src/share/vm/opto/phaseX.cpp

Thu, 31 Jul 2014 19:59:36 +0200

author
roland
date
Thu, 31 Jul 2014 19:59:36 +0200
changeset 7003
69ea58782b1a
parent 6681
1555c0843770
child 6876
710a3c8b516e
child 7394
5b8e0f84f00f
permissions
-rw-r--r--

8054054: 8040121 is broken
Summary: C++ code pattern from 8040121 is incorrect
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/callnode.hpp"
    29 #include "opto/cfgnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/idealGraphPrinter.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/machnode.hpp"
    34 #include "opto/opcodes.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/regalloc.hpp"
    37 #include "opto/rootnode.hpp"
    39 //=============================================================================
    40 #define NODE_HASH_MINIMUM_SIZE    255
    41 //------------------------------NodeHash---------------------------------------
    42 NodeHash::NodeHash(uint est_max_size) :
    43   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
    44   _a(Thread::current()->resource_area()),
    45   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ), // (Node**)_a->Amalloc(_max * sizeof(Node*)) ),
    46   _inserts(0), _insert_limit( insert_limit() ),
    47   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
    48   _total_insert_probes(0), _total_inserts(0),
    49   _insert_probes(0), _grows(0) {
    50   // _sentinel must be in the current node space
    51   _sentinel = new (Compile::current()) ProjNode(NULL, TypeFunc::Control);
    52   memset(_table,0,sizeof(Node*)*_max);
    53 }
    55 //------------------------------NodeHash---------------------------------------
    56 NodeHash::NodeHash(Arena *arena, uint est_max_size) :
    57   _max( round_up(est_max_size < NODE_HASH_MINIMUM_SIZE ? NODE_HASH_MINIMUM_SIZE : est_max_size) ),
    58   _a(arena),
    59   _table( NEW_ARENA_ARRAY( _a , Node* , _max ) ),
    60   _inserts(0), _insert_limit( insert_limit() ),
    61   _look_probes(0), _lookup_hits(0), _lookup_misses(0),
    62   _delete_probes(0), _delete_hits(0), _delete_misses(0),
    63   _total_insert_probes(0), _total_inserts(0),
    64   _insert_probes(0), _grows(0) {
    65   // _sentinel must be in the current node space
    66   _sentinel = new (Compile::current()) ProjNode(NULL, TypeFunc::Control);
    67   memset(_table,0,sizeof(Node*)*_max);
    68 }
    70 //------------------------------NodeHash---------------------------------------
    71 NodeHash::NodeHash(NodeHash *nh) {
    72   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
    73   // just copy in all the fields
    74   *this = *nh;
    75   // nh->_sentinel must be in the current node space
    76 }
    78 void NodeHash::replace_with(NodeHash *nh) {
    79   debug_only(_table = (Node**)badAddress);   // interact correctly w/ operator=
    80   // just copy in all the fields
    81   *this = *nh;
    82   // nh->_sentinel must be in the current node space
    83 }
    85 //------------------------------hash_find--------------------------------------
    86 // Find in hash table
    87 Node *NodeHash::hash_find( const Node *n ) {
    88   // ((Node*)n)->set_hash( n->hash() );
    89   uint hash = n->hash();
    90   if (hash == Node::NO_HASH) {
    91     debug_only( _lookup_misses++ );
    92     return NULL;
    93   }
    94   uint key = hash & (_max-1);
    95   uint stride = key | 0x01;
    96   debug_only( _look_probes++ );
    97   Node *k = _table[key];        // Get hashed value
    98   if( !k ) {                    // ?Miss?
    99     debug_only( _lookup_misses++ );
   100     return NULL;                // Miss!
   101   }
   103   int op = n->Opcode();
   104   uint req = n->req();
   105   while( 1 ) {                  // While probing hash table
   106     if( k->req() == req &&      // Same count of inputs
   107         k->Opcode() == op ) {   // Same Opcode
   108       for( uint i=0; i<req; i++ )
   109         if( n->in(i)!=k->in(i)) // Different inputs?
   110           goto collision;       // "goto" is a speed hack...
   111       if( n->cmp(*k) ) {        // Check for any special bits
   112         debug_only( _lookup_hits++ );
   113         return k;               // Hit!
   114       }
   115     }
   116   collision:
   117     debug_only( _look_probes++ );
   118     key = (key + stride/*7*/) & (_max-1); // Stride through table with relative prime
   119     k = _table[key];            // Get hashed value
   120     if( !k ) {                  // ?Miss?
   121       debug_only( _lookup_misses++ );
   122       return NULL;              // Miss!
   123     }
   124   }
   125   ShouldNotReachHere();
   126   return NULL;
   127 }
   129 //------------------------------hash_find_insert-------------------------------
   130 // Find in hash table, insert if not already present
   131 // Used to preserve unique entries in hash table
   132 Node *NodeHash::hash_find_insert( Node *n ) {
   133   // n->set_hash( );
   134   uint hash = n->hash();
   135   if (hash == Node::NO_HASH) {
   136     debug_only( _lookup_misses++ );
   137     return NULL;
   138   }
   139   uint key = hash & (_max-1);
   140   uint stride = key | 0x01;     // stride must be relatively prime to table siz
   141   uint first_sentinel = 0;      // replace a sentinel if seen.
   142   debug_only( _look_probes++ );
   143   Node *k = _table[key];        // Get hashed value
   144   if( !k ) {                    // ?Miss?
   145     debug_only( _lookup_misses++ );
   146     _table[key] = n;            // Insert into table!
   147     debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   148     check_grow();               // Grow table if insert hit limit
   149     return NULL;                // Miss!
   150   }
   151   else if( k == _sentinel ) {
   152     first_sentinel = key;      // Can insert here
   153   }
   155   int op = n->Opcode();
   156   uint req = n->req();
   157   while( 1 ) {                  // While probing hash table
   158     if( k->req() == req &&      // Same count of inputs
   159         k->Opcode() == op ) {   // Same Opcode
   160       for( uint i=0; i<req; i++ )
   161         if( n->in(i)!=k->in(i)) // Different inputs?
   162           goto collision;       // "goto" is a speed hack...
   163       if( n->cmp(*k) ) {        // Check for any special bits
   164         debug_only( _lookup_hits++ );
   165         return k;               // Hit!
   166       }
   167     }
   168   collision:
   169     debug_only( _look_probes++ );
   170     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
   171     k = _table[key];            // Get hashed value
   172     if( !k ) {                  // ?Miss?
   173       debug_only( _lookup_misses++ );
   174       key = (first_sentinel == 0) ? key : first_sentinel; // ?saw sentinel?
   175       _table[key] = n;          // Insert into table!
   176       debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   177       check_grow();             // Grow table if insert hit limit
   178       return NULL;              // Miss!
   179     }
   180     else if( first_sentinel == 0 && k == _sentinel ) {
   181       first_sentinel = key;    // Can insert here
   182     }
   184   }
   185   ShouldNotReachHere();
   186   return NULL;
   187 }
   189 //------------------------------hash_insert------------------------------------
   190 // Insert into hash table
   191 void NodeHash::hash_insert( Node *n ) {
   192   // // "conflict" comments -- print nodes that conflict
   193   // bool conflict = false;
   194   // n->set_hash();
   195   uint hash = n->hash();
   196   if (hash == Node::NO_HASH) {
   197     return;
   198   }
   199   check_grow();
   200   uint key = hash & (_max-1);
   201   uint stride = key | 0x01;
   203   while( 1 ) {                  // While probing hash table
   204     debug_only( _insert_probes++ );
   205     Node *k = _table[key];      // Get hashed value
   206     if( !k || (k == _sentinel) ) break;       // Found a slot
   207     assert( k != n, "already inserted" );
   208     // if( PrintCompilation && PrintOptoStatistics && Verbose ) { tty->print("  conflict: "); k->dump(); conflict = true; }
   209     key = (key + stride) & (_max-1); // Stride through table w/ relative prime
   210   }
   211   _table[key] = n;              // Insert into table!
   212   debug_only(n->enter_hash_lock()); // Lock down the node while in the table.
   213   // if( conflict ) { n->dump(); }
   214 }
   216 //------------------------------hash_delete------------------------------------
   217 // Replace in hash table with sentinel
   218 bool NodeHash::hash_delete( const Node *n ) {
   219   Node *k;
   220   uint hash = n->hash();
   221   if (hash == Node::NO_HASH) {
   222     debug_only( _delete_misses++ );
   223     return false;
   224   }
   225   uint key = hash & (_max-1);
   226   uint stride = key | 0x01;
   227   debug_only( uint counter = 0; );
   228   for( ; /* (k != NULL) && (k != _sentinel) */; ) {
   229     debug_only( counter++ );
   230     debug_only( _delete_probes++ );
   231     k = _table[key];            // Get hashed value
   232     if( !k ) {                  // Miss?
   233       debug_only( _delete_misses++ );
   234 #ifdef ASSERT
   235       if( VerifyOpto ) {
   236         for( uint i=0; i < _max; i++ )
   237           assert( _table[i] != n, "changed edges with rehashing" );
   238       }
   239 #endif
   240       return false;             // Miss! Not in chain
   241     }
   242     else if( n == k ) {
   243       debug_only( _delete_hits++ );
   244       _table[key] = _sentinel;  // Hit! Label as deleted entry
   245       debug_only(((Node*)n)->exit_hash_lock()); // Unlock the node upon removal from table.
   246       return true;
   247     }
   248     else {
   249       // collision: move through table with prime offset
   250       key = (key + stride/*7*/) & (_max-1);
   251       assert( counter <= _insert_limit, "Cycle in hash-table");
   252     }
   253   }
   254   ShouldNotReachHere();
   255   return false;
   256 }
   258 //------------------------------round_up---------------------------------------
   259 // Round up to nearest power of 2
   260 uint NodeHash::round_up( uint x ) {
   261   x += (x>>2);                  // Add 25% slop
   262   if( x <16 ) return 16;        // Small stuff
   263   uint i=16;
   264   while( i < x ) i <<= 1;       // Double to fit
   265   return i;                     // Return hash table size
   266 }
   268 //------------------------------grow-------------------------------------------
   269 // Grow _table to next power of 2 and insert old entries
   270 void  NodeHash::grow() {
   271   // Record old state
   272   uint   old_max   = _max;
   273   Node **old_table = _table;
   274   // Construct new table with twice the space
   275   _grows++;
   276   _total_inserts       += _inserts;
   277   _total_insert_probes += _insert_probes;
   278   _inserts         = 0;
   279   _insert_probes   = 0;
   280   _max     = _max << 1;
   281   _table   = NEW_ARENA_ARRAY( _a , Node* , _max ); // (Node**)_a->Amalloc( _max * sizeof(Node*) );
   282   memset(_table,0,sizeof(Node*)*_max);
   283   _insert_limit = insert_limit();
   284   // Insert old entries into the new table
   285   for( uint i = 0; i < old_max; i++ ) {
   286     Node *m = *old_table++;
   287     if( !m || m == _sentinel ) continue;
   288     debug_only(m->exit_hash_lock()); // Unlock the node upon removal from old table.
   289     hash_insert(m);
   290   }
   291 }
   293 //------------------------------clear------------------------------------------
   294 // Clear all entries in _table to NULL but keep storage
   295 void  NodeHash::clear() {
   296 #ifdef ASSERT
   297   // Unlock all nodes upon removal from table.
   298   for (uint i = 0; i < _max; i++) {
   299     Node* n = _table[i];
   300     if (!n || n == _sentinel)  continue;
   301     n->exit_hash_lock();
   302   }
   303 #endif
   305   memset( _table, 0, _max * sizeof(Node*) );
   306 }
   308 //-----------------------remove_useless_nodes----------------------------------
   309 // Remove useless nodes from value table,
   310 // implementation does not depend on hash function
   311 void NodeHash::remove_useless_nodes(VectorSet &useful) {
   313   // Dead nodes in the hash table inherited from GVN should not replace
   314   // existing nodes, remove dead nodes.
   315   uint max = size();
   316   Node *sentinel_node = sentinel();
   317   for( uint i = 0; i < max; ++i ) {
   318     Node *n = at(i);
   319     if(n != NULL && n != sentinel_node && !useful.test(n->_idx)) {
   320       debug_only(n->exit_hash_lock()); // Unlock the node when removed
   321       _table[i] = sentinel_node;       // Replace with placeholder
   322     }
   323   }
   324 }
   327 void NodeHash::check_no_speculative_types() {
   328 #ifdef ASSERT
   329   uint max = size();
   330   Node *sentinel_node = sentinel();
   331   for (uint i = 0; i < max; ++i) {
   332     Node *n = at(i);
   333     if(n != NULL && n != sentinel_node && n->is_Type()) {
   334       TypeNode* tn = n->as_Type();
   335       const Type* t = tn->type();
   336       const Type* t_no_spec = t->remove_speculative();
   337       assert(t == t_no_spec, "dead node in hash table or missed node during speculative cleanup");
   338     }
   339   }
   340 #endif
   341 }
   343 #ifndef PRODUCT
   344 //------------------------------dump-------------------------------------------
   345 // Dump statistics for the hash table
   346 void NodeHash::dump() {
   347   _total_inserts       += _inserts;
   348   _total_insert_probes += _insert_probes;
   349   if (PrintCompilation && PrintOptoStatistics && Verbose && (_inserts > 0)) {
   350     if (WizardMode) {
   351       for (uint i=0; i<_max; i++) {
   352         if (_table[i])
   353           tty->print("%d/%d/%d ",i,_table[i]->hash()&(_max-1),_table[i]->_idx);
   354       }
   355     }
   356     tty->print("\nGVN Hash stats:  %d grows to %d max_size\n", _grows, _max);
   357     tty->print("  %d/%d (%8.1f%% full)\n", _inserts, _max, (double)_inserts/_max*100.0);
   358     tty->print("  %dp/(%dh+%dm) (%8.2f probes/lookup)\n", _look_probes, _lookup_hits, _lookup_misses, (double)_look_probes/(_lookup_hits+_lookup_misses));
   359     tty->print("  %dp/%di (%8.2f probes/insert)\n", _total_insert_probes, _total_inserts, (double)_total_insert_probes/_total_inserts);
   360     // sentinels increase lookup cost, but not insert cost
   361     assert((_lookup_misses+_lookup_hits)*4+100 >= _look_probes, "bad hash function");
   362     assert( _inserts+(_inserts>>3) < _max, "table too full" );
   363     assert( _inserts*3+100 >= _insert_probes, "bad hash function" );
   364   }
   365 }
   367 Node *NodeHash::find_index(uint idx) { // For debugging
   368   // Find an entry by its index value
   369   for( uint i = 0; i < _max; i++ ) {
   370     Node *m = _table[i];
   371     if( !m || m == _sentinel ) continue;
   372     if( m->_idx == (uint)idx ) return m;
   373   }
   374   return NULL;
   375 }
   376 #endif
   378 #ifdef ASSERT
   379 NodeHash::~NodeHash() {
   380   // Unlock all nodes upon destruction of table.
   381   if (_table != (Node**)badAddress)  clear();
   382 }
   384 void NodeHash::operator=(const NodeHash& nh) {
   385   // Unlock all nodes upon replacement of table.
   386   if (&nh == this)  return;
   387   if (_table != (Node**)badAddress)  clear();
   388   memcpy(this, &nh, sizeof(*this));
   389   // Do not increment hash_lock counts again.
   390   // Instead, be sure we never again use the source table.
   391   ((NodeHash*)&nh)->_table = (Node**)badAddress;
   392 }
   395 #endif
   398 //=============================================================================
   399 //------------------------------PhaseRemoveUseless-----------------------------
   400 // 1) Use a breadthfirst walk to collect useful nodes reachable from root.
   401 PhaseRemoveUseless::PhaseRemoveUseless( PhaseGVN *gvn, Unique_Node_List *worklist ) : Phase(Remove_Useless),
   402   _useful(Thread::current()->resource_area()) {
   404   // Implementation requires 'UseLoopSafepoints == true' and an edge from root
   405   // to each SafePointNode at a backward branch.  Inserted in add_safepoint().
   406   if( !UseLoopSafepoints || !OptoRemoveUseless ) return;
   408   // Identify nodes that are reachable from below, useful.
   409   C->identify_useful_nodes(_useful);
   410   // Update dead node list
   411   C->update_dead_node_list(_useful);
   413   // Remove all useless nodes from PhaseValues' recorded types
   414   // Must be done before disconnecting nodes to preserve hash-table-invariant
   415   gvn->remove_useless_nodes(_useful.member_set());
   417   // Remove all useless nodes from future worklist
   418   worklist->remove_useless_nodes(_useful.member_set());
   420   // Disconnect 'useless' nodes that are adjacent to useful nodes
   421   C->remove_useless_nodes(_useful);
   423   // Remove edges from "root" to each SafePoint at a backward branch.
   424   // They were inserted during parsing (see add_safepoint()) to make infinite
   425   // loops without calls or exceptions visible to root, i.e., useful.
   426   Node *root = C->root();
   427   if( root != NULL ) {
   428     for( uint i = root->req(); i < root->len(); ++i ) {
   429       Node *n = root->in(i);
   430       if( n != NULL && n->is_SafePoint() ) {
   431         root->rm_prec(i);
   432         --i;
   433       }
   434     }
   435   }
   436 }
   439 //=============================================================================
   440 //------------------------------PhaseTransform---------------------------------
   441 PhaseTransform::PhaseTransform( PhaseNumber pnum ) : Phase(pnum),
   442   _arena(Thread::current()->resource_area()),
   443   _nodes(_arena),
   444   _types(_arena)
   445 {
   446   init_con_caches();
   447 #ifndef PRODUCT
   448   clear_progress();
   449   clear_transforms();
   450   set_allow_progress(true);
   451 #endif
   452   // Force allocation for currently existing nodes
   453   _types.map(C->unique(), NULL);
   454 }
   456 //------------------------------PhaseTransform---------------------------------
   457 PhaseTransform::PhaseTransform( Arena *arena, PhaseNumber pnum ) : Phase(pnum),
   458   _arena(arena),
   459   _nodes(arena),
   460   _types(arena)
   461 {
   462   init_con_caches();
   463 #ifndef PRODUCT
   464   clear_progress();
   465   clear_transforms();
   466   set_allow_progress(true);
   467 #endif
   468   // Force allocation for currently existing nodes
   469   _types.map(C->unique(), NULL);
   470 }
   472 //------------------------------PhaseTransform---------------------------------
   473 // Initialize with previously generated type information
   474 PhaseTransform::PhaseTransform( PhaseTransform *pt, PhaseNumber pnum ) : Phase(pnum),
   475   _arena(pt->_arena),
   476   _nodes(pt->_nodes),
   477   _types(pt->_types)
   478 {
   479   init_con_caches();
   480 #ifndef PRODUCT
   481   clear_progress();
   482   clear_transforms();
   483   set_allow_progress(true);
   484 #endif
   485 }
   487 void PhaseTransform::init_con_caches() {
   488   memset(_icons,0,sizeof(_icons));
   489   memset(_lcons,0,sizeof(_lcons));
   490   memset(_zcons,0,sizeof(_zcons));
   491 }
   494 //--------------------------------find_int_type--------------------------------
   495 const TypeInt* PhaseTransform::find_int_type(Node* n) {
   496   if (n == NULL)  return NULL;
   497   // Call type_or_null(n) to determine node's type since we might be in
   498   // parse phase and call n->Value() may return wrong type.
   499   // (For example, a phi node at the beginning of loop parsing is not ready.)
   500   const Type* t = type_or_null(n);
   501   if (t == NULL)  return NULL;
   502   return t->isa_int();
   503 }
   506 //-------------------------------find_long_type--------------------------------
   507 const TypeLong* PhaseTransform::find_long_type(Node* n) {
   508   if (n == NULL)  return NULL;
   509   // (See comment above on type_or_null.)
   510   const Type* t = type_or_null(n);
   511   if (t == NULL)  return NULL;
   512   return t->isa_long();
   513 }
   516 #ifndef PRODUCT
   517 void PhaseTransform::dump_old2new_map() const {
   518   _nodes.dump();
   519 }
   521 void PhaseTransform::dump_new( uint nidx ) const {
   522   for( uint i=0; i<_nodes.Size(); i++ )
   523     if( _nodes[i] && _nodes[i]->_idx == nidx ) {
   524       _nodes[i]->dump();
   525       tty->cr();
   526       tty->print_cr("Old index= %d",i);
   527       return;
   528     }
   529   tty->print_cr("Node %d not found in the new indices", nidx);
   530 }
   532 //------------------------------dump_types-------------------------------------
   533 void PhaseTransform::dump_types( ) const {
   534   _types.dump();
   535 }
   537 //------------------------------dump_nodes_and_types---------------------------
   538 void PhaseTransform::dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl) {
   539   VectorSet visited(Thread::current()->resource_area());
   540   dump_nodes_and_types_recur( root, depth, only_ctrl, visited );
   541 }
   543 //------------------------------dump_nodes_and_types_recur---------------------
   544 void PhaseTransform::dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited) {
   545   if( !n ) return;
   546   if( depth == 0 ) return;
   547   if( visited.test_set(n->_idx) ) return;
   548   for( uint i=0; i<n->len(); i++ ) {
   549     if( only_ctrl && !(n->is_Region()) && i != TypeFunc::Control ) continue;
   550     dump_nodes_and_types_recur( n->in(i), depth-1, only_ctrl, visited );
   551   }
   552   n->dump();
   553   if (type_or_null(n) != NULL) {
   554     tty->print("      "); type(n)->dump(); tty->cr();
   555   }
   556 }
   558 #endif
   561 //=============================================================================
   562 //------------------------------PhaseValues------------------------------------
   563 // Set minimum table size to "255"
   564 PhaseValues::PhaseValues( Arena *arena, uint est_max_size ) : PhaseTransform(arena, GVN), _table(arena, est_max_size) {
   565   NOT_PRODUCT( clear_new_values(); )
   566 }
   568 //------------------------------PhaseValues------------------------------------
   569 // Set minimum table size to "255"
   570 PhaseValues::PhaseValues( PhaseValues *ptv ) : PhaseTransform( ptv, GVN ),
   571   _table(&ptv->_table) {
   572   NOT_PRODUCT( clear_new_values(); )
   573 }
   575 //------------------------------PhaseValues------------------------------------
   576 // Used by +VerifyOpto.  Clear out hash table but copy _types array.
   577 PhaseValues::PhaseValues( PhaseValues *ptv, const char *dummy ) : PhaseTransform( ptv, GVN ),
   578   _table(ptv->arena(),ptv->_table.size()) {
   579   NOT_PRODUCT( clear_new_values(); )
   580 }
   582 //------------------------------~PhaseValues-----------------------------------
   583 #ifndef PRODUCT
   584 PhaseValues::~PhaseValues() {
   585   _table.dump();
   587   // Statistics for value progress and efficiency
   588   if( PrintCompilation && Verbose && WizardMode ) {
   589     tty->print("\n%sValues: %d nodes ---> %d/%d (%d)",
   590       is_IterGVN() ? "Iter" : "    ", C->unique(), made_progress(), made_transforms(), made_new_values());
   591     if( made_transforms() != 0 ) {
   592       tty->print_cr("  ratio %f", made_progress()/(float)made_transforms() );
   593     } else {
   594       tty->cr();
   595     }
   596   }
   597 }
   598 #endif
   600 //------------------------------makecon----------------------------------------
   601 ConNode* PhaseTransform::makecon(const Type *t) {
   602   assert(t->singleton(), "must be a constant");
   603   assert(!t->empty() || t == Type::TOP, "must not be vacuous range");
   604   switch (t->base()) {  // fast paths
   605   case Type::Half:
   606   case Type::Top:  return (ConNode*) C->top();
   607   case Type::Int:  return intcon( t->is_int()->get_con() );
   608   case Type::Long: return longcon( t->is_long()->get_con() );
   609   }
   610   if (t->is_zero_type())
   611     return zerocon(t->basic_type());
   612   return uncached_makecon(t);
   613 }
   615 //--------------------------uncached_makecon-----------------------------------
   616 // Make an idealized constant - one of ConINode, ConPNode, etc.
   617 ConNode* PhaseValues::uncached_makecon(const Type *t) {
   618   assert(t->singleton(), "must be a constant");
   619   ConNode* x = ConNode::make(C, t);
   620   ConNode* k = (ConNode*)hash_find_insert(x); // Value numbering
   621   if (k == NULL) {
   622     set_type(x, t);             // Missed, provide type mapping
   623     GrowableArray<Node_Notes*>* nna = C->node_note_array();
   624     if (nna != NULL) {
   625       Node_Notes* loc = C->locate_node_notes(nna, x->_idx, true);
   626       loc->clear(); // do not put debug info on constants
   627     }
   628   } else {
   629     x->destruct();              // Hit, destroy duplicate constant
   630     x = k;                      // use existing constant
   631   }
   632   return x;
   633 }
   635 //------------------------------intcon-----------------------------------------
   636 // Fast integer constant.  Same as "transform(new ConINode(TypeInt::make(i)))"
   637 ConINode* PhaseTransform::intcon(int i) {
   638   // Small integer?  Check cache! Check that cached node is not dead
   639   if (i >= _icon_min && i <= _icon_max) {
   640     ConINode* icon = _icons[i-_icon_min];
   641     if (icon != NULL && icon->in(TypeFunc::Control) != NULL)
   642       return icon;
   643   }
   644   ConINode* icon = (ConINode*) uncached_makecon(TypeInt::make(i));
   645   assert(icon->is_Con(), "");
   646   if (i >= _icon_min && i <= _icon_max)
   647     _icons[i-_icon_min] = icon;   // Cache small integers
   648   return icon;
   649 }
   651 //------------------------------longcon----------------------------------------
   652 // Fast long constant.
   653 ConLNode* PhaseTransform::longcon(jlong l) {
   654   // Small integer?  Check cache! Check that cached node is not dead
   655   if (l >= _lcon_min && l <= _lcon_max) {
   656     ConLNode* lcon = _lcons[l-_lcon_min];
   657     if (lcon != NULL && lcon->in(TypeFunc::Control) != NULL)
   658       return lcon;
   659   }
   660   ConLNode* lcon = (ConLNode*) uncached_makecon(TypeLong::make(l));
   661   assert(lcon->is_Con(), "");
   662   if (l >= _lcon_min && l <= _lcon_max)
   663     _lcons[l-_lcon_min] = lcon;      // Cache small integers
   664   return lcon;
   665 }
   667 //------------------------------zerocon-----------------------------------------
   668 // Fast zero or null constant. Same as "transform(ConNode::make(Type::get_zero_type(bt)))"
   669 ConNode* PhaseTransform::zerocon(BasicType bt) {
   670   assert((uint)bt <= _zcon_max, "domain check");
   671   ConNode* zcon = _zcons[bt];
   672   if (zcon != NULL && zcon->in(TypeFunc::Control) != NULL)
   673     return zcon;
   674   zcon = (ConNode*) uncached_makecon(Type::get_zero_type(bt));
   675   _zcons[bt] = zcon;
   676   return zcon;
   677 }
   681 //=============================================================================
   682 //------------------------------transform--------------------------------------
   683 // Return a node which computes the same function as this node, but in a
   684 // faster or cheaper fashion.
   685 Node *PhaseGVN::transform( Node *n ) {
   686   return transform_no_reclaim(n);
   687 }
   689 //------------------------------transform--------------------------------------
   690 // Return a node which computes the same function as this node, but
   691 // in a faster or cheaper fashion.
   692 Node *PhaseGVN::transform_no_reclaim( Node *n ) {
   693   NOT_PRODUCT( set_transforms(); )
   695   // Apply the Ideal call in a loop until it no longer applies
   696   Node *k = n;
   697   NOT_PRODUCT( uint loop_count = 0; )
   698   while( 1 ) {
   699     Node *i = k->Ideal(this, /*can_reshape=*/false);
   700     if( !i ) break;
   701     assert( i->_idx >= k->_idx, "Idealize should return new nodes, use Identity to return old nodes" );
   702     k = i;
   703     assert(loop_count++ < K, "infinite loop in PhaseGVN::transform");
   704   }
   705   NOT_PRODUCT( if( loop_count != 0 ) { set_progress(); } )
   708   // If brand new node, make space in type array.
   709   ensure_type_or_null(k);
   711   // Since I just called 'Value' to compute the set of run-time values
   712   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
   713   // cache Value.  Later requests for the local phase->type of this Node can
   714   // use the cached Value instead of suffering with 'bottom_type'.
   715   const Type *t = k->Value(this); // Get runtime Value set
   716   assert(t != NULL, "value sanity");
   717   if (type_or_null(k) != t) {
   718 #ifndef PRODUCT
   719     // Do not count initial visit to node as a transformation
   720     if (type_or_null(k) == NULL) {
   721       inc_new_values();
   722       set_progress();
   723     }
   724 #endif
   725     set_type(k, t);
   726     // If k is a TypeNode, capture any more-precise type permanently into Node
   727     k->raise_bottom_type(t);
   728   }
   730   if( t->singleton() && !k->is_Con() ) {
   731     NOT_PRODUCT( set_progress(); )
   732     return makecon(t);          // Turn into a constant
   733   }
   735   // Now check for Identities
   736   Node *i = k->Identity(this);  // Look for a nearby replacement
   737   if( i != k ) {                // Found? Return replacement!
   738     NOT_PRODUCT( set_progress(); )
   739     return i;
   740   }
   742   // Global Value Numbering
   743   i = hash_find_insert(k);      // Insert if new
   744   if( i && (i != k) ) {
   745     // Return the pre-existing node
   746     NOT_PRODUCT( set_progress(); )
   747     return i;
   748   }
   750   // Return Idealized original
   751   return k;
   752 }
   754 #ifdef ASSERT
   755 //------------------------------dead_loop_check--------------------------------
   756 // Check for a simple dead loop when a data node references itself directly
   757 // or through an other data node excluding cons and phis.
   758 void PhaseGVN::dead_loop_check( Node *n ) {
   759   // Phi may reference itself in a loop
   760   if (n != NULL && !n->is_dead_loop_safe() && !n->is_CFG()) {
   761     // Do 2 levels check and only data inputs.
   762     bool no_dead_loop = true;
   763     uint cnt = n->req();
   764     for (uint i = 1; i < cnt && no_dead_loop; i++) {
   765       Node *in = n->in(i);
   766       if (in == n) {
   767         no_dead_loop = false;
   768       } else if (in != NULL && !in->is_dead_loop_safe()) {
   769         uint icnt = in->req();
   770         for (uint j = 1; j < icnt && no_dead_loop; j++) {
   771           if (in->in(j) == n || in->in(j) == in)
   772             no_dead_loop = false;
   773         }
   774       }
   775     }
   776     if (!no_dead_loop) n->dump(3);
   777     assert(no_dead_loop, "dead loop detected");
   778   }
   779 }
   780 #endif
   782 //=============================================================================
   783 //------------------------------PhaseIterGVN-----------------------------------
   784 // Initialize hash table to fresh and clean for +VerifyOpto
   785 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ) : PhaseGVN(igvn,dummy), _worklist( ),
   786                                                                       _stack(C->unique() >> 1),
   787                                                                       _delay_transform(false) {
   788 }
   790 //------------------------------PhaseIterGVN-----------------------------------
   791 // Initialize with previous PhaseIterGVN info; used by PhaseCCP
   792 PhaseIterGVN::PhaseIterGVN( PhaseIterGVN *igvn ) : PhaseGVN(igvn),
   793                                                    _worklist( igvn->_worklist ),
   794                                                    _stack( igvn->_stack ),
   795                                                    _delay_transform(igvn->_delay_transform)
   796 {
   797 }
   799 //------------------------------PhaseIterGVN-----------------------------------
   800 // Initialize with previous PhaseGVN info from Parser
   801 PhaseIterGVN::PhaseIterGVN( PhaseGVN *gvn ) : PhaseGVN(gvn),
   802                                               _worklist(*C->for_igvn()),
   803                                               _stack(C->unique() >> 1),
   804                                               _delay_transform(false)
   805 {
   806   uint max;
   808   // Dead nodes in the hash table inherited from GVN were not treated as
   809   // roots during def-use info creation; hence they represent an invisible
   810   // use.  Clear them out.
   811   max = _table.size();
   812   for( uint i = 0; i < max; ++i ) {
   813     Node *n = _table.at(i);
   814     if(n != NULL && n != _table.sentinel() && n->outcnt() == 0) {
   815       if( n->is_top() ) continue;
   816       assert( false, "Parse::remove_useless_nodes missed this node");
   817       hash_delete(n);
   818     }
   819   }
   821   // Any Phis or Regions on the worklist probably had uses that could not
   822   // make more progress because the uses were made while the Phis and Regions
   823   // were in half-built states.  Put all uses of Phis and Regions on worklist.
   824   max = _worklist.size();
   825   for( uint j = 0; j < max; j++ ) {
   826     Node *n = _worklist.at(j);
   827     uint uop = n->Opcode();
   828     if( uop == Op_Phi || uop == Op_Region ||
   829         n->is_Type() ||
   830         n->is_Mem() )
   831       add_users_to_worklist(n);
   832   }
   833 }
   836 #ifndef PRODUCT
   837 void PhaseIterGVN::verify_step(Node* n) {
   838   _verify_window[_verify_counter % _verify_window_size] = n;
   839   ++_verify_counter;
   840   ResourceMark rm;
   841   ResourceArea *area = Thread::current()->resource_area();
   842   VectorSet old_space(area), new_space(area);
   843   if (C->unique() < 1000 ||
   844       0 == _verify_counter % (C->unique() < 10000 ? 10 : 100)) {
   845     ++_verify_full_passes;
   846     Node::verify_recur(C->root(), -1, old_space, new_space);
   847   }
   848   const int verify_depth = 4;
   849   for ( int i = 0; i < _verify_window_size; i++ ) {
   850     Node* n = _verify_window[i];
   851     if ( n == NULL )  continue;
   852     if( n->in(0) == NodeSentinel ) {  // xform_idom
   853       _verify_window[i] = n->in(1);
   854       --i; continue;
   855     }
   856     // Typical fanout is 1-2, so this call visits about 6 nodes.
   857     Node::verify_recur(n, verify_depth, old_space, new_space);
   858   }
   859 }
   860 #endif
   863 //------------------------------init_worklist----------------------------------
   864 // Initialize worklist for each node.
   865 void PhaseIterGVN::init_worklist( Node *n ) {
   866   if( _worklist.member(n) ) return;
   867   _worklist.push(n);
   868   uint cnt = n->req();
   869   for( uint i =0 ; i < cnt; i++ ) {
   870     Node *m = n->in(i);
   871     if( m ) init_worklist(m);
   872   }
   873 }
   875 //------------------------------optimize---------------------------------------
   876 void PhaseIterGVN::optimize() {
   877   debug_only(uint num_processed  = 0;);
   878 #ifndef PRODUCT
   879   {
   880     _verify_counter = 0;
   881     _verify_full_passes = 0;
   882     for ( int i = 0; i < _verify_window_size; i++ ) {
   883       _verify_window[i] = NULL;
   884     }
   885   }
   886 #endif
   888 #ifdef ASSERT
   889   Node* prev = NULL;
   890   uint rep_cnt = 0;
   891 #endif
   892   uint loop_count = 0;
   894   // Pull from worklist; transform node;
   895   // If node has changed: update edge info and put uses on worklist.
   896   while( _worklist.size() ) {
   897     if (C->check_node_count(NodeLimitFudgeFactor * 2,
   898                             "out of nodes optimizing method")) {
   899       return;
   900     }
   901     Node *n  = _worklist.pop();
   902     if (++loop_count >= K * C->live_nodes()) {
   903       debug_only(n->dump(4);)
   904       assert(false, "infinite loop in PhaseIterGVN::optimize");
   905       C->record_method_not_compilable("infinite loop in PhaseIterGVN::optimize");
   906       return;
   907     }
   908 #ifdef ASSERT
   909     if (n == prev) {
   910       if (++rep_cnt > 3) {
   911         n->dump(4);
   912         assert(false, "loop in Ideal transformation");
   913       }
   914     } else {
   915       rep_cnt = 0;
   916     }
   917     prev = n;
   918 #endif
   919     if (TraceIterativeGVN && Verbose) {
   920       tty->print("  Pop ");
   921       NOT_PRODUCT( n->dump(); )
   922       debug_only(if( (num_processed++ % 100) == 0 ) _worklist.print_set();)
   923     }
   925     if (n->outcnt() != 0) {
   927 #ifndef PRODUCT
   928       uint wlsize = _worklist.size();
   929       const Type* oldtype = type_or_null(n);
   930 #endif //PRODUCT
   932       Node *nn = transform_old(n);
   934 #ifndef PRODUCT
   935       if (TraceIterativeGVN) {
   936         const Type* newtype = type_or_null(n);
   937         if (nn != n) {
   938           // print old node
   939           tty->print("< ");
   940           if (oldtype != newtype && oldtype != NULL) {
   941             oldtype->dump();
   942           }
   943           do { tty->print("\t"); } while (tty->position() < 16);
   944           tty->print("<");
   945           n->dump();
   946         }
   947         if (oldtype != newtype || nn != n) {
   948           // print new node and/or new type
   949           if (oldtype == NULL) {
   950             tty->print("* ");
   951           } else if (nn != n) {
   952             tty->print("> ");
   953           } else {
   954             tty->print("= ");
   955           }
   956           if (newtype == NULL) {
   957             tty->print("null");
   958           } else {
   959             newtype->dump();
   960           }
   961           do { tty->print("\t"); } while (tty->position() < 16);
   962           nn->dump();
   963         }
   964         if (Verbose && wlsize < _worklist.size()) {
   965           tty->print("  Push {");
   966           while (wlsize != _worklist.size()) {
   967             Node* pushed = _worklist.at(wlsize++);
   968             tty->print(" %d", pushed->_idx);
   969           }
   970           tty->print_cr(" }");
   971         }
   972       }
   973       if( VerifyIterativeGVN && nn != n ) {
   974         verify_step((Node*) NULL);  // ignore n, it might be subsumed
   975       }
   976 #endif
   977     } else if (!n->is_top()) {
   978       remove_dead_node(n);
   979     }
   980   }
   982 #ifndef PRODUCT
   983   C->verify_graph_edges();
   984   if( VerifyOpto && allow_progress() ) {
   985     // Must turn off allow_progress to enable assert and break recursion
   986     C->root()->verify();
   987     { // Check if any progress was missed using IterGVN
   988       // Def-Use info enables transformations not attempted in wash-pass
   989       // e.g. Region/Phi cleanup, ...
   990       // Null-check elision -- may not have reached fixpoint
   991       //                       do not propagate to dominated nodes
   992       ResourceMark rm;
   993       PhaseIterGVN igvn2(this,"Verify"); // Fresh and clean!
   994       // Fill worklist completely
   995       igvn2.init_worklist(C->root());
   997       igvn2.set_allow_progress(false);
   998       igvn2.optimize();
   999       igvn2.set_allow_progress(true);
  1002   if ( VerifyIterativeGVN && PrintOpto ) {
  1003     if ( _verify_counter == _verify_full_passes )
  1004       tty->print_cr("VerifyIterativeGVN: %d transforms and verify passes",
  1005                     (int) _verify_full_passes);
  1006     else
  1007       tty->print_cr("VerifyIterativeGVN: %d transforms, %d full verify passes",
  1008                   (int) _verify_counter, (int) _verify_full_passes);
  1010 #endif
  1014 //------------------register_new_node_with_optimizer---------------------------
  1015 // Register a new node with the optimizer.  Update the types array, the def-use
  1016 // info.  Put on worklist.
  1017 Node* PhaseIterGVN::register_new_node_with_optimizer(Node* n, Node* orig) {
  1018   set_type_bottom(n);
  1019   _worklist.push(n);
  1020   if (orig != NULL)  C->copy_node_notes_to(n, orig);
  1021   return n;
  1024 //------------------------------transform--------------------------------------
  1025 // Non-recursive: idealize Node 'n' with respect to its inputs and its value
  1026 Node *PhaseIterGVN::transform( Node *n ) {
  1027   if (_delay_transform) {
  1028     // Register the node but don't optimize for now
  1029     register_new_node_with_optimizer(n);
  1030     return n;
  1033   // If brand new node, make space in type array, and give it a type.
  1034   ensure_type_or_null(n);
  1035   if (type_or_null(n) == NULL) {
  1036     set_type_bottom(n);
  1039   return transform_old(n);
  1042 //------------------------------transform_old----------------------------------
  1043 Node *PhaseIterGVN::transform_old( Node *n ) {
  1044 #ifndef PRODUCT
  1045   debug_only(uint loop_count = 0;);
  1046   set_transforms();
  1047 #endif
  1048   // Remove 'n' from hash table in case it gets modified
  1049   _table.hash_delete(n);
  1050   if( VerifyIterativeGVN ) {
  1051    assert( !_table.find_index(n->_idx), "found duplicate entry in table");
  1054   // Apply the Ideal call in a loop until it no longer applies
  1055   Node *k = n;
  1056   DEBUG_ONLY(dead_loop_check(k);)
  1057   DEBUG_ONLY(bool is_new = (k->outcnt() == 0);)
  1058   Node *i = k->Ideal(this, /*can_reshape=*/true);
  1059   assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
  1060 #ifndef PRODUCT
  1061   if( VerifyIterativeGVN )
  1062     verify_step(k);
  1063   if( i && VerifyOpto ) {
  1064     if( !allow_progress() ) {
  1065       if (i->is_Add() && i->outcnt() == 1) {
  1066         // Switched input to left side because this is the only use
  1067       } else if( i->is_If() && (i->in(0) == NULL) ) {
  1068         // This IF is dead because it is dominated by an equivalent IF When
  1069         // dominating if changed, info is not propagated sparsely to 'this'
  1070         // Propagating this info further will spuriously identify other
  1071         // progress.
  1072         return i;
  1073       } else
  1074         set_progress();
  1075     } else
  1076       set_progress();
  1078 #endif
  1080   while( i ) {
  1081 #ifndef PRODUCT
  1082     debug_only( if( loop_count >= K ) i->dump(4); )
  1083     assert(loop_count < K, "infinite loop in PhaseIterGVN::transform");
  1084     debug_only( loop_count++; )
  1085 #endif
  1086     assert((i->_idx >= k->_idx) || i->is_top(), "Idealize should return new nodes, use Identity to return old nodes");
  1087     // Made a change; put users of original Node on worklist
  1088     add_users_to_worklist( k );
  1089     // Replacing root of transform tree?
  1090     if( k != i ) {
  1091       // Make users of old Node now use new.
  1092       subsume_node( k, i );
  1093       k = i;
  1095     DEBUG_ONLY(dead_loop_check(k);)
  1096     // Try idealizing again
  1097     DEBUG_ONLY(is_new = (k->outcnt() == 0);)
  1098     i = k->Ideal(this, /*can_reshape=*/true);
  1099     assert(i != k || is_new || i->outcnt() > 0, "don't return dead nodes");
  1100 #ifndef PRODUCT
  1101     if( VerifyIterativeGVN )
  1102       verify_step(k);
  1103     if( i && VerifyOpto ) set_progress();
  1104 #endif
  1107   // If brand new node, make space in type array.
  1108   ensure_type_or_null(k);
  1110   // See what kind of values 'k' takes on at runtime
  1111   const Type *t = k->Value(this);
  1112   assert(t != NULL, "value sanity");
  1114   // Since I just called 'Value' to compute the set of run-time values
  1115   // for this Node, and 'Value' is non-local (and therefore expensive) I'll
  1116   // cache Value.  Later requests for the local phase->type of this Node can
  1117   // use the cached Value instead of suffering with 'bottom_type'.
  1118   if (t != type_or_null(k)) {
  1119     NOT_PRODUCT( set_progress(); )
  1120     NOT_PRODUCT( inc_new_values();)
  1121     set_type(k, t);
  1122     // If k is a TypeNode, capture any more-precise type permanently into Node
  1123     k->raise_bottom_type(t);
  1124     // Move users of node to worklist
  1125     add_users_to_worklist( k );
  1128   // If 'k' computes a constant, replace it with a constant
  1129   if( t->singleton() && !k->is_Con() ) {
  1130     NOT_PRODUCT( set_progress(); )
  1131     Node *con = makecon(t);     // Make a constant
  1132     add_users_to_worklist( k );
  1133     subsume_node( k, con );     // Everybody using k now uses con
  1134     return con;
  1137   // Now check for Identities
  1138   i = k->Identity(this);        // Look for a nearby replacement
  1139   if( i != k ) {                // Found? Return replacement!
  1140     NOT_PRODUCT( set_progress(); )
  1141     add_users_to_worklist( k );
  1142     subsume_node( k, i );       // Everybody using k now uses i
  1143     return i;
  1146   // Global Value Numbering
  1147   i = hash_find_insert(k);      // Check for pre-existing node
  1148   if( i && (i != k) ) {
  1149     // Return the pre-existing node if it isn't dead
  1150     NOT_PRODUCT( set_progress(); )
  1151     add_users_to_worklist( k );
  1152     subsume_node( k, i );       // Everybody using k now uses i
  1153     return i;
  1156   // Return Idealized original
  1157   return k;
  1160 //---------------------------------saturate------------------------------------
  1161 const Type* PhaseIterGVN::saturate(const Type* new_type, const Type* old_type,
  1162                                    const Type* limit_type) const {
  1163   return new_type->narrow(old_type);
  1166 //------------------------------remove_globally_dead_node----------------------
  1167 // Kill a globally dead Node.  All uses are also globally dead and are
  1168 // aggressively trimmed.
  1169 void PhaseIterGVN::remove_globally_dead_node( Node *dead ) {
  1170   enum DeleteProgress {
  1171     PROCESS_INPUTS,
  1172     PROCESS_OUTPUTS
  1173   };
  1174   assert(_stack.is_empty(), "not empty");
  1175   _stack.push(dead, PROCESS_INPUTS);
  1177   while (_stack.is_nonempty()) {
  1178     dead = _stack.node();
  1179     uint progress_state = _stack.index();
  1180     assert(dead != C->root(), "killing root, eh?");
  1181     assert(!dead->is_top(), "add check for top when pushing");
  1182     NOT_PRODUCT( set_progress(); )
  1183     if (progress_state == PROCESS_INPUTS) {
  1184       // After following inputs, continue to outputs
  1185       _stack.set_index(PROCESS_OUTPUTS);
  1186       if (!dead->is_Con()) { // Don't kill cons but uses
  1187         bool recurse = false;
  1188         // Remove from hash table
  1189         _table.hash_delete( dead );
  1190         // Smash all inputs to 'dead', isolating him completely
  1191         for (uint i = 0; i < dead->req(); i++) {
  1192           Node *in = dead->in(i);
  1193           if (in != NULL && in != C->top()) {  // Points to something?
  1194             int nrep = dead->replace_edge(in, NULL);  // Kill edges
  1195             assert((nrep > 0), "sanity");
  1196             if (in->outcnt() == 0) { // Made input go dead?
  1197               _stack.push(in, PROCESS_INPUTS); // Recursively remove
  1198               recurse = true;
  1199             } else if (in->outcnt() == 1 &&
  1200                        in->has_special_unique_user()) {
  1201               _worklist.push(in->unique_out());
  1202             } else if (in->outcnt() <= 2 && dead->is_Phi()) {
  1203               if (in->Opcode() == Op_Region) {
  1204                 _worklist.push(in);
  1205               } else if (in->is_Store()) {
  1206                 DUIterator_Fast imax, i = in->fast_outs(imax);
  1207                 _worklist.push(in->fast_out(i));
  1208                 i++;
  1209                 if (in->outcnt() == 2) {
  1210                   _worklist.push(in->fast_out(i));
  1211                   i++;
  1213                 assert(!(i < imax), "sanity");
  1216             if (ReduceFieldZeroing && dead->is_Load() && i == MemNode::Memory &&
  1217                 in->is_Proj() && in->in(0) != NULL && in->in(0)->is_Initialize()) {
  1218               // A Load that directly follows an InitializeNode is
  1219               // going away. The Stores that follow are candidates
  1220               // again to be captured by the InitializeNode.
  1221               for (DUIterator_Fast jmax, j = in->fast_outs(jmax); j < jmax; j++) {
  1222                 Node *n = in->fast_out(j);
  1223                 if (n->is_Store()) {
  1224                   _worklist.push(n);
  1228           } // if (in != NULL && in != C->top())
  1229         } // for (uint i = 0; i < dead->req(); i++)
  1230         if (recurse) {
  1231           continue;
  1233       } // if (!dead->is_Con())
  1234     } // if (progress_state == PROCESS_INPUTS)
  1236     // Aggressively kill globally dead uses
  1237     // (Rather than pushing all the outs at once, we push one at a time,
  1238     // plus the parent to resume later, because of the indefinite number
  1239     // of edge deletions per loop trip.)
  1240     if (dead->outcnt() > 0) {
  1241       // Recursively remove output edges
  1242       _stack.push(dead->raw_out(0), PROCESS_INPUTS);
  1243     } else {
  1244       // Finished disconnecting all input and output edges.
  1245       _stack.pop();
  1246       // Remove dead node from iterative worklist
  1247       _worklist.remove(dead);
  1248       // Constant node that has no out-edges and has only one in-edge from
  1249       // root is usually dead. However, sometimes reshaping walk makes
  1250       // it reachable by adding use edges. So, we will NOT count Con nodes
  1251       // as dead to be conservative about the dead node count at any
  1252       // given time.
  1253       if (!dead->is_Con()) {
  1254         C->record_dead_node(dead->_idx);
  1256       if (dead->is_macro()) {
  1257         C->remove_macro_node(dead);
  1259       if (dead->is_expensive()) {
  1260         C->remove_expensive_node(dead);
  1263   } // while (_stack.is_nonempty())
  1266 //------------------------------subsume_node-----------------------------------
  1267 // Remove users from node 'old' and add them to node 'nn'.
  1268 void PhaseIterGVN::subsume_node( Node *old, Node *nn ) {
  1269   assert( old != hash_find(old), "should already been removed" );
  1270   assert( old != C->top(), "cannot subsume top node");
  1271   // Copy debug or profile information to the new version:
  1272   C->copy_node_notes_to(nn, old);
  1273   // Move users of node 'old' to node 'nn'
  1274   for (DUIterator_Last imin, i = old->last_outs(imin); i >= imin; ) {
  1275     Node* use = old->last_out(i);  // for each use...
  1276     // use might need re-hashing (but it won't if it's a new node)
  1277     bool is_in_table = _table.hash_delete( use );
  1278     // Update use-def info as well
  1279     // We remove all occurrences of old within use->in,
  1280     // so as to avoid rehashing any node more than once.
  1281     // The hash table probe swamps any outer loop overhead.
  1282     uint num_edges = 0;
  1283     for (uint jmax = use->len(), j = 0; j < jmax; j++) {
  1284       if (use->in(j) == old) {
  1285         use->set_req(j, nn);
  1286         ++num_edges;
  1289     // Insert into GVN hash table if unique
  1290     // If a duplicate, 'use' will be cleaned up when pulled off worklist
  1291     if( is_in_table ) {
  1292       hash_find_insert(use);
  1294     i -= num_edges;    // we deleted 1 or more copies of this edge
  1297   // Smash all inputs to 'old', isolating him completely
  1298   Node *temp = new (C) Node(1);
  1299   temp->init_req(0,nn);     // Add a use to nn to prevent him from dying
  1300   remove_dead_node( old );
  1301   temp->del_req(0);         // Yank bogus edge
  1302 #ifndef PRODUCT
  1303   if( VerifyIterativeGVN ) {
  1304     for ( int i = 0; i < _verify_window_size; i++ ) {
  1305       if ( _verify_window[i] == old )
  1306         _verify_window[i] = nn;
  1309 #endif
  1310   _worklist.remove(temp);   // this can be necessary
  1311   temp->destruct();         // reuse the _idx of this little guy
  1314 //------------------------------add_users_to_worklist--------------------------
  1315 void PhaseIterGVN::add_users_to_worklist0( Node *n ) {
  1316   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1317     _worklist.push(n->fast_out(i));  // Push on worklist
  1321 void PhaseIterGVN::add_users_to_worklist( Node *n ) {
  1322   add_users_to_worklist0(n);
  1324   // Move users of node to worklist
  1325   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1326     Node* use = n->fast_out(i); // Get use
  1328     if( use->is_Multi() ||      // Multi-definer?  Push projs on worklist
  1329         use->is_Store() )       // Enable store/load same address
  1330       add_users_to_worklist0(use);
  1332     // If we changed the receiver type to a call, we need to revisit
  1333     // the Catch following the call.  It's looking for a non-NULL
  1334     // receiver to know when to enable the regular fall-through path
  1335     // in addition to the NullPtrException path.
  1336     if (use->is_CallDynamicJava() && n == use->in(TypeFunc::Parms)) {
  1337       Node* p = use->as_CallDynamicJava()->proj_out(TypeFunc::Control);
  1338       if (p != NULL) {
  1339         add_users_to_worklist0(p);
  1343     if( use->is_Cmp() ) {       // Enable CMP/BOOL optimization
  1344       add_users_to_worklist(use); // Put Bool on worklist
  1345       // Look for the 'is_x2logic' pattern: "x ? : 0 : 1" and put the
  1346       // phi merging either 0 or 1 onto the worklist
  1347       if (use->outcnt() > 0) {
  1348         Node* bol = use->raw_out(0);
  1349         if (bol->outcnt() > 0) {
  1350           Node* iff = bol->raw_out(0);
  1351           if (iff->outcnt() == 2) {
  1352             Node* ifproj0 = iff->raw_out(0);
  1353             Node* ifproj1 = iff->raw_out(1);
  1354             if (ifproj0->outcnt() > 0 && ifproj1->outcnt() > 0) {
  1355               Node* region0 = ifproj0->raw_out(0);
  1356               Node* region1 = ifproj1->raw_out(0);
  1357               if( region0 == region1 )
  1358                 add_users_to_worklist0(region0);
  1365     uint use_op = use->Opcode();
  1366     // If changed Cast input, check Phi users for simple cycles
  1367     if( use->is_ConstraintCast() || use->is_CheckCastPP() ) {
  1368       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1369         Node* u = use->fast_out(i2);
  1370         if (u->is_Phi())
  1371           _worklist.push(u);
  1374     // If changed LShift inputs, check RShift users for useless sign-ext
  1375     if( use_op == Op_LShiftI ) {
  1376       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1377         Node* u = use->fast_out(i2);
  1378         if (u->Opcode() == Op_RShiftI)
  1379           _worklist.push(u);
  1382     // If changed AddI/SubI inputs, check CmpU for range check optimization.
  1383     if (use_op == Op_AddI || use_op == Op_SubI) {
  1384       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1385         Node* u = use->fast_out(i2);
  1386         if (u->is_Cmp() && (u->Opcode() == Op_CmpU)) {
  1387           _worklist.push(u);
  1391     // If changed AddP inputs, check Stores for loop invariant
  1392     if( use_op == Op_AddP ) {
  1393       for (DUIterator_Fast i2max, i2 = use->fast_outs(i2max); i2 < i2max; i2++) {
  1394         Node* u = use->fast_out(i2);
  1395         if (u->is_Mem())
  1396           _worklist.push(u);
  1399     // If changed initialization activity, check dependent Stores
  1400     if (use_op == Op_Allocate || use_op == Op_AllocateArray) {
  1401       InitializeNode* init = use->as_Allocate()->initialization();
  1402       if (init != NULL) {
  1403         Node* imem = init->proj_out(TypeFunc::Memory);
  1404         if (imem != NULL)  add_users_to_worklist0(imem);
  1407     if (use_op == Op_Initialize) {
  1408       Node* imem = use->as_Initialize()->proj_out(TypeFunc::Memory);
  1409       if (imem != NULL)  add_users_to_worklist0(imem);
  1414 /**
  1415  * Remove the speculative part of all types that we know of
  1416  */
  1417 void PhaseIterGVN::remove_speculative_types()  {
  1418   assert(UseTypeSpeculation, "speculation is off");
  1419   for (uint i = 0; i < _types.Size(); i++)  {
  1420     const Type* t = _types.fast_lookup(i);
  1421     if (t != NULL) {
  1422       _types.map(i, t->remove_speculative());
  1425   _table.check_no_speculative_types();
  1428 //=============================================================================
  1429 #ifndef PRODUCT
  1430 uint PhaseCCP::_total_invokes   = 0;
  1431 uint PhaseCCP::_total_constants = 0;
  1432 #endif
  1433 //------------------------------PhaseCCP---------------------------------------
  1434 // Conditional Constant Propagation, ala Wegman & Zadeck
  1435 PhaseCCP::PhaseCCP( PhaseIterGVN *igvn ) : PhaseIterGVN(igvn) {
  1436   NOT_PRODUCT( clear_constants(); )
  1437   assert( _worklist.size() == 0, "" );
  1438   // Clear out _nodes from IterGVN.  Must be clear to transform call.
  1439   _nodes.clear();               // Clear out from IterGVN
  1440   analyze();
  1443 #ifndef PRODUCT
  1444 //------------------------------~PhaseCCP--------------------------------------
  1445 PhaseCCP::~PhaseCCP() {
  1446   inc_invokes();
  1447   _total_constants += count_constants();
  1449 #endif
  1452 #ifdef ASSERT
  1453 static bool ccp_type_widens(const Type* t, const Type* t0) {
  1454   assert(t->meet(t0) == t, "Not monotonic");
  1455   switch (t->base() == t0->base() ? t->base() : Type::Top) {
  1456   case Type::Int:
  1457     assert(t0->isa_int()->_widen <= t->isa_int()->_widen, "widen increases");
  1458     break;
  1459   case Type::Long:
  1460     assert(t0->isa_long()->_widen <= t->isa_long()->_widen, "widen increases");
  1461     break;
  1463   return true;
  1465 #endif //ASSERT
  1467 //------------------------------analyze----------------------------------------
  1468 void PhaseCCP::analyze() {
  1469   // Initialize all types to TOP, optimistic analysis
  1470   for (int i = C->unique() - 1; i >= 0; i--)  {
  1471     _types.map(i,Type::TOP);
  1474   // Push root onto worklist
  1475   Unique_Node_List worklist;
  1476   worklist.push(C->root());
  1478   // Pull from worklist; compute new value; push changes out.
  1479   // This loop is the meat of CCP.
  1480   while( worklist.size() ) {
  1481     Node *n = worklist.pop();
  1482     const Type *t = n->Value(this);
  1483     if (t != type(n)) {
  1484       assert(ccp_type_widens(t, type(n)), "ccp type must widen");
  1485 #ifndef PRODUCT
  1486       if( TracePhaseCCP ) {
  1487         t->dump();
  1488         do { tty->print("\t"); } while (tty->position() < 16);
  1489         n->dump();
  1491 #endif
  1492       set_type(n, t);
  1493       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1494         Node* m = n->fast_out(i);   // Get user
  1495         if( m->is_Region() ) {  // New path to Region?  Must recheck Phis too
  1496           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1497             Node* p = m->fast_out(i2); // Propagate changes to uses
  1498             if( p->bottom_type() != type(p) ) // If not already bottomed out
  1499               worklist.push(p); // Propagate change to user
  1502         // If we changed the receiver type to a call, we need to revisit
  1503         // the Catch following the call.  It's looking for a non-NULL
  1504         // receiver to know when to enable the regular fall-through path
  1505         // in addition to the NullPtrException path
  1506         if (m->is_Call()) {
  1507           for (DUIterator_Fast i2max, i2 = m->fast_outs(i2max); i2 < i2max; i2++) {
  1508             Node* p = m->fast_out(i2);  // Propagate changes to uses
  1509             if (p->is_Proj() && p->as_Proj()->_con == TypeFunc::Control && p->outcnt() == 1)
  1510               worklist.push(p->unique_out());
  1513         if( m->bottom_type() != type(m) ) // If not already bottomed out
  1514           worklist.push(m);     // Propagate change to user
  1520 //------------------------------do_transform-----------------------------------
  1521 // Top level driver for the recursive transformer
  1522 void PhaseCCP::do_transform() {
  1523   // Correct leaves of new-space Nodes; they point to old-space.
  1524   C->set_root( transform(C->root())->as_Root() );
  1525   assert( C->top(),  "missing TOP node" );
  1526   assert( C->root(), "missing root" );
  1529 //------------------------------transform--------------------------------------
  1530 // Given a Node in old-space, clone him into new-space.
  1531 // Convert any of his old-space children into new-space children.
  1532 Node *PhaseCCP::transform( Node *n ) {
  1533   Node *new_node = _nodes[n->_idx]; // Check for transformed node
  1534   if( new_node != NULL )
  1535     return new_node;                // Been there, done that, return old answer
  1536   new_node = transform_once(n);     // Check for constant
  1537   _nodes.map( n->_idx, new_node );  // Flag as having been cloned
  1539   // Allocate stack of size _nodes.Size()/2 to avoid frequent realloc
  1540   GrowableArray <Node *> trstack(C->unique() >> 1);
  1542   trstack.push(new_node);           // Process children of cloned node
  1543   while ( trstack.is_nonempty() ) {
  1544     Node *clone = trstack.pop();
  1545     uint cnt = clone->req();
  1546     for( uint i = 0; i < cnt; i++ ) {          // For all inputs do
  1547       Node *input = clone->in(i);
  1548       if( input != NULL ) {                    // Ignore NULLs
  1549         Node *new_input = _nodes[input->_idx]; // Check for cloned input node
  1550         if( new_input == NULL ) {
  1551           new_input = transform_once(input);   // Check for constant
  1552           _nodes.map( input->_idx, new_input );// Flag as having been cloned
  1553           trstack.push(new_input);
  1555         assert( new_input == clone->in(i), "insanity check");
  1559   return new_node;
  1563 //------------------------------transform_once---------------------------------
  1564 // For PhaseCCP, transformation is IDENTITY unless Node computed a constant.
  1565 Node *PhaseCCP::transform_once( Node *n ) {
  1566   const Type *t = type(n);
  1567   // Constant?  Use constant Node instead
  1568   if( t->singleton() ) {
  1569     Node *nn = n;               // Default is to return the original constant
  1570     if( t == Type::TOP ) {
  1571       // cache my top node on the Compile instance
  1572       if( C->cached_top_node() == NULL || C->cached_top_node()->in(0) == NULL ) {
  1573         C->set_cached_top_node( ConNode::make(C, Type::TOP) );
  1574         set_type(C->top(), Type::TOP);
  1576       nn = C->top();
  1578     if( !n->is_Con() ) {
  1579       if( t != Type::TOP ) {
  1580         nn = makecon(t);        // ConNode::make(t);
  1581         NOT_PRODUCT( inc_constants(); )
  1582       } else if( n->is_Region() ) { // Unreachable region
  1583         // Note: nn == C->top()
  1584         n->set_req(0, NULL);        // Cut selfreference
  1585         // Eagerly remove dead phis to avoid phis copies creation.
  1586         for (DUIterator i = n->outs(); n->has_out(i); i++) {
  1587           Node* m = n->out(i);
  1588           if( m->is_Phi() ) {
  1589             assert(type(m) == Type::TOP, "Unreachable region should not have live phis.");
  1590             replace_node(m, nn);
  1591             --i; // deleted this phi; rescan starting with next position
  1595       replace_node(n,nn);       // Update DefUse edges for new constant
  1597     return nn;
  1600   // If x is a TypeNode, capture any more-precise type permanently into Node
  1601   if (t != n->bottom_type()) {
  1602     hash_delete(n);             // changing bottom type may force a rehash
  1603     n->raise_bottom_type(t);
  1604     _worklist.push(n);          // n re-enters the hash table via the worklist
  1607   // Idealize graph using DU info.  Must clone() into new-space.
  1608   // DU info is generally used to show profitability, progress or safety
  1609   // (but generally not needed for correctness).
  1610   Node *nn = n->Ideal_DU_postCCP(this);
  1612   // TEMPORARY fix to ensure that 2nd GVN pass eliminates NULL checks
  1613   switch( n->Opcode() ) {
  1614   case Op_FastLock:      // Revisit FastLocks for lock coarsening
  1615   case Op_If:
  1616   case Op_CountedLoopEnd:
  1617   case Op_Region:
  1618   case Op_Loop:
  1619   case Op_CountedLoop:
  1620   case Op_Conv2B:
  1621   case Op_Opaque1:
  1622   case Op_Opaque2:
  1623     _worklist.push(n);
  1624     break;
  1625   default:
  1626     break;
  1628   if( nn ) {
  1629     _worklist.push(n);
  1630     // Put users of 'n' onto worklist for second igvn transform
  1631     add_users_to_worklist(n);
  1632     return nn;
  1635   return  n;
  1638 //---------------------------------saturate------------------------------------
  1639 const Type* PhaseCCP::saturate(const Type* new_type, const Type* old_type,
  1640                                const Type* limit_type) const {
  1641   const Type* wide_type = new_type->widen(old_type, limit_type);
  1642   if (wide_type != new_type) {          // did we widen?
  1643     // If so, we may have widened beyond the limit type.  Clip it back down.
  1644     new_type = wide_type->filter(limit_type);
  1646   return new_type;
  1649 //------------------------------print_statistics-------------------------------
  1650 #ifndef PRODUCT
  1651 void PhaseCCP::print_statistics() {
  1652   tty->print_cr("CCP: %d  constants found: %d", _total_invokes, _total_constants);
  1654 #endif
  1657 //=============================================================================
  1658 #ifndef PRODUCT
  1659 uint PhasePeephole::_total_peepholes = 0;
  1660 #endif
  1661 //------------------------------PhasePeephole----------------------------------
  1662 // Conditional Constant Propagation, ala Wegman & Zadeck
  1663 PhasePeephole::PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg )
  1664   : PhaseTransform(Peephole), _regalloc(regalloc), _cfg(cfg) {
  1665   NOT_PRODUCT( clear_peepholes(); )
  1668 #ifndef PRODUCT
  1669 //------------------------------~PhasePeephole---------------------------------
  1670 PhasePeephole::~PhasePeephole() {
  1671   _total_peepholes += count_peepholes();
  1673 #endif
  1675 //------------------------------transform--------------------------------------
  1676 Node *PhasePeephole::transform( Node *n ) {
  1677   ShouldNotCallThis();
  1678   return NULL;
  1681 //------------------------------do_transform-----------------------------------
  1682 void PhasePeephole::do_transform() {
  1683   bool method_name_not_printed = true;
  1685   // Examine each basic block
  1686   for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
  1687     Block* block = _cfg.get_block(block_number);
  1688     bool block_not_printed = true;
  1690     // and each instruction within a block
  1691     uint end_index = block->number_of_nodes();
  1692     // block->end_idx() not valid after PhaseRegAlloc
  1693     for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
  1694       Node     *n = block->get_node(instruction_index);
  1695       if( n->is_Mach() ) {
  1696         MachNode *m = n->as_Mach();
  1697         int deleted_count = 0;
  1698         // check for peephole opportunities
  1699         MachNode *m2 = m->peephole( block, instruction_index, _regalloc, deleted_count, C );
  1700         if( m2 != NULL ) {
  1701 #ifndef PRODUCT
  1702           if( PrintOptoPeephole ) {
  1703             // Print method, first time only
  1704             if( C->method() && method_name_not_printed ) {
  1705               C->method()->print_short_name(); tty->cr();
  1706               method_name_not_printed = false;
  1708             // Print this block
  1709             if( Verbose && block_not_printed) {
  1710               tty->print_cr("in block");
  1711               block->dump();
  1712               block_not_printed = false;
  1714             // Print instructions being deleted
  1715             for( int i = (deleted_count - 1); i >= 0; --i ) {
  1716               block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
  1718             tty->print_cr("replaced with");
  1719             // Print new instruction
  1720             m2->format(_regalloc);
  1721             tty->print("\n\n");
  1723 #endif
  1724           // Remove old nodes from basic block and update instruction_index
  1725           // (old nodes still exist and may have edges pointing to them
  1726           //  as register allocation info is stored in the allocator using
  1727           //  the node index to live range mappings.)
  1728           uint safe_instruction_index = (instruction_index - deleted_count);
  1729           for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
  1730             block->remove_node( instruction_index );
  1732           // install new node after safe_instruction_index
  1733           block->insert_node(m2, safe_instruction_index + 1);
  1734           end_index = block->number_of_nodes() - 1; // Recompute new block size
  1735           NOT_PRODUCT( inc_peepholes(); )
  1742 //------------------------------print_statistics-------------------------------
  1743 #ifndef PRODUCT
  1744 void PhasePeephole::print_statistics() {
  1745   tty->print_cr("Peephole: peephole rules applied: %d",  _total_peepholes);
  1747 #endif
  1750 //=============================================================================
  1751 //------------------------------set_req_X--------------------------------------
  1752 void Node::set_req_X( uint i, Node *n, PhaseIterGVN *igvn ) {
  1753   assert( is_not_dead(n), "can not use dead node");
  1754   assert( igvn->hash_find(this) != this, "Need to remove from hash before changing edges" );
  1755   Node *old = in(i);
  1756   set_req(i, n);
  1758   // old goes dead?
  1759   if( old ) {
  1760     switch (old->outcnt()) {
  1761     case 0:
  1762       // Put into the worklist to kill later. We do not kill it now because the
  1763       // recursive kill will delete the current node (this) if dead-loop exists
  1764       if (!old->is_top())
  1765         igvn->_worklist.push( old );
  1766       break;
  1767     case 1:
  1768       if( old->is_Store() || old->has_special_unique_user() )
  1769         igvn->add_users_to_worklist( old );
  1770       break;
  1771     case 2:
  1772       if( old->is_Store() )
  1773         igvn->add_users_to_worklist( old );
  1774       if( old->Opcode() == Op_Region )
  1775         igvn->_worklist.push(old);
  1776       break;
  1777     case 3:
  1778       if( old->Opcode() == Op_Region ) {
  1779         igvn->_worklist.push(old);
  1780         igvn->add_users_to_worklist( old );
  1782       break;
  1783     default:
  1784       break;
  1790 //-------------------------------replace_by-----------------------------------
  1791 // Using def-use info, replace one node for another.  Follow the def-use info
  1792 // to all users of the OLD node.  Then make all uses point to the NEW node.
  1793 void Node::replace_by(Node *new_node) {
  1794   assert(!is_top(), "top node has no DU info");
  1795   for (DUIterator_Last imin, i = last_outs(imin); i >= imin; ) {
  1796     Node* use = last_out(i);
  1797     uint uses_found = 0;
  1798     for (uint j = 0; j < use->len(); j++) {
  1799       if (use->in(j) == this) {
  1800         if (j < use->req())
  1801               use->set_req(j, new_node);
  1802         else  use->set_prec(j, new_node);
  1803         uses_found++;
  1806     i -= uses_found;    // we deleted 1 or more copies of this edge
  1810 //=============================================================================
  1811 //-----------------------------------------------------------------------------
  1812 void Type_Array::grow( uint i ) {
  1813   if( !_max ) {
  1814     _max = 1;
  1815     _types = (const Type**)_a->Amalloc( _max * sizeof(Type*) );
  1816     _types[0] = NULL;
  1818   uint old = _max;
  1819   while( i >= _max ) _max <<= 1;        // Double to fit
  1820   _types = (const Type**)_a->Arealloc( _types, old*sizeof(Type*),_max*sizeof(Type*));
  1821   memset( &_types[old], 0, (_max-old)*sizeof(Type*) );
  1824 //------------------------------dump-------------------------------------------
  1825 #ifndef PRODUCT
  1826 void Type_Array::dump() const {
  1827   uint max = Size();
  1828   for( uint i = 0; i < max; i++ ) {
  1829     if( _types[i] != NULL ) {
  1830       tty->print("  %d\t== ", i); _types[i]->dump(); tty->cr();
  1834 #endif

mercurial