src/cpu/sparc/vm/assembler_sparc.hpp

Thu, 12 Jun 2008 13:50:55 -0700

author
ysr
date
Thu, 12 Jun 2008 13:50:55 -0700
changeset 779
6aae2f9d0294
parent 777
37f87013dfd8
parent 602
feeb96a45707
child 791
1ee8caae33af
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class BiasedLockingCounters;
    27 // <sys/trap.h> promises that the system will not use traps 16-31
    28 #define ST_RESERVED_FOR_USER_0 0x10
    30 /* Written: David Ungar 4/19/97 */
    32 // Contains all the definitions needed for sparc assembly code generation.
    34 // Register aliases for parts of the system:
    36 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
    37 // across context switches in V8+ ABI.  Of course, there are no 64 bit regs
    38 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
    40 // g2-g4 are scratch registers called "application globals".  Their
    41 // meaning is reserved to the "compilation system"--which means us!
    42 // They are are not supposed to be touched by ordinary C code, although
    43 // highly-optimized C code might steal them for temps.  They are safe
    44 // across thread switches, and the ABI requires that they be safe
    45 // across function calls.
    46 //
    47 // g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
    48 // across func calls, and V8+ also allows g5 to be clobbered across
    49 // func calls.  Also, g1 and g5 can get touched while doing shared
    50 // library loading.
    51 //
    52 // We must not touch g7 (it is the thread-self register) and g6 is
    53 // reserved for certain tools.  g0, of course, is always zero.
    54 //
    55 // (Sources:  SunSoft Compilers Group, thread library engineers.)
    57 // %%%% The interpreter should be revisited to reduce global scratch regs.
    59 // This global always holds the current JavaThread pointer:
    61 REGISTER_DECLARATION(Register, G2_thread , G2);
    62 REGISTER_DECLARATION(Register, G6_heapbase , G6);
    64 // The following globals are part of the Java calling convention:
    66 REGISTER_DECLARATION(Register, G5_method             , G5);
    67 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
    68 REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
    70 // The following globals are used for the new C1 & interpreter calling convention:
    71 REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
    73 // This local is used to preserve G2_thread in the interpreter and in stubs:
    74 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
    76 // These globals are used as scratch registers in the interpreter:
    78 REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
    79 REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
    80 REGISTER_DECLARATION(Register, G3_scratch    , G3);
    81 REGISTER_DECLARATION(Register, G4_scratch    , G4);
    83 // These globals are used as short-lived scratch registers in the compiler:
    85 REGISTER_DECLARATION(Register, Gtemp  , G5);
    87 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
    88 // because a single patchable "set" instruction (NativeMovConstReg,
    89 // or NativeMovConstPatching for compiler1) instruction
    90 // serves to set up either quantity, depending on whether the compiled
    91 // call site is an inline cache or is megamorphic.  See the function
    92 // CompiledIC::set_to_megamorphic.
    93 //
    94 // On the other hand, G5_inline_cache_klass must differ from G5_method,
    95 // because both registers are needed for an inline cache that calls
    96 // an interpreted method.
    97 //
    98 // Note that G5_method is only the method-self for the interpreter,
    99 // and is logically unrelated to G5_megamorphic_method.
   100 //
   101 // Invariants on G2_thread (the JavaThread pointer):
   102 //  - it should not be used for any other purpose anywhere
   103 //  - it must be re-initialized by StubRoutines::call_stub()
   104 //  - it must be preserved around every use of call_VM
   106 // We can consider using g2/g3/g4 to cache more values than the
   107 // JavaThread, such as the card-marking base or perhaps pointers into
   108 // Eden.  It's something of a waste to use them as scratch temporaries,
   109 // since they are not supposed to be volatile.  (Of course, if we find
   110 // that Java doesn't benefit from application globals, then we can just
   111 // use them as ordinary temporaries.)
   112 //
   113 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
   114 // it makes sense to use them routinely for procedure linkage,
   115 // whenever the On registers are not applicable.  Examples:  G5_method,
   116 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
   117 // stubs.  This means that compiler stubs, etc., should be kept to a
   118 // maximum of two or three G-register arguments.
   121 // stub frames
   123 REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
   125 // Interpreter frames
   127 #ifdef CC_INTERP
   128 REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
   129 REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
   130 REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
   131 REGISTER_DECLARATION(Register, L2_scratch       , L2);
   132 REGISTER_DECLARATION(Register, L3_scratch       , L3);
   133 REGISTER_DECLARATION(Register, L4_scratch       , L4);
   134 REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
   135 REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
   136 REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
   137 REGISTER_DECLARATION(Register, O5_savedSP       , O5);
   138 REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
   139                                                        // a copy SP, so in 64-bit it's a biased value.  The bias
   140                                                        // is added and removed as needed in the frame code.
   141 // Interface to signature handler
   142 REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
   143 REGISTER_DECLARATION(Register, Lmethod          , L6); // methodOop when calling signature handler
   145 #else
   146 REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
   147 REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
   148 REGISTER_DECLARATION(Register, Lmethod          , L2);
   149 REGISTER_DECLARATION(Register, Llocals          , L3);
   150 REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
   151                                                        // must match Llocals in asm interpreter
   152 REGISTER_DECLARATION(Register, Lmonitors        , L4);
   153 REGISTER_DECLARATION(Register, Lbyte_code       , L5);
   154 // When calling out from the interpreter we record SP so that we can remove any extra stack
   155 // space allocated during adapter transitions. This register is only live from the point
   156 // of the call until we return.
   157 REGISTER_DECLARATION(Register, Llast_SP         , L5);
   158 REGISTER_DECLARATION(Register, Lscratch         , L5);
   159 REGISTER_DECLARATION(Register, Lscratch2        , L6);
   160 REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
   162 REGISTER_DECLARATION(Register, O5_savedSP       , O5);
   163 REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
   164                                                        // a copy SP, so in 64-bit it's a biased value.  The bias
   165                                                        // is added and removed as needed in the frame code.
   166 REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
   167 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
   168 REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
   169 #endif /* CC_INTERP */
   171 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
   172 //       the interpreter code. If Lscratch2 needs to be used for some
   173 //       purpose than LcpoolCache should be restore after that for
   174 //       the interpreter to work right
   175 // (These assignments must be compatible with L7_thread_cache; see above.)
   177 // Since Lbcp points into the middle of the method object,
   178 // it is temporarily converted into a "bcx" during GC.
   180 // Exception processing
   181 // These registers are passed into exception handlers.
   182 // All exception handlers require the exception object being thrown.
   183 // In addition, an nmethod's exception handler must be passed
   184 // the address of the call site within the nmethod, to allow
   185 // proper selection of the applicable catch block.
   186 // (Interpreter frames use their own bcp() for this purpose.)
   187 //
   188 // The Oissuing_pc value is not always needed.  When jumping to a
   189 // handler that is known to be interpreted, the Oissuing_pc value can be
   190 // omitted.  An actual catch block in compiled code receives (from its
   191 // nmethod's exception handler) the thrown exception in the Oexception,
   192 // but it doesn't need the Oissuing_pc.
   193 //
   194 // If an exception handler (either interpreted or compiled)
   195 // discovers there is no applicable catch block, it updates
   196 // the Oissuing_pc to the continuation PC of its own caller,
   197 // pops back to that caller's stack frame, and executes that
   198 // caller's exception handler.  Obviously, this process will
   199 // iterate until the control stack is popped back to a method
   200 // containing an applicable catch block.  A key invariant is
   201 // that the Oissuing_pc value is always a value local to
   202 // the method whose exception handler is currently executing.
   203 //
   204 // Note:  The issuing PC value is __not__ a raw return address (I7 value).
   205 // It is a "return pc", the address __following__ the call.
   206 // Raw return addresses are converted to issuing PCs by frame::pc(),
   207 // or by stubs.  Issuing PCs can be used directly with PC range tables.
   208 //
   209 REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
   210 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
   213 // These must occur after the declarations above
   214 #ifndef DONT_USE_REGISTER_DEFINES
   216 #define Gthread             AS_REGISTER(Register, Gthread)
   217 #define Gmethod             AS_REGISTER(Register, Gmethod)
   218 #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
   219 #define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
   220 #define Gargs               AS_REGISTER(Register, Gargs)
   221 #define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
   222 #define Gframe_size         AS_REGISTER(Register, Gframe_size)
   223 #define Gtemp               AS_REGISTER(Register, Gtemp)
   225 #ifdef CC_INTERP
   226 #define Lstate              AS_REGISTER(Register, Lstate)
   227 #define Lesp                AS_REGISTER(Register, Lesp)
   228 #define L1_scratch          AS_REGISTER(Register, L1_scratch)
   229 #define Lmirror             AS_REGISTER(Register, Lmirror)
   230 #define L2_scratch          AS_REGISTER(Register, L2_scratch)
   231 #define L3_scratch          AS_REGISTER(Register, L3_scratch)
   232 #define L4_scratch          AS_REGISTER(Register, L4_scratch)
   233 #define Lscratch            AS_REGISTER(Register, Lscratch)
   234 #define Lscratch2           AS_REGISTER(Register, Lscratch2)
   235 #define L7_scratch          AS_REGISTER(Register, L7_scratch)
   236 #define Ostate              AS_REGISTER(Register, Ostate)
   237 #else
   238 #define Lesp                AS_REGISTER(Register, Lesp)
   239 #define Lbcp                AS_REGISTER(Register, Lbcp)
   240 #define Lmethod             AS_REGISTER(Register, Lmethod)
   241 #define Llocals             AS_REGISTER(Register, Llocals)
   242 #define Lmonitors           AS_REGISTER(Register, Lmonitors)
   243 #define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
   244 #define Lscratch            AS_REGISTER(Register, Lscratch)
   245 #define Lscratch2           AS_REGISTER(Register, Lscratch2)
   246 #define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
   247 #endif /* ! CC_INTERP */
   249 #define Lentry_args         AS_REGISTER(Register, Lentry_args)
   250 #define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
   251 #define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
   252 #define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
   253 #define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
   254 #define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
   256 #define Oexception          AS_REGISTER(Register, Oexception)
   257 #define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
   260 #endif
   262 // Address is an abstraction used to represent a memory location.
   263 //
   264 // Note: A register location is represented via a Register, not
   265 //       via an address for efficiency & simplicity reasons.
   267 class Address VALUE_OBJ_CLASS_SPEC {
   268  private:
   269   Register              _base;
   270 #ifdef _LP64
   271   int                   _hi32;          // bits 63::32
   272   int                   _low32;         // bits 31::0
   273 #endif
   274   int                   _hi;
   275   int                   _disp;
   276   RelocationHolder      _rspec;
   278   RelocationHolder rspec_from_rtype(relocInfo::relocType rt, address a = NULL) {
   279     switch (rt) {
   280     case relocInfo::external_word_type:
   281       return external_word_Relocation::spec(a);
   282     case relocInfo::internal_word_type:
   283       return internal_word_Relocation::spec(a);
   284 #ifdef _LP64
   285     case relocInfo::opt_virtual_call_type:
   286       return opt_virtual_call_Relocation::spec();
   287     case relocInfo::static_call_type:
   288       return static_call_Relocation::spec();
   289     case relocInfo::runtime_call_type:
   290       return runtime_call_Relocation::spec();
   291 #endif
   292     case relocInfo::none:
   293       return RelocationHolder();
   294     default:
   295       ShouldNotReachHere();
   296       return RelocationHolder();
   297     }
   298   }
   300  public:
   301   Address(Register b, address a, relocInfo::relocType rt = relocInfo::none)
   302     : _rspec(rspec_from_rtype(rt, a))
   303   {
   304     _base  = b;
   305 #ifdef _LP64
   306     _hi32  = (intptr_t)a >> 32;    // top 32 bits in 64 bit word
   307     _low32 = (intptr_t)a & ~0;     // low 32 bits in 64 bit word
   308 #endif
   309     _hi    = (intptr_t)a & ~0x3ff; // top    22 bits in low word
   310     _disp  = (intptr_t)a &  0x3ff; // bottom 10 bits
   311   }
   313   Address(Register b, address a, RelocationHolder const& rspec)
   314     : _rspec(rspec)
   315   {
   316     _base  = b;
   317 #ifdef _LP64
   318     _hi32  = (intptr_t)a >> 32;    // top 32 bits in 64 bit word
   319     _low32 = (intptr_t)a & ~0;     // low 32 bits in 64 bit word
   320 #endif
   321     _hi    = (intptr_t)a & ~0x3ff; // top    22 bits
   322     _disp  = (intptr_t)a &  0x3ff; // bottom 10 bits
   323   }
   325   Address(Register b, intptr_t h, intptr_t d, RelocationHolder const& rspec = RelocationHolder())
   326     : _rspec(rspec)
   327   {
   328     _base  = b;
   329 #ifdef _LP64
   330 // [RGV] Put in Assert to force me to check usage of this constructor
   331      assert( h == 0, "Check usage of this constructor" );
   332     _hi32  = h;
   333     _low32 = d;
   334     _hi    = h;
   335     _disp  = d;
   336 #else
   337     _hi    = h;
   338     _disp  = d;
   339 #endif
   340   }
   342   Address()
   343     : _rspec(RelocationHolder())
   344   {
   345     _base  = G0;
   346 #ifdef _LP64
   347     _hi32  = 0;
   348     _low32 = 0;
   349 #endif
   350     _hi    = 0;
   351     _disp  = 0;
   352   }
   354   // fancier constructors
   356   enum addr_type {
   357     extra_in_argument,  // in the In registers
   358     extra_out_argument  // in the Outs
   359   };
   361   Address( addr_type, int );
   363   // accessors
   365   Register               base() const { return _base; }
   366 #ifdef _LP64
   367   int                   hi32()  const { return _hi32; }
   368   int                   low32() const { return _low32; }
   369 #endif
   370   int                      hi() const { return _hi;  }
   371   int                    disp() const { return _disp; }
   372 #ifdef _LP64
   373   intptr_t              value() const { return ((intptr_t)_hi32 << 32) |
   374                                                 (intptr_t)(uint32_t)_low32; }
   375 #else
   376   int                   value() const { return _hi | _disp; }
   377 #endif
   378   const relocInfo::relocType  rtype() { return _rspec.type(); }
   379   const RelocationHolder&     rspec() { return _rspec; }
   381   RelocationHolder      rspec(int offset) const {
   382     return offset == 0 ? _rspec : _rspec.plus(offset);
   383   }
   385   inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
   387   Address split_disp() const {            // deal with disp overflow
   388     Address a = (*this);
   389     int hi_disp = _disp & ~0x3ff;
   390     if (hi_disp != 0) {
   391       a._disp -= hi_disp;
   392       a._hi   += hi_disp;
   393     }
   394     return a;
   395   }
   397   Address after_save() const {
   398     Address a = (*this);
   399     a._base = a._base->after_save();
   400     return a;
   401   }
   403   Address after_restore() const {
   404     Address a = (*this);
   405     a._base = a._base->after_restore();
   406     return a;
   407   }
   409   friend class Assembler;
   410 };
   413 inline Address RegisterImpl::address_in_saved_window() const {
   414    return (Address(SP, 0, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
   415 }
   419 // Argument is an abstraction used to represent an outgoing
   420 // actual argument or an incoming formal parameter, whether
   421 // it resides in memory or in a register, in a manner consistent
   422 // with the SPARC Application Binary Interface, or ABI.  This is
   423 // often referred to as the native or C calling convention.
   425 class Argument VALUE_OBJ_CLASS_SPEC {
   426  private:
   427   int _number;
   428   bool _is_in;
   430  public:
   431 #ifdef _LP64
   432   enum {
   433     n_register_parameters = 6,          // only 6 registers may contain integer parameters
   434     n_float_register_parameters = 16    // Can have up to 16 floating registers
   435   };
   436 #else
   437   enum {
   438     n_register_parameters = 6           // only 6 registers may contain integer parameters
   439   };
   440 #endif
   442   // creation
   443   Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
   445   int  number() const  { return _number;  }
   446   bool is_in()  const  { return _is_in;   }
   447   bool is_out() const  { return !is_in(); }
   449   Argument successor() const  { return Argument(number() + 1, is_in()); }
   450   Argument as_in()     const  { return Argument(number(), true ); }
   451   Argument as_out()    const  { return Argument(number(), false); }
   453   // locating register-based arguments:
   454   bool is_register() const { return _number < n_register_parameters; }
   456 #ifdef _LP64
   457   // locating Floating Point register-based arguments:
   458   bool is_float_register() const { return _number < n_float_register_parameters; }
   460   FloatRegister as_float_register() const {
   461     assert(is_float_register(), "must be a register argument");
   462     return as_FloatRegister(( number() *2 ) + 1);
   463   }
   464   FloatRegister as_double_register() const {
   465     assert(is_float_register(), "must be a register argument");
   466     return as_FloatRegister(( number() *2 ));
   467   }
   468 #endif
   470   Register as_register() const {
   471     assert(is_register(), "must be a register argument");
   472     return is_in() ? as_iRegister(number()) : as_oRegister(number());
   473   }
   475   // locating memory-based arguments
   476   Address as_address() const {
   477     assert(!is_register(), "must be a memory argument");
   478     return address_in_frame();
   479   }
   481   // When applied to a register-based argument, give the corresponding address
   482   // into the 6-word area "into which callee may store register arguments"
   483   // (This is a different place than the corresponding register-save area location.)
   484   Address address_in_frame() const {
   485     return Address( is_in()   ? Address::extra_in_argument
   486                               : Address::extra_out_argument,
   487                     _number );
   488   }
   490   // debugging
   491   const char* name() const;
   493   friend class Assembler;
   494 };
   497 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
   498 // level; i.e., what you write
   499 // is what you get. The Assembler is generating code into a CodeBuffer.
   501 class Assembler : public AbstractAssembler  {
   502  protected:
   504   static void print_instruction(int inst);
   505   static int  patched_branch(int dest_pos, int inst, int inst_pos);
   506   static int  branch_destination(int inst, int pos);
   509   friend class AbstractAssembler;
   511   // code patchers need various routines like inv_wdisp()
   512   friend class NativeInstruction;
   513   friend class NativeGeneralJump;
   514   friend class Relocation;
   515   friend class Label;
   517  public:
   518   // op carries format info; see page 62 & 267
   520   enum ops {
   521     call_op   = 1, // fmt 1
   522     branch_op = 0, // also sethi (fmt2)
   523     arith_op  = 2, // fmt 3, arith & misc
   524     ldst_op   = 3  // fmt 3, load/store
   525   };
   527   enum op2s {
   528     bpr_op2   = 3,
   529     fb_op2    = 6,
   530     fbp_op2   = 5,
   531     br_op2    = 2,
   532     bp_op2    = 1,
   533     cb_op2    = 7, // V8
   534     sethi_op2 = 4
   535   };
   537   enum op3s {
   538     // selected op3s
   539     add_op3      = 0x00,
   540     and_op3      = 0x01,
   541     or_op3       = 0x02,
   542     xor_op3      = 0x03,
   543     sub_op3      = 0x04,
   544     andn_op3     = 0x05,
   545     orn_op3      = 0x06,
   546     xnor_op3     = 0x07,
   547     addc_op3     = 0x08,
   548     mulx_op3     = 0x09,
   549     umul_op3     = 0x0a,
   550     smul_op3     = 0x0b,
   551     subc_op3     = 0x0c,
   552     udivx_op3    = 0x0d,
   553     udiv_op3     = 0x0e,
   554     sdiv_op3     = 0x0f,
   556     addcc_op3    = 0x10,
   557     andcc_op3    = 0x11,
   558     orcc_op3     = 0x12,
   559     xorcc_op3    = 0x13,
   560     subcc_op3    = 0x14,
   561     andncc_op3   = 0x15,
   562     orncc_op3    = 0x16,
   563     xnorcc_op3   = 0x17,
   564     addccc_op3   = 0x18,
   565     umulcc_op3   = 0x1a,
   566     smulcc_op3   = 0x1b,
   567     subccc_op3   = 0x1c,
   568     udivcc_op3   = 0x1e,
   569     sdivcc_op3   = 0x1f,
   571     taddcc_op3   = 0x20,
   572     tsubcc_op3   = 0x21,
   573     taddcctv_op3 = 0x22,
   574     tsubcctv_op3 = 0x23,
   575     mulscc_op3   = 0x24,
   576     sll_op3      = 0x25,
   577     sllx_op3     = 0x25,
   578     srl_op3      = 0x26,
   579     srlx_op3     = 0x26,
   580     sra_op3      = 0x27,
   581     srax_op3     = 0x27,
   582     rdreg_op3    = 0x28,
   583     membar_op3   = 0x28,
   585     flushw_op3   = 0x2b,
   586     movcc_op3    = 0x2c,
   587     sdivx_op3    = 0x2d,
   588     popc_op3     = 0x2e,
   589     movr_op3     = 0x2f,
   591     sir_op3      = 0x30,
   592     wrreg_op3    = 0x30,
   593     saved_op3    = 0x31,
   595     fpop1_op3    = 0x34,
   596     fpop2_op3    = 0x35,
   597     impdep1_op3  = 0x36,
   598     impdep2_op3  = 0x37,
   599     jmpl_op3     = 0x38,
   600     rett_op3     = 0x39,
   601     trap_op3     = 0x3a,
   602     flush_op3    = 0x3b,
   603     save_op3     = 0x3c,
   604     restore_op3  = 0x3d,
   605     done_op3     = 0x3e,
   606     retry_op3    = 0x3e,
   608     lduw_op3     = 0x00,
   609     ldub_op3     = 0x01,
   610     lduh_op3     = 0x02,
   611     ldd_op3      = 0x03,
   612     stw_op3      = 0x04,
   613     stb_op3      = 0x05,
   614     sth_op3      = 0x06,
   615     std_op3      = 0x07,
   616     ldsw_op3     = 0x08,
   617     ldsb_op3     = 0x09,
   618     ldsh_op3     = 0x0a,
   619     ldx_op3      = 0x0b,
   621     ldstub_op3   = 0x0d,
   622     stx_op3      = 0x0e,
   623     swap_op3     = 0x0f,
   625     lduwa_op3    = 0x10,
   626     ldxa_op3     = 0x1b,
   628     stwa_op3     = 0x14,
   629     stxa_op3     = 0x1e,
   631     ldf_op3      = 0x20,
   632     ldfsr_op3    = 0x21,
   633     ldqf_op3     = 0x22,
   634     lddf_op3     = 0x23,
   635     stf_op3      = 0x24,
   636     stfsr_op3    = 0x25,
   637     stqf_op3     = 0x26,
   638     stdf_op3     = 0x27,
   640     prefetch_op3 = 0x2d,
   643     ldc_op3      = 0x30,
   644     ldcsr_op3    = 0x31,
   645     lddc_op3     = 0x33,
   646     stc_op3      = 0x34,
   647     stcsr_op3    = 0x35,
   648     stdcq_op3    = 0x36,
   649     stdc_op3     = 0x37,
   651     casa_op3     = 0x3c,
   652     casxa_op3    = 0x3e,
   654     alt_bit_op3  = 0x10,
   655      cc_bit_op3  = 0x10
   656   };
   658   enum opfs {
   659     // selected opfs
   660     fmovs_opf   = 0x01,
   661     fmovd_opf   = 0x02,
   663     fnegs_opf   = 0x05,
   664     fnegd_opf   = 0x06,
   666     fadds_opf   = 0x41,
   667     faddd_opf   = 0x42,
   668     fsubs_opf   = 0x45,
   669     fsubd_opf   = 0x46,
   671     fmuls_opf   = 0x49,
   672     fmuld_opf   = 0x4a,
   673     fdivs_opf   = 0x4d,
   674     fdivd_opf   = 0x4e,
   676     fcmps_opf   = 0x51,
   677     fcmpd_opf   = 0x52,
   679     fstox_opf   = 0x81,
   680     fdtox_opf   = 0x82,
   681     fxtos_opf   = 0x84,
   682     fxtod_opf   = 0x88,
   683     fitos_opf   = 0xc4,
   684     fdtos_opf   = 0xc6,
   685     fitod_opf   = 0xc8,
   686     fstod_opf   = 0xc9,
   687     fstoi_opf   = 0xd1,
   688     fdtoi_opf   = 0xd2
   689   };
   691   enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7  };
   693   enum Condition {
   694      // for FBfcc & FBPfcc instruction
   695     f_never                     = 0,
   696     f_notEqual                  = 1,
   697     f_notZero                   = 1,
   698     f_lessOrGreater             = 2,
   699     f_unorderedOrLess           = 3,
   700     f_less                      = 4,
   701     f_unorderedOrGreater        = 5,
   702     f_greater                   = 6,
   703     f_unordered                 = 7,
   704     f_always                    = 8,
   705     f_equal                     = 9,
   706     f_zero                      = 9,
   707     f_unorderedOrEqual          = 10,
   708     f_greaterOrEqual            = 11,
   709     f_unorderedOrGreaterOrEqual = 12,
   710     f_lessOrEqual               = 13,
   711     f_unorderedOrLessOrEqual    = 14,
   712     f_ordered                   = 15,
   714     // V8 coproc, pp 123 v8 manual
   716     cp_always  = 8,
   717     cp_never   = 0,
   718     cp_3       = 7,
   719     cp_2       = 6,
   720     cp_2or3    = 5,
   721     cp_1       = 4,
   722     cp_1or3    = 3,
   723     cp_1or2    = 2,
   724     cp_1or2or3 = 1,
   725     cp_0       = 9,
   726     cp_0or3    = 10,
   727     cp_0or2    = 11,
   728     cp_0or2or3 = 12,
   729     cp_0or1    = 13,
   730     cp_0or1or3 = 14,
   731     cp_0or1or2 = 15,
   734     // for integers
   736     never                 =  0,
   737     equal                 =  1,
   738     zero                  =  1,
   739     lessEqual             =  2,
   740     less                  =  3,
   741     lessEqualUnsigned     =  4,
   742     lessUnsigned          =  5,
   743     carrySet              =  5,
   744     negative              =  6,
   745     overflowSet           =  7,
   746     always                =  8,
   747     notEqual              =  9,
   748     notZero               =  9,
   749     greater               =  10,
   750     greaterEqual          =  11,
   751     greaterUnsigned       =  12,
   752     greaterEqualUnsigned  =  13,
   753     carryClear            =  13,
   754     positive              =  14,
   755     overflowClear         =  15
   756   };
   758   enum CC {
   759     icc  = 0,  xcc  = 2,
   760     // ptr_cc is the correct condition code for a pointer or intptr_t:
   761     ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
   762     fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
   763   };
   765   enum PrefetchFcn {
   766     severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
   767   };
   769  public:
   770   // Helper functions for groups of instructions
   772   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
   774   enum Membar_mask_bits { // page 184, v9
   775     StoreStore = 1 << 3,
   776     LoadStore  = 1 << 2,
   777     StoreLoad  = 1 << 1,
   778     LoadLoad   = 1 << 0,
   780     Sync       = 1 << 6,
   781     MemIssue   = 1 << 5,
   782     Lookaside  = 1 << 4
   783   };
   785   // test if x is within signed immediate range for nbits
   786   static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 )  <= x   &&   x  <  ( 1 << nbits-1 ); }
   788   // test if -4096 <= x <= 4095
   789   static bool is_simm13(int x) { return is_simm(x, 13); }
   791   enum ASIs { // page 72, v9
   792     ASI_PRIMARY        = 0x80,
   793     ASI_PRIMARY_LITTLE = 0x88
   794     // add more from book as needed
   795   };
   797  protected:
   798   // helpers
   800   // x is supposed to fit in a field "nbits" wide
   801   // and be sign-extended. Check the range.
   803   static void assert_signed_range(intptr_t x, int nbits) {
   804     assert( nbits == 32
   805         ||  -(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1),
   806       "value out of range");
   807   }
   809   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
   810     assert( (x & 3) == 0, "not word aligned");
   811     assert_signed_range(x, nbits + 2);
   812   }
   814   static void assert_unsigned_const(int x, int nbits) {
   815     assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
   816   }
   818   // fields: note bits numbered from LSB = 0,
   819   //  fields known by inclusive bit range
   821   static int fmask(juint hi_bit, juint lo_bit) {
   822     assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
   823     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
   824   }
   826   // inverse of u_field
   828   static int inv_u_field(int x, int hi_bit, int lo_bit) {
   829     juint r = juint(x) >> lo_bit;
   830     r &= fmask( hi_bit, lo_bit);
   831     return int(r);
   832   }
   835   // signed version: extract from field and sign-extend
   837   static int inv_s_field(int x, int hi_bit, int lo_bit) {
   838     int sign_shift = 31 - hi_bit;
   839     return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
   840   }
   842   // given a field that ranges from hi_bit to lo_bit (inclusive,
   843   // LSB = 0), and an unsigned value for the field,
   844   // shift it into the field
   846 #ifdef ASSERT
   847   static int u_field(int x, int hi_bit, int lo_bit) {
   848     assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
   849             "value out of range");
   850     int r = x << lo_bit;
   851     assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
   852     return r;
   853   }
   854 #else
   855   // make sure this is inlined as it will reduce code size significantly
   856   #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
   857 #endif
   859   static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
   860   static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
   861   static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
   862   static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
   864   static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
   866   static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
   867   static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
   868   static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
   870   static int op(       int         x)  { return  u_field(x,             31, 30); }
   871   static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
   872   static int fcn(      int         x)  { return  u_field(x,             29, 25); }
   873   static int op3(      int         x)  { return  u_field(x,             24, 19); }
   874   static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
   875   static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
   876   static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
   877   static int cond(     int         x)  { return  u_field(x,             28, 25); }
   878   static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
   879   static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
   880   static int op2(      int         x)  { return  u_field(x,             24, 22); }
   881   static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
   882   static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
   883   static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
   884   static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
   885   static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
   886   static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
   887   static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
   888   static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
   889   static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
   890   static int opf(      int         x)  { return  u_field(x,             13,  5); }
   892   static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
   893   static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
   895   static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
   896   static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
   897   static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
   899   // some float instructions use this encoding on the op3 field
   900   static int alt_op3(int op, FloatRegisterImpl::Width w) {
   901     int r;
   902     switch(w) {
   903      case FloatRegisterImpl::S: r = op + 0;  break;
   904      case FloatRegisterImpl::D: r = op + 3;  break;
   905      case FloatRegisterImpl::Q: r = op + 2;  break;
   906      default: ShouldNotReachHere(); break;
   907     }
   908     return op3(r);
   909   }
   912   // compute inverse of simm
   913   static int inv_simm(int x, int nbits) {
   914     return (int)(x << (32 - nbits)) >> (32 - nbits);
   915   }
   917   static int inv_simm13( int x ) { return inv_simm(x, 13); }
   919   // signed immediate, in low bits, nbits long
   920   static int simm(int x, int nbits) {
   921     assert_signed_range(x, nbits);
   922     return x  &  (( 1 << nbits ) - 1);
   923   }
   925   // compute inverse of wdisp16
   926   static intptr_t inv_wdisp16(int x, intptr_t pos) {
   927     int lo = x & (( 1 << 14 ) - 1);
   928     int hi = (x >> 20) & 3;
   929     if (hi >= 2) hi |= ~1;
   930     return (((hi << 14) | lo) << 2) + pos;
   931   }
   933   // word offset, 14 bits at LSend, 2 bits at B21, B20
   934   static int wdisp16(intptr_t x, intptr_t off) {
   935     intptr_t xx = x - off;
   936     assert_signed_word_disp_range(xx, 16);
   937     int r =  (xx >> 2) & ((1 << 14) - 1)
   938            |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
   939     assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
   940     return r;
   941   }
   944   // word displacement in low-order nbits bits
   946   static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
   947     int pre_sign_extend = x & (( 1 << nbits ) - 1);
   948     int r =  pre_sign_extend >= ( 1 << (nbits-1) )
   949        ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
   950        :   pre_sign_extend;
   951     return (r << 2) + pos;
   952   }
   954   static int wdisp( intptr_t x, intptr_t off, int nbits ) {
   955     intptr_t xx = x - off;
   956     assert_signed_word_disp_range(xx, nbits);
   957     int r =  (xx >> 2) & (( 1 << nbits ) - 1);
   958     assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
   959     return r;
   960   }
   963   // Extract the top 32 bits in a 64 bit word
   964   static int32_t hi32( int64_t x ) {
   965     int32_t r = int32_t( (uint64_t)x >> 32 );
   966     return r;
   967   }
   969   // given a sethi instruction, extract the constant, left-justified
   970   static int inv_hi22( int x ) {
   971     return x << 10;
   972   }
   974   // create an imm22 field, given a 32-bit left-justified constant
   975   static int hi22( int x ) {
   976     int r = int( juint(x) >> 10 );
   977     assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
   978     return r;
   979   }
   981   // create a low10 __value__ (not a field) for a given a 32-bit constant
   982   static int low10( int x ) {
   983     return x & ((1 << 10) - 1);
   984   }
   986   // instruction only in v9
   987   static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
   989   // instruction only in v8
   990   static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
   992   // instruction deprecated in v9
   993   static void v9_dep()  { } // do nothing for now
   995   // some float instructions only exist for single prec. on v8
   996   static void v8_s_only(FloatRegisterImpl::Width w)  { if (w != FloatRegisterImpl::S)  v9_only(); }
   998   // v8 has no CC field
   999   static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
  1001  protected:
  1002   // Simple delay-slot scheme:
  1003   // In order to check the programmer, the assembler keeps track of deley slots.
  1004   // It forbids CTIs in delay slots (conservative, but should be OK).
  1005   // Also, when putting an instruction into a delay slot, you must say
  1006   // asm->delayed()->add(...), in order to check that you don't omit
  1007   // delay-slot instructions.
  1008   // To implement this, we use a simple FSA
  1010 #ifdef ASSERT
  1011   #define CHECK_DELAY
  1012 #endif
  1013 #ifdef CHECK_DELAY
  1014   enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
  1015 #endif
  1017  public:
  1018   // Tells assembler next instruction must NOT be in delay slot.
  1019   // Use at start of multinstruction macros.
  1020   void assert_not_delayed() {
  1021     // This is a separate overloading to avoid creation of string constants
  1022     // in non-asserted code--with some compilers this pollutes the object code.
  1023 #ifdef CHECK_DELAY
  1024     assert_not_delayed("next instruction should not be a delay slot");
  1025 #endif
  1027   void assert_not_delayed(const char* msg) {
  1028 #ifdef CHECK_DELAY
  1029     assert_msg ( delay_state == no_delay, msg);
  1030 #endif
  1033  protected:
  1034   // Delay slot helpers
  1035   // cti is called when emitting control-transfer instruction,
  1036   // BEFORE doing the emitting.
  1037   // Only effective when assertion-checking is enabled.
  1038   void cti() {
  1039 #ifdef CHECK_DELAY
  1040     assert_not_delayed("cti should not be in delay slot");
  1041 #endif
  1044   // called when emitting cti with a delay slot, AFTER emitting
  1045   void has_delay_slot() {
  1046 #ifdef CHECK_DELAY
  1047     assert_not_delayed("just checking");
  1048     delay_state = at_delay_slot;
  1049 #endif
  1052 public:
  1053   // Tells assembler you know that next instruction is delayed
  1054   Assembler* delayed() {
  1055 #ifdef CHECK_DELAY
  1056     assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
  1057     delay_state = filling_delay_slot;
  1058 #endif
  1059     return this;
  1062   void flush() {
  1063 #ifdef CHECK_DELAY
  1064     assert ( delay_state == no_delay, "ending code with a delay slot");
  1065 #endif
  1066     AbstractAssembler::flush();
  1069   inline void emit_long(int);  // shadows AbstractAssembler::emit_long
  1070   inline void emit_data(int x) { emit_long(x); }
  1071   inline void emit_data(int, RelocationHolder const&);
  1072   inline void emit_data(int, relocInfo::relocType rtype);
  1073   // helper for above fcns
  1074   inline void check_delay();
  1077  public:
  1078   // instructions, refer to page numbers in the SPARC Architecture Manual, V9
  1080   // pp 135 (addc was addx in v8)
  1082   inline void add(    Register s1, Register s2, Register d );
  1083   inline void add(    Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
  1084   inline void add(    Register s1, int simm13a, Register d, RelocationHolder const& rspec);
  1085   inline void add(    const Address&  a,              Register d, int offset = 0);
  1087   void addcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1088   void addcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1089   void addc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
  1090   void addc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1091   void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1092   void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1094   // pp 136
  1096   inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
  1097   inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
  1099  protected: // use MacroAssembler::br instead
  1101   // pp 138
  1103   inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  1104   inline void fb( Condition c, bool a, Label& L );
  1106   // pp 141
  1108   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1109   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
  1111  public:
  1113   // pp 144
  1115   inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  1116   inline void br( Condition c, bool a, Label& L );
  1118   // pp 146
  1120   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1121   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
  1123   // pp 121 (V8)
  1125   inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  1126   inline void cb( Condition c, bool a, Label& L );
  1128   // pp 149
  1130   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
  1131   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
  1133   // pp 150
  1135   // These instructions compare the contents of s2 with the contents of
  1136   // memory at address in s1. If the values are equal, the contents of memory
  1137   // at address s1 is swapped with the data in d. If the values are not equal,
  1138   // the the contents of memory at s1 is loaded into d, without the swap.
  1140   void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
  1141   void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
  1143   // pp 152
  1145   void udiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
  1146   void udiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1147   void sdiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
  1148   void sdiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1149   void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
  1150   void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1151   void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
  1152   void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1154   // pp 155
  1156   void done()  { v9_only();  cti();  emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
  1157   void retry() { v9_only();  cti();  emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
  1159   // pp 156
  1161   void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
  1162   void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
  1164   // pp 157
  1166   void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
  1167   void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
  1169   // pp 159
  1171   void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
  1172   void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
  1174   // pp 160
  1176   void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
  1178   // pp 161
  1180   void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
  1181   void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
  1183   // pp 162
  1185   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
  1187   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
  1189   // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
  1190   // on v8 to do negation of single, double and quad precision floats.
  1192   void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) |  opf(0x05) | fs2(sd, w)); }
  1194   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
  1196   // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
  1197   // on v8 to do abs operation on single/double/quad precision floats.
  1199   void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
  1201   // pp 163
  1203   void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
  1204   void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
  1205   void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
  1207   // pp 164
  1209   void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
  1211   // pp 165
  1213   inline void flush( Register s1, Register s2 );
  1214   inline void flush( Register s1, int simm13a);
  1216   // pp 167
  1218   void flushw() { v9_only();  emit_long( op(arith_op) | op3(flushw_op3) ); }
  1220   // pp 168
  1222   void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
  1223   // v8 unimp == illtrap(0)
  1225   // pp 169
  1227   void impdep1( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
  1228   void impdep2( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
  1230   // pp 149 (v8)
  1232   void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
  1233   void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
  1235   // pp 170
  1237   void jmpl( Register s1, Register s2, Register d );
  1238   void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1240   inline void jmpl( Address& a, Register d, int offset = 0);
  1242   // 171
  1244   inline void ldf(    FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d );
  1245   inline void ldf(    FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d );
  1247   inline void ldf(    FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
  1250   inline void ldfsr(  Register s1, Register s2 );
  1251   inline void ldfsr(  Register s1, int simm13a);
  1252   inline void ldxfsr( Register s1, Register s2 );
  1253   inline void ldxfsr( Register s1, int simm13a);
  1255   // pp 94 (v8)
  1257   inline void ldc(   Register s1, Register s2, int crd );
  1258   inline void ldc(   Register s1, int simm13a, int crd);
  1259   inline void lddc(  Register s1, Register s2, int crd );
  1260   inline void lddc(  Register s1, int simm13a, int crd);
  1261   inline void ldcsr( Register s1, Register s2, int crd );
  1262   inline void ldcsr( Register s1, int simm13a, int crd);
  1265   // 173
  1267   void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1268   void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1270   // pp 175, lduw is ld on v8
  1272   inline void ldsb(  Register s1, Register s2, Register d );
  1273   inline void ldsb(  Register s1, int simm13a, Register d);
  1274   inline void ldsh(  Register s1, Register s2, Register d );
  1275   inline void ldsh(  Register s1, int simm13a, Register d);
  1276   inline void ldsw(  Register s1, Register s2, Register d );
  1277   inline void ldsw(  Register s1, int simm13a, Register d);
  1278   inline void ldub(  Register s1, Register s2, Register d );
  1279   inline void ldub(  Register s1, int simm13a, Register d);
  1280   inline void lduh(  Register s1, Register s2, Register d );
  1281   inline void lduh(  Register s1, int simm13a, Register d);
  1282   inline void lduw(  Register s1, Register s2, Register d );
  1283   inline void lduw(  Register s1, int simm13a, Register d);
  1284   inline void ldx(   Register s1, Register s2, Register d );
  1285   inline void ldx(   Register s1, int simm13a, Register d);
  1286   inline void ld(    Register s1, Register s2, Register d );
  1287   inline void ld(    Register s1, int simm13a, Register d);
  1288   inline void ldd(   Register s1, Register s2, Register d );
  1289   inline void ldd(   Register s1, int simm13a, Register d);
  1291   inline void ldsb( const Address& a, Register d, int offset = 0 );
  1292   inline void ldsh( const Address& a, Register d, int offset = 0 );
  1293   inline void ldsw( const Address& a, Register d, int offset = 0 );
  1294   inline void ldub( const Address& a, Register d, int offset = 0 );
  1295   inline void lduh( const Address& a, Register d, int offset = 0 );
  1296   inline void lduw( const Address& a, Register d, int offset = 0 );
  1297   inline void ldx(  const Address& a, Register d, int offset = 0 );
  1298   inline void ld(   const Address& a, Register d, int offset = 0 );
  1299   inline void ldd(  const Address& a, Register d, int offset = 0 );
  1301   // pp 177
  1303   void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1304   void ldsba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1305   void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1306   void ldsha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1307   void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1308   void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1309   void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1310   void lduba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1311   void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1312   void lduha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1313   void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1314   void lduwa(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1315   void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1316   void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1317   void ldda(   Register s1, Register s2, int ia, Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1318   void ldda(   Register s1, int simm13a,         Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1320   // pp 179
  1322   inline void ldstub(  Register s1, Register s2, Register d );
  1323   inline void ldstub(  Register s1, int simm13a, Register d);
  1325   // pp 180
  1327   void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1328   void ldstuba( Register s1, int simm13a,         Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1330   // pp 181
  1332   void and3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3               ) | rs1(s1) | rs2(s2) ); }
  1333   void and3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1334   void andcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1335   void andcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1336   void andn(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
  1337   void andn(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1338   void andncc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1339   void andncc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1340   void or3(      Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
  1341   void or3(      Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1342   void orcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1343   void orcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1344   void orn(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
  1345   void orn(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1346   void orncc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1347   void orncc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1348   void xor3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
  1349   void xor3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1350   void xorcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1351   void xorcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1352   void xnor(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
  1353   void xnor(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1354   void xnorcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1355   void xnorcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1357   // pp 183
  1359   void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
  1361   // pp 185
  1363   void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
  1365   // pp 189
  1367   void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
  1369   // pp 191
  1371   void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
  1372   void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
  1374   // pp 195
  1376   void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
  1377   void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
  1379   // pp 196
  1381   void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
  1382   void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1383   void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
  1384   void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1385   void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
  1386   void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1388   // pp 197
  1390   void umul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
  1391   void umul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1392   void smul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
  1393   void smul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1394   void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1395   void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1396   void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1397   void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1399   // pp 199
  1401   void mulscc(   Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
  1402   void mulscc(   Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1404   // pp 201
  1406   void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
  1409   // pp 202
  1411   void popc( Register s,  Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
  1412   void popc( int simm13a, Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
  1414   // pp 203
  1416   void prefetch(   Register s1, Register s2,         PrefetchFcn f);
  1417   void prefetch(   Register s1, int simm13a,         PrefetchFcn f);
  1418   void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1419   void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1421   inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
  1423   // pp 208
  1425   // not implementing read privileged register
  1427   inline void rdy(    Register d) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
  1428   inline void rdccr(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
  1429   inline void rdasi(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
  1430   inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
  1431   inline void rdpc(   Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
  1432   inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
  1434   // pp 213
  1436   inline void rett( Register s1, Register s2);
  1437   inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
  1439   // pp 214
  1441   void save(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
  1442   void save(    Register s1, int simm13a, Register d ) {
  1443     // make sure frame is at least large enough for the register save area
  1444     assert(-simm13a >= 16 * wordSize, "frame too small");
  1445     emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
  1448   void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
  1449   void restore( Register s1,       int simm13a,      Register d      ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1451   // pp 216
  1453   void saved()    { v9_only();  emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
  1454   void restored() { v9_only();  emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
  1456   // pp 217
  1458   inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1459   // pp 218
  1461   void sll(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1462   void sll(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1463   void srl(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1464   void srl(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1465   void sra(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  1466   void sra(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  1468   void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1469   void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1470   void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1471   void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1472   void srax( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  1473   void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  1475   // pp 220
  1477   void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
  1479   // pp 221
  1481   void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
  1483   // pp 222
  1485   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2 );
  1486   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
  1487   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
  1489   inline void stfsr(  Register s1, Register s2 );
  1490   inline void stfsr(  Register s1, int simm13a);
  1491   inline void stxfsr( Register s1, Register s2 );
  1492   inline void stxfsr( Register s1, int simm13a);
  1494   //  pp 224
  1496   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1497   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1499   // p 226
  1501   inline void stb(  Register d, Register s1, Register s2 );
  1502   inline void stb(  Register d, Register s1, int simm13a);
  1503   inline void sth(  Register d, Register s1, Register s2 );
  1504   inline void sth(  Register d, Register s1, int simm13a);
  1505   inline void stw(  Register d, Register s1, Register s2 );
  1506   inline void stw(  Register d, Register s1, int simm13a);
  1507   inline void st(   Register d, Register s1, Register s2 );
  1508   inline void st(   Register d, Register s1, int simm13a);
  1509   inline void stx(  Register d, Register s1, Register s2 );
  1510   inline void stx(  Register d, Register s1, int simm13a);
  1511   inline void std(  Register d, Register s1, Register s2 );
  1512   inline void std(  Register d, Register s1, int simm13a);
  1514   inline void stb(  Register d, const Address& a, int offset = 0 );
  1515   inline void sth(  Register d, const Address& a, int offset = 0 );
  1516   inline void stw(  Register d, const Address& a, int offset = 0 );
  1517   inline void stx(  Register d, const Address& a, int offset = 0 );
  1518   inline void st(   Register d, const Address& a, int offset = 0 );
  1519   inline void std(  Register d, const Address& a, int offset = 0 );
  1521   // pp 177
  1523   void stba(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1524   void stba(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1525   void stha(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1526   void stha(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1527   void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1528   void stwa(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1529   void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1530   void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1531   void stda(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1532   void stda(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1534   // pp 97 (v8)
  1536   inline void stc(   int crd, Register s1, Register s2 );
  1537   inline void stc(   int crd, Register s1, int simm13a);
  1538   inline void stdc(  int crd, Register s1, Register s2 );
  1539   inline void stdc(  int crd, Register s1, int simm13a);
  1540   inline void stcsr( int crd, Register s1, Register s2 );
  1541   inline void stcsr( int crd, Register s1, int simm13a);
  1542   inline void stdcq( int crd, Register s1, Register s2 );
  1543   inline void stdcq( int crd, Register s1, int simm13a);
  1545   // pp 230
  1547   void sub(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
  1548   void sub(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1549   void subcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
  1550   void subcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1551   void subc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
  1552   void subc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1553   void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  1554   void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1556   // pp 231
  1558   inline void swap( Register s1, Register s2, Register d );
  1559   inline void swap( Register s1, int simm13a, Register d);
  1560   inline void swap( Address& a,               Register d, int offset = 0 );
  1562   // pp 232
  1564   void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  1565   void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1567   // pp 234, note op in book is wrong, see pp 268
  1569   void taddcc(    Register s1, Register s2, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1570   void taddcc(    Register s1, int simm13a, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1571   void taddcctv(  Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
  1572   void taddcctv(  Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1574   // pp 235
  1576   void tsubcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
  1577   void tsubcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1578   void tsubcctv(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
  1579   void tsubcctv(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  1581   // pp 237
  1583   void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
  1584   void trap( Condition c, CC cc, Register s1, int trapa   ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
  1585   // simple uncond. trap
  1586   void trap( int trapa ) { trap( always, icc, G0, trapa ); }
  1588   // pp 239 omit write priv register for now
  1590   inline void wry(    Register d) { v9_dep();  emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
  1591   inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
  1592   inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
  1593                                                                            rs1(s) |
  1594                                                                            op3(wrreg_op3) |
  1595                                                                            u_field(2, 29, 25) |
  1596                                                                            u_field(1, 13, 13) |
  1597                                                                            simm(simm13a, 13)); }
  1598   inline void wrasi(  Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
  1599   inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
  1601   // For a given register condition, return the appropriate condition code
  1602   // Condition (the one you would use to get the same effect after "tst" on
  1603   // the target register.)
  1604   Assembler::Condition reg_cond_to_cc_cond(RCondition in);
  1607   // Creation
  1608   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
  1609 #ifdef CHECK_DELAY
  1610     delay_state = no_delay;
  1611 #endif
  1614   // Testing
  1615 #ifndef PRODUCT
  1616   void test_v9();
  1617   void test_v8_onlys();
  1618 #endif
  1619 };
  1622 class RegistersForDebugging : public StackObj {
  1623  public:
  1624   intptr_t i[8], l[8], o[8], g[8];
  1625   float    f[32];
  1626   double   d[32];
  1628   void print(outputStream* s);
  1630   static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
  1631   static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
  1632   static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
  1633   static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
  1634   static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
  1635   static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
  1637   // gen asm code to save regs
  1638   static void save_registers(MacroAssembler* a);
  1640   // restore global registers in case C code disturbed them
  1641   static void restore_registers(MacroAssembler* a, Register r);
  1644 };
  1647 // MacroAssembler extends Assembler by a few frequently used macros.
  1648 //
  1649 // Most of the standard SPARC synthetic ops are defined here.
  1650 // Instructions for which a 'better' code sequence exists depending
  1651 // on arguments should also go in here.
  1653 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
  1654 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
  1655 #define JUMP(a, off)     jump(a, off, __FILE__, __LINE__)
  1656 #define JUMPL(a, d, off) jumpl(a, d, off, __FILE__, __LINE__)
  1659 class MacroAssembler: public Assembler {
  1660  protected:
  1661   // Support for VM calls
  1662   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1663   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1664   // additional registers when doing a VM call).
  1665 #ifdef CC_INTERP
  1666   #define VIRTUAL
  1667 #else
  1668   #define VIRTUAL virtual
  1669 #endif
  1671   VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
  1673   //
  1674   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1675   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1676   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1677   //
  1678   // This is the base routine called by the different versions of call_VM. The interpreter
  1679   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1680   // additional registers when doing a VM call).
  1681   //
  1682   // A non-volatile java_thread_cache register should be specified so
  1683   // that the G2_thread value can be preserved across the call.
  1684   // (If java_thread_cache is noreg, then a slow get_thread call
  1685   // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
  1686   // thread.
  1687   //
  1688   // If no last_java_sp is specified (noreg) than SP will be used instead.
  1690   virtual void call_VM_base(
  1691     Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
  1692     Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
  1693     Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
  1694     address         entry_point,            // the entry point
  1695     int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
  1696     bool            check_exception=true    // flag which indicates if exception should be checked
  1697   );
  1699   // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1700   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1701   // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
  1702   virtual void check_and_handle_popframe(Register scratch_reg);
  1703   virtual void check_and_handle_earlyret(Register scratch_reg);
  1705  public:
  1706   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1708   // Support for NULL-checks
  1709   //
  1710   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1711   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1712   // offset.  No explicit code generation is needed if the offset is within a certain
  1713   // range (0 <= offset <= page_size).
  1714   //
  1715   // %%%%%% Currently not done for SPARC
  1717   void null_check(Register reg, int offset = -1);
  1718   static bool needs_explicit_null_check(intptr_t offset);
  1720   // support for delayed instructions
  1721   MacroAssembler* delayed() { Assembler::delayed();  return this; }
  1723   // branches that use right instruction for v8 vs. v9
  1724   inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1725   inline void br( Condition c, bool a, Predict p, Label& L );
  1726   inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1727   inline void fb( Condition c, bool a, Predict p, Label& L );
  1729   // compares register with zero and branches (V9 and V8 instructions)
  1730   void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
  1731   // Compares a pointer register with zero and branches on (not)null.
  1732   // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  1733   void br_null   ( Register s1, bool a, Predict p, Label& L );
  1734   void br_notnull( Register s1, bool a, Predict p, Label& L );
  1736   // These versions will do the most efficient thing on v8 and v9.  Perhaps
  1737   // this is what the routine above was meant to do, but it didn't (and
  1738   // didn't cover both target address kinds.)
  1739   void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
  1740   void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, Label& L);
  1742   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1743   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
  1745   // Branch that tests xcc in LP64 and icc in !LP64
  1746   inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1747   inline void brx( Condition c, bool a, Predict p, Label& L );
  1749   // unconditional short branch
  1750   inline void ba( bool a, Label& L );
  1752   // Branch that tests fp condition codes
  1753   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  1754   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
  1756   // get PC the best way
  1757   inline int get_pc( Register d );
  1759   // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
  1760   inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
  1761   inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
  1763   inline void jmp( Register s1, Register s2 );
  1764   inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
  1766   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
  1767   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
  1768   inline void callr( Register s1, Register s2 );
  1769   inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
  1771   // Emits nothing on V8
  1772   inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
  1773   inline void iprefetch( Label& L);
  1775   inline void tst( Register s ) { orcc( G0, s, G0 ); }
  1777 #ifdef PRODUCT
  1778   inline void ret(  bool trace = TraceJumps )   { if (trace) {
  1779                                                     mov(I7, O7); // traceable register
  1780                                                     JMP(O7, 2 * BytesPerInstWord);
  1781                                                   } else {
  1782                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
  1786   inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
  1787                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
  1788 #else
  1789   void ret(  bool trace = TraceJumps );
  1790   void retl( bool trace = TraceJumps );
  1791 #endif /* PRODUCT */
  1793   // Required platform-specific helpers for Label::patch_instructions.
  1794   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1795   void pd_patch_instruction(address branch, address target);
  1796 #ifndef PRODUCT
  1797   static void pd_print_patched_instruction(address branch);
  1798 #endif
  1800   // sethi Macro handles optimizations and relocations
  1801   void sethi( Address& a, bool ForceRelocatable = false );
  1802   void sethi( intptr_t imm22a, Register d, bool ForceRelocatable = false, RelocationHolder const& rspec = RelocationHolder());
  1804   // compute the size of a sethi/set
  1805   static int  size_of_sethi( address a, bool worst_case = false );
  1806   static int  worst_case_size_of_set();
  1808   // set may be either setsw or setuw (high 32 bits may be zero or sign)
  1809   void set(    intptr_t value, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1810   void setsw(  int value, Register d, RelocationHolder const& rspec = RelocationHolder() );
  1811   void set64(  jlong value, Register d, Register tmp);
  1813   // sign-extend 32 to 64
  1814   inline void signx( Register s, Register d ) { sra( s, G0, d); }
  1815   inline void signx( Register d )             { sra( d, G0, d); }
  1817   inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
  1818   inline void not1( Register d )             { xnor( d, G0, d ); }
  1820   inline void neg( Register s, Register d ) { sub( G0, s, d ); }
  1821   inline void neg( Register d )             { sub( G0, d, d ); }
  1823   inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
  1824   inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
  1825   // Functions for isolating 64 bit atomic swaps for LP64
  1826   // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
  1827   inline void cas_ptr(  Register s1, Register s2, Register d) {
  1828 #ifdef _LP64
  1829     casx( s1, s2, d );
  1830 #else
  1831     cas( s1, s2, d );
  1832 #endif
  1835   // Functions for isolating 64 bit shifts for LP64
  1836   inline void sll_ptr( Register s1, Register s2, Register d );
  1837   inline void sll_ptr( Register s1, int imm6a,   Register d );
  1838   inline void srl_ptr( Register s1, Register s2, Register d );
  1839   inline void srl_ptr( Register s1, int imm6a,   Register d );
  1841   // little-endian
  1842   inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
  1843   inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
  1845   inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
  1846   inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
  1848   inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
  1849   inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
  1851   inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
  1852   inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
  1854   inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
  1855   inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
  1857   inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
  1858   inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
  1860   inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
  1861   inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
  1863   inline void clr( Register d ) { or3( G0, G0, d ); }
  1865   inline void clrb( Register s1, Register s2);
  1866   inline void clrh( Register s1, Register s2);
  1867   inline void clr(  Register s1, Register s2);
  1868   inline void clrx( Register s1, Register s2);
  1870   inline void clrb( Register s1, int simm13a);
  1871   inline void clrh( Register s1, int simm13a);
  1872   inline void clr(  Register s1, int simm13a);
  1873   inline void clrx( Register s1, int simm13a);
  1875   // copy & clear upper word
  1876   inline void clruw( Register s, Register d ) { srl( s, G0, d); }
  1877   // clear upper word
  1878   inline void clruwu( Register d ) { srl( d, G0, d); }
  1880   // membar psuedo instruction.  takes into account target memory model.
  1881   inline void membar( Assembler::Membar_mask_bits const7a );
  1883   // returns if membar generates anything.
  1884   inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
  1886   // mov pseudo instructions
  1887   inline void mov( Register s,  Register d) {
  1888     if ( s != d )    or3( G0, s, d);
  1889     else             assert_not_delayed();  // Put something useful in the delay slot!
  1892   inline void mov_or_nop( Register s,  Register d) {
  1893     if ( s != d )    or3( G0, s, d);
  1894     else             nop();
  1897   inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
  1899   // address pseudos: make these names unlike instruction names to avoid confusion
  1900   inline void split_disp(    Address& a, Register temp );
  1901   inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
  1902   inline void load_address(  Address& a, int offset = 0 );
  1903   inline void load_contents( Address& a, Register d, int offset = 0 );
  1904   inline void load_ptr_contents( Address& a, Register d, int offset = 0 );
  1905   inline void store_contents( Register s, Address& a, int offset = 0 );
  1906   inline void store_ptr_contents( Register s, Address& a, int offset = 0 );
  1907   inline void jumpl_to( Address& a, Register d, int offset = 0 );
  1908   inline void jump_to(  Address& a,             int offset = 0 );
  1910   // ring buffer traceable jumps
  1912   void jmp2( Register r1, Register r2, const char* file, int line );
  1913   void jmp ( Register r1, int offset,  const char* file, int line );
  1915   void jumpl( Address& a, Register d, int offset, const char* file, int line );
  1916   void jump ( Address& a,             int offset, const char* file, int line );
  1919   // argument pseudos:
  1921   inline void load_argument( Argument& a, Register  d );
  1922   inline void store_argument( Register s, Argument& a );
  1923   inline void store_ptr_argument( Register s, Argument& a );
  1924   inline void store_float_argument( FloatRegister s, Argument& a );
  1925   inline void store_double_argument( FloatRegister s, Argument& a );
  1926   inline void store_long_argument( Register s, Argument& a );
  1928   // handy macros:
  1930   inline void round_to( Register r, int modulus ) {
  1931     assert_not_delayed();
  1932     inc( r, modulus - 1 );
  1933     and3( r, -modulus, r );
  1936   // --------------------------------------------------
  1938   // Functions for isolating 64 bit loads for LP64
  1939   // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
  1940   // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
  1941   inline void ld_ptr(   Register s1, Register s2, Register d );
  1942   inline void ld_ptr(   Register s1, int simm13a, Register d);
  1943   inline void ld_ptr(  const Address& a, Register d, int offset = 0 );
  1944   inline void st_ptr(  Register d, Register s1, Register s2 );
  1945   inline void st_ptr(  Register d, Register s1, int simm13a);
  1946   inline void st_ptr(  Register d, const Address& a, int offset = 0 );
  1948   // ld_long will perform ld for 32 bit VM's and ldx for 64 bit VM's
  1949   // st_long will perform st for 32 bit VM's and stx for 64 bit VM's
  1950   inline void ld_long( Register s1, Register s2, Register d );
  1951   inline void ld_long( Register s1, int simm13a, Register d );
  1952   inline void ld_long( const Address& a, Register d, int offset = 0 );
  1953   inline void st_long( Register d, Register s1, Register s2 );
  1954   inline void st_long( Register d, Register s1, int simm13a );
  1955   inline void st_long( Register d, const Address& a, int offset = 0 );
  1957   // --------------------------------------------------
  1959  public:
  1960   // traps as per trap.h (SPARC ABI?)
  1962   void breakpoint_trap();
  1963   void breakpoint_trap(Condition c, CC cc = icc);
  1964   void flush_windows_trap();
  1965   void clean_windows_trap();
  1966   void get_psr_trap();
  1967   void set_psr_trap();
  1969   // V8/V9 flush_windows
  1970   void flush_windows();
  1972   // Support for serializing memory accesses between threads
  1973   void serialize_memory(Register thread, Register tmp1, Register tmp2);
  1975   // Stack frame creation/removal
  1976   void enter();
  1977   void leave();
  1979   // V8/V9 integer multiply
  1980   void mult(Register s1, Register s2, Register d);
  1981   void mult(Register s1, int simm13a, Register d);
  1983   // V8/V9 read and write of condition codes.
  1984   void read_ccr(Register d);
  1985   void write_ccr(Register s);
  1987   // Manipulation of C++ bools
  1988   // These are idioms to flag the need for care with accessing bools but on
  1989   // this platform we assume byte size
  1991   inline void stbool( Register d, const Address& a, int offset = 0 ) { stb(d, a, offset); }
  1992   inline void ldbool( const Address& a, Register d, int offset = 0 ) { ldsb( a, d, offset ); }
  1993   inline void tstbool( Register s ) { tst(s); }
  1994   inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
  1996   // klass oop manipulations if compressed
  1997   void load_klass(Register src_oop, Register klass);
  1998   void store_klass(Register klass, Register dst_oop);
  1999   void store_klass_gap(Register s, Register dst_oop);
  2001    // oop manipulations
  2002   void load_heap_oop(const Address& s, Register d, int offset = 0);
  2003   void load_heap_oop(Register s1, Register s2, Register d);
  2004   void load_heap_oop(Register s1, int simm13a, Register d);
  2005   void store_heap_oop(Register d, Register s1, Register s2);
  2006   void store_heap_oop(Register d, Register s1, int simm13a);
  2007   void store_heap_oop(Register d, const Address& a, int offset = 0);
  2009   void encode_heap_oop(Register src, Register dst);
  2010   void encode_heap_oop(Register r) {
  2011     encode_heap_oop(r, r);
  2013   void decode_heap_oop(Register src, Register dst);
  2014   void decode_heap_oop(Register r) {
  2015     decode_heap_oop(r, r);
  2017   void encode_heap_oop_not_null(Register r);
  2018   void decode_heap_oop_not_null(Register r);
  2019   void encode_heap_oop_not_null(Register src, Register dst);
  2020   void decode_heap_oop_not_null(Register src, Register dst);
  2022   // Support for managing the JavaThread pointer (i.e.; the reference to
  2023   // thread-local information).
  2024   void get_thread();                                // load G2_thread
  2025   void verify_thread();                             // verify G2_thread contents
  2026   void save_thread   (const Register threache); // save to cache
  2027   void restore_thread(const Register thread_cache); // restore from cache
  2029   // Support for last Java frame (but use call_VM instead where possible)
  2030   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
  2031   void reset_last_Java_frame(void);
  2033   // Call into the VM.
  2034   // Passes the thread pointer (in O0) as a prepended argument.
  2035   // Makes sure oop return values are visible to the GC.
  2036   void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  2037   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
  2038   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  2039   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  2041   // these overloadings are not presently used on SPARC:
  2042   void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  2043   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
  2044   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  2045   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  2047   void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
  2048   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
  2049   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
  2050   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
  2052   void get_vm_result  (Register oop_result);
  2053   void get_vm_result_2(Register oop_result);
  2055   // vm result is currently getting hijacked to for oop preservation
  2056   void set_vm_result(Register oop_result);
  2058   // if call_VM_base was called with check_exceptions=false, then call
  2059   // check_and_forward_exception to handle exceptions when it is safe
  2060   void check_and_forward_exception(Register scratch_reg);
  2062  private:
  2063   // For V8
  2064   void read_ccr_trap(Register ccr_save);
  2065   void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
  2067 #ifdef ASSERT
  2068   // For V8 debugging.  Uses V8 instruction sequence and checks
  2069   // result with V9 insturctions rdccr and wrccr.
  2070   // Uses Gscatch and Gscatch2
  2071   void read_ccr_v8_assert(Register ccr_save);
  2072   void write_ccr_v8_assert(Register ccr_save);
  2073 #endif // ASSERT
  2075  public:
  2077   // Write to card table for - register is destroyed afterwards.
  2078   void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
  2080   void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
  2082 #ifndef SERIALGC
  2083   // Array store and offset
  2084   void g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs);
  2086   void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
  2088   // May do filtering, depending on the boolean arguments.
  2089   void g1_card_table_write(jbyte* byte_map_base,
  2090                            Register tmp, Register obj, Register new_val,
  2091                            bool region_filter, bool null_filter);
  2092 #endif // SERIALGC
  2094   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  2095   void push_fTOS();
  2097   // pops double TOS element from CPU stack and pushes on FPU stack
  2098   void pop_fTOS();
  2100   void empty_FPU_stack();
  2102   void push_IU_state();
  2103   void pop_IU_state();
  2105   void push_FPU_state();
  2106   void pop_FPU_state();
  2108   void push_CPU_state();
  2109   void pop_CPU_state();
  2111   // if heap base register is used - reinit it with the correct value
  2112   void reinit_heapbase();
  2114   // Debugging
  2115   void _verify_oop(Register reg, const char * msg, const char * file, int line);
  2116   void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
  2118 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
  2119 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
  2121         // only if +VerifyOops
  2122   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  2123         // only if +VerifyFPU
  2124   void stop(const char* msg);                          // prints msg, dumps registers and stops execution
  2125   void warn(const char* msg);                          // prints msg, but don't stop
  2126   void untested(const char* what = "");
  2127   void unimplemented(const char* what = "")              { char* b = new char[1024];  sprintf(b, "unimplemented: %s", what);  stop(b); }
  2128   void should_not_reach_here()                   { stop("should not reach here"); }
  2129   void print_CPU_state();
  2131   // oops in code
  2132   Address allocate_oop_address( jobject obj, Register d ); // allocate_index
  2133   Address constant_oop_address( jobject obj, Register d ); // find_index
  2134   inline void set_oop         ( jobject obj, Register d ); // uses allocate_oop_address
  2135   inline void set_oop_constant( jobject obj, Register d ); // uses constant_oop_address
  2136   inline void set_oop         ( Address obj_addr );        // same as load_address
  2138   void set_narrow_oop( jobject obj, Register d );
  2140   // nop padding
  2141   void align(int modulus);
  2143   // declare a safepoint
  2144   void safepoint();
  2146   // factor out part of stop into subroutine to save space
  2147   void stop_subroutine();
  2148   // factor out part of verify_oop into subroutine to save space
  2149   void verify_oop_subroutine();
  2151   // side-door communication with signalHandler in os_solaris.cpp
  2152   static address _verify_oop_implicit_branch[3];
  2154 #ifndef PRODUCT
  2155   static void test();
  2156 #endif
  2158   // convert an incoming arglist to varargs format; put the pointer in d
  2159   void set_varargs( Argument a, Register d );
  2161   int total_frame_size_in_bytes(int extraWords);
  2163   // used when extraWords known statically
  2164   void save_frame(int extraWords);
  2165   void save_frame_c1(int size_in_bytes);
  2166   // make a frame, and simultaneously pass up one or two register value
  2167   // into the new register window
  2168   void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
  2170   // give no. (outgoing) params, calc # of words will need on frame
  2171   void calc_mem_param_words(Register Rparam_words, Register Rresult);
  2173   // used to calculate frame size dynamically
  2174   // result is in bytes and must be negated for save inst
  2175   void calc_frame_size(Register extraWords, Register resultReg);
  2177   // calc and also save
  2178   void calc_frame_size_and_save(Register extraWords, Register resultReg);
  2180   static void debug(char* msg, RegistersForDebugging* outWindow);
  2182   // implementations of bytecodes used by both interpreter and compiler
  2184   void lcmp( Register Ra_hi, Register Ra_low,
  2185              Register Rb_hi, Register Rb_low,
  2186              Register Rresult);
  2188   void lneg( Register Rhi, Register Rlow );
  2190   void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
  2191               Register Rout_high, Register Rout_low, Register Rtemp );
  2193   void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
  2194               Register Rout_high, Register Rout_low, Register Rtemp );
  2196   void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
  2197               Register Rout_high, Register Rout_low, Register Rtemp );
  2199 #ifdef _LP64
  2200   void lcmp( Register Ra, Register Rb, Register Rresult);
  2201 #endif
  2203   void float_cmp( bool is_float, int unordered_result,
  2204                   FloatRegister Fa, FloatRegister Fb,
  2205                   Register Rresult);
  2207   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  2208   void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
  2209   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  2210   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  2212   void save_all_globals_into_locals();
  2213   void restore_globals_from_locals();
  2215   void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
  2216     address lock_addr=0, bool use_call_vm=false);
  2217   void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
  2218     address lock_addr=0, bool use_call_vm=false);
  2219   void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
  2221   // These set the icc condition code to equal if the lock succeeded
  2222   // and notEqual if it failed and requires a slow case
  2223   void compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
  2224                               BiasedLockingCounters* counters = NULL);
  2225   void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch);
  2227   // Biased locking support
  2228   // Upon entry, lock_reg must point to the lock record on the stack,
  2229   // obj_reg must contain the target object, and mark_reg must contain
  2230   // the target object's header.
  2231   // Destroys mark_reg if an attempt is made to bias an anonymously
  2232   // biased lock. In this case a failure will go either to the slow
  2233   // case or fall through with the notEqual condition code set with
  2234   // the expectation that the slow case in the runtime will be called.
  2235   // In the fall-through case where the CAS-based lock is done,
  2236   // mark_reg is not destroyed.
  2237   void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
  2238                             Label& done, Label* slow_case = NULL,
  2239                             BiasedLockingCounters* counters = NULL);
  2240   // Upon entry, the base register of mark_addr must contain the oop.
  2241   // Destroys temp_reg.
  2243   // If allow_delay_slot_filling is set to true, the next instruction
  2244   // emitted after this one will go in an annulled delay slot if the
  2245   // biased locking exit case failed.
  2246   void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
  2248   // allocation
  2249   void eden_allocate(
  2250     Register obj,                      // result: pointer to object after successful allocation
  2251     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  2252     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  2253     Register t1,                       // temp register
  2254     Register t2,                       // temp register
  2255     Label&   slow_case                 // continuation point if fast allocation fails
  2256   );
  2257   void tlab_allocate(
  2258     Register obj,                      // result: pointer to object after successful allocation
  2259     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  2260     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  2261     Register t1,                       // temp register
  2262     Label&   slow_case                 // continuation point if fast allocation fails
  2263   );
  2264   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
  2266   // Stack overflow checking
  2268   // Note: this clobbers G3_scratch
  2269   void bang_stack_with_offset(int offset) {
  2270     // stack grows down, caller passes positive offset
  2271     assert(offset > 0, "must bang with negative offset");
  2272     set((-offset)+STACK_BIAS, G3_scratch);
  2273     st(G0, SP, G3_scratch);
  2276   // Writes to stack successive pages until offset reached to check for
  2277   // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
  2278   void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
  2280   void verify_tlab();
  2282   Condition negate_condition(Condition cond);
  2284   // Helper functions for statistics gathering.
  2285   // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
  2286   void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
  2287   // Unconditional increment.
  2288   void inc_counter(address counter_addr, Register Rtemp1, Register Rtemp2);
  2290 #undef VIRTUAL
  2292 };
  2294 /**
  2295  * class SkipIfEqual:
  2297  * Instantiating this class will result in assembly code being output that will
  2298  * jump around any code emitted between the creation of the instance and it's
  2299  * automatic destruction at the end of a scope block, depending on the value of
  2300  * the flag passed to the constructor, which will be checked at run-time.
  2301  */
  2302 class SkipIfEqual : public StackObj {
  2303  private:
  2304   MacroAssembler* _masm;
  2305   Label _label;
  2307  public:
  2308    // 'temp' is a temp register that this object can use (and trash)
  2309    SkipIfEqual(MacroAssembler*, Register temp,
  2310                const bool* flag_addr, Assembler::Condition condition);
  2311    ~SkipIfEqual();
  2312 };
  2314 #ifdef ASSERT
  2315 // On RISC, there's no benefit to verifying instruction boundaries.
  2316 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
  2317 #endif

mercurial