src/share/vm/oops/generateOopMap.cpp

Tue, 05 Feb 2013 08:25:51 -0800

author
vlivanov
date
Tue, 05 Feb 2013 08:25:51 -0800
changeset 4539
6a51fc70a15e
parent 4037
da91efe96a93
child 4643
f16e75e0cf11
permissions
-rw-r--r--

8006613: adding reason to made_not_compilable
Reviewed-by: kvn, vlivanov
Contributed-by: Igor Ignatyev <igor.ignatyev@oracle.com>

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/bytecodeStream.hpp"
    27 #include "oops/generateOopMap.hpp"
    28 #include "oops/oop.inline.hpp"
    29 #include "oops/symbol.hpp"
    30 #include "runtime/handles.inline.hpp"
    31 #include "runtime/java.hpp"
    32 #include "runtime/relocator.hpp"
    33 #include "utilities/bitMap.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    36 //
    37 //
    38 // Compute stack layouts for each instruction in method.
    39 //
    40 //  Problems:
    41 //  - What to do about jsr with different types of local vars?
    42 //  Need maps that are conditional on jsr path?
    43 //  - Jsr and exceptions should be done more efficiently (the retAddr stuff)
    44 //
    45 //  Alternative:
    46 //  - Could extend verifier to provide this information.
    47 //    For: one fewer abstract interpreter to maintain. Against: the verifier
    48 //    solves a bigger problem so slower (undesirable to force verification of
    49 //    everything?).
    50 //
    51 //  Algorithm:
    52 //    Partition bytecodes into basic blocks
    53 //    For each basic block: store entry state (vars, stack). For instructions
    54 //    inside basic blocks we do not store any state (instead we recompute it
    55 //    from state produced by previous instruction).
    56 //
    57 //    Perform abstract interpretation of bytecodes over this lattice:
    58 //
    59 //                _--'#'--_
    60 //               /  /  \   \
    61 //             /   /     \   \
    62 //            /    |     |     \
    63 //          'r'   'v'   'p'   ' '
    64 //           \     |     |     /
    65 //            \    \     /    /
    66 //              \   \   /    /
    67 //                -- '@' --
    68 //
    69 //    '#'  top, result of conflict merge
    70 //    'r'  reference type
    71 //    'v'  value type
    72 //    'p'  pc type for jsr/ret
    73 //    ' '  uninitialized; never occurs on operand stack in Java
    74 //    '@'  bottom/unexecuted; initial state each bytecode.
    75 //
    76 //    Basic block headers are the only merge points. We use this iteration to
    77 //    compute the information:
    78 //
    79 //    find basic blocks;
    80 //    initialize them with uninitialized state;
    81 //    initialize first BB according to method signature;
    82 //    mark first BB changed
    83 //    while (some BB is changed) do {
    84 //      perform abstract interpration of all bytecodes in BB;
    85 //      merge exit state of BB into entry state of all successor BBs,
    86 //      noting if any of these change;
    87 //    }
    88 //
    89 //  One additional complication is necessary. The jsr instruction pushes
    90 //  a return PC on the stack (a 'p' type in the abstract interpretation).
    91 //  To be able to process "ret" bytecodes, we keep track of these return
    92 //  PC's in a 'retAddrs' structure in abstract interpreter context (when
    93 //  processing a "ret" bytecodes, it is not sufficient to know that it gets
    94 //  an argument of the right type 'p'; we need to know which address it
    95 //  returns to).
    96 //
    97 // (Note this comment is borrowed form the original author of the algorithm)
    99 // ComputeCallStack
   100 //
   101 // Specialization of SignatureIterator - compute the effects of a call
   102 //
   103 class ComputeCallStack : public SignatureIterator {
   104   CellTypeState *_effect;
   105   int _idx;
   107   void setup();
   108   void set(CellTypeState state)         { _effect[_idx++] = state; }
   109   int  length()                         { return _idx; };
   111   virtual void do_bool  ()              { set(CellTypeState::value); };
   112   virtual void do_char  ()              { set(CellTypeState::value); };
   113   virtual void do_float ()              { set(CellTypeState::value); };
   114   virtual void do_byte  ()              { set(CellTypeState::value); };
   115   virtual void do_short ()              { set(CellTypeState::value); };
   116   virtual void do_int   ()              { set(CellTypeState::value); };
   117   virtual void do_void  ()              { set(CellTypeState::bottom);};
   118   virtual void do_object(int begin, int end)  { set(CellTypeState::ref); };
   119   virtual void do_array (int begin, int end)  { set(CellTypeState::ref); };
   121   void do_double()                      { set(CellTypeState::value);
   122                                           set(CellTypeState::value); }
   123   void do_long  ()                      { set(CellTypeState::value);
   124                                            set(CellTypeState::value); }
   126 public:
   127   ComputeCallStack(Symbol* signature) : SignatureIterator(signature) {};
   129   // Compute methods
   130   int compute_for_parameters(bool is_static, CellTypeState *effect) {
   131     _idx    = 0;
   132     _effect = effect;
   134     if (!is_static)
   135       effect[_idx++] = CellTypeState::ref;
   137     iterate_parameters();
   139     return length();
   140   };
   142   int compute_for_returntype(CellTypeState *effect) {
   143     _idx    = 0;
   144     _effect = effect;
   145     iterate_returntype();
   146     set(CellTypeState::bottom);  // Always terminate with a bottom state, so ppush works
   148     return length();
   149   }
   150 };
   152 //=========================================================================================
   153 // ComputeEntryStack
   154 //
   155 // Specialization of SignatureIterator - in order to set up first stack frame
   156 //
   157 class ComputeEntryStack : public SignatureIterator {
   158   CellTypeState *_effect;
   159   int _idx;
   161   void setup();
   162   void set(CellTypeState state)         { _effect[_idx++] = state; }
   163   int  length()                         { return _idx; };
   165   virtual void do_bool  ()              { set(CellTypeState::value); };
   166   virtual void do_char  ()              { set(CellTypeState::value); };
   167   virtual void do_float ()              { set(CellTypeState::value); };
   168   virtual void do_byte  ()              { set(CellTypeState::value); };
   169   virtual void do_short ()              { set(CellTypeState::value); };
   170   virtual void do_int   ()              { set(CellTypeState::value); };
   171   virtual void do_void  ()              { set(CellTypeState::bottom);};
   172   virtual void do_object(int begin, int end)  { set(CellTypeState::make_slot_ref(_idx)); }
   173   virtual void do_array (int begin, int end)  { set(CellTypeState::make_slot_ref(_idx)); }
   175   void do_double()                      { set(CellTypeState::value);
   176                                           set(CellTypeState::value); }
   177   void do_long  ()                      { set(CellTypeState::value);
   178                                           set(CellTypeState::value); }
   180 public:
   181   ComputeEntryStack(Symbol* signature) : SignatureIterator(signature) {};
   183   // Compute methods
   184   int compute_for_parameters(bool is_static, CellTypeState *effect) {
   185     _idx    = 0;
   186     _effect = effect;
   188     if (!is_static)
   189       effect[_idx++] = CellTypeState::make_slot_ref(0);
   191     iterate_parameters();
   193     return length();
   194   };
   196   int compute_for_returntype(CellTypeState *effect) {
   197     _idx    = 0;
   198     _effect = effect;
   199     iterate_returntype();
   200     set(CellTypeState::bottom);  // Always terminate with a bottom state, so ppush works
   202     return length();
   203   }
   204 };
   206 //=====================================================================================
   207 //
   208 // Implementation of RetTable/RetTableEntry
   209 //
   210 // Contains function to itereate through all bytecodes
   211 // and find all return entry points
   212 //
   213 int RetTable::_init_nof_entries = 10;
   214 int RetTableEntry::_init_nof_jsrs = 5;
   216 void RetTableEntry::add_delta(int bci, int delta) {
   217   if (_target_bci > bci) _target_bci += delta;
   219   for (int k = 0; k < _jsrs->length(); k++) {
   220     int jsr = _jsrs->at(k);
   221     if (jsr > bci) _jsrs->at_put(k, jsr+delta);
   222   }
   223 }
   225 void RetTable::compute_ret_table(methodHandle method) {
   226   BytecodeStream i(method);
   227   Bytecodes::Code bytecode;
   229   while( (bytecode = i.next()) >= 0) {
   230     switch (bytecode) {
   231       case Bytecodes::_jsr:
   232         add_jsr(i.next_bci(), i.dest());
   233         break;
   234       case Bytecodes::_jsr_w:
   235         add_jsr(i.next_bci(), i.dest_w());
   236         break;
   237     }
   238   }
   239 }
   241 void RetTable::add_jsr(int return_bci, int target_bci) {
   242   RetTableEntry* entry = _first;
   244   // Scan table for entry
   245   for (;entry && entry->target_bci() != target_bci; entry = entry->next());
   247   if (!entry) {
   248     // Allocate new entry and put in list
   249     entry = new RetTableEntry(target_bci, _first);
   250     _first = entry;
   251   }
   253   // Now "entry" is set.  Make sure that the entry is initialized
   254   // and has room for the new jsr.
   255   entry->add_jsr(return_bci);
   256 }
   258 RetTableEntry* RetTable::find_jsrs_for_target(int targBci) {
   259   RetTableEntry *cur = _first;
   261   while(cur) {
   262     assert(cur->target_bci() != -1, "sanity check");
   263     if (cur->target_bci() == targBci)  return cur;
   264     cur = cur->next();
   265   }
   266   ShouldNotReachHere();
   267   return NULL;
   268 }
   270 // The instruction at bci is changing size by "delta".  Update the return map.
   271 void RetTable::update_ret_table(int bci, int delta) {
   272   RetTableEntry *cur = _first;
   273   while(cur) {
   274     cur->add_delta(bci, delta);
   275     cur = cur->next();
   276   }
   277 }
   279 //
   280 // Celltype state
   281 //
   283 CellTypeState CellTypeState::bottom      = CellTypeState::make_bottom();
   284 CellTypeState CellTypeState::uninit      = CellTypeState::make_any(uninit_value);
   285 CellTypeState CellTypeState::ref         = CellTypeState::make_any(ref_conflict);
   286 CellTypeState CellTypeState::value       = CellTypeState::make_any(val_value);
   287 CellTypeState CellTypeState::refUninit   = CellTypeState::make_any(ref_conflict | uninit_value);
   288 CellTypeState CellTypeState::top         = CellTypeState::make_top();
   289 CellTypeState CellTypeState::addr        = CellTypeState::make_any(addr_conflict);
   291 // Commonly used constants
   292 static CellTypeState epsilonCTS[1] = { CellTypeState::bottom };
   293 static CellTypeState   refCTS   = CellTypeState::ref;
   294 static CellTypeState   valCTS   = CellTypeState::value;
   295 static CellTypeState    vCTS[2] = { CellTypeState::value, CellTypeState::bottom };
   296 static CellTypeState    rCTS[2] = { CellTypeState::ref,   CellTypeState::bottom };
   297 static CellTypeState   rrCTS[3] = { CellTypeState::ref,   CellTypeState::ref,   CellTypeState::bottom };
   298 static CellTypeState   vrCTS[3] = { CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
   299 static CellTypeState   vvCTS[3] = { CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
   300 static CellTypeState  rvrCTS[4] = { CellTypeState::ref,   CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
   301 static CellTypeState  vvrCTS[4] = { CellTypeState::value, CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
   302 static CellTypeState  vvvCTS[4] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
   303 static CellTypeState vvvrCTS[5] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::ref,   CellTypeState::bottom };
   304 static CellTypeState vvvvCTS[5] = { CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::value, CellTypeState::bottom };
   306 char CellTypeState::to_char() const {
   307   if (can_be_reference()) {
   308     if (can_be_value() || can_be_address())
   309       return '#';    // Conflict that needs to be rewritten
   310     else
   311       return 'r';
   312   } else if (can_be_value())
   313     return 'v';
   314   else if (can_be_address())
   315     return 'p';
   316   else if (can_be_uninit())
   317     return ' ';
   318   else
   319     return '@';
   320 }
   323 // Print a detailed CellTypeState.  Indicate all bits that are set.  If
   324 // the CellTypeState represents an address or a reference, print the
   325 // value of the additional information.
   326 void CellTypeState::print(outputStream *os) {
   327   if (can_be_address()) {
   328     os->print("(p");
   329   } else {
   330     os->print("( ");
   331   }
   332   if (can_be_reference()) {
   333     os->print("r");
   334   } else {
   335     os->print(" ");
   336   }
   337   if (can_be_value()) {
   338     os->print("v");
   339   } else {
   340     os->print(" ");
   341   }
   342   if (can_be_uninit()) {
   343     os->print("u|");
   344   } else {
   345     os->print(" |");
   346   }
   347   if (is_info_top()) {
   348     os->print("Top)");
   349   } else if (is_info_bottom()) {
   350     os->print("Bot)");
   351   } else {
   352     if (is_reference()) {
   353       int info = get_info();
   354       int data = info & ~(ref_not_lock_bit | ref_slot_bit);
   355       if (info & ref_not_lock_bit) {
   356         // Not a monitor lock reference.
   357         if (info & ref_slot_bit) {
   358           // slot
   359           os->print("slot%d)", data);
   360         } else {
   361           // line
   362           os->print("line%d)", data);
   363         }
   364       } else {
   365         // lock
   366         os->print("lock%d)", data);
   367       }
   368     } else {
   369       os->print("%d)", get_info());
   370     }
   371   }
   372 }
   374 //
   375 // Basicblock handling methods
   376 //
   378 void GenerateOopMap ::initialize_bb() {
   379   _gc_points = 0;
   380   _bb_count  = 0;
   381   _bb_hdr_bits.clear();
   382   _bb_hdr_bits.resize(method()->code_size());
   383 }
   385 void GenerateOopMap::bb_mark_fct(GenerateOopMap *c, int bci, int *data) {
   386   assert(bci>= 0 && bci < c->method()->code_size(), "index out of bounds");
   387   if (c->is_bb_header(bci))
   388      return;
   390   if (TraceNewOopMapGeneration) {
   391      tty->print_cr("Basicblock#%d begins at: %d", c->_bb_count, bci);
   392   }
   393   c->set_bbmark_bit(bci);
   394   c->_bb_count++;
   395 }
   398 void GenerateOopMap::mark_bbheaders_and_count_gc_points() {
   399   initialize_bb();
   401   bool fellThrough = false;  // False to get first BB marked.
   403   // First mark all exception handlers as start of a basic-block
   404   ExceptionTable excps(method());
   405   for(int i = 0; i < excps.length(); i ++) {
   406     bb_mark_fct(this, excps.handler_pc(i), NULL);
   407   }
   409   // Then iterate through the code
   410   BytecodeStream bcs(_method);
   411   Bytecodes::Code bytecode;
   413   while( (bytecode = bcs.next()) >= 0) {
   414     int bci = bcs.bci();
   416     if (!fellThrough)
   417         bb_mark_fct(this, bci, NULL);
   419     fellThrough = jump_targets_do(&bcs, &GenerateOopMap::bb_mark_fct, NULL);
   421      /* We will also mark successors of jsr's as basic block headers. */
   422     switch (bytecode) {
   423       case Bytecodes::_jsr:
   424         assert(!fellThrough, "should not happen");
   425         bb_mark_fct(this, bci + Bytecodes::length_for(bytecode), NULL);
   426         break;
   427       case Bytecodes::_jsr_w:
   428         assert(!fellThrough, "should not happen");
   429         bb_mark_fct(this, bci + Bytecodes::length_for(bytecode), NULL);
   430         break;
   431     }
   433     if (possible_gc_point(&bcs))
   434       _gc_points++;
   435   }
   436 }
   438 void GenerateOopMap::reachable_basicblock(GenerateOopMap *c, int bci, int *data) {
   439   assert(bci>= 0 && bci < c->method()->code_size(), "index out of bounds");
   440   BasicBlock* bb = c->get_basic_block_at(bci);
   441   if (bb->is_dead()) {
   442     bb->mark_as_alive();
   443     *data = 1; // Mark basicblock as changed
   444   }
   445 }
   448 void GenerateOopMap::mark_reachable_code() {
   449   int change = 1; // int to get function pointers to work
   451   // Mark entry basic block as alive and all exception handlers
   452   _basic_blocks[0].mark_as_alive();
   453   ExceptionTable excps(method());
   454   for(int i = 0; i < excps.length(); i++) {
   455     BasicBlock *bb = get_basic_block_at(excps.handler_pc(i));
   456     // If block is not already alive (due to multiple exception handlers to same bb), then
   457     // make it alive
   458     if (bb->is_dead()) bb->mark_as_alive();
   459   }
   461   BytecodeStream bcs(_method);
   463   // Iterate through all basic blocks until we reach a fixpoint
   464   while (change) {
   465     change = 0;
   467     for (int i = 0; i < _bb_count; i++) {
   468       BasicBlock *bb = &_basic_blocks[i];
   469       if (bb->is_alive()) {
   470         // Position bytecodestream at last bytecode in basicblock
   471         bcs.set_start(bb->_end_bci);
   472         bcs.next();
   473         Bytecodes::Code bytecode = bcs.code();
   474         int bci = bcs.bci();
   475         assert(bci == bb->_end_bci, "wrong bci");
   477         bool fell_through = jump_targets_do(&bcs, &GenerateOopMap::reachable_basicblock, &change);
   479         // We will also mark successors of jsr's as alive.
   480         switch (bytecode) {
   481           case Bytecodes::_jsr:
   482           case Bytecodes::_jsr_w:
   483             assert(!fell_through, "should not happen");
   484             reachable_basicblock(this, bci + Bytecodes::length_for(bytecode), &change);
   485             break;
   486         }
   487         if (fell_through) {
   488           // Mark successor as alive
   489           if (bb[1].is_dead()) {
   490             bb[1].mark_as_alive();
   491             change = 1;
   492           }
   493         }
   494       }
   495     }
   496   }
   497 }
   499 /* If the current instruction in "c" has no effect on control flow,
   500    returns "true".  Otherwise, calls "jmpFct" one or more times, with
   501    "c", an appropriate "pcDelta", and "data" as arguments, then
   502    returns "false".  There is one exception: if the current
   503    instruction is a "ret", returns "false" without calling "jmpFct".
   504    Arrangements for tracking the control flow of a "ret" must be made
   505    externally. */
   506 bool GenerateOopMap::jump_targets_do(BytecodeStream *bcs, jmpFct_t jmpFct, int *data) {
   507   int bci = bcs->bci();
   509   switch (bcs->code()) {
   510     case Bytecodes::_ifeq:
   511     case Bytecodes::_ifne:
   512     case Bytecodes::_iflt:
   513     case Bytecodes::_ifge:
   514     case Bytecodes::_ifgt:
   515     case Bytecodes::_ifle:
   516     case Bytecodes::_if_icmpeq:
   517     case Bytecodes::_if_icmpne:
   518     case Bytecodes::_if_icmplt:
   519     case Bytecodes::_if_icmpge:
   520     case Bytecodes::_if_icmpgt:
   521     case Bytecodes::_if_icmple:
   522     case Bytecodes::_if_acmpeq:
   523     case Bytecodes::_if_acmpne:
   524     case Bytecodes::_ifnull:
   525     case Bytecodes::_ifnonnull:
   526       (*jmpFct)(this, bcs->dest(), data);
   527       (*jmpFct)(this, bci + 3, data);
   528       break;
   530     case Bytecodes::_goto:
   531       (*jmpFct)(this, bcs->dest(), data);
   532       break;
   533     case Bytecodes::_goto_w:
   534       (*jmpFct)(this, bcs->dest_w(), data);
   535       break;
   536     case Bytecodes::_tableswitch:
   537       { Bytecode_tableswitch tableswitch(method(), bcs->bcp());
   538         int len = tableswitch.length();
   540         (*jmpFct)(this, bci + tableswitch.default_offset(), data); /* Default. jump address */
   541         while (--len >= 0) {
   542           (*jmpFct)(this, bci + tableswitch.dest_offset_at(len), data);
   543         }
   544         break;
   545       }
   547     case Bytecodes::_lookupswitch:
   548       { Bytecode_lookupswitch lookupswitch(method(), bcs->bcp());
   549         int npairs = lookupswitch.number_of_pairs();
   550         (*jmpFct)(this, bci + lookupswitch.default_offset(), data); /* Default. */
   551         while(--npairs >= 0) {
   552           LookupswitchPair pair = lookupswitch.pair_at(npairs);
   553           (*jmpFct)(this, bci + pair.offset(), data);
   554         }
   555         break;
   556       }
   557     case Bytecodes::_jsr:
   558       assert(bcs->is_wide()==false, "sanity check");
   559       (*jmpFct)(this, bcs->dest(), data);
   563       break;
   564     case Bytecodes::_jsr_w:
   565       (*jmpFct)(this, bcs->dest_w(), data);
   566       break;
   567     case Bytecodes::_wide:
   568       ShouldNotReachHere();
   569       return true;
   570       break;
   571     case Bytecodes::_athrow:
   572     case Bytecodes::_ireturn:
   573     case Bytecodes::_lreturn:
   574     case Bytecodes::_freturn:
   575     case Bytecodes::_dreturn:
   576     case Bytecodes::_areturn:
   577     case Bytecodes::_return:
   578     case Bytecodes::_ret:
   579       break;
   580     default:
   581       return true;
   582   }
   583   return false;
   584 }
   586 /* Requires "pc" to be the head of a basic block; returns that basic
   587    block. */
   588 BasicBlock *GenerateOopMap::get_basic_block_at(int bci) const {
   589   BasicBlock* bb = get_basic_block_containing(bci);
   590   assert(bb->_bci == bci, "should have found BB");
   591   return bb;
   592 }
   594 // Requires "pc" to be the start of an instruction; returns the basic
   595 //   block containing that instruction. */
   596 BasicBlock  *GenerateOopMap::get_basic_block_containing(int bci) const {
   597   BasicBlock *bbs = _basic_blocks;
   598   int lo = 0, hi = _bb_count - 1;
   600   while (lo <= hi) {
   601     int m = (lo + hi) / 2;
   602     int mbci = bbs[m]._bci;
   603     int nbci;
   605     if ( m == _bb_count-1) {
   606       assert( bci >= mbci && bci < method()->code_size(), "sanity check failed");
   607       return bbs+m;
   608     } else {
   609       nbci = bbs[m+1]._bci;
   610     }
   612     if ( mbci <= bci && bci < nbci) {
   613       return bbs+m;
   614     } else if (mbci < bci) {
   615       lo = m + 1;
   616     } else {
   617       assert(mbci > bci, "sanity check");
   618       hi = m - 1;
   619     }
   620   }
   622   fatal("should have found BB");
   623   return NULL;
   624 }
   626 void GenerateOopMap::restore_state(BasicBlock *bb)
   627 {
   628   memcpy(_state, bb->_state, _state_len*sizeof(CellTypeState));
   629   _stack_top = bb->_stack_top;
   630   _monitor_top = bb->_monitor_top;
   631 }
   633 int GenerateOopMap::next_bb_start_pc(BasicBlock *bb) {
   634  int bbNum = bb - _basic_blocks + 1;
   635  if (bbNum == _bb_count)
   636     return method()->code_size();
   638  return _basic_blocks[bbNum]._bci;
   639 }
   641 //
   642 // CellType handling methods
   643 //
   645 void GenerateOopMap::init_state() {
   646   _state_len     = _max_locals + _max_stack + _max_monitors;
   647   _state         = NEW_RESOURCE_ARRAY(CellTypeState, _state_len);
   648   memset(_state, 0, _state_len * sizeof(CellTypeState));
   649   _state_vec_buf = NEW_RESOURCE_ARRAY(char, MAX3(_max_locals, _max_stack, _max_monitors) + 1/*for null terminator char */);
   650 }
   652 void GenerateOopMap::make_context_uninitialized() {
   653   CellTypeState* vs = vars();
   655   for (int i = 0; i < _max_locals; i++)
   656       vs[i] = CellTypeState::uninit;
   658   _stack_top = 0;
   659   _monitor_top = 0;
   660 }
   662 int GenerateOopMap::methodsig_to_effect(Symbol* signature, bool is_static, CellTypeState* effect) {
   663   ComputeEntryStack ces(signature);
   664   return ces.compute_for_parameters(is_static, effect);
   665 }
   667 // Return result of merging cts1 and cts2.
   668 CellTypeState CellTypeState::merge(CellTypeState cts, int slot) const {
   669   CellTypeState result;
   671   assert(!is_bottom() && !cts.is_bottom(),
   672          "merge of bottom values is handled elsewhere");
   674   result._state = _state | cts._state;
   676   // If the top bit is set, we don't need to do any more work.
   677   if (!result.is_info_top()) {
   678     assert((result.can_be_address() || result.can_be_reference()),
   679            "only addresses and references have non-top info");
   681     if (!equal(cts)) {
   682       // The two values being merged are different.  Raise to top.
   683       if (result.is_reference()) {
   684         result = CellTypeState::make_slot_ref(slot);
   685       } else {
   686         result._state |= info_conflict;
   687       }
   688     }
   689   }
   690   assert(result.is_valid_state(), "checking that CTS merge maintains legal state");
   692   return result;
   693 }
   695 // Merge the variable state for locals and stack from cts into bbts.
   696 bool GenerateOopMap::merge_local_state_vectors(CellTypeState* cts,
   697                                                CellTypeState* bbts) {
   698   int i;
   699   int len = _max_locals + _stack_top;
   700   bool change = false;
   702   for (i = len - 1; i >= 0; i--) {
   703     CellTypeState v = cts[i].merge(bbts[i], i);
   704     change = change || !v.equal(bbts[i]);
   705     bbts[i] = v;
   706   }
   708   return change;
   709 }
   711 // Merge the monitor stack state from cts into bbts.
   712 bool GenerateOopMap::merge_monitor_state_vectors(CellTypeState* cts,
   713                                                  CellTypeState* bbts) {
   714   bool change = false;
   715   if (_max_monitors > 0 && _monitor_top != bad_monitors) {
   716     // If there are no monitors in the program, or there has been
   717     // a monitor matching error before this point in the program,
   718     // then we do not merge in the monitor state.
   720     int base = _max_locals + _max_stack;
   721     int len = base + _monitor_top;
   722     for (int i = len - 1; i >= base; i--) {
   723       CellTypeState v = cts[i].merge(bbts[i], i);
   725       // Can we prove that, when there has been a change, it will already
   726       // have been detected at this point?  That would make this equal
   727       // check here unnecessary.
   728       change = change || !v.equal(bbts[i]);
   729       bbts[i] = v;
   730     }
   731   }
   733   return change;
   734 }
   736 void GenerateOopMap::copy_state(CellTypeState *dst, CellTypeState *src) {
   737   int len = _max_locals + _stack_top;
   738   for (int i = 0; i < len; i++) {
   739     if (src[i].is_nonlock_reference()) {
   740       dst[i] = CellTypeState::make_slot_ref(i);
   741     } else {
   742       dst[i] = src[i];
   743     }
   744   }
   745   if (_max_monitors > 0 && _monitor_top != bad_monitors) {
   746     int base = _max_locals + _max_stack;
   747     len = base + _monitor_top;
   748     for (int i = base; i < len; i++) {
   749       dst[i] = src[i];
   750     }
   751   }
   752 }
   755 // Merge the states for the current block and the next.  As long as a
   756 // block is reachable the locals and stack must be merged.  If the
   757 // stack heights don't match then this is a verification error and
   758 // it's impossible to interpret the code.  Simultaneously monitor
   759 // states are being check to see if they nest statically.  If monitor
   760 // depths match up then their states are merged.  Otherwise the
   761 // mismatch is simply recorded and interpretation continues since
   762 // monitor matching is purely informational and doesn't say anything
   763 // about the correctness of the code.
   764 void GenerateOopMap::merge_state_into_bb(BasicBlock *bb) {
   765   assert(bb->is_alive(), "merging state into a dead basicblock");
   767   if (_stack_top == bb->_stack_top) {
   768     // always merge local state even if monitors don't match.
   769     if (merge_local_state_vectors(_state, bb->_state)) {
   770       bb->set_changed(true);
   771     }
   772     if (_monitor_top == bb->_monitor_top) {
   773       // monitors still match so continue merging monitor states.
   774       if (merge_monitor_state_vectors(_state, bb->_state)) {
   775         bb->set_changed(true);
   776       }
   777     } else {
   778       if (TraceMonitorMismatch) {
   779         report_monitor_mismatch("monitor stack height merge conflict");
   780       }
   781       // When the monitor stacks are not matched, we set _monitor_top to
   782       // bad_monitors.  This signals that, from here on, the monitor stack cannot
   783       // be trusted.  In particular, monitorexit bytecodes may throw
   784       // exceptions.  We mark this block as changed so that the change
   785       // propagates properly.
   786       bb->_monitor_top = bad_monitors;
   787       bb->set_changed(true);
   788       _monitor_safe = false;
   789     }
   790   } else if (!bb->is_reachable()) {
   791     // First time we look at this  BB
   792     copy_state(bb->_state, _state);
   793     bb->_stack_top = _stack_top;
   794     bb->_monitor_top = _monitor_top;
   795     bb->set_changed(true);
   796   } else {
   797     verify_error("stack height conflict: %d vs. %d",  _stack_top, bb->_stack_top);
   798   }
   799 }
   801 void GenerateOopMap::merge_state(GenerateOopMap *gom, int bci, int* data) {
   802    gom->merge_state_into_bb(gom->get_basic_block_at(bci));
   803 }
   805 void GenerateOopMap::set_var(int localNo, CellTypeState cts) {
   806   assert(cts.is_reference() || cts.is_value() || cts.is_address(),
   807          "wrong celltypestate");
   808   if (localNo < 0 || localNo > _max_locals) {
   809     verify_error("variable write error: r%d", localNo);
   810     return;
   811   }
   812   vars()[localNo] = cts;
   813 }
   815 CellTypeState GenerateOopMap::get_var(int localNo) {
   816   assert(localNo < _max_locals + _nof_refval_conflicts, "variable read error");
   817   if (localNo < 0 || localNo > _max_locals) {
   818     verify_error("variable read error: r%d", localNo);
   819     return valCTS; // just to pick something;
   820   }
   821   return vars()[localNo];
   822 }
   824 CellTypeState GenerateOopMap::pop() {
   825   if ( _stack_top <= 0) {
   826     verify_error("stack underflow");
   827     return valCTS; // just to pick something
   828   }
   829   return  stack()[--_stack_top];
   830 }
   832 void GenerateOopMap::push(CellTypeState cts) {
   833   if ( _stack_top >= _max_stack) {
   834     verify_error("stack overflow");
   835     return;
   836   }
   837   stack()[_stack_top++] = cts;
   838 }
   840 CellTypeState GenerateOopMap::monitor_pop() {
   841   assert(_monitor_top != bad_monitors, "monitor_pop called on error monitor stack");
   842   if (_monitor_top == 0) {
   843     // We have detected a pop of an empty monitor stack.
   844     _monitor_safe = false;
   845      _monitor_top = bad_monitors;
   847     if (TraceMonitorMismatch) {
   848       report_monitor_mismatch("monitor stack underflow");
   849     }
   850     return CellTypeState::ref; // just to keep the analysis going.
   851   }
   852   return  monitors()[--_monitor_top];
   853 }
   855 void GenerateOopMap::monitor_push(CellTypeState cts) {
   856   assert(_monitor_top != bad_monitors, "monitor_push called on error monitor stack");
   857   if (_monitor_top >= _max_monitors) {
   858     // Some monitorenter is being executed more than once.
   859     // This means that the monitor stack cannot be simulated.
   860     _monitor_safe = false;
   861     _monitor_top = bad_monitors;
   863     if (TraceMonitorMismatch) {
   864       report_monitor_mismatch("monitor stack overflow");
   865     }
   866     return;
   867   }
   868   monitors()[_monitor_top++] = cts;
   869 }
   871 //
   872 // Interpretation handling methods
   873 //
   875 void GenerateOopMap::do_interpretation()
   876 {
   877   // "i" is just for debugging, so we can detect cases where this loop is
   878   // iterated more than once.
   879   int i = 0;
   880   do {
   881 #ifndef PRODUCT
   882     if (TraceNewOopMapGeneration) {
   883       tty->print("\n\nIteration #%d of do_interpretation loop, method:\n", i);
   884       method()->print_name(tty);
   885       tty->print("\n\n");
   886     }
   887 #endif
   888     _conflict = false;
   889     _monitor_safe = true;
   890     // init_state is now called from init_basic_blocks.  The length of a
   891     // state vector cannot be determined until we have made a pass through
   892     // the bytecodes counting the possible monitor entries.
   893     if (!_got_error) init_basic_blocks();
   894     if (!_got_error) setup_method_entry_state();
   895     if (!_got_error) interp_all();
   896     if (!_got_error) rewrite_refval_conflicts();
   897     i++;
   898   } while (_conflict && !_got_error);
   899 }
   901 void GenerateOopMap::init_basic_blocks() {
   902   // Note: Could consider reserving only the needed space for each BB's state
   903   // (entry stack may not be of maximal height for every basic block).
   904   // But cumbersome since we don't know the stack heights yet.  (Nor the
   905   // monitor stack heights...)
   907   _basic_blocks = NEW_RESOURCE_ARRAY(BasicBlock, _bb_count);
   909   // Make a pass through the bytecodes.  Count the number of monitorenters.
   910   // This can be used an upper bound on the monitor stack depth in programs
   911   // which obey stack discipline with their monitor usage.  Initialize the
   912   // known information about basic blocks.
   913   BytecodeStream j(_method);
   914   Bytecodes::Code bytecode;
   916   int bbNo = 0;
   917   int monitor_count = 0;
   918   int prev_bci = -1;
   919   while( (bytecode = j.next()) >= 0) {
   920     if (j.code() == Bytecodes::_monitorenter) {
   921       monitor_count++;
   922     }
   924     int bci = j.bci();
   925     if (is_bb_header(bci)) {
   926       // Initialize the basicblock structure
   927       BasicBlock *bb   = _basic_blocks + bbNo;
   928       bb->_bci         = bci;
   929       bb->_max_locals  = _max_locals;
   930       bb->_max_stack   = _max_stack;
   931       bb->set_changed(false);
   932       bb->_stack_top   = BasicBlock::_dead_basic_block; // Initialize all basicblocks are dead.
   933       bb->_monitor_top = bad_monitors;
   935       if (bbNo > 0) {
   936         _basic_blocks[bbNo - 1]._end_bci = prev_bci;
   937       }
   939       bbNo++;
   940     }
   941     // Remember prevous bci.
   942     prev_bci = bci;
   943   }
   944   // Set
   945   _basic_blocks[bbNo-1]._end_bci = prev_bci;
   948   // Check that the correct number of basicblocks was found
   949   if (bbNo !=_bb_count) {
   950     if (bbNo < _bb_count) {
   951       verify_error("jump into the middle of instruction?");
   952       return;
   953     } else {
   954       verify_error("extra basic blocks - should not happen?");
   955       return;
   956     }
   957   }
   959   _max_monitors = monitor_count;
   961   // Now that we have a bound on the depth of the monitor stack, we can
   962   // initialize the CellTypeState-related information.
   963   init_state();
   965   // We allocate space for all state-vectors for all basicblocks in one huge
   966   // chunk.  Then in the next part of the code, we set a pointer in each
   967   // _basic_block that points to each piece.
   969   // The product of bbNo and _state_len can get large if there are lots of
   970   // basic blocks and stack/locals/monitors.  Need to check to make sure
   971   // we don't overflow the capacity of a pointer.
   972   if ((unsigned)bbNo > UINTPTR_MAX / sizeof(CellTypeState) / _state_len) {
   973     report_error("The amount of memory required to analyze this method "
   974                  "exceeds addressable range");
   975     return;
   976   }
   978   CellTypeState *basicBlockState =
   979       NEW_RESOURCE_ARRAY(CellTypeState, bbNo * _state_len);
   980   memset(basicBlockState, 0, bbNo * _state_len * sizeof(CellTypeState));
   982   // Make a pass over the basicblocks and assign their state vectors.
   983   for (int blockNum=0; blockNum < bbNo; blockNum++) {
   984     BasicBlock *bb = _basic_blocks + blockNum;
   985     bb->_state = basicBlockState + blockNum * _state_len;
   987 #ifdef ASSERT
   988     if (blockNum + 1 < bbNo) {
   989       address bcp = _method->bcp_from(bb->_end_bci);
   990       int bc_len = Bytecodes::java_length_at(_method(), bcp);
   991       assert(bb->_end_bci + bc_len == bb[1]._bci, "unmatched bci info in basicblock");
   992     }
   993 #endif
   994   }
   995 #ifdef ASSERT
   996   { BasicBlock *bb = &_basic_blocks[bbNo-1];
   997     address bcp = _method->bcp_from(bb->_end_bci);
   998     int bc_len = Bytecodes::java_length_at(_method(), bcp);
   999     assert(bb->_end_bci + bc_len == _method->code_size(), "wrong end bci");
  1001 #endif
  1003   // Mark all alive blocks
  1004   mark_reachable_code();
  1007 void GenerateOopMap::setup_method_entry_state() {
  1009     // Initialize all locals to 'uninit' and set stack-height to 0
  1010     make_context_uninitialized();
  1012     // Initialize CellState type of arguments
  1013     methodsig_to_effect(method()->signature(), method()->is_static(), vars());
  1015     // If some references must be pre-assigned to null, then set that up
  1016     initialize_vars();
  1018     // This is the start state
  1019     merge_state_into_bb(&_basic_blocks[0]);
  1021     assert(_basic_blocks[0].changed(), "we are not getting off the ground");
  1024 // The instruction at bci is changing size by "delta".  Update the basic blocks.
  1025 void GenerateOopMap::update_basic_blocks(int bci, int delta,
  1026                                          int new_method_size) {
  1027   assert(new_method_size >= method()->code_size() + delta,
  1028          "new method size is too small");
  1030   BitMap::bm_word_t* new_bb_hdr_bits =
  1031     NEW_RESOURCE_ARRAY(BitMap::bm_word_t,
  1032                        BitMap::word_align_up(new_method_size));
  1033   _bb_hdr_bits.set_map(new_bb_hdr_bits);
  1034   _bb_hdr_bits.set_size(new_method_size);
  1035   _bb_hdr_bits.clear();
  1038   for(int k = 0; k < _bb_count; k++) {
  1039     if (_basic_blocks[k]._bci > bci) {
  1040       _basic_blocks[k]._bci     += delta;
  1041       _basic_blocks[k]._end_bci += delta;
  1043     _bb_hdr_bits.at_put(_basic_blocks[k]._bci, true);
  1047 //
  1048 // Initvars handling
  1049 //
  1051 void GenerateOopMap::initialize_vars() {
  1052   for (int k = 0; k < _init_vars->length(); k++)
  1053     _state[_init_vars->at(k)] = CellTypeState::make_slot_ref(k);
  1056 void GenerateOopMap::add_to_ref_init_set(int localNo) {
  1058   if (TraceNewOopMapGeneration)
  1059     tty->print_cr("Added init vars: %d", localNo);
  1061   // Is it already in the set?
  1062   if (_init_vars->contains(localNo) )
  1063     return;
  1065    _init_vars->append(localNo);
  1068 //
  1069 // Interpreration code
  1070 //
  1072 void GenerateOopMap::interp_all() {
  1073   bool change = true;
  1075   while (change && !_got_error) {
  1076     change = false;
  1077     for (int i = 0; i < _bb_count && !_got_error; i++) {
  1078       BasicBlock *bb = &_basic_blocks[i];
  1079       if (bb->changed()) {
  1080          if (_got_error) return;
  1081          change = true;
  1082          bb->set_changed(false);
  1083          interp_bb(bb);
  1089 void GenerateOopMap::interp_bb(BasicBlock *bb) {
  1091   // We do not want to do anything in case the basic-block has not been initialized. This
  1092   // will happen in the case where there is dead-code hang around in a method.
  1093   assert(bb->is_reachable(), "should be reachable or deadcode exist");
  1094   restore_state(bb);
  1096   BytecodeStream itr(_method);
  1098   // Set iterator interval to be the current basicblock
  1099   int lim_bci = next_bb_start_pc(bb);
  1100   itr.set_interval(bb->_bci, lim_bci);
  1101   assert(lim_bci != bb->_bci, "must be at least one instruction in a basicblock");
  1102   itr.next(); // read first instruction
  1104   // Iterates through all bytecodes except the last in a basic block.
  1105   // We handle the last one special, since there is controlflow change.
  1106   while(itr.next_bci() < lim_bci && !_got_error) {
  1107     if (_has_exceptions || _monitor_top != 0) {
  1108       // We do not need to interpret the results of exceptional
  1109       // continuation from this instruction when the method has no
  1110       // exception handlers and the monitor stack is currently
  1111       // empty.
  1112       do_exception_edge(&itr);
  1114     interp1(&itr);
  1115     itr.next();
  1118   // Handle last instruction.
  1119   if (!_got_error) {
  1120     assert(itr.next_bci() == lim_bci, "must point to end");
  1121     if (_has_exceptions || _monitor_top != 0) {
  1122       do_exception_edge(&itr);
  1124     interp1(&itr);
  1126     bool fall_through = jump_targets_do(&itr, GenerateOopMap::merge_state, NULL);
  1127     if (_got_error)  return;
  1129     if (itr.code() == Bytecodes::_ret) {
  1130       assert(!fall_through, "cannot be set if ret instruction");
  1131       // Automatically handles 'wide' ret indicies
  1132       ret_jump_targets_do(&itr, GenerateOopMap::merge_state, itr.get_index(), NULL);
  1133     } else if (fall_through) {
  1134      // Hit end of BB, but the instr. was a fall-through instruction,
  1135      // so perform transition as if the BB ended in a "jump".
  1136      if (lim_bci != bb[1]._bci) {
  1137        verify_error("bytecodes fell through last instruction");
  1138        return;
  1140      merge_state_into_bb(bb + 1);
  1145 void GenerateOopMap::do_exception_edge(BytecodeStream* itr) {
  1146   // Only check exception edge, if bytecode can trap
  1147   if (!Bytecodes::can_trap(itr->code())) return;
  1148   switch (itr->code()) {
  1149     case Bytecodes::_aload_0:
  1150       // These bytecodes can trap for rewriting.  We need to assume that
  1151       // they do not throw exceptions to make the monitor analysis work.
  1152       return;
  1154     case Bytecodes::_ireturn:
  1155     case Bytecodes::_lreturn:
  1156     case Bytecodes::_freturn:
  1157     case Bytecodes::_dreturn:
  1158     case Bytecodes::_areturn:
  1159     case Bytecodes::_return:
  1160       // If the monitor stack height is not zero when we leave the method,
  1161       // then we are either exiting with a non-empty stack or we have
  1162       // found monitor trouble earlier in our analysis.  In either case,
  1163       // assume an exception could be taken here.
  1164       if (_monitor_top == 0) {
  1165         return;
  1167       break;
  1169     case Bytecodes::_monitorexit:
  1170       // If the monitor stack height is bad_monitors, then we have detected a
  1171       // monitor matching problem earlier in the analysis.  If the
  1172       // monitor stack height is 0, we are about to pop a monitor
  1173       // off of an empty stack.  In either case, the bytecode
  1174       // could throw an exception.
  1175       if (_monitor_top != bad_monitors && _monitor_top != 0) {
  1176         return;
  1178       break;
  1181   if (_has_exceptions) {
  1182     int bci = itr->bci();
  1183     ExceptionTable exct(method());
  1184     for(int i = 0; i< exct.length(); i++) {
  1185       int start_pc   = exct.start_pc(i);
  1186       int end_pc     = exct.end_pc(i);
  1187       int handler_pc = exct.handler_pc(i);
  1188       int catch_type = exct.catch_type_index(i);
  1190       if (start_pc <= bci && bci < end_pc) {
  1191         BasicBlock *excBB = get_basic_block_at(handler_pc);
  1192         CellTypeState *excStk = excBB->stack();
  1193         CellTypeState *cOpStck = stack();
  1194         CellTypeState cOpStck_0 = cOpStck[0];
  1195         int cOpStackTop = _stack_top;
  1197         // Exception stacks are always the same.
  1198         assert(method()->max_stack() > 0, "sanity check");
  1200         // We remembered the size and first element of "cOpStck"
  1201         // above; now we temporarily set them to the appropriate
  1202         // values for an exception handler. */
  1203         cOpStck[0] = CellTypeState::make_slot_ref(_max_locals);
  1204         _stack_top = 1;
  1206         merge_state_into_bb(excBB);
  1208         // Now undo the temporary change.
  1209         cOpStck[0] = cOpStck_0;
  1210         _stack_top = cOpStackTop;
  1212         // If this is a "catch all" handler, then we do not need to
  1213         // consider any additional handlers.
  1214         if (catch_type == 0) {
  1215           return;
  1221   // It is possible that none of the exception handlers would have caught
  1222   // the exception.  In this case, we will exit the method.  We must
  1223   // ensure that the monitor stack is empty in this case.
  1224   if (_monitor_top == 0) {
  1225     return;
  1228   // We pessimistically assume that this exception can escape the
  1229   // method. (It is possible that it will always be caught, but
  1230   // we don't care to analyse the types of the catch clauses.)
  1232   // We don't set _monitor_top to bad_monitors because there are no successors
  1233   // to this exceptional exit.
  1235   if (TraceMonitorMismatch && _monitor_safe) {
  1236     // We check _monitor_safe so that we only report the first mismatched
  1237     // exceptional exit.
  1238     report_monitor_mismatch("non-empty monitor stack at exceptional exit");
  1240   _monitor_safe = false;
  1244 void GenerateOopMap::report_monitor_mismatch(const char *msg) {
  1245 #ifndef PRODUCT
  1246   tty->print("    Monitor mismatch in method ");
  1247   method()->print_short_name(tty);
  1248   tty->print_cr(": %s", msg);
  1249 #endif
  1252 void GenerateOopMap::print_states(outputStream *os,
  1253                                   CellTypeState* vec, int num) {
  1254   for (int i = 0; i < num; i++) {
  1255     vec[i].print(tty);
  1259 // Print the state values at the current bytecode.
  1260 void GenerateOopMap::print_current_state(outputStream   *os,
  1261                                          BytecodeStream *currentBC,
  1262                                          bool            detailed) {
  1264   if (detailed) {
  1265     os->print("     %4d vars     = ", currentBC->bci());
  1266     print_states(os, vars(), _max_locals);
  1267     os->print("    %s", Bytecodes::name(currentBC->code()));
  1268     switch(currentBC->code()) {
  1269       case Bytecodes::_invokevirtual:
  1270       case Bytecodes::_invokespecial:
  1271       case Bytecodes::_invokestatic:
  1272       case Bytecodes::_invokedynamic:
  1273       case Bytecodes::_invokeinterface:
  1274         int idx = currentBC->has_index_u4() ? currentBC->get_index_u4() : currentBC->get_index_u2_cpcache();
  1275         ConstantPool* cp      = method()->constants();
  1276         int nameAndTypeIdx    = cp->name_and_type_ref_index_at(idx);
  1277         int signatureIdx      = cp->signature_ref_index_at(nameAndTypeIdx);
  1278         Symbol* signature     = cp->symbol_at(signatureIdx);
  1279         os->print("%s", signature->as_C_string());
  1281     os->cr();
  1282     os->print("          stack    = ");
  1283     print_states(os, stack(), _stack_top);
  1284     os->cr();
  1285     if (_monitor_top != bad_monitors) {
  1286       os->print("          monitors = ");
  1287       print_states(os, monitors(), _monitor_top);
  1288     } else {
  1289       os->print("          [bad monitor stack]");
  1291     os->cr();
  1292   } else {
  1293     os->print("    %4d  vars = '%s' ", currentBC->bci(),  state_vec_to_string(vars(), _max_locals));
  1294     os->print("     stack = '%s' ", state_vec_to_string(stack(), _stack_top));
  1295     if (_monitor_top != bad_monitors) {
  1296       os->print("  monitors = '%s'  \t%s", state_vec_to_string(monitors(), _monitor_top), Bytecodes::name(currentBC->code()));
  1297     } else {
  1298       os->print("  [bad monitor stack]");
  1300     switch(currentBC->code()) {
  1301       case Bytecodes::_invokevirtual:
  1302       case Bytecodes::_invokespecial:
  1303       case Bytecodes::_invokestatic:
  1304       case Bytecodes::_invokedynamic:
  1305       case Bytecodes::_invokeinterface:
  1306         int idx = currentBC->has_index_u4() ? currentBC->get_index_u4() : currentBC->get_index_u2_cpcache();
  1307         ConstantPool* cp      = method()->constants();
  1308         int nameAndTypeIdx    = cp->name_and_type_ref_index_at(idx);
  1309         int signatureIdx      = cp->signature_ref_index_at(nameAndTypeIdx);
  1310         Symbol* signature     = cp->symbol_at(signatureIdx);
  1311         os->print("%s", signature->as_C_string());
  1313     os->cr();
  1317 // Sets the current state to be the state after executing the
  1318 // current instruction, starting in the current state.
  1319 void GenerateOopMap::interp1(BytecodeStream *itr) {
  1320   if (TraceNewOopMapGeneration) {
  1321     print_current_state(tty, itr, TraceNewOopMapGenerationDetailed);
  1324   // Should we report the results? Result is reported *before* the instruction at the current bci is executed.
  1325   // However, not for calls. For calls we do not want to include the arguments, so we postpone the reporting until
  1326   // they have been popped (in method ppl).
  1327   if (_report_result == true) {
  1328     switch(itr->code()) {
  1329       case Bytecodes::_invokevirtual:
  1330       case Bytecodes::_invokespecial:
  1331       case Bytecodes::_invokestatic:
  1332       case Bytecodes::_invokedynamic:
  1333       case Bytecodes::_invokeinterface:
  1334         _itr_send = itr;
  1335         _report_result_for_send = true;
  1336         break;
  1337       default:
  1338        fill_stackmap_for_opcodes(itr, vars(), stack(), _stack_top);
  1339        break;
  1343   // abstract interpretation of current opcode
  1344   switch(itr->code()) {
  1345     case Bytecodes::_nop:                                           break;
  1346     case Bytecodes::_goto:                                          break;
  1347     case Bytecodes::_goto_w:                                        break;
  1348     case Bytecodes::_iinc:                                          break;
  1349     case Bytecodes::_return:            do_return_monitor_check();
  1350                                         break;
  1352     case Bytecodes::_aconst_null:
  1353     case Bytecodes::_new:               ppush1(CellTypeState::make_line_ref(itr->bci()));
  1354                                         break;
  1356     case Bytecodes::_iconst_m1:
  1357     case Bytecodes::_iconst_0:
  1358     case Bytecodes::_iconst_1:
  1359     case Bytecodes::_iconst_2:
  1360     case Bytecodes::_iconst_3:
  1361     case Bytecodes::_iconst_4:
  1362     case Bytecodes::_iconst_5:
  1363     case Bytecodes::_fconst_0:
  1364     case Bytecodes::_fconst_1:
  1365     case Bytecodes::_fconst_2:
  1366     case Bytecodes::_bipush:
  1367     case Bytecodes::_sipush:            ppush1(valCTS);             break;
  1369     case Bytecodes::_lconst_0:
  1370     case Bytecodes::_lconst_1:
  1371     case Bytecodes::_dconst_0:
  1372     case Bytecodes::_dconst_1:          ppush(vvCTS);               break;
  1374     case Bytecodes::_ldc2_w:            ppush(vvCTS);               break;
  1376     case Bytecodes::_ldc:               // fall through:
  1377     case Bytecodes::_ldc_w:             do_ldc(itr->bci());         break;
  1379     case Bytecodes::_iload:
  1380     case Bytecodes::_fload:             ppload(vCTS, itr->get_index()); break;
  1382     case Bytecodes::_lload:
  1383     case Bytecodes::_dload:             ppload(vvCTS,itr->get_index()); break;
  1385     case Bytecodes::_aload:             ppload(rCTS, itr->get_index()); break;
  1387     case Bytecodes::_iload_0:
  1388     case Bytecodes::_fload_0:           ppload(vCTS, 0);            break;
  1389     case Bytecodes::_iload_1:
  1390     case Bytecodes::_fload_1:           ppload(vCTS, 1);            break;
  1391     case Bytecodes::_iload_2:
  1392     case Bytecodes::_fload_2:           ppload(vCTS, 2);            break;
  1393     case Bytecodes::_iload_3:
  1394     case Bytecodes::_fload_3:           ppload(vCTS, 3);            break;
  1396     case Bytecodes::_lload_0:
  1397     case Bytecodes::_dload_0:           ppload(vvCTS, 0);           break;
  1398     case Bytecodes::_lload_1:
  1399     case Bytecodes::_dload_1:           ppload(vvCTS, 1);           break;
  1400     case Bytecodes::_lload_2:
  1401     case Bytecodes::_dload_2:           ppload(vvCTS, 2);           break;
  1402     case Bytecodes::_lload_3:
  1403     case Bytecodes::_dload_3:           ppload(vvCTS, 3);           break;
  1405     case Bytecodes::_aload_0:           ppload(rCTS, 0);            break;
  1406     case Bytecodes::_aload_1:           ppload(rCTS, 1);            break;
  1407     case Bytecodes::_aload_2:           ppload(rCTS, 2);            break;
  1408     case Bytecodes::_aload_3:           ppload(rCTS, 3);            break;
  1410     case Bytecodes::_iaload:
  1411     case Bytecodes::_faload:
  1412     case Bytecodes::_baload:
  1413     case Bytecodes::_caload:
  1414     case Bytecodes::_saload:            pp(vrCTS, vCTS); break;
  1416     case Bytecodes::_laload:            pp(vrCTS, vvCTS);  break;
  1417     case Bytecodes::_daload:            pp(vrCTS, vvCTS); break;
  1419     case Bytecodes::_aaload:            pp_new_ref(vrCTS, itr->bci()); break;
  1421     case Bytecodes::_istore:
  1422     case Bytecodes::_fstore:            ppstore(vCTS, itr->get_index()); break;
  1424     case Bytecodes::_lstore:
  1425     case Bytecodes::_dstore:            ppstore(vvCTS, itr->get_index()); break;
  1427     case Bytecodes::_astore:            do_astore(itr->get_index());     break;
  1429     case Bytecodes::_istore_0:
  1430     case Bytecodes::_fstore_0:          ppstore(vCTS, 0);           break;
  1431     case Bytecodes::_istore_1:
  1432     case Bytecodes::_fstore_1:          ppstore(vCTS, 1);           break;
  1433     case Bytecodes::_istore_2:
  1434     case Bytecodes::_fstore_2:          ppstore(vCTS, 2);           break;
  1435     case Bytecodes::_istore_3:
  1436     case Bytecodes::_fstore_3:          ppstore(vCTS, 3);           break;
  1438     case Bytecodes::_lstore_0:
  1439     case Bytecodes::_dstore_0:          ppstore(vvCTS, 0);          break;
  1440     case Bytecodes::_lstore_1:
  1441     case Bytecodes::_dstore_1:          ppstore(vvCTS, 1);          break;
  1442     case Bytecodes::_lstore_2:
  1443     case Bytecodes::_dstore_2:          ppstore(vvCTS, 2);          break;
  1444     case Bytecodes::_lstore_3:
  1445     case Bytecodes::_dstore_3:          ppstore(vvCTS, 3);          break;
  1447     case Bytecodes::_astore_0:          do_astore(0);               break;
  1448     case Bytecodes::_astore_1:          do_astore(1);               break;
  1449     case Bytecodes::_astore_2:          do_astore(2);               break;
  1450     case Bytecodes::_astore_3:          do_astore(3);               break;
  1452     case Bytecodes::_iastore:
  1453     case Bytecodes::_fastore:
  1454     case Bytecodes::_bastore:
  1455     case Bytecodes::_castore:
  1456     case Bytecodes::_sastore:           ppop(vvrCTS);               break;
  1457     case Bytecodes::_lastore:
  1458     case Bytecodes::_dastore:           ppop(vvvrCTS);              break;
  1459     case Bytecodes::_aastore:           ppop(rvrCTS);               break;
  1461     case Bytecodes::_pop:               ppop_any(1);                break;
  1462     case Bytecodes::_pop2:              ppop_any(2);                break;
  1464     case Bytecodes::_dup:               ppdupswap(1, "11");         break;
  1465     case Bytecodes::_dup_x1:            ppdupswap(2, "121");        break;
  1466     case Bytecodes::_dup_x2:            ppdupswap(3, "1321");       break;
  1467     case Bytecodes::_dup2:              ppdupswap(2, "2121");       break;
  1468     case Bytecodes::_dup2_x1:           ppdupswap(3, "21321");      break;
  1469     case Bytecodes::_dup2_x2:           ppdupswap(4, "214321");     break;
  1470     case Bytecodes::_swap:              ppdupswap(2, "12");         break;
  1472     case Bytecodes::_iadd:
  1473     case Bytecodes::_fadd:
  1474     case Bytecodes::_isub:
  1475     case Bytecodes::_fsub:
  1476     case Bytecodes::_imul:
  1477     case Bytecodes::_fmul:
  1478     case Bytecodes::_idiv:
  1479     case Bytecodes::_fdiv:
  1480     case Bytecodes::_irem:
  1481     case Bytecodes::_frem:
  1482     case Bytecodes::_ishl:
  1483     case Bytecodes::_ishr:
  1484     case Bytecodes::_iushr:
  1485     case Bytecodes::_iand:
  1486     case Bytecodes::_ior:
  1487     case Bytecodes::_ixor:
  1488     case Bytecodes::_l2f:
  1489     case Bytecodes::_l2i:
  1490     case Bytecodes::_d2f:
  1491     case Bytecodes::_d2i:
  1492     case Bytecodes::_fcmpl:
  1493     case Bytecodes::_fcmpg:             pp(vvCTS, vCTS); break;
  1495     case Bytecodes::_ladd:
  1496     case Bytecodes::_dadd:
  1497     case Bytecodes::_lsub:
  1498     case Bytecodes::_dsub:
  1499     case Bytecodes::_lmul:
  1500     case Bytecodes::_dmul:
  1501     case Bytecodes::_ldiv:
  1502     case Bytecodes::_ddiv:
  1503     case Bytecodes::_lrem:
  1504     case Bytecodes::_drem:
  1505     case Bytecodes::_land:
  1506     case Bytecodes::_lor:
  1507     case Bytecodes::_lxor:              pp(vvvvCTS, vvCTS); break;
  1509     case Bytecodes::_ineg:
  1510     case Bytecodes::_fneg:
  1511     case Bytecodes::_i2f:
  1512     case Bytecodes::_f2i:
  1513     case Bytecodes::_i2c:
  1514     case Bytecodes::_i2s:
  1515     case Bytecodes::_i2b:               pp(vCTS, vCTS); break;
  1517     case Bytecodes::_lneg:
  1518     case Bytecodes::_dneg:
  1519     case Bytecodes::_l2d:
  1520     case Bytecodes::_d2l:               pp(vvCTS, vvCTS); break;
  1522     case Bytecodes::_lshl:
  1523     case Bytecodes::_lshr:
  1524     case Bytecodes::_lushr:             pp(vvvCTS, vvCTS); break;
  1526     case Bytecodes::_i2l:
  1527     case Bytecodes::_i2d:
  1528     case Bytecodes::_f2l:
  1529     case Bytecodes::_f2d:               pp(vCTS, vvCTS); break;
  1531     case Bytecodes::_lcmp:              pp(vvvvCTS, vCTS); break;
  1532     case Bytecodes::_dcmpl:
  1533     case Bytecodes::_dcmpg:             pp(vvvvCTS, vCTS); break;
  1535     case Bytecodes::_ifeq:
  1536     case Bytecodes::_ifne:
  1537     case Bytecodes::_iflt:
  1538     case Bytecodes::_ifge:
  1539     case Bytecodes::_ifgt:
  1540     case Bytecodes::_ifle:
  1541     case Bytecodes::_tableswitch:       ppop1(valCTS);
  1542                                         break;
  1543     case Bytecodes::_ireturn:
  1544     case Bytecodes::_freturn:           do_return_monitor_check();
  1545                                         ppop1(valCTS);
  1546                                         break;
  1547     case Bytecodes::_if_icmpeq:
  1548     case Bytecodes::_if_icmpne:
  1549     case Bytecodes::_if_icmplt:
  1550     case Bytecodes::_if_icmpge:
  1551     case Bytecodes::_if_icmpgt:
  1552     case Bytecodes::_if_icmple:         ppop(vvCTS);
  1553                                         break;
  1555     case Bytecodes::_lreturn:           do_return_monitor_check();
  1556                                         ppop(vvCTS);
  1557                                         break;
  1559     case Bytecodes::_dreturn:           do_return_monitor_check();
  1560                                         ppop(vvCTS);
  1561                                         break;
  1563     case Bytecodes::_if_acmpeq:
  1564     case Bytecodes::_if_acmpne:         ppop(rrCTS);                 break;
  1566     case Bytecodes::_jsr:               do_jsr(itr->dest());         break;
  1567     case Bytecodes::_jsr_w:             do_jsr(itr->dest_w());       break;
  1569     case Bytecodes::_getstatic:         do_field(true,  true,  itr->get_index_u2_cpcache(), itr->bci()); break;
  1570     case Bytecodes::_putstatic:         do_field(false, true,  itr->get_index_u2_cpcache(), itr->bci()); break;
  1571     case Bytecodes::_getfield:          do_field(true,  false, itr->get_index_u2_cpcache(), itr->bci()); break;
  1572     case Bytecodes::_putfield:          do_field(false, false, itr->get_index_u2_cpcache(), itr->bci()); break;
  1574     case Bytecodes::_invokevirtual:
  1575     case Bytecodes::_invokespecial:     do_method(false, false, itr->get_index_u2_cpcache(), itr->bci()); break;
  1576     case Bytecodes::_invokestatic:      do_method(true,  false, itr->get_index_u2_cpcache(), itr->bci()); break;
  1577     case Bytecodes::_invokedynamic:     do_method(true,  false, itr->get_index_u4(),         itr->bci()); break;
  1578     case Bytecodes::_invokeinterface:   do_method(false, true,  itr->get_index_u2_cpcache(), itr->bci()); break;
  1579     case Bytecodes::_newarray:
  1580     case Bytecodes::_anewarray:         pp_new_ref(vCTS, itr->bci()); break;
  1581     case Bytecodes::_checkcast:         do_checkcast(); break;
  1582     case Bytecodes::_arraylength:
  1583     case Bytecodes::_instanceof:        pp(rCTS, vCTS); break;
  1584     case Bytecodes::_monitorenter:      do_monitorenter(itr->bci()); break;
  1585     case Bytecodes::_monitorexit:       do_monitorexit(itr->bci()); break;
  1587     case Bytecodes::_athrow:            // handled by do_exception_edge() BUT ...
  1588                                         // vlh(apple): do_exception_edge() does not get
  1589                                         // called if method has no exception handlers
  1590                                         if ((!_has_exceptions) && (_monitor_top > 0)) {
  1591                                           _monitor_safe = false;
  1593                                         break;
  1595     case Bytecodes::_areturn:           do_return_monitor_check();
  1596                                         ppop1(refCTS);
  1597                                         break;
  1598     case Bytecodes::_ifnull:
  1599     case Bytecodes::_ifnonnull:         ppop1(refCTS); break;
  1600     case Bytecodes::_multianewarray:    do_multianewarray(*(itr->bcp()+3), itr->bci()); break;
  1602     case Bytecodes::_wide:              fatal("Iterator should skip this bytecode"); break;
  1603     case Bytecodes::_ret:                                           break;
  1605     // Java opcodes
  1606     case Bytecodes::_lookupswitch:      ppop1(valCTS);             break;
  1608     default:
  1609          tty->print("unexpected opcode: %d\n", itr->code());
  1610          ShouldNotReachHere();
  1611     break;
  1615 void GenerateOopMap::check_type(CellTypeState expected, CellTypeState actual) {
  1616   if (!expected.equal_kind(actual)) {
  1617     verify_error("wrong type on stack (found: %c expected: %c)", actual.to_char(), expected.to_char());
  1621 void GenerateOopMap::ppstore(CellTypeState *in, int loc_no) {
  1622   while(!(*in).is_bottom()) {
  1623     CellTypeState expected =*in++;
  1624     CellTypeState actual   = pop();
  1625     check_type(expected, actual);
  1626     assert(loc_no >= 0, "sanity check");
  1627     set_var(loc_no++, actual);
  1631 void GenerateOopMap::ppload(CellTypeState *out, int loc_no) {
  1632   while(!(*out).is_bottom()) {
  1633     CellTypeState out1 = *out++;
  1634     CellTypeState vcts = get_var(loc_no);
  1635     assert(out1.can_be_reference() || out1.can_be_value(),
  1636            "can only load refs. and values.");
  1637     if (out1.is_reference()) {
  1638       assert(loc_no>=0, "sanity check");
  1639       if (!vcts.is_reference()) {
  1640         // We were asked to push a reference, but the type of the
  1641         // variable can be something else
  1642         _conflict = true;
  1643         if (vcts.can_be_uninit()) {
  1644           // It is a ref-uninit conflict (at least). If there are other
  1645           // problems, we'll get them in the next round
  1646           add_to_ref_init_set(loc_no);
  1647           vcts = out1;
  1648         } else {
  1649           // It wasn't a ref-uninit conflict. So must be a
  1650           // ref-val or ref-pc conflict. Split the variable.
  1651           record_refval_conflict(loc_no);
  1652           vcts = out1;
  1654         push(out1); // recover...
  1655       } else {
  1656         push(vcts); // preserve reference.
  1658       // Otherwise it is a conflict, but one that verification would
  1659       // have caught if illegal. In particular, it can't be a topCTS
  1660       // resulting from mergeing two difference pcCTS's since the verifier
  1661       // would have rejected any use of such a merge.
  1662     } else {
  1663       push(out1); // handle val/init conflict
  1665     loc_no++;
  1669 void GenerateOopMap::ppdupswap(int poplen, const char *out) {
  1670   CellTypeState actual[5];
  1671   assert(poplen < 5, "this must be less than length of actual vector");
  1673   // pop all arguments
  1674   for(int i = 0; i < poplen; i++) actual[i] = pop();
  1676   // put them back
  1677   char push_ch = *out++;
  1678   while (push_ch != '\0') {
  1679     int idx = push_ch - '1';
  1680     assert(idx >= 0 && idx < poplen, "wrong arguments");
  1681     push(actual[idx]);
  1682     push_ch = *out++;
  1686 void GenerateOopMap::ppop1(CellTypeState out) {
  1687   CellTypeState actual = pop();
  1688   check_type(out, actual);
  1691 void GenerateOopMap::ppop(CellTypeState *out) {
  1692   while (!(*out).is_bottom()) {
  1693     ppop1(*out++);
  1697 void GenerateOopMap::ppush1(CellTypeState in) {
  1698   assert(in.is_reference() | in.is_value(), "sanity check");
  1699   push(in);
  1702 void GenerateOopMap::ppush(CellTypeState *in) {
  1703   while (!(*in).is_bottom()) {
  1704     ppush1(*in++);
  1708 void GenerateOopMap::pp(CellTypeState *in, CellTypeState *out) {
  1709   ppop(in);
  1710   ppush(out);
  1713 void GenerateOopMap::pp_new_ref(CellTypeState *in, int bci) {
  1714   ppop(in);
  1715   ppush1(CellTypeState::make_line_ref(bci));
  1718 void GenerateOopMap::ppop_any(int poplen) {
  1719   if (_stack_top >= poplen) {
  1720     _stack_top -= poplen;
  1721   } else {
  1722     verify_error("stack underflow");
  1726 // Replace all occurences of the state 'match' with the state 'replace'
  1727 // in our current state vector.
  1728 void GenerateOopMap::replace_all_CTS_matches(CellTypeState match,
  1729                                              CellTypeState replace) {
  1730   int i;
  1731   int len = _max_locals + _stack_top;
  1732   bool change = false;
  1734   for (i = len - 1; i >= 0; i--) {
  1735     if (match.equal(_state[i])) {
  1736       _state[i] = replace;
  1740   if (_monitor_top > 0) {
  1741     int base = _max_locals + _max_stack;
  1742     len = base + _monitor_top;
  1743     for (i = len - 1; i >= base; i--) {
  1744       if (match.equal(_state[i])) {
  1745         _state[i] = replace;
  1751 void GenerateOopMap::do_checkcast() {
  1752   CellTypeState actual = pop();
  1753   check_type(refCTS, actual);
  1754   push(actual);
  1757 void GenerateOopMap::do_monitorenter(int bci) {
  1758   CellTypeState actual = pop();
  1759   if (_monitor_top == bad_monitors) {
  1760     return;
  1763   // Bail out when we get repeated locks on an identical monitor.  This case
  1764   // isn't too hard to handle and can be made to work if supporting nested
  1765   // redundant synchronized statements becomes a priority.
  1766   //
  1767   // See also "Note" in do_monitorexit(), below.
  1768   if (actual.is_lock_reference()) {
  1769     _monitor_top = bad_monitors;
  1770     _monitor_safe = false;
  1772     if (TraceMonitorMismatch) {
  1773       report_monitor_mismatch("nested redundant lock -- bailout...");
  1775     return;
  1778   CellTypeState lock = CellTypeState::make_lock_ref(bci);
  1779   check_type(refCTS, actual);
  1780   if (!actual.is_info_top()) {
  1781     replace_all_CTS_matches(actual, lock);
  1782     monitor_push(lock);
  1786 void GenerateOopMap::do_monitorexit(int bci) {
  1787   CellTypeState actual = pop();
  1788   if (_monitor_top == bad_monitors) {
  1789     return;
  1791   check_type(refCTS, actual);
  1792   CellTypeState expected = monitor_pop();
  1793   if (!actual.is_lock_reference() || !expected.equal(actual)) {
  1794     // The monitor we are exiting is not verifiably the one
  1795     // on the top of our monitor stack.  This causes a monitor
  1796     // mismatch.
  1797     _monitor_top = bad_monitors;
  1798     _monitor_safe = false;
  1800     // We need to mark this basic block as changed so that
  1801     // this monitorexit will be visited again.  We need to
  1802     // do this to ensure that we have accounted for the
  1803     // possibility that this bytecode will throw an
  1804     // exception.
  1805     BasicBlock* bb = get_basic_block_containing(bci);
  1806     bb->set_changed(true);
  1807     bb->_monitor_top = bad_monitors;
  1809     if (TraceMonitorMismatch) {
  1810       report_monitor_mismatch("improper monitor pair");
  1812   } else {
  1813     // This code is a fix for the case where we have repeated
  1814     // locking of the same object in straightline code.  We clear
  1815     // out the lock when it is popped from the monitor stack
  1816     // and replace it with an unobtrusive reference value that can
  1817     // be locked again.
  1818     //
  1819     // Note: when generateOopMap is fixed to properly handle repeated,
  1820     //       nested, redundant locks on the same object, then this
  1821     //       fix will need to be removed at that time.
  1822     replace_all_CTS_matches(actual, CellTypeState::make_line_ref(bci));
  1826 void GenerateOopMap::do_return_monitor_check() {
  1827   if (_monitor_top > 0) {
  1828     // The monitor stack must be empty when we leave the method
  1829     // for the monitors to be properly matched.
  1830     _monitor_safe = false;
  1832     // Since there are no successors to the *return bytecode, it
  1833     // isn't necessary to set _monitor_top to bad_monitors.
  1835     if (TraceMonitorMismatch) {
  1836       report_monitor_mismatch("non-empty monitor stack at return");
  1841 void GenerateOopMap::do_jsr(int targ_bci) {
  1842   push(CellTypeState::make_addr(targ_bci));
  1847 void GenerateOopMap::do_ldc(int bci) {
  1848   Bytecode_loadconstant ldc(method(), bci);
  1849   ConstantPool* cp  = method()->constants();
  1850   constantTag tag = cp->tag_at(ldc.pool_index()); // idx is index in resolved_references
  1851   BasicType       bt  = ldc.result_type();
  1852   CellTypeState   cts;
  1853   if (tag.is_klass() ||
  1854       tag.is_unresolved_klass() ||
  1855       tag.is_string() ||
  1856       tag.is_object() ||
  1857       tag.is_method_handle() ||
  1858       tag.is_method_type()) {
  1859     assert(bt == T_OBJECT, "Guard is incorrect");
  1860     cts = CellTypeState::make_line_ref(bci);
  1861   } else {
  1862     assert(bt != T_OBJECT, "Guard is incorrect");
  1863     cts = valCTS;
  1865   ppush1(cts);
  1868 void GenerateOopMap::do_multianewarray(int dims, int bci) {
  1869   assert(dims >= 1, "sanity check");
  1870   for(int i = dims -1; i >=0; i--) {
  1871     ppop1(valCTS);
  1873   ppush1(CellTypeState::make_line_ref(bci));
  1876 void GenerateOopMap::do_astore(int idx) {
  1877   CellTypeState r_or_p = pop();
  1878   if (!r_or_p.is_address() && !r_or_p.is_reference()) {
  1879     // We actually expected ref or pc, but we only report that we expected a ref. It does not
  1880     // really matter (at least for now)
  1881     verify_error("wrong type on stack (found: %c, expected: {pr})", r_or_p.to_char());
  1882     return;
  1884   set_var(idx, r_or_p);
  1887 // Copies bottom/zero terminated CTS string from "src" into "dst".
  1888 //   Does NOT terminate with a bottom. Returns the number of cells copied.
  1889 int GenerateOopMap::copy_cts(CellTypeState *dst, CellTypeState *src) {
  1890   int idx = 0;
  1891   while (!src[idx].is_bottom()) {
  1892     dst[idx] = src[idx];
  1893     idx++;
  1895   return idx;
  1898 void GenerateOopMap::do_field(int is_get, int is_static, int idx, int bci) {
  1899   // Dig up signature for field in constant pool
  1900   ConstantPool* cp     = method()->constants();
  1901   int nameAndTypeIdx     = cp->name_and_type_ref_index_at(idx);
  1902   int signatureIdx       = cp->signature_ref_index_at(nameAndTypeIdx);
  1903   Symbol* signature      = cp->symbol_at(signatureIdx);
  1905   // Parse signature (espcially simple for fields)
  1906   assert(signature->utf8_length() > 0, "field signatures cannot have zero length");
  1907   // The signature is UFT8 encoded, but the first char is always ASCII for signatures.
  1908   char sigch = (char)*(signature->base());
  1909   CellTypeState temp[4];
  1910   CellTypeState *eff  = sigchar_to_effect(sigch, bci, temp);
  1912   CellTypeState in[4];
  1913   CellTypeState *out;
  1914   int i =  0;
  1916   if (is_get) {
  1917     out = eff;
  1918   } else {
  1919     out = epsilonCTS;
  1920     i   = copy_cts(in, eff);
  1922   if (!is_static) in[i++] = CellTypeState::ref;
  1923   in[i] = CellTypeState::bottom;
  1924   assert(i<=3, "sanity check");
  1925   pp(in, out);
  1928 void GenerateOopMap::do_method(int is_static, int is_interface, int idx, int bci) {
  1929  // Dig up signature for field in constant pool
  1930   ConstantPool* cp  = _method->constants();
  1931   Symbol* signature   = cp->signature_ref_at(idx);
  1933   // Parse method signature
  1934   CellTypeState out[4];
  1935   CellTypeState in[MAXARGSIZE+1];   // Includes result
  1936   ComputeCallStack cse(signature);
  1938   // Compute return type
  1939   int res_length=  cse.compute_for_returntype(out);
  1941   // Temporary hack.
  1942   if (out[0].equal(CellTypeState::ref) && out[1].equal(CellTypeState::bottom)) {
  1943     out[0] = CellTypeState::make_line_ref(bci);
  1946   assert(res_length<=4, "max value should be vv");
  1948   // Compute arguments
  1949   int arg_length = cse.compute_for_parameters(is_static != 0, in);
  1950   assert(arg_length<=MAXARGSIZE, "too many locals");
  1952   // Pop arguments
  1953   for (int i = arg_length - 1; i >= 0; i--) ppop1(in[i]);// Do args in reverse order.
  1955   // Report results
  1956   if (_report_result_for_send == true) {
  1957      fill_stackmap_for_opcodes(_itr_send, vars(), stack(), _stack_top);
  1958      _report_result_for_send = false;
  1961   // Push return address
  1962   ppush(out);
  1965 // This is used to parse the signature for fields, since they are very simple...
  1966 CellTypeState *GenerateOopMap::sigchar_to_effect(char sigch, int bci, CellTypeState *out) {
  1967   // Object and array
  1968   if (sigch=='L' || sigch=='[') {
  1969     out[0] = CellTypeState::make_line_ref(bci);
  1970     out[1] = CellTypeState::bottom;
  1971     return out;
  1973   if (sigch == 'J' || sigch == 'D' ) return vvCTS;  // Long and Double
  1974   if (sigch == 'V' ) return epsilonCTS;             // Void
  1975   return vCTS;                                      // Otherwise
  1978 long GenerateOopMap::_total_byte_count = 0;
  1979 elapsedTimer GenerateOopMap::_total_oopmap_time;
  1981 // This function assumes "bcs" is at a "ret" instruction and that the vars
  1982 // state is valid for that instruction. Furthermore, the ret instruction
  1983 // must be the last instruction in "bb" (we store information about the
  1984 // "ret" in "bb").
  1985 void GenerateOopMap::ret_jump_targets_do(BytecodeStream *bcs, jmpFct_t jmpFct, int varNo, int *data) {
  1986   CellTypeState ra = vars()[varNo];
  1987   if (!ra.is_good_address()) {
  1988     verify_error("ret returns from two jsr subroutines?");
  1989     return;
  1991   int target = ra.get_info();
  1993   RetTableEntry* rtEnt = _rt.find_jsrs_for_target(target);
  1994   int bci = bcs->bci();
  1995   for (int i = 0; i < rtEnt->nof_jsrs(); i++) {
  1996     int target_bci = rtEnt->jsrs(i);
  1997     // Make sure a jrtRet does not set the changed bit for dead basicblock.
  1998     BasicBlock* jsr_bb    = get_basic_block_containing(target_bci - 1);
  1999     debug_only(BasicBlock* target_bb = &jsr_bb[1];)
  2000     assert(target_bb  == get_basic_block_at(target_bci), "wrong calc. of successor basicblock");
  2001     bool alive = jsr_bb->is_alive();
  2002     if (TraceNewOopMapGeneration) {
  2003       tty->print("pc = %d, ret -> %d alive: %s\n", bci, target_bci, alive ? "true" : "false");
  2005     if (alive) jmpFct(this, target_bci, data);
  2009 //
  2010 // Debug method
  2011 //
  2012 char* GenerateOopMap::state_vec_to_string(CellTypeState* vec, int len) {
  2013 #ifdef ASSERT
  2014   int checklen = MAX3(_max_locals, _max_stack, _max_monitors) + 1;
  2015   assert(len < checklen, "state_vec_buf overflow");
  2016 #endif
  2017   for (int i = 0; i < len; i++) _state_vec_buf[i] = vec[i].to_char();
  2018   _state_vec_buf[len] = 0;
  2019   return _state_vec_buf;
  2022 void GenerateOopMap::print_time() {
  2023   tty->print_cr ("Accumulated oopmap times:");
  2024   tty->print_cr ("---------------------------");
  2025   tty->print_cr ("  Total : %3.3f sec.", GenerateOopMap::_total_oopmap_time.seconds());
  2026   tty->print_cr ("  (%3.0f bytecodes per sec) ",
  2027   GenerateOopMap::_total_byte_count / GenerateOopMap::_total_oopmap_time.seconds());
  2030 //
  2031 //  ============ Main Entry Point ===========
  2032 //
  2033 GenerateOopMap::GenerateOopMap(methodHandle method) {
  2034   // We have to initialize all variables here, that can be queried directly
  2035   _method = method;
  2036   _max_locals=0;
  2037   _init_vars = NULL;
  2039 #ifndef PRODUCT
  2040   // If we are doing a detailed trace, include the regular trace information.
  2041   if (TraceNewOopMapGenerationDetailed) {
  2042     TraceNewOopMapGeneration = true;
  2044 #endif
  2047 void GenerateOopMap::compute_map(TRAPS) {
  2048 #ifndef PRODUCT
  2049   if (TimeOopMap2) {
  2050     method()->print_short_name(tty);
  2051     tty->print("  ");
  2053   if (TimeOopMap) {
  2054     _total_byte_count += method()->code_size();
  2056 #endif
  2057   TraceTime t_single("oopmap time", TimeOopMap2);
  2058   TraceTime t_all(NULL, &_total_oopmap_time, TimeOopMap);
  2060   // Initialize values
  2061   _got_error      = false;
  2062   _conflict       = false;
  2063   _max_locals     = method()->max_locals();
  2064   _max_stack      = method()->max_stack();
  2065   _has_exceptions = (method()->has_exception_handler());
  2066   _nof_refval_conflicts = 0;
  2067   _init_vars      = new GrowableArray<intptr_t>(5);  // There are seldom more than 5 init_vars
  2068   _report_result  = false;
  2069   _report_result_for_send = false;
  2070   _new_var_map    = NULL;
  2071   _ret_adr_tos    = new GrowableArray<intptr_t>(5);  // 5 seems like a good number;
  2072   _did_rewriting  = false;
  2073   _did_relocation = false;
  2075   if (TraceNewOopMapGeneration) {
  2076     tty->print("Method name: %s\n", method()->name()->as_C_string());
  2077     if (Verbose) {
  2078       _method->print_codes();
  2079       tty->print_cr("Exception table:");
  2080       ExceptionTable excps(method());
  2081       for(int i = 0; i < excps.length(); i ++) {
  2082         tty->print_cr("[%d - %d] -> %d",
  2083                       excps.start_pc(i), excps.end_pc(i), excps.handler_pc(i));
  2088   // if no code - do nothing
  2089   // compiler needs info
  2090   if (method()->code_size() == 0 || _max_locals + method()->max_stack() == 0) {
  2091     fill_stackmap_prolog(0);
  2092     fill_stackmap_epilog();
  2093     return;
  2095   // Step 1: Compute all jump targets and their return value
  2096   if (!_got_error)
  2097     _rt.compute_ret_table(_method);
  2099   // Step 2: Find all basic blocks and count GC points
  2100   if (!_got_error)
  2101     mark_bbheaders_and_count_gc_points();
  2103   // Step 3: Calculate stack maps
  2104   if (!_got_error)
  2105     do_interpretation();
  2107   // Step 4:Return results
  2108   if (!_got_error && report_results())
  2109      report_result();
  2111   if (_got_error) {
  2112     THROW_HANDLE(_exception);
  2116 // Error handling methods
  2117 // These methods create an exception for the current thread which is thrown
  2118 // at the bottom of the call stack, when it returns to compute_map().  The
  2119 // _got_error flag controls execution.  NOT TODO: The VM exception propagation
  2120 // mechanism using TRAPS/CHECKs could be used here instead but it would need
  2121 // to be added as a parameter to every function and checked for every call.
  2122 // The tons of extra code it would generate didn't seem worth the change.
  2123 //
  2124 void GenerateOopMap::error_work(const char *format, va_list ap) {
  2125   _got_error = true;
  2126   char msg_buffer[512];
  2127   vsnprintf(msg_buffer, sizeof(msg_buffer), format, ap);
  2128   // Append method name
  2129   char msg_buffer2[512];
  2130   jio_snprintf(msg_buffer2, sizeof(msg_buffer2), "%s in method %s", msg_buffer, method()->name()->as_C_string());
  2131   _exception = Exceptions::new_exception(Thread::current(),
  2132                 vmSymbols::java_lang_LinkageError(), msg_buffer2);
  2135 void GenerateOopMap::report_error(const char *format, ...) {
  2136   va_list ap;
  2137   va_start(ap, format);
  2138   error_work(format, ap);
  2141 void GenerateOopMap::verify_error(const char *format, ...) {
  2142   // We do not distinguish between different types of errors for verification
  2143   // errors.  Let the verifier give a better message.
  2144   const char *msg = "Illegal class file encountered. Try running with -Xverify:all";
  2145   _got_error = true;
  2146   // Append method name
  2147   char msg_buffer2[512];
  2148   jio_snprintf(msg_buffer2, sizeof(msg_buffer2), "%s in method %s", msg,
  2149                method()->name()->as_C_string());
  2150   _exception = Exceptions::new_exception(Thread::current(),
  2151                 vmSymbols::java_lang_LinkageError(), msg_buffer2);
  2154 //
  2155 // Report result opcodes
  2156 //
  2157 void GenerateOopMap::report_result() {
  2159   if (TraceNewOopMapGeneration) tty->print_cr("Report result pass");
  2161   // We now want to report the result of the parse
  2162   _report_result = true;
  2164   // Prolog code
  2165   fill_stackmap_prolog(_gc_points);
  2167    // Mark everything changed, then do one interpretation pass.
  2168   for (int i = 0; i<_bb_count; i++) {
  2169     if (_basic_blocks[i].is_reachable()) {
  2170       _basic_blocks[i].set_changed(true);
  2171       interp_bb(&_basic_blocks[i]);
  2175   // Note: Since we are skipping dead-code when we are reporting results, then
  2176   // the no. of encountered gc-points might be fewer than the previously number
  2177   // we have counted. (dead-code is a pain - it should be removed before we get here)
  2178   fill_stackmap_epilog();
  2180   // Report initvars
  2181   fill_init_vars(_init_vars);
  2183   _report_result = false;
  2186 void GenerateOopMap::result_for_basicblock(int bci) {
  2187  if (TraceNewOopMapGeneration) tty->print_cr("Report result pass for basicblock");
  2189   // We now want to report the result of the parse
  2190   _report_result = true;
  2192   // Find basicblock and report results
  2193   BasicBlock* bb = get_basic_block_containing(bci);
  2194   assert(bb->is_reachable(), "getting result from unreachable basicblock");
  2195   bb->set_changed(true);
  2196   interp_bb(bb);
  2199 //
  2200 // Conflict handling code
  2201 //
  2203 void GenerateOopMap::record_refval_conflict(int varNo) {
  2204   assert(varNo>=0 && varNo< _max_locals, "index out of range");
  2206   if (TraceOopMapRewrites) {
  2207      tty->print("### Conflict detected (local no: %d)\n", varNo);
  2210   if (!_new_var_map) {
  2211     _new_var_map = NEW_RESOURCE_ARRAY(int, _max_locals);
  2212     for (int k = 0; k < _max_locals; k++)  _new_var_map[k] = k;
  2215   if ( _new_var_map[varNo] == varNo) {
  2216     // Check if max. number of locals has been reached
  2217     if (_max_locals + _nof_refval_conflicts >= MAX_LOCAL_VARS) {
  2218       report_error("Rewriting exceeded local variable limit");
  2219       return;
  2221     _new_var_map[varNo] = _max_locals + _nof_refval_conflicts;
  2222     _nof_refval_conflicts++;
  2226 void GenerateOopMap::rewrite_refval_conflicts()
  2228   // We can get here two ways: Either a rewrite conflict was detected, or
  2229   // an uninitialize reference was detected. In the second case, we do not
  2230   // do any rewriting, we just want to recompute the reference set with the
  2231   // new information
  2233   int nof_conflicts = 0;              // Used for debugging only
  2235   if ( _nof_refval_conflicts == 0 )
  2236      return;
  2238   // Check if rewrites are allowed in this parse.
  2239   if (!allow_rewrites() && !IgnoreRewrites) {
  2240     fatal("Rewriting method not allowed at this stage");
  2244   // This following flag is to tempoary supress rewrites. The locals that might conflict will
  2245   // all be set to contain values. This is UNSAFE - however, until the rewriting has been completely
  2246   // tested it is nice to have.
  2247   if (IgnoreRewrites) {
  2248     if (Verbose) {
  2249        tty->print("rewrites suppressed for local no. ");
  2250        for (int l = 0; l < _max_locals; l++) {
  2251          if (_new_var_map[l] != l) {
  2252            tty->print("%d ", l);
  2253            vars()[l] = CellTypeState::value;
  2256        tty->cr();
  2259     // That was that...
  2260     _new_var_map = NULL;
  2261     _nof_refval_conflicts = 0;
  2262     _conflict = false;
  2264     return;
  2267   // Tracing flag
  2268   _did_rewriting = true;
  2270   if (TraceOopMapRewrites) {
  2271     tty->print_cr("ref/value conflict for method %s - bytecodes are getting rewritten", method()->name()->as_C_string());
  2272     method()->print();
  2273     method()->print_codes();
  2276   assert(_new_var_map!=NULL, "nothing to rewrite");
  2277   assert(_conflict==true, "We should not be here");
  2279   compute_ret_adr_at_TOS();
  2280   if (!_got_error) {
  2281     for (int k = 0; k < _max_locals && !_got_error; k++) {
  2282       if (_new_var_map[k] != k) {
  2283         if (TraceOopMapRewrites) {
  2284           tty->print_cr("Rewriting: %d -> %d", k, _new_var_map[k]);
  2286         rewrite_refval_conflict(k, _new_var_map[k]);
  2287         if (_got_error) return;
  2288         nof_conflicts++;
  2293   assert(nof_conflicts == _nof_refval_conflicts, "sanity check");
  2295   // Adjust the number of locals
  2296   method()->set_max_locals(_max_locals+_nof_refval_conflicts);
  2297   _max_locals += _nof_refval_conflicts;
  2299   // That was that...
  2300   _new_var_map = NULL;
  2301   _nof_refval_conflicts = 0;
  2304 void GenerateOopMap::rewrite_refval_conflict(int from, int to) {
  2305   bool startOver;
  2306   do {
  2307     // Make sure that the BytecodeStream is constructed in the loop, since
  2308     // during rewriting a new method oop is going to be used, and the next time
  2309     // around we want to use that.
  2310     BytecodeStream bcs(_method);
  2311     startOver = false;
  2313     while( !startOver && !_got_error &&
  2314            // test bcs in case method changed and it became invalid
  2315            bcs.next() >=0) {
  2316       startOver = rewrite_refval_conflict_inst(&bcs, from, to);
  2318   } while (startOver && !_got_error);
  2321 /* If the current instruction is one that uses local variable "from"
  2322    in a ref way, change it to use "to". There's a subtle reason why we
  2323    renumber the ref uses and not the non-ref uses: non-ref uses may be
  2324    2 slots wide (double, long) which would necessitate keeping track of
  2325    whether we should add one or two variables to the method. If the change
  2326    affected the width of some instruction, returns "TRUE"; otherwise, returns "FALSE".
  2327    Another reason for moving ref's value is for solving (addr, ref) conflicts, which
  2328    both uses aload/astore methods.
  2329 */
  2330 bool GenerateOopMap::rewrite_refval_conflict_inst(BytecodeStream *itr, int from, int to) {
  2331   Bytecodes::Code bc = itr->code();
  2332   int index;
  2333   int bci = itr->bci();
  2335   if (is_aload(itr, &index) && index == from) {
  2336     if (TraceOopMapRewrites) {
  2337       tty->print_cr("Rewriting aload at bci: %d", bci);
  2339     return rewrite_load_or_store(itr, Bytecodes::_aload, Bytecodes::_aload_0, to);
  2342   if (is_astore(itr, &index) && index == from) {
  2343     if (!stack_top_holds_ret_addr(bci)) {
  2344       if (TraceOopMapRewrites) {
  2345         tty->print_cr("Rewriting astore at bci: %d", bci);
  2347       return rewrite_load_or_store(itr, Bytecodes::_astore, Bytecodes::_astore_0, to);
  2348     } else {
  2349       if (TraceOopMapRewrites) {
  2350         tty->print_cr("Supress rewriting of astore at bci: %d", bci);
  2355   return false;
  2358 // The argument to this method is:
  2359 // bc : Current bytecode
  2360 // bcN : either _aload or _astore
  2361 // bc0 : either _aload_0 or _astore_0
  2362 bool GenerateOopMap::rewrite_load_or_store(BytecodeStream *bcs, Bytecodes::Code bcN, Bytecodes::Code bc0, unsigned int varNo) {
  2363   assert(bcN == Bytecodes::_astore   || bcN == Bytecodes::_aload,   "wrong argument (bcN)");
  2364   assert(bc0 == Bytecodes::_astore_0 || bc0 == Bytecodes::_aload_0, "wrong argument (bc0)");
  2365   int ilen = Bytecodes::length_at(_method(), bcs->bcp());
  2366   int newIlen;
  2368   if (ilen == 4) {
  2369     // Original instruction was wide; keep it wide for simplicity
  2370     newIlen = 4;
  2371   } else if (varNo < 4)
  2372      newIlen = 1;
  2373   else if (varNo >= 256)
  2374      newIlen = 4;
  2375   else
  2376      newIlen = 2;
  2378   // If we need to relocate in order to patch the byte, we
  2379   // do the patching in a temp. buffer, that is passed to the reloc.
  2380   // The patching of the bytecode stream is then done by the Relocator.
  2381   // This is neccesary, since relocating the instruction at a certain bci, might
  2382   // also relocate that instruction, e.g., if a _goto before it gets widen to a _goto_w.
  2383   // Hence, we do not know which bci to patch after relocation.
  2385   assert(newIlen <= 4, "sanity check");
  2386   u_char inst_buffer[4]; // Max. instruction size is 4.
  2387   address bcp;
  2389   if (newIlen != ilen) {
  2390     // Relocation needed do patching in temp. buffer
  2391     bcp = (address)inst_buffer;
  2392   } else {
  2393     bcp = _method->bcp_from(bcs->bci());
  2396   // Patch either directly in Method* or in temp. buffer
  2397   if (newIlen == 1) {
  2398     assert(varNo < 4, "varNo too large");
  2399     *bcp = bc0 + varNo;
  2400   } else if (newIlen == 2) {
  2401     assert(varNo < 256, "2-byte index needed!");
  2402     *(bcp + 0) = bcN;
  2403     *(bcp + 1) = varNo;
  2404   } else {
  2405     assert(newIlen == 4, "Wrong instruction length");
  2406     *(bcp + 0) = Bytecodes::_wide;
  2407     *(bcp + 1) = bcN;
  2408     Bytes::put_Java_u2(bcp+2, varNo);
  2411   if (newIlen != ilen) {
  2412     expand_current_instr(bcs->bci(), ilen, newIlen, inst_buffer);
  2416   return (newIlen != ilen);
  2419 class RelocCallback : public RelocatorListener {
  2420  private:
  2421   GenerateOopMap* _gom;
  2422  public:
  2423    RelocCallback(GenerateOopMap* gom) { _gom = gom; };
  2425   // Callback method
  2426   virtual void relocated(int bci, int delta, int new_code_length) {
  2427     _gom->update_basic_blocks  (bci, delta, new_code_length);
  2428     _gom->update_ret_adr_at_TOS(bci, delta);
  2429     _gom->_rt.update_ret_table (bci, delta);
  2431 };
  2433 // Returns true if expanding was succesful. Otherwise, reports an error and
  2434 // returns false.
  2435 void GenerateOopMap::expand_current_instr(int bci, int ilen, int newIlen, u_char inst_buffer[]) {
  2436   Thread *THREAD = Thread::current();  // Could really have TRAPS argument.
  2437   RelocCallback rcb(this);
  2438   Relocator rc(_method, &rcb);
  2439   methodHandle m= rc.insert_space_at(bci, newIlen, inst_buffer, THREAD);
  2440   if (m.is_null() || HAS_PENDING_EXCEPTION) {
  2441     report_error("could not rewrite method - exception occurred or bytecode buffer overflow");
  2442     return;
  2445   // Relocator returns a new method oop.
  2446   _did_relocation = true;
  2447   _method = m;
  2451 bool GenerateOopMap::is_astore(BytecodeStream *itr, int *index) {
  2452   Bytecodes::Code bc = itr->code();
  2453   switch(bc) {
  2454     case Bytecodes::_astore_0:
  2455     case Bytecodes::_astore_1:
  2456     case Bytecodes::_astore_2:
  2457     case Bytecodes::_astore_3:
  2458       *index = bc - Bytecodes::_astore_0;
  2459       return true;
  2460     case Bytecodes::_astore:
  2461       *index = itr->get_index();
  2462       return true;
  2464   return false;
  2467 bool GenerateOopMap::is_aload(BytecodeStream *itr, int *index) {
  2468   Bytecodes::Code bc = itr->code();
  2469   switch(bc) {
  2470     case Bytecodes::_aload_0:
  2471     case Bytecodes::_aload_1:
  2472     case Bytecodes::_aload_2:
  2473     case Bytecodes::_aload_3:
  2474       *index = bc - Bytecodes::_aload_0;
  2475       return true;
  2477     case Bytecodes::_aload:
  2478       *index = itr->get_index();
  2479       return true;
  2481   return false;
  2485 // Return true iff the top of the operand stack holds a return address at
  2486 // the current instruction
  2487 bool GenerateOopMap::stack_top_holds_ret_addr(int bci) {
  2488   for(int i = 0; i < _ret_adr_tos->length(); i++) {
  2489     if (_ret_adr_tos->at(i) == bci)
  2490       return true;
  2493   return false;
  2496 void GenerateOopMap::compute_ret_adr_at_TOS() {
  2497   assert(_ret_adr_tos != NULL, "must be initialized");
  2498   _ret_adr_tos->clear();
  2500   for (int i = 0; i < bb_count(); i++) {
  2501     BasicBlock* bb = &_basic_blocks[i];
  2503     // Make sure to only check basicblocks that are reachable
  2504     if (bb->is_reachable()) {
  2506       // For each Basic block we check all instructions
  2507       BytecodeStream bcs(_method);
  2508       bcs.set_interval(bb->_bci, next_bb_start_pc(bb));
  2510       restore_state(bb);
  2512       while (bcs.next()>=0 && !_got_error) {
  2513         // TDT: should this be is_good_address() ?
  2514         if (_stack_top > 0 && stack()[_stack_top-1].is_address()) {
  2515           _ret_adr_tos->append(bcs.bci());
  2516           if (TraceNewOopMapGeneration) {
  2517             tty->print_cr("Ret_adr TOS at bci: %d", bcs.bci());
  2520         interp1(&bcs);
  2526 void GenerateOopMap::update_ret_adr_at_TOS(int bci, int delta) {
  2527   for(int i = 0; i < _ret_adr_tos->length(); i++) {
  2528     int v = _ret_adr_tos->at(i);
  2529     if (v > bci)  _ret_adr_tos->at_put(i, v + delta);
  2533 // ===================================================================
  2535 #ifndef PRODUCT
  2536 int ResolveOopMapConflicts::_nof_invocations  = 0;
  2537 int ResolveOopMapConflicts::_nof_rewrites     = 0;
  2538 int ResolveOopMapConflicts::_nof_relocations  = 0;
  2539 #endif
  2541 methodHandle ResolveOopMapConflicts::do_potential_rewrite(TRAPS) {
  2542   compute_map(CHECK_(methodHandle()));
  2544 #ifndef PRODUCT
  2545   // Tracking and statistics
  2546   if (PrintRewrites) {
  2547     _nof_invocations++;
  2548     if (did_rewriting()) {
  2549       _nof_rewrites++;
  2550       if (did_relocation()) _nof_relocations++;
  2551       tty->print("Method was rewritten %s: ", (did_relocation()) ? "and relocated" : "");
  2552       method()->print_value(); tty->cr();
  2553       tty->print_cr("Cand.: %d rewrts: %d (%d%%) reloc.: %d (%d%%)",
  2554           _nof_invocations,
  2555           _nof_rewrites,    (_nof_rewrites    * 100) / _nof_invocations,
  2556           _nof_relocations, (_nof_relocations * 100) / _nof_invocations);
  2559 #endif
  2560   return methodHandle(THREAD, method());

mercurial