src/share/vm/oops/methodData.hpp

Tue, 05 Feb 2013 08:25:51 -0800

author
vlivanov
date
Tue, 05 Feb 2013 08:25:51 -0800
changeset 4539
6a51fc70a15e
parent 4037
da91efe96a93
child 4541
d05ff4bf41b3
permissions
-rw-r--r--

8006613: adding reason to made_not_compilable
Reviewed-by: kvn, vlivanov
Contributed-by: Igor Ignatyev <igor.ignatyev@oracle.com>

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/method.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    36 // The MethodData object collects counts and other profile information
    37 // during zeroth-tier (interpretive) and first-tier execution.
    38 // The profile is used later by compilation heuristics.  Some heuristics
    39 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    40 // optimization often has a down-side, a corner case that it handles
    41 // poorly, but which is thought to be rare.  The profile provides
    42 // evidence of this rarity for a given method or even BCI.  It allows
    43 // the compiler to back out of the optimization at places where it
    44 // has historically been a poor choice.  Other heuristics try to use
    45 // specific information gathered about types observed at a given site.
    46 //
    47 // All data in the profile is approximate.  It is expected to be accurate
    48 // on the whole, but the system expects occasional inaccuraces, due to
    49 // counter overflow, multiprocessor races during data collection, space
    50 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    51 // optimization quality but will not affect correctness.  Also, each MDO
    52 // is marked with its birth-date ("creation_mileage") which can be used
    53 // to assess the quality ("maturity") of its data.
    54 //
    55 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    56 // state.  Also, certain recorded per-BCI events are given one-bit counters
    57 // which overflow to a saturated state which applied to all counters at
    58 // that BCI.  In other words, there is a small lattice which approximates
    59 // the ideal of an infinite-precision counter for each event at each BCI,
    60 // and the lattice quickly "bottoms out" in a state where all counters
    61 // are taken to be indefinitely large.
    62 //
    63 // The reader will find many data races in profile gathering code, starting
    64 // with invocation counter incrementation.  None of these races harm correct
    65 // execution of the compiled code.
    67 // forward decl
    68 class ProfileData;
    70 // DataLayout
    71 //
    72 // Overlay for generic profiling data.
    73 class DataLayout VALUE_OBJ_CLASS_SPEC {
    74 private:
    75   // Every data layout begins with a header.  This header
    76   // contains a tag, which is used to indicate the size/layout
    77   // of the data, 4 bits of flags, which can be used in any way,
    78   // 4 bits of trap history (none/one reason/many reasons),
    79   // and a bci, which is used to tie this piece of data to a
    80   // specific bci in the bytecodes.
    81   union {
    82     intptr_t _bits;
    83     struct {
    84       u1 _tag;
    85       u1 _flags;
    86       u2 _bci;
    87     } _struct;
    88   } _header;
    90   // The data layout has an arbitrary number of cells, each sized
    91   // to accomodate a pointer or an integer.
    92   intptr_t _cells[1];
    94   // Some types of data layouts need a length field.
    95   static bool needs_array_len(u1 tag);
    97 public:
    98   enum {
    99     counter_increment = 1
   100   };
   102   enum {
   103     cell_size = sizeof(intptr_t)
   104   };
   106   // Tag values
   107   enum {
   108     no_tag,
   109     bit_data_tag,
   110     counter_data_tag,
   111     jump_data_tag,
   112     receiver_type_data_tag,
   113     virtual_call_data_tag,
   114     ret_data_tag,
   115     branch_data_tag,
   116     multi_branch_data_tag,
   117     arg_info_data_tag
   118   };
   120   enum {
   121     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   122     // The trap state breaks down further as [recompile:1 | reason:3].
   123     // This further breakdown is defined in deoptimization.cpp.
   124     // See Deoptimization::trap_state_reason for an assert that
   125     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   126     //
   127     // The trap_state is collected only if ProfileTraps is true.
   128     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   129     trap_shift = BitsPerByte - trap_bits,
   130     trap_mask = right_n_bits(trap_bits),
   131     trap_mask_in_place = (trap_mask << trap_shift),
   132     flag_limit = trap_shift,
   133     flag_mask = right_n_bits(flag_limit),
   134     first_flag = 0
   135   };
   137   // Size computation
   138   static int header_size_in_bytes() {
   139     return cell_size;
   140   }
   141   static int header_size_in_cells() {
   142     return 1;
   143   }
   145   static int compute_size_in_bytes(int cell_count) {
   146     return header_size_in_bytes() + cell_count * cell_size;
   147   }
   149   // Initialization
   150   void initialize(u1 tag, u2 bci, int cell_count);
   152   // Accessors
   153   u1 tag() {
   154     return _header._struct._tag;
   155   }
   157   // Return a few bits of trap state.  Range is [0..trap_mask].
   158   // The state tells if traps with zero, one, or many reasons have occurred.
   159   // It also tells whether zero or many recompilations have occurred.
   160   // The associated trap histogram in the MDO itself tells whether
   161   // traps are common or not.  If a BCI shows that a trap X has
   162   // occurred, and the MDO shows N occurrences of X, we make the
   163   // simplifying assumption that all N occurrences can be blamed
   164   // on that BCI.
   165   int trap_state() {
   166     return ((_header._struct._flags >> trap_shift) & trap_mask);
   167   }
   169   void set_trap_state(int new_state) {
   170     assert(ProfileTraps, "used only under +ProfileTraps");
   171     uint old_flags = (_header._struct._flags & flag_mask);
   172     _header._struct._flags = (new_state << trap_shift) | old_flags;
   173   }
   175   u1 flags() {
   176     return _header._struct._flags;
   177   }
   179   u2 bci() {
   180     return _header._struct._bci;
   181   }
   183   void set_header(intptr_t value) {
   184     _header._bits = value;
   185   }
   186   void release_set_header(intptr_t value) {
   187     OrderAccess::release_store_ptr(&_header._bits, value);
   188   }
   189   intptr_t header() {
   190     return _header._bits;
   191   }
   192   void set_cell_at(int index, intptr_t value) {
   193     _cells[index] = value;
   194   }
   195   void release_set_cell_at(int index, intptr_t value) {
   196     OrderAccess::release_store_ptr(&_cells[index], value);
   197   }
   198   intptr_t cell_at(int index) {
   199     return _cells[index];
   200   }
   202   void set_flag_at(int flag_number) {
   203     assert(flag_number < flag_limit, "oob");
   204     _header._struct._flags |= (0x1 << flag_number);
   205   }
   206   bool flag_at(int flag_number) {
   207     assert(flag_number < flag_limit, "oob");
   208     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   209   }
   211   // Low-level support for code generation.
   212   static ByteSize header_offset() {
   213     return byte_offset_of(DataLayout, _header);
   214   }
   215   static ByteSize tag_offset() {
   216     return byte_offset_of(DataLayout, _header._struct._tag);
   217   }
   218   static ByteSize flags_offset() {
   219     return byte_offset_of(DataLayout, _header._struct._flags);
   220   }
   221   static ByteSize bci_offset() {
   222     return byte_offset_of(DataLayout, _header._struct._bci);
   223   }
   224   static ByteSize cell_offset(int index) {
   225     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   226   }
   227   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   228   static int flag_number_to_byte_constant(int flag_number) {
   229     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   230     DataLayout temp; temp.set_header(0);
   231     temp.set_flag_at(flag_number);
   232     return temp._header._struct._flags;
   233   }
   234   // Return a value which, when or-ed as a word into _header, sets the flag.
   235   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   236     DataLayout temp; temp.set_header(0);
   237     temp._header._struct._flags = byte_constant;
   238     return temp._header._bits;
   239   }
   241   ProfileData* data_in();
   243   // GC support
   244   void clean_weak_klass_links(BoolObjectClosure* cl);
   245 };
   248 // ProfileData class hierarchy
   249 class ProfileData;
   250 class   BitData;
   251 class     CounterData;
   252 class       ReceiverTypeData;
   253 class         VirtualCallData;
   254 class       RetData;
   255 class   JumpData;
   256 class     BranchData;
   257 class   ArrayData;
   258 class     MultiBranchData;
   259 class     ArgInfoData;
   262 // ProfileData
   263 //
   264 // A ProfileData object is created to refer to a section of profiling
   265 // data in a structured way.
   266 class ProfileData : public ResourceObj {
   267 private:
   268 #ifndef PRODUCT
   269   enum {
   270     tab_width_one = 16,
   271     tab_width_two = 36
   272   };
   273 #endif // !PRODUCT
   275   // This is a pointer to a section of profiling data.
   276   DataLayout* _data;
   278 protected:
   279   DataLayout* data() { return _data; }
   281   enum {
   282     cell_size = DataLayout::cell_size
   283   };
   285 public:
   286   // How many cells are in this?
   287   virtual int cell_count() {
   288     ShouldNotReachHere();
   289     return -1;
   290   }
   292   // Return the size of this data.
   293   int size_in_bytes() {
   294     return DataLayout::compute_size_in_bytes(cell_count());
   295   }
   297 protected:
   298   // Low-level accessors for underlying data
   299   void set_intptr_at(int index, intptr_t value) {
   300     assert(0 <= index && index < cell_count(), "oob");
   301     data()->set_cell_at(index, value);
   302   }
   303   void release_set_intptr_at(int index, intptr_t value) {
   304     assert(0 <= index && index < cell_count(), "oob");
   305     data()->release_set_cell_at(index, value);
   306   }
   307   intptr_t intptr_at(int index) {
   308     assert(0 <= index && index < cell_count(), "oob");
   309     return data()->cell_at(index);
   310   }
   311   void set_uint_at(int index, uint value) {
   312     set_intptr_at(index, (intptr_t) value);
   313   }
   314   void release_set_uint_at(int index, uint value) {
   315     release_set_intptr_at(index, (intptr_t) value);
   316   }
   317   uint uint_at(int index) {
   318     return (uint)intptr_at(index);
   319   }
   320   void set_int_at(int index, int value) {
   321     set_intptr_at(index, (intptr_t) value);
   322   }
   323   void release_set_int_at(int index, int value) {
   324     release_set_intptr_at(index, (intptr_t) value);
   325   }
   326   int int_at(int index) {
   327     return (int)intptr_at(index);
   328   }
   329   int int_at_unchecked(int index) {
   330     return (int)data()->cell_at(index);
   331   }
   332   void set_oop_at(int index, oop value) {
   333     set_intptr_at(index, (intptr_t) value);
   334   }
   335   oop oop_at(int index) {
   336     return (oop)intptr_at(index);
   337   }
   339   void set_flag_at(int flag_number) {
   340     data()->set_flag_at(flag_number);
   341   }
   342   bool flag_at(int flag_number) {
   343     return data()->flag_at(flag_number);
   344   }
   346   // two convenient imports for use by subclasses:
   347   static ByteSize cell_offset(int index) {
   348     return DataLayout::cell_offset(index);
   349   }
   350   static int flag_number_to_byte_constant(int flag_number) {
   351     return DataLayout::flag_number_to_byte_constant(flag_number);
   352   }
   354   ProfileData(DataLayout* data) {
   355     _data = data;
   356   }
   358 public:
   359   // Constructor for invalid ProfileData.
   360   ProfileData();
   362   u2 bci() {
   363     return data()->bci();
   364   }
   366   address dp() {
   367     return (address)_data;
   368   }
   370   int trap_state() {
   371     return data()->trap_state();
   372   }
   373   void set_trap_state(int new_state) {
   374     data()->set_trap_state(new_state);
   375   }
   377   // Type checking
   378   virtual bool is_BitData()         { return false; }
   379   virtual bool is_CounterData()     { return false; }
   380   virtual bool is_JumpData()        { return false; }
   381   virtual bool is_ReceiverTypeData(){ return false; }
   382   virtual bool is_VirtualCallData() { return false; }
   383   virtual bool is_RetData()         { return false; }
   384   virtual bool is_BranchData()      { return false; }
   385   virtual bool is_ArrayData()       { return false; }
   386   virtual bool is_MultiBranchData() { return false; }
   387   virtual bool is_ArgInfoData()     { return false; }
   390   BitData* as_BitData() {
   391     assert(is_BitData(), "wrong type");
   392     return is_BitData()         ? (BitData*)        this : NULL;
   393   }
   394   CounterData* as_CounterData() {
   395     assert(is_CounterData(), "wrong type");
   396     return is_CounterData()     ? (CounterData*)    this : NULL;
   397   }
   398   JumpData* as_JumpData() {
   399     assert(is_JumpData(), "wrong type");
   400     return is_JumpData()        ? (JumpData*)       this : NULL;
   401   }
   402   ReceiverTypeData* as_ReceiverTypeData() {
   403     assert(is_ReceiverTypeData(), "wrong type");
   404     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   405   }
   406   VirtualCallData* as_VirtualCallData() {
   407     assert(is_VirtualCallData(), "wrong type");
   408     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   409   }
   410   RetData* as_RetData() {
   411     assert(is_RetData(), "wrong type");
   412     return is_RetData()         ? (RetData*)        this : NULL;
   413   }
   414   BranchData* as_BranchData() {
   415     assert(is_BranchData(), "wrong type");
   416     return is_BranchData()      ? (BranchData*)     this : NULL;
   417   }
   418   ArrayData* as_ArrayData() {
   419     assert(is_ArrayData(), "wrong type");
   420     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   421   }
   422   MultiBranchData* as_MultiBranchData() {
   423     assert(is_MultiBranchData(), "wrong type");
   424     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   425   }
   426   ArgInfoData* as_ArgInfoData() {
   427     assert(is_ArgInfoData(), "wrong type");
   428     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   429   }
   432   // Subclass specific initialization
   433   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
   435   // GC support
   436   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
   438   // CI translation: ProfileData can represent both MethodDataOop data
   439   // as well as CIMethodData data. This function is provided for translating
   440   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   441   // most ProfileData don't require any translation, so we provide the null
   442   // translation here, and the required translators are in the ci subclasses.
   443   virtual void translate_from(ProfileData* data) {}
   445   virtual void print_data_on(outputStream* st) {
   446     ShouldNotReachHere();
   447   }
   449 #ifndef PRODUCT
   450   void print_shared(outputStream* st, const char* name);
   451   void tab(outputStream* st);
   452 #endif
   453 };
   455 // BitData
   456 //
   457 // A BitData holds a flag or two in its header.
   458 class BitData : public ProfileData {
   459 protected:
   460   enum {
   461     // null_seen:
   462     //  saw a null operand (cast/aastore/instanceof)
   463     null_seen_flag              = DataLayout::first_flag + 0
   464   };
   465   enum { bit_cell_count = 0 };  // no additional data fields needed.
   466 public:
   467   BitData(DataLayout* layout) : ProfileData(layout) {
   468   }
   470   virtual bool is_BitData() { return true; }
   472   static int static_cell_count() {
   473     return bit_cell_count;
   474   }
   476   virtual int cell_count() {
   477     return static_cell_count();
   478   }
   480   // Accessor
   482   // The null_seen flag bit is specially known to the interpreter.
   483   // Consulting it allows the compiler to avoid setting up null_check traps.
   484   bool null_seen()     { return flag_at(null_seen_flag); }
   485   void set_null_seen()    { set_flag_at(null_seen_flag); }
   488   // Code generation support
   489   static int null_seen_byte_constant() {
   490     return flag_number_to_byte_constant(null_seen_flag);
   491   }
   493   static ByteSize bit_data_size() {
   494     return cell_offset(bit_cell_count);
   495   }
   497 #ifndef PRODUCT
   498   void print_data_on(outputStream* st);
   499 #endif
   500 };
   502 // CounterData
   503 //
   504 // A CounterData corresponds to a simple counter.
   505 class CounterData : public BitData {
   506 protected:
   507   enum {
   508     count_off,
   509     counter_cell_count
   510   };
   511 public:
   512   CounterData(DataLayout* layout) : BitData(layout) {}
   514   virtual bool is_CounterData() { return true; }
   516   static int static_cell_count() {
   517     return counter_cell_count;
   518   }
   520   virtual int cell_count() {
   521     return static_cell_count();
   522   }
   524   // Direct accessor
   525   uint count() {
   526     return uint_at(count_off);
   527   }
   529   // Code generation support
   530   static ByteSize count_offset() {
   531     return cell_offset(count_off);
   532   }
   533   static ByteSize counter_data_size() {
   534     return cell_offset(counter_cell_count);
   535   }
   537   void set_count(uint count) {
   538     set_uint_at(count_off, count);
   539   }
   541 #ifndef PRODUCT
   542   void print_data_on(outputStream* st);
   543 #endif
   544 };
   546 // JumpData
   547 //
   548 // A JumpData is used to access profiling information for a direct
   549 // branch.  It is a counter, used for counting the number of branches,
   550 // plus a data displacement, used for realigning the data pointer to
   551 // the corresponding target bci.
   552 class JumpData : public ProfileData {
   553 protected:
   554   enum {
   555     taken_off_set,
   556     displacement_off_set,
   557     jump_cell_count
   558   };
   560   void set_displacement(int displacement) {
   561     set_int_at(displacement_off_set, displacement);
   562   }
   564 public:
   565   JumpData(DataLayout* layout) : ProfileData(layout) {
   566     assert(layout->tag() == DataLayout::jump_data_tag ||
   567       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   568   }
   570   virtual bool is_JumpData() { return true; }
   572   static int static_cell_count() {
   573     return jump_cell_count;
   574   }
   576   virtual int cell_count() {
   577     return static_cell_count();
   578   }
   580   // Direct accessor
   581   uint taken() {
   582     return uint_at(taken_off_set);
   583   }
   585   void set_taken(uint cnt) {
   586     set_uint_at(taken_off_set, cnt);
   587   }
   589   // Saturating counter
   590   uint inc_taken() {
   591     uint cnt = taken() + 1;
   592     // Did we wrap? Will compiler screw us??
   593     if (cnt == 0) cnt--;
   594     set_uint_at(taken_off_set, cnt);
   595     return cnt;
   596   }
   598   int displacement() {
   599     return int_at(displacement_off_set);
   600   }
   602   // Code generation support
   603   static ByteSize taken_offset() {
   604     return cell_offset(taken_off_set);
   605   }
   607   static ByteSize displacement_offset() {
   608     return cell_offset(displacement_off_set);
   609   }
   611   // Specific initialization.
   612   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   614 #ifndef PRODUCT
   615   void print_data_on(outputStream* st);
   616 #endif
   617 };
   619 // ReceiverTypeData
   620 //
   621 // A ReceiverTypeData is used to access profiling information about a
   622 // dynamic type check.  It consists of a counter which counts the total times
   623 // that the check is reached, and a series of (Klass*, count) pairs
   624 // which are used to store a type profile for the receiver of the check.
   625 class ReceiverTypeData : public CounterData {
   626 protected:
   627   enum {
   628     receiver0_offset = counter_cell_count,
   629     count0_offset,
   630     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
   631   };
   633 public:
   634   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
   635     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
   636            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   637   }
   639   virtual bool is_ReceiverTypeData() { return true; }
   641   static int static_cell_count() {
   642     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
   643   }
   645   virtual int cell_count() {
   646     return static_cell_count();
   647   }
   649   // Direct accessors
   650   static uint row_limit() {
   651     return TypeProfileWidth;
   652   }
   653   static int receiver_cell_index(uint row) {
   654     return receiver0_offset + row * receiver_type_row_cell_count;
   655   }
   656   static int receiver_count_cell_index(uint row) {
   657     return count0_offset + row * receiver_type_row_cell_count;
   658   }
   660   Klass* receiver(uint row) {
   661     assert(row < row_limit(), "oob");
   663     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
   664     assert(recv == NULL || recv->is_klass(), "wrong type");
   665     return recv;
   666   }
   668   void set_receiver(uint row, Klass* k) {
   669     assert((uint)row < row_limit(), "oob");
   670     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
   671   }
   673   uint receiver_count(uint row) {
   674     assert(row < row_limit(), "oob");
   675     return uint_at(receiver_count_cell_index(row));
   676   }
   678   void set_receiver_count(uint row, uint count) {
   679     assert(row < row_limit(), "oob");
   680     set_uint_at(receiver_count_cell_index(row), count);
   681   }
   683   void clear_row(uint row) {
   684     assert(row < row_limit(), "oob");
   685     // Clear total count - indicator of polymorphic call site.
   686     // The site may look like as monomorphic after that but
   687     // it allow to have more accurate profiling information because
   688     // there was execution phase change since klasses were unloaded.
   689     // If the site is still polymorphic then MDO will be updated
   690     // to reflect it. But it could be the case that the site becomes
   691     // only bimorphic. Then keeping total count not 0 will be wrong.
   692     // Even if we use monomorphic (when it is not) for compilation
   693     // we will only have trap, deoptimization and recompile again
   694     // with updated MDO after executing method in Interpreter.
   695     // An additional receiver will be recorded in the cleaned row
   696     // during next call execution.
   697     //
   698     // Note: our profiling logic works with empty rows in any slot.
   699     // We do sorting a profiling info (ciCallProfile) for compilation.
   700     //
   701     set_count(0);
   702     set_receiver(row, NULL);
   703     set_receiver_count(row, 0);
   704   }
   706   // Code generation support
   707   static ByteSize receiver_offset(uint row) {
   708     return cell_offset(receiver_cell_index(row));
   709   }
   710   static ByteSize receiver_count_offset(uint row) {
   711     return cell_offset(receiver_count_cell_index(row));
   712   }
   713   static ByteSize receiver_type_data_size() {
   714     return cell_offset(static_cell_count());
   715   }
   717   // GC support
   718   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
   720 #ifndef PRODUCT
   721   void print_receiver_data_on(outputStream* st);
   722   void print_data_on(outputStream* st);
   723 #endif
   724 };
   726 // VirtualCallData
   727 //
   728 // A VirtualCallData is used to access profiling information about a
   729 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
   730 class VirtualCallData : public ReceiverTypeData {
   731 public:
   732   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
   733     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   734   }
   736   virtual bool is_VirtualCallData() { return true; }
   738   static int static_cell_count() {
   739     // At this point we could add more profile state, e.g., for arguments.
   740     // But for now it's the same size as the base record type.
   741     return ReceiverTypeData::static_cell_count();
   742   }
   744   virtual int cell_count() {
   745     return static_cell_count();
   746   }
   748   // Direct accessors
   749   static ByteSize virtual_call_data_size() {
   750     return cell_offset(static_cell_count());
   751   }
   753 #ifndef PRODUCT
   754   void print_data_on(outputStream* st);
   755 #endif
   756 };
   758 // RetData
   759 //
   760 // A RetData is used to access profiling information for a ret bytecode.
   761 // It is composed of a count of the number of times that the ret has
   762 // been executed, followed by a series of triples of the form
   763 // (bci, count, di) which count the number of times that some bci was the
   764 // target of the ret and cache a corresponding data displacement.
   765 class RetData : public CounterData {
   766 protected:
   767   enum {
   768     bci0_offset = counter_cell_count,
   769     count0_offset,
   770     displacement0_offset,
   771     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
   772   };
   774   void set_bci(uint row, int bci) {
   775     assert((uint)row < row_limit(), "oob");
   776     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   777   }
   778   void release_set_bci(uint row, int bci) {
   779     assert((uint)row < row_limit(), "oob");
   780     // 'release' when setting the bci acts as a valid flag for other
   781     // threads wrt bci_count and bci_displacement.
   782     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   783   }
   784   void set_bci_count(uint row, uint count) {
   785     assert((uint)row < row_limit(), "oob");
   786     set_uint_at(count0_offset + row * ret_row_cell_count, count);
   787   }
   788   void set_bci_displacement(uint row, int disp) {
   789     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
   790   }
   792 public:
   793   RetData(DataLayout* layout) : CounterData(layout) {
   794     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
   795   }
   797   virtual bool is_RetData() { return true; }
   799   enum {
   800     no_bci = -1 // value of bci when bci1/2 are not in use.
   801   };
   803   static int static_cell_count() {
   804     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
   805   }
   807   virtual int cell_count() {
   808     return static_cell_count();
   809   }
   811   static uint row_limit() {
   812     return BciProfileWidth;
   813   }
   814   static int bci_cell_index(uint row) {
   815     return bci0_offset + row * ret_row_cell_count;
   816   }
   817   static int bci_count_cell_index(uint row) {
   818     return count0_offset + row * ret_row_cell_count;
   819   }
   820   static int bci_displacement_cell_index(uint row) {
   821     return displacement0_offset + row * ret_row_cell_count;
   822   }
   824   // Direct accessors
   825   int bci(uint row) {
   826     return int_at(bci_cell_index(row));
   827   }
   828   uint bci_count(uint row) {
   829     return uint_at(bci_count_cell_index(row));
   830   }
   831   int bci_displacement(uint row) {
   832     return int_at(bci_displacement_cell_index(row));
   833   }
   835   // Interpreter Runtime support
   836   address fixup_ret(int return_bci, MethodData* mdo);
   838   // Code generation support
   839   static ByteSize bci_offset(uint row) {
   840     return cell_offset(bci_cell_index(row));
   841   }
   842   static ByteSize bci_count_offset(uint row) {
   843     return cell_offset(bci_count_cell_index(row));
   844   }
   845   static ByteSize bci_displacement_offset(uint row) {
   846     return cell_offset(bci_displacement_cell_index(row));
   847   }
   849   // Specific initialization.
   850   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   852 #ifndef PRODUCT
   853   void print_data_on(outputStream* st);
   854 #endif
   855 };
   857 // BranchData
   858 //
   859 // A BranchData is used to access profiling data for a two-way branch.
   860 // It consists of taken and not_taken counts as well as a data displacement
   861 // for the taken case.
   862 class BranchData : public JumpData {
   863 protected:
   864   enum {
   865     not_taken_off_set = jump_cell_count,
   866     branch_cell_count
   867   };
   869   void set_displacement(int displacement) {
   870     set_int_at(displacement_off_set, displacement);
   871   }
   873 public:
   874   BranchData(DataLayout* layout) : JumpData(layout) {
   875     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
   876   }
   878   virtual bool is_BranchData() { return true; }
   880   static int static_cell_count() {
   881     return branch_cell_count;
   882   }
   884   virtual int cell_count() {
   885     return static_cell_count();
   886   }
   888   // Direct accessor
   889   uint not_taken() {
   890     return uint_at(not_taken_off_set);
   891   }
   893   void set_not_taken(uint cnt) {
   894     set_uint_at(not_taken_off_set, cnt);
   895   }
   897   uint inc_not_taken() {
   898     uint cnt = not_taken() + 1;
   899     // Did we wrap? Will compiler screw us??
   900     if (cnt == 0) cnt--;
   901     set_uint_at(not_taken_off_set, cnt);
   902     return cnt;
   903   }
   905   // Code generation support
   906   static ByteSize not_taken_offset() {
   907     return cell_offset(not_taken_off_set);
   908   }
   909   static ByteSize branch_data_size() {
   910     return cell_offset(branch_cell_count);
   911   }
   913   // Specific initialization.
   914   void post_initialize(BytecodeStream* stream, MethodData* mdo);
   916 #ifndef PRODUCT
   917   void print_data_on(outputStream* st);
   918 #endif
   919 };
   921 // ArrayData
   922 //
   923 // A ArrayData is a base class for accessing profiling data which does
   924 // not have a statically known size.  It consists of an array length
   925 // and an array start.
   926 class ArrayData : public ProfileData {
   927 protected:
   928   friend class DataLayout;
   930   enum {
   931     array_len_off_set,
   932     array_start_off_set
   933   };
   935   uint array_uint_at(int index) {
   936     int aindex = index + array_start_off_set;
   937     return uint_at(aindex);
   938   }
   939   int array_int_at(int index) {
   940     int aindex = index + array_start_off_set;
   941     return int_at(aindex);
   942   }
   943   oop array_oop_at(int index) {
   944     int aindex = index + array_start_off_set;
   945     return oop_at(aindex);
   946   }
   947   void array_set_int_at(int index, int value) {
   948     int aindex = index + array_start_off_set;
   949     set_int_at(aindex, value);
   950   }
   952   // Code generation support for subclasses.
   953   static ByteSize array_element_offset(int index) {
   954     return cell_offset(array_start_off_set + index);
   955   }
   957 public:
   958   ArrayData(DataLayout* layout) : ProfileData(layout) {}
   960   virtual bool is_ArrayData() { return true; }
   962   static int static_cell_count() {
   963     return -1;
   964   }
   966   int array_len() {
   967     return int_at_unchecked(array_len_off_set);
   968   }
   970   virtual int cell_count() {
   971     return array_len() + 1;
   972   }
   974   // Code generation support
   975   static ByteSize array_len_offset() {
   976     return cell_offset(array_len_off_set);
   977   }
   978   static ByteSize array_start_offset() {
   979     return cell_offset(array_start_off_set);
   980   }
   981 };
   983 // MultiBranchData
   984 //
   985 // A MultiBranchData is used to access profiling information for
   986 // a multi-way branch (*switch bytecodes).  It consists of a series
   987 // of (count, displacement) pairs, which count the number of times each
   988 // case was taken and specify the data displacment for each branch target.
   989 class MultiBranchData : public ArrayData {
   990 protected:
   991   enum {
   992     default_count_off_set,
   993     default_disaplacement_off_set,
   994     case_array_start
   995   };
   996   enum {
   997     relative_count_off_set,
   998     relative_displacement_off_set,
   999     per_case_cell_count
  1000   };
  1002   void set_default_displacement(int displacement) {
  1003     array_set_int_at(default_disaplacement_off_set, displacement);
  1005   void set_displacement_at(int index, int displacement) {
  1006     array_set_int_at(case_array_start +
  1007                      index * per_case_cell_count +
  1008                      relative_displacement_off_set,
  1009                      displacement);
  1012 public:
  1013   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1014     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1017   virtual bool is_MultiBranchData() { return true; }
  1019   static int compute_cell_count(BytecodeStream* stream);
  1021   int number_of_cases() {
  1022     int alen = array_len() - 2; // get rid of default case here.
  1023     assert(alen % per_case_cell_count == 0, "must be even");
  1024     return (alen / per_case_cell_count);
  1027   uint default_count() {
  1028     return array_uint_at(default_count_off_set);
  1030   int default_displacement() {
  1031     return array_int_at(default_disaplacement_off_set);
  1034   uint count_at(int index) {
  1035     return array_uint_at(case_array_start +
  1036                          index * per_case_cell_count +
  1037                          relative_count_off_set);
  1039   int displacement_at(int index) {
  1040     return array_int_at(case_array_start +
  1041                         index * per_case_cell_count +
  1042                         relative_displacement_off_set);
  1045   // Code generation support
  1046   static ByteSize default_count_offset() {
  1047     return array_element_offset(default_count_off_set);
  1049   static ByteSize default_displacement_offset() {
  1050     return array_element_offset(default_disaplacement_off_set);
  1052   static ByteSize case_count_offset(int index) {
  1053     return case_array_offset() +
  1054            (per_case_size() * index) +
  1055            relative_count_offset();
  1057   static ByteSize case_array_offset() {
  1058     return array_element_offset(case_array_start);
  1060   static ByteSize per_case_size() {
  1061     return in_ByteSize(per_case_cell_count) * cell_size;
  1063   static ByteSize relative_count_offset() {
  1064     return in_ByteSize(relative_count_off_set) * cell_size;
  1066   static ByteSize relative_displacement_offset() {
  1067     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1070   // Specific initialization.
  1071   void post_initialize(BytecodeStream* stream, MethodData* mdo);
  1073 #ifndef PRODUCT
  1074   void print_data_on(outputStream* st);
  1075 #endif
  1076 };
  1078 class ArgInfoData : public ArrayData {
  1080 public:
  1081   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1082     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1085   virtual bool is_ArgInfoData() { return true; }
  1088   int number_of_args() {
  1089     return array_len();
  1092   uint arg_modified(int arg) {
  1093     return array_uint_at(arg);
  1096   void set_arg_modified(int arg, uint val) {
  1097     array_set_int_at(arg, val);
  1100 #ifndef PRODUCT
  1101   void print_data_on(outputStream* st);
  1102 #endif
  1103 };
  1105 // MethodData*
  1106 //
  1107 // A MethodData* holds information which has been collected about
  1108 // a method.  Its layout looks like this:
  1109 //
  1110 // -----------------------------
  1111 // | header                    |
  1112 // | klass                     |
  1113 // -----------------------------
  1114 // | method                    |
  1115 // | size of the MethodData* |
  1116 // -----------------------------
  1117 // | Data entries...           |
  1118 // |   (variable size)         |
  1119 // |                           |
  1120 // .                           .
  1121 // .                           .
  1122 // .                           .
  1123 // |                           |
  1124 // -----------------------------
  1125 //
  1126 // The data entry area is a heterogeneous array of DataLayouts. Each
  1127 // DataLayout in the array corresponds to a specific bytecode in the
  1128 // method.  The entries in the array are sorted by the corresponding
  1129 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1130 // which point to the underlying blocks of DataLayout structures.
  1131 //
  1132 // During interpretation, if profiling in enabled, the interpreter
  1133 // maintains a method data pointer (mdp), which points at the entry
  1134 // in the array corresponding to the current bci.  In the course of
  1135 // intepretation, when a bytecode is encountered that has profile data
  1136 // associated with it, the entry pointed to by mdp is updated, then the
  1137 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1138 // is NULL to begin with, the interpreter assumes that the current method
  1139 // is not (yet) being profiled.
  1140 //
  1141 // In MethodData* parlance, "dp" is a "data pointer", the actual address
  1142 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1143 // from the base of the data entry array.  A "displacement" is the byte offset
  1144 // in certain ProfileData objects that indicate the amount the mdp must be
  1145 // adjusted in the event of a change in control flow.
  1146 //
  1148 class MethodData : public Metadata {
  1149   friend class VMStructs;
  1150 private:
  1151   friend class ProfileData;
  1153   // Back pointer to the Method*
  1154   Method* _method;
  1156   // Size of this oop in bytes
  1157   int _size;
  1159   // Cached hint for bci_to_dp and bci_to_data
  1160   int _hint_di;
  1162   MethodData(methodHandle method, int size, TRAPS);
  1163 public:
  1164   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
  1165   MethodData() {}; // For ciMethodData
  1167   bool is_methodData() const volatile { return true; }
  1169   // Whole-method sticky bits and flags
  1170   enum {
  1171     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
  1172     _trap_hist_mask     = max_jubyte,
  1173     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1174   }; // Public flag values
  1175 private:
  1176   uint _nof_decompiles;             // count of all nmethod removals
  1177   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1178   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1179   union {
  1180     intptr_t _align;
  1181     u1 _array[_trap_hist_limit];
  1182   } _trap_hist;
  1184   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1185   intx              _eflags;          // flags on escape information
  1186   intx              _arg_local;       // bit set of non-escaping arguments
  1187   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1188   intx              _arg_returned;    // bit set of returned arguments
  1190   int _creation_mileage;              // method mileage at MDO creation
  1192   // How many invocations has this MDO seen?
  1193   // These counters are used to determine the exact age of MDO.
  1194   // We need those because in tiered a method can be concurrently
  1195   // executed at different levels.
  1196   InvocationCounter _invocation_counter;
  1197   // Same for backedges.
  1198   InvocationCounter _backedge_counter;
  1199   // Counter values at the time profiling started.
  1200   int               _invocation_counter_start;
  1201   int               _backedge_counter_start;
  1202   // Number of loops and blocks is computed when compiling the first
  1203   // time with C1. It is used to determine if method is trivial.
  1204   short             _num_loops;
  1205   short             _num_blocks;
  1206   // Highest compile level this method has ever seen.
  1207   u1                _highest_comp_level;
  1208   // Same for OSR level
  1209   u1                _highest_osr_comp_level;
  1210   // Does this method contain anything worth profiling?
  1211   bool              _would_profile;
  1213   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1214   int _data_size;
  1216   // Beginning of the data entries
  1217   intptr_t _data[1];
  1219   // Helper for size computation
  1220   static int compute_data_size(BytecodeStream* stream);
  1221   static int bytecode_cell_count(Bytecodes::Code code);
  1222   enum { no_profile_data = -1, variable_cell_count = -2 };
  1224   // Helper for initialization
  1225   DataLayout* data_layout_at(int data_index) const {
  1226     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1227     return (DataLayout*) (((address)_data) + data_index);
  1230   // Initialize an individual data segment.  Returns the size of
  1231   // the segment in bytes.
  1232   int initialize_data(BytecodeStream* stream, int data_index);
  1234   // Helper for data_at
  1235   DataLayout* limit_data_position() const {
  1236     return (DataLayout*)((address)data_base() + _data_size);
  1238   bool out_of_bounds(int data_index) const {
  1239     return data_index >= data_size();
  1242   // Give each of the data entries a chance to perform specific
  1243   // data initialization.
  1244   void post_initialize(BytecodeStream* stream);
  1246   // hint accessors
  1247   int      hint_di() const  { return _hint_di; }
  1248   void set_hint_di(int di)  {
  1249     assert(!out_of_bounds(di), "hint_di out of bounds");
  1250     _hint_di = di;
  1252   ProfileData* data_before(int bci) {
  1253     // avoid SEGV on this edge case
  1254     if (data_size() == 0)
  1255       return NULL;
  1256     int hint = hint_di();
  1257     if (data_layout_at(hint)->bci() <= bci)
  1258       return data_at(hint);
  1259     return first_data();
  1262   // What is the index of the first data entry?
  1263   int first_di() const { return 0; }
  1265   // Find or create an extra ProfileData:
  1266   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1268   // return the argument info cell
  1269   ArgInfoData *arg_info();
  1271 public:
  1272   static int header_size() {
  1273     return sizeof(MethodData)/wordSize;
  1276   // Compute the size of a MethodData* before it is created.
  1277   static int compute_allocation_size_in_bytes(methodHandle method);
  1278   static int compute_allocation_size_in_words(methodHandle method);
  1279   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1281   // Determine if a given bytecode can have profile information.
  1282   static bool bytecode_has_profile(Bytecodes::Code code) {
  1283     return bytecode_cell_count(code) != no_profile_data;
  1286   // Perform initialization of a new MethodData*
  1287   void initialize(methodHandle method);
  1289   // My size
  1290   int size_in_bytes() const { return _size; }
  1291   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
  1293   int      creation_mileage() const  { return _creation_mileage; }
  1294   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1296   int invocation_count() {
  1297     if (invocation_counter()->carry()) {
  1298       return InvocationCounter::count_limit;
  1300     return invocation_counter()->count();
  1302   int backedge_count() {
  1303     if (backedge_counter()->carry()) {
  1304       return InvocationCounter::count_limit;
  1306     return backedge_counter()->count();
  1309   int invocation_count_start() {
  1310     if (invocation_counter()->carry()) {
  1311       return 0;
  1313     return _invocation_counter_start;
  1316   int backedge_count_start() {
  1317     if (backedge_counter()->carry()) {
  1318       return 0;
  1320     return _backedge_counter_start;
  1323   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  1324   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  1326   void reset_start_counters() {
  1327     _invocation_counter_start = invocation_count();
  1328     _backedge_counter_start = backedge_count();
  1331   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  1332   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  1334   void set_would_profile(bool p)              { _would_profile = p;    }
  1335   bool would_profile() const                  { return _would_profile; }
  1337   int highest_comp_level()                    { return _highest_comp_level;      }
  1338   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
  1339   int highest_osr_comp_level()                { return _highest_osr_comp_level;  }
  1340   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
  1342   int num_loops() const                       { return _num_loops;  }
  1343   void set_num_loops(int n)                   { _num_loops = n;     }
  1344   int num_blocks() const                      { return _num_blocks; }
  1345   void set_num_blocks(int n)                  { _num_blocks = n;    }
  1347   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  1348   static int mileage_of(Method* m);
  1350   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1351   enum EscapeFlag {
  1352     estimated    = 1 << 0,
  1353     return_local = 1 << 1,
  1354     return_allocated = 1 << 2,
  1355     allocated_escapes = 1 << 3,
  1356     unknown_modified = 1 << 4
  1357   };
  1359   intx eflags()                                  { return _eflags; }
  1360   intx arg_local()                               { return _arg_local; }
  1361   intx arg_stack()                               { return _arg_stack; }
  1362   intx arg_returned()                            { return _arg_returned; }
  1363   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  1364                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1365                                                    return aid->arg_modified(a); }
  1367   void set_eflags(intx v)                        { _eflags = v; }
  1368   void set_arg_local(intx v)                     { _arg_local = v; }
  1369   void set_arg_stack(intx v)                     { _arg_stack = v; }
  1370   void set_arg_returned(intx v)                  { _arg_returned = v; }
  1371   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  1372                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1374                                                    aid->set_arg_modified(a, v); }
  1376   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  1378   // Location and size of data area
  1379   address data_base() const {
  1380     return (address) _data;
  1382   int data_size() const {
  1383     return _data_size;
  1386   // Accessors
  1387   Method* method() const { return _method; }
  1389   // Get the data at an arbitrary (sort of) data index.
  1390   ProfileData* data_at(int data_index) const;
  1392   // Walk through the data in order.
  1393   ProfileData* first_data() const { return data_at(first_di()); }
  1394   ProfileData* next_data(ProfileData* current) const;
  1395   bool is_valid(ProfileData* current) const { return current != NULL; }
  1397   // Convert a dp (data pointer) to a di (data index).
  1398   int dp_to_di(address dp) const {
  1399     return dp - ((address)_data);
  1402   address di_to_dp(int di) {
  1403     return (address)data_layout_at(di);
  1406   // bci to di/dp conversion.
  1407   address bci_to_dp(int bci);
  1408   int bci_to_di(int bci) {
  1409     return dp_to_di(bci_to_dp(bci));
  1412   // Get the data at an arbitrary bci, or NULL if there is none.
  1413   ProfileData* bci_to_data(int bci);
  1415   // Same, but try to create an extra_data record if one is needed:
  1416   ProfileData* allocate_bci_to_data(int bci) {
  1417     ProfileData* data = bci_to_data(bci);
  1418     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  1421   // Add a handful of extra data records, for trap tracking.
  1422   DataLayout* extra_data_base() const { return limit_data_position(); }
  1423   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
  1424   int extra_data_size() const { return (address)extra_data_limit()
  1425                                - (address)extra_data_base(); }
  1426   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  1428   // Return (uint)-1 for overflow.
  1429   uint trap_count(int reason) const {
  1430     assert((uint)reason < _trap_hist_limit, "oob");
  1431     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  1433   // For loops:
  1434   static uint trap_reason_limit() { return _trap_hist_limit; }
  1435   static uint trap_count_limit()  { return _trap_hist_mask; }
  1436   uint inc_trap_count(int reason) {
  1437     // Count another trap, anywhere in this method.
  1438     assert(reason >= 0, "must be single trap");
  1439     if ((uint)reason < _trap_hist_limit) {
  1440       uint cnt1 = 1 + _trap_hist._array[reason];
  1441       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  1442         _trap_hist._array[reason] = cnt1;
  1443         return cnt1;
  1444       } else {
  1445         return _trap_hist_mask + (++_nof_overflow_traps);
  1447     } else {
  1448       // Could not represent the count in the histogram.
  1449       return (++_nof_overflow_traps);
  1453   uint overflow_trap_count() const {
  1454     return _nof_overflow_traps;
  1456   uint overflow_recompile_count() const {
  1457     return _nof_overflow_recompiles;
  1459   void inc_overflow_recompile_count() {
  1460     _nof_overflow_recompiles += 1;
  1462   uint decompile_count() const {
  1463     return _nof_decompiles;
  1465   void inc_decompile_count() {
  1466     _nof_decompiles += 1;
  1467     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  1468       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
  1472   // Support for code generation
  1473   static ByteSize data_offset() {
  1474     return byte_offset_of(MethodData, _data[0]);
  1477   static ByteSize invocation_counter_offset() {
  1478     return byte_offset_of(MethodData, _invocation_counter);
  1480   static ByteSize backedge_counter_offset() {
  1481     return byte_offset_of(MethodData, _backedge_counter);
  1484   // Deallocation support - no pointer fields to deallocate
  1485   void deallocate_contents(ClassLoaderData* loader_data) {}
  1487   // GC support
  1488   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
  1490   // Printing
  1491 #ifndef PRODUCT
  1492   void print_on      (outputStream* st) const;
  1493 #endif
  1494   void print_value_on(outputStream* st) const;
  1496 #ifndef PRODUCT
  1497   // printing support for method data
  1498   void print_data_on(outputStream* st) const;
  1499 #endif
  1501   const char* internal_name() const { return "{method data}"; }
  1503   // verification
  1504   void verify_on(outputStream* st);
  1505   void verify_data_on(outputStream* st);
  1506 };
  1508 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial