src/share/vm/memory/binaryTreeDictionary.cpp

Tue, 16 Feb 2016 21:42:29 +0000

author
poonam
date
Tue, 16 Feb 2016 21:42:29 +0000
changeset 8308
6acf14e730dd
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
permissions
-rw-r--r--

8072725: Provide more granular levels for GC verification
Summary: Add option VerifySubSet to selectively verify the memory sub-systems
Reviewed-by: kevinw, jmasa

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "utilities/macros.hpp"
    27 #include "gc_implementation/shared/allocationStats.hpp"
    28 #include "memory/binaryTreeDictionary.hpp"
    29 #include "memory/freeList.hpp"
    30 #include "memory/freeBlockDictionary.hpp"
    31 #include "memory/metachunk.hpp"
    32 #include "runtime/globals.hpp"
    33 #include "utilities/ostream.hpp"
    34 #include "utilities/macros.hpp"
    35 #include "gc_implementation/shared/spaceDecorator.hpp"
    36 #if INCLUDE_ALL_GCS
    37 #include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
    38 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
    39 #include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
    40 #endif // INCLUDE_ALL_GCS
    42 ////////////////////////////////////////////////////////////////////////////////
    43 // A binary tree based search structure for free blocks.
    44 // This is currently used in the Concurrent Mark&Sweep implementation.
    45 ////////////////////////////////////////////////////////////////////////////////
    47 template <class Chunk_t, class FreeList_t>
    48 size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t,  FreeList_t>)/HeapWordSize;
    50 template <class Chunk_t, class FreeList_t>
    51 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
    52   // Do some assertion checking here.
    53   return (TreeChunk<Chunk_t, FreeList_t>*) fc;
    54 }
    56 template <class Chunk_t, class FreeList_t>
    57 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
    58   TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
    59   if (prev() != NULL) { // interior list node shouldn'r have tree fields
    60     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
    61               embedded_list()->right()  == NULL, "should be clear");
    62   }
    63   if (nextTC != NULL) {
    64     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    65     guarantee(nextTC->size() == size(), "wrong size");
    66     nextTC->verify_tree_chunk_list();
    67   }
    68 }
    70 template <class Chunk_t, class FreeList_t>
    71 TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
    72   _left(NULL), _right(NULL) {}
    74 template <class Chunk_t, class FreeList_t>
    75 TreeList<Chunk_t, FreeList_t>*
    76 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
    77   // This first free chunk in the list will be the tree list.
    78   assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
    79     "Chunk is too small for a TreeChunk");
    80   TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
    81   tl->initialize();
    82   tc->set_list(tl);
    83   tl->set_size(tc->size());
    84   tl->link_head(tc);
    85   tl->link_tail(tc);
    86   tl->set_count(1);
    87   assert(tl->parent() == NULL, "Should be clear");
    88   return tl;
    89 }
    91 template <class Chunk_t, class FreeList_t>
    92 TreeList<Chunk_t, FreeList_t>*
    93 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
    94   TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
    95   assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
    96     "Chunk is too small for a TreeChunk");
    97   // The space will have been mangled initially but
    98   // is not remangled when a Chunk_t is returned to the free list
    99   // (since it is used to maintain the chunk on the free list).
   100   tc->assert_is_mangled();
   101   tc->set_size(size);
   102   tc->link_prev(NULL);
   103   tc->link_next(NULL);
   104   TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
   105   return tl;
   106 }
   109 #if INCLUDE_ALL_GCS
   110 // Specialize for AdaptiveFreeList which tries to avoid
   111 // splitting a chunk of a size that is under populated in favor of
   112 // an over populated size.  The general get_better_list() just returns
   113 // the current list.
   114 template <>
   115 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >*
   116 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >::get_better_list(
   117   BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* dictionary) {
   118   // A candidate chunk has been found.  If it is already under
   119   // populated, get a chunk associated with the hint for this
   120   // chunk.
   122   TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* curTL = this;
   123   if (surplus() <= 0) {
   124     /* Use the hint to find a size with a surplus, and reset the hint. */
   125     TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* hintTL = this;
   126     while (hintTL->hint() != 0) {
   127       assert(hintTL->hint() > hintTL->size(),
   128         "hint points in the wrong direction");
   129       hintTL = dictionary->find_list(hintTL->hint());
   130       assert(curTL != hintTL, "Infinite loop");
   131       if (hintTL == NULL ||
   132           hintTL == curTL /* Should not happen but protect against it */ ) {
   133         // No useful hint.  Set the hint to NULL and go on.
   134         curTL->set_hint(0);
   135         break;
   136       }
   137       assert(hintTL->size() > curTL->size(), "hint is inconsistent");
   138       if (hintTL->surplus() > 0) {
   139         // The hint led to a list that has a surplus.  Use it.
   140         // Set the hint for the candidate to an overpopulated
   141         // size.
   142         curTL->set_hint(hintTL->size());
   143         // Change the candidate.
   144         curTL = hintTL;
   145         break;
   146       }
   147     }
   148   }
   149   return curTL;
   150 }
   151 #endif // INCLUDE_ALL_GCS
   153 template <class Chunk_t, class FreeList_t>
   154 TreeList<Chunk_t, FreeList_t>*
   155 TreeList<Chunk_t, FreeList_t>::get_better_list(
   156   BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
   157   return this;
   158 }
   160 template <class Chunk_t, class FreeList_t>
   161 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
   163   TreeList<Chunk_t, FreeList_t>* retTL = this;
   164   Chunk_t* list = head();
   165   assert(!list || list != list->next(), "Chunk on list twice");
   166   assert(tc != NULL, "Chunk being removed is NULL");
   167   assert(parent() == NULL || this == parent()->left() ||
   168     this == parent()->right(), "list is inconsistent");
   169   assert(tc->is_free(), "Header is not marked correctly");
   170   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   171   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   173   Chunk_t* prevFC = tc->prev();
   174   TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
   175   assert(list != NULL, "should have at least the target chunk");
   177   // Is this the first item on the list?
   178   if (tc == list) {
   179     // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
   180     // first chunk in the list unless it is the last chunk in the list
   181     // because the first chunk is also acting as the tree node.
   182     // When coalescing happens, however, the first chunk in the a tree
   183     // list can be the start of a free range.  Free ranges are removed
   184     // from the free lists so that they are not available to be
   185     // allocated when the sweeper yields (giving up the free list lock)
   186     // to allow mutator activity.  If this chunk is the first in the
   187     // list and is not the last in the list, do the work to copy the
   188     // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
   189     // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
   190     if (nextTC == NULL) {
   191       assert(prevFC == NULL, "Not last chunk in the list");
   192       set_tail(NULL);
   193       set_head(NULL);
   194     } else {
   195       // copy embedded list.
   196       nextTC->set_embedded_list(tc->embedded_list());
   197       retTL = nextTC->embedded_list();
   198       // Fix the pointer to the list in each chunk in the list.
   199       // This can be slow for a long list.  Consider having
   200       // an option that does not allow the first chunk on the
   201       // list to be coalesced.
   202       for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
   203           curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
   204         curTC->set_list(retTL);
   205       }
   206       // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
   207       if (retTL->parent() != NULL) {
   208         if (this == retTL->parent()->left()) {
   209           retTL->parent()->set_left(retTL);
   210         } else {
   211           assert(this == retTL->parent()->right(), "Parent is incorrect");
   212           retTL->parent()->set_right(retTL);
   213         }
   214       }
   215       // Fix the children's parent pointers to point to the
   216       // new list.
   217       assert(right() == retTL->right(), "Should have been copied");
   218       if (retTL->right() != NULL) {
   219         retTL->right()->set_parent(retTL);
   220       }
   221       assert(left() == retTL->left(), "Should have been copied");
   222       if (retTL->left() != NULL) {
   223         retTL->left()->set_parent(retTL);
   224       }
   225       retTL->link_head(nextTC);
   226       assert(nextTC->is_free(), "Should be a free chunk");
   227     }
   228   } else {
   229     if (nextTC == NULL) {
   230       // Removing chunk at tail of list
   231       this->link_tail(prevFC);
   232     }
   233     // Chunk is interior to the list
   234     prevFC->link_after(nextTC);
   235   }
   237   // Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
   238   // tree node may have changed. Don't use "this"
   239   // TreeList<Chunk_t, FreeList_t>*.
   240   // chunk should still be a free chunk (bit set in _prev)
   241   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
   242     "Wrong sized chunk in list");
   243   debug_only(
   244     tc->link_prev(NULL);
   245     tc->link_next(NULL);
   246     tc->set_list(NULL);
   247     bool prev_found = false;
   248     bool next_found = false;
   249     for (Chunk_t* curFC = retTL->head();
   250          curFC != NULL; curFC = curFC->next()) {
   251       assert(curFC != tc, "Chunk is still in list");
   252       if (curFC == prevFC) {
   253         prev_found = true;
   254       }
   255       if (curFC == nextTC) {
   256         next_found = true;
   257       }
   258     }
   259     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
   260     assert(nextTC == NULL || next_found, "Chunk was lost from list");
   261     assert(retTL->parent() == NULL ||
   262            retTL == retTL->parent()->left() ||
   263            retTL == retTL->parent()->right(),
   264            "list is inconsistent");
   265   )
   266   retTL->decrement_count();
   268   assert(tc->is_free(), "Should still be a free chunk");
   269   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
   270     "list invariant");
   271   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
   272     "list invariant");
   273   return retTL;
   274 }
   276 template <class Chunk_t, class FreeList_t>
   277 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   278   assert(chunk != NULL, "returning NULL chunk");
   279   assert(chunk->list() == this, "list should be set for chunk");
   280   assert(tail() != NULL, "The tree list is embedded in the first chunk");
   281   // which means that the list can never be empty.
   282   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
   283   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   284   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   286   Chunk_t* fc = tail();
   287   fc->link_after(chunk);
   288   this->link_tail(chunk);
   290   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
   291   FreeList_t::increment_count();
   292   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   293   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   294   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   295 }
   297 // Add this chunk at the head of the list.  "At the head of the list"
   298 // is defined to be after the chunk pointer to by head().  This is
   299 // because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
   300 // list.  See the definition of TreeChunk<Chunk_t, FreeList_t>.
   301 template <class Chunk_t, class FreeList_t>
   302 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
   303   assert(chunk->list() == this, "list should be set for chunk");
   304   assert(head() != NULL, "The tree list is embedded in the first chunk");
   305   assert(chunk != NULL, "returning NULL chunk");
   306   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
   307   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   308   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   310   Chunk_t* fc = head()->next();
   311   if (fc != NULL) {
   312     chunk->link_after(fc);
   313   } else {
   314     assert(tail() == NULL, "List is inconsistent");
   315     this->link_tail(chunk);
   316   }
   317   head()->link_after(chunk);
   318   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
   319   FreeList_t::increment_count();
   320   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
   321   assert(head() == NULL || head()->prev() == NULL, "list invariant");
   322   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
   323 }
   325 template <class Chunk_t, class FreeList_t>
   326 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
   327   assert((ZapUnusedHeapArea &&
   328           SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
   329           SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
   330           SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
   331           (size() == 0 && prev() == NULL && next() == NULL),
   332     "Space should be clear or mangled");
   333 }
   335 template <class Chunk_t, class FreeList_t>
   336 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
   337   assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
   338     "Wrong type of chunk?");
   339   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
   340 }
   342 template <class Chunk_t, class FreeList_t>
   343 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
   344   assert(head() != NULL, "The head of the list cannot be NULL");
   345   Chunk_t* fc = head()->next();
   346   TreeChunk<Chunk_t, FreeList_t>* retTC;
   347   if (fc == NULL) {
   348     retTC = head_as_TreeChunk();
   349   } else {
   350     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   351   }
   352   assert(retTC->list() == this, "Wrong type of chunk.");
   353   return retTC;
   354 }
   356 // Returns the block with the largest heap address amongst
   357 // those in the list for this size; potentially slow and expensive,
   358 // use with caution!
   359 template <class Chunk_t, class FreeList_t>
   360 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
   361   assert(head() != NULL, "The head of the list cannot be NULL");
   362   Chunk_t* fc = head()->next();
   363   TreeChunk<Chunk_t, FreeList_t>* retTC;
   364   if (fc == NULL) {
   365     retTC = head_as_TreeChunk();
   366   } else {
   367     // walk down the list and return the one with the highest
   368     // heap address among chunks of this size.
   369     Chunk_t* last = fc;
   370     while (fc->next() != NULL) {
   371       if ((HeapWord*)last < (HeapWord*)fc) {
   372         last = fc;
   373       }
   374       fc = fc->next();
   375     }
   376     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
   377   }
   378   assert(retTC->list() == this, "Wrong type of chunk.");
   379   return retTC;
   380 }
   382 template <class Chunk_t, class FreeList_t>
   383 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
   384   assert((mr.byte_size() > min_size()), "minimum chunk size");
   386   reset(mr);
   387   assert(root()->left() == NULL, "reset check failed");
   388   assert(root()->right() == NULL, "reset check failed");
   389   assert(root()->head()->next() == NULL, "reset check failed");
   390   assert(root()->head()->prev() == NULL, "reset check failed");
   391   assert(total_size() == root()->size(), "reset check failed");
   392   assert(total_free_blocks() == 1, "reset check failed");
   393 }
   395 template <class Chunk_t, class FreeList_t>
   396 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
   397   _total_size = _total_size + inc;
   398 }
   400 template <class Chunk_t, class FreeList_t>
   401 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
   402   _total_size = _total_size - dec;
   403 }
   405 template <class Chunk_t, class FreeList_t>
   406 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
   407   assert((mr.byte_size() > min_size()), "minimum chunk size");
   408   set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
   409   set_total_size(mr.word_size());
   410   set_total_free_blocks(1);
   411 }
   413 template <class Chunk_t, class FreeList_t>
   414 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
   415   MemRegion mr(addr, heap_word_size(byte_size));
   416   reset(mr);
   417 }
   419 template <class Chunk_t, class FreeList_t>
   420 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
   421   set_root(NULL);
   422   set_total_size(0);
   423   set_total_free_blocks(0);
   424 }
   426 // Get a free block of size at least size from tree, or NULL.
   427 template <class Chunk_t, class FreeList_t>
   428 TreeChunk<Chunk_t, FreeList_t>*
   429 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
   430                               size_t size,
   431                               enum FreeBlockDictionary<Chunk_t>::Dither dither)
   432 {
   433   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
   434   TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
   436   assert((size >= min_size()), "minimum chunk size");
   437   if (FLSVerifyDictionary) {
   438     verify_tree();
   439   }
   440   // starting at the root, work downwards trying to find match.
   441   // Remember the last node of size too great or too small.
   442   for (prevTL = curTL = root(); curTL != NULL;) {
   443     if (curTL->size() == size) {        // exact match
   444       break;
   445     }
   446     prevTL = curTL;
   447     if (curTL->size() < size) {        // proceed to right sub-tree
   448       curTL = curTL->right();
   449     } else {                           // proceed to left sub-tree
   450       assert(curTL->size() > size, "size inconsistency");
   451       curTL = curTL->left();
   452     }
   453   }
   454   if (curTL == NULL) { // couldn't find exact match
   456     if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
   458     // try and find the next larger size by walking back up the search path
   459     for (curTL = prevTL; curTL != NULL;) {
   460       if (curTL->size() >= size) break;
   461       else curTL = curTL->parent();
   462     }
   463     assert(curTL == NULL || curTL->count() > 0,
   464       "An empty list should not be in the tree");
   465   }
   466   if (curTL != NULL) {
   467     assert(curTL->size() >= size, "size inconsistency");
   469     curTL = curTL->get_better_list(this);
   471     retTC = curTL->first_available();
   472     assert((retTC != NULL) && (curTL->count() > 0),
   473       "A list in the binary tree should not be NULL");
   474     assert(retTC->size() >= size,
   475       "A chunk of the wrong size was found");
   476     remove_chunk_from_tree(retTC);
   477     assert(retTC->is_free(), "Header is not marked correctly");
   478   }
   480   if (FLSVerifyDictionary) {
   481     verify();
   482   }
   483   return retTC;
   484 }
   486 template <class Chunk_t, class FreeList_t>
   487 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
   488   TreeList<Chunk_t, FreeList_t>* curTL;
   489   for (curTL = root(); curTL != NULL;) {
   490     if (curTL->size() == size) {        // exact match
   491       break;
   492     }
   494     if (curTL->size() < size) {        // proceed to right sub-tree
   495       curTL = curTL->right();
   496     } else {                           // proceed to left sub-tree
   497       assert(curTL->size() > size, "size inconsistency");
   498       curTL = curTL->left();
   499     }
   500   }
   501   return curTL;
   502 }
   505 template <class Chunk_t, class FreeList_t>
   506 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
   507   size_t size = tc->size();
   508   TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
   509   if (tl == NULL) {
   510     return false;
   511   } else {
   512     return tl->verify_chunk_in_free_list(tc);
   513   }
   514 }
   516 template <class Chunk_t, class FreeList_t>
   517 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
   518   TreeList<Chunk_t, FreeList_t> *curTL = root();
   519   if (curTL != NULL) {
   520     while(curTL->right() != NULL) curTL = curTL->right();
   521     return curTL->largest_address();
   522   } else {
   523     return NULL;
   524   }
   525 }
   527 // Remove the current chunk from the tree.  If it is not the last
   528 // chunk in a list on a tree node, just unlink it.
   529 // If it is the last chunk in the list (the next link is NULL),
   530 // remove the node and repair the tree.
   531 template <class Chunk_t, class FreeList_t>
   532 TreeChunk<Chunk_t, FreeList_t>*
   533 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
   534   assert(tc != NULL, "Should not call with a NULL chunk");
   535   assert(tc->is_free(), "Header is not marked correctly");
   537   TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
   538   TreeChunk<Chunk_t, FreeList_t>* retTC;
   539   TreeList<Chunk_t, FreeList_t>* tl = tc->list();
   540   debug_only(
   541     bool removing_only_chunk = false;
   542     if (tl == _root) {
   543       if ((_root->left() == NULL) && (_root->right() == NULL)) {
   544         if (_root->count() == 1) {
   545           assert(_root->head() == tc, "Should only be this one chunk");
   546           removing_only_chunk = true;
   547         }
   548       }
   549     }
   550   )
   551   assert(tl != NULL, "List should be set");
   552   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
   553          tl == tl->parent()->right(), "list is inconsistent");
   555   bool complicated_splice = false;
   557   retTC = tc;
   558   // Removing this chunk can have the side effect of changing the node
   559   // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
   560   TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
   561   assert(tc->is_free(), "Chunk should still be free");
   562   assert(replacementTL->parent() == NULL ||
   563          replacementTL == replacementTL->parent()->left() ||
   564          replacementTL == replacementTL->parent()->right(),
   565          "list is inconsistent");
   566   if (tl == root()) {
   567     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
   568     set_root(replacementTL);
   569   }
   570 #ifdef ASSERT
   571     if (tl != replacementTL) {
   572       assert(replacementTL->head() != NULL,
   573         "If the tree list was replaced, it should not be a NULL list");
   574       TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
   575       TreeList<Chunk_t, FreeList_t>* rtl =
   576         TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
   577       assert(rhl == replacementTL, "Broken head");
   578       assert(rtl == replacementTL, "Broken tail");
   579       assert(replacementTL->size() == tc->size(),  "Broken size");
   580     }
   581 #endif
   583   // Does the tree need to be repaired?
   584   if (replacementTL->count() == 0) {
   585     assert(replacementTL->head() == NULL &&
   586            replacementTL->tail() == NULL, "list count is incorrect");
   587     // Find the replacement node for the (soon to be empty) node being removed.
   588     // if we have a single (or no) child, splice child in our stead
   589     if (replacementTL->left() == NULL) {
   590       // left is NULL so pick right.  right may also be NULL.
   591       newTL = replacementTL->right();
   592       debug_only(replacementTL->clear_right();)
   593     } else if (replacementTL->right() == NULL) {
   594       // right is NULL
   595       newTL = replacementTL->left();
   596       debug_only(replacementTL->clear_left();)
   597     } else {  // we have both children, so, by patriarchal convention,
   598               // my replacement is least node in right sub-tree
   599       complicated_splice = true;
   600       newTL = remove_tree_minimum(replacementTL->right());
   601       assert(newTL != NULL && newTL->left() == NULL &&
   602              newTL->right() == NULL, "sub-tree minimum exists");
   603     }
   604     // newTL is the replacement for the (soon to be empty) node.
   605     // newTL may be NULL.
   606     // should verify; we just cleanly excised our replacement
   607     if (FLSVerifyDictionary) {
   608       verify_tree();
   609     }
   610     // first make newTL my parent's child
   611     if ((parentTL = replacementTL->parent()) == NULL) {
   612       // newTL should be root
   613       assert(tl == root(), "Incorrectly replacing root");
   614       set_root(newTL);
   615       if (newTL != NULL) {
   616         newTL->clear_parent();
   617       }
   618     } else if (parentTL->right() == replacementTL) {
   619       // replacementTL is a right child
   620       parentTL->set_right(newTL);
   621     } else {                                // replacementTL is a left child
   622       assert(parentTL->left() == replacementTL, "should be left child");
   623       parentTL->set_left(newTL);
   624     }
   625     debug_only(replacementTL->clear_parent();)
   626     if (complicated_splice) {  // we need newTL to get replacementTL's
   627                               // two children
   628       assert(newTL != NULL &&
   629              newTL->left() == NULL && newTL->right() == NULL,
   630             "newTL should not have encumbrances from the past");
   631       // we'd like to assert as below:
   632       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
   633       //       "else !complicated_splice");
   634       // ... however, the above assertion is too strong because we aren't
   635       // guaranteed that replacementTL->right() is still NULL.
   636       // Recall that we removed
   637       // the right sub-tree minimum from replacementTL.
   638       // That may well have been its right
   639       // child! So we'll just assert half of the above:
   640       assert(replacementTL->left() != NULL, "else !complicated_splice");
   641       newTL->set_left(replacementTL->left());
   642       newTL->set_right(replacementTL->right());
   643       debug_only(
   644         replacementTL->clear_right();
   645         replacementTL->clear_left();
   646       )
   647     }
   648     assert(replacementTL->right() == NULL &&
   649            replacementTL->left() == NULL &&
   650            replacementTL->parent() == NULL,
   651         "delete without encumbrances");
   652   }
   654   assert(total_size() >= retTC->size(), "Incorrect total size");
   655   dec_total_size(retTC->size());     // size book-keeping
   656   assert(total_free_blocks() > 0, "Incorrect total count");
   657   set_total_free_blocks(total_free_blocks() - 1);
   659   assert(retTC != NULL, "null chunk?");
   660   assert(retTC->prev() == NULL && retTC->next() == NULL,
   661          "should return without encumbrances");
   662   if (FLSVerifyDictionary) {
   663     verify_tree();
   664   }
   665   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
   666   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
   667 }
   669 // Remove the leftmost node (lm) in the tree and return it.
   670 // If lm has a right child, link it to the left node of
   671 // the parent of lm.
   672 template <class Chunk_t, class FreeList_t>
   673 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
   674   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
   675   // locate the subtree minimum by walking down left branches
   676   TreeList<Chunk_t, FreeList_t>* curTL = tl;
   677   for (; curTL->left() != NULL; curTL = curTL->left());
   678   // obviously curTL now has at most one child, a right child
   679   if (curTL != root()) {  // Should this test just be removed?
   680     TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
   681     if (parentTL->left() == curTL) { // curTL is a left child
   682       parentTL->set_left(curTL->right());
   683     } else {
   684       // If the list tl has no left child, then curTL may be
   685       // the right child of parentTL.
   686       assert(parentTL->right() == curTL, "should be a right child");
   687       parentTL->set_right(curTL->right());
   688     }
   689   } else {
   690     // The only use of this method would not pass the root of the
   691     // tree (as indicated by the assertion above that the tree list
   692     // has a parent) but the specification does not explicitly exclude the
   693     // passing of the root so accomodate it.
   694     set_root(NULL);
   695   }
   696   debug_only(
   697     curTL->clear_parent();  // Test if this needs to be cleared
   698     curTL->clear_right();    // recall, above, left child is already null
   699   )
   700   // we just excised a (non-root) node, we should still verify all tree invariants
   701   if (FLSVerifyDictionary) {
   702     verify_tree();
   703   }
   704   return curTL;
   705 }
   707 template <class Chunk_t, class FreeList_t>
   708 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
   709   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
   710   size_t size = fc->size();
   712   assert((size >= min_size()),
   713     err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
   714       size, min_size()));
   715   if (FLSVerifyDictionary) {
   716     verify_tree();
   717   }
   719   fc->clear_next();
   720   fc->link_prev(NULL);
   722   // work down from the _root, looking for insertion point
   723   for (prevTL = curTL = root(); curTL != NULL;) {
   724     if (curTL->size() == size)  // exact match
   725       break;
   726     prevTL = curTL;
   727     if (curTL->size() > size) { // follow left branch
   728       curTL = curTL->left();
   729     } else {                    // follow right branch
   730       assert(curTL->size() < size, "size inconsistency");
   731       curTL = curTL->right();
   732     }
   733   }
   734   TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
   735   // This chunk is being returned to the binary tree.  Its embedded
   736   // TreeList<Chunk_t, FreeList_t> should be unused at this point.
   737   tc->initialize();
   738   if (curTL != NULL) {          // exact match
   739     tc->set_list(curTL);
   740     curTL->return_chunk_at_tail(tc);
   741   } else {                     // need a new node in tree
   742     tc->clear_next();
   743     tc->link_prev(NULL);
   744     TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
   745     assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
   746       "List was not initialized correctly");
   747     if (prevTL == NULL) {      // we are the only tree node
   748       assert(root() == NULL, "control point invariant");
   749       set_root(newTL);
   750     } else {                   // insert under prevTL ...
   751       if (prevTL->size() < size) {   // am right child
   752         assert(prevTL->right() == NULL, "control point invariant");
   753         prevTL->set_right(newTL);
   754       } else {                       // am left child
   755         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
   756         prevTL->set_left(newTL);
   757       }
   758     }
   759   }
   760   assert(tc->list() != NULL, "Tree list should be set");
   762   inc_total_size(size);
   763   // Method 'total_size_in_tree' walks through the every block in the
   764   // tree, so it can cause significant performance loss if there are
   765   // many blocks in the tree
   766   assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
   767   set_total_free_blocks(total_free_blocks() + 1);
   768   if (FLSVerifyDictionary) {
   769     verify_tree();
   770   }
   771 }
   773 template <class Chunk_t, class FreeList_t>
   774 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
   775   FreeBlockDictionary<Chunk_t>::verify_par_locked();
   776   TreeList<Chunk_t, FreeList_t>* tc = root();
   777   if (tc == NULL) return 0;
   778   for (; tc->right() != NULL; tc = tc->right());
   779   return tc->size();
   780 }
   782 template <class Chunk_t, class FreeList_t>
   783 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
   784   size_t res;
   785   res = tl->count();
   786 #ifdef ASSERT
   787   size_t cnt;
   788   Chunk_t* tc = tl->head();
   789   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
   790   assert(res == cnt, "The count is not being maintained correctly");
   791 #endif
   792   return res;
   793 }
   795 template <class Chunk_t, class FreeList_t>
   796 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   797   if (tl == NULL)
   798     return 0;
   799   return (tl->size() * total_list_length(tl)) +
   800          total_size_in_tree(tl->left())    +
   801          total_size_in_tree(tl->right());
   802 }
   804 template <class Chunk_t, class FreeList_t>
   805 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
   806   if (tl == NULL) {
   807     return 0.0;
   808   }
   809   double size = (double)(tl->size());
   810   double curr = size * size * total_list_length(tl);
   811   curr += sum_of_squared_block_sizes(tl->left());
   812   curr += sum_of_squared_block_sizes(tl->right());
   813   return curr;
   814 }
   816 template <class Chunk_t, class FreeList_t>
   817 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   818   if (tl == NULL)
   819     return 0;
   820   return total_list_length(tl) +
   821          total_free_blocks_in_tree(tl->left()) +
   822          total_free_blocks_in_tree(tl->right());
   823 }
   825 template <class Chunk_t, class FreeList_t>
   826 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
   827   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
   828          "_total_free_blocks inconsistency");
   829   return total_free_blocks();
   830 }
   832 template <class Chunk_t, class FreeList_t>
   833 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   834   if (tl == NULL)
   835     return 0;
   836   return 1 + MAX2(tree_height_helper(tl->left()),
   837                   tree_height_helper(tl->right()));
   838 }
   840 template <class Chunk_t, class FreeList_t>
   841 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
   842   return tree_height_helper(root());
   843 }
   845 template <class Chunk_t, class FreeList_t>
   846 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
   847   if (tl == NULL) {
   848     return 0;
   849   }
   850   return 1 + total_nodes_helper(tl->left()) +
   851     total_nodes_helper(tl->right());
   852 }
   854 template <class Chunk_t, class FreeList_t>
   855 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
   856   return total_nodes_helper(root());
   857 }
   859 template <class Chunk_t, class FreeList_t>
   860 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
   862 #if INCLUDE_ALL_GCS
   863 template <>
   864 void AFLBinaryTreeDictionary::dict_census_update(size_t size, bool split, bool birth) {
   865   TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* nd = find_list(size);
   866   if (nd) {
   867     if (split) {
   868       if (birth) {
   869         nd->increment_split_births();
   870         nd->increment_surplus();
   871       }  else {
   872         nd->increment_split_deaths();
   873         nd->decrement_surplus();
   874       }
   875     } else {
   876       if (birth) {
   877         nd->increment_coal_births();
   878         nd->increment_surplus();
   879       } else {
   880         nd->increment_coal_deaths();
   881         nd->decrement_surplus();
   882       }
   883     }
   884   }
   885   // A list for this size may not be found (nd == 0) if
   886   //   This is a death where the appropriate list is now
   887   //     empty and has been removed from the list.
   888   //   This is a birth associated with a LinAB.  The chunk
   889   //     for the LinAB is not in the dictionary.
   890 }
   891 #endif // INCLUDE_ALL_GCS
   893 template <class Chunk_t, class FreeList_t>
   894 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
   895   // For the general type of freelists, encourage coalescing by
   896   // returning true.
   897   return true;
   898 }
   900 #if INCLUDE_ALL_GCS
   901 template <>
   902 bool AFLBinaryTreeDictionary::coal_dict_over_populated(size_t size) {
   903   if (FLSAlwaysCoalesceLarge) return true;
   905   TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* list_of_size = find_list(size);
   906   // None of requested size implies overpopulated.
   907   return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
   908          list_of_size->count() > list_of_size->coal_desired();
   909 }
   910 #endif // INCLUDE_ALL_GCS
   912 // Closures for walking the binary tree.
   913 //   do_list() walks the free list in a node applying the closure
   914 //     to each free chunk in the list
   915 //   do_tree() walks the nodes in the binary tree applying do_list()
   916 //     to each list at each node.
   918 template <class Chunk_t, class FreeList_t>
   919 class TreeCensusClosure : public StackObj {
   920  protected:
   921   virtual void do_list(FreeList_t* fl) = 0;
   922  public:
   923   virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
   924 };
   926 template <class Chunk_t, class FreeList_t>
   927 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
   928  public:
   929   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
   930     if (tl != NULL) {
   931       do_tree(tl->left());
   932       this->do_list(tl);
   933       do_tree(tl->right());
   934     }
   935   }
   936 };
   938 template <class Chunk_t, class FreeList_t>
   939 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
   940  public:
   941   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
   942     if (tl != NULL) {
   943       do_tree(tl->right());
   944       this->do_list(tl);
   945       do_tree(tl->left());
   946     }
   947   }
   948 };
   950 // For each list in the tree, calculate the desired, desired
   951 // coalesce, count before sweep, and surplus before sweep.
   952 template <class Chunk_t, class FreeList_t>
   953 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
   954   double _percentage;
   955   float _inter_sweep_current;
   956   float _inter_sweep_estimate;
   957   float _intra_sweep_estimate;
   959  public:
   960   BeginSweepClosure(double p, float inter_sweep_current,
   961                               float inter_sweep_estimate,
   962                               float intra_sweep_estimate) :
   963    _percentage(p),
   964    _inter_sweep_current(inter_sweep_current),
   965    _inter_sweep_estimate(inter_sweep_estimate),
   966    _intra_sweep_estimate(intra_sweep_estimate) { }
   968   void do_list(FreeList<Chunk_t>* fl) {}
   970 #if INCLUDE_ALL_GCS
   971   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
   972     double coalSurplusPercent = _percentage;
   973     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
   974     fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
   975     fl->set_before_sweep(fl->count());
   976     fl->set_bfr_surp(fl->surplus());
   977   }
   978 #endif // INCLUDE_ALL_GCS
   979 };
   981 // Used to search the tree until a condition is met.
   982 // Similar to TreeCensusClosure but searches the
   983 // tree and returns promptly when found.
   985 template <class Chunk_t, class FreeList_t>
   986 class TreeSearchClosure : public StackObj {
   987  protected:
   988   virtual bool do_list(FreeList_t* fl) = 0;
   989  public:
   990   virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
   991 };
   993 #if 0 //  Don't need this yet but here for symmetry.
   994 template <class Chunk_t, class FreeList_t>
   995 class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
   996  public:
   997   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
   998     if (tl != NULL) {
   999       if (do_tree(tl->left())) return true;
  1000       if (do_list(tl)) return true;
  1001       if (do_tree(tl->right())) return true;
  1003     return false;
  1005 };
  1006 #endif
  1008 template <class Chunk_t, class FreeList_t>
  1009 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
  1010  public:
  1011   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
  1012     if (tl != NULL) {
  1013       if (do_tree(tl->right())) return true;
  1014       if (this->do_list(tl)) return true;
  1015       if (do_tree(tl->left())) return true;
  1017     return false;
  1019 };
  1021 // Searches the tree for a chunk that ends at the
  1022 // specified address.
  1023 template <class Chunk_t, class FreeList_t>
  1024 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
  1025   HeapWord* _target;
  1026   Chunk_t* _found;
  1028  public:
  1029   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
  1030   bool do_list(FreeList_t* fl) {
  1031     Chunk_t* item = fl->head();
  1032     while (item != NULL) {
  1033       if (item->end() == (uintptr_t*) _target) {
  1034         _found = item;
  1035         return true;
  1037       item = item->next();
  1039     return false;
  1041   Chunk_t* found() { return _found; }
  1042 };
  1044 template <class Chunk_t, class FreeList_t>
  1045 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
  1046   EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
  1047   bool found_target = etsc.do_tree(root());
  1048   assert(found_target || etsc.found() == NULL, "Consistency check");
  1049   assert(!found_target || etsc.found() != NULL, "Consistency check");
  1050   return etsc.found();
  1053 template <class Chunk_t, class FreeList_t>
  1054 void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
  1055   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
  1056   BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
  1057                                             inter_sweep_estimate,
  1058                                             intra_sweep_estimate);
  1059   bsc.do_tree(root());
  1062 // Closures and methods for calculating total bytes returned to the
  1063 // free lists in the tree.
  1064 #ifndef PRODUCT
  1065 template <class Chunk_t, class FreeList_t>
  1066 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1067    public:
  1068   void do_list(FreeList_t* fl) {
  1069     fl->set_returned_bytes(0);
  1071 };
  1073 template <class Chunk_t, class FreeList_t>
  1074 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
  1075   InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
  1076   idrb.do_tree(root());
  1079 template <class Chunk_t, class FreeList_t>
  1080 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1081   size_t _dict_returned_bytes;
  1082  public:
  1083   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
  1084   void do_list(FreeList_t* fl) {
  1085     _dict_returned_bytes += fl->returned_bytes();
  1087   size_t dict_returned_bytes() { return _dict_returned_bytes; }
  1088 };
  1090 template <class Chunk_t, class FreeList_t>
  1091 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
  1092   ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
  1093   rbc.do_tree(root());
  1095   return rbc.dict_returned_bytes();
  1098 // Count the number of entries in the tree.
  1099 template <class Chunk_t, class FreeList_t>
  1100 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  1101  public:
  1102   uint count;
  1103   treeCountClosure(uint c) { count = c; }
  1104   void do_list(FreeList_t* fl) {
  1105     count++;
  1107 };
  1109 template <class Chunk_t, class FreeList_t>
  1110 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
  1111   treeCountClosure<Chunk_t, FreeList_t> ctc(0);
  1112   ctc.do_tree(root());
  1113   return ctc.count;
  1115 #endif // PRODUCT
  1117 // Calculate surpluses for the lists in the tree.
  1118 template <class Chunk_t, class FreeList_t>
  1119 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1120   double percentage;
  1121  public:
  1122   setTreeSurplusClosure(double v) { percentage = v; }
  1123   void do_list(FreeList<Chunk_t>* fl) {}
  1125 #if INCLUDE_ALL_GCS
  1126   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1127     double splitSurplusPercent = percentage;
  1128     fl->set_surplus(fl->count() -
  1129                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
  1131 #endif // INCLUDE_ALL_GCS
  1132 };
  1134 template <class Chunk_t, class FreeList_t>
  1135 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
  1136   setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
  1137   sts.do_tree(root());
  1140 // Set hints for the lists in the tree.
  1141 template <class Chunk_t, class FreeList_t>
  1142 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  1143   size_t hint;
  1144  public:
  1145   setTreeHintsClosure(size_t v) { hint = v; }
  1146   void do_list(FreeList<Chunk_t>* fl) {}
  1148 #if INCLUDE_ALL_GCS
  1149   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1150     fl->set_hint(hint);
  1151     assert(fl->hint() == 0 || fl->hint() > fl->size(),
  1152       "Current hint is inconsistent");
  1153     if (fl->surplus() > 0) {
  1154       hint = fl->size();
  1157 #endif // INCLUDE_ALL_GCS
  1158 };
  1160 template <class Chunk_t, class FreeList_t>
  1161 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
  1162   setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
  1163   sth.do_tree(root());
  1166 // Save count before previous sweep and splits and coalesces.
  1167 template <class Chunk_t, class FreeList_t>
  1168 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1169   void do_list(FreeList<Chunk_t>* fl) {}
  1171 #if INCLUDE_ALL_GCS
  1172   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1173     fl->set_prev_sweep(fl->count());
  1174     fl->set_coal_births(0);
  1175     fl->set_coal_deaths(0);
  1176     fl->set_split_births(0);
  1177     fl->set_split_deaths(0);
  1179 #endif // INCLUDE_ALL_GCS
  1180 };
  1182 template <class Chunk_t, class FreeList_t>
  1183 void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
  1184   clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
  1185   ctc.do_tree(root());
  1188 // Do reporting and post sweep clean up.
  1189 template <class Chunk_t, class FreeList_t>
  1190 void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
  1191   // Does walking the tree 3 times hurt?
  1192   set_tree_surplus(splitSurplusPercent);
  1193   set_tree_hints();
  1194   if (PrintGC && Verbose) {
  1195     report_statistics();
  1197   clear_tree_census();
  1200 // Print summary statistics
  1201 template <class Chunk_t, class FreeList_t>
  1202 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
  1203   FreeBlockDictionary<Chunk_t>::verify_par_locked();
  1204   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
  1205          "------------------------------------\n");
  1206   size_t total_size = total_chunk_size(debug_only(NULL));
  1207   size_t    free_blocks = num_free_blocks();
  1208   gclog_or_tty->print("Total Free Space: " SIZE_FORMAT "\n", total_size);
  1209   gclog_or_tty->print("Max   Chunk Size: " SIZE_FORMAT "\n", max_chunk_size());
  1210   gclog_or_tty->print("Number of Blocks: " SIZE_FORMAT "\n", free_blocks);
  1211   if (free_blocks > 0) {
  1212     gclog_or_tty->print("Av.  Block  Size: " SIZE_FORMAT "\n", total_size/free_blocks);
  1214   gclog_or_tty->print("Tree      Height: " SIZE_FORMAT "\n", tree_height());
  1217 // Print census information - counts, births, deaths, etc.
  1218 // for each list in the tree.  Also print some summary
  1219 // information.
  1220 template <class Chunk_t, class FreeList_t>
  1221 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1222   int _print_line;
  1223   size_t _total_free;
  1224   FreeList_t _total;
  1226  public:
  1227   PrintTreeCensusClosure() {
  1228     _print_line = 0;
  1229     _total_free = 0;
  1231   FreeList_t* total() { return &_total; }
  1232   size_t total_free() { return _total_free; }
  1233   void do_list(FreeList<Chunk_t>* fl) {
  1234     if (++_print_line >= 40) {
  1235       FreeList_t::print_labels_on(gclog_or_tty, "size");
  1236       _print_line = 0;
  1238     fl->print_on(gclog_or_tty);
  1239     _total_free +=            fl->count()            * fl->size()        ;
  1240     total()->set_count(      total()->count()       + fl->count()      );
  1243 #if INCLUDE_ALL_GCS
  1244   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
  1245     if (++_print_line >= 40) {
  1246       FreeList_t::print_labels_on(gclog_or_tty, "size");
  1247       _print_line = 0;
  1249     fl->print_on(gclog_or_tty);
  1250     _total_free +=           fl->count()             * fl->size()        ;
  1251     total()->set_count(      total()->count()        + fl->count()      );
  1252     total()->set_bfr_surp(   total()->bfr_surp()     + fl->bfr_surp()    );
  1253     total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
  1254     total()->set_desired(    total()->desired()      + fl->desired()    );
  1255     total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
  1256     total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
  1257     total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
  1258     total()->set_coal_deaths( total()->coal_deaths()  + fl->coal_deaths() );
  1259     total()->set_split_births(total()->split_births() + fl->split_births());
  1260     total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
  1262 #endif // INCLUDE_ALL_GCS
  1263 };
  1265 template <class Chunk_t, class FreeList_t>
  1266 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
  1268   gclog_or_tty->print("\nBinaryTree\n");
  1269   FreeList_t::print_labels_on(gclog_or_tty, "size");
  1270   PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
  1271   ptc.do_tree(root());
  1273   FreeList_t* total = ptc.total();
  1274   FreeList_t::print_labels_on(gclog_or_tty, " ");
  1277 #if INCLUDE_ALL_GCS
  1278 template <>
  1279 void AFLBinaryTreeDictionary::print_dict_census(void) const {
  1281   gclog_or_tty->print("\nBinaryTree\n");
  1282   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
  1283   PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList<FreeChunk> > ptc;
  1284   ptc.do_tree(root());
  1286   AdaptiveFreeList<FreeChunk>* total = ptc.total();
  1287   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
  1288   total->print_on(gclog_or_tty, "TOTAL\t");
  1289   gclog_or_tty->print(
  1290               "total_free(words): " SIZE_FORMAT_W(16)
  1291               " growth: %8.5f  deficit: %8.5f\n",
  1292               ptc.total_free(),
  1293               (double)(total->split_births() + total->coal_births()
  1294                      - total->split_deaths() - total->coal_deaths())
  1295               /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
  1296              (double)(total->desired() - total->count())
  1297              /(total->desired() != 0 ? (double)total->desired() : 1.0));
  1299 #endif // INCLUDE_ALL_GCS
  1301 template <class Chunk_t, class FreeList_t>
  1302 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  1303   outputStream* _st;
  1304   int _print_line;
  1306  public:
  1307   PrintFreeListsClosure(outputStream* st) {
  1308     _st = st;
  1309     _print_line = 0;
  1311   void do_list(FreeList_t* fl) {
  1312     if (++_print_line >= 40) {
  1313       FreeList_t::print_labels_on(_st, "size");
  1314       _print_line = 0;
  1316     fl->print_on(gclog_or_tty);
  1317     size_t sz = fl->size();
  1318     for (Chunk_t* fc = fl->head(); fc != NULL;
  1319          fc = fc->next()) {
  1320       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
  1321                     p2i(fc), p2i((HeapWord*)fc + sz),
  1322                     fc->cantCoalesce() ? "\t CC" : "");
  1325 };
  1327 template <class Chunk_t, class FreeList_t>
  1328 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
  1330   FreeList_t::print_labels_on(st, "size");
  1331   PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
  1332   pflc.do_tree(root());
  1335 // Verify the following tree invariants:
  1336 // . _root has no parent
  1337 // . parent and child point to each other
  1338 // . each node's key correctly related to that of its child(ren)
  1339 template <class Chunk_t, class FreeList_t>
  1340 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
  1341   guarantee(root() == NULL || total_free_blocks() == 0 ||
  1342     total_size() != 0, "_total_size should't be 0?");
  1343   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  1344   verify_tree_helper(root());
  1347 template <class Chunk_t, class FreeList_t>
  1348 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
  1349   size_t ct = 0;
  1350   for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
  1351     ct++;
  1352     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
  1353       "Chunk should be free");
  1355   return ct;
  1358 // Note: this helper is recursive rather than iterative, so use with
  1359 // caution on very deep trees; and watch out for stack overflow errors;
  1360 // In general, to be used only for debugging.
  1361 template <class Chunk_t, class FreeList_t>
  1362 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
  1363   if (tl == NULL)
  1364     return;
  1365   guarantee(tl->size() != 0, "A list must has a size");
  1366   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
  1367          "parent<-/->left");
  1368   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
  1369          "parent<-/->right");;
  1370   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
  1371          "parent !> left");
  1372   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
  1373          "parent !< left");
  1374   guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
  1375   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
  1376     "list inconsistency");
  1377   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
  1378     "list count is inconsistent");
  1379   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
  1380     "list is incorrectly constructed");
  1381   size_t count = verify_prev_free_ptrs(tl);
  1382   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  1383   if (tl->head() != NULL) {
  1384     tl->head_as_TreeChunk()->verify_tree_chunk_list();
  1386   verify_tree_helper(tl->left());
  1387   verify_tree_helper(tl->right());
  1390 template <class Chunk_t, class FreeList_t>
  1391 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
  1392   verify_tree();
  1393   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
  1396 template class TreeList<Metablock, FreeList<Metablock> >;
  1397 template class BinaryTreeDictionary<Metablock, FreeList<Metablock> >;
  1398 template class TreeChunk<Metablock, FreeList<Metablock> >;
  1400 template class TreeList<Metachunk, FreeList<Metachunk> >;
  1401 template class BinaryTreeDictionary<Metachunk, FreeList<Metachunk> >;
  1402 template class TreeChunk<Metachunk, FreeList<Metachunk> >;
  1405 #if INCLUDE_ALL_GCS
  1406 // Explicitly instantiate these types for FreeChunk.
  1407 template class TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >;
  1408 template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList<FreeChunk> >;
  1409 template class TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >;
  1411 #endif // INCLUDE_ALL_GCS

mercurial