src/share/vm/runtime/sharedRuntime.cpp

Tue, 05 Feb 2013 08:25:51 -0800

author
vlivanov
date
Tue, 05 Feb 2013 08:25:51 -0800
changeset 4539
6a51fc70a15e
parent 4535
9fae07c31641
child 4545
df8462fbe585
permissions
-rw-r--r--

8006613: adding reason to made_not_compilable
Reviewed-by: kvn, vlivanov
Contributed-by: Igor Ignatyev <igor.ignatyev@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/scopeDesc.hpp"
    30 #include "code/vtableStubs.hpp"
    31 #include "compiler/abstractCompiler.hpp"
    32 #include "compiler/compileBroker.hpp"
    33 #include "compiler/compilerOracle.hpp"
    34 #include "compiler/disassembler.hpp"
    35 #include "interpreter/interpreter.hpp"
    36 #include "interpreter/interpreterRuntime.hpp"
    37 #include "memory/gcLocker.inline.hpp"
    38 #include "memory/universe.inline.hpp"
    39 #include "oops/oop.inline.hpp"
    40 #include "prims/forte.hpp"
    41 #include "prims/jvmtiExport.hpp"
    42 #include "prims/jvmtiRedefineClassesTrace.hpp"
    43 #include "prims/methodHandles.hpp"
    44 #include "prims/nativeLookup.hpp"
    45 #include "runtime/arguments.hpp"
    46 #include "runtime/biasedLocking.hpp"
    47 #include "runtime/handles.inline.hpp"
    48 #include "runtime/init.hpp"
    49 #include "runtime/interfaceSupport.hpp"
    50 #include "runtime/javaCalls.hpp"
    51 #include "runtime/sharedRuntime.hpp"
    52 #include "runtime/stubRoutines.hpp"
    53 #include "runtime/vframe.hpp"
    54 #include "runtime/vframeArray.hpp"
    55 #include "utilities/copy.hpp"
    56 #include "utilities/dtrace.hpp"
    57 #include "utilities/events.hpp"
    58 #include "utilities/hashtable.inline.hpp"
    59 #include "utilities/xmlstream.hpp"
    60 #ifdef TARGET_ARCH_x86
    61 # include "nativeInst_x86.hpp"
    62 # include "vmreg_x86.inline.hpp"
    63 #endif
    64 #ifdef TARGET_ARCH_sparc
    65 # include "nativeInst_sparc.hpp"
    66 # include "vmreg_sparc.inline.hpp"
    67 #endif
    68 #ifdef TARGET_ARCH_zero
    69 # include "nativeInst_zero.hpp"
    70 # include "vmreg_zero.inline.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_arm
    73 # include "nativeInst_arm.hpp"
    74 # include "vmreg_arm.inline.hpp"
    75 #endif
    76 #ifdef TARGET_ARCH_ppc
    77 # include "nativeInst_ppc.hpp"
    78 # include "vmreg_ppc.inline.hpp"
    79 #endif
    80 #ifdef COMPILER1
    81 #include "c1/c1_Runtime1.hpp"
    82 #endif
    84 // Shared stub locations
    85 RuntimeStub*        SharedRuntime::_wrong_method_blob;
    86 RuntimeStub*        SharedRuntime::_ic_miss_blob;
    87 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
    88 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
    89 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
    91 DeoptimizationBlob* SharedRuntime::_deopt_blob;
    92 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
    93 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
    94 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
    96 #ifdef COMPILER2
    97 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
    98 #endif // COMPILER2
   101 //----------------------------generate_stubs-----------------------------------
   102 void SharedRuntime::generate_stubs() {
   103   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
   104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
   105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
   106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
   107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
   109 #ifdef COMPILER2
   110   // Vectors are generated only by C2.
   111   if (is_wide_vector(MaxVectorSize)) {
   112     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
   113   }
   114 #endif // COMPILER2
   115   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
   116   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
   118   generate_deopt_blob();
   120 #ifdef COMPILER2
   121   generate_uncommon_trap_blob();
   122 #endif // COMPILER2
   123 }
   125 #include <math.h>
   127 #ifndef USDT2
   128 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
   129 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
   130                       char*, int, char*, int, char*, int);
   131 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
   132                       char*, int, char*, int, char*, int);
   133 #endif /* !USDT2 */
   135 // Implementation of SharedRuntime
   137 #ifndef PRODUCT
   138 // For statistics
   139 int SharedRuntime::_ic_miss_ctr = 0;
   140 int SharedRuntime::_wrong_method_ctr = 0;
   141 int SharedRuntime::_resolve_static_ctr = 0;
   142 int SharedRuntime::_resolve_virtual_ctr = 0;
   143 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
   144 int SharedRuntime::_implicit_null_throws = 0;
   145 int SharedRuntime::_implicit_div0_throws = 0;
   146 int SharedRuntime::_throw_null_ctr = 0;
   148 int SharedRuntime::_nof_normal_calls = 0;
   149 int SharedRuntime::_nof_optimized_calls = 0;
   150 int SharedRuntime::_nof_inlined_calls = 0;
   151 int SharedRuntime::_nof_megamorphic_calls = 0;
   152 int SharedRuntime::_nof_static_calls = 0;
   153 int SharedRuntime::_nof_inlined_static_calls = 0;
   154 int SharedRuntime::_nof_interface_calls = 0;
   155 int SharedRuntime::_nof_optimized_interface_calls = 0;
   156 int SharedRuntime::_nof_inlined_interface_calls = 0;
   157 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
   158 int SharedRuntime::_nof_removable_exceptions = 0;
   160 int SharedRuntime::_new_instance_ctr=0;
   161 int SharedRuntime::_new_array_ctr=0;
   162 int SharedRuntime::_multi1_ctr=0;
   163 int SharedRuntime::_multi2_ctr=0;
   164 int SharedRuntime::_multi3_ctr=0;
   165 int SharedRuntime::_multi4_ctr=0;
   166 int SharedRuntime::_multi5_ctr=0;
   167 int SharedRuntime::_mon_enter_stub_ctr=0;
   168 int SharedRuntime::_mon_exit_stub_ctr=0;
   169 int SharedRuntime::_mon_enter_ctr=0;
   170 int SharedRuntime::_mon_exit_ctr=0;
   171 int SharedRuntime::_partial_subtype_ctr=0;
   172 int SharedRuntime::_jbyte_array_copy_ctr=0;
   173 int SharedRuntime::_jshort_array_copy_ctr=0;
   174 int SharedRuntime::_jint_array_copy_ctr=0;
   175 int SharedRuntime::_jlong_array_copy_ctr=0;
   176 int SharedRuntime::_oop_array_copy_ctr=0;
   177 int SharedRuntime::_checkcast_array_copy_ctr=0;
   178 int SharedRuntime::_unsafe_array_copy_ctr=0;
   179 int SharedRuntime::_generic_array_copy_ctr=0;
   180 int SharedRuntime::_slow_array_copy_ctr=0;
   181 int SharedRuntime::_find_handler_ctr=0;
   182 int SharedRuntime::_rethrow_ctr=0;
   184 int     SharedRuntime::_ICmiss_index                    = 0;
   185 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
   186 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
   189 void SharedRuntime::trace_ic_miss(address at) {
   190   for (int i = 0; i < _ICmiss_index; i++) {
   191     if (_ICmiss_at[i] == at) {
   192       _ICmiss_count[i]++;
   193       return;
   194     }
   195   }
   196   int index = _ICmiss_index++;
   197   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
   198   _ICmiss_at[index] = at;
   199   _ICmiss_count[index] = 1;
   200 }
   202 void SharedRuntime::print_ic_miss_histogram() {
   203   if (ICMissHistogram) {
   204     tty->print_cr ("IC Miss Histogram:");
   205     int tot_misses = 0;
   206     for (int i = 0; i < _ICmiss_index; i++) {
   207       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
   208       tot_misses += _ICmiss_count[i];
   209     }
   210     tty->print_cr ("Total IC misses: %7d", tot_misses);
   211   }
   212 }
   213 #endif // PRODUCT
   215 #ifndef SERIALGC
   217 // G1 write-barrier pre: executed before a pointer store.
   218 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
   219   if (orig == NULL) {
   220     assert(false, "should be optimized out");
   221     return;
   222   }
   223   assert(orig->is_oop(true /* ignore mark word */), "Error");
   224   // store the original value that was in the field reference
   225   thread->satb_mark_queue().enqueue(orig);
   226 JRT_END
   228 // G1 write-barrier post: executed after a pointer store.
   229 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
   230   thread->dirty_card_queue().enqueue(card_addr);
   231 JRT_END
   233 #endif // !SERIALGC
   236 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
   237   return x * y;
   238 JRT_END
   241 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
   242   if (x == min_jlong && y == CONST64(-1)) {
   243     return x;
   244   } else {
   245     return x / y;
   246   }
   247 JRT_END
   250 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
   251   if (x == min_jlong && y == CONST64(-1)) {
   252     return 0;
   253   } else {
   254     return x % y;
   255   }
   256 JRT_END
   259 const juint  float_sign_mask  = 0x7FFFFFFF;
   260 const juint  float_infinity   = 0x7F800000;
   261 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
   262 const julong double_infinity  = CONST64(0x7FF0000000000000);
   264 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
   265 #ifdef _WIN64
   266   // 64-bit Windows on amd64 returns the wrong values for
   267   // infinity operands.
   268   union { jfloat f; juint i; } xbits, ybits;
   269   xbits.f = x;
   270   ybits.f = y;
   271   // x Mod Infinity == x unless x is infinity
   272   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
   273        ((ybits.i & float_sign_mask) == float_infinity) ) {
   274     return x;
   275   }
   276 #endif
   277   return ((jfloat)fmod((double)x,(double)y));
   278 JRT_END
   281 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
   282 #ifdef _WIN64
   283   union { jdouble d; julong l; } xbits, ybits;
   284   xbits.d = x;
   285   ybits.d = y;
   286   // x Mod Infinity == x unless x is infinity
   287   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
   288        ((ybits.l & double_sign_mask) == double_infinity) ) {
   289     return x;
   290   }
   291 #endif
   292   return ((jdouble)fmod((double)x,(double)y));
   293 JRT_END
   295 #ifdef __SOFTFP__
   296 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
   297   return x + y;
   298 JRT_END
   300 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
   301   return x - y;
   302 JRT_END
   304 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
   305   return x * y;
   306 JRT_END
   308 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
   309   return x / y;
   310 JRT_END
   312 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
   313   return x + y;
   314 JRT_END
   316 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
   317   return x - y;
   318 JRT_END
   320 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
   321   return x * y;
   322 JRT_END
   324 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
   325   return x / y;
   326 JRT_END
   328 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
   329   return (jfloat)x;
   330 JRT_END
   332 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
   333   return (jdouble)x;
   334 JRT_END
   336 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
   337   return (jdouble)x;
   338 JRT_END
   340 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
   341   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
   342 JRT_END
   344 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
   345   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   346 JRT_END
   348 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
   349   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
   350 JRT_END
   352 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
   353   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
   354 JRT_END
   356 // Functions to return the opposite of the aeabi functions for nan.
   357 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
   358   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   359 JRT_END
   361 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
   362   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   363 JRT_END
   365 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
   366   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   367 JRT_END
   369 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
   370   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   371 JRT_END
   373 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
   374   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   375 JRT_END
   377 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
   378   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   379 JRT_END
   381 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
   382   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   383 JRT_END
   385 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
   386   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
   387 JRT_END
   389 // Intrinsics make gcc generate code for these.
   390 float  SharedRuntime::fneg(float f)   {
   391   return -f;
   392 }
   394 double SharedRuntime::dneg(double f)  {
   395   return -f;
   396 }
   398 #endif // __SOFTFP__
   400 #if defined(__SOFTFP__) || defined(E500V2)
   401 // Intrinsics make gcc generate code for these.
   402 double SharedRuntime::dabs(double f)  {
   403   return (f <= (double)0.0) ? (double)0.0 - f : f;
   404 }
   406 #endif
   408 #if defined(__SOFTFP__) || defined(PPC)
   409 double SharedRuntime::dsqrt(double f) {
   410   return sqrt(f);
   411 }
   412 #endif
   414 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
   415   if (g_isnan(x))
   416     return 0;
   417   if (x >= (jfloat) max_jint)
   418     return max_jint;
   419   if (x <= (jfloat) min_jint)
   420     return min_jint;
   421   return (jint) x;
   422 JRT_END
   425 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
   426   if (g_isnan(x))
   427     return 0;
   428   if (x >= (jfloat) max_jlong)
   429     return max_jlong;
   430   if (x <= (jfloat) min_jlong)
   431     return min_jlong;
   432   return (jlong) x;
   433 JRT_END
   436 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
   437   if (g_isnan(x))
   438     return 0;
   439   if (x >= (jdouble) max_jint)
   440     return max_jint;
   441   if (x <= (jdouble) min_jint)
   442     return min_jint;
   443   return (jint) x;
   444 JRT_END
   447 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
   448   if (g_isnan(x))
   449     return 0;
   450   if (x >= (jdouble) max_jlong)
   451     return max_jlong;
   452   if (x <= (jdouble) min_jlong)
   453     return min_jlong;
   454   return (jlong) x;
   455 JRT_END
   458 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
   459   return (jfloat)x;
   460 JRT_END
   463 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
   464   return (jfloat)x;
   465 JRT_END
   468 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
   469   return (jdouble)x;
   470 JRT_END
   472 // Exception handling accross interpreter/compiler boundaries
   473 //
   474 // exception_handler_for_return_address(...) returns the continuation address.
   475 // The continuation address is the entry point of the exception handler of the
   476 // previous frame depending on the return address.
   478 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
   479   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
   481   // Reset method handle flag.
   482   thread->set_is_method_handle_return(false);
   484   // The fastest case first
   485   CodeBlob* blob = CodeCache::find_blob(return_address);
   486   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
   487   if (nm != NULL) {
   488     // Set flag if return address is a method handle call site.
   489     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
   490     // native nmethods don't have exception handlers
   491     assert(!nm->is_native_method(), "no exception handler");
   492     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
   493     if (nm->is_deopt_pc(return_address)) {
   494       return SharedRuntime::deopt_blob()->unpack_with_exception();
   495     } else {
   496       return nm->exception_begin();
   497     }
   498   }
   500   // Entry code
   501   if (StubRoutines::returns_to_call_stub(return_address)) {
   502     return StubRoutines::catch_exception_entry();
   503   }
   504   // Interpreted code
   505   if (Interpreter::contains(return_address)) {
   506     return Interpreter::rethrow_exception_entry();
   507   }
   509   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
   510   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
   512 #ifndef PRODUCT
   513   { ResourceMark rm;
   514     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
   515     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
   516     tty->print_cr("b) other problem");
   517   }
   518 #endif // PRODUCT
   520   ShouldNotReachHere();
   521   return NULL;
   522 }
   525 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
   526   return raw_exception_handler_for_return_address(thread, return_address);
   527 JRT_END
   530 address SharedRuntime::get_poll_stub(address pc) {
   531   address stub;
   532   // Look up the code blob
   533   CodeBlob *cb = CodeCache::find_blob(pc);
   535   // Should be an nmethod
   536   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
   538   // Look up the relocation information
   539   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
   540     "safepoint polling: type must be poll" );
   542   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
   543     "Only polling locations are used for safepoint");
   545   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
   546   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
   547   if (at_poll_return) {
   548     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
   549            "polling page return stub not created yet");
   550     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
   551   } else if (has_wide_vectors) {
   552     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
   553            "polling page vectors safepoint stub not created yet");
   554     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
   555   } else {
   556     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
   557            "polling page safepoint stub not created yet");
   558     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
   559   }
   560 #ifndef PRODUCT
   561   if( TraceSafepoint ) {
   562     char buf[256];
   563     jio_snprintf(buf, sizeof(buf),
   564                  "... found polling page %s exception at pc = "
   565                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
   566                  at_poll_return ? "return" : "loop",
   567                  (intptr_t)pc, (intptr_t)stub);
   568     tty->print_raw_cr(buf);
   569   }
   570 #endif // PRODUCT
   571   return stub;
   572 }
   575 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
   576   assert(caller.is_interpreted_frame(), "");
   577   int args_size = ArgumentSizeComputer(sig).size() + 1;
   578   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
   579   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
   580   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
   581   return result;
   582 }
   585 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
   586   if (JvmtiExport::can_post_on_exceptions()) {
   587     vframeStream vfst(thread, true);
   588     methodHandle method = methodHandle(thread, vfst.method());
   589     address bcp = method()->bcp_from(vfst.bci());
   590     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
   591   }
   592   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
   593 }
   595 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
   596   Handle h_exception = Exceptions::new_exception(thread, name, message);
   597   throw_and_post_jvmti_exception(thread, h_exception);
   598 }
   600 // The interpreter code to call this tracing function is only
   601 // called/generated when TraceRedefineClasses has the right bits
   602 // set. Since obsolete methods are never compiled, we don't have
   603 // to modify the compilers to generate calls to this function.
   604 //
   605 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
   606     JavaThread* thread, Method* method))
   607   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
   609   if (method->is_obsolete()) {
   610     // We are calling an obsolete method, but this is not necessarily
   611     // an error. Our method could have been redefined just after we
   612     // fetched the Method* from the constant pool.
   614     // RC_TRACE macro has an embedded ResourceMark
   615     RC_TRACE_WITH_THREAD(0x00001000, thread,
   616                          ("calling obsolete method '%s'",
   617                           method->name_and_sig_as_C_string()));
   618     if (RC_TRACE_ENABLED(0x00002000)) {
   619       // this option is provided to debug calls to obsolete methods
   620       guarantee(false, "faulting at call to an obsolete method.");
   621     }
   622   }
   623   return 0;
   624 JRT_END
   626 // ret_pc points into caller; we are returning caller's exception handler
   627 // for given exception
   628 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
   629                                                     bool force_unwind, bool top_frame_only) {
   630   assert(nm != NULL, "must exist");
   631   ResourceMark rm;
   633   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
   634   // determine handler bci, if any
   635   EXCEPTION_MARK;
   637   int handler_bci = -1;
   638   int scope_depth = 0;
   639   if (!force_unwind) {
   640     int bci = sd->bci();
   641     bool recursive_exception = false;
   642     do {
   643       bool skip_scope_increment = false;
   644       // exception handler lookup
   645       KlassHandle ek (THREAD, exception->klass());
   646       methodHandle mh(THREAD, sd->method());
   647       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
   648       if (HAS_PENDING_EXCEPTION) {
   649         recursive_exception = true;
   650         // We threw an exception while trying to find the exception handler.
   651         // Transfer the new exception to the exception handle which will
   652         // be set into thread local storage, and do another lookup for an
   653         // exception handler for this exception, this time starting at the
   654         // BCI of the exception handler which caused the exception to be
   655         // thrown (bugs 4307310 and 4546590). Set "exception" reference
   656         // argument to ensure that the correct exception is thrown (4870175).
   657         exception = Handle(THREAD, PENDING_EXCEPTION);
   658         CLEAR_PENDING_EXCEPTION;
   659         if (handler_bci >= 0) {
   660           bci = handler_bci;
   661           handler_bci = -1;
   662           skip_scope_increment = true;
   663         }
   664       }
   665       else {
   666         recursive_exception = false;
   667       }
   668       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
   669         sd = sd->sender();
   670         if (sd != NULL) {
   671           bci = sd->bci();
   672         }
   673         ++scope_depth;
   674       }
   675     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
   676   }
   678   // found handling method => lookup exception handler
   679   int catch_pco = ret_pc - nm->code_begin();
   681   ExceptionHandlerTable table(nm);
   682   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
   683   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
   684     // Allow abbreviated catch tables.  The idea is to allow a method
   685     // to materialize its exceptions without committing to the exact
   686     // routing of exceptions.  In particular this is needed for adding
   687     // a synthethic handler to unlock monitors when inlining
   688     // synchonized methods since the unlock path isn't represented in
   689     // the bytecodes.
   690     t = table.entry_for(catch_pco, -1, 0);
   691   }
   693 #ifdef COMPILER1
   694   if (t == NULL && nm->is_compiled_by_c1()) {
   695     assert(nm->unwind_handler_begin() != NULL, "");
   696     return nm->unwind_handler_begin();
   697   }
   698 #endif
   700   if (t == NULL) {
   701     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
   702     tty->print_cr("   Exception:");
   703     exception->print();
   704     tty->cr();
   705     tty->print_cr(" Compiled exception table :");
   706     table.print();
   707     nm->print_code();
   708     guarantee(false, "missing exception handler");
   709     return NULL;
   710   }
   712   return nm->code_begin() + t->pco();
   713 }
   715 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
   716   // These errors occur only at call sites
   717   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
   718 JRT_END
   720 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
   721   // These errors occur only at call sites
   722   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
   723 JRT_END
   725 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
   726   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   727 JRT_END
   729 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
   730   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   731 JRT_END
   733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
   734   // This entry point is effectively only used for NullPointerExceptions which occur at inline
   735   // cache sites (when the callee activation is not yet set up) so we are at a call site
   736   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   737 JRT_END
   739 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
   740   // We avoid using the normal exception construction in this case because
   741   // it performs an upcall to Java, and we're already out of stack space.
   742   Klass* k = SystemDictionary::StackOverflowError_klass();
   743   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
   744   Handle exception (thread, exception_oop);
   745   if (StackTraceInThrowable) {
   746     java_lang_Throwable::fill_in_stack_trace(exception);
   747   }
   748   throw_and_post_jvmti_exception(thread, exception);
   749 JRT_END
   751 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
   752                                                            address pc,
   753                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
   754 {
   755   address target_pc = NULL;
   757   if (Interpreter::contains(pc)) {
   758 #ifdef CC_INTERP
   759     // C++ interpreter doesn't throw implicit exceptions
   760     ShouldNotReachHere();
   761 #else
   762     switch (exception_kind) {
   763       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
   764       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
   765       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
   766       default:                      ShouldNotReachHere();
   767     }
   768 #endif // !CC_INTERP
   769   } else {
   770     switch (exception_kind) {
   771       case STACK_OVERFLOW: {
   772         // Stack overflow only occurs upon frame setup; the callee is
   773         // going to be unwound. Dispatch to a shared runtime stub
   774         // which will cause the StackOverflowError to be fabricated
   775         // and processed.
   776         // For stack overflow in deoptimization blob, cleanup thread.
   777         if (thread->deopt_mark() != NULL) {
   778           Deoptimization::cleanup_deopt_info(thread, NULL);
   779         }
   780         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
   781         return StubRoutines::throw_StackOverflowError_entry();
   782       }
   784       case IMPLICIT_NULL: {
   785         if (VtableStubs::contains(pc)) {
   786           // We haven't yet entered the callee frame. Fabricate an
   787           // exception and begin dispatching it in the caller. Since
   788           // the caller was at a call site, it's safe to destroy all
   789           // caller-saved registers, as these entry points do.
   790           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
   792           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
   793           if (vt_stub == NULL) return NULL;
   795           if (vt_stub->is_abstract_method_error(pc)) {
   796             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
   797             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
   798             return StubRoutines::throw_AbstractMethodError_entry();
   799           } else {
   800             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
   801             return StubRoutines::throw_NullPointerException_at_call_entry();
   802           }
   803         } else {
   804           CodeBlob* cb = CodeCache::find_blob(pc);
   806           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
   807           if (cb == NULL) return NULL;
   809           // Exception happened in CodeCache. Must be either:
   810           // 1. Inline-cache check in C2I handler blob,
   811           // 2. Inline-cache check in nmethod, or
   812           // 3. Implict null exception in nmethod
   814           if (!cb->is_nmethod()) {
   815             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
   816                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
   817             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
   818             // There is no handler here, so we will simply unwind.
   819             return StubRoutines::throw_NullPointerException_at_call_entry();
   820           }
   822           // Otherwise, it's an nmethod.  Consult its exception handlers.
   823           nmethod* nm = (nmethod*)cb;
   824           if (nm->inlinecache_check_contains(pc)) {
   825             // exception happened inside inline-cache check code
   826             // => the nmethod is not yet active (i.e., the frame
   827             // is not set up yet) => use return address pushed by
   828             // caller => don't push another return address
   829             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
   830             return StubRoutines::throw_NullPointerException_at_call_entry();
   831           }
   833           if (nm->method()->is_method_handle_intrinsic()) {
   834             // exception happened inside MH dispatch code, similar to a vtable stub
   835             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
   836             return StubRoutines::throw_NullPointerException_at_call_entry();
   837           }
   839 #ifndef PRODUCT
   840           _implicit_null_throws++;
   841 #endif
   842           target_pc = nm->continuation_for_implicit_exception(pc);
   843           // If there's an unexpected fault, target_pc might be NULL,
   844           // in which case we want to fall through into the normal
   845           // error handling code.
   846         }
   848         break; // fall through
   849       }
   852       case IMPLICIT_DIVIDE_BY_ZERO: {
   853         nmethod* nm = CodeCache::find_nmethod(pc);
   854         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
   855 #ifndef PRODUCT
   856         _implicit_div0_throws++;
   857 #endif
   858         target_pc = nm->continuation_for_implicit_exception(pc);
   859         // If there's an unexpected fault, target_pc might be NULL,
   860         // in which case we want to fall through into the normal
   861         // error handling code.
   862         break; // fall through
   863       }
   865       default: ShouldNotReachHere();
   866     }
   868     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
   870     // for AbortVMOnException flag
   871     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
   872     if (exception_kind == IMPLICIT_NULL) {
   873       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   874     } else {
   875       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
   876     }
   877     return target_pc;
   878   }
   880   ShouldNotReachHere();
   881   return NULL;
   882 }
   885 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
   886 {
   887   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
   888 }
   889 JNI_END
   891 JNI_ENTRY(void, throw_unsupported_operation_exception(JNIEnv* env, ...))
   892 {
   893   THROW(vmSymbols::java_lang_UnsupportedOperationException());
   894 }
   895 JNI_END
   897 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
   898   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
   899 }
   901 address SharedRuntime::native_method_throw_unsupported_operation_exception_entry() {
   902   return CAST_FROM_FN_PTR(address, &throw_unsupported_operation_exception);
   903 }
   906 #ifndef PRODUCT
   907 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
   908   const frame f = thread->last_frame();
   909   assert(f.is_interpreted_frame(), "must be an interpreted frame");
   910 #ifndef PRODUCT
   911   methodHandle mh(THREAD, f.interpreter_frame_method());
   912   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
   913 #endif // !PRODUCT
   914   return preserve_this_value;
   915 JRT_END
   916 #endif // !PRODUCT
   919 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
   920   os::yield_all(attempts);
   921 JRT_END
   924 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
   925   assert(obj->is_oop(), "must be a valid oop");
   926   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
   927   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
   928 JRT_END
   931 jlong SharedRuntime::get_java_tid(Thread* thread) {
   932   if (thread != NULL) {
   933     if (thread->is_Java_thread()) {
   934       oop obj = ((JavaThread*)thread)->threadObj();
   935       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
   936     }
   937   }
   938   return 0;
   939 }
   941 /**
   942  * This function ought to be a void function, but cannot be because
   943  * it gets turned into a tail-call on sparc, which runs into dtrace bug
   944  * 6254741.  Once that is fixed we can remove the dummy return value.
   945  */
   946 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
   947   return dtrace_object_alloc_base(Thread::current(), o);
   948 }
   950 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
   951   assert(DTraceAllocProbes, "wrong call");
   952   Klass* klass = o->klass();
   953   int size = o->size();
   954   Symbol* name = klass->name();
   955 #ifndef USDT2
   956   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
   957                    name->bytes(), name->utf8_length(), size * HeapWordSize);
   958 #else /* USDT2 */
   959   HOTSPOT_OBJECT_ALLOC(
   960                    get_java_tid(thread),
   961                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
   962 #endif /* USDT2 */
   963   return 0;
   964 }
   966 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
   967     JavaThread* thread, Method* method))
   968   assert(DTraceMethodProbes, "wrong call");
   969   Symbol* kname = method->klass_name();
   970   Symbol* name = method->name();
   971   Symbol* sig = method->signature();
   972 #ifndef USDT2
   973   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
   974       kname->bytes(), kname->utf8_length(),
   975       name->bytes(), name->utf8_length(),
   976       sig->bytes(), sig->utf8_length());
   977 #else /* USDT2 */
   978   HOTSPOT_METHOD_ENTRY(
   979       get_java_tid(thread),
   980       (char *) kname->bytes(), kname->utf8_length(),
   981       (char *) name->bytes(), name->utf8_length(),
   982       (char *) sig->bytes(), sig->utf8_length());
   983 #endif /* USDT2 */
   984   return 0;
   985 JRT_END
   987 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
   988     JavaThread* thread, Method* method))
   989   assert(DTraceMethodProbes, "wrong call");
   990   Symbol* kname = method->klass_name();
   991   Symbol* name = method->name();
   992   Symbol* sig = method->signature();
   993 #ifndef USDT2
   994   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
   995       kname->bytes(), kname->utf8_length(),
   996       name->bytes(), name->utf8_length(),
   997       sig->bytes(), sig->utf8_length());
   998 #else /* USDT2 */
   999   HOTSPOT_METHOD_RETURN(
  1000       get_java_tid(thread),
  1001       (char *) kname->bytes(), kname->utf8_length(),
  1002       (char *) name->bytes(), name->utf8_length(),
  1003       (char *) sig->bytes(), sig->utf8_length());
  1004 #endif /* USDT2 */
  1005   return 0;
  1006 JRT_END
  1009 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
  1010 // for a call current in progress, i.e., arguments has been pushed on stack
  1011 // put callee has not been invoked yet.  Used by: resolve virtual/static,
  1012 // vtable updates, etc.  Caller frame must be compiled.
  1013 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
  1014   ResourceMark rm(THREAD);
  1016   // last java frame on stack (which includes native call frames)
  1017   vframeStream vfst(thread, true);  // Do not skip and javaCalls
  1019   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
  1023 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
  1024 // for a call current in progress, i.e., arguments has been pushed on stack
  1025 // but callee has not been invoked yet.  Caller frame must be compiled.
  1026 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
  1027                                               vframeStream& vfst,
  1028                                               Bytecodes::Code& bc,
  1029                                               CallInfo& callinfo, TRAPS) {
  1030   Handle receiver;
  1031   Handle nullHandle;  //create a handy null handle for exception returns
  1033   assert(!vfst.at_end(), "Java frame must exist");
  1035   // Find caller and bci from vframe
  1036   methodHandle caller(THREAD, vfst.method());
  1037   int          bci   = vfst.bci();
  1039   // Find bytecode
  1040   Bytecode_invoke bytecode(caller, bci);
  1041   bc = bytecode.invoke_code();
  1042   int bytecode_index = bytecode.index();
  1044   // Find receiver for non-static call
  1045   if (bc != Bytecodes::_invokestatic &&
  1046       bc != Bytecodes::_invokedynamic) {
  1047     // This register map must be update since we need to find the receiver for
  1048     // compiled frames. The receiver might be in a register.
  1049     RegisterMap reg_map2(thread);
  1050     frame stubFrame   = thread->last_frame();
  1051     // Caller-frame is a compiled frame
  1052     frame callerFrame = stubFrame.sender(&reg_map2);
  1054     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
  1055     if (callee.is_null()) {
  1056       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
  1058     // Retrieve from a compiled argument list
  1059     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
  1061     if (receiver.is_null()) {
  1062       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
  1066   // Resolve method. This is parameterized by bytecode.
  1067   constantPoolHandle constants(THREAD, caller->constants());
  1068   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
  1069   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
  1071 #ifdef ASSERT
  1072   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
  1073   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
  1074     assert(receiver.not_null(), "should have thrown exception");
  1075     KlassHandle receiver_klass(THREAD, receiver->klass());
  1076     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
  1077                             // klass is already loaded
  1078     KlassHandle static_receiver_klass(THREAD, rk);
  1079     // Method handle invokes might have been optimized to a direct call
  1080     // so don't check for the receiver class.
  1081     // FIXME this weakens the assert too much
  1082     methodHandle callee = callinfo.selected_method();
  1083     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
  1084            callee->is_method_handle_intrinsic() ||
  1085            callee->is_compiled_lambda_form(),
  1086            "actual receiver must be subclass of static receiver klass");
  1087     if (receiver_klass->oop_is_instance()) {
  1088       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
  1089         tty->print_cr("ERROR: Klass not yet initialized!!");
  1090         receiver_klass()->print();
  1092       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
  1095 #endif
  1097   return receiver;
  1100 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
  1101   ResourceMark rm(THREAD);
  1102   // We need first to check if any Java activations (compiled, interpreted)
  1103   // exist on the stack since last JavaCall.  If not, we need
  1104   // to get the target method from the JavaCall wrapper.
  1105   vframeStream vfst(thread, true);  // Do not skip any javaCalls
  1106   methodHandle callee_method;
  1107   if (vfst.at_end()) {
  1108     // No Java frames were found on stack since we did the JavaCall.
  1109     // Hence the stack can only contain an entry_frame.  We need to
  1110     // find the target method from the stub frame.
  1111     RegisterMap reg_map(thread, false);
  1112     frame fr = thread->last_frame();
  1113     assert(fr.is_runtime_frame(), "must be a runtimeStub");
  1114     fr = fr.sender(&reg_map);
  1115     assert(fr.is_entry_frame(), "must be");
  1116     // fr is now pointing to the entry frame.
  1117     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
  1118     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
  1119   } else {
  1120     Bytecodes::Code bc;
  1121     CallInfo callinfo;
  1122     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
  1123     callee_method = callinfo.selected_method();
  1125   assert(callee_method()->is_method(), "must be");
  1126   return callee_method;
  1129 // Resolves a call.
  1130 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
  1131                                            bool is_virtual,
  1132                                            bool is_optimized, TRAPS) {
  1133   methodHandle callee_method;
  1134   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1135   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
  1136     int retry_count = 0;
  1137     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
  1138            callee_method->method_holder() != SystemDictionary::Object_klass()) {
  1139       // If has a pending exception then there is no need to re-try to
  1140       // resolve this method.
  1141       // If the method has been redefined, we need to try again.
  1142       // Hack: we have no way to update the vtables of arrays, so don't
  1143       // require that java.lang.Object has been updated.
  1145       // It is very unlikely that method is redefined more than 100 times
  1146       // in the middle of resolve. If it is looping here more than 100 times
  1147       // means then there could be a bug here.
  1148       guarantee((retry_count++ < 100),
  1149                 "Could not resolve to latest version of redefined method");
  1150       // method is redefined in the middle of resolve so re-try.
  1151       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
  1154   return callee_method;
  1157 // Resolves a call.  The compilers generate code for calls that go here
  1158 // and are patched with the real destination of the call.
  1159 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
  1160                                            bool is_virtual,
  1161                                            bool is_optimized, TRAPS) {
  1163   ResourceMark rm(thread);
  1164   RegisterMap cbl_map(thread, false);
  1165   frame caller_frame = thread->last_frame().sender(&cbl_map);
  1167   CodeBlob* caller_cb = caller_frame.cb();
  1168   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
  1169   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
  1170   // make sure caller is not getting deoptimized
  1171   // and removed before we are done with it.
  1172   // CLEANUP - with lazy deopt shouldn't need this lock
  1173   nmethodLocker caller_lock(caller_nm);
  1176   // determine call info & receiver
  1177   // note: a) receiver is NULL for static calls
  1178   //       b) an exception is thrown if receiver is NULL for non-static calls
  1179   CallInfo call_info;
  1180   Bytecodes::Code invoke_code = Bytecodes::_illegal;
  1181   Handle receiver = find_callee_info(thread, invoke_code,
  1182                                      call_info, CHECK_(methodHandle()));
  1183   methodHandle callee_method = call_info.selected_method();
  1185   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
  1186          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
  1187          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
  1188          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
  1190 #ifndef PRODUCT
  1191   // tracing/debugging/statistics
  1192   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
  1193                 (is_virtual) ? (&_resolve_virtual_ctr) :
  1194                                (&_resolve_static_ctr);
  1195   Atomic::inc(addr);
  1197   if (TraceCallFixup) {
  1198     ResourceMark rm(thread);
  1199     tty->print("resolving %s%s (%s) call to",
  1200       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
  1201       Bytecodes::name(invoke_code));
  1202     callee_method->print_short_name(tty);
  1203     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
  1205 #endif
  1207   // JSR 292 key invariant:
  1208   // If the resolved method is a MethodHandle invoke target the call
  1209   // site must be a MethodHandle call site, because the lambda form might tail-call
  1210   // leaving the stack in a state unknown to either caller or callee
  1211   // TODO detune for now but we might need it again
  1212 //  assert(!callee_method->is_compiled_lambda_form() ||
  1213 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
  1215   // Compute entry points. This might require generation of C2I converter
  1216   // frames, so we cannot be holding any locks here. Furthermore, the
  1217   // computation of the entry points is independent of patching the call.  We
  1218   // always return the entry-point, but we only patch the stub if the call has
  1219   // not been deoptimized.  Return values: For a virtual call this is an
  1220   // (cached_oop, destination address) pair. For a static call/optimized
  1221   // virtual this is just a destination address.
  1223   StaticCallInfo static_call_info;
  1224   CompiledICInfo virtual_call_info;
  1226   // Make sure the callee nmethod does not get deoptimized and removed before
  1227   // we are done patching the code.
  1228   nmethod* callee_nm = callee_method->code();
  1229   nmethodLocker nl_callee(callee_nm);
  1230 #ifdef ASSERT
  1231   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
  1232 #endif
  1234   if (is_virtual) {
  1235     assert(receiver.not_null(), "sanity check");
  1236     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
  1237     KlassHandle h_klass(THREAD, receiver->klass());
  1238     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
  1239                      is_optimized, static_bound, virtual_call_info,
  1240                      CHECK_(methodHandle()));
  1241   } else {
  1242     // static call
  1243     CompiledStaticCall::compute_entry(callee_method, static_call_info);
  1246   // grab lock, check for deoptimization and potentially patch caller
  1248     MutexLocker ml_patch(CompiledIC_lock);
  1250     // Now that we are ready to patch if the Method* was redefined then
  1251     // don't update call site and let the caller retry.
  1253     if (!callee_method->is_old()) {
  1254 #ifdef ASSERT
  1255       // We must not try to patch to jump to an already unloaded method.
  1256       if (dest_entry_point != 0) {
  1257         assert(CodeCache::find_blob(dest_entry_point) != NULL,
  1258                "should not unload nmethod while locked");
  1260 #endif
  1261       if (is_virtual) {
  1262         nmethod* nm = callee_nm;
  1263         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
  1264         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
  1265         if (inline_cache->is_clean()) {
  1266           inline_cache->set_to_monomorphic(virtual_call_info);
  1268       } else {
  1269         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
  1270         if (ssc->is_clean()) ssc->set(static_call_info);
  1274   } // unlock CompiledIC_lock
  1276   return callee_method;
  1280 // Inline caches exist only in compiled code
  1281 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
  1282 #ifdef ASSERT
  1283   RegisterMap reg_map(thread, false);
  1284   frame stub_frame = thread->last_frame();
  1285   assert(stub_frame.is_runtime_frame(), "sanity check");
  1286   frame caller_frame = stub_frame.sender(&reg_map);
  1287   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
  1288 #endif /* ASSERT */
  1290   methodHandle callee_method;
  1291   JRT_BLOCK
  1292     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
  1293     // Return Method* through TLS
  1294     thread->set_vm_result_2(callee_method());
  1295   JRT_BLOCK_END
  1296   // return compiled code entry point after potential safepoints
  1297   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1298   return callee_method->verified_code_entry();
  1299 JRT_END
  1302 // Handle call site that has been made non-entrant
  1303 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
  1304   // 6243940 We might end up in here if the callee is deoptimized
  1305   // as we race to call it.  We don't want to take a safepoint if
  1306   // the caller was interpreted because the caller frame will look
  1307   // interpreted to the stack walkers and arguments are now
  1308   // "compiled" so it is much better to make this transition
  1309   // invisible to the stack walking code. The i2c path will
  1310   // place the callee method in the callee_target. It is stashed
  1311   // there because if we try and find the callee by normal means a
  1312   // safepoint is possible and have trouble gc'ing the compiled args.
  1313   RegisterMap reg_map(thread, false);
  1314   frame stub_frame = thread->last_frame();
  1315   assert(stub_frame.is_runtime_frame(), "sanity check");
  1316   frame caller_frame = stub_frame.sender(&reg_map);
  1318   // MethodHandle invokes don't have a CompiledIC and should always
  1319   // simply redispatch to the callee_target.
  1320   address   sender_pc = caller_frame.pc();
  1321   CodeBlob* sender_cb = caller_frame.cb();
  1322   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
  1324   if (caller_frame.is_interpreted_frame() ||
  1325       caller_frame.is_entry_frame()) {
  1326     Method* callee = thread->callee_target();
  1327     guarantee(callee != NULL && callee->is_method(), "bad handshake");
  1328     thread->set_vm_result_2(callee);
  1329     thread->set_callee_target(NULL);
  1330     return callee->get_c2i_entry();
  1333   // Must be compiled to compiled path which is safe to stackwalk
  1334   methodHandle callee_method;
  1335   JRT_BLOCK
  1336     // Force resolving of caller (if we called from compiled frame)
  1337     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
  1338     thread->set_vm_result_2(callee_method());
  1339   JRT_BLOCK_END
  1340   // return compiled code entry point after potential safepoints
  1341   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1342   return callee_method->verified_code_entry();
  1343 JRT_END
  1346 // resolve a static call and patch code
  1347 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
  1348   methodHandle callee_method;
  1349   JRT_BLOCK
  1350     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
  1351     thread->set_vm_result_2(callee_method());
  1352   JRT_BLOCK_END
  1353   // return compiled code entry point after potential safepoints
  1354   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1355   return callee_method->verified_code_entry();
  1356 JRT_END
  1359 // resolve virtual call and update inline cache to monomorphic
  1360 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
  1361   methodHandle callee_method;
  1362   JRT_BLOCK
  1363     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
  1364     thread->set_vm_result_2(callee_method());
  1365   JRT_BLOCK_END
  1366   // return compiled code entry point after potential safepoints
  1367   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1368   return callee_method->verified_code_entry();
  1369 JRT_END
  1372 // Resolve a virtual call that can be statically bound (e.g., always
  1373 // monomorphic, so it has no inline cache).  Patch code to resolved target.
  1374 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
  1375   methodHandle callee_method;
  1376   JRT_BLOCK
  1377     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
  1378     thread->set_vm_result_2(callee_method());
  1379   JRT_BLOCK_END
  1380   // return compiled code entry point after potential safepoints
  1381   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
  1382   return callee_method->verified_code_entry();
  1383 JRT_END
  1389 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
  1390   ResourceMark rm(thread);
  1391   CallInfo call_info;
  1392   Bytecodes::Code bc;
  1394   // receiver is NULL for static calls. An exception is thrown for NULL
  1395   // receivers for non-static calls
  1396   Handle receiver = find_callee_info(thread, bc, call_info,
  1397                                      CHECK_(methodHandle()));
  1398   // Compiler1 can produce virtual call sites that can actually be statically bound
  1399   // If we fell thru to below we would think that the site was going megamorphic
  1400   // when in fact the site can never miss. Worse because we'd think it was megamorphic
  1401   // we'd try and do a vtable dispatch however methods that can be statically bound
  1402   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
  1403   // reresolution of the  call site (as if we did a handle_wrong_method and not an
  1404   // plain ic_miss) and the site will be converted to an optimized virtual call site
  1405   // never to miss again. I don't believe C2 will produce code like this but if it
  1406   // did this would still be the correct thing to do for it too, hence no ifdef.
  1407   //
  1408   if (call_info.resolved_method()->can_be_statically_bound()) {
  1409     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
  1410     if (TraceCallFixup) {
  1411       RegisterMap reg_map(thread, false);
  1412       frame caller_frame = thread->last_frame().sender(&reg_map);
  1413       ResourceMark rm(thread);
  1414       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
  1415       callee_method->print_short_name(tty);
  1416       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
  1417       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1419     return callee_method;
  1422   methodHandle callee_method = call_info.selected_method();
  1424   bool should_be_mono = false;
  1426 #ifndef PRODUCT
  1427   Atomic::inc(&_ic_miss_ctr);
  1429   // Statistics & Tracing
  1430   if (TraceCallFixup) {
  1431     ResourceMark rm(thread);
  1432     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
  1433     callee_method->print_short_name(tty);
  1434     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1437   if (ICMissHistogram) {
  1438     MutexLocker m(VMStatistic_lock);
  1439     RegisterMap reg_map(thread, false);
  1440     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
  1441     // produce statistics under the lock
  1442     trace_ic_miss(f.pc());
  1444 #endif
  1446   // install an event collector so that when a vtable stub is created the
  1447   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
  1448   // event can't be posted when the stub is created as locks are held
  1449   // - instead the event will be deferred until the event collector goes
  1450   // out of scope.
  1451   JvmtiDynamicCodeEventCollector event_collector;
  1453   // Update inline cache to megamorphic. Skip update if caller has been
  1454   // made non-entrant or we are called from interpreted.
  1455   { MutexLocker ml_patch (CompiledIC_lock);
  1456     RegisterMap reg_map(thread, false);
  1457     frame caller_frame = thread->last_frame().sender(&reg_map);
  1458     CodeBlob* cb = caller_frame.cb();
  1459     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
  1460       // Not a non-entrant nmethod, so find inline_cache
  1461       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
  1462       bool should_be_mono = false;
  1463       if (inline_cache->is_optimized()) {
  1464         if (TraceCallFixup) {
  1465           ResourceMark rm(thread);
  1466           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
  1467           callee_method->print_short_name(tty);
  1468           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1470         should_be_mono = true;
  1471       } else if (inline_cache->is_icholder_call()) {
  1472         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
  1473         if ( ic_oop != NULL) {
  1475           if (receiver()->klass() == ic_oop->holder_klass()) {
  1476             // This isn't a real miss. We must have seen that compiled code
  1477             // is now available and we want the call site converted to a
  1478             // monomorphic compiled call site.
  1479             // We can't assert for callee_method->code() != NULL because it
  1480             // could have been deoptimized in the meantime
  1481             if (TraceCallFixup) {
  1482               ResourceMark rm(thread);
  1483               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
  1484               callee_method->print_short_name(tty);
  1485               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1487             should_be_mono = true;
  1492       if (should_be_mono) {
  1494         // We have a path that was monomorphic but was going interpreted
  1495         // and now we have (or had) a compiled entry. We correct the IC
  1496         // by using a new icBuffer.
  1497         CompiledICInfo info;
  1498         KlassHandle receiver_klass(THREAD, receiver()->klass());
  1499         inline_cache->compute_monomorphic_entry(callee_method,
  1500                                                 receiver_klass,
  1501                                                 inline_cache->is_optimized(),
  1502                                                 false,
  1503                                                 info, CHECK_(methodHandle()));
  1504         inline_cache->set_to_monomorphic(info);
  1505       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
  1506         // Change to megamorphic
  1507         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
  1508       } else {
  1509         // Either clean or megamorphic
  1512   } // Release CompiledIC_lock
  1514   return callee_method;
  1517 //
  1518 // Resets a call-site in compiled code so it will get resolved again.
  1519 // This routines handles both virtual call sites, optimized virtual call
  1520 // sites, and static call sites. Typically used to change a call sites
  1521 // destination from compiled to interpreted.
  1522 //
  1523 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
  1524   ResourceMark rm(thread);
  1525   RegisterMap reg_map(thread, false);
  1526   frame stub_frame = thread->last_frame();
  1527   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
  1528   frame caller = stub_frame.sender(&reg_map);
  1530   // Do nothing if the frame isn't a live compiled frame.
  1531   // nmethod could be deoptimized by the time we get here
  1532   // so no update to the caller is needed.
  1534   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
  1536     address pc = caller.pc();
  1538     // Default call_addr is the location of the "basic" call.
  1539     // Determine the address of the call we a reresolving. With
  1540     // Inline Caches we will always find a recognizable call.
  1541     // With Inline Caches disabled we may or may not find a
  1542     // recognizable call. We will always find a call for static
  1543     // calls and for optimized virtual calls. For vanilla virtual
  1544     // calls it depends on the state of the UseInlineCaches switch.
  1545     //
  1546     // With Inline Caches disabled we can get here for a virtual call
  1547     // for two reasons:
  1548     //   1 - calling an abstract method. The vtable for abstract methods
  1549     //       will run us thru handle_wrong_method and we will eventually
  1550     //       end up in the interpreter to throw the ame.
  1551     //   2 - a racing deoptimization. We could be doing a vanilla vtable
  1552     //       call and between the time we fetch the entry address and
  1553     //       we jump to it the target gets deoptimized. Similar to 1
  1554     //       we will wind up in the interprter (thru a c2i with c2).
  1555     //
  1556     address call_addr = NULL;
  1558       // Get call instruction under lock because another thread may be
  1559       // busy patching it.
  1560       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1561       // Location of call instruction
  1562       if (NativeCall::is_call_before(pc)) {
  1563         NativeCall *ncall = nativeCall_before(pc);
  1564         call_addr = ncall->instruction_address();
  1568     // Check for static or virtual call
  1569     bool is_static_call = false;
  1570     nmethod* caller_nm = CodeCache::find_nmethod(pc);
  1571     // Make sure nmethod doesn't get deoptimized and removed until
  1572     // this is done with it.
  1573     // CLEANUP - with lazy deopt shouldn't need this lock
  1574     nmethodLocker nmlock(caller_nm);
  1576     if (call_addr != NULL) {
  1577       RelocIterator iter(caller_nm, call_addr, call_addr+1);
  1578       int ret = iter.next(); // Get item
  1579       if (ret) {
  1580         assert(iter.addr() == call_addr, "must find call");
  1581         if (iter.type() == relocInfo::static_call_type) {
  1582           is_static_call = true;
  1583         } else {
  1584           assert(iter.type() == relocInfo::virtual_call_type ||
  1585                  iter.type() == relocInfo::opt_virtual_call_type
  1586                 , "unexpected relocInfo. type");
  1588       } else {
  1589         assert(!UseInlineCaches, "relocation info. must exist for this address");
  1592       // Cleaning the inline cache will force a new resolve. This is more robust
  1593       // than directly setting it to the new destination, since resolving of calls
  1594       // is always done through the same code path. (experience shows that it
  1595       // leads to very hard to track down bugs, if an inline cache gets updated
  1596       // to a wrong method). It should not be performance critical, since the
  1597       // resolve is only done once.
  1599       MutexLocker ml(CompiledIC_lock);
  1600       //
  1601       // We do not patch the call site if the nmethod has been made non-entrant
  1602       // as it is a waste of time
  1603       //
  1604       if (caller_nm->is_in_use()) {
  1605         if (is_static_call) {
  1606           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
  1607           ssc->set_to_clean();
  1608         } else {
  1609           // compiled, dispatched call (which used to call an interpreted method)
  1610           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
  1611           inline_cache->set_to_clean();
  1618   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
  1621 #ifndef PRODUCT
  1622   Atomic::inc(&_wrong_method_ctr);
  1624   if (TraceCallFixup) {
  1625     ResourceMark rm(thread);
  1626     tty->print("handle_wrong_method reresolving call to");
  1627     callee_method->print_short_name(tty);
  1628     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
  1630 #endif
  1632   return callee_method;
  1635 #ifdef ASSERT
  1636 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
  1637                                                                 const BasicType* sig_bt,
  1638                                                                 const VMRegPair* regs) {
  1639   ResourceMark rm;
  1640   const int total_args_passed = method->size_of_parameters();
  1641   const VMRegPair*    regs_with_member_name = regs;
  1642         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
  1644   const int member_arg_pos = total_args_passed - 1;
  1645   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
  1646   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
  1648   const bool is_outgoing = method->is_method_handle_intrinsic();
  1649   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
  1651   for (int i = 0; i < member_arg_pos; i++) {
  1652     VMReg a =    regs_with_member_name[i].first();
  1653     VMReg b = regs_without_member_name[i].first();
  1654     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
  1656   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
  1658 #endif
  1660 // ---------------------------------------------------------------------------
  1661 // We are calling the interpreter via a c2i. Normally this would mean that
  1662 // we were called by a compiled method. However we could have lost a race
  1663 // where we went int -> i2c -> c2i and so the caller could in fact be
  1664 // interpreted. If the caller is compiled we attempt to patch the caller
  1665 // so he no longer calls into the interpreter.
  1666 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
  1667   Method* moop(method);
  1669   address entry_point = moop->from_compiled_entry();
  1671   // It's possible that deoptimization can occur at a call site which hasn't
  1672   // been resolved yet, in which case this function will be called from
  1673   // an nmethod that has been patched for deopt and we can ignore the
  1674   // request for a fixup.
  1675   // Also it is possible that we lost a race in that from_compiled_entry
  1676   // is now back to the i2c in that case we don't need to patch and if
  1677   // we did we'd leap into space because the callsite needs to use
  1678   // "to interpreter" stub in order to load up the Method*. Don't
  1679   // ask me how I know this...
  1681   CodeBlob* cb = CodeCache::find_blob(caller_pc);
  1682   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
  1683     return;
  1686   // The check above makes sure this is a nmethod.
  1687   nmethod* nm = cb->as_nmethod_or_null();
  1688   assert(nm, "must be");
  1690   // Get the return PC for the passed caller PC.
  1691   address return_pc = caller_pc + frame::pc_return_offset;
  1693   // There is a benign race here. We could be attempting to patch to a compiled
  1694   // entry point at the same time the callee is being deoptimized. If that is
  1695   // the case then entry_point may in fact point to a c2i and we'd patch the
  1696   // call site with the same old data. clear_code will set code() to NULL
  1697   // at the end of it. If we happen to see that NULL then we can skip trying
  1698   // to patch. If we hit the window where the callee has a c2i in the
  1699   // from_compiled_entry and the NULL isn't present yet then we lose the race
  1700   // and patch the code with the same old data. Asi es la vida.
  1702   if (moop->code() == NULL) return;
  1704   if (nm->is_in_use()) {
  1706     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
  1707     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
  1708     if (NativeCall::is_call_before(return_pc)) {
  1709       NativeCall *call = nativeCall_before(return_pc);
  1710       //
  1711       // bug 6281185. We might get here after resolving a call site to a vanilla
  1712       // virtual call. Because the resolvee uses the verified entry it may then
  1713       // see compiled code and attempt to patch the site by calling us. This would
  1714       // then incorrectly convert the call site to optimized and its downhill from
  1715       // there. If you're lucky you'll get the assert in the bugid, if not you've
  1716       // just made a call site that could be megamorphic into a monomorphic site
  1717       // for the rest of its life! Just another racing bug in the life of
  1718       // fixup_callers_callsite ...
  1719       //
  1720       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
  1721       iter.next();
  1722       assert(iter.has_current(), "must have a reloc at java call site");
  1723       relocInfo::relocType typ = iter.reloc()->type();
  1724       if ( typ != relocInfo::static_call_type &&
  1725            typ != relocInfo::opt_virtual_call_type &&
  1726            typ != relocInfo::static_stub_type) {
  1727         return;
  1729       address destination = call->destination();
  1730       if (destination != entry_point) {
  1731         CodeBlob* callee = CodeCache::find_blob(destination);
  1732         // callee == cb seems weird. It means calling interpreter thru stub.
  1733         if (callee == cb || callee->is_adapter_blob()) {
  1734           // static call or optimized virtual
  1735           if (TraceCallFixup) {
  1736             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1737             moop->print_short_name(tty);
  1738             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1740           call->set_destination_mt_safe(entry_point);
  1741         } else {
  1742           if (TraceCallFixup) {
  1743             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1744             moop->print_short_name(tty);
  1745             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1747           // assert is too strong could also be resolve destinations.
  1748           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
  1750       } else {
  1751           if (TraceCallFixup) {
  1752             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
  1753             moop->print_short_name(tty);
  1754             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
  1759 IRT_END
  1762 // same as JVM_Arraycopy, but called directly from compiled code
  1763 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
  1764                                                 oopDesc* dest, jint dest_pos,
  1765                                                 jint length,
  1766                                                 JavaThread* thread)) {
  1767 #ifndef PRODUCT
  1768   _slow_array_copy_ctr++;
  1769 #endif
  1770   // Check if we have null pointers
  1771   if (src == NULL || dest == NULL) {
  1772     THROW(vmSymbols::java_lang_NullPointerException());
  1774   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
  1775   // even though the copy_array API also performs dynamic checks to ensure
  1776   // that src and dest are truly arrays (and are conformable).
  1777   // The copy_array mechanism is awkward and could be removed, but
  1778   // the compilers don't call this function except as a last resort,
  1779   // so it probably doesn't matter.
  1780   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
  1781                                         (arrayOopDesc*)dest, dest_pos,
  1782                                         length, thread);
  1784 JRT_END
  1786 char* SharedRuntime::generate_class_cast_message(
  1787     JavaThread* thread, const char* objName) {
  1789   // Get target class name from the checkcast instruction
  1790   vframeStream vfst(thread, true);
  1791   assert(!vfst.at_end(), "Java frame must exist");
  1792   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
  1793   Klass* targetKlass = vfst.method()->constants()->klass_at(
  1794     cc.index(), thread);
  1795   return generate_class_cast_message(objName, targetKlass->external_name());
  1798 char* SharedRuntime::generate_class_cast_message(
  1799     const char* objName, const char* targetKlassName, const char* desc) {
  1800   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
  1802   char* message = NEW_RESOURCE_ARRAY(char, msglen);
  1803   if (NULL == message) {
  1804     // Shouldn't happen, but don't cause even more problems if it does
  1805     message = const_cast<char*>(objName);
  1806   } else {
  1807     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
  1809   return message;
  1812 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
  1813   (void) JavaThread::current()->reguard_stack();
  1814 JRT_END
  1817 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
  1818 #ifndef PRODUCT
  1819 int SharedRuntime::_monitor_enter_ctr=0;
  1820 #endif
  1821 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
  1822   oop obj(_obj);
  1823 #ifndef PRODUCT
  1824   _monitor_enter_ctr++;             // monitor enter slow
  1825 #endif
  1826   if (PrintBiasedLockingStatistics) {
  1827     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
  1829   Handle h_obj(THREAD, obj);
  1830   if (UseBiasedLocking) {
  1831     // Retry fast entry if bias is revoked to avoid unnecessary inflation
  1832     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
  1833   } else {
  1834     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
  1836   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
  1837 JRT_END
  1839 #ifndef PRODUCT
  1840 int SharedRuntime::_monitor_exit_ctr=0;
  1841 #endif
  1842 // Handles the uncommon cases of monitor unlocking in compiled code
  1843 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
  1844    oop obj(_obj);
  1845 #ifndef PRODUCT
  1846   _monitor_exit_ctr++;              // monitor exit slow
  1847 #endif
  1848   Thread* THREAD = JavaThread::current();
  1849   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
  1850   // testing was unable to ever fire the assert that guarded it so I have removed it.
  1851   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
  1852 #undef MIGHT_HAVE_PENDING
  1853 #ifdef MIGHT_HAVE_PENDING
  1854   // Save and restore any pending_exception around the exception mark.
  1855   // While the slow_exit must not throw an exception, we could come into
  1856   // this routine with one set.
  1857   oop pending_excep = NULL;
  1858   const char* pending_file;
  1859   int pending_line;
  1860   if (HAS_PENDING_EXCEPTION) {
  1861     pending_excep = PENDING_EXCEPTION;
  1862     pending_file  = THREAD->exception_file();
  1863     pending_line  = THREAD->exception_line();
  1864     CLEAR_PENDING_EXCEPTION;
  1866 #endif /* MIGHT_HAVE_PENDING */
  1869     // Exit must be non-blocking, and therefore no exceptions can be thrown.
  1870     EXCEPTION_MARK;
  1871     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
  1874 #ifdef MIGHT_HAVE_PENDING
  1875   if (pending_excep != NULL) {
  1876     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
  1878 #endif /* MIGHT_HAVE_PENDING */
  1879 JRT_END
  1881 #ifndef PRODUCT
  1883 void SharedRuntime::print_statistics() {
  1884   ttyLocker ttyl;
  1885   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
  1887   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
  1888   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
  1889   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
  1891   SharedRuntime::print_ic_miss_histogram();
  1893   if (CountRemovableExceptions) {
  1894     if (_nof_removable_exceptions > 0) {
  1895       Unimplemented(); // this counter is not yet incremented
  1896       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
  1900   // Dump the JRT_ENTRY counters
  1901   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
  1902   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
  1903   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
  1904   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
  1905   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
  1906   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
  1907   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
  1909   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
  1910   tty->print_cr("%5d wrong method", _wrong_method_ctr );
  1911   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
  1912   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
  1913   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
  1915   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
  1916   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
  1917   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
  1918   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
  1919   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
  1920   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
  1921   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
  1922   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
  1923   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
  1924   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
  1925   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
  1926   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
  1927   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
  1928   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
  1929   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
  1930   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
  1932   AdapterHandlerLibrary::print_statistics();
  1934   if (xtty != NULL)  xtty->tail("statistics");
  1937 inline double percent(int x, int y) {
  1938   return 100.0 * x / MAX2(y, 1);
  1941 class MethodArityHistogram {
  1942  public:
  1943   enum { MAX_ARITY = 256 };
  1944  private:
  1945   static int _arity_histogram[MAX_ARITY];     // histogram of #args
  1946   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
  1947   static int _max_arity;                      // max. arity seen
  1948   static int _max_size;                       // max. arg size seen
  1950   static void add_method_to_histogram(nmethod* nm) {
  1951     Method* m = nm->method();
  1952     ArgumentCount args(m->signature());
  1953     int arity   = args.size() + (m->is_static() ? 0 : 1);
  1954     int argsize = m->size_of_parameters();
  1955     arity   = MIN2(arity, MAX_ARITY-1);
  1956     argsize = MIN2(argsize, MAX_ARITY-1);
  1957     int count = nm->method()->compiled_invocation_count();
  1958     _arity_histogram[arity]  += count;
  1959     _size_histogram[argsize] += count;
  1960     _max_arity = MAX2(_max_arity, arity);
  1961     _max_size  = MAX2(_max_size, argsize);
  1964   void print_histogram_helper(int n, int* histo, const char* name) {
  1965     const int N = MIN2(5, n);
  1966     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1967     double sum = 0;
  1968     double weighted_sum = 0;
  1969     int i;
  1970     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
  1971     double rest = sum;
  1972     double percent = sum / 100;
  1973     for (i = 0; i <= N; i++) {
  1974       rest -= histo[i];
  1975       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
  1977     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
  1978     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
  1981   void print_histogram() {
  1982     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
  1983     print_histogram_helper(_max_arity, _arity_histogram, "arity");
  1984     tty->print_cr("\nSame for parameter size (in words):");
  1985     print_histogram_helper(_max_size, _size_histogram, "size");
  1986     tty->cr();
  1989  public:
  1990   MethodArityHistogram() {
  1991     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
  1992     _max_arity = _max_size = 0;
  1993     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
  1994     CodeCache::nmethods_do(add_method_to_histogram);
  1995     print_histogram();
  1997 };
  1999 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
  2000 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
  2001 int MethodArityHistogram::_max_arity;
  2002 int MethodArityHistogram::_max_size;
  2004 void SharedRuntime::print_call_statistics(int comp_total) {
  2005   tty->print_cr("Calls from compiled code:");
  2006   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
  2007   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
  2008   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
  2009   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
  2010   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
  2011   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
  2012   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
  2013   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
  2014   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
  2015   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
  2016   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
  2017   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
  2018   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
  2019   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
  2020   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
  2021   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
  2022   tty->cr();
  2023   tty->print_cr("Note 1: counter updates are not MT-safe.");
  2024   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
  2025   tty->print_cr("        %% in nested categories are relative to their category");
  2026   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
  2027   tty->cr();
  2029   MethodArityHistogram h;
  2031 #endif
  2034 // A simple wrapper class around the calling convention information
  2035 // that allows sharing of adapters for the same calling convention.
  2036 class AdapterFingerPrint : public CHeapObj<mtCode> {
  2037  private:
  2038   enum {
  2039     _basic_type_bits = 4,
  2040     _basic_type_mask = right_n_bits(_basic_type_bits),
  2041     _basic_types_per_int = BitsPerInt / _basic_type_bits,
  2042     _compact_int_count = 3
  2043   };
  2044   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
  2045   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
  2047   union {
  2048     int  _compact[_compact_int_count];
  2049     int* _fingerprint;
  2050   } _value;
  2051   int _length; // A negative length indicates the fingerprint is in the compact form,
  2052                // Otherwise _value._fingerprint is the array.
  2054   // Remap BasicTypes that are handled equivalently by the adapters.
  2055   // These are correct for the current system but someday it might be
  2056   // necessary to make this mapping platform dependent.
  2057   static int adapter_encoding(BasicType in) {
  2058     switch(in) {
  2059       case T_BOOLEAN:
  2060       case T_BYTE:
  2061       case T_SHORT:
  2062       case T_CHAR:
  2063         // There are all promoted to T_INT in the calling convention
  2064         return T_INT;
  2066       case T_OBJECT:
  2067       case T_ARRAY:
  2068         // In other words, we assume that any register good enough for
  2069         // an int or long is good enough for a managed pointer.
  2070 #ifdef _LP64
  2071         return T_LONG;
  2072 #else
  2073         return T_INT;
  2074 #endif
  2076       case T_INT:
  2077       case T_LONG:
  2078       case T_FLOAT:
  2079       case T_DOUBLE:
  2080       case T_VOID:
  2081         return in;
  2083       default:
  2084         ShouldNotReachHere();
  2085         return T_CONFLICT;
  2089  public:
  2090   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
  2091     // The fingerprint is based on the BasicType signature encoded
  2092     // into an array of ints with eight entries per int.
  2093     int* ptr;
  2094     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
  2095     if (len <= _compact_int_count) {
  2096       assert(_compact_int_count == 3, "else change next line");
  2097       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
  2098       // Storing the signature encoded as signed chars hits about 98%
  2099       // of the time.
  2100       _length = -len;
  2101       ptr = _value._compact;
  2102     } else {
  2103       _length = len;
  2104       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
  2105       ptr = _value._fingerprint;
  2108     // Now pack the BasicTypes with 8 per int
  2109     int sig_index = 0;
  2110     for (int index = 0; index < len; index++) {
  2111       int value = 0;
  2112       for (int byte = 0; byte < _basic_types_per_int; byte++) {
  2113         int bt = ((sig_index < total_args_passed)
  2114                   ? adapter_encoding(sig_bt[sig_index++])
  2115                   : 0);
  2116         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
  2117         value = (value << _basic_type_bits) | bt;
  2119       ptr[index] = value;
  2123   ~AdapterFingerPrint() {
  2124     if (_length > 0) {
  2125       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
  2129   int value(int index) {
  2130     if (_length < 0) {
  2131       return _value._compact[index];
  2133     return _value._fingerprint[index];
  2135   int length() {
  2136     if (_length < 0) return -_length;
  2137     return _length;
  2140   bool is_compact() {
  2141     return _length <= 0;
  2144   unsigned int compute_hash() {
  2145     int hash = 0;
  2146     for (int i = 0; i < length(); i++) {
  2147       int v = value(i);
  2148       hash = (hash << 8) ^ v ^ (hash >> 5);
  2150     return (unsigned int)hash;
  2153   const char* as_string() {
  2154     stringStream st;
  2155     st.print("0x");
  2156     for (int i = 0; i < length(); i++) {
  2157       st.print("%08x", value(i));
  2159     return st.as_string();
  2162   bool equals(AdapterFingerPrint* other) {
  2163     if (other->_length != _length) {
  2164       return false;
  2166     if (_length < 0) {
  2167       assert(_compact_int_count == 3, "else change next line");
  2168       return _value._compact[0] == other->_value._compact[0] &&
  2169              _value._compact[1] == other->_value._compact[1] &&
  2170              _value._compact[2] == other->_value._compact[2];
  2171     } else {
  2172       for (int i = 0; i < _length; i++) {
  2173         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
  2174           return false;
  2178     return true;
  2180 };
  2183 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
  2184 class AdapterHandlerTable : public BasicHashtable<mtCode> {
  2185   friend class AdapterHandlerTableIterator;
  2187  private:
  2189 #ifndef PRODUCT
  2190   static int _lookups; // number of calls to lookup
  2191   static int _buckets; // number of buckets checked
  2192   static int _equals;  // number of buckets checked with matching hash
  2193   static int _hits;    // number of successful lookups
  2194   static int _compact; // number of equals calls with compact signature
  2195 #endif
  2197   AdapterHandlerEntry* bucket(int i) {
  2198     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
  2201  public:
  2202   AdapterHandlerTable()
  2203     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
  2205   // Create a new entry suitable for insertion in the table
  2206   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
  2207     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
  2208     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2209     return entry;
  2212   // Insert an entry into the table
  2213   void add(AdapterHandlerEntry* entry) {
  2214     int index = hash_to_index(entry->hash());
  2215     add_entry(index, entry);
  2218   void free_entry(AdapterHandlerEntry* entry) {
  2219     entry->deallocate();
  2220     BasicHashtable<mtCode>::free_entry(entry);
  2223   // Find a entry with the same fingerprint if it exists
  2224   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
  2225     NOT_PRODUCT(_lookups++);
  2226     AdapterFingerPrint fp(total_args_passed, sig_bt);
  2227     unsigned int hash = fp.compute_hash();
  2228     int index = hash_to_index(hash);
  2229     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2230       NOT_PRODUCT(_buckets++);
  2231       if (e->hash() == hash) {
  2232         NOT_PRODUCT(_equals++);
  2233         if (fp.equals(e->fingerprint())) {
  2234 #ifndef PRODUCT
  2235           if (fp.is_compact()) _compact++;
  2236           _hits++;
  2237 #endif
  2238           return e;
  2242     return NULL;
  2245 #ifndef PRODUCT
  2246   void print_statistics() {
  2247     ResourceMark rm;
  2248     int longest = 0;
  2249     int empty = 0;
  2250     int total = 0;
  2251     int nonempty = 0;
  2252     for (int index = 0; index < table_size(); index++) {
  2253       int count = 0;
  2254       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
  2255         count++;
  2257       if (count != 0) nonempty++;
  2258       if (count == 0) empty++;
  2259       if (count > longest) longest = count;
  2260       total += count;
  2262     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
  2263                   empty, longest, total, total / (double)nonempty);
  2264     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
  2265                   _lookups, _buckets, _equals, _hits, _compact);
  2267 #endif
  2268 };
  2271 #ifndef PRODUCT
  2273 int AdapterHandlerTable::_lookups;
  2274 int AdapterHandlerTable::_buckets;
  2275 int AdapterHandlerTable::_equals;
  2276 int AdapterHandlerTable::_hits;
  2277 int AdapterHandlerTable::_compact;
  2279 #endif
  2281 class AdapterHandlerTableIterator : public StackObj {
  2282  private:
  2283   AdapterHandlerTable* _table;
  2284   int _index;
  2285   AdapterHandlerEntry* _current;
  2287   void scan() {
  2288     while (_index < _table->table_size()) {
  2289       AdapterHandlerEntry* a = _table->bucket(_index);
  2290       _index++;
  2291       if (a != NULL) {
  2292         _current = a;
  2293         return;
  2298  public:
  2299   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
  2300     scan();
  2302   bool has_next() {
  2303     return _current != NULL;
  2305   AdapterHandlerEntry* next() {
  2306     if (_current != NULL) {
  2307       AdapterHandlerEntry* result = _current;
  2308       _current = _current->next();
  2309       if (_current == NULL) scan();
  2310       return result;
  2311     } else {
  2312       return NULL;
  2315 };
  2318 // ---------------------------------------------------------------------------
  2319 // Implementation of AdapterHandlerLibrary
  2320 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
  2321 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
  2322 const int AdapterHandlerLibrary_size = 16*K;
  2323 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
  2325 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
  2326   // Should be called only when AdapterHandlerLibrary_lock is active.
  2327   if (_buffer == NULL) // Initialize lazily
  2328       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
  2329   return _buffer;
  2332 void AdapterHandlerLibrary::initialize() {
  2333   if (_adapters != NULL) return;
  2334   _adapters = new AdapterHandlerTable();
  2336   // Create a special handler for abstract methods.  Abstract methods
  2337   // are never compiled so an i2c entry is somewhat meaningless, but
  2338   // fill it in with something appropriate just in case.  Pass handle
  2339   // wrong method for the c2i transitions.
  2340   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
  2341   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
  2342                                                               StubRoutines::throw_AbstractMethodError_entry(),
  2343                                                               wrong_method, wrong_method);
  2346 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
  2347                                                       address i2c_entry,
  2348                                                       address c2i_entry,
  2349                                                       address c2i_unverified_entry) {
  2350   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
  2353 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
  2354   // Use customized signature handler.  Need to lock around updates to
  2355   // the AdapterHandlerTable (it is not safe for concurrent readers
  2356   // and a single writer: this could be fixed if it becomes a
  2357   // problem).
  2359   // Get the address of the ic_miss handlers before we grab the
  2360   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
  2361   // was caused by the initialization of the stubs happening
  2362   // while we held the lock and then notifying jvmti while
  2363   // holding it. This just forces the initialization to be a little
  2364   // earlier.
  2365   address ic_miss = SharedRuntime::get_ic_miss_stub();
  2366   assert(ic_miss != NULL, "must have handler");
  2368   ResourceMark rm;
  2370   NOT_PRODUCT(int insts_size);
  2371   AdapterBlob* B = NULL;
  2372   AdapterHandlerEntry* entry = NULL;
  2373   AdapterFingerPrint* fingerprint = NULL;
  2375     MutexLocker mu(AdapterHandlerLibrary_lock);
  2376     // make sure data structure is initialized
  2377     initialize();
  2379     if (method->is_abstract()) {
  2380       return _abstract_method_handler;
  2383     // Fill in the signature array, for the calling-convention call.
  2384     int total_args_passed = method->size_of_parameters(); // All args on stack
  2386     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2387     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2388     int i = 0;
  2389     if (!method->is_static())  // Pass in receiver first
  2390       sig_bt[i++] = T_OBJECT;
  2391     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
  2392       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2393       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
  2394         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2396     assert(i == total_args_passed, "");
  2398     // Lookup method signature's fingerprint
  2399     entry = _adapters->lookup(total_args_passed, sig_bt);
  2401 #ifdef ASSERT
  2402     AdapterHandlerEntry* shared_entry = NULL;
  2403     if (VerifyAdapterSharing && entry != NULL) {
  2404       shared_entry = entry;
  2405       entry = NULL;
  2407 #endif
  2409     if (entry != NULL) {
  2410       return entry;
  2413     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
  2414     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
  2416     // Make a C heap allocated version of the fingerprint to store in the adapter
  2417     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
  2419     // Create I2C & C2I handlers
  2421     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
  2422     if (buf != NULL) {
  2423       CodeBuffer buffer(buf);
  2424       short buffer_locs[20];
  2425       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
  2426                                              sizeof(buffer_locs)/sizeof(relocInfo));
  2427       MacroAssembler _masm(&buffer);
  2429       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
  2430                                                      total_args_passed,
  2431                                                      comp_args_on_stack,
  2432                                                      sig_bt,
  2433                                                      regs,
  2434                                                      fingerprint);
  2436 #ifdef ASSERT
  2437       if (VerifyAdapterSharing) {
  2438         if (shared_entry != NULL) {
  2439           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
  2440                  "code must match");
  2441           // Release the one just created and return the original
  2442           _adapters->free_entry(entry);
  2443           return shared_entry;
  2444         } else  {
  2445           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
  2448 #endif
  2450       B = AdapterBlob::create(&buffer);
  2451       NOT_PRODUCT(insts_size = buffer.insts_size());
  2453     if (B == NULL) {
  2454       // CodeCache is full, disable compilation
  2455       // Ought to log this but compile log is only per compile thread
  2456       // and we're some non descript Java thread.
  2457       MutexUnlocker mu(AdapterHandlerLibrary_lock);
  2458       CompileBroker::handle_full_code_cache();
  2459       return NULL; // Out of CodeCache space
  2461     entry->relocate(B->content_begin());
  2462 #ifndef PRODUCT
  2463     // debugging suppport
  2464     if (PrintAdapterHandlers || PrintStubCode) {
  2465       ttyLocker ttyl;
  2466       entry->print_adapter_on(tty);
  2467       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
  2468                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
  2469                     method->signature()->as_C_string(), insts_size);
  2470       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
  2471       if (Verbose || PrintStubCode) {
  2472         address first_pc = entry->base_address();
  2473         if (first_pc != NULL) {
  2474           Disassembler::decode(first_pc, first_pc + insts_size);
  2475           tty->cr();
  2479 #endif
  2481     _adapters->add(entry);
  2483   // Outside of the lock
  2484   if (B != NULL) {
  2485     char blob_id[256];
  2486     jio_snprintf(blob_id,
  2487                  sizeof(blob_id),
  2488                  "%s(%s)@" PTR_FORMAT,
  2489                  B->name(),
  2490                  fingerprint->as_string(),
  2491                  B->content_begin());
  2492     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
  2494     if (JvmtiExport::should_post_dynamic_code_generated()) {
  2495       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
  2498   return entry;
  2501 address AdapterHandlerEntry::base_address() {
  2502   address base = _i2c_entry;
  2503   if (base == NULL)  base = _c2i_entry;
  2504   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
  2505   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
  2506   return base;
  2509 void AdapterHandlerEntry::relocate(address new_base) {
  2510   address old_base = base_address();
  2511   assert(old_base != NULL, "");
  2512   ptrdiff_t delta = new_base - old_base;
  2513   if (_i2c_entry != NULL)
  2514     _i2c_entry += delta;
  2515   if (_c2i_entry != NULL)
  2516     _c2i_entry += delta;
  2517   if (_c2i_unverified_entry != NULL)
  2518     _c2i_unverified_entry += delta;
  2519   assert(base_address() == new_base, "");
  2523 void AdapterHandlerEntry::deallocate() {
  2524   delete _fingerprint;
  2525 #ifdef ASSERT
  2526   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
  2527   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
  2528 #endif
  2532 #ifdef ASSERT
  2533 // Capture the code before relocation so that it can be compared
  2534 // against other versions.  If the code is captured after relocation
  2535 // then relative instructions won't be equivalent.
  2536 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2537   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
  2538   _code_length = length;
  2539   memcpy(_saved_code, buffer, length);
  2540   _total_args_passed = total_args_passed;
  2541   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
  2542   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
  2546 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
  2547   if (length != _code_length) {
  2548     return false;
  2550   for (int i = 0; i < length; i++) {
  2551     if (buffer[i] != _saved_code[i]) {
  2552       return false;
  2555   return true;
  2557 #endif
  2560 // Create a native wrapper for this native method.  The wrapper converts the
  2561 // java compiled calling convention to the native convention, handlizes
  2562 // arguments, and transitions to native.  On return from the native we transition
  2563 // back to java blocking if a safepoint is in progress.
  2564 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
  2565   ResourceMark rm;
  2566   nmethod* nm = NULL;
  2568   assert(method->is_native(), "must be native");
  2569   assert(method->is_method_handle_intrinsic() ||
  2570          method->has_native_function(), "must have something valid to call!");
  2573     // perform the work while holding the lock, but perform any printing outside the lock
  2574     MutexLocker mu(AdapterHandlerLibrary_lock);
  2575     // See if somebody beat us to it
  2576     nm = method->code();
  2577     if (nm) {
  2578       return nm;
  2581     ResourceMark rm;
  2583     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2584     if (buf != NULL) {
  2585       CodeBuffer buffer(buf);
  2586       double locs_buf[20];
  2587       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2588       MacroAssembler _masm(&buffer);
  2590       // Fill in the signature array, for the calling-convention call.
  2591       const int total_args_passed = method->size_of_parameters();
  2593       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
  2594       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
  2595       int i=0;
  2596       if( !method->is_static() )  // Pass in receiver first
  2597         sig_bt[i++] = T_OBJECT;
  2598       SignatureStream ss(method->signature());
  2599       for( ; !ss.at_return_type(); ss.next()) {
  2600         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
  2601         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
  2602           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
  2604       assert(i == total_args_passed, "");
  2605       BasicType ret_type = ss.type();
  2607       // Now get the compiled-Java layout as input (or output) arguments.
  2608       // NOTE: Stubs for compiled entry points of method handle intrinsics
  2609       // are just trampolines so the argument registers must be outgoing ones.
  2610       const bool is_outgoing = method->is_method_handle_intrinsic();
  2611       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
  2613       // Generate the compiled-to-native wrapper code
  2614       nm = SharedRuntime::generate_native_wrapper(&_masm,
  2615                                                   method,
  2616                                                   compile_id,
  2617                                                   sig_bt,
  2618                                                   regs,
  2619                                                   ret_type);
  2623   // Must unlock before calling set_code
  2625   // Install the generated code.
  2626   if (nm != NULL) {
  2627     if (PrintCompilation) {
  2628       ttyLocker ttyl;
  2629       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
  2631     method->set_code(method, nm);
  2632     nm->post_compiled_method_load_event();
  2633   } else {
  2634     // CodeCache is full, disable compilation
  2635     CompileBroker::handle_full_code_cache();
  2637   return nm;
  2640 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
  2641   assert(thread == JavaThread::current(), "must be");
  2642   // The code is about to enter a JNI lazy critical native method and
  2643   // _needs_gc is true, so if this thread is already in a critical
  2644   // section then just return, otherwise this thread should block
  2645   // until needs_gc has been cleared.
  2646   if (thread->in_critical()) {
  2647     return;
  2649   // Lock and unlock a critical section to give the system a chance to block
  2650   GC_locker::lock_critical(thread);
  2651   GC_locker::unlock_critical(thread);
  2652 JRT_END
  2654 #ifdef HAVE_DTRACE_H
  2655 // Create a dtrace nmethod for this method.  The wrapper converts the
  2656 // java compiled calling convention to the native convention, makes a dummy call
  2657 // (actually nops for the size of the call instruction, which become a trap if
  2658 // probe is enabled). The returns to the caller. Since this all looks like a
  2659 // leaf no thread transition is needed.
  2661 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
  2662   ResourceMark rm;
  2663   nmethod* nm = NULL;
  2665   if (PrintCompilation) {
  2666     ttyLocker ttyl;
  2667     tty->print("---   n%s  ");
  2668     method->print_short_name(tty);
  2669     if (method->is_static()) {
  2670       tty->print(" (static)");
  2672     tty->cr();
  2676     // perform the work while holding the lock, but perform any printing
  2677     // outside the lock
  2678     MutexLocker mu(AdapterHandlerLibrary_lock);
  2679     // See if somebody beat us to it
  2680     nm = method->code();
  2681     if (nm) {
  2682       return nm;
  2685     ResourceMark rm;
  2687     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
  2688     if (buf != NULL) {
  2689       CodeBuffer buffer(buf);
  2690       // Need a few relocation entries
  2691       double locs_buf[20];
  2692       buffer.insts()->initialize_shared_locs(
  2693         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
  2694       MacroAssembler _masm(&buffer);
  2696       // Generate the compiled-to-native wrapper code
  2697       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
  2700   return nm;
  2703 // the dtrace method needs to convert java lang string to utf8 string.
  2704 void SharedRuntime::get_utf(oopDesc* src, address dst) {
  2705   typeArrayOop jlsValue  = java_lang_String::value(src);
  2706   int          jlsOffset = java_lang_String::offset(src);
  2707   int          jlsLen    = java_lang_String::length(src);
  2708   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
  2709                                            jlsValue->char_at_addr(jlsOffset);
  2710   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
  2711   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
  2713 #endif // ndef HAVE_DTRACE_H
  2715 // -------------------------------------------------------------------------
  2716 // Java-Java calling convention
  2717 // (what you use when Java calls Java)
  2719 //------------------------------name_for_receiver----------------------------------
  2720 // For a given signature, return the VMReg for parameter 0.
  2721 VMReg SharedRuntime::name_for_receiver() {
  2722   VMRegPair regs;
  2723   BasicType sig_bt = T_OBJECT;
  2724   (void) java_calling_convention(&sig_bt, &regs, 1, true);
  2725   // Return argument 0 register.  In the LP64 build pointers
  2726   // take 2 registers, but the VM wants only the 'main' name.
  2727   return regs.first();
  2730 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
  2731   // This method is returning a data structure allocating as a
  2732   // ResourceObject, so do not put any ResourceMarks in here.
  2733   char *s = sig->as_C_string();
  2734   int len = (int)strlen(s);
  2735   *s++; len--;                  // Skip opening paren
  2736   char *t = s+len;
  2737   while( *(--t) != ')' ) ;      // Find close paren
  2739   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
  2740   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
  2741   int cnt = 0;
  2742   if (has_receiver) {
  2743     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
  2746   while( s < t ) {
  2747     switch( *s++ ) {            // Switch on signature character
  2748     case 'B': sig_bt[cnt++] = T_BYTE;    break;
  2749     case 'C': sig_bt[cnt++] = T_CHAR;    break;
  2750     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
  2751     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
  2752     case 'I': sig_bt[cnt++] = T_INT;     break;
  2753     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
  2754     case 'S': sig_bt[cnt++] = T_SHORT;   break;
  2755     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
  2756     case 'V': sig_bt[cnt++] = T_VOID;    break;
  2757     case 'L':                   // Oop
  2758       while( *s++ != ';'  ) ;   // Skip signature
  2759       sig_bt[cnt++] = T_OBJECT;
  2760       break;
  2761     case '[': {                 // Array
  2762       do {                      // Skip optional size
  2763         while( *s >= '0' && *s <= '9' ) s++;
  2764       } while( *s++ == '[' );   // Nested arrays?
  2765       // Skip element type
  2766       if( s[-1] == 'L' )
  2767         while( *s++ != ';'  ) ; // Skip signature
  2768       sig_bt[cnt++] = T_ARRAY;
  2769       break;
  2771     default : ShouldNotReachHere();
  2774   assert( cnt < 256, "grow table size" );
  2776   int comp_args_on_stack;
  2777   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
  2779   // the calling convention doesn't count out_preserve_stack_slots so
  2780   // we must add that in to get "true" stack offsets.
  2782   if (comp_args_on_stack) {
  2783     for (int i = 0; i < cnt; i++) {
  2784       VMReg reg1 = regs[i].first();
  2785       if( reg1->is_stack()) {
  2786         // Yuck
  2787         reg1 = reg1->bias(out_preserve_stack_slots());
  2789       VMReg reg2 = regs[i].second();
  2790       if( reg2->is_stack()) {
  2791         // Yuck
  2792         reg2 = reg2->bias(out_preserve_stack_slots());
  2794       regs[i].set_pair(reg2, reg1);
  2798   // results
  2799   *arg_size = cnt;
  2800   return regs;
  2803 // OSR Migration Code
  2804 //
  2805 // This code is used convert interpreter frames into compiled frames.  It is
  2806 // called from very start of a compiled OSR nmethod.  A temp array is
  2807 // allocated to hold the interesting bits of the interpreter frame.  All
  2808 // active locks are inflated to allow them to move.  The displaced headers and
  2809 // active interpeter locals are copied into the temp buffer.  Then we return
  2810 // back to the compiled code.  The compiled code then pops the current
  2811 // interpreter frame off the stack and pushes a new compiled frame.  Then it
  2812 // copies the interpreter locals and displaced headers where it wants.
  2813 // Finally it calls back to free the temp buffer.
  2814 //
  2815 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
  2817 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
  2819   //
  2820   // This code is dependent on the memory layout of the interpreter local
  2821   // array and the monitors. On all of our platforms the layout is identical
  2822   // so this code is shared. If some platform lays the their arrays out
  2823   // differently then this code could move to platform specific code or
  2824   // the code here could be modified to copy items one at a time using
  2825   // frame accessor methods and be platform independent.
  2827   frame fr = thread->last_frame();
  2828   assert( fr.is_interpreted_frame(), "" );
  2829   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
  2831   // Figure out how many monitors are active.
  2832   int active_monitor_count = 0;
  2833   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
  2834        kptr < fr.interpreter_frame_monitor_begin();
  2835        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
  2836     if( kptr->obj() != NULL ) active_monitor_count++;
  2839   // QQQ we could place number of active monitors in the array so that compiled code
  2840   // could double check it.
  2842   Method* moop = fr.interpreter_frame_method();
  2843   int max_locals = moop->max_locals();
  2844   // Allocate temp buffer, 1 word per local & 2 per active monitor
  2845   int buf_size_words = max_locals + active_monitor_count*2;
  2846   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
  2848   // Copy the locals.  Order is preserved so that loading of longs works.
  2849   // Since there's no GC I can copy the oops blindly.
  2850   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
  2851   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
  2852                        (HeapWord*)&buf[0],
  2853                        max_locals);
  2855   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
  2856   int i = max_locals;
  2857   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
  2858        kptr2 < fr.interpreter_frame_monitor_begin();
  2859        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
  2860     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
  2861       BasicLock *lock = kptr2->lock();
  2862       // Inflate so the displaced header becomes position-independent
  2863       if (lock->displaced_header()->is_unlocked())
  2864         ObjectSynchronizer::inflate_helper(kptr2->obj());
  2865       // Now the displaced header is free to move
  2866       buf[i++] = (intptr_t)lock->displaced_header();
  2867       buf[i++] = (intptr_t)kptr2->obj();
  2870   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
  2872   return buf;
  2873 JRT_END
  2875 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
  2876   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
  2877 JRT_END
  2879 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
  2880   AdapterHandlerTableIterator iter(_adapters);
  2881   while (iter.has_next()) {
  2882     AdapterHandlerEntry* a = iter.next();
  2883     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
  2885   return false;
  2888 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
  2889   AdapterHandlerTableIterator iter(_adapters);
  2890   while (iter.has_next()) {
  2891     AdapterHandlerEntry* a = iter.next();
  2892     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
  2893       st->print("Adapter for signature: ");
  2894       a->print_adapter_on(tty);
  2895       return;
  2898   assert(false, "Should have found handler");
  2901 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
  2902   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
  2903                (intptr_t) this, fingerprint()->as_string(),
  2904                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
  2908 #ifndef PRODUCT
  2910 void AdapterHandlerLibrary::print_statistics() {
  2911   _adapters->print_statistics();
  2914 #endif /* PRODUCT */

mercurial