src/share/vm/runtime/deoptimization.cpp

Tue, 05 Feb 2013 08:25:51 -0800

author
vlivanov
date
Tue, 05 Feb 2013 08:25:51 -0800
changeset 4539
6a51fc70a15e
parent 4325
d2f8c38e543d
child 4727
0094485b46c7
permissions
-rw-r--r--

8006613: adding reason to made_not_compilable
Reviewed-by: kvn, vlivanov
Contributed-by: Igor Ignatyev <igor.ignatyev@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "code/debugInfoRec.hpp"
    28 #include "code/nmethod.hpp"
    29 #include "code/pcDesc.hpp"
    30 #include "code/scopeDesc.hpp"
    31 #include "interpreter/bytecode.hpp"
    32 #include "interpreter/interpreter.hpp"
    33 #include "interpreter/oopMapCache.hpp"
    34 #include "memory/allocation.inline.hpp"
    35 #include "memory/oopFactory.hpp"
    36 #include "memory/resourceArea.hpp"
    37 #include "oops/method.hpp"
    38 #include "oops/oop.inline.hpp"
    39 #include "prims/jvmtiThreadState.hpp"
    40 #include "runtime/biasedLocking.hpp"
    41 #include "runtime/compilationPolicy.hpp"
    42 #include "runtime/deoptimization.hpp"
    43 #include "runtime/interfaceSupport.hpp"
    44 #include "runtime/sharedRuntime.hpp"
    45 #include "runtime/signature.hpp"
    46 #include "runtime/stubRoutines.hpp"
    47 #include "runtime/thread.hpp"
    48 #include "runtime/vframe.hpp"
    49 #include "runtime/vframeArray.hpp"
    50 #include "runtime/vframe_hp.hpp"
    51 #include "utilities/events.hpp"
    52 #include "utilities/xmlstream.hpp"
    53 #ifdef TARGET_ARCH_x86
    54 # include "vmreg_x86.inline.hpp"
    55 #endif
    56 #ifdef TARGET_ARCH_sparc
    57 # include "vmreg_sparc.inline.hpp"
    58 #endif
    59 #ifdef TARGET_ARCH_zero
    60 # include "vmreg_zero.inline.hpp"
    61 #endif
    62 #ifdef TARGET_ARCH_arm
    63 # include "vmreg_arm.inline.hpp"
    64 #endif
    65 #ifdef TARGET_ARCH_ppc
    66 # include "vmreg_ppc.inline.hpp"
    67 #endif
    68 #ifdef COMPILER2
    69 #ifdef TARGET_ARCH_MODEL_x86_32
    70 # include "adfiles/ad_x86_32.hpp"
    71 #endif
    72 #ifdef TARGET_ARCH_MODEL_x86_64
    73 # include "adfiles/ad_x86_64.hpp"
    74 #endif
    75 #ifdef TARGET_ARCH_MODEL_sparc
    76 # include "adfiles/ad_sparc.hpp"
    77 #endif
    78 #ifdef TARGET_ARCH_MODEL_zero
    79 # include "adfiles/ad_zero.hpp"
    80 #endif
    81 #ifdef TARGET_ARCH_MODEL_arm
    82 # include "adfiles/ad_arm.hpp"
    83 #endif
    84 #ifdef TARGET_ARCH_MODEL_ppc
    85 # include "adfiles/ad_ppc.hpp"
    86 #endif
    87 #endif
    89 bool DeoptimizationMarker::_is_active = false;
    91 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
    92                                          int  caller_adjustment,
    93                                          int  caller_actual_parameters,
    94                                          int  number_of_frames,
    95                                          intptr_t* frame_sizes,
    96                                          address* frame_pcs,
    97                                          BasicType return_type) {
    98   _size_of_deoptimized_frame = size_of_deoptimized_frame;
    99   _caller_adjustment         = caller_adjustment;
   100   _caller_actual_parameters  = caller_actual_parameters;
   101   _number_of_frames          = number_of_frames;
   102   _frame_sizes               = frame_sizes;
   103   _frame_pcs                 = frame_pcs;
   104   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
   105   _return_type               = return_type;
   106   _initial_info              = 0;
   107   // PD (x86 only)
   108   _counter_temp              = 0;
   109   _unpack_kind               = 0;
   110   _sender_sp_temp            = 0;
   112   _total_frame_sizes         = size_of_frames();
   113 }
   116 Deoptimization::UnrollBlock::~UnrollBlock() {
   117   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes, mtCompiler);
   118   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs, mtCompiler);
   119   FREE_C_HEAP_ARRAY(intptr_t, _register_block, mtCompiler);
   120 }
   123 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
   124   assert(register_number < RegisterMap::reg_count, "checking register number");
   125   return &_register_block[register_number * 2];
   126 }
   130 int Deoptimization::UnrollBlock::size_of_frames() const {
   131   // Acount first for the adjustment of the initial frame
   132   int result = _caller_adjustment;
   133   for (int index = 0; index < number_of_frames(); index++) {
   134     result += frame_sizes()[index];
   135   }
   136   return result;
   137 }
   140 void Deoptimization::UnrollBlock::print() {
   141   ttyLocker ttyl;
   142   tty->print_cr("UnrollBlock");
   143   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
   144   tty->print(   "  frame_sizes: ");
   145   for (int index = 0; index < number_of_frames(); index++) {
   146     tty->print("%d ", frame_sizes()[index]);
   147   }
   148   tty->cr();
   149 }
   152 // In order to make fetch_unroll_info work properly with escape
   153 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
   154 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
   155 // of previously eliminated objects occurs in realloc_objects, which is
   156 // called from the method fetch_unroll_info_helper below.
   157 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
   158   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   159   // but makes the entry a little slower. There is however a little dance we have to
   160   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   162   // fetch_unroll_info() is called at the beginning of the deoptimization
   163   // handler. Note this fact before we start generating temporary frames
   164   // that can confuse an asynchronous stack walker. This counter is
   165   // decremented at the end of unpack_frames().
   166   thread->inc_in_deopt_handler();
   168   return fetch_unroll_info_helper(thread);
   169 JRT_END
   172 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
   173 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
   175   // Note: there is a safepoint safety issue here. No matter whether we enter
   176   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
   177   // the vframeArray is created.
   178   //
   180   // Allocate our special deoptimization ResourceMark
   181   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
   182   assert(thread->deopt_mark() == NULL, "Pending deopt!");
   183   thread->set_deopt_mark(dmark);
   185   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
   186   RegisterMap map(thread, true);
   187   RegisterMap dummy_map(thread, false);
   188   // Now get the deoptee with a valid map
   189   frame deoptee = stub_frame.sender(&map);
   190   // Set the deoptee nmethod
   191   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
   192   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
   194   if (VerifyStack) {
   195     thread->validate_frame_layout();
   196   }
   198   // Create a growable array of VFrames where each VFrame represents an inlined
   199   // Java frame.  This storage is allocated with the usual system arena.
   200   assert(deoptee.is_compiled_frame(), "Wrong frame type");
   201   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
   202   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
   203   while (!vf->is_top()) {
   204     assert(vf->is_compiled_frame(), "Wrong frame type");
   205     chunk->push(compiledVFrame::cast(vf));
   206     vf = vf->sender();
   207   }
   208   assert(vf->is_compiled_frame(), "Wrong frame type");
   209   chunk->push(compiledVFrame::cast(vf));
   211 #ifdef COMPILER2
   212   // Reallocate the non-escaping objects and restore their fields. Then
   213   // relock objects if synchronization on them was eliminated.
   214   if (DoEscapeAnalysis || EliminateNestedLocks) {
   215     if (EliminateAllocations) {
   216       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
   217       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
   219       // The flag return_oop() indicates call sites which return oop
   220       // in compiled code. Such sites include java method calls,
   221       // runtime calls (for example, used to allocate new objects/arrays
   222       // on slow code path) and any other calls generated in compiled code.
   223       // It is not guaranteed that we can get such information here only
   224       // by analyzing bytecode in deoptimized frames. This is why this flag
   225       // is set during method compilation (see Compile::Process_OopMap_Node()).
   226       bool save_oop_result = chunk->at(0)->scope()->return_oop();
   227       Handle return_value;
   228       if (save_oop_result) {
   229         // Reallocation may trigger GC. If deoptimization happened on return from
   230         // call which returns oop we need to save it since it is not in oopmap.
   231         oop result = deoptee.saved_oop_result(&map);
   232         assert(result == NULL || result->is_oop(), "must be oop");
   233         return_value = Handle(thread, result);
   234         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
   235         if (TraceDeoptimization) {
   236           ttyLocker ttyl;
   237           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
   238         }
   239       }
   240       bool reallocated = false;
   241       if (objects != NULL) {
   242         JRT_BLOCK
   243           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
   244         JRT_END
   245       }
   246       if (reallocated) {
   247         reassign_fields(&deoptee, &map, objects);
   248 #ifndef PRODUCT
   249         if (TraceDeoptimization) {
   250           ttyLocker ttyl;
   251           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
   252           print_objects(objects);
   253         }
   254 #endif
   255       }
   256       if (save_oop_result) {
   257         // Restore result.
   258         deoptee.set_saved_oop_result(&map, return_value());
   259       }
   260     }
   261     if (EliminateLocks) {
   262 #ifndef PRODUCT
   263       bool first = true;
   264 #endif
   265       for (int i = 0; i < chunk->length(); i++) {
   266         compiledVFrame* cvf = chunk->at(i);
   267         assert (cvf->scope() != NULL,"expect only compiled java frames");
   268         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
   269         if (monitors->is_nonempty()) {
   270           relock_objects(monitors, thread);
   271 #ifndef PRODUCT
   272           if (TraceDeoptimization) {
   273             ttyLocker ttyl;
   274             for (int j = 0; j < monitors->length(); j++) {
   275               MonitorInfo* mi = monitors->at(j);
   276               if (mi->eliminated()) {
   277                 if (first) {
   278                   first = false;
   279                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
   280                 }
   281                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
   282               }
   283             }
   284           }
   285 #endif
   286         }
   287       }
   288     }
   289   }
   290 #endif // COMPILER2
   291   // Ensure that no safepoint is taken after pointers have been stored
   292   // in fields of rematerialized objects.  If a safepoint occurs from here on
   293   // out the java state residing in the vframeArray will be missed.
   294   No_Safepoint_Verifier no_safepoint;
   296   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
   298   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
   299   thread->set_vframe_array_head(array);
   301   // Now that the vframeArray has been created if we have any deferred local writes
   302   // added by jvmti then we can free up that structure as the data is now in the
   303   // vframeArray
   305   if (thread->deferred_locals() != NULL) {
   306     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
   307     int i = 0;
   308     do {
   309       // Because of inlining we could have multiple vframes for a single frame
   310       // and several of the vframes could have deferred writes. Find them all.
   311       if (list->at(i)->id() == array->original().id()) {
   312         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
   313         list->remove_at(i);
   314         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
   315         delete dlv;
   316       } else {
   317         i++;
   318       }
   319     } while ( i < list->length() );
   320     if (list->length() == 0) {
   321       thread->set_deferred_locals(NULL);
   322       // free the list and elements back to C heap.
   323       delete list;
   324     }
   326   }
   328 #ifndef SHARK
   329   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
   330   CodeBlob* cb = stub_frame.cb();
   331   // Verify we have the right vframeArray
   332   assert(cb->frame_size() >= 0, "Unexpected frame size");
   333   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
   335   // If the deopt call site is a MethodHandle invoke call site we have
   336   // to adjust the unpack_sp.
   337   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
   338   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
   339     unpack_sp = deoptee.unextended_sp();
   341 #ifdef ASSERT
   342   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
   343 #endif
   344 #else
   345   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
   346 #endif // !SHARK
   348   // This is a guarantee instead of an assert because if vframe doesn't match
   349   // we will unpack the wrong deoptimized frame and wind up in strange places
   350   // where it will be very difficult to figure out what went wrong. Better
   351   // to die an early death here than some very obscure death later when the
   352   // trail is cold.
   353   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
   354   // in that it will fail to detect a problem when there is one. This needs
   355   // more work in tiger timeframe.
   356   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
   358   int number_of_frames = array->frames();
   360   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
   361   // virtual activation, which is the reverse of the elements in the vframes array.
   362   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
   363   // +1 because we always have an interpreter return address for the final slot.
   364   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
   365   int popframe_extra_args = 0;
   366   // Create an interpreter return address for the stub to use as its return
   367   // address so the skeletal frames are perfectly walkable
   368   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
   370   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
   371   // activation be put back on the expression stack of the caller for reexecution
   372   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
   373     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
   374   }
   376   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
   377   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
   378   // than simply use array->sender.pc(). This requires us to walk the current set of frames
   379   //
   380   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
   381   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
   383   // It's possible that the number of paramters at the call site is
   384   // different than number of arguments in the callee when method
   385   // handles are used.  If the caller is interpreted get the real
   386   // value so that the proper amount of space can be added to it's
   387   // frame.
   388   bool caller_was_method_handle = false;
   389   if (deopt_sender.is_interpreted_frame()) {
   390     methodHandle method = deopt_sender.interpreter_frame_method();
   391     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
   392     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
   393       // Method handle invokes may involve fairly arbitrary chains of
   394       // calls so it's impossible to know how much actual space the
   395       // caller has for locals.
   396       caller_was_method_handle = true;
   397     }
   398   }
   400   //
   401   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
   402   // frame_sizes/frame_pcs[1] next oldest frame (int)
   403   // frame_sizes/frame_pcs[n] youngest frame (int)
   404   //
   405   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
   406   // owns the space for the return address to it's caller).  Confusing ain't it.
   407   //
   408   // The vframe array can address vframes with indices running from
   409   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
   410   // When we create the skeletal frames we need the oldest frame to be in the zero slot
   411   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
   412   // so things look a little strange in this loop.
   413   //
   414   int callee_parameters = 0;
   415   int callee_locals = 0;
   416   for (int index = 0; index < array->frames(); index++ ) {
   417     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
   418     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
   419     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
   420     int caller_parms = callee_parameters;
   421     if ((index == array->frames() - 1) && caller_was_method_handle) {
   422       caller_parms = 0;
   423     }
   424     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(caller_parms,
   425                                                                                                     callee_parameters,
   426                                                                                                     callee_locals,
   427                                                                                                     index == 0,
   428                                                                                                     popframe_extra_args);
   429     // This pc doesn't have to be perfect just good enough to identify the frame
   430     // as interpreted so the skeleton frame will be walkable
   431     // The correct pc will be set when the skeleton frame is completely filled out
   432     // The final pc we store in the loop is wrong and will be overwritten below
   433     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
   435     callee_parameters = array->element(index)->method()->size_of_parameters();
   436     callee_locals = array->element(index)->method()->max_locals();
   437     popframe_extra_args = 0;
   438   }
   440   // Compute whether the root vframe returns a float or double value.
   441   BasicType return_type;
   442   {
   443     HandleMark hm;
   444     methodHandle method(thread, array->element(0)->method());
   445     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
   446     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
   447   }
   449   // Compute information for handling adapters and adjusting the frame size of the caller.
   450   int caller_adjustment = 0;
   452   // Compute the amount the oldest interpreter frame will have to adjust
   453   // its caller's stack by. If the caller is a compiled frame then
   454   // we pretend that the callee has no parameters so that the
   455   // extension counts for the full amount of locals and not just
   456   // locals-parms. This is because without a c2i adapter the parm
   457   // area as created by the compiled frame will not be usable by
   458   // the interpreter. (Depending on the calling convention there
   459   // may not even be enough space).
   461   // QQQ I'd rather see this pushed down into last_frame_adjust
   462   // and have it take the sender (aka caller).
   464   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
   465     caller_adjustment = last_frame_adjust(0, callee_locals);
   466   } else if (callee_locals > callee_parameters) {
   467     // The caller frame may need extending to accommodate
   468     // non-parameter locals of the first unpacked interpreted frame.
   469     // Compute that adjustment.
   470     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
   471   }
   473   // If the sender is deoptimized the we must retrieve the address of the handler
   474   // since the frame will "magically" show the original pc before the deopt
   475   // and we'd undo the deopt.
   477   frame_pcs[0] = deopt_sender.raw_pc();
   479 #ifndef SHARK
   480   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
   481 #endif // SHARK
   483   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
   484                                       caller_adjustment * BytesPerWord,
   485                                       caller_was_method_handle ? 0 : callee_parameters,
   486                                       number_of_frames,
   487                                       frame_sizes,
   488                                       frame_pcs,
   489                                       return_type);
   490   // On some platforms, we need a way to pass some platform dependent
   491   // information to the unpacking code so the skeletal frames come out
   492   // correct (initial fp value, unextended sp, ...)
   493   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
   495   if (array->frames() > 1) {
   496     if (VerifyStack && TraceDeoptimization) {
   497       ttyLocker ttyl;
   498       tty->print_cr("Deoptimizing method containing inlining");
   499     }
   500   }
   502   array->set_unroll_block(info);
   503   return info;
   504 }
   506 // Called to cleanup deoptimization data structures in normal case
   507 // after unpacking to stack and when stack overflow error occurs
   508 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
   509                                         vframeArray *array) {
   511   // Get array if coming from exception
   512   if (array == NULL) {
   513     array = thread->vframe_array_head();
   514   }
   515   thread->set_vframe_array_head(NULL);
   517   // Free the previous UnrollBlock
   518   vframeArray* old_array = thread->vframe_array_last();
   519   thread->set_vframe_array_last(array);
   521   if (old_array != NULL) {
   522     UnrollBlock* old_info = old_array->unroll_block();
   523     old_array->set_unroll_block(NULL);
   524     delete old_info;
   525     delete old_array;
   526   }
   528   // Deallocate any resource creating in this routine and any ResourceObjs allocated
   529   // inside the vframeArray (StackValueCollections)
   531   delete thread->deopt_mark();
   532   thread->set_deopt_mark(NULL);
   533   thread->set_deopt_nmethod(NULL);
   536   if (JvmtiExport::can_pop_frame()) {
   537 #ifndef CC_INTERP
   538     // Regardless of whether we entered this routine with the pending
   539     // popframe condition bit set, we should always clear it now
   540     thread->clear_popframe_condition();
   541 #else
   542     // C++ interpeter will clear has_pending_popframe when it enters
   543     // with method_resume. For deopt_resume2 we clear it now.
   544     if (thread->popframe_forcing_deopt_reexecution())
   545         thread->clear_popframe_condition();
   546 #endif /* CC_INTERP */
   547   }
   549   // unpack_frames() is called at the end of the deoptimization handler
   550   // and (in C2) at the end of the uncommon trap handler. Note this fact
   551   // so that an asynchronous stack walker can work again. This counter is
   552   // incremented at the beginning of fetch_unroll_info() and (in C2) at
   553   // the beginning of uncommon_trap().
   554   thread->dec_in_deopt_handler();
   555 }
   558 // Return BasicType of value being returned
   559 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
   561   // We are already active int he special DeoptResourceMark any ResourceObj's we
   562   // allocate will be freed at the end of the routine.
   564   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
   565   // but makes the entry a little slower. There is however a little dance we have to
   566   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
   567   ResetNoHandleMark rnhm; // No-op in release/product versions
   568   HandleMark hm;
   570   frame stub_frame = thread->last_frame();
   572   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
   573   // must point to the vframeArray for the unpack frame.
   574   vframeArray* array = thread->vframe_array_head();
   576 #ifndef PRODUCT
   577   if (TraceDeoptimization) {
   578     ttyLocker ttyl;
   579     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
   580   }
   581 #endif
   582   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
   583               stub_frame.pc(), stub_frame.sp(), exec_mode);
   585   UnrollBlock* info = array->unroll_block();
   587   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
   588   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
   590   BasicType bt = info->return_type();
   592   // If we have an exception pending, claim that the return type is an oop
   593   // so the deopt_blob does not overwrite the exception_oop.
   595   if (exec_mode == Unpack_exception)
   596     bt = T_OBJECT;
   598   // Cleanup thread deopt data
   599   cleanup_deopt_info(thread, array);
   601 #ifndef PRODUCT
   602   if (VerifyStack) {
   603     ResourceMark res_mark;
   605     thread->validate_frame_layout();
   607     // Verify that the just-unpacked frames match the interpreter's
   608     // notions of expression stack and locals
   609     vframeArray* cur_array = thread->vframe_array_last();
   610     RegisterMap rm(thread, false);
   611     rm.set_include_argument_oops(false);
   612     bool is_top_frame = true;
   613     int callee_size_of_parameters = 0;
   614     int callee_max_locals = 0;
   615     for (int i = 0; i < cur_array->frames(); i++) {
   616       vframeArrayElement* el = cur_array->element(i);
   617       frame* iframe = el->iframe();
   618       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
   620       // Get the oop map for this bci
   621       InterpreterOopMap mask;
   622       int cur_invoke_parameter_size = 0;
   623       bool try_next_mask = false;
   624       int next_mask_expression_stack_size = -1;
   625       int top_frame_expression_stack_adjustment = 0;
   626       methodHandle mh(thread, iframe->interpreter_frame_method());
   627       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
   628       BytecodeStream str(mh);
   629       str.set_start(iframe->interpreter_frame_bci());
   630       int max_bci = mh->code_size();
   631       // Get to the next bytecode if possible
   632       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
   633       // Check to see if we can grab the number of outgoing arguments
   634       // at an uncommon trap for an invoke (where the compiler
   635       // generates debug info before the invoke has executed)
   636       Bytecodes::Code cur_code = str.next();
   637       if (cur_code == Bytecodes::_invokevirtual ||
   638           cur_code == Bytecodes::_invokespecial ||
   639           cur_code == Bytecodes::_invokestatic  ||
   640           cur_code == Bytecodes::_invokeinterface) {
   641         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
   642         Symbol* signature = invoke.signature();
   643         ArgumentSizeComputer asc(signature);
   644         cur_invoke_parameter_size = asc.size();
   645         if (cur_code != Bytecodes::_invokestatic) {
   646           // Add in receiver
   647           ++cur_invoke_parameter_size;
   648         }
   649       }
   650       if (str.bci() < max_bci) {
   651         Bytecodes::Code bc = str.next();
   652         if (bc >= 0) {
   653           // The interpreter oop map generator reports results before
   654           // the current bytecode has executed except in the case of
   655           // calls. It seems to be hard to tell whether the compiler
   656           // has emitted debug information matching the "state before"
   657           // a given bytecode or the state after, so we try both
   658           switch (cur_code) {
   659             case Bytecodes::_invokevirtual:
   660             case Bytecodes::_invokespecial:
   661             case Bytecodes::_invokestatic:
   662             case Bytecodes::_invokeinterface:
   663             case Bytecodes::_athrow:
   664               break;
   665             default: {
   666               InterpreterOopMap next_mask;
   667               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
   668               next_mask_expression_stack_size = next_mask.expression_stack_size();
   669               // Need to subtract off the size of the result type of
   670               // the bytecode because this is not described in the
   671               // debug info but returned to the interpreter in the TOS
   672               // caching register
   673               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
   674               if (bytecode_result_type != T_ILLEGAL) {
   675                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
   676               }
   677               assert(top_frame_expression_stack_adjustment >= 0, "");
   678               try_next_mask = true;
   679               break;
   680             }
   681           }
   682         }
   683       }
   685       // Verify stack depth and oops in frame
   686       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
   687       if (!(
   688             /* SPARC */
   689             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
   690             /* x86 */
   691             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
   692             (try_next_mask &&
   693              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
   694                                                                     top_frame_expression_stack_adjustment))) ||
   695             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
   696             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
   697              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
   698             )) {
   699         ttyLocker ttyl;
   701         // Print out some information that will help us debug the problem
   702         tty->print_cr("Wrong number of expression stack elements during deoptimization");
   703         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
   704         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
   705                       iframe->interpreter_frame_expression_stack_size());
   706         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
   707         tty->print_cr("  try_next_mask = %d", try_next_mask);
   708         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
   709         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
   710         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
   711         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
   712         tty->print_cr("  exec_mode = %d", exec_mode);
   713         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
   714         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
   715         tty->print_cr("  Interpreted frames:");
   716         for (int k = 0; k < cur_array->frames(); k++) {
   717           vframeArrayElement* el = cur_array->element(k);
   718           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
   719         }
   720         cur_array->print_on_2(tty);
   721         guarantee(false, "wrong number of expression stack elements during deopt");
   722       }
   723       VerifyOopClosure verify;
   724       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
   725       callee_size_of_parameters = mh->size_of_parameters();
   726       callee_max_locals = mh->max_locals();
   727       is_top_frame = false;
   728     }
   729   }
   730 #endif /* !PRODUCT */
   733   return bt;
   734 JRT_END
   737 int Deoptimization::deoptimize_dependents() {
   738   Threads::deoptimized_wrt_marked_nmethods();
   739   return 0;
   740 }
   743 #ifdef COMPILER2
   744 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
   745   Handle pending_exception(thread->pending_exception());
   746   const char* exception_file = thread->exception_file();
   747   int exception_line = thread->exception_line();
   748   thread->clear_pending_exception();
   750   for (int i = 0; i < objects->length(); i++) {
   751     assert(objects->at(i)->is_object(), "invalid debug information");
   752     ObjectValue* sv = (ObjectValue*) objects->at(i);
   754     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   755     oop obj = NULL;
   757     if (k->oop_is_instance()) {
   758       InstanceKlass* ik = InstanceKlass::cast(k());
   759       obj = ik->allocate_instance(CHECK_(false));
   760     } else if (k->oop_is_typeArray()) {
   761       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   762       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
   763       int len = sv->field_size() / type2size[ak->element_type()];
   764       obj = ak->allocate(len, CHECK_(false));
   765     } else if (k->oop_is_objArray()) {
   766       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
   767       obj = ak->allocate(sv->field_size(), CHECK_(false));
   768     }
   770     assert(obj != NULL, "allocation failed");
   771     assert(sv->value().is_null(), "redundant reallocation");
   772     sv->set_value(obj);
   773   }
   775   if (pending_exception.not_null()) {
   776     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
   777   }
   779   return true;
   780 }
   782 // This assumes that the fields are stored in ObjectValue in the same order
   783 // they are yielded by do_nonstatic_fields.
   784 class FieldReassigner: public FieldClosure {
   785   frame* _fr;
   786   RegisterMap* _reg_map;
   787   ObjectValue* _sv;
   788   InstanceKlass* _ik;
   789   oop _obj;
   791   int _i;
   792 public:
   793   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
   794     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
   796   int i() const { return _i; }
   799   void do_field(fieldDescriptor* fd) {
   800     intptr_t val;
   801     StackValue* value =
   802       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
   803     int offset = fd->offset();
   804     switch (fd->field_type()) {
   805     case T_OBJECT: case T_ARRAY:
   806       assert(value->type() == T_OBJECT, "Agreement.");
   807       _obj->obj_field_put(offset, value->get_obj()());
   808       break;
   810     case T_LONG: case T_DOUBLE: {
   811       assert(value->type() == T_INT, "Agreement.");
   812       StackValue* low =
   813         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
   814 #ifdef _LP64
   815       jlong res = (jlong)low->get_int();
   816 #else
   817 #ifdef SPARC
   818       // For SPARC we have to swap high and low words.
   819       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   820 #else
   821       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   822 #endif //SPARC
   823 #endif
   824       _obj->long_field_put(offset, res);
   825       break;
   826     }
   827     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   828     case T_INT: case T_FLOAT: // 4 bytes.
   829       assert(value->type() == T_INT, "Agreement.");
   830       val = value->get_int();
   831       _obj->int_field_put(offset, (jint)*((jint*)&val));
   832       break;
   834     case T_SHORT: case T_CHAR: // 2 bytes
   835       assert(value->type() == T_INT, "Agreement.");
   836       val = value->get_int();
   837       _obj->short_field_put(offset, (jshort)*((jint*)&val));
   838       break;
   840     case T_BOOLEAN: case T_BYTE: // 1 byte
   841       assert(value->type() == T_INT, "Agreement.");
   842       val = value->get_int();
   843       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
   844       break;
   846     default:
   847       ShouldNotReachHere();
   848     }
   849     _i++;
   850   }
   851 };
   853 // restore elements of an eliminated type array
   854 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
   855   int index = 0;
   856   intptr_t val;
   858   for (int i = 0; i < sv->field_size(); i++) {
   859     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   860     switch(type) {
   861     case T_LONG: case T_DOUBLE: {
   862       assert(value->type() == T_INT, "Agreement.");
   863       StackValue* low =
   864         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
   865 #ifdef _LP64
   866       jlong res = (jlong)low->get_int();
   867 #else
   868 #ifdef SPARC
   869       // For SPARC we have to swap high and low words.
   870       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
   871 #else
   872       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
   873 #endif //SPARC
   874 #endif
   875       obj->long_at_put(index, res);
   876       break;
   877     }
   879     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
   880     case T_INT: case T_FLOAT: // 4 bytes.
   881       assert(value->type() == T_INT, "Agreement.");
   882       val = value->get_int();
   883       obj->int_at_put(index, (jint)*((jint*)&val));
   884       break;
   886     case T_SHORT: case T_CHAR: // 2 bytes
   887       assert(value->type() == T_INT, "Agreement.");
   888       val = value->get_int();
   889       obj->short_at_put(index, (jshort)*((jint*)&val));
   890       break;
   892     case T_BOOLEAN: case T_BYTE: // 1 byte
   893       assert(value->type() == T_INT, "Agreement.");
   894       val = value->get_int();
   895       obj->bool_at_put(index, (jboolean)*((jint*)&val));
   896       break;
   898       default:
   899         ShouldNotReachHere();
   900     }
   901     index++;
   902   }
   903 }
   906 // restore fields of an eliminated object array
   907 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
   908   for (int i = 0; i < sv->field_size(); i++) {
   909     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
   910     assert(value->type() == T_OBJECT, "object element expected");
   911     obj->obj_at_put(i, value->get_obj()());
   912   }
   913 }
   916 // restore fields of all eliminated objects and arrays
   917 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
   918   for (int i = 0; i < objects->length(); i++) {
   919     ObjectValue* sv = (ObjectValue*) objects->at(i);
   920     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   921     Handle obj = sv->value();
   922     assert(obj.not_null(), "reallocation was missed");
   924     if (k->oop_is_instance()) {
   925       InstanceKlass* ik = InstanceKlass::cast(k());
   926       FieldReassigner reassign(fr, reg_map, sv, obj());
   927       ik->do_nonstatic_fields(&reassign);
   928     } else if (k->oop_is_typeArray()) {
   929       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
   930       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
   931     } else if (k->oop_is_objArray()) {
   932       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
   933     }
   934   }
   935 }
   938 // relock objects for which synchronization was eliminated
   939 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
   940   for (int i = 0; i < monitors->length(); i++) {
   941     MonitorInfo* mon_info = monitors->at(i);
   942     if (mon_info->eliminated()) {
   943       assert(mon_info->owner() != NULL, "reallocation was missed");
   944       Handle obj = Handle(mon_info->owner());
   945       markOop mark = obj->mark();
   946       if (UseBiasedLocking && mark->has_bias_pattern()) {
   947         // New allocated objects may have the mark set to anonymously biased.
   948         // Also the deoptimized method may called methods with synchronization
   949         // where the thread-local object is bias locked to the current thread.
   950         assert(mark->is_biased_anonymously() ||
   951                mark->biased_locker() == thread, "should be locked to current thread");
   952         // Reset mark word to unbiased prototype.
   953         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
   954         obj->set_mark(unbiased_prototype);
   955       }
   956       BasicLock* lock = mon_info->lock();
   957       ObjectSynchronizer::slow_enter(obj, lock, thread);
   958     }
   959     assert(mon_info->owner()->is_locked(), "object must be locked now");
   960   }
   961 }
   964 #ifndef PRODUCT
   965 // print information about reallocated objects
   966 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
   967   fieldDescriptor fd;
   969   for (int i = 0; i < objects->length(); i++) {
   970     ObjectValue* sv = (ObjectValue*) objects->at(i);
   971     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
   972     Handle obj = sv->value();
   974     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
   975     k->print_value();
   976     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
   977     tty->cr();
   979     if (Verbose) {
   980       k->oop_print_on(obj(), tty);
   981     }
   982   }
   983 }
   984 #endif
   985 #endif // COMPILER2
   987 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
   988   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, fr.pc(), fr.sp());
   990 #ifndef PRODUCT
   991   if (TraceDeoptimization) {
   992     ttyLocker ttyl;
   993     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
   994     fr.print_on(tty);
   995     tty->print_cr("     Virtual frames (innermost first):");
   996     for (int index = 0; index < chunk->length(); index++) {
   997       compiledVFrame* vf = chunk->at(index);
   998       tty->print("       %2d - ", index);
   999       vf->print_value();
  1000       int bci = chunk->at(index)->raw_bci();
  1001       const char* code_name;
  1002       if (bci == SynchronizationEntryBCI) {
  1003         code_name = "sync entry";
  1004       } else {
  1005         Bytecodes::Code code = vf->method()->code_at(bci);
  1006         code_name = Bytecodes::name(code);
  1008       tty->print(" - %s", code_name);
  1009       tty->print_cr(" @ bci %d ", bci);
  1010       if (Verbose) {
  1011         vf->print();
  1012         tty->cr();
  1016 #endif
  1018   // Register map for next frame (used for stack crawl).  We capture
  1019   // the state of the deopt'ing frame's caller.  Thus if we need to
  1020   // stuff a C2I adapter we can properly fill in the callee-save
  1021   // register locations.
  1022   frame caller = fr.sender(reg_map);
  1023   int frame_size = caller.sp() - fr.sp();
  1025   frame sender = caller;
  1027   // Since the Java thread being deoptimized will eventually adjust it's own stack,
  1028   // the vframeArray containing the unpacking information is allocated in the C heap.
  1029   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
  1030   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
  1032   // Compare the vframeArray to the collected vframes
  1033   assert(array->structural_compare(thread, chunk), "just checking");
  1035 #ifndef PRODUCT
  1036   if (TraceDeoptimization) {
  1037     ttyLocker ttyl;
  1038     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
  1040 #endif // PRODUCT
  1042   return array;
  1046 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
  1047   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
  1048   for (int i = 0; i < monitors->length(); i++) {
  1049     MonitorInfo* mon_info = monitors->at(i);
  1050     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
  1051       objects_to_revoke->append(Handle(mon_info->owner()));
  1057 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
  1058   if (!UseBiasedLocking) {
  1059     return;
  1062   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1064   // Unfortunately we don't have a RegisterMap available in most of
  1065   // the places we want to call this routine so we need to walk the
  1066   // stack again to update the register map.
  1067   if (map == NULL || !map->update_map()) {
  1068     StackFrameStream sfs(thread, true);
  1069     bool found = false;
  1070     while (!found && !sfs.is_done()) {
  1071       frame* cur = sfs.current();
  1072       sfs.next();
  1073       found = cur->id() == fr.id();
  1075     assert(found, "frame to be deoptimized not found on target thread's stack");
  1076     map = sfs.register_map();
  1079   vframe* vf = vframe::new_vframe(&fr, map, thread);
  1080   compiledVFrame* cvf = compiledVFrame::cast(vf);
  1081   // Revoke monitors' biases in all scopes
  1082   while (!cvf->is_top()) {
  1083     collect_monitors(cvf, objects_to_revoke);
  1084     cvf = compiledVFrame::cast(cvf->sender());
  1086   collect_monitors(cvf, objects_to_revoke);
  1088   if (SafepointSynchronize::is_at_safepoint()) {
  1089     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1090   } else {
  1091     BiasedLocking::revoke(objects_to_revoke);
  1096 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
  1097   if (!UseBiasedLocking) {
  1098     return;
  1101   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
  1102   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
  1103   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
  1104     if (jt->has_last_Java_frame()) {
  1105       StackFrameStream sfs(jt, true);
  1106       while (!sfs.is_done()) {
  1107         frame* cur = sfs.current();
  1108         if (cb->contains(cur->pc())) {
  1109           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
  1110           compiledVFrame* cvf = compiledVFrame::cast(vf);
  1111           // Revoke monitors' biases in all scopes
  1112           while (!cvf->is_top()) {
  1113             collect_monitors(cvf, objects_to_revoke);
  1114             cvf = compiledVFrame::cast(cvf->sender());
  1116           collect_monitors(cvf, objects_to_revoke);
  1118         sfs.next();
  1122   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
  1126 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
  1127   assert(fr.can_be_deoptimized(), "checking frame type");
  1129   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
  1131   // Patch the nmethod so that when execution returns to it we will
  1132   // deopt the execution state and return to the interpreter.
  1133   fr.deoptimize(thread);
  1136 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
  1137   // Deoptimize only if the frame comes from compile code.
  1138   // Do not deoptimize the frame which is already patched
  1139   // during the execution of the loops below.
  1140   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
  1141     return;
  1143   ResourceMark rm;
  1144   DeoptimizationMarker dm;
  1145   if (UseBiasedLocking) {
  1146     revoke_biases_of_monitors(thread, fr, map);
  1148   deoptimize_single_frame(thread, fr);
  1153 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
  1154   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
  1155          "can only deoptimize other thread at a safepoint");
  1156   // Compute frame and register map based on thread and sp.
  1157   RegisterMap reg_map(thread, UseBiasedLocking);
  1158   frame fr = thread->last_frame();
  1159   while (fr.id() != id) {
  1160     fr = fr.sender(&reg_map);
  1162   deoptimize(thread, fr, &reg_map);
  1166 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
  1167   if (thread == Thread::current()) {
  1168     Deoptimization::deoptimize_frame_internal(thread, id);
  1169   } else {
  1170     VM_DeoptimizeFrame deopt(thread, id);
  1171     VMThread::execute(&deopt);
  1176 // JVMTI PopFrame support
  1177 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
  1179   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
  1181 JRT_END
  1184 #if defined(COMPILER2) || defined(SHARK)
  1185 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
  1186   // in case of an unresolved klass entry, load the class.
  1187   if (constant_pool->tag_at(index).is_unresolved_klass()) {
  1188     Klass* tk = constant_pool->klass_at(index, CHECK);
  1189     return;
  1192   if (!constant_pool->tag_at(index).is_symbol()) return;
  1194   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
  1195   Symbol*  symbol  = constant_pool->symbol_at(index);
  1197   // class name?
  1198   if (symbol->byte_at(0) != '(') {
  1199     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1200     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
  1201     return;
  1204   // then it must be a signature!
  1205   ResourceMark rm(THREAD);
  1206   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
  1207     if (ss.is_object()) {
  1208       Symbol* class_name = ss.as_symbol(CHECK);
  1209       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
  1210       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
  1216 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
  1217   EXCEPTION_MARK;
  1218   load_class_by_index(constant_pool, index, THREAD);
  1219   if (HAS_PENDING_EXCEPTION) {
  1220     // Exception happened during classloading. We ignore the exception here, since it
  1221     // is going to be rethrown since the current activation is going to be deoptimzied and
  1222     // the interpreter will re-execute the bytecode.
  1223     CLEAR_PENDING_EXCEPTION;
  1227 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
  1228   HandleMark hm;
  1230   // uncommon_trap() is called at the beginning of the uncommon trap
  1231   // handler. Note this fact before we start generating temporary frames
  1232   // that can confuse an asynchronous stack walker. This counter is
  1233   // decremented at the end of unpack_frames().
  1234   thread->inc_in_deopt_handler();
  1236   // We need to update the map if we have biased locking.
  1237   RegisterMap reg_map(thread, UseBiasedLocking);
  1238   frame stub_frame = thread->last_frame();
  1239   frame fr = stub_frame.sender(&reg_map);
  1240   // Make sure the calling nmethod is not getting deoptimized and removed
  1241   // before we are done with it.
  1242   nmethodLocker nl(fr.pc());
  1244   // Log a message
  1245   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT,
  1246               trap_request, fr.pc());
  1249     ResourceMark rm;
  1251     // Revoke biases of any monitors in the frame to ensure we can migrate them
  1252     revoke_biases_of_monitors(thread, fr, &reg_map);
  1254     DeoptReason reason = trap_request_reason(trap_request);
  1255     DeoptAction action = trap_request_action(trap_request);
  1256     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
  1258     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
  1259     compiledVFrame* cvf = compiledVFrame::cast(vf);
  1261     nmethod* nm = cvf->code();
  1263     ScopeDesc*      trap_scope  = cvf->scope();
  1264     methodHandle    trap_method = trap_scope->method();
  1265     int             trap_bci    = trap_scope->bci();
  1266     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
  1268     // Record this event in the histogram.
  1269     gather_statistics(reason, action, trap_bc);
  1271     // Ensure that we can record deopt. history:
  1272     bool create_if_missing = ProfileTraps;
  1274     MethodData* trap_mdo =
  1275       get_method_data(thread, trap_method, create_if_missing);
  1277     // Log a message
  1278     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
  1279                               trap_reason_name(reason), trap_action_name(action), fr.pc(),
  1280                               trap_method->name_and_sig_as_C_string(), trap_bci);
  1282     // Print a bunch of diagnostics, if requested.
  1283     if (TraceDeoptimization || LogCompilation) {
  1284       ResourceMark rm;
  1285       ttyLocker ttyl;
  1286       char buf[100];
  1287       if (xtty != NULL) {
  1288         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
  1289                          os::current_thread_id(),
  1290                          format_trap_request(buf, sizeof(buf), trap_request));
  1291         nm->log_identity(xtty);
  1293       Symbol* class_name = NULL;
  1294       bool unresolved = false;
  1295       if (unloaded_class_index >= 0) {
  1296         constantPoolHandle constants (THREAD, trap_method->constants());
  1297         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
  1298           class_name = constants->klass_name_at(unloaded_class_index);
  1299           unresolved = true;
  1300           if (xtty != NULL)
  1301             xtty->print(" unresolved='1'");
  1302         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
  1303           class_name = constants->symbol_at(unloaded_class_index);
  1305         if (xtty != NULL)
  1306           xtty->name(class_name);
  1308       if (xtty != NULL && trap_mdo != NULL) {
  1309         // Dump the relevant MDO state.
  1310         // This is the deopt count for the current reason, any previous
  1311         // reasons or recompiles seen at this point.
  1312         int dcnt = trap_mdo->trap_count(reason);
  1313         if (dcnt != 0)
  1314           xtty->print(" count='%d'", dcnt);
  1315         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
  1316         int dos = (pdata == NULL)? 0: pdata->trap_state();
  1317         if (dos != 0) {
  1318           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
  1319           if (trap_state_is_recompiled(dos)) {
  1320             int recnt2 = trap_mdo->overflow_recompile_count();
  1321             if (recnt2 != 0)
  1322               xtty->print(" recompiles2='%d'", recnt2);
  1326       if (xtty != NULL) {
  1327         xtty->stamp();
  1328         xtty->end_head();
  1330       if (TraceDeoptimization) {  // make noise on the tty
  1331         tty->print("Uncommon trap occurred in");
  1332         nm->method()->print_short_name(tty);
  1333         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d",
  1334                    fr.pc(),
  1335                    os::current_thread_id(),
  1336                    trap_reason_name(reason),
  1337                    trap_action_name(action),
  1338                    unloaded_class_index);
  1339         if (class_name != NULL) {
  1340           tty->print(unresolved ? " unresolved class: " : " symbol: ");
  1341           class_name->print_symbol_on(tty);
  1343         tty->cr();
  1345       if (xtty != NULL) {
  1346         // Log the precise location of the trap.
  1347         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
  1348           xtty->begin_elem("jvms bci='%d'", sd->bci());
  1349           xtty->method(sd->method());
  1350           xtty->end_elem();
  1351           if (sd->is_top())  break;
  1353         xtty->tail("uncommon_trap");
  1356     // (End diagnostic printout.)
  1358     // Load class if necessary
  1359     if (unloaded_class_index >= 0) {
  1360       constantPoolHandle constants(THREAD, trap_method->constants());
  1361       load_class_by_index(constants, unloaded_class_index);
  1364     // Flush the nmethod if necessary and desirable.
  1365     //
  1366     // We need to avoid situations where we are re-flushing the nmethod
  1367     // because of a hot deoptimization site.  Repeated flushes at the same
  1368     // point need to be detected by the compiler and avoided.  If the compiler
  1369     // cannot avoid them (or has a bug and "refuses" to avoid them), this
  1370     // module must take measures to avoid an infinite cycle of recompilation
  1371     // and deoptimization.  There are several such measures:
  1372     //
  1373     //   1. If a recompilation is ordered a second time at some site X
  1374     //   and for the same reason R, the action is adjusted to 'reinterpret',
  1375     //   to give the interpreter time to exercise the method more thoroughly.
  1376     //   If this happens, the method's overflow_recompile_count is incremented.
  1377     //
  1378     //   2. If the compiler fails to reduce the deoptimization rate, then
  1379     //   the method's overflow_recompile_count will begin to exceed the set
  1380     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
  1381     //   is adjusted to 'make_not_compilable', and the method is abandoned
  1382     //   to the interpreter.  This is a performance hit for hot methods,
  1383     //   but is better than a disastrous infinite cycle of recompilations.
  1384     //   (Actually, only the method containing the site X is abandoned.)
  1385     //
  1386     //   3. In parallel with the previous measures, if the total number of
  1387     //   recompilations of a method exceeds the much larger set limit
  1388     //   PerMethodRecompilationCutoff, the method is abandoned.
  1389     //   This should only happen if the method is very large and has
  1390     //   many "lukewarm" deoptimizations.  The code which enforces this
  1391     //   limit is elsewhere (class nmethod, class Method).
  1392     //
  1393     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
  1394     // to recompile at each bytecode independently of the per-BCI cutoff.
  1395     //
  1396     // The decision to update code is up to the compiler, and is encoded
  1397     // in the Action_xxx code.  If the compiler requests Action_none
  1398     // no trap state is changed, no compiled code is changed, and the
  1399     // computation suffers along in the interpreter.
  1400     //
  1401     // The other action codes specify various tactics for decompilation
  1402     // and recompilation.  Action_maybe_recompile is the loosest, and
  1403     // allows the compiled code to stay around until enough traps are seen,
  1404     // and until the compiler gets around to recompiling the trapping method.
  1405     //
  1406     // The other actions cause immediate removal of the present code.
  1408     bool update_trap_state = true;
  1409     bool make_not_entrant = false;
  1410     bool make_not_compilable = false;
  1411     bool reprofile = false;
  1412     switch (action) {
  1413     case Action_none:
  1414       // Keep the old code.
  1415       update_trap_state = false;
  1416       break;
  1417     case Action_maybe_recompile:
  1418       // Do not need to invalidate the present code, but we can
  1419       // initiate another
  1420       // Start compiler without (necessarily) invalidating the nmethod.
  1421       // The system will tolerate the old code, but new code should be
  1422       // generated when possible.
  1423       break;
  1424     case Action_reinterpret:
  1425       // Go back into the interpreter for a while, and then consider
  1426       // recompiling form scratch.
  1427       make_not_entrant = true;
  1428       // Reset invocation counter for outer most method.
  1429       // This will allow the interpreter to exercise the bytecodes
  1430       // for a while before recompiling.
  1431       // By contrast, Action_make_not_entrant is immediate.
  1432       //
  1433       // Note that the compiler will track null_check, null_assert,
  1434       // range_check, and class_check events and log them as if they
  1435       // had been traps taken from compiled code.  This will update
  1436       // the MDO trap history so that the next compilation will
  1437       // properly detect hot trap sites.
  1438       reprofile = true;
  1439       break;
  1440     case Action_make_not_entrant:
  1441       // Request immediate recompilation, and get rid of the old code.
  1442       // Make them not entrant, so next time they are called they get
  1443       // recompiled.  Unloaded classes are loaded now so recompile before next
  1444       // time they are called.  Same for uninitialized.  The interpreter will
  1445       // link the missing class, if any.
  1446       make_not_entrant = true;
  1447       break;
  1448     case Action_make_not_compilable:
  1449       // Give up on compiling this method at all.
  1450       make_not_entrant = true;
  1451       make_not_compilable = true;
  1452       break;
  1453     default:
  1454       ShouldNotReachHere();
  1457     // Setting +ProfileTraps fixes the following, on all platforms:
  1458     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
  1459     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
  1460     // recompile relies on a MethodData* to record heroic opt failures.
  1462     // Whether the interpreter is producing MDO data or not, we also need
  1463     // to use the MDO to detect hot deoptimization points and control
  1464     // aggressive optimization.
  1465     bool inc_recompile_count = false;
  1466     ProfileData* pdata = NULL;
  1467     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
  1468       assert(trap_mdo == get_method_data(thread, trap_method, false), "sanity");
  1469       uint this_trap_count = 0;
  1470       bool maybe_prior_trap = false;
  1471       bool maybe_prior_recompile = false;
  1472       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
  1473                                    //outputs:
  1474                                    this_trap_count,
  1475                                    maybe_prior_trap,
  1476                                    maybe_prior_recompile);
  1477       // Because the interpreter also counts null, div0, range, and class
  1478       // checks, these traps from compiled code are double-counted.
  1479       // This is harmless; it just means that the PerXTrapLimit values
  1480       // are in effect a little smaller than they look.
  1482       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1483       if (per_bc_reason != Reason_none) {
  1484         // Now take action based on the partially known per-BCI history.
  1485         if (maybe_prior_trap
  1486             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
  1487           // If there are too many traps at this BCI, force a recompile.
  1488           // This will allow the compiler to see the limit overflow, and
  1489           // take corrective action, if possible.  The compiler generally
  1490           // does not use the exact PerBytecodeTrapLimit value, but instead
  1491           // changes its tactics if it sees any traps at all.  This provides
  1492           // a little hysteresis, delaying a recompile until a trap happens
  1493           // several times.
  1494           //
  1495           // Actually, since there is only one bit of counter per BCI,
  1496           // the possible per-BCI counts are {0,1,(per-method count)}.
  1497           // This produces accurate results if in fact there is only
  1498           // one hot trap site, but begins to get fuzzy if there are
  1499           // many sites.  For example, if there are ten sites each
  1500           // trapping two or more times, they each get the blame for
  1501           // all of their traps.
  1502           make_not_entrant = true;
  1505         // Detect repeated recompilation at the same BCI, and enforce a limit.
  1506         if (make_not_entrant && maybe_prior_recompile) {
  1507           // More than one recompile at this point.
  1508           inc_recompile_count = maybe_prior_trap;
  1510       } else {
  1511         // For reasons which are not recorded per-bytecode, we simply
  1512         // force recompiles unconditionally.
  1513         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
  1514         make_not_entrant = true;
  1517       // Go back to the compiler if there are too many traps in this method.
  1518       if (this_trap_count >= (uint)PerMethodTrapLimit) {
  1519         // If there are too many traps in this method, force a recompile.
  1520         // This will allow the compiler to see the limit overflow, and
  1521         // take corrective action, if possible.
  1522         // (This condition is an unlikely backstop only, because the
  1523         // PerBytecodeTrapLimit is more likely to take effect first,
  1524         // if it is applicable.)
  1525         make_not_entrant = true;
  1528       // Here's more hysteresis:  If there has been a recompile at
  1529       // this trap point already, run the method in the interpreter
  1530       // for a while to exercise it more thoroughly.
  1531       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
  1532         reprofile = true;
  1537     // Take requested actions on the method:
  1539     // Recompile
  1540     if (make_not_entrant) {
  1541       if (!nm->make_not_entrant()) {
  1542         return; // the call did not change nmethod's state
  1545       if (pdata != NULL) {
  1546         // Record the recompilation event, if any.
  1547         int tstate0 = pdata->trap_state();
  1548         int tstate1 = trap_state_set_recompiled(tstate0, true);
  1549         if (tstate1 != tstate0)
  1550           pdata->set_trap_state(tstate1);
  1554     if (inc_recompile_count) {
  1555       trap_mdo->inc_overflow_recompile_count();
  1556       if ((uint)trap_mdo->overflow_recompile_count() >
  1557           (uint)PerBytecodeRecompilationCutoff) {
  1558         // Give up on the method containing the bad BCI.
  1559         if (trap_method() == nm->method()) {
  1560           make_not_compilable = true;
  1561         } else {
  1562           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
  1563           // But give grace to the enclosing nm->method().
  1568     // Reprofile
  1569     if (reprofile) {
  1570       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
  1573     // Give up compiling
  1574     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
  1575       assert(make_not_entrant, "consistent");
  1576       nm->method()->set_not_compilable(CompLevel_full_optimization);
  1579   } // Free marked resources
  1582 JRT_END
  1584 MethodData*
  1585 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
  1586                                 bool create_if_missing) {
  1587   Thread* THREAD = thread;
  1588   MethodData* mdo = m()->method_data();
  1589   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
  1590     // Build an MDO.  Ignore errors like OutOfMemory;
  1591     // that simply means we won't have an MDO to update.
  1592     Method::build_interpreter_method_data(m, THREAD);
  1593     if (HAS_PENDING_EXCEPTION) {
  1594       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
  1595       CLEAR_PENDING_EXCEPTION;
  1597     mdo = m()->method_data();
  1599   return mdo;
  1602 ProfileData*
  1603 Deoptimization::query_update_method_data(MethodData* trap_mdo,
  1604                                          int trap_bci,
  1605                                          Deoptimization::DeoptReason reason,
  1606                                          //outputs:
  1607                                          uint& ret_this_trap_count,
  1608                                          bool& ret_maybe_prior_trap,
  1609                                          bool& ret_maybe_prior_recompile) {
  1610   uint prior_trap_count = trap_mdo->trap_count(reason);
  1611   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
  1613   // If the runtime cannot find a place to store trap history,
  1614   // it is estimated based on the general condition of the method.
  1615   // If the method has ever been recompiled, or has ever incurred
  1616   // a trap with the present reason , then this BCI is assumed
  1617   // (pessimistically) to be the culprit.
  1618   bool maybe_prior_trap      = (prior_trap_count != 0);
  1619   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
  1620   ProfileData* pdata = NULL;
  1623   // For reasons which are recorded per bytecode, we check per-BCI data.
  1624   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
  1625   if (per_bc_reason != Reason_none) {
  1626     // Find the profile data for this BCI.  If there isn't one,
  1627     // try to allocate one from the MDO's set of spares.
  1628     // This will let us detect a repeated trap at this point.
  1629     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
  1631     if (pdata != NULL) {
  1632       // Query the trap state of this profile datum.
  1633       int tstate0 = pdata->trap_state();
  1634       if (!trap_state_has_reason(tstate0, per_bc_reason))
  1635         maybe_prior_trap = false;
  1636       if (!trap_state_is_recompiled(tstate0))
  1637         maybe_prior_recompile = false;
  1639       // Update the trap state of this profile datum.
  1640       int tstate1 = tstate0;
  1641       // Record the reason.
  1642       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
  1643       // Store the updated state on the MDO, for next time.
  1644       if (tstate1 != tstate0)
  1645         pdata->set_trap_state(tstate1);
  1646     } else {
  1647       if (LogCompilation && xtty != NULL) {
  1648         ttyLocker ttyl;
  1649         // Missing MDP?  Leave a small complaint in the log.
  1650         xtty->elem("missing_mdp bci='%d'", trap_bci);
  1655   // Return results:
  1656   ret_this_trap_count = this_trap_count;
  1657   ret_maybe_prior_trap = maybe_prior_trap;
  1658   ret_maybe_prior_recompile = maybe_prior_recompile;
  1659   return pdata;
  1662 void
  1663 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  1664   ResourceMark rm;
  1665   // Ignored outputs:
  1666   uint ignore_this_trap_count;
  1667   bool ignore_maybe_prior_trap;
  1668   bool ignore_maybe_prior_recompile;
  1669   query_update_method_data(trap_mdo, trap_bci,
  1670                            (DeoptReason)reason,
  1671                            ignore_this_trap_count,
  1672                            ignore_maybe_prior_trap,
  1673                            ignore_maybe_prior_recompile);
  1676 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
  1678   // Still in Java no safepoints
  1680     // This enters VM and may safepoint
  1681     uncommon_trap_inner(thread, trap_request);
  1683   return fetch_unroll_info_helper(thread);
  1686 // Local derived constants.
  1687 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
  1688 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
  1689 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
  1691 //---------------------------trap_state_reason---------------------------------
  1692 Deoptimization::DeoptReason
  1693 Deoptimization::trap_state_reason(int trap_state) {
  1694   // This assert provides the link between the width of DataLayout::trap_bits
  1695   // and the encoding of "recorded" reasons.  It ensures there are enough
  1696   // bits to store all needed reasons in the per-BCI MDO profile.
  1697   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1698   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1699   trap_state -= recompile_bit;
  1700   if (trap_state == DS_REASON_MASK) {
  1701     return Reason_many;
  1702   } else {
  1703     assert((int)Reason_none == 0, "state=0 => Reason_none");
  1704     return (DeoptReason)trap_state;
  1707 //-------------------------trap_state_has_reason-------------------------------
  1708 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1709   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
  1710   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
  1711   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1712   trap_state -= recompile_bit;
  1713   if (trap_state == DS_REASON_MASK) {
  1714     return -1;  // true, unspecifically (bottom of state lattice)
  1715   } else if (trap_state == reason) {
  1716     return 1;   // true, definitely
  1717   } else if (trap_state == 0) {
  1718     return 0;   // false, definitely (top of state lattice)
  1719   } else {
  1720     return 0;   // false, definitely
  1723 //-------------------------trap_state_add_reason-------------------------------
  1724 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
  1725   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
  1726   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
  1727   trap_state -= recompile_bit;
  1728   if (trap_state == DS_REASON_MASK) {
  1729     return trap_state + recompile_bit;     // already at state lattice bottom
  1730   } else if (trap_state == reason) {
  1731     return trap_state + recompile_bit;     // the condition is already true
  1732   } else if (trap_state == 0) {
  1733     return reason + recompile_bit;          // no condition has yet been true
  1734   } else {
  1735     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
  1738 //-----------------------trap_state_is_recompiled------------------------------
  1739 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1740   return (trap_state & DS_RECOMPILE_BIT) != 0;
  1742 //-----------------------trap_state_set_recompiled-----------------------------
  1743 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
  1744   if (z)  return trap_state |  DS_RECOMPILE_BIT;
  1745   else    return trap_state & ~DS_RECOMPILE_BIT;
  1747 //---------------------------format_trap_state---------------------------------
  1748 // This is used for debugging and diagnostics, including hotspot.log output.
  1749 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1750                                               int trap_state) {
  1751   DeoptReason reason      = trap_state_reason(trap_state);
  1752   bool        recomp_flag = trap_state_is_recompiled(trap_state);
  1753   // Re-encode the state from its decoded components.
  1754   int decoded_state = 0;
  1755   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
  1756     decoded_state = trap_state_add_reason(decoded_state, reason);
  1757   if (recomp_flag)
  1758     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
  1759   // If the state re-encodes properly, format it symbolically.
  1760   // Because this routine is used for debugging and diagnostics,
  1761   // be robust even if the state is a strange value.
  1762   size_t len;
  1763   if (decoded_state != trap_state) {
  1764     // Random buggy state that doesn't decode??
  1765     len = jio_snprintf(buf, buflen, "#%d", trap_state);
  1766   } else {
  1767     len = jio_snprintf(buf, buflen, "%s%s",
  1768                        trap_reason_name(reason),
  1769                        recomp_flag ? " recompiled" : "");
  1771   if (len >= buflen)
  1772     buf[buflen-1] = '\0';
  1773   return buf;
  1777 //--------------------------------statics--------------------------------------
  1778 Deoptimization::DeoptAction Deoptimization::_unloaded_action
  1779   = Deoptimization::Action_reinterpret;
  1780 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
  1781   // Note:  Keep this in sync. with enum DeoptReason.
  1782   "none",
  1783   "null_check",
  1784   "null_assert",
  1785   "range_check",
  1786   "class_check",
  1787   "array_check",
  1788   "intrinsic",
  1789   "bimorphic",
  1790   "unloaded",
  1791   "uninitialized",
  1792   "unreached",
  1793   "unhandled",
  1794   "constraint",
  1795   "div0_check",
  1796   "age",
  1797   "predicate",
  1798   "loop_limit_check"
  1799 };
  1800 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
  1801   // Note:  Keep this in sync. with enum DeoptAction.
  1802   "none",
  1803   "maybe_recompile",
  1804   "reinterpret",
  1805   "make_not_entrant",
  1806   "make_not_compilable"
  1807 };
  1809 const char* Deoptimization::trap_reason_name(int reason) {
  1810   if (reason == Reason_many)  return "many";
  1811   if ((uint)reason < Reason_LIMIT)
  1812     return _trap_reason_name[reason];
  1813   static char buf[20];
  1814   sprintf(buf, "reason%d", reason);
  1815   return buf;
  1817 const char* Deoptimization::trap_action_name(int action) {
  1818   if ((uint)action < Action_LIMIT)
  1819     return _trap_action_name[action];
  1820   static char buf[20];
  1821   sprintf(buf, "action%d", action);
  1822   return buf;
  1825 // This is used for debugging and diagnostics, including hotspot.log output.
  1826 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
  1827                                                 int trap_request) {
  1828   jint unloaded_class_index = trap_request_index(trap_request);
  1829   const char* reason = trap_reason_name(trap_request_reason(trap_request));
  1830   const char* action = trap_action_name(trap_request_action(trap_request));
  1831   size_t len;
  1832   if (unloaded_class_index < 0) {
  1833     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
  1834                        reason, action);
  1835   } else {
  1836     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
  1837                        reason, action, unloaded_class_index);
  1839   if (len >= buflen)
  1840     buf[buflen-1] = '\0';
  1841   return buf;
  1844 juint Deoptimization::_deoptimization_hist
  1845         [Deoptimization::Reason_LIMIT]
  1846     [1 + Deoptimization::Action_LIMIT]
  1847         [Deoptimization::BC_CASE_LIMIT]
  1848   = {0};
  1850 enum {
  1851   LSB_BITS = 8,
  1852   LSB_MASK = right_n_bits(LSB_BITS)
  1853 };
  1855 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1856                                        Bytecodes::Code bc) {
  1857   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1858   assert(action >= 0 && action < Action_LIMIT, "oob");
  1859   _deoptimization_hist[Reason_none][0][0] += 1;  // total
  1860   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
  1861   juint* cases = _deoptimization_hist[reason][1+action];
  1862   juint* bc_counter_addr = NULL;
  1863   juint  bc_counter      = 0;
  1864   // Look for an unused counter, or an exact match to this BC.
  1865   if (bc != Bytecodes::_illegal) {
  1866     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1867       juint* counter_addr = &cases[bc_case];
  1868       juint  counter = *counter_addr;
  1869       if ((counter == 0 && bc_counter_addr == NULL)
  1870           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
  1871         // this counter is either free or is already devoted to this BC
  1872         bc_counter_addr = counter_addr;
  1873         bc_counter = counter | bc;
  1877   if (bc_counter_addr == NULL) {
  1878     // Overflow, or no given bytecode.
  1879     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
  1880     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
  1882   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
  1885 jint Deoptimization::total_deoptimization_count() {
  1886   return _deoptimization_hist[Reason_none][0][0];
  1889 jint Deoptimization::deoptimization_count(DeoptReason reason) {
  1890   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
  1891   return _deoptimization_hist[reason][0][0];
  1894 void Deoptimization::print_statistics() {
  1895   juint total = total_deoptimization_count();
  1896   juint account = total;
  1897   if (total != 0) {
  1898     ttyLocker ttyl;
  1899     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
  1900     tty->print_cr("Deoptimization traps recorded:");
  1901     #define PRINT_STAT_LINE(name, r) \
  1902       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
  1903     PRINT_STAT_LINE("total", total);
  1904     // For each non-zero entry in the histogram, print the reason,
  1905     // the action, and (if specifically known) the type of bytecode.
  1906     for (int reason = 0; reason < Reason_LIMIT; reason++) {
  1907       for (int action = 0; action < Action_LIMIT; action++) {
  1908         juint* cases = _deoptimization_hist[reason][1+action];
  1909         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
  1910           juint counter = cases[bc_case];
  1911           if (counter != 0) {
  1912             char name[1*K];
  1913             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
  1914             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
  1915               bc = Bytecodes::_illegal;
  1916             sprintf(name, "%s/%s/%s",
  1917                     trap_reason_name(reason),
  1918                     trap_action_name(action),
  1919                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
  1920             juint r = counter >> LSB_BITS;
  1921             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
  1922             account -= r;
  1927     if (account != 0) {
  1928       PRINT_STAT_LINE("unaccounted", account);
  1930     #undef PRINT_STAT_LINE
  1931     if (xtty != NULL)  xtty->tail("statistics");
  1934 #else // COMPILER2 || SHARK
  1937 // Stubs for C1 only system.
  1938 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
  1939   return false;
  1942 const char* Deoptimization::trap_reason_name(int reason) {
  1943   return "unknown";
  1946 void Deoptimization::print_statistics() {
  1947   // no output
  1950 void
  1951 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
  1952   // no udpate
  1955 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
  1956   return 0;
  1959 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
  1960                                        Bytecodes::Code bc) {
  1961   // no update
  1964 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
  1965                                               int trap_state) {
  1966   jio_snprintf(buf, buflen, "#%d", trap_state);
  1967   return buf;
  1970 #endif // COMPILER2 || SHARK

mercurial