src/share/vm/memory/generation.cpp

Tue, 16 Feb 2016 21:42:29 +0000

author
poonam
date
Tue, 16 Feb 2016 21:42:29 +0000
changeset 8308
6acf14e730dd
parent 6978
30c99d8e0f02
child 7535
7ae4e26cb1e0
child 9327
f96fcd9e1e1b
permissions
-rw-r--r--

8072725: Provide more granular levels for GC verification
Summary: Add option VerifySubSet to selectively verify the memory sub-systems
Reviewed-by: kevinw, jmasa

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/shared/gcTimer.hpp"
    27 #include "gc_implementation/shared/gcTrace.hpp"
    28 #include "gc_implementation/shared/spaceDecorator.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "memory/allocation.inline.hpp"
    31 #include "memory/blockOffsetTable.inline.hpp"
    32 #include "memory/cardTableRS.hpp"
    33 #include "memory/gcLocker.inline.hpp"
    34 #include "memory/genCollectedHeap.hpp"
    35 #include "memory/genMarkSweep.hpp"
    36 #include "memory/genOopClosures.hpp"
    37 #include "memory/genOopClosures.inline.hpp"
    38 #include "memory/generation.hpp"
    39 #include "memory/generation.inline.hpp"
    40 #include "memory/space.inline.hpp"
    41 #include "oops/oop.inline.hpp"
    42 #include "runtime/java.hpp"
    43 #include "utilities/copy.hpp"
    44 #include "utilities/events.hpp"
    46 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    48 Generation::Generation(ReservedSpace rs, size_t initial_size, int level) :
    49   _level(level),
    50   _ref_processor(NULL) {
    51   if (!_virtual_space.initialize(rs, initial_size)) {
    52     vm_exit_during_initialization("Could not reserve enough space for "
    53                     "object heap");
    54   }
    55   // Mangle all of the the initial generation.
    56   if (ZapUnusedHeapArea) {
    57     MemRegion mangle_region((HeapWord*)_virtual_space.low(),
    58       (HeapWord*)_virtual_space.high());
    59     SpaceMangler::mangle_region(mangle_region);
    60   }
    61   _reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
    62           (HeapWord*)_virtual_space.high_boundary());
    63 }
    65 GenerationSpec* Generation::spec() {
    66   GenCollectedHeap* gch = GenCollectedHeap::heap();
    67   assert(0 <= level() && level() < gch->_n_gens, "Bad gen level");
    68   return gch->_gen_specs[level()];
    69 }
    71 size_t Generation::max_capacity() const {
    72   return reserved().byte_size();
    73 }
    75 void Generation::print_heap_change(size_t prev_used) const {
    76   if (PrintGCDetails && Verbose) {
    77     gclog_or_tty->print(" "  SIZE_FORMAT
    78                         "->" SIZE_FORMAT
    79                         "("  SIZE_FORMAT ")",
    80                         prev_used, used(), capacity());
    81   } else {
    82     gclog_or_tty->print(" "  SIZE_FORMAT "K"
    83                         "->" SIZE_FORMAT "K"
    84                         "("  SIZE_FORMAT "K)",
    85                         prev_used / K, used() / K, capacity() / K);
    86   }
    87 }
    89 // By default we get a single threaded default reference processor;
    90 // generations needing multi-threaded refs processing or discovery override this method.
    91 void Generation::ref_processor_init() {
    92   assert(_ref_processor == NULL, "a reference processor already exists");
    93   assert(!_reserved.is_empty(), "empty generation?");
    94   _ref_processor = new ReferenceProcessor(_reserved);    // a vanilla reference processor
    95   if (_ref_processor == NULL) {
    96     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
    97   }
    98 }
   100 void Generation::print() const { print_on(tty); }
   102 void Generation::print_on(outputStream* st)  const {
   103   st->print(" %-20s", name());
   104   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
   105              capacity()/K, used()/K);
   106   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   107               _virtual_space.low_boundary(),
   108               _virtual_space.high(),
   109               _virtual_space.high_boundary());
   110 }
   112 void Generation::print_summary_info() { print_summary_info_on(tty); }
   114 void Generation::print_summary_info_on(outputStream* st) {
   115   StatRecord* sr = stat_record();
   116   double time = sr->accumulated_time.seconds();
   117   st->print_cr("[Accumulated GC generation %d time %3.7f secs, "
   118                "%d GC's, avg GC time %3.7f]",
   119                level(), time, sr->invocations,
   120                sr->invocations > 0 ? time / sr->invocations : 0.0);
   121 }
   123 // Utility iterator classes
   125 class GenerationIsInReservedClosure : public SpaceClosure {
   126  public:
   127   const void* _p;
   128   Space* sp;
   129   virtual void do_space(Space* s) {
   130     if (sp == NULL) {
   131       if (s->is_in_reserved(_p)) sp = s;
   132     }
   133   }
   134   GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
   135 };
   137 class GenerationIsInClosure : public SpaceClosure {
   138  public:
   139   const void* _p;
   140   Space* sp;
   141   virtual void do_space(Space* s) {
   142     if (sp == NULL) {
   143       if (s->is_in(_p)) sp = s;
   144     }
   145   }
   146   GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
   147 };
   149 bool Generation::is_in(const void* p) const {
   150   GenerationIsInClosure blk(p);
   151   ((Generation*)this)->space_iterate(&blk);
   152   return blk.sp != NULL;
   153 }
   155 DefNewGeneration* Generation::as_DefNewGeneration() {
   156   assert((kind() == Generation::DefNew) ||
   157          (kind() == Generation::ParNew) ||
   158          (kind() == Generation::ASParNew),
   159     "Wrong youngest generation type");
   160   return (DefNewGeneration*) this;
   161 }
   163 Generation* Generation::next_gen() const {
   164   GenCollectedHeap* gch = GenCollectedHeap::heap();
   165   int next = level() + 1;
   166   if (next < gch->_n_gens) {
   167     return gch->_gens[next];
   168   } else {
   169     return NULL;
   170   }
   171 }
   173 size_t Generation::max_contiguous_available() const {
   174   // The largest number of contiguous free words in this or any higher generation.
   175   size_t max = 0;
   176   for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) {
   177     size_t avail = gen->contiguous_available();
   178     if (avail > max) {
   179       max = avail;
   180     }
   181   }
   182   return max;
   183 }
   185 bool Generation::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
   186   size_t available = max_contiguous_available();
   187   bool   res = (available >= max_promotion_in_bytes);
   188   if (PrintGC && Verbose) {
   189     gclog_or_tty->print_cr(
   190       "Generation: promo attempt is%s safe: available("SIZE_FORMAT") %s max_promo("SIZE_FORMAT")",
   191       res? "":" not", available, res? ">=":"<",
   192       max_promotion_in_bytes);
   193   }
   194   return res;
   195 }
   197 // Ignores "ref" and calls allocate().
   198 oop Generation::promote(oop obj, size_t obj_size) {
   199   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
   201 #ifndef PRODUCT
   202   if (Universe::heap()->promotion_should_fail()) {
   203     return NULL;
   204   }
   205 #endif  // #ifndef PRODUCT
   207   HeapWord* result = allocate(obj_size, false);
   208   if (result != NULL) {
   209     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
   210     return oop(result);
   211   } else {
   212     GenCollectedHeap* gch = GenCollectedHeap::heap();
   213     return gch->handle_failed_promotion(this, obj, obj_size);
   214   }
   215 }
   217 oop Generation::par_promote(int thread_num,
   218                             oop obj, markOop m, size_t word_sz) {
   219   // Could do a bad general impl here that gets a lock.  But no.
   220   ShouldNotCallThis();
   221   return NULL;
   222 }
   224 void Generation::par_promote_alloc_undo(int thread_num,
   225                                         HeapWord* obj, size_t word_sz) {
   226   // Could do a bad general impl here that gets a lock.  But no.
   227   guarantee(false, "No good general implementation.");
   228 }
   230 Space* Generation::space_containing(const void* p) const {
   231   GenerationIsInReservedClosure blk(p);
   232   // Cast away const
   233   ((Generation*)this)->space_iterate(&blk);
   234   return blk.sp;
   235 }
   237 // Some of these are mediocre general implementations.  Should be
   238 // overridden to get better performance.
   240 class GenerationBlockStartClosure : public SpaceClosure {
   241  public:
   242   const void* _p;
   243   HeapWord* _start;
   244   virtual void do_space(Space* s) {
   245     if (_start == NULL && s->is_in_reserved(_p)) {
   246       _start = s->block_start(_p);
   247     }
   248   }
   249   GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
   250 };
   252 HeapWord* Generation::block_start(const void* p) const {
   253   GenerationBlockStartClosure blk(p);
   254   // Cast away const
   255   ((Generation*)this)->space_iterate(&blk);
   256   return blk._start;
   257 }
   259 class GenerationBlockSizeClosure : public SpaceClosure {
   260  public:
   261   const HeapWord* _p;
   262   size_t size;
   263   virtual void do_space(Space* s) {
   264     if (size == 0 && s->is_in_reserved(_p)) {
   265       size = s->block_size(_p);
   266     }
   267   }
   268   GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
   269 };
   271 size_t Generation::block_size(const HeapWord* p) const {
   272   GenerationBlockSizeClosure blk(p);
   273   // Cast away const
   274   ((Generation*)this)->space_iterate(&blk);
   275   assert(blk.size > 0, "seems reasonable");
   276   return blk.size;
   277 }
   279 class GenerationBlockIsObjClosure : public SpaceClosure {
   280  public:
   281   const HeapWord* _p;
   282   bool is_obj;
   283   virtual void do_space(Space* s) {
   284     if (!is_obj && s->is_in_reserved(_p)) {
   285       is_obj |= s->block_is_obj(_p);
   286     }
   287   }
   288   GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
   289 };
   291 bool Generation::block_is_obj(const HeapWord* p) const {
   292   GenerationBlockIsObjClosure blk(p);
   293   // Cast away const
   294   ((Generation*)this)->space_iterate(&blk);
   295   return blk.is_obj;
   296 }
   298 class GenerationOopIterateClosure : public SpaceClosure {
   299  public:
   300   ExtendedOopClosure* _cl;
   301   virtual void do_space(Space* s) {
   302     s->oop_iterate(_cl);
   303   }
   304   GenerationOopIterateClosure(ExtendedOopClosure* cl) :
   305     _cl(cl) {}
   306 };
   308 void Generation::oop_iterate(ExtendedOopClosure* cl) {
   309   GenerationOopIterateClosure blk(cl);
   310   space_iterate(&blk);
   311 }
   313 void Generation::younger_refs_in_space_iterate(Space* sp,
   314                                                OopsInGenClosure* cl) {
   315   GenRemSet* rs = SharedHeap::heap()->rem_set();
   316   rs->younger_refs_in_space_iterate(sp, cl);
   317 }
   319 class GenerationObjIterateClosure : public SpaceClosure {
   320  private:
   321   ObjectClosure* _cl;
   322  public:
   323   virtual void do_space(Space* s) {
   324     s->object_iterate(_cl);
   325   }
   326   GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
   327 };
   329 void Generation::object_iterate(ObjectClosure* cl) {
   330   GenerationObjIterateClosure blk(cl);
   331   space_iterate(&blk);
   332 }
   334 class GenerationSafeObjIterateClosure : public SpaceClosure {
   335  private:
   336   ObjectClosure* _cl;
   337  public:
   338   virtual void do_space(Space* s) {
   339     s->safe_object_iterate(_cl);
   340   }
   341   GenerationSafeObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
   342 };
   344 void Generation::safe_object_iterate(ObjectClosure* cl) {
   345   GenerationSafeObjIterateClosure blk(cl);
   346   space_iterate(&blk);
   347 }
   349 void Generation::prepare_for_compaction(CompactPoint* cp) {
   350   // Generic implementation, can be specialized
   351   CompactibleSpace* space = first_compaction_space();
   352   while (space != NULL) {
   353     space->prepare_for_compaction(cp);
   354     space = space->next_compaction_space();
   355   }
   356 }
   358 class AdjustPointersClosure: public SpaceClosure {
   359  public:
   360   void do_space(Space* sp) {
   361     sp->adjust_pointers();
   362   }
   363 };
   365 void Generation::adjust_pointers() {
   366   // Note that this is done over all spaces, not just the compactible
   367   // ones.
   368   AdjustPointersClosure blk;
   369   space_iterate(&blk, true);
   370 }
   372 void Generation::compact() {
   373   CompactibleSpace* sp = first_compaction_space();
   374   while (sp != NULL) {
   375     sp->compact();
   376     sp = sp->next_compaction_space();
   377   }
   378 }
   380 CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size,
   381                                int level,
   382                                GenRemSet* remset) :
   383   Generation(rs, initial_byte_size, level), _rs(remset),
   384   _shrink_factor(0), _min_heap_delta_bytes(), _capacity_at_prologue(),
   385   _used_at_prologue()
   386 {
   387   HeapWord* start = (HeapWord*)rs.base();
   388   size_t reserved_byte_size = rs.size();
   389   assert((uintptr_t(start) & 3) == 0, "bad alignment");
   390   assert((reserved_byte_size & 3) == 0, "bad alignment");
   391   MemRegion reserved_mr(start, heap_word_size(reserved_byte_size));
   392   _bts = new BlockOffsetSharedArray(reserved_mr,
   393                                     heap_word_size(initial_byte_size));
   394   MemRegion committed_mr(start, heap_word_size(initial_byte_size));
   395   _rs->resize_covered_region(committed_mr);
   396   if (_bts == NULL)
   397     vm_exit_during_initialization("Could not allocate a BlockOffsetArray");
   399   // Verify that the start and end of this generation is the start of a card.
   400   // If this wasn't true, a single card could span more than on generation,
   401   // which would cause problems when we commit/uncommit memory, and when we
   402   // clear and dirty cards.
   403   guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned");
   404   if (reserved_mr.end() != Universe::heap()->reserved_region().end()) {
   405     // Don't check at the very end of the heap as we'll assert that we're probing off
   406     // the end if we try.
   407     guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned");
   408   }
   409   _min_heap_delta_bytes = MinHeapDeltaBytes;
   410   _capacity_at_prologue = initial_byte_size;
   411   _used_at_prologue = 0;
   412 }
   414 bool CardGeneration::expand(size_t bytes, size_t expand_bytes) {
   415   assert_locked_or_safepoint(Heap_lock);
   416   if (bytes == 0) {
   417     return true;  // That's what grow_by(0) would return
   418   }
   419   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
   420   if (aligned_bytes == 0){
   421     // The alignment caused the number of bytes to wrap.  An expand_by(0) will
   422     // return true with the implication that an expansion was done when it
   423     // was not.  A call to expand implies a best effort to expand by "bytes"
   424     // but not a guarantee.  Align down to give a best effort.  This is likely
   425     // the most that the generation can expand since it has some capacity to
   426     // start with.
   427     aligned_bytes = ReservedSpace::page_align_size_down(bytes);
   428   }
   429   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
   430   bool success = false;
   431   if (aligned_expand_bytes > aligned_bytes) {
   432     success = grow_by(aligned_expand_bytes);
   433   }
   434   if (!success) {
   435     success = grow_by(aligned_bytes);
   436   }
   437   if (!success) {
   438     success = grow_to_reserved();
   439   }
   440   if (PrintGC && Verbose) {
   441     if (success && GC_locker::is_active_and_needs_gc()) {
   442       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
   443     }
   444   }
   446   return success;
   447 }
   450 // No young generation references, clear this generation's cards.
   451 void CardGeneration::clear_remembered_set() {
   452   _rs->clear(reserved());
   453 }
   456 // Objects in this generation may have moved, invalidate this
   457 // generation's cards.
   458 void CardGeneration::invalidate_remembered_set() {
   459   _rs->invalidate(used_region());
   460 }
   463 void CardGeneration::compute_new_size() {
   464   assert(_shrink_factor <= 100, "invalid shrink factor");
   465   size_t current_shrink_factor = _shrink_factor;
   466   _shrink_factor = 0;
   468   // We don't have floating point command-line arguments
   469   // Note:  argument processing ensures that MinHeapFreeRatio < 100.
   470   const double minimum_free_percentage = MinHeapFreeRatio / 100.0;
   471   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
   473   // Compute some numbers about the state of the heap.
   474   const size_t used_after_gc = used();
   475   const size_t capacity_after_gc = capacity();
   477   const double min_tmp = used_after_gc / maximum_used_percentage;
   478   size_t minimum_desired_capacity = (size_t)MIN2(min_tmp, double(max_uintx));
   479   // Don't shrink less than the initial generation size
   480   minimum_desired_capacity = MAX2(minimum_desired_capacity,
   481                                   spec()->init_size());
   482   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
   484   if (PrintGC && Verbose) {
   485     const size_t free_after_gc = free();
   486     const double free_percentage = ((double)free_after_gc) / capacity_after_gc;
   487     gclog_or_tty->print_cr("TenuredGeneration::compute_new_size: ");
   488     gclog_or_tty->print_cr("  "
   489                   "  minimum_free_percentage: %6.2f"
   490                   "  maximum_used_percentage: %6.2f",
   491                   minimum_free_percentage,
   492                   maximum_used_percentage);
   493     gclog_or_tty->print_cr("  "
   494                   "   free_after_gc   : %6.1fK"
   495                   "   used_after_gc   : %6.1fK"
   496                   "   capacity_after_gc   : %6.1fK",
   497                   free_after_gc / (double) K,
   498                   used_after_gc / (double) K,
   499                   capacity_after_gc / (double) K);
   500     gclog_or_tty->print_cr("  "
   501                   "   free_percentage: %6.2f",
   502                   free_percentage);
   503   }
   505   if (capacity_after_gc < minimum_desired_capacity) {
   506     // If we have less free space than we want then expand
   507     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
   508     // Don't expand unless it's significant
   509     if (expand_bytes >= _min_heap_delta_bytes) {
   510       expand(expand_bytes, 0); // safe if expansion fails
   511     }
   512     if (PrintGC && Verbose) {
   513       gclog_or_tty->print_cr("    expanding:"
   514                     "  minimum_desired_capacity: %6.1fK"
   515                     "  expand_bytes: %6.1fK"
   516                     "  _min_heap_delta_bytes: %6.1fK",
   517                     minimum_desired_capacity / (double) K,
   518                     expand_bytes / (double) K,
   519                     _min_heap_delta_bytes / (double) K);
   520     }
   521     return;
   522   }
   524   // No expansion, now see if we want to shrink
   525   size_t shrink_bytes = 0;
   526   // We would never want to shrink more than this
   527   size_t max_shrink_bytes = capacity_after_gc - minimum_desired_capacity;
   529   if (MaxHeapFreeRatio < 100) {
   530     const double maximum_free_percentage = MaxHeapFreeRatio / 100.0;
   531     const double minimum_used_percentage = 1.0 - maximum_free_percentage;
   532     const double max_tmp = used_after_gc / minimum_used_percentage;
   533     size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
   534     maximum_desired_capacity = MAX2(maximum_desired_capacity,
   535                                     spec()->init_size());
   536     if (PrintGC && Verbose) {
   537       gclog_or_tty->print_cr("  "
   538                              "  maximum_free_percentage: %6.2f"
   539                              "  minimum_used_percentage: %6.2f",
   540                              maximum_free_percentage,
   541                              minimum_used_percentage);
   542       gclog_or_tty->print_cr("  "
   543                              "  _capacity_at_prologue: %6.1fK"
   544                              "  minimum_desired_capacity: %6.1fK"
   545                              "  maximum_desired_capacity: %6.1fK",
   546                              _capacity_at_prologue / (double) K,
   547                              minimum_desired_capacity / (double) K,
   548                              maximum_desired_capacity / (double) K);
   549     }
   550     assert(minimum_desired_capacity <= maximum_desired_capacity,
   551            "sanity check");
   553     if (capacity_after_gc > maximum_desired_capacity) {
   554       // Capacity too large, compute shrinking size
   555       shrink_bytes = capacity_after_gc - maximum_desired_capacity;
   556       // We don't want shrink all the way back to initSize if people call
   557       // System.gc(), because some programs do that between "phases" and then
   558       // we'd just have to grow the heap up again for the next phase.  So we
   559       // damp the shrinking: 0% on the first call, 10% on the second call, 40%
   560       // on the third call, and 100% by the fourth call.  But if we recompute
   561       // size without shrinking, it goes back to 0%.
   562       shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
   563       assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
   564       if (current_shrink_factor == 0) {
   565         _shrink_factor = 10;
   566       } else {
   567         _shrink_factor = MIN2(current_shrink_factor * 4, (size_t) 100);
   568       }
   569       if (PrintGC && Verbose) {
   570         gclog_or_tty->print_cr("  "
   571                       "  shrinking:"
   572                       "  initSize: %.1fK"
   573                       "  maximum_desired_capacity: %.1fK",
   574                       spec()->init_size() / (double) K,
   575                       maximum_desired_capacity / (double) K);
   576         gclog_or_tty->print_cr("  "
   577                       "  shrink_bytes: %.1fK"
   578                       "  current_shrink_factor: %d"
   579                       "  new shrink factor: %d"
   580                       "  _min_heap_delta_bytes: %.1fK",
   581                       shrink_bytes / (double) K,
   582                       current_shrink_factor,
   583                       _shrink_factor,
   584                       _min_heap_delta_bytes / (double) K);
   585       }
   586     }
   587   }
   589   if (capacity_after_gc > _capacity_at_prologue) {
   590     // We might have expanded for promotions, in which case we might want to
   591     // take back that expansion if there's room after GC.  That keeps us from
   592     // stretching the heap with promotions when there's plenty of room.
   593     size_t expansion_for_promotion = capacity_after_gc - _capacity_at_prologue;
   594     expansion_for_promotion = MIN2(expansion_for_promotion, max_shrink_bytes);
   595     // We have two shrinking computations, take the largest
   596     shrink_bytes = MAX2(shrink_bytes, expansion_for_promotion);
   597     assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
   598     if (PrintGC && Verbose) {
   599       gclog_or_tty->print_cr("  "
   600                              "  aggressive shrinking:"
   601                              "  _capacity_at_prologue: %.1fK"
   602                              "  capacity_after_gc: %.1fK"
   603                              "  expansion_for_promotion: %.1fK"
   604                              "  shrink_bytes: %.1fK",
   605                              capacity_after_gc / (double) K,
   606                              _capacity_at_prologue / (double) K,
   607                              expansion_for_promotion / (double) K,
   608                              shrink_bytes / (double) K);
   609     }
   610   }
   611   // Don't shrink unless it's significant
   612   if (shrink_bytes >= _min_heap_delta_bytes) {
   613     shrink(shrink_bytes);
   614   }
   615 }
   617 // Currently nothing to do.
   618 void CardGeneration::prepare_for_verify() {}
   621 void OneContigSpaceCardGeneration::collect(bool   full,
   622                                            bool   clear_all_soft_refs,
   623                                            size_t size,
   624                                            bool   is_tlab) {
   625   GenCollectedHeap* gch = GenCollectedHeap::heap();
   627   SpecializationStats::clear();
   628   // Temporarily expand the span of our ref processor, so
   629   // refs discovery is over the entire heap, not just this generation
   630   ReferenceProcessorSpanMutator
   631     x(ref_processor(), gch->reserved_region());
   633   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
   634   gc_timer->register_gc_start();
   636   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
   637   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
   639   GenMarkSweep::invoke_at_safepoint(_level, ref_processor(), clear_all_soft_refs);
   641   gc_timer->register_gc_end();
   643   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
   645   SpecializationStats::print();
   646 }
   648 HeapWord*
   649 OneContigSpaceCardGeneration::expand_and_allocate(size_t word_size,
   650                                                   bool is_tlab,
   651                                                   bool parallel) {
   652   assert(!is_tlab, "OneContigSpaceCardGeneration does not support TLAB allocation");
   653   if (parallel) {
   654     MutexLocker x(ParGCRareEvent_lock);
   655     HeapWord* result = NULL;
   656     size_t byte_size = word_size * HeapWordSize;
   657     while (true) {
   658       expand(byte_size, _min_heap_delta_bytes);
   659       if (GCExpandToAllocateDelayMillis > 0) {
   660         os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
   661       }
   662       result = _the_space->par_allocate(word_size);
   663       if ( result != NULL) {
   664         return result;
   665       } else {
   666         // If there's not enough expansion space available, give up.
   667         if (_virtual_space.uncommitted_size() < byte_size) {
   668           return NULL;
   669         }
   670         // else try again
   671       }
   672     }
   673   } else {
   674     expand(word_size*HeapWordSize, _min_heap_delta_bytes);
   675     return _the_space->allocate(word_size);
   676   }
   677 }
   679 bool OneContigSpaceCardGeneration::expand(size_t bytes, size_t expand_bytes) {
   680   GCMutexLocker x(ExpandHeap_lock);
   681   return CardGeneration::expand(bytes, expand_bytes);
   682 }
   685 void OneContigSpaceCardGeneration::shrink(size_t bytes) {
   686   assert_locked_or_safepoint(ExpandHeap_lock);
   687   size_t size = ReservedSpace::page_align_size_down(bytes);
   688   if (size > 0) {
   689     shrink_by(size);
   690   }
   691 }
   694 size_t OneContigSpaceCardGeneration::capacity() const {
   695   return _the_space->capacity();
   696 }
   699 size_t OneContigSpaceCardGeneration::used() const {
   700   return _the_space->used();
   701 }
   704 size_t OneContigSpaceCardGeneration::free() const {
   705   return _the_space->free();
   706 }
   708 MemRegion OneContigSpaceCardGeneration::used_region() const {
   709   return the_space()->used_region();
   710 }
   712 size_t OneContigSpaceCardGeneration::unsafe_max_alloc_nogc() const {
   713   return _the_space->free();
   714 }
   716 size_t OneContigSpaceCardGeneration::contiguous_available() const {
   717   return _the_space->free() + _virtual_space.uncommitted_size();
   718 }
   720 bool OneContigSpaceCardGeneration::grow_by(size_t bytes) {
   721   assert_locked_or_safepoint(ExpandHeap_lock);
   722   bool result = _virtual_space.expand_by(bytes);
   723   if (result) {
   724     size_t new_word_size =
   725        heap_word_size(_virtual_space.committed_size());
   726     MemRegion mr(_the_space->bottom(), new_word_size);
   727     // Expand card table
   728     Universe::heap()->barrier_set()->resize_covered_region(mr);
   729     // Expand shared block offset array
   730     _bts->resize(new_word_size);
   732     // Fix for bug #4668531
   733     if (ZapUnusedHeapArea) {
   734       MemRegion mangle_region(_the_space->end(),
   735       (HeapWord*)_virtual_space.high());
   736       SpaceMangler::mangle_region(mangle_region);
   737     }
   739     // Expand space -- also expands space's BOT
   740     // (which uses (part of) shared array above)
   741     _the_space->set_end((HeapWord*)_virtual_space.high());
   743     // update the space and generation capacity counters
   744     update_counters();
   746     if (Verbose && PrintGC) {
   747       size_t new_mem_size = _virtual_space.committed_size();
   748       size_t old_mem_size = new_mem_size - bytes;
   749       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
   750                       SIZE_FORMAT "K to " SIZE_FORMAT "K",
   751                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
   752     }
   753   }
   754   return result;
   755 }
   758 bool OneContigSpaceCardGeneration::grow_to_reserved() {
   759   assert_locked_or_safepoint(ExpandHeap_lock);
   760   bool success = true;
   761   const size_t remaining_bytes = _virtual_space.uncommitted_size();
   762   if (remaining_bytes > 0) {
   763     success = grow_by(remaining_bytes);
   764     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
   765   }
   766   return success;
   767 }
   769 void OneContigSpaceCardGeneration::shrink_by(size_t bytes) {
   770   assert_locked_or_safepoint(ExpandHeap_lock);
   771   // Shrink committed space
   772   _virtual_space.shrink_by(bytes);
   773   // Shrink space; this also shrinks the space's BOT
   774   _the_space->set_end((HeapWord*) _virtual_space.high());
   775   size_t new_word_size = heap_word_size(_the_space->capacity());
   776   // Shrink the shared block offset array
   777   _bts->resize(new_word_size);
   778   MemRegion mr(_the_space->bottom(), new_word_size);
   779   // Shrink the card table
   780   Universe::heap()->barrier_set()->resize_covered_region(mr);
   782   if (Verbose && PrintGC) {
   783     size_t new_mem_size = _virtual_space.committed_size();
   784     size_t old_mem_size = new_mem_size + bytes;
   785     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
   786                   name(), old_mem_size/K, new_mem_size/K);
   787   }
   788 }
   790 // Currently nothing to do.
   791 void OneContigSpaceCardGeneration::prepare_for_verify() {}
   794 // Override for a card-table generation with one contiguous
   795 // space. NOTE: For reasons that are lost in the fog of history,
   796 // this code is used when you iterate over perm gen objects,
   797 // even when one uses CDS, where the perm gen has a couple of
   798 // other spaces; this is because CompactingPermGenGen derives
   799 // from OneContigSpaceCardGeneration. This should be cleaned up,
   800 // see CR 6897789..
   801 void OneContigSpaceCardGeneration::object_iterate(ObjectClosure* blk) {
   802   _the_space->object_iterate(blk);
   803 }
   805 void OneContigSpaceCardGeneration::space_iterate(SpaceClosure* blk,
   806                                                  bool usedOnly) {
   807   blk->do_space(_the_space);
   808 }
   810 void OneContigSpaceCardGeneration::younger_refs_iterate(OopsInGenClosure* blk) {
   811   blk->set_generation(this);
   812   younger_refs_in_space_iterate(_the_space, blk);
   813   blk->reset_generation();
   814 }
   816 void OneContigSpaceCardGeneration::save_marks() {
   817   _the_space->set_saved_mark();
   818 }
   821 void OneContigSpaceCardGeneration::reset_saved_marks() {
   822   _the_space->reset_saved_mark();
   823 }
   826 bool OneContigSpaceCardGeneration::no_allocs_since_save_marks() {
   827   return _the_space->saved_mark_at_top();
   828 }
   830 #define OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)      \
   831                                                                                 \
   832 void OneContigSpaceCardGeneration::                                             \
   833 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {                  \
   834   blk->set_generation(this);                                                    \
   835   _the_space->oop_since_save_marks_iterate##nv_suffix(blk);                     \
   836   blk->reset_generation();                                                      \
   837   save_marks();                                                                 \
   838 }
   840 ALL_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN)
   842 #undef OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN
   845 void OneContigSpaceCardGeneration::gc_epilogue(bool full) {
   846   _last_gc = WaterMark(the_space(), the_space()->top());
   848   // update the generation and space performance counters
   849   update_counters();
   850   if (ZapUnusedHeapArea) {
   851     the_space()->check_mangled_unused_area_complete();
   852   }
   853 }
   855 void OneContigSpaceCardGeneration::record_spaces_top() {
   856   assert(ZapUnusedHeapArea, "Not mangling unused space");
   857   the_space()->set_top_for_allocations();
   858 }
   860 void OneContigSpaceCardGeneration::verify() {
   861   the_space()->verify();
   862 }
   864 void OneContigSpaceCardGeneration::print_on(outputStream* st)  const {
   865   Generation::print_on(st);
   866   st->print("   the");
   867   the_space()->print_on(st);
   868 }

mercurial