src/share/vm/opto/superword.hpp

Thu, 31 Jul 2014 19:59:36 +0200

author
roland
date
Thu, 31 Jul 2014 19:59:36 +0200
changeset 7003
69ea58782b1a
parent 6198
55fb97c4c58d
child 6876
710a3c8b516e
child 7819
95dbbc0431d9
permissions
-rw-r--r--

8054054: 8040121 is broken
Summary: C++ code pattern from 8040121 is incorrect
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  */
    24 #ifndef SHARE_VM_OPTO_SUPERWORD_HPP
    25 #define SHARE_VM_OPTO_SUPERWORD_HPP
    27 #include "opto/connode.hpp"
    28 #include "opto/loopnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "opto/phaseX.hpp"
    31 #include "opto/vectornode.hpp"
    32 #include "utilities/growableArray.hpp"
    34 //
    35 //                  S U P E R W O R D   T R A N S F O R M
    36 //
    37 // SuperWords are short, fixed length vectors.
    38 //
    39 // Algorithm from:
    40 //
    41 // Exploiting SuperWord Level Parallelism with
    42 //   Multimedia Instruction Sets
    43 // by
    44 //   Samuel Larsen and Saman Amarasighe
    45 //   MIT Laboratory for Computer Science
    46 // date
    47 //   May 2000
    48 // published in
    49 //   ACM SIGPLAN Notices
    50 //   Proceedings of ACM PLDI '00,  Volume 35 Issue 5
    51 //
    52 // Definition 3.1 A Pack is an n-tuple, <s1, ...,sn>, where
    53 // s1,...,sn are independent isomorphic statements in a basic
    54 // block.
    55 //
    56 // Definition 3.2 A PackSet is a set of Packs.
    57 //
    58 // Definition 3.3 A Pair is a Pack of size two, where the
    59 // first statement is considered the left element, and the
    60 // second statement is considered the right element.
    62 class SWPointer;
    63 class OrderedPair;
    65 // ========================= Dependence Graph =====================
    67 class DepMem;
    69 //------------------------------DepEdge---------------------------
    70 // An edge in the dependence graph.  The edges incident to a dependence
    71 // node are threaded through _next_in for incoming edges and _next_out
    72 // for outgoing edges.
    73 class DepEdge : public ResourceObj {
    74  protected:
    75   DepMem* _pred;
    76   DepMem* _succ;
    77   DepEdge* _next_in;   // list of in edges, null terminated
    78   DepEdge* _next_out;  // list of out edges, null terminated
    80  public:
    81   DepEdge(DepMem* pred, DepMem* succ, DepEdge* next_in, DepEdge* next_out) :
    82     _pred(pred), _succ(succ), _next_in(next_in), _next_out(next_out) {}
    84   DepEdge* next_in()  { return _next_in; }
    85   DepEdge* next_out() { return _next_out; }
    86   DepMem*  pred()     { return _pred; }
    87   DepMem*  succ()     { return _succ; }
    89   void print();
    90 };
    92 //------------------------------DepMem---------------------------
    93 // A node in the dependence graph.  _in_head starts the threaded list of
    94 // incoming edges, and _out_head starts the list of outgoing edges.
    95 class DepMem : public ResourceObj {
    96  protected:
    97   Node*    _node;     // Corresponding ideal node
    98   DepEdge* _in_head;  // Head of list of in edges, null terminated
    99   DepEdge* _out_head; // Head of list of out edges, null terminated
   101  public:
   102   DepMem(Node* node) : _node(node), _in_head(NULL), _out_head(NULL) {}
   104   Node*    node()                { return _node;     }
   105   DepEdge* in_head()             { return _in_head;  }
   106   DepEdge* out_head()            { return _out_head; }
   107   void set_in_head(DepEdge* hd)  { _in_head = hd;    }
   108   void set_out_head(DepEdge* hd) { _out_head = hd;   }
   110   int in_cnt();  // Incoming edge count
   111   int out_cnt(); // Outgoing edge count
   113   void print();
   114 };
   116 //------------------------------DepGraph---------------------------
   117 class DepGraph VALUE_OBJ_CLASS_SPEC {
   118  protected:
   119   Arena* _arena;
   120   GrowableArray<DepMem*> _map;
   121   DepMem* _root;
   122   DepMem* _tail;
   124  public:
   125   DepGraph(Arena* a) : _arena(a), _map(a, 8,  0, NULL) {
   126     _root = new (_arena) DepMem(NULL);
   127     _tail = new (_arena) DepMem(NULL);
   128   }
   130   DepMem* root() { return _root; }
   131   DepMem* tail() { return _tail; }
   133   // Return dependence node corresponding to an ideal node
   134   DepMem* dep(Node* node) { return _map.at(node->_idx); }
   136   // Make a new dependence graph node for an ideal node.
   137   DepMem* make_node(Node* node);
   139   // Make a new dependence graph edge dprec->dsucc
   140   DepEdge* make_edge(DepMem* dpred, DepMem* dsucc);
   142   DepEdge* make_edge(Node* pred,   Node* succ)   { return make_edge(dep(pred), dep(succ)); }
   143   DepEdge* make_edge(DepMem* pred, Node* succ)   { return make_edge(pred,      dep(succ)); }
   144   DepEdge* make_edge(Node* pred,   DepMem* succ) { return make_edge(dep(pred), succ);      }
   146   void init() { _map.clear(); } // initialize
   148   void print(Node* n)   { dep(n)->print(); }
   149   void print(DepMem* d) { d->print(); }
   150 };
   152 //------------------------------DepPreds---------------------------
   153 // Iterator over predecessors in the dependence graph and
   154 // non-memory-graph inputs of ideal nodes.
   155 class DepPreds : public StackObj {
   156 private:
   157   Node*    _n;
   158   int      _next_idx, _end_idx;
   159   DepEdge* _dep_next;
   160   Node*    _current;
   161   bool     _done;
   163 public:
   164   DepPreds(Node* n, DepGraph& dg);
   165   Node* current() { return _current; }
   166   bool  done()    { return _done; }
   167   void  next();
   168 };
   170 //------------------------------DepSuccs---------------------------
   171 // Iterator over successors in the dependence graph and
   172 // non-memory-graph outputs of ideal nodes.
   173 class DepSuccs : public StackObj {
   174 private:
   175   Node*    _n;
   176   int      _next_idx, _end_idx;
   177   DepEdge* _dep_next;
   178   Node*    _current;
   179   bool     _done;
   181 public:
   182   DepSuccs(Node* n, DepGraph& dg);
   183   Node* current() { return _current; }
   184   bool  done()    { return _done; }
   185   void  next();
   186 };
   189 // ========================= SuperWord =====================
   191 // -----------------------------SWNodeInfo---------------------------------
   192 // Per node info needed by SuperWord
   193 class SWNodeInfo VALUE_OBJ_CLASS_SPEC {
   194  public:
   195   int         _alignment; // memory alignment for a node
   196   int         _depth;     // Max expression (DAG) depth from block start
   197   const Type* _velt_type; // vector element type
   198   Node_List*  _my_pack;   // pack containing this node
   200   SWNodeInfo() : _alignment(-1), _depth(0), _velt_type(NULL), _my_pack(NULL) {}
   201   static const SWNodeInfo initial;
   202 };
   204 // -----------------------------SuperWord---------------------------------
   205 // Transforms scalar operations into packed (superword) operations.
   206 class SuperWord : public ResourceObj {
   207  private:
   208   PhaseIdealLoop* _phase;
   209   Arena*          _arena;
   210   PhaseIterGVN   &_igvn;
   212   enum consts { top_align = -1, bottom_align = -666 };
   214   GrowableArray<Node_List*> _packset;    // Packs for the current block
   216   GrowableArray<int> _bb_idx;            // Map from Node _idx to index within block
   218   GrowableArray<Node*> _block;           // Nodes in current block
   219   GrowableArray<Node*> _data_entry;      // Nodes with all inputs from outside
   220   GrowableArray<Node*> _mem_slice_head;  // Memory slice head nodes
   221   GrowableArray<Node*> _mem_slice_tail;  // Memory slice tail nodes
   223   GrowableArray<SWNodeInfo> _node_info;  // Info needed per node
   225   MemNode* _align_to_ref;                // Memory reference that pre-loop will align to
   227   GrowableArray<OrderedPair> _disjoint_ptrs; // runtime disambiguated pointer pairs
   229   DepGraph _dg; // Dependence graph
   231   // Scratch pads
   232   VectorSet    _visited;       // Visited set
   233   VectorSet    _post_visited;  // Post-visited set
   234   Node_Stack   _n_idx_list;    // List of (node,index) pairs
   235   GrowableArray<Node*> _nlist; // List of nodes
   236   GrowableArray<Node*> _stk;   // Stack of nodes
   238  public:
   239   SuperWord(PhaseIdealLoop* phase);
   241   void transform_loop(IdealLoopTree* lpt);
   243   // Accessors for SWPointer
   244   PhaseIdealLoop* phase()          { return _phase; }
   245   IdealLoopTree* lpt()             { return _lpt; }
   246   PhiNode* iv()                    { return _iv; }
   248  private:
   249   IdealLoopTree* _lpt;             // Current loop tree node
   250   LoopNode*      _lp;              // Current LoopNode
   251   Node*          _bb;              // Current basic block
   252   PhiNode*       _iv;              // Induction var
   254   // Accessors
   255   Arena* arena()                   { return _arena; }
   257   Node* bb()                       { return _bb; }
   258   void  set_bb(Node* bb)           { _bb = bb; }
   260   void set_lpt(IdealLoopTree* lpt) { _lpt = lpt; }
   262   LoopNode* lp()                   { return _lp; }
   263   void      set_lp(LoopNode* lp)   { _lp = lp;
   264                                      _iv = lp->as_CountedLoop()->phi()->as_Phi(); }
   265   int      iv_stride()             { return lp()->as_CountedLoop()->stride_con(); }
   267   int vector_width(Node* n) {
   268     BasicType bt = velt_basic_type(n);
   269     return MIN2(ABS(iv_stride()), Matcher::max_vector_size(bt));
   270   }
   271   int vector_width_in_bytes(Node* n) {
   272     BasicType bt = velt_basic_type(n);
   273     return vector_width(n)*type2aelembytes(bt);
   274   }
   275   MemNode* align_to_ref()            { return _align_to_ref; }
   276   void  set_align_to_ref(MemNode* m) { _align_to_ref = m; }
   278   Node* ctrl(Node* n) const { return _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n; }
   280   // block accessors
   281   bool in_bb(Node* n)      { return n != NULL && n->outcnt() > 0 && ctrl(n) == _bb; }
   282   int  bb_idx(Node* n)     { assert(in_bb(n), "must be"); return _bb_idx.at(n->_idx); }
   283   void set_bb_idx(Node* n, int i) { _bb_idx.at_put_grow(n->_idx, i); }
   285   // visited set accessors
   286   void visited_clear()           { _visited.Clear(); }
   287   void visited_set(Node* n)      { return _visited.set(bb_idx(n)); }
   288   int visited_test(Node* n)      { return _visited.test(bb_idx(n)); }
   289   int visited_test_set(Node* n)  { return _visited.test_set(bb_idx(n)); }
   290   void post_visited_clear()      { _post_visited.Clear(); }
   291   void post_visited_set(Node* n) { return _post_visited.set(bb_idx(n)); }
   292   int post_visited_test(Node* n) { return _post_visited.test(bb_idx(n)); }
   294   // Ensure node_info contains element "i"
   295   void grow_node_info(int i) { if (i >= _node_info.length()) _node_info.at_put_grow(i, SWNodeInfo::initial); }
   297   // memory alignment for a node
   298   int alignment(Node* n)                     { return _node_info.adr_at(bb_idx(n))->_alignment; }
   299   void set_alignment(Node* n, int a)         { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_alignment = a; }
   301   // Max expression (DAG) depth from beginning of the block for each node
   302   int depth(Node* n)                         { return _node_info.adr_at(bb_idx(n))->_depth; }
   303   void set_depth(Node* n, int d)             { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_depth = d; }
   305   // vector element type
   306   const Type* velt_type(Node* n)             { return _node_info.adr_at(bb_idx(n))->_velt_type; }
   307   BasicType velt_basic_type(Node* n)         { return velt_type(n)->array_element_basic_type(); }
   308   void set_velt_type(Node* n, const Type* t) { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_velt_type = t; }
   309   bool same_velt_type(Node* n1, Node* n2);
   311   // my_pack
   312   Node_List* my_pack(Node* n)                { return !in_bb(n) ? NULL : _node_info.adr_at(bb_idx(n))->_my_pack; }
   313   void set_my_pack(Node* n, Node_List* p)    { int i = bb_idx(n); grow_node_info(i); _node_info.adr_at(i)->_my_pack = p; }
   315   // methods
   317   // Extract the superword level parallelism
   318   void SLP_extract();
   319   // Find the adjacent memory references and create pack pairs for them.
   320   void find_adjacent_refs();
   321   // Find a memory reference to align the loop induction variable to.
   322   MemNode* find_align_to_ref(Node_List &memops);
   323   // Calculate loop's iv adjustment for this memory ops.
   324   int get_iv_adjustment(MemNode* mem);
   325   // Can the preloop align the reference to position zero in the vector?
   326   bool ref_is_alignable(SWPointer& p);
   327   // Construct dependency graph.
   328   void dependence_graph();
   329   // Return a memory slice (node list) in predecessor order starting at "start"
   330   void mem_slice_preds(Node* start, Node* stop, GrowableArray<Node*> &preds);
   331   // Can s1 and s2 be in a pack with s1 immediately preceding s2 and  s1 aligned at "align"
   332   bool stmts_can_pack(Node* s1, Node* s2, int align);
   333   // Does s exist in a pack at position pos?
   334   bool exists_at(Node* s, uint pos);
   335   // Is s1 immediately before s2 in memory?
   336   bool are_adjacent_refs(Node* s1, Node* s2);
   337   // Are s1 and s2 similar?
   338   bool isomorphic(Node* s1, Node* s2);
   339   // Is there no data path from s1 to s2 or s2 to s1?
   340   bool independent(Node* s1, Node* s2);
   341   // Helper for independent
   342   bool independent_path(Node* shallow, Node* deep, uint dp=0);
   343   void set_alignment(Node* s1, Node* s2, int align);
   344   int data_size(Node* s);
   345   // Extend packset by following use->def and def->use links from pack members.
   346   void extend_packlist();
   347   // Extend the packset by visiting operand definitions of nodes in pack p
   348   bool follow_use_defs(Node_List* p);
   349   // Extend the packset by visiting uses of nodes in pack p
   350   bool follow_def_uses(Node_List* p);
   351   // Estimate the savings from executing s1 and s2 as a pack
   352   int est_savings(Node* s1, Node* s2);
   353   int adjacent_profit(Node* s1, Node* s2);
   354   int pack_cost(int ct);
   355   int unpack_cost(int ct);
   356   // Combine packs A and B with A.last == B.first into A.first..,A.last,B.second,..B.last
   357   void combine_packs();
   358   // Construct the map from nodes to packs.
   359   void construct_my_pack_map();
   360   // Remove packs that are not implemented or not profitable.
   361   void filter_packs();
   362   // Adjust the memory graph for the packed operations
   363   void schedule();
   364   // Remove "current" from its current position in the memory graph and insert
   365   // it after the appropriate insert points (lip or uip);
   366   void remove_and_insert(MemNode *current, MemNode *prev, MemNode *lip, Node *uip, Unique_Node_List &schd_before);
   367   // Within a store pack, schedule stores together by moving out the sandwiched memory ops according
   368   // to dependence info; and within a load pack, move loads down to the last executed load.
   369   void co_locate_pack(Node_List* p);
   370   // Convert packs into vector node operations
   371   void output();
   372   // Create a vector operand for the nodes in pack p for operand: in(opd_idx)
   373   Node* vector_opd(Node_List* p, int opd_idx);
   374   // Can code be generated for pack p?
   375   bool implemented(Node_List* p);
   376   // For pack p, are all operands and all uses (with in the block) vector?
   377   bool profitable(Node_List* p);
   378   // If a use of pack p is not a vector use, then replace the use with an extract operation.
   379   void insert_extracts(Node_List* p);
   380   // Is use->in(u_idx) a vector use?
   381   bool is_vector_use(Node* use, int u_idx);
   382   // Construct reverse postorder list of block members
   383   bool construct_bb();
   384   // Initialize per node info
   385   void initialize_bb();
   386   // Insert n into block after pos
   387   void bb_insert_after(Node* n, int pos);
   388   // Compute max depth for expressions from beginning of block
   389   void compute_max_depth();
   390   // Compute necessary vector element type for expressions
   391   void compute_vector_element_type();
   392   // Are s1 and s2 in a pack pair and ordered as s1,s2?
   393   bool in_packset(Node* s1, Node* s2);
   394   // Is s in pack p?
   395   Node_List* in_pack(Node* s, Node_List* p);
   396   // Remove the pack at position pos in the packset
   397   void remove_pack_at(int pos);
   398   // Return the node executed first in pack p.
   399   Node* executed_first(Node_List* p);
   400   // Return the node executed last in pack p.
   401   Node* executed_last(Node_List* p);
   402   // Alignment within a vector memory reference
   403   int memory_alignment(MemNode* s, int iv_adjust);
   404   // (Start, end] half-open range defining which operands are vector
   405   void vector_opd_range(Node* n, uint* start, uint* end);
   406   // Smallest type containing range of values
   407   const Type* container_type(Node* n);
   408   // Adjust pre-loop limit so that in main loop, a load/store reference
   409   // to align_to_ref will be a position zero in the vector.
   410   void align_initial_loop_index(MemNode* align_to_ref);
   411   // Find pre loop end from main loop.  Returns null if none.
   412   CountedLoopEndNode* get_pre_loop_end(CountedLoopNode *cl);
   413   // Is the use of d1 in u1 at the same operand position as d2 in u2?
   414   bool opnd_positions_match(Node* d1, Node* u1, Node* d2, Node* u2);
   415   void init();
   417   // print methods
   418   void print_packset();
   419   void print_pack(Node_List* p);
   420   void print_bb();
   421   void print_stmt(Node* s);
   422   char* blank(uint depth);
   423 };
   426 //------------------------------SWPointer---------------------------
   427 // Information about an address for dependence checking and vector alignment
   428 class SWPointer VALUE_OBJ_CLASS_SPEC {
   429  protected:
   430   MemNode*   _mem;     // My memory reference node
   431   SuperWord* _slp;     // SuperWord class
   433   Node* _base;         // NULL if unsafe nonheap reference
   434   Node* _adr;          // address pointer
   435   jint  _scale;        // multipler for iv (in bytes), 0 if no loop iv
   436   jint  _offset;       // constant offset (in bytes)
   437   Node* _invar;        // invariant offset (in bytes), NULL if none
   438   bool  _negate_invar; // if true then use: (0 - _invar)
   440   PhaseIdealLoop* phase() { return _slp->phase(); }
   441   IdealLoopTree*  lpt()   { return _slp->lpt(); }
   442   PhiNode*        iv()    { return _slp->iv();  } // Induction var
   444   bool invariant(Node* n) {
   445     Node *n_c = phase()->get_ctrl(n);
   446     return !lpt()->is_member(phase()->get_loop(n_c));
   447   }
   449   // Match: k*iv + offset
   450   bool scaled_iv_plus_offset(Node* n);
   451   // Match: k*iv where k is a constant that's not zero
   452   bool scaled_iv(Node* n);
   453   // Match: offset is (k [+/- invariant])
   454   bool offset_plus_k(Node* n, bool negate = false);
   456  public:
   457   enum CMP {
   458     Less          = 1,
   459     Greater       = 2,
   460     Equal         = 4,
   461     NotEqual      = (Less | Greater),
   462     NotComparable = (Less | Greater | Equal)
   463   };
   465   SWPointer(MemNode* mem, SuperWord* slp);
   466   // Following is used to create a temporary object during
   467   // the pattern match of an address expression.
   468   SWPointer(SWPointer* p);
   470   bool valid()  { return _adr != NULL; }
   471   bool has_iv() { return _scale != 0; }
   473   Node* base()            { return _base; }
   474   Node* adr()             { return _adr; }
   475   MemNode* mem()          { return _mem; }
   476   int   scale_in_bytes()  { return _scale; }
   477   Node* invar()           { return _invar; }
   478   bool  negate_invar()    { return _negate_invar; }
   479   int   offset_in_bytes() { return _offset; }
   480   int   memory_size()     { return _mem->memory_size(); }
   482   // Comparable?
   483   int cmp(SWPointer& q) {
   484     if (valid() && q.valid() &&
   485         (_adr == q._adr || _base == _adr && q._base == q._adr) &&
   486         _scale == q._scale   &&
   487         _invar == q._invar   &&
   488         _negate_invar == q._negate_invar) {
   489       bool overlap = q._offset <   _offset +   memory_size() &&
   490                        _offset < q._offset + q.memory_size();
   491       return overlap ? Equal : (_offset < q._offset ? Less : Greater);
   492     } else {
   493       return NotComparable;
   494     }
   495   }
   497   bool not_equal(SWPointer& q)    { return not_equal(cmp(q)); }
   498   bool equal(SWPointer& q)        { return equal(cmp(q)); }
   499   bool comparable(SWPointer& q)   { return comparable(cmp(q)); }
   500   static bool not_equal(int cmp)  { return cmp <= NotEqual; }
   501   static bool equal(int cmp)      { return cmp == Equal; }
   502   static bool comparable(int cmp) { return cmp < NotComparable; }
   504   void print();
   505 };
   508 //------------------------------OrderedPair---------------------------
   509 // Ordered pair of Node*.
   510 class OrderedPair VALUE_OBJ_CLASS_SPEC {
   511  protected:
   512   Node* _p1;
   513   Node* _p2;
   514  public:
   515   OrderedPair() : _p1(NULL), _p2(NULL) {}
   516   OrderedPair(Node* p1, Node* p2) {
   517     if (p1->_idx < p2->_idx) {
   518       _p1 = p1; _p2 = p2;
   519     } else {
   520       _p1 = p2; _p2 = p1;
   521     }
   522   }
   524   bool operator==(const OrderedPair &rhs) {
   525     return _p1 == rhs._p1 && _p2 == rhs._p2;
   526   }
   527   void print() { tty->print("  (%d, %d)", _p1->_idx, _p2->_idx); }
   529   static const OrderedPair initial;
   530 };
   532 #endif // SHARE_VM_OPTO_SUPERWORD_HPP

mercurial