i);  break;
  1045    case  sub:  __  sub(O1, Otos_i, Otos_i);  break;
  1046      // %%%%% Mul may not exist: better to call .mul?
  1047    case  mul:  __ smul(O1, Otos_i, Otos_i);  break;
  1048    case _and:  __  and3(O1, Otos_i, Otos_i);  break;
  1049    case  _or:  __   or3(O1, Otos_i, Otos_i);  break;
  1050    case _xor:  __  xor3(O1, Otos_i, Otos_i);  break;
  1051    case  shl:  __  sll(O1, Otos_i, Otos_i);  break;
  1052    case  shr:  __  sra(O1, Otos_i, Otos_i);  break;
  1053    case ushr:  __  srl(O1, Otos_i, Otos_i);  break;
  1054    default: ShouldNotReachHere();
  1059 void TemplateTable::lop2(Operation op) {
  1060   transition(ltos, ltos);
  1061   __ pop_l(O2);
  1062   switch (op) {
  1063 #ifdef _LP64
  1064    case  add:  __ add(O2, Otos_l, Otos_l);  break;
  1065    case  sub:  __ sub(O2, Otos_l, Otos_l);  break;
  1066    case _and:  __ and3( O2, Otos_l, Otos_l);  break;
  1067    case  _or:  __  or3( O2, Otos_l, Otos_l);  break;
  1068    case _xor:  __ xor3( O2, Otos_l, Otos_l);  break;
  1069 #else
  1070    case  add:  __ addcc(O3, Otos_l2, Otos_l2);  __ addc(O2, Otos_l1, Otos_l1);  break;
  1071    case  sub:  __ subcc(O3, Otos_l2, Otos_l2);  __ subc(O2, Otos_l1, Otos_l1);  break;
  1072    case _and:  __ and3(  O3, Otos_l2, Otos_l2);  __ and3( O2, Otos_l1, Otos_l1);  break;
  1073    case  _or:  __  or3(  O3, Otos_l2, Otos_l2);  __  or3( O2, Otos_l1, Otos_l1);  break;
  1074    case _xor:  __ xor3(  O3, Otos_l2, Otos_l2);  __ xor3( O2, Otos_l1, Otos_l1);  break;
  1075 #endif
  1076    default: ShouldNotReachHere();
  1081 void TemplateTable::idiv() {
  1082   // %%%%% Later: ForSPARC/V7 call .sdiv library routine,
  1083   // %%%%% Use ldsw...sdivx on pure V9 ABI. 64 bit safe.
  1085   transition(itos, itos);
  1086   __ pop_i(O1); // get 1st op
  1088   // Y contains upper 32 bits of result, set it to 0 or all ones
  1089   __ wry(G0);
  1090   __ mov(~0, G3_scratch);
  1092   __ tst(O1);
  1093      Label neg;
  1094   __ br(Assembler::negative, true, Assembler::pn, neg);
  1095   __ delayed()->wry(G3_scratch);
  1096   __ bind(neg);
  1098      Label ok;
  1099   __ tst(Otos_i);
  1100   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch );
  1102   const int min_int = 0x80000000;
  1103   Label regular;
  1104   __ cmp(Otos_i, -1);
  1105   __ br(Assembler::notEqual, false, Assembler::pt, regular);
  1106 #ifdef _LP64
  1107   // Don't put set in delay slot
  1108   // Set will turn into multiple instructions in 64 bit mode
  1109   __ delayed()->nop();
  1110   __ set(min_int, G4_scratch);
  1111 #else
  1112   __ delayed()->set(min_int, G4_scratch);
  1113 #endif
  1114   Label done;
  1115   __ cmp(O1, G4_scratch);
  1116   __ br(Assembler::equal, true, Assembler::pt, done);
  1117   __ delayed()->mov(O1, Otos_i);   // (mov only executed if branch taken)
  1119   __ bind(regular);
  1120   __ sdiv(O1, Otos_i, Otos_i); // note: irem uses O1 after this instruction!
  1121   __ bind(done);
  1125 void TemplateTable::irem() {
  1126   transition(itos, itos);
  1127   __ mov(Otos_i, O2); // save divisor
  1128   idiv();                               // %%%% Hack: exploits fact that idiv leaves dividend in O1
  1129   __ smul(Otos_i, O2, Otos_i);
  1130   __ sub(O1, Otos_i, Otos_i);
  1134 void TemplateTable::lmul() {
  1135   transition(ltos, ltos);
  1136   __ pop_l(O2);
  1137 #ifdef _LP64
  1138   __ mulx(Otos_l, O2, Otos_l);
  1139 #else
  1140   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lmul));
  1141 #endif
  1146 void TemplateTable::ldiv() {
  1147   transition(ltos, ltos);
  1149   // check for zero
  1150   __ pop_l(O2);
  1151 #ifdef _LP64
  1152   __ tst(Otos_l);
  1153   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1154   __ sdivx(O2, Otos_l, Otos_l);
  1155 #else
  1156   __ orcc(Otos_l1, Otos_l2, G0);
  1157   __ throw_if_not_icc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1158   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1159 #endif
  1163 void TemplateTable::lrem() {
  1164   transition(ltos, ltos);
  1166   // check for zero
  1167   __ pop_l(O2);
  1168 #ifdef _LP64
  1169   __ tst(Otos_l);
  1170   __ throw_if_not_xcc( Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1171   __ sdivx(O2, Otos_l, Otos_l2);
  1172   __ mulx (Otos_l2, Otos_l, Otos_l2);
  1173   __ sub  (O2, Otos_l2, Otos_l);
  1174 #else
  1175   __ orcc(Otos_l1, Otos_l2, G0);
  1176   __ throw_if_not_icc(Assembler::notZero, Interpreter::_throw_ArithmeticException_entry, G3_scratch);
  1177   __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1178 #endif
  1182 void TemplateTable::lshl() {
  1183   transition(itos, ltos); // %%%% could optimize, fill delay slot or opt for ultra
  1185   __ pop_l(O2);                          // shift value in O2, O3
  1186 #ifdef _LP64
  1187   __ sllx(O2, Otos_i, Otos_l);
  1188 #else
  1189   __ lshl(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1190 #endif
  1194 void TemplateTable::lshr() {
  1195   transition(itos, ltos); // %%%% see lshl comment
  1197   __ pop_l(O2);                          // shift value in O2, O3
  1198 #ifdef _LP64
  1199   __ srax(O2, Otos_i, Otos_l);
  1200 #else
  1201   __ lshr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1202 #endif
  1207 void TemplateTable::lushr() {
  1208   transition(itos, ltos); // %%%% see lshl comment
  1210   __ pop_l(O2);                          // shift value in O2, O3
  1211 #ifdef _LP64
  1212   __ srlx(O2, Otos_i, Otos_l);
  1213 #else
  1214   __ lushr(O2, O3, Otos_i, Otos_l1, Otos_l2, O4);
  1215 #endif
  1219 void TemplateTable::fop2(Operation op) {
  1220   transition(ftos, ftos);
  1221   switch (op) {
  1222    case  add:  __  pop_f(F4); __ fadd(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1223    case  sub:  __  pop_f(F4); __ fsub(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1224    case  mul:  __  pop_f(F4); __ fmul(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1225    case  div:  __  pop_f(F4); __ fdiv(FloatRegisterImpl::S, F4, Ftos_f, Ftos_f);  break;
  1226    case  rem:
  1227      assert(Ftos_f == F0, "just checking");
  1228 #ifdef _LP64
  1229      // LP64 calling conventions use F1, F3 for passing 2 floats
  1230      __ pop_f(F1);
  1231      __ fmov(FloatRegisterImpl::S, Ftos_f, F3);
  1232 #else
  1233      __ pop_i(O0);
  1234      __ stf(FloatRegisterImpl::S, Ftos_f, __ d_tmp);
  1235      __ ld( __ d_tmp, O1 );
  1236 #endif
  1237      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::frem));
  1238      assert( Ftos_f == F0, "fix this code" );
  1239      break;
  1241    default: ShouldNotReachHere();
  1246 void TemplateTable::dop2(Operation op) {
  1247   transition(dtos, dtos);
  1248   switch (op) {
  1249    case  add:  __  pop_d(F4); __ fadd(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1250    case  sub:  __  pop_d(F4); __ fsub(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1251    case  mul:  __  pop_d(F4); __ fmul(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1252    case  div:  __  pop_d(F4); __ fdiv(FloatRegisterImpl::D, F4, Ftos_d, Ftos_d);  break;
  1253    case  rem:
  1254 #ifdef _LP64
  1255      // Pass arguments in D0, D2
  1256      __ fmov(FloatRegisterImpl::D, Ftos_f, F2 );
  1257      __ pop_d( F0 );
  1258 #else
  1259      // Pass arguments in O0O1, O2O3
  1260      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1261      __ ldd( __ d_tmp, O2 );
  1262      __ pop_d(Ftos_f);
  1263      __ stf(FloatRegisterImpl::D, Ftos_f, __ d_tmp);
  1264      __ ldd( __ d_tmp, O0 );
  1265 #endif
  1266      __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::drem));
  1267      assert( Ftos_d == F0, "fix this code" );
  1268      break;
  1270    default: ShouldNotReachHere();
  1275 void TemplateTable::ineg() {
  1276   transition(itos, itos);
  1277   __ neg(Otos_i);
  1281 void TemplateTable::lneg() {
  1282   transition(ltos, ltos);
  1283 #ifdef _LP64
  1284   __ sub(G0, Otos_l, Otos_l);
  1285 #else
  1286   __ lneg(Otos_l1, Otos_l2);
  1287 #endif
  1291 void TemplateTable::fneg() {
  1292   transition(ftos, ftos);
  1293   __ fneg(FloatRegisterImpl::S, Ftos_f);
  1297 void TemplateTable::dneg() {
  1298   transition(dtos, dtos);
  1299   // v8 has fnegd if source and dest are the same
  1300   __ fneg(FloatRegisterImpl::D, Ftos_f);
  1304 void TemplateTable::iinc() {
  1305   transition(vtos, vtos);
  1306   locals_index(G3_scratch);
  1307   __ ldsb(Lbcp, 2, O2);  // load constant
  1308   __ access_local_int(G3_scratch, Otos_i);
  1309   __ add(Otos_i, O2, Otos_i);
  1310   __ st(Otos_i, G3_scratch, Interpreter::value_offset_in_bytes());    // access_local_int puts E.A. in G3_scratch
  1314 void TemplateTable::wide_iinc() {
  1315   transition(vtos, vtos);
  1316   locals_index_wide(G3_scratch);
  1317   __ get_2_byte_integer_at_bcp( 4,  O2, O3, InterpreterMacroAssembler::Signed);
  1318   __ access_local_int(G3_scratch, Otos_i);
  1319   __ add(Otos_i, O3, Otos_i);
  1320   __ st(Otos_i, G3_scratch, Interpreter::value_offset_in_bytes());    // access_local_int puts E.A. in G3_scratch
  1324 void TemplateTable::convert() {
  1325 // %%%%% Factor this first part accross platforms
  1326   #ifdef ASSERT
  1327     TosState tos_in  = ilgl;
  1328     TosState tos_out = ilgl;
  1329     switch (bytecode()) {
  1330       case Bytecodes::_i2l: // fall through
  1331       case Bytecodes::_i2f: // fall through
  1332       case Bytecodes::_i2d: // fall through
  1333       case Bytecodes::_i2b: // fall through
  1334       case Bytecodes::_i2c: // fall through
  1335       case Bytecodes::_i2s: tos_in = itos; break;
  1336       case Bytecodes::_l2i: // fall through
  1337       case Bytecodes::_l2f: // fall through
  1338       case Bytecodes::_l2d: tos_in = ltos; break;
  1339       case Bytecodes::_f2i: // fall through
  1340       case Bytecodes::_f2l: // fall through
  1341       case Bytecodes::_f2d: tos_in = ftos; break;
  1342       case Bytecodes::_d2i: // fall through
  1343       case Bytecodes::_d2l: // fall through
  1344       case Bytecodes::_d2f: tos_in = dtos; break;
  1345       default             : ShouldNotReachHere();
  1347     switch (bytecode()) {
  1348       case Bytecodes::_l2i: // fall through
  1349       case Bytecodes::_f2i: // fall through
  1350       case Bytecodes::_d2i: // fall through
  1351       case Bytecodes::_i2b: // fall through
  1352       case Bytecodes::_i2c: // fall through
  1353       case Bytecodes::_i2s: tos_out = itos; break;
  1354       case Bytecodes::_i2l: // fall through
  1355       case Bytecodes::_f2l: // fall through
  1356       case Bytecodes::_d2l: tos_out = ltos; break;
  1357       case Bytecodes::_i2f: // fall through
  1358       case Bytecodes::_l2f: // fall through
  1359       case Bytecodes::_d2f: tos_out = ftos; break;
  1360       case Bytecodes::_i2d: // fall through
  1361       case Bytecodes::_l2d: // fall through
  1362       case Bytecodes::_f2d: tos_out = dtos; break;
  1363       default             : ShouldNotReachHere();
  1365     transition(tos_in, tos_out);
  1366   #endif
  1369   // Conversion
  1370   Label done;
  1371   switch (bytecode()) {
  1372    case Bytecodes::_i2l:
  1373 #ifdef _LP64
  1374     // Sign extend the 32 bits
  1375     __ sra ( Otos_i, 0, Otos_l );
  1376 #else
  1377     __ addcc(Otos_i, 0, Otos_l2);
  1378     __ br(Assembler::greaterEqual, true, Assembler::pt, done);
  1379     __ delayed()->clr(Otos_l1);
  1380     __ set(~0, Otos_l1);
  1381 #endif
  1382     break;
  1384    case Bytecodes::_i2f:
  1385     __ st(Otos_i, __ d_tmp );
  1386     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1387     __ fitof(FloatRegisterImpl::S, F0, Ftos_f);
  1388     break;
  1390    case Bytecodes::_i2d:
  1391     __ st(Otos_i, __ d_tmp);
  1392     __ ldf(FloatRegisterImpl::S,  __ d_tmp, F0);
  1393     __ fitof(FloatRegisterImpl::D, F0, Ftos_f);
  1394     break;
  1396    case Bytecodes::_i2b:
  1397     __ sll(Otos_i, 24, Otos_i);
  1398     __ sra(Otos_i, 24, Otos_i);
  1399     break;
  1401    case Bytecodes::_i2c:
  1402     __ sll(Otos_i, 16, Otos_i);
  1403     __ srl(Otos_i, 16, Otos_i);
  1404     break;
  1406    case Bytecodes::_i2s:
  1407     __ sll(Otos_i, 16, Otos_i);
  1408     __ sra(Otos_i, 16, Otos_i);
  1409     break;
  1411    case Bytecodes::_l2i:
  1412 #ifndef _LP64
  1413     __ mov(Otos_l2, Otos_i);
  1414 #else
  1415     // Sign-extend into the high 32 bits
  1416     __ sra(Otos_l, 0, Otos_i);
  1417 #endif
  1418     break;
  1420    case Bytecodes::_l2f:
  1421    case Bytecodes::_l2d:
  1422     __ st_long(Otos_l, __ d_tmp);
  1423     __ ldf(FloatRegisterImpl::D, __ d_tmp, Ftos_d);
  1425     if (VM_Version::v9_instructions_work()) {
  1426       if (bytecode() == Bytecodes::_l2f) {
  1427         __ fxtof(FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1428       } else {
  1429         __ fxtof(FloatRegisterImpl::D, Ftos_d, Ftos_d);
  1431     } else {
  1432       __ call_VM_leaf(
  1433         Lscratch,
  1434         bytecode() == Bytecodes::_l2f
  1435           ? CAST_FROM_FN_PTR(address, SharedRuntime::l2f)
  1436           : CAST_FROM_FN_PTR(address, SharedRuntime::l2d)
  1437       );
  1439     break;
  1441   case Bytecodes::_f2i:  {
  1442       Label isNaN;
  1443       // result must be 0 if value is NaN; test by comparing value to itself
  1444       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, Ftos_f, Ftos_f);
  1445       // According to the v8 manual, you have to have a non-fp instruction
  1446       // between fcmp and fb.
  1447       if (!VM_Version::v9_instructions_work()) {
  1448         __ nop();
  1450       __ fb(Assembler::f_unordered, true, Assembler::pn, isNaN);
  1451       __ delayed()->clr(Otos_i);                                     // NaN
  1452       __ ftoi(FloatRegisterImpl::S, Ftos_f, F30);
  1453       __ stf(FloatRegisterImpl::S, F30, __ d_tmp);
  1454       __ ld(__ d_tmp, Otos_i);
  1455       __ bind(isNaN);
  1457     break;
  1459    case Bytecodes::_f2l:
  1460     // must uncache tos
  1461     __ push_f();
  1462 #ifdef _LP64
  1463     __ pop_f(F1);
  1464 #else
  1465     __ pop_i(O0);
  1466 #endif
  1467     __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
  1468     break;
  1470    case Bytecodes::_f2d:
  1471     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, Ftos_f, Ftos_f);
  1472     break;
  1474    case Bytecodes::_d2i:
  1475    case Bytecodes::_d2l:
  1476     // must uncache tos
  1477     __ push_d();
  1478 #ifdef _LP64
  1479     // LP64 calling conventions pass first double arg in D0
  1480     __ pop_d( Ftos_d );
  1481 #else
  1482     __ pop_i( O0 );
  1483     __ pop_i( O1 );
  1484 #endif
  1485     __ call_VM_leaf(Lscratch,
  1486         bytecode() == Bytecodes::_d2i
  1487           ? CAST_FROM_FN_PTR(address, SharedRuntime::d2i)
  1488           : CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
  1489     break;
  1491     case Bytecodes::_d2f:
  1492     if (VM_Version::v9_instructions_work()) {
  1493       __ ftof( FloatRegisterImpl::D, FloatRegisterImpl::S, Ftos_d, Ftos_f);
  1495     else {
  1496       // must uncache tos
  1497       __ push_d();
  1498       __ pop_i(O0);
  1499       __ pop_i(O1);
  1500       __ call_VM_leaf(Lscratch, CAST_FROM_FN_PTR(address, SharedRuntime::d2f));
  1502     break;
  1504     default: ShouldNotReachHere();
  1506   __ bind(done);
  1510 void TemplateTable::lcmp() {
  1511   transition(ltos, itos);
  1513 #ifdef _LP64
  1514   __ pop_l(O1); // pop off value 1, value 2 is in O0
  1515   __ lcmp( O1, Otos_l, Otos_i );
  1516 #else
  1517   __ pop_l(O2); // cmp O2,3 to O0,1
  1518   __ lcmp( O2, O3, Otos_l1, Otos_l2, Otos_i );
  1519 #endif
  1523 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1525   if (is_float) __ pop_f(F2);
  1526   else          __ pop_d(F2);
  1528   assert(Ftos_f == F0  &&  Ftos_d == F0,  "alias checking:");
  1530   __ float_cmp( is_float, unordered_result, F2, F0, Otos_i );
  1533 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1534   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
  1535   __ verify_oop(Lmethod);
  1536   __ verify_thread();
  1538   const Register O2_bumped_count = O2;
  1539   __ profile_taken_branch(G3_scratch, O2_bumped_count);
  1541   // get (wide) offset to O1_disp
  1542   const Register O1_disp = O1;
  1543   if (is_wide)  __ get_4_byte_integer_at_bcp( 1,  G4_scratch, O1_disp,                                    InterpreterMacroAssembler::set_CC);
  1544   else          __ get_2_byte_integer_at_bcp( 1,  G4_scratch, O1_disp, InterpreterMacroAssembler::Signed, InterpreterMacroAssembler::set_CC);
  1546   // Handle all the JSR stuff here, then exit.
  1547   // It's much shorter and cleaner than intermingling with the
  1548   // non-JSR normal-branch stuff occurring below.
  1549   if( is_jsr ) {
  1550     // compute return address as bci in Otos_i
  1551     __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1552     __ sub(Lbcp, G3_scratch, G3_scratch);
  1553     __ sub(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()) - (is_wide ? 5 : 3), Otos_i);
  1555     // Bump Lbcp to target of JSR
  1556     __ add(Lbcp, O1_disp, Lbcp);
  1557     // Push returnAddress for "ret" on stack
  1558     __ push_ptr(Otos_i, G0); // push ptr sized thing plus 0 for tag.
  1559     // And away we go!
  1560     __ dispatch_next(vtos);
  1561     return;
  1564   // Normal (non-jsr) branch handling
  1566   // Save the current Lbcp
  1567   const Register O0_cur_bcp = O0;
  1568   __ mov( Lbcp, O0_cur_bcp );
  1570   bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
  1571   if ( increment_invocation_counter_for_backward_branches ) {
  1572     Label Lforward;
  1573     // check branch direction
  1574     __ br( Assembler::positive, false,  Assembler::pn, Lforward );
  1575     // Bump bytecode pointer by displacement (take the branch)
  1576     __ delayed()->add( O1_disp, Lbcp, Lbcp );     // add to bc addr
  1578     // Update Backedge branch separately from invocations
  1579     const Register G4_invoke_ctr = G4;
  1580     __ increment_backedge_counter(G4_invoke_ctr, G1_scratch);
  1581     if (ProfileInterpreter) {
  1582       __ test_invocation_counter_for_mdp(G4_invoke_ctr, Lbcp, G3_scratch, Lforward);
  1583       if (UseOnStackReplacement) {
  1584         __ test_backedge_count_for_osr(O2_bumped_count, O0_cur_bcp, G3_scratch);
  1586     } else {
  1587       if (UseOnStackReplacement) {
  1588         __ test_backedge_count_for_osr(G4_invoke_ctr, O0_cur_bcp, G3_scratch);
  1592     __ bind(Lforward);
  1593   } else
  1594     // Bump bytecode pointer by displacement (take the branch)
  1595     __ add( O1_disp, Lbcp, Lbcp );// add to bc addr
  1597   // continue with bytecode @ target
  1598   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
  1599   // %%%%% and changing dispatch_next to dispatch_only
  1600   __ dispatch_next(vtos);
  1604 // Note Condition in argument is TemplateTable::Condition
  1605 // arg scope is within class scope
  1607 void TemplateTable::if_0cmp(Condition cc) {
  1608   // no pointers, integer only!
  1609   transition(itos, vtos);
  1610   // assume branch is more often taken than not (loops use backward branches)
  1611   __ cmp( Otos_i, 0);
  1612   __ if_cmp(ccNot(cc), false);
  1616 void TemplateTable::if_icmp(Condition cc) {
  1617   transition(itos, vtos);
  1618   __ pop_i(O1);
  1619   __ cmp(O1, Otos_i);
  1620   __ if_cmp(ccNot(cc), false);
  1624 void TemplateTable::if_nullcmp(Condition cc) {
  1625   transition(atos, vtos);
  1626   __ tst(Otos_i);
  1627   __ if_cmp(ccNot(cc), true);
  1631 void TemplateTable::if_acmp(Condition cc) {
  1632   transition(atos, vtos);
  1633   __ pop_ptr(O1);
  1634   __ verify_oop(O1);
  1635   __ verify_oop(Otos_i);
  1636   __ cmp(O1, Otos_i);
  1637   __ if_cmp(ccNot(cc), true);
  1642 void TemplateTable::ret() {
  1643   transition(vtos, vtos);
  1644   locals_index(G3_scratch);
  1645   __ access_local_returnAddress(G3_scratch, Otos_i);
  1646   // Otos_i contains the bci, compute the bcp from that
  1648 #ifdef _LP64
  1649 #ifdef ASSERT
  1650   // jsr result was labeled as an 'itos' not an 'atos' because we cannot GC
  1651   // the result.  The return address (really a BCI) was stored with an
  1652   // 'astore' because JVM specs claim it's a pointer-sized thing.  Hence in
  1653   // the 64-bit build the 32-bit BCI is actually in the low bits of a 64-bit
  1654   // loaded value.
  1655   { Label zzz ;
  1656      __ set (65536, G3_scratch) ;
  1657      __ cmp (Otos_i, G3_scratch) ;
  1658      __ bp( Assembler::lessEqualUnsigned, false, Assembler::xcc, Assembler::pn, zzz);
  1659      __ delayed()->nop();
  1660      __ stop("BCI is in the wrong register half?");
  1661      __ bind (zzz) ;
  1663 #endif
  1664 #endif
  1666   __ profile_ret(vtos, Otos_i, G4_scratch);
  1668   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1669   __ add(G3_scratch, Otos_i, G3_scratch);
  1670   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
  1671   __ dispatch_next(vtos);
  1675 void TemplateTable::wide_ret() {
  1676   transition(vtos, vtos);
  1677   locals_index_wide(G3_scratch);
  1678   __ access_local_returnAddress(G3_scratch, Otos_i);
  1679   // Otos_i contains the bci, compute the bcp from that
  1681   __ profile_ret(vtos, Otos_i, G4_scratch);
  1683   __ ld_ptr(Lmethod, methodOopDesc::const_offset(), G3_scratch);
  1684   __ add(G3_scratch, Otos_i, G3_scratch);
  1685   __ add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), Lbcp);
  1686   __ dispatch_next(vtos);
  1690 void TemplateTable::tableswitch() {
  1691   transition(itos, vtos);
  1692   Label default_case, continue_execution;
  1694   // align bcp
  1695   __ add(Lbcp, BytesPerInt, O1);
  1696   __ and3(O1, -BytesPerInt, O1);
  1697   // load lo, hi
  1698   __ ld(O1, 1 * BytesPerInt, O2);       // Low Byte
  1699   __ ld(O1, 2 * BytesPerInt, O3);       // High Byte
  1700 #ifdef _LP64
  1701   // Sign extend the 32 bits
  1702   __ sra ( Otos_i, 0, Otos_i );
  1703 #endif /* _LP64 */
  1705   // check against lo & hi
  1706   __ cmp( Otos_i, O2);
  1707   __ br( Assembler::less, false, Assembler::pn, default_case);
  1708   __ delayed()->cmp( Otos_i, O3 );
  1709   __ br( Assembler::greater, false, Assembler::pn, default_case);
  1710   // lookup dispatch offset
  1711   __ delayed()->sub(Otos_i, O2, O2);
  1712   __ profile_switch_case(O2, O3, G3_scratch, G4_scratch);
  1713   __ sll(O2, LogBytesPerInt, O2);
  1714   __ add(O2, 3 * BytesPerInt, O2);
  1715   __ ba(false, continue_execution);
  1716   __ delayed()->ld(O1, O2, O2);
  1717   // handle default
  1718   __ bind(default_case);
  1719   __ profile_switch_default(O3);
  1720   __ ld(O1, 0, O2); // get default offset
  1721   // continue execution
  1722   __ bind(continue_execution);
  1723   __ add(Lbcp, O2, Lbcp);
  1724   __ dispatch_next(vtos);
  1728 void TemplateTable::lookupswitch() {
  1729   transition(itos, itos);
  1730   __ stop("lookupswitch bytecode should have been rewritten");
  1733 void TemplateTable::fast_linearswitch() {
  1734   transition(itos, vtos);
  1735     Label loop_entry, loop, found, continue_execution;
  1736   // align bcp
  1737   __ add(Lbcp, BytesPerInt, O1);
  1738   __ and3(O1, -BytesPerInt, O1);
  1739  // set counter
  1740   __ ld(O1, BytesPerInt, O2);
  1741   __ sll(O2, LogBytesPerInt + 1, O2); // in word-pairs
  1742   __ add(O1, 2 * BytesPerInt, O3); // set first pair addr
  1743   __ ba(false, loop_entry);
  1744   __ delayed()->add(O3, O2, O2); // counter now points past last pair
  1746   // table search
  1747   __ bind(loop);
  1748   __ cmp(O4, Otos_i);
  1749   __ br(Assembler::equal, true, Assembler::pn, found);
  1750   __ delayed()->ld(O3, BytesPerInt, O4); // offset -> O4
  1751   __ inc(O3, 2 * BytesPerInt);
  1753   __ bind(loop_entry);
  1754   __ cmp(O2, O3);
  1755   __ brx(Assembler::greaterUnsigned, true, Assembler::pt, loop);
  1756   __ delayed()->ld(O3, 0, O4);
  1758   // default case
  1759   __ ld(O1, 0, O4); // get default offset
  1760   if (ProfileInterpreter) {
  1761     __ profile_switch_default(O3);
  1762     __ ba(false, continue_execution);
  1763     __ delayed()->nop();
  1766   // entry found -> get offset
  1767   __ bind(found);
  1768   if (ProfileInterpreter) {
  1769     __ sub(O3, O1, O3);
  1770     __ sub(O3, 2*BytesPerInt, O3);
  1771     __ srl(O3, LogBytesPerInt + 1, O3); // in word-pairs
  1772     __ profile_switch_case(O3, O1, O2, G3_scratch);
  1774     __ bind(continue_execution);
  1776   __ add(Lbcp, O4, Lbcp);
  1777   __ dispatch_next(vtos);
  1781 void TemplateTable::fast_binaryswitch() {
  1782   transition(itos, vtos);
  1783   // Implementation using the following core algorithm: (copied from Intel)
  1784   //
  1785   // int binary_search(int key, LookupswitchPair* array, int n) {
  1786   //   // Binary search according to "Methodik des Programmierens" by
  1787   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1788   //   int i = 0;
  1789   //   int j = n;
  1790   //   while (i+1 < j) {
  1791   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1792   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1793   //     // where a stands for the array and assuming that the (inexisting)
  1794   //     // element a[n] is infinitely big.
  1795   //     int h = (i + j) >> 1;
  1796   //     // i < h < j
  1797   //     if (key < array[h].fast_match()) {
  1798   //       j = h;
  1799   //     } else {
  1800   //       i = h;
  1801   //     }
  1802   //   }
  1803   //   // R: a[i] <= key < a[i+1] or Q
  1804   //   // (i.e., if key is within array, i is the correct index)
  1805   //   return i;
  1806   // }
  1808   // register allocation
  1809   assert(Otos_i == O0, "alias checking");
  1810   const Register Rkey     = Otos_i;                    // already set (tosca)
  1811   const Register Rarray   = O1;
  1812   const Register Ri       = O2;
  1813   const Register Rj       = O3;
  1814   const Register Rh       = O4;
  1815   const Register Rscratch = O5;
  1817   const int log_entry_size = 3;
  1818   const int entry_size = 1 << log_entry_size;
  1820   Label found;
  1821   // Find Array start
  1822   __ add(Lbcp, 3 * BytesPerInt, Rarray);
  1823   __ and3(Rarray, -BytesPerInt, Rarray);
  1824   // initialize i & j (in delay slot)
  1825   __ clr( Ri );
  1827   // and start
  1828   Label entry;
  1829   __ ba(false, entry);
  1830   __ delayed()->ld( Rarray, -BytesPerInt, Rj);
  1831   // (Rj is already in the native byte-ordering.)
  1833   // binary search loop
  1834   { Label loop;
  1835     __ bind( loop );
  1836     // int h = (i + j) >> 1;
  1837     __ sra( Rh, 1, Rh );
  1838     // if (key < array[h].fast_match()) {
  1839     //   j = h;
  1840     // } else {
  1841     //   i = h;
  1842     // }
  1843     __ sll( Rh, log_entry_size, Rscratch );
  1844     __ ld( Rarray, Rscratch, Rscratch );
  1845     // (Rscratch is already in the native byte-ordering.)
  1846     __ cmp( Rkey, Rscratch );
  1847     if ( VM_Version::v9_instructions_work() ) {
  1848       __ movcc( Assembler::less,         false, Assembler::icc, Rh, Rj );  // j = h if (key <  array[h].fast_match())
  1849       __ movcc( Assembler::greaterEqual, false, Assembler::icc, Rh, Ri );  // i = h if (key >= array[h].fast_match())
  1851     else {
  1852       Label end_of_if;
  1853       __ br( Assembler::less, true, Assembler::pt, end_of_if );
  1854       __ delayed()->mov( Rh, Rj ); // if (<) Rj = Rh
  1855       __ mov( Rh, Ri );            // else i = h
  1856       __ bind(end_of_if);          // }
  1859     // while (i+1 < j)
  1860     __ bind( entry );
  1861     __ add( Ri, 1, Rscratch );
  1862     __ cmp(Rscratch, Rj);
  1863     __ br( Assembler::less, true, Assembler::pt, loop );
  1864     __ delayed()->add( Ri, Rj, Rh ); // start h = i + j  >> 1;
  1867   // end of binary search, result index is i (must check again!)
  1868   Label default_case;
  1869   Label continue_execution;
  1870   if (ProfileInterpreter) {
  1871     __ mov( Ri, Rh );              // Save index in i for profiling
  1873   __ sll( Ri, log_entry_size, Ri );
  1874   __ ld( Rarray, Ri, Rscratch );
  1875   // (Rscratch is already in the native byte-ordering.)
  1876   __ cmp( Rkey, Rscratch );
  1877   __ br( Assembler::notEqual, true, Assembler::pn, default_case );
  1878   __ delayed()->ld( Rarray, -2 * BytesPerInt, Rj ); // load default offset -> j
  1880   // entry found -> j = offset
  1881   __ inc( Ri, BytesPerInt );
  1882   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
  1883   __ ld( Rarray, Ri, Rj );
  1884   // (Rj is already in the native byte-ordering.)
  1886   if (ProfileInterpreter) {
  1887     __ ba(false, continue_execution);
  1888     __ delayed()->nop();
  1891   __ bind(default_case); // fall through (if not profiling)
  1892   __ profile_switch_default(Ri);
  1894   __ bind(continue_execution);
  1895   __ add( Lbcp, Rj, Lbcp );
  1896   __ dispatch_next( vtos );
  1900 void TemplateTable::_return(TosState state) {
  1901   transition(state, state);
  1902   assert(_desc->calls_vm(), "inconsistent calls_vm information");
  1904   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  1905     assert(state == vtos, "only valid state");
  1906     __ mov(G0, G3_scratch);
  1907     __ access_local_ptr(G3_scratch, Otos_i);
  1908     __ load_klass(Otos_i, O2);
  1909     __ set(JVM_ACC_HAS_FINALIZER, G3);
  1910     __ ld(O2, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc), O2);
  1911     __ andcc(G3, O2, G0);
  1912     Label skip_register_finalizer;
  1913     __ br(Assembler::zero, false, Assembler::pn, skip_register_finalizer);
  1914     __ delayed()->nop();
  1916     // Call out to do finalizer registration
  1917     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Otos_i);
  1919     __ bind(skip_register_finalizer);
  1922   __ remove_activation(state, /* throw_monitor_exception */ true);
  1924   // The caller's SP was adjusted upon method entry to accomodate
  1925   // the callee's non-argument locals. Undo that adjustment.
  1926   __ ret();                             // return to caller
  1927   __ delayed()->restore(I5_savedSP, G0, SP);
  1931 // ----------------------------------------------------------------------------
  1932 // Volatile variables demand their effects be made known to all CPU's in
  1933 // order.  Store buffers on most chips allow reads & writes to reorder; the
  1934 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  1935 // memory barrier (i.e., it's not sufficient that the interpreter does not
  1936 // reorder volatile references, the hardware also must not reorder them).
  1937 //
  1938 // According to the new Java Memory Model (JMM):
  1939 // (1) All volatiles are serialized wrt to each other.
  1940 // ALSO reads & writes act as aquire & release, so:
  1941 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  1942 // the read float up to before the read.  It's OK for non-volatile memory refs
  1943 // that happen before the volatile read to float down below it.
  1944 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  1945 // that happen BEFORE the write float down to after the write.  It's OK for
  1946 // non-volatile memory refs that happen after the volatile write to float up
  1947 // before it.
  1948 //
  1949 // We only put in barriers around volatile refs (they are expensive), not
  1950 // _between_ memory refs (that would require us to track the flavor of the
  1951 // previous memory refs).  Requirements (2) and (3) require some barriers
  1952 // before volatile stores and after volatile loads.  These nearly cover
  1953 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  1954 // case is placed after volatile-stores although it could just as well go
  1955 // before volatile-loads.
  1956 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint) {
  1957   // Helper function to insert a is-volatile test and memory barrier
  1958   // All current sparc implementations run in TSO, needing only StoreLoad
  1959   if ((order_constraint & Assembler::StoreLoad) == 0) return;
  1960   __ membar( order_constraint );
  1963 // ----------------------------------------------------------------------------
  1964 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register index) {
  1965   assert(byte_no == 1 || byte_no == 2, "byte_no out of range");
  1966   // Depends on cpCacheOop layout!
  1967   const int shift_count = (1 + byte_no)*BitsPerByte;
  1968   Label resolved;
  1970   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  1971   __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
  1972                     ConstantPoolCacheEntry::indices_offset(), Lbyte_code);
  1974   __ srl(  Lbyte_code, shift_count, Lbyte_code );
  1975   __ and3( Lbyte_code,        0xFF, Lbyte_code );
  1976   __ cmp(  Lbyte_code, (int)bytecode());
  1977   __ br(   Assembler::equal, false, Assembler::pt, resolved);
  1978   __ delayed()->set((int)bytecode(), O1);
  1980   address entry;
  1981   switch (bytecode()) {
  1982     case Bytecodes::_getstatic      : // fall through
  1983     case Bytecodes::_putstatic      : // fall through
  1984     case Bytecodes::_getfield       : // fall through
  1985     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  1986     case Bytecodes::_invokevirtual  : // fall through
  1987     case Bytecodes::_invokespecial  : // fall through
  1988     case Bytecodes::_invokestatic   : // fall through
  1989     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  1990     default                         : ShouldNotReachHere();                                 break;
  1992   // first time invocation - must resolve first
  1993   __ call_VM(noreg, entry, O1);
  1994   // Update registers with resolved info
  1995   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  1996   __ bind(resolved);
  1999 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2000                                                Register Rmethod,
  2001                                                Register Ritable_index,
  2002                                                Register Rflags,
  2003                                                bool is_invokevirtual,
  2004                                                bool is_invokevfinal) {
  2005   // Uses both G3_scratch and G4_scratch
  2006   Register Rcache = G3_scratch;
  2007   Register Rscratch = G4_scratch;
  2008   assert_different_registers(Rcache, Rmethod, Ritable_index);
  2010   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2012   // determine constant pool cache field offsets
  2013   const int method_offset = in_bytes(
  2014     cp_base_offset +
  2015       (is_invokevirtual
  2016        ? ConstantPoolCacheEntry::f2_offset()
  2017        : ConstantPoolCacheEntry::f1_offset()
  2019     );
  2020   const int flags_offset = in_bytes(cp_base_offset +
  2021                                     ConstantPoolCacheEntry::flags_offset());
  2022   // access constant pool cache fields
  2023   const int index_offset = in_bytes(cp_base_offset +
  2024                                     ConstantPoolCacheEntry::f2_offset());
  2026   if (is_invokevfinal) {
  2027     __ get_cache_and_index_at_bcp(Rcache, Rscratch, 1);
  2028   } else {
  2029     resolve_cache_and_index(byte_no, Rcache, Rscratch);
  2032   __ ld_ptr(Rcache, method_offset, Rmethod);
  2033   if (Ritable_index != noreg) {
  2034     __ ld_ptr(Rcache, index_offset, Ritable_index);
  2036   __ ld_ptr(Rcache, flags_offset, Rflags);
  2039 // The Rcache register must be set before call
  2040 void TemplateTable::load_field_cp_cache_entry(Register Robj,
  2041                                               Register Rcache,
  2042                                               Register index,
  2043                                               Register Roffset,
  2044                                               Register Rflags,
  2045                                               bool is_static) {
  2046   assert_different_registers(Rcache, Rflags, Roffset);
  2048   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2050   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2051   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2052   if (is_static) {
  2053     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f1_offset(), Robj);
  2057 // The registers Rcache and index expected to be set before call.
  2058 // Correct values of the Rcache and index registers are preserved.
  2059 void TemplateTable::jvmti_post_field_access(Register Rcache,
  2060                                             Register index,
  2061                                             bool is_static,
  2062                                             bool has_tos) {
  2063   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2065   if (JvmtiExport::can_post_field_access()) {
  2066     // Check to see if a field access watch has been set before we take
  2067     // the time to call into the VM.
  2068     Label Label1;
  2069     assert_different_registers(Rcache, index, G1_scratch);
  2070     AddressLiteral get_field_access_count_addr(JvmtiExport::get_field_access_count_addr());
  2071     __ load_contents(get_field_access_count_addr, G1_scratch);
  2072     __ tst(G1_scratch);
  2073     __ br(Assembler::zero, false, Assembler::pt, Label1);
  2074     __ delayed()->nop();
  2076     __ add(Rcache, in_bytes(cp_base_offset), Rcache);
  2078     if (is_static) {
  2079       __ clr(Otos_i);
  2080     } else {
  2081       if (has_tos) {
  2082       // save object pointer before call_VM() clobbers it
  2083         __ push_ptr(Otos_i);  // put object on tos where GC wants it.
  2084       } else {
  2085         // Load top of stack (do not pop the value off the stack);
  2086         __ ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), Otos_i);
  2088       __ verify_oop(Otos_i);
  2090     // Otos_i: object pointer or NULL if static
  2091     // Rcache: cache entry pointer
  2092     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2093                Otos_i, Rcache);
  2094     if (!is_static && has_tos) {
  2095       __ pop_ptr(Otos_i);  // restore object pointer
  2096       __ verify_oop(Otos_i);
  2098     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2099     __ bind(Label1);
  2103 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2104   transition(vtos, vtos);
  2106   Register Rcache = G3_scratch;
  2107   Register index  = G4_scratch;
  2108   Register Rclass = Rcache;
  2109   Register Roffset= G4_scratch;
  2110   Register Rflags = G1_scratch;
  2111   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2113   resolve_cache_and_index(byte_no, Rcache, index);
  2114   jvmti_post_field_access(Rcache, index, is_static, false);
  2115   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2117   if (!is_static) {
  2118     pop_and_check_object(Rclass);
  2119   } else {
  2120     __ verify_oop(Rclass);
  2123   Label exit;
  2125   Assembler::Membar_mask_bits membar_bits =
  2126     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2128   if (__ membar_has_effect(membar_bits)) {
  2129     // Get volatile flag
  2130     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2131     __ and3(Rflags, Lscratch, Lscratch);
  2134   Label checkVolatile;
  2136   // compute field type
  2137   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
  2138   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2139   // Make sure we don't need to mask Rflags for tosBits after the above shift
  2140   ConstantPoolCacheEntry::verify_tosBits();
  2142   // Check atos before itos for getstatic, more likely (in Queens at least)
  2143   __ cmp(Rflags, atos);
  2144   __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2145   __ delayed() ->cmp(Rflags, itos);
  2147   // atos
  2148   __ load_heap_oop(Rclass, Roffset, Otos_i);
  2149   __ verify_oop(Otos_i);
  2150   __ push(atos);
  2151   if (!is_static) {
  2152     patch_bytecode(Bytecodes::_fast_agetfield, G3_scratch, G4_scratch);
  2154   __ ba(false, checkVolatile);
  2155   __ delayed()->tst(Lscratch);
  2157   __ bind(notObj);
  2159   // cmp(Rflags, itos);
  2160   __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2161   __ delayed() ->cmp(Rflags, ltos);
  2163   // itos
  2164   __ ld(Rclass, Roffset, Otos_i);
  2165   __ push(itos);
  2166   if (!is_static) {
  2167     patch_bytecode(Bytecodes::_fast_igetfield, G3_scratch, G4_scratch);
  2169   __ ba(false, checkVolatile);
  2170   __ delayed()->tst(Lscratch);
  2172   __ bind(notInt);
  2174   // cmp(Rflags, ltos);
  2175   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2176   __ delayed() ->cmp(Rflags, btos);
  2178   // ltos
  2179   // load must be atomic
  2180   __ ld_long(Rclass, Roffset, Otos_l);
  2181   __ push(ltos);
  2182   if (!is_static) {
  2183     patch_bytecode(Bytecodes::_fast_lgetfield, G3_scratch, G4_scratch);
  2185   __ ba(false, checkVolatile);
  2186   __ delayed()->tst(Lscratch);
  2188   __ bind(notLong);
  2190   // cmp(Rflags, btos);
  2191   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2192   __ delayed() ->cmp(Rflags, ctos);
  2194   // btos
  2195   __ ldsb(Rclass, Roffset, Otos_i);
  2196   __ push(itos);
  2197   if (!is_static) {
  2198     patch_bytecode(Bytecodes::_fast_bgetfield, G3_scratch, G4_scratch);
  2200   __ ba(false, checkVolatile);
  2201   __ delayed()->tst(Lscratch);
  2203   __ bind(notByte);
  2205   // cmp(Rflags, ctos);
  2206   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2207   __ delayed() ->cmp(Rflags, stos);
  2209   // ctos
  2210   __ lduh(Rclass, Roffset, Otos_i);
  2211   __ push(itos);
  2212   if (!is_static) {
  2213     patch_bytecode(Bytecodes::_fast_cgetfield, G3_scratch, G4_scratch);
  2215   __ ba(false, checkVolatile);
  2216   __ delayed()->tst(Lscratch);
  2218   __ bind(notChar);
  2220   // cmp(Rflags, stos);
  2221   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2222   __ delayed() ->cmp(Rflags, ftos);
  2224   // stos
  2225   __ ldsh(Rclass, Roffset, Otos_i);
  2226   __ push(itos);
  2227   if (!is_static) {
  2228     patch_bytecode(Bytecodes::_fast_sgetfield, G3_scratch, G4_scratch);
  2230   __ ba(false, checkVolatile);
  2231   __ delayed()->tst(Lscratch);
  2233   __ bind(notShort);
  2236   // cmp(Rflags, ftos);
  2237   __ br(Assembler::notEqual, false, Assembler::pt, notFloat);
  2238   __ delayed() ->tst(Lscratch);
  2240   // ftos
  2241   __ ldf(FloatRegisterImpl::S, Rclass, Roffset, Ftos_f);
  2242   __ push(ftos);
  2243   if (!is_static) {
  2244     patch_bytecode(Bytecodes::_fast_fgetfield, G3_scratch, G4_scratch);
  2246   __ ba(false, checkVolatile);
  2247   __ delayed()->tst(Lscratch);
  2249   __ bind(notFloat);
  2252   // dtos
  2253   __ ldf(FloatRegisterImpl::D, Rclass, Roffset, Ftos_d);
  2254   __ push(dtos);
  2255   if (!is_static) {
  2256     patch_bytecode(Bytecodes::_fast_dgetfield, G3_scratch, G4_scratch);
  2259   __ bind(checkVolatile);
  2260   if (__ membar_has_effect(membar_bits)) {
  2261     // __ tst(Lscratch); executed in delay slot
  2262     __ br(Assembler::zero, false, Assembler::pt, exit);
  2263     __ delayed()->nop();
  2264     volatile_barrier(membar_bits);
  2267   __ bind(exit);
  2271 void TemplateTable::getfield(int byte_no) {
  2272   getfield_or_static(byte_no, false);
  2275 void TemplateTable::getstatic(int byte_no) {
  2276   getfield_or_static(byte_no, true);
  2280 void TemplateTable::fast_accessfield(TosState state) {
  2281   transition(atos, state);
  2282   Register Rcache  = G3_scratch;
  2283   Register index   = G4_scratch;
  2284   Register Roffset = G4_scratch;
  2285   Register Rflags  = Rcache;
  2286   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2288   __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2289   jvmti_post_field_access(Rcache, index, /*is_static*/false, /*has_tos*/true);
  2291   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2293   __ null_check(Otos_i);
  2294   __ verify_oop(Otos_i);
  2296   Label exit;
  2298   Assembler::Membar_mask_bits membar_bits =
  2299     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2300   if (__ membar_has_effect(membar_bits)) {
  2301     // Get volatile flag
  2302     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
  2303     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2306   switch (bytecode()) {
  2307     case Bytecodes::_fast_bgetfield:
  2308       __ ldsb(Otos_i, Roffset, Otos_i);
  2309       break;
  2310     case Bytecodes::_fast_cgetfield:
  2311       __ lduh(Otos_i, Roffset, Otos_i);
  2312       break;
  2313     case Bytecodes::_fast_sgetfield:
  2314       __ ldsh(Otos_i, Roffset, Otos_i);
  2315       break;
  2316     case Bytecodes::_fast_igetfield:
  2317       __ ld(Otos_i, Roffset, Otos_i);
  2318       break;
  2319     case Bytecodes::_fast_lgetfield:
  2320       __ ld_long(Otos_i, Roffset, Otos_l);
  2321       break;
  2322     case Bytecodes::_fast_fgetfield:
  2323       __ ldf(FloatRegisterImpl::S, Otos_i, Roffset, Ftos_f);
  2324       break;
  2325     case Bytecodes::_fast_dgetfield:
  2326       __ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
  2327       break;
  2328     case Bytecodes::_fast_agetfield:
  2329       __ load_heap_oop(Otos_i, Roffset, Otos_i);
  2330       break;
  2331     default:
  2332       ShouldNotReachHere();
  2335   if (__ membar_has_effect(membar_bits)) {
  2336     __ btst(Lscratch, Rflags);
  2337     __ br(Assembler::zero, false, Assembler::pt, exit);
  2338     __ delayed()->nop();
  2339     volatile_barrier(membar_bits);
  2340     __ bind(exit);
  2343   if (state == atos) {
  2344     __ verify_oop(Otos_i);    // does not blow flags!
  2348 void TemplateTable::jvmti_post_fast_field_mod() {
  2349   if (JvmtiExport::can_post_field_modification()) {
  2350     // Check to see if a field modification watch has been set before we take
  2351     // the time to call into the VM.
  2352     Label done;
  2353     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2354     __ load_contents(get_field_modification_count_addr, G4_scratch);
  2355     __ tst(G4_scratch);
  2356     __ br(Assembler::zero, false, Assembler::pt, done);
  2357     __ delayed()->nop();
  2358     __ pop_ptr(G4_scratch);     // copy the object pointer from tos
  2359     __ verify_oop(G4_scratch);
  2360     __ push_ptr(G4_scratch);    // put the object pointer back on tos
  2361     __ get_cache_entry_pointer_at_bcp(G1_scratch, G3_scratch, 1);
  2362     // Save tos values before call_VM() clobbers them. Since we have
  2363     // to do it for every data type, we use the saved values as the
  2364     // jvalue object.
  2365     switch (bytecode()) {  // save tos values before call_VM() clobbers them
  2366     case Bytecodes::_fast_aputfield: __ push_ptr(Otos_i); break;
  2367     case Bytecodes::_fast_bputfield: // fall through
  2368     case Bytecodes::_fast_sputfield: // fall through
  2369     case Bytecodes::_fast_cputfield: // fall through
  2370     case Bytecodes::_fast_iputfield: __ push_i(Otos_i); break;
  2371     case Bytecodes::_fast_dputfield: __ push_d(Ftos_d); break;
  2372     case Bytecodes::_fast_fputfield: __ push_f(Ftos_f); break;
  2373     // get words in right order for use as jvalue object
  2374     case Bytecodes::_fast_lputfield: __ push_l(Otos_l); break;
  2376     // setup pointer to jvalue object
  2377     __ mov(Lesp, G3_scratch);  __ inc(G3_scratch, wordSize);
  2378     // G4_scratch:  object pointer
  2379     // G1_scratch: cache entry pointer
  2380     // G3_scratch: jvalue object on the stack
  2381     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), G4_scratch, G1_scratch, G3_scratch);
  2382     switch (bytecode()) {             // restore tos values
  2383     case Bytecodes::_fast_aputfield: __ pop_ptr(Otos_i); break;
  2384     case Bytecodes::_fast_bputfield: // fall through
  2385     case Bytecodes::_fast_sputfield: // fall through
  2386     case Bytecodes::_fast_cputfield: // fall through
  2387     case Bytecodes::_fast_iputfield: __ pop_i(Otos_i); break;
  2388     case Bytecodes::_fast_dputfield: __ pop_d(Ftos_d); break;
  2389     case Bytecodes::_fast_fputfield: __ pop_f(Ftos_f); break;
  2390     case Bytecodes::_fast_lputfield: __ pop_l(Otos_l); break;
  2392     __ bind(done);
  2396 // The registers Rcache and index expected to be set before call.
  2397 // The function may destroy various registers, just not the Rcache and index registers.
  2398 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool is_static) {
  2399   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2401   if (JvmtiExport::can_post_field_modification()) {
  2402     // Check to see if a field modification watch has been set before we take
  2403     // the time to call into the VM.
  2404     Label Label1;
  2405     assert_different_registers(Rcache, index, G1_scratch);
  2406     AddressLiteral get_field_modification_count_addr(JvmtiExport::get_field_modification_count_addr());
  2407     __ load_contents(get_field_modification_count_addr, G1_scratch);
  2408     __ tst(G1_scratch);
  2409     __ br(Assembler::zero, false, Assembler::pt, Label1);
  2410     __ delayed()->nop();
  2412     // The Rcache and index registers have been already set.
  2413     // This allows to eliminate this call but the Rcache and index
  2414     // registers must be correspondingly used after this line.
  2415     __ get_cache_and_index_at_bcp(G1_scratch, G4_scratch, 1);
  2417     __ add(G1_scratch, in_bytes(cp_base_offset), G3_scratch);
  2418     if (is_static) {
  2419       // Life is simple.  Null out the object pointer.
  2420       __ clr(G4_scratch);
  2421     } else {
  2422       Register Rflags = G1_scratch;
  2423       // Life is harder. The stack holds the value on top, followed by the
  2424       // object.  We don't know the size of the value, though; it could be
  2425       // one or two words depending on its type. As a result, we must find
  2426       // the type to determine where the object is.
  2428       Label two_word, valsizeknown;
  2429       __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2430       __ mov(Lesp, G4_scratch);
  2431       __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2432       // Make sure we don't need to mask Rflags for tosBits after the above shift
  2433       ConstantPoolCacheEntry::verify_tosBits();
  2434       __ cmp(Rflags, ltos);
  2435       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2436       __ delayed()->cmp(Rflags, dtos);
  2437       __ br(Assembler::equal, false, Assembler::pt, two_word);
  2438       __ delayed()->nop();
  2439       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(1));
  2440       __ br(Assembler::always, false, Assembler::pt, valsizeknown);
  2441       __ delayed()->nop();
  2442       __ bind(two_word);
  2444       __ inc(G4_scratch, Interpreter::expr_offset_in_bytes(2));
  2446       __ bind(valsizeknown);
  2447       // setup object pointer
  2448       __ ld_ptr(G4_scratch, 0, G4_scratch);
  2449       __ verify_oop(G4_scratch);
  2451     // setup pointer to jvalue object
  2452     __ mov(Lesp, G1_scratch);  __ inc(G1_scratch, wordSize);
  2453     // G4_scratch:  object pointer or NULL if static
  2454     // G3_scratch: cache entry pointer
  2455     // G1_scratch: jvalue object on the stack
  2456     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2457                G4_scratch, G3_scratch, G1_scratch);
  2458     __ get_cache_and_index_at_bcp(Rcache, index, 1);
  2459     __ bind(Label1);
  2463 void TemplateTable::pop_and_check_object(Register r) {
  2464   __ pop_ptr(r);
  2465   __ null_check(r);  // for field access must check obj.
  2466   __ verify_oop(r);
  2469 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2470   transition(vtos, vtos);
  2471   Register Rcache = G3_scratch;
  2472   Register index  = G4_scratch;
  2473   Register Rclass = Rcache;
  2474   Register Roffset= G4_scratch;
  2475   Register Rflags = G1_scratch;
  2476   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2478   resolve_cache_and_index(byte_no, Rcache, index);
  2479   jvmti_post_field_mod(Rcache, index, is_static);
  2480   load_field_cp_cache_entry(Rclass, Rcache, index, Roffset, Rflags, is_static);
  2482   Assembler::Membar_mask_bits read_bits =
  2483     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2484   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2486   Label notVolatile, checkVolatile, exit;
  2487   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2488     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2489     __ and3(Rflags, Lscratch, Lscratch);
  2491     if (__ membar_has_effect(read_bits)) {
  2492       __ tst(Lscratch);
  2493       __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2494       __ delayed()->nop();
  2495       volatile_barrier(read_bits);
  2496       __ bind(notVolatile);
  2500   __ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags);
  2501   // Make sure we don't need to mask Rflags for tosBits after the above shift
  2502   ConstantPoolCacheEntry::verify_tosBits();
  2504   // compute field type
  2505   Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
  2507   if (is_static) {
  2508     // putstatic with object type most likely, check that first
  2509     __ cmp(Rflags, atos );
  2510     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2511     __ delayed() ->cmp(Rflags, itos );
  2513     // atos
  2514     __ pop_ptr();
  2515     __ verify_oop(Otos_i);
  2517     do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2519     __ ba(false, checkVolatile);
  2520     __ delayed()->tst(Lscratch);
  2522     __ bind(notObj);
  2524     // cmp(Rflags, itos );
  2525     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2526     __ delayed() ->cmp(Rflags, btos );
  2528     // itos
  2529     __ pop_i();
  2530     __ st(Otos_i, Rclass, Roffset);
  2531     __ ba(false, checkVolatile);
  2532     __ delayed()->tst(Lscratch);
  2534     __ bind(notInt);
  2536   } else {
  2537     // putfield with int type most likely, check that first
  2538     __ cmp(Rflags, itos );
  2539     __ br(Assembler::notEqual, false, Assembler::pt, notInt);
  2540     __ delayed() ->cmp(Rflags, atos );
  2542     // itos
  2543     __ pop_i();
  2544     pop_and_check_object(Rclass);
  2545     __ st(Otos_i, Rclass, Roffset);
  2546     patch_bytecode(Bytecodes::_fast_iputfield, G3_scratch, G4_scratch);
  2547     __ ba(false, checkVolatile);
  2548     __ delayed()->tst(Lscratch);
  2550     __ bind(notInt);
  2551     // cmp(Rflags, atos );
  2552     __ br(Assembler::notEqual, false, Assembler::pt, notObj);
  2553     __ delayed() ->cmp(Rflags, btos );
  2555     // atos
  2556     __ pop_ptr();
  2557     pop_and_check_object(Rclass);
  2558     __ verify_oop(Otos_i);
  2560     do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2562     patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch);
  2563     __ ba(false, checkVolatile);
  2564     __ delayed()->tst(Lscratch);
  2566     __ bind(notObj);
  2569   // cmp(Rflags, btos );
  2570   __ br(Assembler::notEqual, false, Assembler::pt, notByte);
  2571   __ delayed() ->cmp(Rflags, ltos );
  2573   // btos
  2574   __ pop_i();
  2575   if (!is_static) pop_and_check_object(Rclass);
  2576   __ stb(Otos_i, Rclass, Roffset);
  2577   if (!is_static) {
  2578     patch_bytecode(Bytecodes::_fast_bputfield, G3_scratch, G4_scratch);
  2580   __ ba(false, checkVolatile);
  2581   __ delayed()->tst(Lscratch);
  2583   __ bind(notByte);
  2585   // cmp(Rflags, ltos );
  2586   __ br(Assembler::notEqual, false, Assembler::pt, notLong);
  2587   __ delayed() ->cmp(Rflags, ctos );
  2589   // ltos
  2590   __ pop_l();
  2591   if (!is_static) pop_and_check_object(Rclass);
  2592   __ st_long(Otos_l, Rclass, Roffset);
  2593   if (!is_static) {
  2594     patch_bytecode(Bytecodes::_fast_lputfield, G3_scratch, G4_scratch);
  2596   __ ba(false, checkVolatile);
  2597   __ delayed()->tst(Lscratch);
  2599   __ bind(notLong);
  2601   // cmp(Rflags, ctos );
  2602   __ br(Assembler::notEqual, false, Assembler::pt, notChar);
  2603   __ delayed() ->cmp(Rflags, stos );
  2605   // ctos (char)
  2606   __ pop_i();
  2607   if (!is_static) pop_and_check_object(Rclass);
  2608   __ sth(Otos_i, Rclass, Roffset);
  2609   if (!is_static) {
  2610     patch_bytecode(Bytecodes::_fast_cputfield, G3_scratch, G4_scratch);
  2612   __ ba(false, checkVolatile);
  2613   __ delayed()->tst(Lscratch);
  2615   __ bind(notChar);
  2616   // cmp(Rflags, stos );
  2617   __ br(Assembler::notEqual, false, Assembler::pt, notShort);
  2618   __ delayed() ->cmp(Rflags, ftos );
  2620   // stos (char)
  2621   __ pop_i();
  2622   if (!is_static) pop_and_check_object(Rclass);
  2623   __ sth(Otos_i, Rclass, Roffset);
  2624   if (!is_static) {
  2625     patch_bytecode(Bytecodes::_fast_sputfield, G3_scratch, G4_scratch);
  2627   __ ba(false, checkVolatile);
  2628   __ delayed()->tst(Lscratch);
  2630   __ bind(notShort);
  2631   // cmp(Rflags, ftos );
  2632   __ br(Assembler::notZero, false, Assembler::pt, notFloat);
  2633   __ delayed()->nop();
  2635   // ftos
  2636   __ pop_f();
  2637   if (!is_static) pop_and_check_object(Rclass);
  2638   __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2639   if (!is_static) {
  2640     patch_bytecode(Bytecodes::_fast_fputfield, G3_scratch, G4_scratch);
  2642   __ ba(false, checkVolatile);
  2643   __ delayed()->tst(Lscratch);
  2645   __ bind(notFloat);
  2647   // dtos
  2648   __ pop_d();
  2649   if (!is_static) pop_and_check_object(Rclass);
  2650   __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2651   if (!is_static) {
  2652     patch_bytecode(Bytecodes::_fast_dputfield, G3_scratch, G4_scratch);
  2655   __ bind(checkVolatile);
  2656   __ tst(Lscratch);
  2658   if (__ membar_has_effect(write_bits)) {
  2659     // __ tst(Lscratch); in delay slot
  2660     __ br(Assembler::zero, false, Assembler::pt, exit);
  2661     __ delayed()->nop();
  2662     volatile_barrier(Assembler::StoreLoad);
  2663     __ bind(exit);
  2667 void TemplateTable::fast_storefield(TosState state) {
  2668   transition(state, vtos);
  2669   Register Rcache = G3_scratch;
  2670   Register Rclass = Rcache;
  2671   Register Roffset= G4_scratch;
  2672   Register Rflags = G1_scratch;
  2673   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2675   jvmti_post_fast_field_mod();
  2677   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 1);
  2679   Assembler::Membar_mask_bits read_bits =
  2680     Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore);
  2681   Assembler::Membar_mask_bits write_bits = Assembler::StoreLoad;
  2683   Label notVolatile, checkVolatile, exit;
  2684   if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
  2685     __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2686     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2687     __ and3(Rflags, Lscratch, Lscratch);
  2688     if (__ membar_has_effect(read_bits)) {
  2689       __ tst(Lscratch);
  2690       __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2691       __ delayed()->nop();
  2692       volatile_barrier(read_bits);
  2693       __ bind(notVolatile);
  2697   __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2698   pop_and_check_object(Rclass);
  2700   switch (bytecode()) {
  2701     case Bytecodes::_fast_bputfield: __ stb(Otos_i, Rclass, Roffset); break;
  2702     case Bytecodes::_fast_cputfield: /* fall through */
  2703     case Bytecodes::_fast_sputfield: __ sth(Otos_i, Rclass, Roffset); break;
  2704     case Bytecodes::_fast_iputfield: __ st(Otos_i, Rclass, Roffset);  break;
  2705     case Bytecodes::_fast_lputfield: __ st_long(Otos_l, Rclass, Roffset); break;
  2706     case Bytecodes::_fast_fputfield:
  2707       __ stf(FloatRegisterImpl::S, Ftos_f, Rclass, Roffset);
  2708       break;
  2709     case Bytecodes::_fast_dputfield:
  2710       __ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
  2711       break;
  2712     case Bytecodes::_fast_aputfield:
  2713       do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
  2714       break;
  2715     default:
  2716       ShouldNotReachHere();
  2719   if (__ membar_has_effect(write_bits)) {
  2720     __ tst(Lscratch);
  2721     __ br(Assembler::zero, false, Assembler::pt, exit);
  2722     __ delayed()->nop();
  2723     volatile_barrier(Assembler::StoreLoad);
  2724     __ bind(exit);
  2729 void TemplateTable::putfield(int byte_no) {
  2730   putfield_or_static(byte_no, false);
  2733 void TemplateTable::putstatic(int byte_no) {
  2734   putfield_or_static(byte_no, true);
  2738 void TemplateTable::fast_xaccess(TosState state) {
  2739   transition(vtos, state);
  2740   Register Rcache = G3_scratch;
  2741   Register Roffset = G4_scratch;
  2742   Register Rflags  = G4_scratch;
  2743   Register Rreceiver = Lscratch;
  2745   __ ld_ptr(Llocals, Interpreter::value_offset_in_bytes(), Rreceiver);
  2747   // access constant pool cache  (is resolved)
  2748   __ get_cache_and_index_at_bcp(Rcache, G4_scratch, 2);
  2749   __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset(), Roffset);
  2750   __ add(Lbcp, 1, Lbcp);       // needed to report exception at the correct bcp
  2752   __ verify_oop(Rreceiver);
  2753   __ null_check(Rreceiver);
  2754   if (state == atos) {
  2755     __ load_heap_oop(Rreceiver, Roffset, Otos_i);
  2756   } else if (state == itos) {
  2757     __ ld (Rreceiver, Roffset, Otos_i) ;
  2758   } else if (state == ftos) {
  2759     __ ldf(FloatRegisterImpl::S, Rreceiver, Roffset, Ftos_f);
  2760   } else {
  2761     ShouldNotReachHere();
  2764   Assembler::Membar_mask_bits membar_bits =
  2765     Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore);
  2766   if (__ membar_has_effect(membar_bits)) {
  2768     // Get is_volatile value in Rflags and check if membar is needed
  2769     __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset(), Rflags);
  2771     // Test volatile
  2772     Label notVolatile;
  2773     __ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch);
  2774     __ btst(Rflags, Lscratch);
  2775     __ br(Assembler::zero, false, Assembler::pt, notVolatile);
  2776     __ delayed()->nop();
  2777     volatile_barrier(membar_bits);
  2778     __ bind(notVolatile);
  2781   __ interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  2782   __ sub(Lbcp, 1, Lbcp);
  2785 //----------------------------------------------------------------------------------------------------
  2786 // Calls
  2788 void TemplateTable::count_calls(Register method, Register temp) {
  2789   // implemented elsewhere
  2790   ShouldNotReachHere();
  2793 void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
  2794   Register Rtemp = G4_scratch;
  2795   Register Rcall = Rindex;
  2796   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  2798   // get target methodOop & entry point
  2799   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2800   if (vtableEntry::size() % 3 == 0) {
  2801     // scale the vtable index by 12:
  2802     int one_third = vtableEntry::size() / 3;
  2803     __ sll(Rindex, exact_log2(one_third * 1 * wordSize), Rtemp);
  2804     __ sll(Rindex, exact_log2(one_third * 2 * wordSize), Rindex);
  2805     __ add(Rindex, Rtemp, Rindex);
  2806   } else {
  2807     // scale the vtable index by 8:
  2808     __ sll(Rindex, exact_log2(vtableEntry::size() * wordSize), Rindex);
  2811   __ add(Rrecv, Rindex, Rrecv);
  2812   __ ld_ptr(Rrecv, base + vtableEntry::method_offset_in_bytes(), G5_method);
  2814   __ call_from_interpreter(Rcall, Gargs, Rret);
  2817 void TemplateTable::invokevirtual(int byte_no) {
  2818   transition(vtos, vtos);
  2820   Register Rscratch = G3_scratch;
  2821   Register Rtemp = G4_scratch;
  2822   Register Rret = Lscratch;
  2823   Register Rrecv = G5_method;
  2824   Label notFinal;
  2826   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true);
  2827   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2829   // Check for vfinal
  2830   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), G4_scratch);
  2831   __ btst(Rret, G4_scratch);
  2832   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  2833   __ delayed()->and3(Rret, 0xFF, G4_scratch);      // gets number of parameters
  2835   patch_bytecode(Bytecodes::_fast_invokevfinal, Rscratch, Rtemp);
  2837   invokevfinal_helper(Rscratch, Rret);
  2839   __ bind(notFinal);
  2841   __ mov(G5_method, Rscratch);  // better scratch register
  2842   __ load_receiver(G4_scratch, O0);  // gets receiverOop
  2843   // receiver is in O0
  2844   __ verify_oop(O0);
  2846   // get return address
  2847   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  2848   __ set(table, Rtemp);
  2849   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  2850   // Make sure we don't need to mask Rret for tosBits after the above shift
  2851   ConstantPoolCacheEntry::verify_tosBits();
  2852   __ sll(Rret,  LogBytesPerWord, Rret);
  2853   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  2855   // get receiver klass
  2856   __ null_check(O0, oopDesc::klass_offset_in_bytes());
  2857   __ load_klass(O0, Rrecv);
  2858   __ verify_oop(Rrecv);
  2860   __ profile_virtual_call(Rrecv, O4);
  2862   generate_vtable_call(Rrecv, Rscratch, Rret);
  2865 void TemplateTable::fast_invokevfinal(int byte_no) {
  2866   transition(vtos, vtos);
  2868   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Lscratch, true,
  2869                              /*is_invokevfinal*/true);
  2870   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2871   invokevfinal_helper(G3_scratch, Lscratch);
  2874 void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
  2875   Register Rtemp = G4_scratch;
  2877   __ verify_oop(G5_method);
  2879   // Load receiver from stack slot
  2880   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
  2881   __ load_receiver(G4_scratch, O0);
  2883   // receiver NULL check
  2884   __ null_check(O0);
  2886   __ profile_final_call(O4);
  2888   // get return address
  2889   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  2890   __ set(table, Rtemp);
  2891   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  2892   // Make sure we don't need to mask Rret for tosBits after the above shift
  2893   ConstantPoolCacheEntry::verify_tosBits();
  2894   __ sll(Rret,  LogBytesPerWord, Rret);
  2895   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  2898   // do the call
  2899   __ call_from_interpreter(Rscratch, Gargs, Rret);
  2902 void TemplateTable::invokespecial(int byte_no) {
  2903   transition(vtos, vtos);
  2905   Register Rscratch = G3_scratch;
  2906   Register Rtemp = G4_scratch;
  2907   Register Rret = Lscratch;
  2909   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, false);
  2910   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2912   __ verify_oop(G5_method);
  2914   __ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
  2915   __ load_receiver(G4_scratch, O0);
  2917   // receiver NULL check
  2918   __ null_check(O0);
  2920   __ profile_call(O4);
  2922   // get return address
  2923   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  2924   __ set(table, Rtemp);
  2925   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  2926   // Make sure we don't need to mask Rret for tosBits after the above shift
  2927   ConstantPoolCacheEntry::verify_tosBits();
  2928   __ sll(Rret,  LogBytesPerWord, Rret);
  2929   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  2931   // do the call
  2932   __ call_from_interpreter(Rscratch, Gargs, Rret);
  2935 void TemplateTable::invokestatic(int byte_no) {
  2936   transition(vtos, vtos);
  2938   Register Rscratch = G3_scratch;
  2939   Register Rtemp = G4_scratch;
  2940   Register Rret = Lscratch;
  2942   load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, false);
  2943   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  2945   __ verify_oop(G5_method);
  2947   __ profile_call(O4);
  2949   // get return address
  2950   AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
  2951   __ set(table, Rtemp);
  2952   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  2953   // Make sure we don't need to mask Rret for tosBits after the above shift
  2954   ConstantPoolCacheEntry::verify_tosBits();
  2955   __ sll(Rret,  LogBytesPerWord, Rret);
  2956   __ ld_ptr(Rtemp, Rret, Rret);         // get return address
  2958   // do the call
  2959   __ call_from_interpreter(Rscratch, Gargs, Rret);
  2963 void TemplateTable::invokeinterface_object_method(Register RklassOop,
  2964                                                   Register Rcall,
  2965                                                   Register Rret,
  2966                                                   Register Rflags) {
  2967   Register Rscratch = G4_scratch;
  2968   Register Rindex = Lscratch;
  2970   assert_different_registers(Rscratch, Rindex, Rret);
  2972   Label notFinal;
  2974   // Check for vfinal
  2975   __ set((1 << ConstantPoolCacheEntry::vfinalMethod), Rscratch);
  2976   __ btst(Rflags, Rscratch);
  2977   __ br(Assembler::zero, false, Assembler::pt, notFinal);
  2978   __ delayed()->nop();
  2980   __ profile_final_call(O4);
  2982   // do the call - the index (f2) contains the methodOop
  2983   assert_different_registers(G5_method, Gargs, Rcall);
  2984   __ mov(Rindex, G5_method);
  2985   __ call_from_interpreter(Rcall, Gargs, Rret);
  2986   __ bind(notFinal);
  2988   __ profile_virtual_call(RklassOop, O4);
  2989   generate_vtable_call(RklassOop, Rindex, Rret);
  2993 void TemplateTable::invokeinterface(int byte_no) {
  2994   transition(vtos, vtos);
  2996   Register Rscratch = G4_scratch;
  2997   Register Rret = G3_scratch;
  2998   Register Rindex = Lscratch;
  2999   Register Rinterface = G1_scratch;
  3000   Register RklassOop = G5_method;
  3001   Register Rflags = O1;
  3002   assert_different_registers(Rscratch, G5_method);
  3004   load_invoke_cp_cache_entry(byte_no, Rinterface, Rindex, Rflags, false);
  3005   __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
  3007   // get receiver
  3008   __ and3(Rflags, 0xFF, Rscratch);       // gets number of parameters
  3009   __ load_receiver(Rscratch, O0);
  3010   __ verify_oop(O0);
  3012   __ mov(Rflags, Rret);
  3014   // get return address
  3015   AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
  3016   __ set(table, Rscratch);
  3017   __ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret);          // get return type
  3018   // Make sure we don't need to mask Rret for tosBits after the above shift
  3019   ConstantPoolCacheEntry::verify_tosBits();
  3020   __ sll(Rret,  LogBytesPerWord, Rret);
  3021   __ ld_ptr(Rscratch, Rret, Rret);      // get return address
  3023   // get receiver klass
  3024   __ null_check(O0, oopDesc::klass_offset_in_bytes());
  3025   __ load_klass(O0, RklassOop);
  3026   __ verify_oop(RklassOop);
  3028   // Special case of invokeinterface called for virtual method of
  3029   // java.lang.Object.  See cpCacheOop.cpp for details.
  3030   // This code isn't produced by javac, but could be produced by
  3031   // another compliant java compiler.
  3032   Label notMethod;
  3033   __ set((1 << ConstantPoolCacheEntry::methodInterface), Rscratch);
  3034   __ btst(Rflags, Rscratch);
  3035   __ br(Assembler::zero, false, Assembler::pt, notMethod);
  3036   __ delayed()->nop();
  3038   invokeinterface_object_method(RklassOop, Rinterface, Rret, Rflags);
  3040   __ bind(notMethod);
  3042   __ profile_virtual_call(RklassOop, O4);
  3044   //
  3045   // find entry point to call
  3046   //
  3048   // compute start of first itableOffsetEntry (which is at end of vtable)
  3049   const int base = instanceKlass::vtable_start_offset() * wordSize;
  3050   Label search;
  3051   Register Rtemp = Rflags;
  3053   __ ld(RklassOop, instanceKlass::vtable_length_offset() * wordSize, Rtemp);
  3054   if (align_object_offset(1) > 1) {
  3055     __ round_to(Rtemp, align_object_offset(1));
  3057   __ sll(Rtemp, LogBytesPerWord, Rtemp);   // Rscratch *= 4;
  3058   if (Assembler::is_simm13(base)) {
  3059     __ add(Rtemp, base, Rtemp);
  3060   } else {
  3061     __ set(base, Rscratch);
  3062     __ add(Rscratch, Rtemp, Rtemp);
  3064   __ add(RklassOop, Rtemp, Rscratch);
  3066   __ bind(search);
  3068   __ ld_ptr(Rscratch, itableOffsetEntry::interface_offset_in_bytes(), Rtemp);
  3070     Label ok;
  3072     // Check that entry is non-null.  Null entries are probably a bytecode
  3073     // problem.  If the interface isn't implemented by the receiver class,
  3074     // the VM should throw IncompatibleClassChangeError.  linkResolver checks
  3075     // this too but that's only if the entry isn't already resolved, so we
  3076     // need to check again.
  3077     __ br_notnull( Rtemp, false, Assembler::pt, ok);
  3078     __ delayed()->nop();
  3079     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
  3080     __ should_not_reach_here();
  3081     __ bind(ok);
  3082     __ verify_oop(Rtemp);
  3085   __ verify_oop(Rinterface);
  3087   __ cmp(Rinterface, Rtemp);
  3088   __ brx(Assembler::notEqual, true, Assembler::pn, search);
  3089   __ delayed()->add(Rscratch, itableOffsetEntry::size() * wordSize, Rscratch);
  3091   // entry found and Rscratch points to it
  3092   __ ld(Rscratch, itableOffsetEntry::offset_offset_in_bytes(), Rscratch);
  3094   assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
  3095   __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex);       // Rindex *= 8;
  3096   __ add(Rscratch, Rindex, Rscratch);
  3097   __ ld_ptr(RklassOop, Rscratch, G5_method);
  3099   // Check for abstract method error.
  3101     Label ok;
  3102     __ tst(G5_method);
  3103     __ brx(Assembler::notZero, false, Assembler::pt, ok);
  3104     __ delayed()->nop();
  3105     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3106     __ should_not_reach_here();
  3107     __ bind(ok);
  3110   Register Rcall = Rinterface;
  3111   assert_different_registers(Rcall, G5_method, Gargs, Rret);
  3113   __ verify_oop(G5_method);
  3114   __ call_from_interpreter(Rcall, Gargs, Rret);
  3119 //----------------------------------------------------------------------------------------------------
  3120 // Allocation
  3122 void TemplateTable::_new() {
  3123   transition(vtos, atos);
  3125   Label slow_case;
  3126   Label done;
  3127   Label initialize_header;
  3128   Label initialize_object;  // including clearing the fields
  3130   Register RallocatedObject = Otos_i;
  3131   Register RinstanceKlass = O1;
  3132   Register Roffset = O3;
  3133   Register Rscratch = O4;
  3135   __ get_2_byte_integer_at_bcp(1, Rscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3136   __ get_cpool_and_tags(Rscratch, G3_scratch);
  3137   // make sure the class we're about to instantiate has been resolved
  3138   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3139   __ ldub(G3_scratch, Roffset, G3_scratch);
  3140   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3141   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3142   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3144   //__ sll(Roffset, LogBytesPerWord, Roffset);        // executed in delay slot
  3145   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3146   __ ld_ptr(Rscratch, Roffset, RinstanceKlass);
  3148   // make sure klass is fully initialized:
  3149   __ ld(RinstanceKlass, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc), G3_scratch);
  3150   __ cmp(G3_scratch, instanceKlass::fully_initialized);
  3151   __ br(Assembler::notEqual, false, Assembler::pn, slow_case);
  3152   __ delayed()->ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
  3154   // get instance_size in instanceKlass (already aligned)
  3155   //__ ld(RinstanceKlass, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc), Roffset);
  3157   // make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class
  3158   __ btst(Klass::_lh_instance_slow_path_bit, Roffset);
  3159   __ br(Assembler::notZero, false, Assembler::pn, slow_case);
  3160   __ delayed()->nop();
  3162   // allocate the instance
  3163   // 1) Try to allocate in the TLAB
  3164   // 2) if fail, and the TLAB is not full enough to discard, allocate in the shared Eden
  3165   // 3) if the above fails (or is not applicable), go to a slow case
  3166   // (creates a new TLAB, etc.)
  3168   const bool allow_shared_alloc =
  3169     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3171   if(UseTLAB) {
  3172     Register RoldTopValue = RallocatedObject;
  3173     Register RtopAddr = G3_scratch, RtlabWasteLimitValue = G3_scratch;
  3174     Register RnewTopValue = G1_scratch;
  3175     Register RendValue = Rscratch;
  3176     Register RfreeValue = RnewTopValue;
  3178     // check if we can allocate in the TLAB
  3179     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), RoldTopValue); // sets up RalocatedObject
  3180     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), RendValue);
  3181     __ add(RoldTopValue, Roffset, RnewTopValue);
  3183     // if there is enough space, we do not CAS and do not clear
  3184     __ cmp(RnewTopValue, RendValue);
  3185     if(ZeroTLAB) {
  3186       // the fields have already been cleared
  3187       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_header);
  3188     } else {
  3189       // initialize both the header and fields
  3190       __ brx(Assembler::lessEqualUnsigned, true, Assembler::pt, initialize_object);
  3192     __ delayed()->st_ptr(RnewTopValue, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  3194     if (allow_shared_alloc) {
  3195     // Check if tlab should be discarded (refill_waste_limit >= free)
  3196     __ ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), RtlabWasteLimitValue);
  3197     __ sub(RendValue, RoldTopValue, RfreeValue);
  3198 #ifdef _LP64
  3199     __ srlx(RfreeValue, LogHeapWordSize, RfreeValue);
  3200 #else
  3201     __ srl(RfreeValue, LogHeapWordSize, RfreeValue);
  3202 #endif
  3203     __ cmp(RtlabWasteLimitValue, RfreeValue);
  3204     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, slow_case); // tlab waste is small
  3205     __ delayed()->nop();
  3207     // increment waste limit to prevent getting stuck on this slow path
  3208     __ add(RtlabWasteLimitValue, ThreadLocalAllocBuffer::refill_waste_limit_increment(), RtlabWasteLimitValue);
  3209     __ st_ptr(RtlabWasteLimitValue, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  3210     } else {
  3211       // No allocation in the shared eden.
  3212       __ br(Assembler::always, false, Assembler::pt, slow_case);
  3213       __ delayed()->nop();
  3217   // Allocation in the shared Eden
  3218   if (allow_shared_alloc) {
  3219     Register RoldTopValue = G1_scratch;
  3220     Register RtopAddr = G3_scratch;
  3221     Register RnewTopValue = RallocatedObject;
  3222     Register RendValue = Rscratch;
  3224     __ set((intptr_t)Universe::heap()->top_addr(), RtopAddr);
  3226     Label retry;
  3227     __ bind(retry);
  3228     __ set((intptr_t)Universe::heap()->end_addr(), RendValue);
  3229     __ ld_ptr(RendValue, 0, RendValue);
  3230     __ ld_ptr(RtopAddr, 0, RoldTopValue);
  3231     __ add(RoldTopValue, Roffset, RnewTopValue);
  3233     // RnewTopValue contains the top address after the new object
  3234     // has been allocated.
  3235     __ cmp(RnewTopValue, RendValue);
  3236     __ brx(Assembler::greaterUnsigned, false, Assembler::pn, slow_case);
  3237     __ delayed()->nop();
  3239     __ casx_under_lock(RtopAddr, RoldTopValue, RnewTopValue,
  3240       VM_Version::v9_instructions_work() ? NULL :
  3241       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3243     // if someone beat us on the allocation, try again, otherwise continue
  3244     __ cmp(RoldTopValue, RnewTopValue);
  3245     __ brx(Assembler::notEqual, false, Assembler::pn, retry);
  3246     __ delayed()->nop();
  3249   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3250     // clear object fields
  3251     __ bind(initialize_object);
  3252     __ deccc(Roffset, sizeof(oopDesc));
  3253     __ br(Assembler::zero, false, Assembler::pt, initialize_header);
  3254     __ delayed()->add(RallocatedObject, sizeof(oopDesc), G3_scratch);
  3256     // initialize remaining object fields
  3257     { Label loop;
  3258       __ subcc(Roffset, wordSize, Roffset);
  3259       __ bind(loop);
  3260       //__ subcc(Roffset, wordSize, Roffset);      // executed above loop or in delay slot
  3261       __ st_ptr(G0, G3_scratch, Roffset);
  3262       __ br(Assembler::notEqual, false, Assembler::pt, loop);
  3263       __ delayed()->subcc(Roffset, wordSize, Roffset);
  3265     __ br(Assembler::always, false, Assembler::pt, initialize_header);
  3266     __ delayed()->nop();
  3269   // slow case
  3270   __ bind(slow_case);
  3271   __ get_2_byte_integer_at_bcp(1, G3_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3272   __ get_constant_pool(O1);
  3274   call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), O1, O2);
  3276   __ ba(false, done);
  3277   __ delayed()->nop();
  3279   // Initialize the header: mark, klass
  3280   __ bind(initialize_header);
  3282   if (UseBiasedLocking) {
  3283     __ ld_ptr(RinstanceKlass, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), G4_scratch);
  3284   } else {
  3285     __ set((intptr_t)markOopDesc::prototype(), G4_scratch);
  3287   __ st_ptr(G4_scratch, RallocatedObject, oopDesc::mark_offset_in_bytes());       // mark
  3288   __ store_klass_gap(G0, RallocatedObject);         // klass gap if compressed
  3289   __ store_klass(RinstanceKlass, RallocatedObject); // klass (last for cms)
  3292     SkipIfEqual skip_if(
  3293       _masm, G4_scratch, &DTraceAllocProbes, Assembler::zero);
  3294     // Trigger dtrace event
  3295     __ push(atos);
  3296     __ call_VM_leaf(noreg,
  3297        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), O0);
  3298     __ pop(atos);
  3301   // continue
  3302   __ bind(done);
  3307 void TemplateTable::newarray() {
  3308   transition(itos, atos);
  3309   __ ldub(Lbcp, 1, O1);
  3310      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), O1, Otos_i);
  3314 void TemplateTable::anewarray() {
  3315   transition(itos, atos);
  3316   __ get_constant_pool(O1);
  3317   __ get_2_byte_integer_at_bcp(1, G4_scratch, O2, InterpreterMacroAssembler::Unsigned);
  3318      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), O1, O2, Otos_i);
  3322 void TemplateTable::arraylength() {
  3323   transition(atos, itos);
  3324   Label ok;
  3325   __ verify_oop(Otos_i);
  3326   __ tst(Otos_i);
  3327   __ throw_if_not_1_x( Assembler::notZero, ok );
  3328   __ delayed()->ld(Otos_i, arrayOopDesc::length_offset_in_bytes(), Otos_i);
  3329   __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3333 void TemplateTable::checkcast() {
  3334   transition(atos, atos);
  3335   Label done, is_null, quicked, cast_ok, resolved;
  3336   Register Roffset = G1_scratch;
  3337   Register RobjKlass = O5;
  3338   Register RspecifiedKlass = O4;
  3340   // Check for casting a NULL
  3341   __ br_null(Otos_i, false, Assembler::pn, is_null);
  3342   __ delayed()->nop();
  3344   // Get value klass in RobjKlass
  3345   __ load_klass(Otos_i, RobjKlass); // get value klass
  3347   // Get constant pool tag
  3348   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3350   // See if the checkcast has been quickened
  3351   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3352   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3353   __ ldub(G3_scratch, Roffset, G3_scratch);
  3354   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3355   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3356   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3358   __ push_ptr(); // save receiver for result, and for GC
  3359   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3360   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3362   __ br(Assembler::always, false, Assembler::pt, resolved);
  3363   __ delayed()->nop();
  3365   // Extract target class from constant pool
  3366   __ bind(quicked);
  3367   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3368   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3369   __ bind(resolved);
  3370   __ load_klass(Otos_i, RobjKlass); // get value klass
  3372   // Generate a fast subtype check.  Branch to cast_ok if no
  3373   // failure.  Throw exception if failure.
  3374   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, cast_ok );
  3376   // Not a subtype; so must throw exception
  3377   __ throw_if_not_x( Assembler::never, Interpreter::_throw_ClassCastException_entry, G3_scratch );
  3379   __ bind(cast_ok);
  3381   if (ProfileInterpreter) {
  3382     __ ba(false, done);
  3383     __ delayed()->nop();
  3385   __ bind(is_null);
  3386   __ profile_null_seen(G3_scratch);
  3387   __ bind(done);
  3391 void TemplateTable::instanceof() {
  3392   Label done, is_null, quicked, resolved;
  3393   transition(atos, itos);
  3394   Register Roffset = G1_scratch;
  3395   Register RobjKlass = O5;
  3396   Register RspecifiedKlass = O4;
  3398   // Check for casting a NULL
  3399   __ br_null(Otos_i, false, Assembler::pt, is_null);
  3400   __ delayed()->nop();
  3402   // Get value klass in RobjKlass
  3403   __ load_klass(Otos_i, RobjKlass); // get value klass
  3405   // Get constant pool tag
  3406   __ get_2_byte_integer_at_bcp(1, Lscratch, Roffset, InterpreterMacroAssembler::Unsigned);
  3408   // See if the checkcast has been quickened
  3409   __ get_cpool_and_tags(Lscratch, G3_scratch);
  3410   __ add(G3_scratch, typeArrayOopDesc::header_size(T_BYTE) * wordSize, G3_scratch);
  3411   __ ldub(G3_scratch, Roffset, G3_scratch);
  3412   __ cmp(G3_scratch, JVM_CONSTANT_Class);
  3413   __ br(Assembler::equal, true, Assembler::pt, quicked);
  3414   __ delayed()->sll(Roffset, LogBytesPerWord, Roffset);
  3416   __ push_ptr(); // save receiver for result, and for GC
  3417   call_VM(RspecifiedKlass, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3418   __ pop_ptr(Otos_i, G3_scratch); // restore receiver
  3420   __ br(Assembler::always, false, Assembler::pt, resolved);
  3421   __ delayed()->nop();
  3424   // Extract target class from constant pool
  3425   __ bind(quicked);
  3426   __ add(Roffset, sizeof(constantPoolOopDesc), Roffset);
  3427   __ get_constant_pool(Lscratch);
  3428   __ ld_ptr(Lscratch, Roffset, RspecifiedKlass);
  3429   __ bind(resolved);
  3430   __ load_klass(Otos_i, RobjKlass); // get value klass
  3432   // Generate a fast subtype check.  Branch to cast_ok if no
  3433   // failure.  Return 0 if failure.
  3434   __ or3(G0, 1, Otos_i);      // set result assuming quick tests succeed
  3435   __ gen_subtype_check( RobjKlass, RspecifiedKlass, G3_scratch, G4_scratch, G1_scratch, done );
  3436   // Not a subtype; return 0;
  3437   __ clr( Otos_i );
  3439   if (ProfileInterpreter) {
  3440     __ ba(false, done);
  3441     __ delayed()->nop();
  3443   __ bind(is_null);
  3444   __ profile_null_seen(G3_scratch);
  3445   __ bind(done);
  3448 void TemplateTable::_breakpoint() {
  3450    // Note: We get here even if we are single stepping..
  3451    // jbug inists on setting breakpoints at every bytecode
  3452    // even if we are in single step mode.
  3454    transition(vtos, vtos);
  3455    // get the unpatched byte code
  3456    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), Lmethod, Lbcp);
  3457    __ mov(O0, Lbyte_code);
  3459    // post the breakpoint event
  3460    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), Lmethod, Lbcp);
  3462    // complete the execution of original bytecode
  3463    __ dispatch_normal(vtos);
  3467 //----------------------------------------------------------------------------------------------------
  3468 // Exceptions
  3470 void TemplateTable::athrow() {
  3471   transition(atos, vtos);
  3473   // This works because exception is cached in Otos_i which is same as O0,
  3474   // which is same as what throw_exception_entry_expects
  3475   assert(Otos_i == Oexception, "see explanation above");
  3477   __ verify_oop(Otos_i);
  3478   __ null_check(Otos_i);
  3479   __ throw_if_not_x(Assembler::never, Interpreter::throw_exception_entry(), G3_scratch);
  3483 //----------------------------------------------------------------------------------------------------
  3484 // Synchronization
  3487 // See frame_sparc.hpp for monitor block layout.
  3488 // Monitor elements are dynamically allocated by growing stack as needed.
  3490 void TemplateTable::monitorenter() {
  3491   transition(atos, vtos);
  3492   __ verify_oop(Otos_i);
  3493   // Try to acquire a lock on the object
  3494   // Repeat until succeeded (i.e., until
  3495   // monitorenter returns true).
  3497   {   Label ok;
  3498     __ tst(Otos_i);
  3499     __ throw_if_not_1_x( Assembler::notZero,  ok);
  3500     __ delayed()->mov(Otos_i, Lscratch); // save obj
  3501     __ throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ok);
  3504   assert(O0 == Otos_i, "Be sure where the object to lock is");
  3506   // find a free slot in the monitor block
  3509   // initialize entry pointer
  3510   __ clr(O1); // points to free slot or NULL
  3513     Label entry, loop, exit;
  3514     __ add( __ top_most_monitor(), O2 ); // last one to check
  3515     __ ba( false, entry );
  3516     __ delayed()->mov( Lmonitors, O3 ); // first one to check
  3519     __ bind( loop );
  3521     __ verify_oop(O4);          // verify each monitor's oop
  3522     __ tst(O4); // is this entry unused?
  3523     if (VM_Version::v9_instructions_work())
  3524       __ movcc( Assembler::zero, false, Assembler::ptr_cc, O3, O1);
  3525     else {
  3526       Label L;
  3527       __ br( Assembler::zero, true, Assembler::pn, L );
  3528       __ delayed()->mov(O3, O1); // rememeber this one if match
  3529       __ bind(L);
  3532     __ cmp(O4, O0); // check if current entry is for same object
  3533     __ brx( Assembler::equal, false, Assembler::pn, exit );
  3534     __ delayed()->inc( O3, frame::interpreter_frame_monitor_size() * wordSize ); // check next one
  3536     __ bind( entry );
  3538     __ cmp( O3, O2 );
  3539     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3540     __ delayed()->ld_ptr(O3, BasicObjectLock::obj_offset_in_bytes(), O4);
  3542     __ bind( exit );
  3545   { Label allocated;
  3547     // found free slot?
  3548     __ br_notnull(O1, false, Assembler::pn, allocated);
  3549     __ delayed()->nop();
  3551     __ add_monitor_to_stack( false, O2, O3 );
  3552     __ mov(Lmonitors, O1);
  3554     __ bind(allocated);
  3557   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3558   // The object has already been poped from the stack, so the expression stack looks correct.
  3559   __ inc(Lbcp);
  3561   __ st_ptr(O0, O1, BasicObjectLock::obj_offset_in_bytes()); // store object
  3562   __ lock_object(O1, O0);
  3564   // check if there's enough space on the stack for the monitors after locking
  3565   __ generate_stack_overflow_check(0);
  3567   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3568   __ dispatch_next(vtos);
  3572 void TemplateTable::monitorexit() {
  3573   transition(atos, vtos);
  3574   __ verify_oop(Otos_i);
  3575   __ tst(Otos_i);
  3576   __ throw_if_not_x( Assembler::notZero, Interpreter::_throw_NullPointerException_entry, G3_scratch );
  3578   assert(O0 == Otos_i, "just checking");
  3580   { Label entry, loop, found;
  3581     __ add( __ top_most_monitor(), O2 ); // last one to check
  3582     __ ba(false, entry );
  3583     // use Lscratch to hold monitor elem to check, start with most recent monitor,
  3584     // By using a local it survives the call to the C routine.
  3585     __ delayed()->mov( Lmonitors, Lscratch );
  3587     __ bind( loop );
  3589     __ verify_oop(O4);          // verify each monitor's oop
  3590     __ cmp(O4, O0); // check if current entry is for desired object
  3591     __ brx( Assembler::equal, true, Assembler::pt, found );
  3592     __ delayed()->mov(Lscratch, O1); // pass found entry as argument to monitorexit
  3594     __ inc( Lscratch, frame::interpreter_frame_monitor_size() * wordSize ); // advance to next
  3596     __ bind( entry );
  3598     __ cmp( Lscratch, O2 );
  3599     __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, loop );
  3600     __ delayed()->ld_ptr(Lscratch, BasicObjectLock::obj_offset_in_bytes(), O4);
  3602     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3603     __ should_not_reach_here();
  3605     __ bind(found);
  3607   __ unlock_object(O1);
  3611 //----------------------------------------------------------------------------------------------------
  3612 // Wide instructions
  3614 void TemplateTable::wide() {
  3615   transition(vtos, vtos);
  3616   __ ldub(Lbcp, 1, G3_scratch);// get next bc
  3617   __ sll(G3_scratch, LogBytesPerWord, G3_scratch);
  3618   AddressLiteral ep(Interpreter::_wentry_point);
  3619   __ set(ep, G4_scratch);
  3620   __ ld_ptr(G4_scratch, G3_scratch, G3_scratch);
  3621   __ jmp(G3_scratch, G0);
  3622   __ delayed()->nop();
  3623   // Note: the Lbcp increment step is part of the individual wide bytecode implementations
  3627 //----------------------------------------------------------------------------------------------------
  3628 // Multi arrays
  3630 void TemplateTable::multianewarray() {
  3631   transition(vtos, atos);
  3632      // put ndims * wordSize into Lscratch
  3633   __ ldub( Lbcp,     3,               Lscratch);
  3634   __ sll(  Lscratch, Interpreter::logStackElementSize(), Lscratch);
  3635      // Lesp points past last_dim, so set to O1 to first_dim address
  3636   __ add(  Lesp,     Lscratch,        O1);
  3637      call_VM(Otos_i, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), O1);
  3638   __ add(  Lesp,     Lscratch,        Lesp); // pop all dimensions off the stack
  3640 #endif /* !CC_INTERP */

mercurial