src/share/vm/memory/space.cpp

Thu, 12 Jun 2008 13:50:55 -0700

author
ysr
date
Thu, 12 Jun 2008 13:50:55 -0700
changeset 779
6aae2f9d0294
parent 777
37f87013dfd8
parent 602
feeb96a45707
child 782
60fb9c4db4e6
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_space.cpp.incl"
    28 void SpaceMemRegionOopsIterClosure::do_oop(oop* p)       { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    29 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    31 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
    32                                                 HeapWord* top_obj) {
    33   if (top_obj != NULL) {
    34     if (_sp->block_is_obj(top_obj)) {
    35       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
    36         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
    37           // An arrayOop is starting on the dirty card - since we do exact
    38           // store checks for objArrays we are done.
    39         } else {
    40           // Otherwise, it is possible that the object starting on the dirty
    41           // card spans the entire card, and that the store happened on a
    42           // later card.  Figure out where the object ends.
    43           // Use the block_size() method of the space over which
    44           // the iteration is being done.  That space (e.g. CMS) may have
    45           // specific requirements on object sizes which will
    46           // be reflected in the block_size() method.
    47           top = top_obj + oop(top_obj)->size();
    48         }
    49       }
    50     } else {
    51       top = top_obj;
    52     }
    53   } else {
    54     assert(top == _sp->end(), "only case where top_obj == NULL");
    55   }
    56   return top;
    57 }
    59 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
    60                                             HeapWord* bottom,
    61                                             HeapWord* top) {
    62   // 1. Blocks may or may not be objects.
    63   // 2. Even when a block_is_obj(), it may not entirely
    64   //    occupy the block if the block quantum is larger than
    65   //    the object size.
    66   // We can and should try to optimize by calling the non-MemRegion
    67   // version of oop_iterate() for all but the extremal objects
    68   // (for which we need to call the MemRegion version of
    69   // oop_iterate()) To be done post-beta XXX
    70   for (; bottom < top; bottom += _sp->block_size(bottom)) {
    71     // As in the case of contiguous space above, we'd like to
    72     // just use the value returned by oop_iterate to increment the
    73     // current pointer; unfortunately, that won't work in CMS because
    74     // we'd need an interface change (it seems) to have the space
    75     // "adjust the object size" (for instance pad it up to its
    76     // block alignment or minimum block size restrictions. XXX
    77     if (_sp->block_is_obj(bottom) &&
    78         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
    79       oop(bottom)->oop_iterate(_cl, mr);
    80     }
    81   }
    82 }
    84 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
    86   // Some collectors need to do special things whenever their dirty
    87   // cards are processed. For instance, CMS must remember mutator updates
    88   // (i.e. dirty cards) so as to re-scan mutated objects.
    89   // Such work can be piggy-backed here on dirty card scanning, so as to make
    90   // it slightly more efficient than doing a complete non-detructive pre-scan
    91   // of the card table.
    92   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
    93   if (pCl != NULL) {
    94     pCl->do_MemRegion(mr);
    95   }
    97   HeapWord* bottom = mr.start();
    98   HeapWord* last = mr.last();
    99   HeapWord* top = mr.end();
   100   HeapWord* bottom_obj;
   101   HeapWord* top_obj;
   103   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
   104          _precision == CardTableModRefBS::Precise,
   105          "Only ones we deal with for now.");
   107   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   108          _cl->idempotent() || _last_bottom == NULL ||
   109          top <= _last_bottom,
   110          "Not decreasing");
   111   NOT_PRODUCT(_last_bottom = mr.start());
   113   bottom_obj = _sp->block_start(bottom);
   114   top_obj    = _sp->block_start(last);
   116   assert(bottom_obj <= bottom, "just checking");
   117   assert(top_obj    <= top,    "just checking");
   119   // Given what we think is the top of the memory region and
   120   // the start of the object at the top, get the actual
   121   // value of the top.
   122   top = get_actual_top(top, top_obj);
   124   // If the previous call did some part of this region, don't redo.
   125   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
   126       _min_done != NULL &&
   127       _min_done < top) {
   128     top = _min_done;
   129   }
   131   // Top may have been reset, and in fact may be below bottom,
   132   // e.g. the dirty card region is entirely in a now free object
   133   // -- something that could happen with a concurrent sweeper.
   134   bottom = MIN2(bottom, top);
   135   mr     = MemRegion(bottom, top);
   136   assert(bottom <= top &&
   137          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   138           _min_done == NULL ||
   139           top <= _min_done),
   140          "overlap!");
   142   // Walk the region if it is not empty; otherwise there is nothing to do.
   143   if (!mr.is_empty()) {
   144     walk_mem_region(mr, bottom_obj, top);
   145   }
   147   // An idempotent closure might be applied in any order, so we don't
   148   // record a _min_done for it.
   149   if (!_cl->idempotent()) {
   150     _min_done = bottom;
   151   } else {
   152     assert(_min_done == _last_explicit_min_done,
   153            "Don't update _min_done for idempotent cl");
   154   }
   155 }
   157 DirtyCardToOopClosure* Space::new_dcto_cl(OopClosure* cl,
   158                                           CardTableModRefBS::PrecisionStyle precision,
   159                                           HeapWord* boundary) {
   160   return new DirtyCardToOopClosure(this, cl, precision, boundary);
   161 }
   163 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
   164                                                HeapWord* top_obj) {
   165   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
   166     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
   167       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   168         // An arrayOop is starting on the dirty card - since we do exact
   169         // store checks for objArrays we are done.
   170       } else {
   171         // Otherwise, it is possible that the object starting on the dirty
   172         // card spans the entire card, and that the store happened on a
   173         // later card.  Figure out where the object ends.
   174         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
   175           "Block size and object size mismatch");
   176         top = top_obj + oop(top_obj)->size();
   177       }
   178     }
   179   } else {
   180     top = (_sp->toContiguousSpace())->top();
   181   }
   182   return top;
   183 }
   185 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
   186                                       HeapWord* bottom,
   187                                       HeapWord* top) {
   188   // Note that this assumption won't hold if we have a concurrent
   189   // collector in this space, which may have freed up objects after
   190   // they were dirtied and before the stop-the-world GC that is
   191   // examining cards here.
   192   assert(bottom < top, "ought to be at least one obj on a dirty card.");
   194   if (_boundary != NULL) {
   195     // We have a boundary outside of which we don't want to look
   196     // at objects, so create a filtering closure around the
   197     // oop closure before walking the region.
   198     FilteringClosure filter(_boundary, _cl);
   199     walk_mem_region_with_cl(mr, bottom, top, &filter);
   200   } else {
   201     // No boundary, simply walk the heap with the oop closure.
   202     walk_mem_region_with_cl(mr, bottom, top, _cl);
   203   }
   205 }
   207 // We must replicate this so that the static type of "FilteringClosure"
   208 // (see above) is apparent at the oop_iterate calls.
   209 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
   210 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
   211                                                    HeapWord* bottom,    \
   212                                                    HeapWord* top,       \
   213                                                    ClosureType* cl) {   \
   214   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
   215   if (bottom < top) {                                                   \
   216     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
   217     while (next_obj < top) {                                            \
   218       /* Bottom lies entirely below top, so we can call the */          \
   219       /* non-memRegion version of oop_iterate below. */                 \
   220       oop(bottom)->oop_iterate(cl);                                     \
   221       bottom = next_obj;                                                \
   222       next_obj = bottom + oop(bottom)->size();                          \
   223     }                                                                   \
   224     /* Last object. */                                                  \
   225     oop(bottom)->oop_iterate(cl, mr);                                   \
   226   }                                                                     \
   227 }
   229 // (There are only two of these, rather than N, because the split is due
   230 // only to the introduction of the FilteringClosure, a local part of the
   231 // impl of this abstraction.)
   232 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(OopClosure)
   233 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
   235 DirtyCardToOopClosure*
   236 ContiguousSpace::new_dcto_cl(OopClosure* cl,
   237                              CardTableModRefBS::PrecisionStyle precision,
   238                              HeapWord* boundary) {
   239   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
   240 }
   242 void Space::set_bounds(MemRegion mr) {
   243   HeapWord* bottom = mr.start();
   244   HeapWord* end    = mr.end();
   245   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
   246          "invalid space boundaries");
   247   set_bottom(bottom);
   248   set_end(end);
   249 }
   251 void Space::initialize(MemRegion mr, bool clear_space) {
   252   set_bounds(mr);
   253   if (clear_space) clear();
   254 }
   256 void Space::clear() {
   257   if (ZapUnusedHeapArea) mangle_unused_area();
   258 }
   260 void CompactibleSpace::initialize(MemRegion mr, bool clear_space) {
   261   Space::initialize(mr, false); // We'll do the clearing if there's
   262                                 // clearing to be done.
   263   _compaction_top = bottom();
   264   _next_compaction_space = NULL;
   265   if (clear_space) clear();
   266 }
   268 void CompactibleSpace::clear() {
   269   _compaction_top = bottom();
   270   Space::clear();
   271 }
   273 void ContiguousSpace::initialize(MemRegion mr, bool clear_space) {
   274   CompactibleSpace::initialize(mr, false); // We'll do the clearing if there's
   275                                            // clearing to be done.
   276   set_top(bottom());
   277   set_saved_mark();
   278   if (clear_space) clear();
   279 }
   281 void ContiguousSpace::clear() {
   282   set_top(bottom());
   283   set_saved_mark();
   284   CompactibleSpace::clear();
   285 }
   287 bool Space::is_in(const void* p) const {
   288   HeapWord* b = block_start_const(p);
   289   return b != NULL && block_is_obj(b);
   290 }
   292 bool ContiguousSpace::is_in(const void* p) const {
   293   return _bottom <= p && p < _top;
   294 }
   296 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
   297   return p >= _top;
   298 }
   300 void OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space) {
   301   // false ==> we'll do the clearing if there's clearing to be done.
   302   ContiguousSpace::initialize(mr, false);
   303   _offsets.zero_bottom_entry();
   304   _offsets.initialize_threshold();
   305   if (clear_space) clear();
   306 }
   308 void OffsetTableContigSpace::clear() {
   309   ContiguousSpace::clear();
   310   _offsets.zero_bottom_entry();
   311   _offsets.initialize_threshold();
   312 }
   314 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   315   Space::set_bottom(new_bottom);
   316   _offsets.set_bottom(new_bottom);
   317 }
   319 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
   320   // Space should not advertize an increase in size
   321   // until after the underlying offest table has been enlarged.
   322   _offsets.resize(pointer_delta(new_end, bottom()));
   323   Space::set_end(new_end);
   324 }
   326 void ContiguousSpace::mangle_unused_area() {
   327   // to-space is used for storing marks during mark-sweep
   328   mangle_region(MemRegion(top(), end()));
   329 }
   331 void ContiguousSpace::mangle_region(MemRegion mr) {
   332   debug_only(Copy::fill_to_words(mr.start(), mr.word_size(), badHeapWord));
   333 }
   335 HeapWord* CompactibleSpace::forward(oop q, size_t size,
   336                                     CompactPoint* cp, HeapWord* compact_top) {
   337   // q is alive
   338   // First check if we should switch compaction space
   339   assert(this == cp->space, "'this' should be current compaction space.");
   340   size_t compaction_max_size = pointer_delta(end(), compact_top);
   341   while (size > compaction_max_size) {
   342     // switch to next compaction space
   343     cp->space->set_compaction_top(compact_top);
   344     cp->space = cp->space->next_compaction_space();
   345     if (cp->space == NULL) {
   346       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
   347       assert(cp->gen != NULL, "compaction must succeed");
   348       cp->space = cp->gen->first_compaction_space();
   349       assert(cp->space != NULL, "generation must have a first compaction space");
   350     }
   351     compact_top = cp->space->bottom();
   352     cp->space->set_compaction_top(compact_top);
   353     cp->threshold = cp->space->initialize_threshold();
   354     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
   355   }
   357   // store the forwarding pointer into the mark word
   358   if ((HeapWord*)q != compact_top) {
   359     q->forward_to(oop(compact_top));
   360     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
   361   } else {
   362     // if the object isn't moving we can just set the mark to the default
   363     // mark and handle it specially later on.
   364     q->init_mark();
   365     assert(q->forwardee() == NULL, "should be forwarded to NULL");
   366   }
   368   VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(q, size));
   369   compact_top += size;
   371   // we need to update the offset table so that the beginnings of objects can be
   372   // found during scavenge.  Note that we are updating the offset table based on
   373   // where the object will be once the compaction phase finishes.
   374   if (compact_top > cp->threshold)
   375     cp->threshold =
   376       cp->space->cross_threshold(compact_top - size, compact_top);
   377   return compact_top;
   378 }
   381 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
   382                                         HeapWord* q, size_t deadlength) {
   383   if (allowed_deadspace_words >= deadlength) {
   384     allowed_deadspace_words -= deadlength;
   385     oop(q)->set_mark(markOopDesc::prototype()->set_marked());
   386     const size_t min_int_array_size = typeArrayOopDesc::header_size(T_INT);
   387     if (deadlength >= min_int_array_size) {
   388       oop(q)->set_klass(Universe::intArrayKlassObj());
   389       typeArrayOop(q)->set_length((int)((deadlength - min_int_array_size)
   390                                             * (HeapWordSize/sizeof(jint))));
   391     } else {
   392       assert((int) deadlength == instanceOopDesc::header_size(),
   393              "size for smallest fake dead object doesn't match");
   394       oop(q)->set_klass(SystemDictionary::object_klass());
   395     }
   396     assert((int) deadlength == oop(q)->size(),
   397            "make sure size for fake dead object match");
   398     // Recall that we required "q == compaction_top".
   399     return true;
   400   } else {
   401     allowed_deadspace_words = 0;
   402     return false;
   403   }
   404 }
   406 #define block_is_always_obj(q) true
   407 #define obj_size(q) oop(q)->size()
   408 #define adjust_obj_size(s) s
   410 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
   411   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
   412 }
   414 // Faster object search.
   415 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
   416   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
   417 }
   419 void Space::adjust_pointers() {
   420   // adjust all the interior pointers to point at the new locations of objects
   421   // Used by MarkSweep::mark_sweep_phase3()
   423   // First check to see if there is any work to be done.
   424   if (used() == 0) {
   425     return;  // Nothing to do.
   426   }
   428   // Otherwise...
   429   HeapWord* q = bottom();
   430   HeapWord* t = end();
   432   debug_only(HeapWord* prev_q = NULL);
   433   while (q < t) {
   434     if (oop(q)->is_gc_marked()) {
   435       // q is alive
   437       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));
   438       // point all the oops to the new location
   439       size_t size = oop(q)->adjust_pointers();
   440       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());
   442       debug_only(prev_q = q);
   443       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));
   445       q += size;
   446     } else {
   447       // q is not a live object.  But we're not in a compactible space,
   448       // So we don't have live ranges.
   449       debug_only(prev_q = q);
   450       q += block_size(q);
   451       assert(q > prev_q, "we should be moving forward through memory");
   452     }
   453   }
   454   assert(q == t, "just checking");
   455 }
   457 void CompactibleSpace::adjust_pointers() {
   458   // Check first is there is any work to do.
   459   if (used() == 0) {
   460     return;   // Nothing to do.
   461   }
   463   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
   464 }
   466 void CompactibleSpace::compact() {
   467   SCAN_AND_COMPACT(obj_size);
   468 }
   470 void Space::print_short() const { print_short_on(tty); }
   472 void Space::print_short_on(outputStream* st) const {
   473   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
   474               (int) ((double) used() * 100 / capacity()));
   475 }
   477 void Space::print() const { print_on(tty); }
   479 void Space::print_on(outputStream* st) const {
   480   print_short_on(st);
   481   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   482                 bottom(), end());
   483 }
   485 void ContiguousSpace::print_on(outputStream* st) const {
   486   print_short_on(st);
   487   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   488                 bottom(), top(), end());
   489 }
   491 void OffsetTableContigSpace::print_on(outputStream* st) const {
   492   print_short_on(st);
   493   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   494                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   495               bottom(), top(), _offsets.threshold(), end());
   496 }
   498 void ContiguousSpace::verify(bool allow_dirty) const {
   499   HeapWord* p = bottom();
   500   HeapWord* t = top();
   501   HeapWord* prev_p = NULL;
   502   while (p < t) {
   503     oop(p)->verify();
   504     prev_p = p;
   505     p += oop(p)->size();
   506   }
   507   guarantee(p == top(), "end of last object must match end of space");
   508   if (top() != end()) {
   509     guarantee(top() == block_start_const(end()-1) &&
   510               top() == block_start_const(top()),
   511               "top should be start of unallocated block, if it exists");
   512   }
   513 }
   515 void Space::oop_iterate(OopClosure* blk) {
   516   ObjectToOopClosure blk2(blk);
   517   object_iterate(&blk2);
   518 }
   520 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
   521   guarantee(false, "NYI");
   522   return bottom();
   523 }
   525 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
   526                                           ObjectClosureCareful* cl) {
   527   guarantee(false, "NYI");
   528   return bottom();
   529 }
   532 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   533   assert(!mr.is_empty(), "Should be non-empty");
   534   // We use MemRegion(bottom(), end()) rather than used_region() below
   535   // because the two are not necessarily equal for some kinds of
   536   // spaces, in particular, certain kinds of free list spaces.
   537   // We could use the more complicated but more precise:
   538   // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
   539   // but the slight imprecision seems acceptable in the assertion check.
   540   assert(MemRegion(bottom(), end()).contains(mr),
   541          "Should be within used space");
   542   HeapWord* prev = cl->previous();   // max address from last time
   543   if (prev >= mr.end()) { // nothing to do
   544     return;
   545   }
   546   // This assert will not work when we go from cms space to perm
   547   // space, and use same closure. Easy fix deferred for later. XXX YSR
   548   // assert(prev == NULL || contains(prev), "Should be within space");
   550   bool last_was_obj_array = false;
   551   HeapWord *blk_start_addr, *region_start_addr;
   552   if (prev > mr.start()) {
   553     region_start_addr = prev;
   554     blk_start_addr    = prev;
   555     assert(blk_start_addr == block_start(region_start_addr), "invariant");
   556   } else {
   557     region_start_addr = mr.start();
   558     blk_start_addr    = block_start(region_start_addr);
   559   }
   560   HeapWord* region_end_addr = mr.end();
   561   MemRegion derived_mr(region_start_addr, region_end_addr);
   562   while (blk_start_addr < region_end_addr) {
   563     const size_t size = block_size(blk_start_addr);
   564     if (block_is_obj(blk_start_addr)) {
   565       last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
   566     } else {
   567       last_was_obj_array = false;
   568     }
   569     blk_start_addr += size;
   570   }
   571   if (!last_was_obj_array) {
   572     assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
   573            "Should be within (closed) used space");
   574     assert(blk_start_addr > prev, "Invariant");
   575     cl->set_previous(blk_start_addr); // min address for next time
   576   }
   577 }
   579 bool Space::obj_is_alive(const HeapWord* p) const {
   580   assert (block_is_obj(p), "The address should point to an object");
   581   return true;
   582 }
   584 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   585   assert(!mr.is_empty(), "Should be non-empty");
   586   assert(used_region().contains(mr), "Should be within used space");
   587   HeapWord* prev = cl->previous();   // max address from last time
   588   if (prev >= mr.end()) { // nothing to do
   589     return;
   590   }
   591   // See comment above (in more general method above) in case you
   592   // happen to use this method.
   593   assert(prev == NULL || is_in_reserved(prev), "Should be within space");
   595   bool last_was_obj_array = false;
   596   HeapWord *obj_start_addr, *region_start_addr;
   597   if (prev > mr.start()) {
   598     region_start_addr = prev;
   599     obj_start_addr    = prev;
   600     assert(obj_start_addr == block_start(region_start_addr), "invariant");
   601   } else {
   602     region_start_addr = mr.start();
   603     obj_start_addr    = block_start(region_start_addr);
   604   }
   605   HeapWord* region_end_addr = mr.end();
   606   MemRegion derived_mr(region_start_addr, region_end_addr);
   607   while (obj_start_addr < region_end_addr) {
   608     oop obj = oop(obj_start_addr);
   609     const size_t size = obj->size();
   610     last_was_obj_array = cl->do_object_bm(obj, derived_mr);
   611     obj_start_addr += size;
   612   }
   613   if (!last_was_obj_array) {
   614     assert((bottom() <= obj_start_addr)  && (obj_start_addr <= end()),
   615            "Should be within (closed) used space");
   616     assert(obj_start_addr > prev, "Invariant");
   617     cl->set_previous(obj_start_addr); // min address for next time
   618   }
   619 }
   621 #ifndef SERIALGC
   622 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
   623                                                                             \
   624   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
   625     HeapWord* obj_addr = mr.start();                                        \
   626     HeapWord* t = mr.end();                                                 \
   627     while (obj_addr < t) {                                                  \
   628       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
   629       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
   630     }                                                                       \
   631   }
   633   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
   635 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
   636 #endif // SERIALGC
   638 void ContiguousSpace::oop_iterate(OopClosure* blk) {
   639   if (is_empty()) return;
   640   HeapWord* obj_addr = bottom();
   641   HeapWord* t = top();
   642   // Could call objects iterate, but this is easier.
   643   while (obj_addr < t) {
   644     obj_addr += oop(obj_addr)->oop_iterate(blk);
   645   }
   646 }
   648 void ContiguousSpace::oop_iterate(MemRegion mr, OopClosure* blk) {
   649   if (is_empty()) {
   650     return;
   651   }
   652   MemRegion cur = MemRegion(bottom(), top());
   653   mr = mr.intersection(cur);
   654   if (mr.is_empty()) {
   655     return;
   656   }
   657   if (mr.equals(cur)) {
   658     oop_iterate(blk);
   659     return;
   660   }
   661   assert(mr.end() <= top(), "just took an intersection above");
   662   HeapWord* obj_addr = block_start(mr.start());
   663   HeapWord* t = mr.end();
   665   // Handle first object specially.
   666   oop obj = oop(obj_addr);
   667   SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
   668   obj_addr += obj->oop_iterate(&smr_blk);
   669   while (obj_addr < t) {
   670     oop obj = oop(obj_addr);
   671     assert(obj->is_oop(), "expected an oop");
   672     obj_addr += obj->size();
   673     // If "obj_addr" is not greater than top, then the
   674     // entire object "obj" is within the region.
   675     if (obj_addr <= t) {
   676       obj->oop_iterate(blk);
   677     } else {
   678       // "obj" extends beyond end of region
   679       obj->oop_iterate(&smr_blk);
   680       break;
   681     }
   682   };
   683 }
   685 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
   686   if (is_empty()) return;
   687   WaterMark bm = bottom_mark();
   688   object_iterate_from(bm, blk);
   689 }
   691 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
   692   assert(mark.space() == this, "Mark does not match space");
   693   HeapWord* p = mark.point();
   694   while (p < top()) {
   695     blk->do_object(oop(p));
   696     p += oop(p)->size();
   697   }
   698 }
   700 HeapWord*
   701 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
   702   HeapWord * limit = concurrent_iteration_safe_limit();
   703   assert(limit <= top(), "sanity check");
   704   for (HeapWord* p = bottom(); p < limit;) {
   705     size_t size = blk->do_object_careful(oop(p));
   706     if (size == 0) {
   707       return p;  // failed at p
   708     } else {
   709       p += size;
   710     }
   711   }
   712   return NULL; // all done
   713 }
   715 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
   716                                                                           \
   717 void ContiguousSpace::                                                    \
   718 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
   719   HeapWord* t;                                                            \
   720   HeapWord* p = saved_mark_word();                                        \
   721   assert(p != NULL, "expected saved mark");                               \
   722                                                                           \
   723   const intx interval = PrefetchScanIntervalInBytes;                      \
   724   do {                                                                    \
   725     t = top();                                                            \
   726     while (p < t) {                                                       \
   727       Prefetch::write(p, interval);                                       \
   728       debug_only(HeapWord* prev = p);                                     \
   729       oop m = oop(p);                                                     \
   730       p += m->oop_iterate(blk);                                           \
   731     }                                                                     \
   732   } while (t < top());                                                    \
   733                                                                           \
   734   set_saved_mark_word(p);                                                 \
   735 }
   737 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
   739 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
   741 // Very general, slow implementation.
   742 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
   743   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
   744   if (p >= top()) {
   745     return top();
   746   } else {
   747     HeapWord* last = bottom();
   748     HeapWord* cur = last;
   749     while (cur <= p) {
   750       last = cur;
   751       cur += oop(cur)->size();
   752     }
   753     assert(oop(last)->is_oop(), "Should be an object start");
   754     return last;
   755   }
   756 }
   758 size_t ContiguousSpace::block_size(const HeapWord* p) const {
   759   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
   760   HeapWord* current_top = top();
   761   assert(p <= current_top, "p is not a block start");
   762   assert(p == current_top || oop(p)->is_oop(), "p is not a block start");
   763   if (p < current_top)
   764     return oop(p)->size();
   765   else {
   766     assert(p == current_top, "just checking");
   767     return pointer_delta(end(), (HeapWord*) p);
   768   }
   769 }
   771 // This version requires locking.
   772 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
   773                                                 HeapWord* const end_value) {
   774   assert(Heap_lock->owned_by_self() ||
   775          (SafepointSynchronize::is_at_safepoint() &&
   776           Thread::current()->is_VM_thread()),
   777          "not locked");
   778   HeapWord* obj = top();
   779   if (pointer_delta(end_value, obj) >= size) {
   780     HeapWord* new_top = obj + size;
   781     set_top(new_top);
   782     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   783     return obj;
   784   } else {
   785     return NULL;
   786   }
   787 }
   789 // This version is lock-free.
   790 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
   791                                                     HeapWord* const end_value) {
   792   do {
   793     HeapWord* obj = top();
   794     if (pointer_delta(end_value, obj) >= size) {
   795       HeapWord* new_top = obj + size;
   796       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   797       // result can be one of two:
   798       //  the old top value: the exchange succeeded
   799       //  otherwise: the new value of the top is returned.
   800       if (result == obj) {
   801         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   802         return obj;
   803       }
   804     } else {
   805       return NULL;
   806     }
   807   } while (true);
   808 }
   810 // Requires locking.
   811 HeapWord* ContiguousSpace::allocate(size_t size) {
   812   return allocate_impl(size, end());
   813 }
   815 // Lock-free.
   816 HeapWord* ContiguousSpace::par_allocate(size_t size) {
   817   return par_allocate_impl(size, end());
   818 }
   820 void ContiguousSpace::allocate_temporary_filler(int factor) {
   821   // allocate temporary type array decreasing free size with factor 'factor'
   822   assert(factor >= 0, "just checking");
   823   size_t size = pointer_delta(end(), top());
   825   // if space is full, return
   826   if (size == 0) return;
   828   if (factor > 0) {
   829     size -= size/factor;
   830   }
   831   size = align_object_size(size);
   833   const size_t min_int_array_size = typeArrayOopDesc::header_size(T_INT);
   834   if (size >= min_int_array_size) {
   835     size_t length = (size - min_int_array_size) * (HeapWordSize / sizeof(jint));
   836     // allocate uninitialized int array
   837     typeArrayOop t = (typeArrayOop) allocate(size);
   838     assert(t != NULL, "allocation should succeed");
   839     t->set_mark(markOopDesc::prototype());
   840     t->set_klass(Universe::intArrayKlassObj());
   841     t->set_length((int)length);
   842   } else {
   843     assert((int) size == instanceOopDesc::header_size(),
   844            "size for smallest fake object doesn't match");
   845     instanceOop obj = (instanceOop) allocate(size);
   846     obj->set_mark(markOopDesc::prototype());
   847     obj->set_klass_gap(0);
   848     obj->set_klass(SystemDictionary::object_klass());
   849   }
   850 }
   852 void EdenSpace::clear() {
   853   ContiguousSpace::clear();
   854   set_soft_end(end());
   855 }
   857 // Requires locking.
   858 HeapWord* EdenSpace::allocate(size_t size) {
   859   return allocate_impl(size, soft_end());
   860 }
   862 // Lock-free.
   863 HeapWord* EdenSpace::par_allocate(size_t size) {
   864   return par_allocate_impl(size, soft_end());
   865 }
   867 HeapWord* ConcEdenSpace::par_allocate(size_t size)
   868 {
   869   do {
   870     // The invariant is top() should be read before end() because
   871     // top() can't be greater than end(), so if an update of _soft_end
   872     // occurs between 'end_val = end();' and 'top_val = top();' top()
   873     // also can grow up to the new end() and the condition
   874     // 'top_val > end_val' is true. To ensure the loading order
   875     // OrderAccess::loadload() is required after top() read.
   876     HeapWord* obj = top();
   877     OrderAccess::loadload();
   878     if (pointer_delta(*soft_end_addr(), obj) >= size) {
   879       HeapWord* new_top = obj + size;
   880       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   881       // result can be one of two:
   882       //  the old top value: the exchange succeeded
   883       //  otherwise: the new value of the top is returned.
   884       if (result == obj) {
   885         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   886         return obj;
   887       }
   888     } else {
   889       return NULL;
   890     }
   891   } while (true);
   892 }
   895 HeapWord* OffsetTableContigSpace::initialize_threshold() {
   896   return _offsets.initialize_threshold();
   897 }
   899 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
   900   _offsets.alloc_block(start, end);
   901   return _offsets.threshold();
   902 }
   904 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
   905                                                MemRegion mr) :
   906   _offsets(sharedOffsetArray, mr),
   907   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
   908 {
   909   _offsets.set_contig_space(this);
   910   initialize(mr, true);
   911 }
   914 class VerifyOldOopClosure : public OopClosure {
   915  public:
   916   oop  _the_obj;
   917   bool _allow_dirty;
   918   void do_oop(oop* p) {
   919     _the_obj->verify_old_oop(p, _allow_dirty);
   920   }
   921   void do_oop(narrowOop* p) {
   922     _the_obj->verify_old_oop(p, _allow_dirty);
   923   }
   924 };
   926 #define OBJ_SAMPLE_INTERVAL 0
   927 #define BLOCK_SAMPLE_INTERVAL 100
   929 void OffsetTableContigSpace::verify(bool allow_dirty) const {
   930   HeapWord* p = bottom();
   931   HeapWord* prev_p = NULL;
   932   VerifyOldOopClosure blk;      // Does this do anything?
   933   blk._allow_dirty = allow_dirty;
   934   int objs = 0;
   935   int blocks = 0;
   937   if (VerifyObjectStartArray) {
   938     _offsets.verify();
   939   }
   941   while (p < top()) {
   942     size_t size = oop(p)->size();
   943     // For a sampling of objects in the space, find it using the
   944     // block offset table.
   945     if (blocks == BLOCK_SAMPLE_INTERVAL) {
   946       guarantee(p == block_start_const(p + (size/2)),
   947                 "check offset computation");
   948       blocks = 0;
   949     } else {
   950       blocks++;
   951     }
   953     if (objs == OBJ_SAMPLE_INTERVAL) {
   954       oop(p)->verify();
   955       blk._the_obj = oop(p);
   956       oop(p)->oop_iterate(&blk);
   957       objs = 0;
   958     } else {
   959       objs++;
   960     }
   961     prev_p = p;
   962     p += size;
   963   }
   964   guarantee(p == top(), "end of last object must match end of space");
   965 }
   967 void OffsetTableContigSpace::serialize_block_offset_array_offsets(
   968                                                       SerializeOopClosure* soc) {
   969   _offsets.serialize(soc);
   970 }
   973 int TenuredSpace::allowed_dead_ratio() const {
   974   return MarkSweepDeadRatio;
   975 }
   978 int ContigPermSpace::allowed_dead_ratio() const {
   979   return PermMarkSweepDeadRatio;
   980 }

mercurial