src/share/vm/opto/output.cpp

Thu, 31 Jul 2014 19:59:36 +0200

author
roland
date
Thu, 31 Jul 2014 19:59:36 +0200
changeset 7003
69ea58782b1a
parent 7001
b6a8cc1e0d92
child 7161
fc2c88ea11a9
permissions
-rw-r--r--

8054054: 8040121 is broken
Summary: C++ code pattern from 8040121 is incorrect
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.inline.hpp"
    27 #include "code/compiledIC.hpp"
    28 #include "code/debugInfo.hpp"
    29 #include "code/debugInfoRec.hpp"
    30 #include "compiler/compileBroker.hpp"
    31 #include "compiler/oopMap.hpp"
    32 #include "memory/allocation.inline.hpp"
    33 #include "opto/callnode.hpp"
    34 #include "opto/cfgnode.hpp"
    35 #include "opto/locknode.hpp"
    36 #include "opto/machnode.hpp"
    37 #include "opto/output.hpp"
    38 #include "opto/regalloc.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "opto/subnode.hpp"
    41 #include "opto/type.hpp"
    42 #include "runtime/handles.inline.hpp"
    43 #include "utilities/xmlstream.hpp"
    45 #ifndef PRODUCT
    46 #define DEBUG_ARG(x) , x
    47 #else
    48 #define DEBUG_ARG(x)
    49 #endif
    51 // Convert Nodes to instruction bits and pass off to the VM
    52 void Compile::Output() {
    53   // RootNode goes
    54   assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
    56   // The number of new nodes (mostly MachNop) is proportional to
    57   // the number of java calls and inner loops which are aligned.
    58   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
    59                             C->inner_loops()*(OptoLoopAlignment-1)),
    60                            "out of nodes before code generation" ) ) {
    61     return;
    62   }
    63   // Make sure I can find the Start Node
    64   Block *entry = _cfg->get_block(1);
    65   Block *broot = _cfg->get_root_block();
    67   const StartNode *start = entry->head()->as_Start();
    69   // Replace StartNode with prolog
    70   MachPrologNode *prolog = new (this) MachPrologNode();
    71   entry->map_node(prolog, 0);
    72   _cfg->map_node_to_block(prolog, entry);
    73   _cfg->unmap_node_from_block(start); // start is no longer in any block
    75   // Virtual methods need an unverified entry point
    77   if( is_osr_compilation() ) {
    78     if( PoisonOSREntry ) {
    79       // TODO: Should use a ShouldNotReachHereNode...
    80       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
    81     }
    82   } else {
    83     if( _method && !_method->flags().is_static() ) {
    84       // Insert unvalidated entry point
    85       _cfg->insert( broot, 0, new (this) MachUEPNode() );
    86     }
    88   }
    91   // Break before main entry point
    92   if( (_method && _method->break_at_execute())
    93 #ifndef PRODUCT
    94     ||(OptoBreakpoint && is_method_compilation())
    95     ||(OptoBreakpointOSR && is_osr_compilation())
    96     ||(OptoBreakpointC2R && !_method)
    97 #endif
    98     ) {
    99     // checking for _method means that OptoBreakpoint does not apply to
   100     // runtime stubs or frame converters
   101     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
   102   }
   104   // Insert epilogs before every return
   105   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
   106     Block* block = _cfg->get_block(i);
   107     if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
   108       Node* m = block->end();
   109       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
   110         MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
   111         block->add_inst(epilog);
   112         _cfg->map_node_to_block(epilog, block);
   113       }
   114     }
   115   }
   117 # ifdef ENABLE_ZAP_DEAD_LOCALS
   118   if (ZapDeadCompiledLocals) {
   119     Insert_zap_nodes();
   120   }
   121 # endif
   123   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
   124   blk_starts[0] = 0;
   126   // Initialize code buffer and process short branches.
   127   CodeBuffer* cb = init_buffer(blk_starts);
   129   if (cb == NULL || failing()) {
   130     return;
   131   }
   133   ScheduleAndBundle();
   135 #ifndef PRODUCT
   136   if (trace_opto_output()) {
   137     tty->print("\n---- After ScheduleAndBundle ----\n");
   138     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
   139       tty->print("\nBB#%03d:\n", i);
   140       Block* block = _cfg->get_block(i);
   141       for (uint j = 0; j < block->number_of_nodes(); j++) {
   142         Node* n = block->get_node(j);
   143         OptoReg::Name reg = _regalloc->get_reg_first(n);
   144         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
   145         n->dump();
   146       }
   147     }
   148   }
   149 #endif
   151   if (failing()) {
   152     return;
   153   }
   155   BuildOopMaps();
   157   if (failing())  {
   158     return;
   159   }
   161   fill_buffer(cb, blk_starts);
   162 }
   164 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
   165   // Determine if we need to generate a stack overflow check.
   166   // Do it if the method is not a stub function and
   167   // has java calls or has frame size > vm_page_size/8.
   168   // The debug VM checks that deoptimization doesn't trigger an
   169   // unexpected stack overflow (compiled method stack banging should
   170   // guarantee it doesn't happen) so we always need the stack bang in
   171   // a debug VM.
   172   return (UseStackBanging && stub_function() == NULL &&
   173           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
   174            DEBUG_ONLY(|| true)));
   175 }
   177 bool Compile::need_register_stack_bang() const {
   178   // Determine if we need to generate a register stack overflow check.
   179   // This is only used on architectures which have split register
   180   // and memory stacks (ie. IA64).
   181   // Bang if the method is not a stub function and has java calls
   182   return (stub_function() == NULL && has_java_calls());
   183 }
   185 # ifdef ENABLE_ZAP_DEAD_LOCALS
   188 // In order to catch compiler oop-map bugs, we have implemented
   189 // a debugging mode called ZapDeadCompilerLocals.
   190 // This mode causes the compiler to insert a call to a runtime routine,
   191 // "zap_dead_locals", right before each place in compiled code
   192 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
   193 // The runtime routine checks that locations mapped as oops are really
   194 // oops, that locations mapped as values do not look like oops,
   195 // and that locations mapped as dead are not used later
   196 // (by zapping them to an invalid address).
   198 int Compile::_CompiledZap_count = 0;
   200 void Compile::Insert_zap_nodes() {
   201   bool skip = false;
   204   // Dink with static counts because code code without the extra
   205   // runtime calls is MUCH faster for debugging purposes
   207        if ( CompileZapFirst  ==  0  ) ; // nothing special
   208   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
   209   else if ( CompileZapFirst  == CompiledZap_count() )
   210     warning("starting zap compilation after skipping");
   212        if ( CompileZapLast  ==  -1  ) ; // nothing special
   213   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
   214   else if ( CompileZapLast  ==  CompiledZap_count() )
   215     warning("about to compile last zap");
   217   ++_CompiledZap_count; // counts skipped zaps, too
   219   if ( skip )  return;
   222   if ( _method == NULL )
   223     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
   225   // Insert call to zap runtime stub before every node with an oop map
   226   for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
   227     Block *b = _cfg->get_block(i);
   228     for ( uint j = 0;  j < b->number_of_nodes();  ++j ) {
   229       Node *n = b->get_node(j);
   231       // Determining if we should insert a zap-a-lot node in output.
   232       // We do that for all nodes that has oopmap info, except for calls
   233       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
   234       // and expect the C code to reset it.  Hence, there can be no safepoints between
   235       // the inlined-allocation and the call to new_Java, etc.
   236       // We also cannot zap monitor calls, as they must hold the microlock
   237       // during the call to Zap, which also wants to grab the microlock.
   238       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
   239       if ( insert ) { // it is MachSafePoint
   240         if ( !n->is_MachCall() ) {
   241           insert = false;
   242         } else if ( n->is_MachCall() ) {
   243           MachCallNode* call = n->as_MachCall();
   244           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
   245               call->entry_point() == OptoRuntime::new_array_Java() ||
   246               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
   247               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
   248               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
   249               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
   250               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
   251               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
   252               ) {
   253             insert = false;
   254           }
   255         }
   256         if (insert) {
   257           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
   258           b->insert_node(zap, j);
   259           _cfg->map_node_to_block(zap, b);
   260           ++j;
   261         }
   262       }
   263     }
   264   }
   265 }
   268 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
   269   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
   270   CallStaticJavaNode* ideal_node =
   271     new (this) CallStaticJavaNode( tf,
   272          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
   273                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
   274   // We need to copy the OopMap from the site we're zapping at.
   275   // We have to make a copy, because the zap site might not be
   276   // a call site, and zap_dead is a call site.
   277   OopMap* clone = node_to_check->oop_map()->deep_copy();
   279   // Add the cloned OopMap to the zap node
   280   ideal_node->set_oop_map(clone);
   281   return _matcher->match_sfpt(ideal_node);
   282 }
   284 bool Compile::is_node_getting_a_safepoint( Node* n) {
   285   // This code duplicates the logic prior to the call of add_safepoint
   286   // below in this file.
   287   if( n->is_MachSafePoint() ) return true;
   288   return false;
   289 }
   291 # endif // ENABLE_ZAP_DEAD_LOCALS
   293 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
   294 // of a loop. When aligning a loop we need to provide enough instructions
   295 // in cpu's fetch buffer to feed decoders. The loop alignment could be
   296 // avoided if we have enough instructions in fetch buffer at the head of a loop.
   297 // By default, the size is set to 999999 by Block's constructor so that
   298 // a loop will be aligned if the size is not reset here.
   299 //
   300 // Note: Mach instructions could contain several HW instructions
   301 // so the size is estimated only.
   302 //
   303 void Compile::compute_loop_first_inst_sizes() {
   304   // The next condition is used to gate the loop alignment optimization.
   305   // Don't aligned a loop if there are enough instructions at the head of a loop
   306   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
   307   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
   308   // equal to 11 bytes which is the largest address NOP instruction.
   309   if (MaxLoopPad < OptoLoopAlignment - 1) {
   310     uint last_block = _cfg->number_of_blocks() - 1;
   311     for (uint i = 1; i <= last_block; i++) {
   312       Block* block = _cfg->get_block(i);
   313       // Check the first loop's block which requires an alignment.
   314       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
   315         uint sum_size = 0;
   316         uint inst_cnt = NumberOfLoopInstrToAlign;
   317         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   319         // Check subsequent fallthrough blocks if the loop's first
   320         // block(s) does not have enough instructions.
   321         Block *nb = block;
   322         while(inst_cnt > 0 &&
   323               i < last_block &&
   324               !_cfg->get_block(i + 1)->has_loop_alignment() &&
   325               !nb->has_successor(block)) {
   326           i++;
   327           nb = _cfg->get_block(i);
   328           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
   329         } // while( inst_cnt > 0 && i < last_block  )
   331         block->set_first_inst_size(sum_size);
   332       } // f( b->head()->is_Loop() )
   333     } // for( i <= last_block )
   334   } // if( MaxLoopPad < OptoLoopAlignment-1 )
   335 }
   337 // The architecture description provides short branch variants for some long
   338 // branch instructions. Replace eligible long branches with short branches.
   339 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
   340   // Compute size of each block, method size, and relocation information size
   341   uint nblocks  = _cfg->number_of_blocks();
   343   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
   344   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
   345   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
   347   // Collect worst case block paddings
   348   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
   349   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
   351   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
   352   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
   354   bool has_short_branch_candidate = false;
   356   // Initialize the sizes to 0
   357   code_size  = 0;          // Size in bytes of generated code
   358   stub_size  = 0;          // Size in bytes of all stub entries
   359   // Size in bytes of all relocation entries, including those in local stubs.
   360   // Start with 2-bytes of reloc info for the unvalidated entry point
   361   reloc_size = 1;          // Number of relocation entries
   363   // Make three passes.  The first computes pessimistic blk_starts,
   364   // relative jmp_offset and reloc_size information.  The second performs
   365   // short branch substitution using the pessimistic sizing.  The
   366   // third inserts nops where needed.
   368   // Step one, perform a pessimistic sizing pass.
   369   uint last_call_adr = max_uint;
   370   uint last_avoid_back_to_back_adr = max_uint;
   371   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
   372   for (uint i = 0; i < nblocks; i++) { // For all blocks
   373     Block* block = _cfg->get_block(i);
   375     // During short branch replacement, we store the relative (to blk_starts)
   376     // offset of jump in jmp_offset, rather than the absolute offset of jump.
   377     // This is so that we do not need to recompute sizes of all nodes when
   378     // we compute correct blk_starts in our next sizing pass.
   379     jmp_offset[i] = 0;
   380     jmp_size[i]   = 0;
   381     jmp_nidx[i]   = -1;
   382     DEBUG_ONLY( jmp_target[i] = 0; )
   383     DEBUG_ONLY( jmp_rule[i]   = 0; )
   385     // Sum all instruction sizes to compute block size
   386     uint last_inst = block->number_of_nodes();
   387     uint blk_size = 0;
   388     for (uint j = 0; j < last_inst; j++) {
   389       Node* nj = block->get_node(j);
   390       // Handle machine instruction nodes
   391       if (nj->is_Mach()) {
   392         MachNode *mach = nj->as_Mach();
   393         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
   394         reloc_size += mach->reloc();
   395         if (mach->is_MachCall()) {
   396           // add size information for trampoline stub
   397           // class CallStubImpl is platform-specific and defined in the *.ad files.
   398           stub_size  += CallStubImpl::size_call_trampoline();
   399           reloc_size += CallStubImpl::reloc_call_trampoline();
   401           MachCallNode *mcall = mach->as_MachCall();
   402           // This destination address is NOT PC-relative
   404           mcall->method_set((intptr_t)mcall->entry_point());
   406           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
   407             stub_size  += CompiledStaticCall::to_interp_stub_size();
   408             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
   409           }
   410         } else if (mach->is_MachSafePoint()) {
   411           // If call/safepoint are adjacent, account for possible
   412           // nop to disambiguate the two safepoints.
   413           // ScheduleAndBundle() can rearrange nodes in a block,
   414           // check for all offsets inside this block.
   415           if (last_call_adr >= blk_starts[i]) {
   416             blk_size += nop_size;
   417           }
   418         }
   419         if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
   420           // Nop is inserted between "avoid back to back" instructions.
   421           // ScheduleAndBundle() can rearrange nodes in a block,
   422           // check for all offsets inside this block.
   423           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
   424             blk_size += nop_size;
   425           }
   426         }
   427         if (mach->may_be_short_branch()) {
   428           if (!nj->is_MachBranch()) {
   429 #ifndef PRODUCT
   430             nj->dump(3);
   431 #endif
   432             Unimplemented();
   433           }
   434           assert(jmp_nidx[i] == -1, "block should have only one branch");
   435           jmp_offset[i] = blk_size;
   436           jmp_size[i]   = nj->size(_regalloc);
   437           jmp_nidx[i]   = j;
   438           has_short_branch_candidate = true;
   439         }
   440       }
   441       blk_size += nj->size(_regalloc);
   442       // Remember end of call offset
   443       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
   444         last_call_adr = blk_starts[i]+blk_size;
   445       }
   446       // Remember end of avoid_back_to_back offset
   447       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
   448         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
   449       }
   450     }
   452     // When the next block starts a loop, we may insert pad NOP
   453     // instructions.  Since we cannot know our future alignment,
   454     // assume the worst.
   455     if (i < nblocks - 1) {
   456       Block* nb = _cfg->get_block(i + 1);
   457       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
   458       if (max_loop_pad > 0) {
   459         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
   460         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
   461         // If either is the last instruction in this block, bump by
   462         // max_loop_pad in lock-step with blk_size, so sizing
   463         // calculations in subsequent blocks still can conservatively
   464         // detect that it may the last instruction in this block.
   465         if (last_call_adr == blk_starts[i]+blk_size) {
   466           last_call_adr += max_loop_pad;
   467         }
   468         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
   469           last_avoid_back_to_back_adr += max_loop_pad;
   470         }
   471         blk_size += max_loop_pad;
   472         block_worst_case_pad[i + 1] = max_loop_pad;
   473       }
   474     }
   476     // Save block size; update total method size
   477     blk_starts[i+1] = blk_starts[i]+blk_size;
   478   }
   480   // Step two, replace eligible long jumps.
   481   bool progress = true;
   482   uint last_may_be_short_branch_adr = max_uint;
   483   while (has_short_branch_candidate && progress) {
   484     progress = false;
   485     has_short_branch_candidate = false;
   486     int adjust_block_start = 0;
   487     for (uint i = 0; i < nblocks; i++) {
   488       Block* block = _cfg->get_block(i);
   489       int idx = jmp_nidx[i];
   490       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
   491       if (mach != NULL && mach->may_be_short_branch()) {
   492 #ifdef ASSERT
   493         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
   494         int j;
   495         // Find the branch; ignore trailing NOPs.
   496         for (j = block->number_of_nodes()-1; j>=0; j--) {
   497           Node* n = block->get_node(j);
   498           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
   499             break;
   500         }
   501         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
   502 #endif
   503         int br_size = jmp_size[i];
   504         int br_offs = blk_starts[i] + jmp_offset[i];
   506         // This requires the TRUE branch target be in succs[0]
   507         uint bnum = block->non_connector_successor(0)->_pre_order;
   508         int offset = blk_starts[bnum] - br_offs;
   509         if (bnum > i) { // adjust following block's offset
   510           offset -= adjust_block_start;
   511         }
   513         // This block can be a loop header, account for the padding
   514         // in the previous block.
   515         int block_padding = block_worst_case_pad[i];
   516         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
   517         // In the following code a nop could be inserted before
   518         // the branch which will increase the backward distance.
   519         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
   520         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
   522         if (needs_padding && offset <= 0)
   523           offset -= nop_size;
   525         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
   526           // We've got a winner.  Replace this branch.
   527           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
   529           // Update the jmp_size.
   530           int new_size = replacement->size(_regalloc);
   531           int diff     = br_size - new_size;
   532           assert(diff >= (int)nop_size, "short_branch size should be smaller");
   533           // Conservatively take into account padding between
   534           // avoid_back_to_back branches. Previous branch could be
   535           // converted into avoid_back_to_back branch during next
   536           // rounds.
   537           if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
   538             jmp_offset[i] += nop_size;
   539             diff -= nop_size;
   540           }
   541           adjust_block_start += diff;
   542           block->map_node(replacement, idx);
   543           mach->subsume_by(replacement, C);
   544           mach = replacement;
   545           progress = true;
   547           jmp_size[i] = new_size;
   548           DEBUG_ONLY( jmp_target[i] = bnum; );
   549           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
   550         } else {
   551           // The jump distance is not short, try again during next iteration.
   552           has_short_branch_candidate = true;
   553         }
   554       } // (mach->may_be_short_branch())
   555       if (mach != NULL && (mach->may_be_short_branch() ||
   556                            mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
   557         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
   558       }
   559       blk_starts[i+1] -= adjust_block_start;
   560     }
   561   }
   563 #ifdef ASSERT
   564   for (uint i = 0; i < nblocks; i++) { // For all blocks
   565     if (jmp_target[i] != 0) {
   566       int br_size = jmp_size[i];
   567       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
   568       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
   569         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
   570       }
   571       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
   572     }
   573   }
   574 #endif
   576   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
   577   // after ScheduleAndBundle().
   579   // ------------------
   580   // Compute size for code buffer
   581   code_size = blk_starts[nblocks];
   583   // Relocation records
   584   reloc_size += 1;              // Relo entry for exception handler
   586   // Adjust reloc_size to number of record of relocation info
   587   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
   588   // a relocation index.
   589   // The CodeBuffer will expand the locs array if this estimate is too low.
   590   reloc_size *= 10 / sizeof(relocInfo);
   591 }
   593 //------------------------------FillLocArray-----------------------------------
   594 // Create a bit of debug info and append it to the array.  The mapping is from
   595 // Java local or expression stack to constant, register or stack-slot.  For
   596 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
   597 // entry has been taken care of and caller should skip it).
   598 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
   599   // This should never have accepted Bad before
   600   assert(OptoReg::is_valid(regnum), "location must be valid");
   601   return (OptoReg::is_reg(regnum))
   602     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
   603     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
   604 }
   607 ObjectValue*
   608 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
   609   for (int i = 0; i < objs->length(); i++) {
   610     assert(objs->at(i)->is_object(), "corrupt object cache");
   611     ObjectValue* sv = (ObjectValue*) objs->at(i);
   612     if (sv->id() == id) {
   613       return sv;
   614     }
   615   }
   616   // Otherwise..
   617   return NULL;
   618 }
   620 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
   621                                      ObjectValue* sv ) {
   622   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
   623   objs->append(sv);
   624 }
   627 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
   628                             GrowableArray<ScopeValue*> *array,
   629                             GrowableArray<ScopeValue*> *objs ) {
   630   assert( local, "use _top instead of null" );
   631   if (array->length() != idx) {
   632     assert(array->length() == idx + 1, "Unexpected array count");
   633     // Old functionality:
   634     //   return
   635     // New functionality:
   636     //   Assert if the local is not top. In product mode let the new node
   637     //   override the old entry.
   638     assert(local == top(), "LocArray collision");
   639     if (local == top()) {
   640       return;
   641     }
   642     array->pop();
   643   }
   644   const Type *t = local->bottom_type();
   646   // Is it a safepoint scalar object node?
   647   if (local->is_SafePointScalarObject()) {
   648     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
   650     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
   651     if (sv == NULL) {
   652       ciKlass* cik = t->is_oopptr()->klass();
   653       assert(cik->is_instance_klass() ||
   654              cik->is_array_klass(), "Not supported allocation.");
   655       sv = new ObjectValue(spobj->_idx,
   656                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
   657       Compile::set_sv_for_object_node(objs, sv);
   659       uint first_ind = spobj->first_index(sfpt->jvms());
   660       for (uint i = 0; i < spobj->n_fields(); i++) {
   661         Node* fld_node = sfpt->in(first_ind+i);
   662         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
   663       }
   664     }
   665     array->append(sv);
   666     return;
   667   }
   669   // Grab the register number for the local
   670   OptoReg::Name regnum = _regalloc->get_reg_first(local);
   671   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
   672     // Record the double as two float registers.
   673     // The register mask for such a value always specifies two adjacent
   674     // float registers, with the lower register number even.
   675     // Normally, the allocation of high and low words to these registers
   676     // is irrelevant, because nearly all operations on register pairs
   677     // (e.g., StoreD) treat them as a single unit.
   678     // Here, we assume in addition that the words in these two registers
   679     // stored "naturally" (by operations like StoreD and double stores
   680     // within the interpreter) such that the lower-numbered register
   681     // is written to the lower memory address.  This may seem like
   682     // a machine dependency, but it is not--it is a requirement on
   683     // the author of the <arch>.ad file to ensure that, for every
   684     // even/odd double-register pair to which a double may be allocated,
   685     // the word in the even single-register is stored to the first
   686     // memory word.  (Note that register numbers are completely
   687     // arbitrary, and are not tied to any machine-level encodings.)
   688 #ifdef _LP64
   689     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
   690       array->append(new ConstantIntValue(0));
   691       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
   692     } else if ( t->base() == Type::Long ) {
   693       array->append(new ConstantIntValue(0));
   694       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   695     } else if ( t->base() == Type::RawPtr ) {
   696       // jsr/ret return address which must be restored into a the full
   697       // width 64-bit stack slot.
   698       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
   699     }
   700 #else //_LP64
   701 #ifdef SPARC
   702     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
   703       // For SPARC we have to swap high and low words for
   704       // long values stored in a single-register (g0-g7).
   705       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   706       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   707     } else
   708 #endif //SPARC
   709     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
   710       // Repack the double/long as two jints.
   711       // The convention the interpreter uses is that the second local
   712       // holds the first raw word of the native double representation.
   713       // This is actually reasonable, since locals and stack arrays
   714       // grow downwards in all implementations.
   715       // (If, on some machine, the interpreter's Java locals or stack
   716       // were to grow upwards, the embedded doubles would be word-swapped.)
   717       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
   718       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
   719     }
   720 #endif //_LP64
   721     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
   722                OptoReg::is_reg(regnum) ) {
   723       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
   724                                    ? Location::float_in_dbl : Location::normal ));
   725     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
   726       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
   727                                    ? Location::int_in_long : Location::normal ));
   728     } else if( t->base() == Type::NarrowOop ) {
   729       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
   730     } else {
   731       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
   732     }
   733     return;
   734   }
   736   // No register.  It must be constant data.
   737   switch (t->base()) {
   738   case Type::Half:              // Second half of a double
   739     ShouldNotReachHere();       // Caller should skip 2nd halves
   740     break;
   741   case Type::AnyPtr:
   742     array->append(new ConstantOopWriteValue(NULL));
   743     break;
   744   case Type::AryPtr:
   745   case Type::InstPtr:          // fall through
   746     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
   747     break;
   748   case Type::NarrowOop:
   749     if (t == TypeNarrowOop::NULL_PTR) {
   750       array->append(new ConstantOopWriteValue(NULL));
   751     } else {
   752       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
   753     }
   754     break;
   755   case Type::Int:
   756     array->append(new ConstantIntValue(t->is_int()->get_con()));
   757     break;
   758   case Type::RawPtr:
   759     // A return address (T_ADDRESS).
   760     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
   761 #ifdef _LP64
   762     // Must be restored to the full-width 64-bit stack slot.
   763     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
   764 #else
   765     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
   766 #endif
   767     break;
   768   case Type::FloatCon: {
   769     float f = t->is_float_constant()->getf();
   770     array->append(new ConstantIntValue(jint_cast(f)));
   771     break;
   772   }
   773   case Type::DoubleCon: {
   774     jdouble d = t->is_double_constant()->getd();
   775 #ifdef _LP64
   776     array->append(new ConstantIntValue(0));
   777     array->append(new ConstantDoubleValue(d));
   778 #else
   779     // Repack the double as two jints.
   780     // The convention the interpreter uses is that the second local
   781     // holds the first raw word of the native double representation.
   782     // This is actually reasonable, since locals and stack arrays
   783     // grow downwards in all implementations.
   784     // (If, on some machine, the interpreter's Java locals or stack
   785     // were to grow upwards, the embedded doubles would be word-swapped.)
   786     jlong_accessor acc;
   787     acc.long_value = jlong_cast(d);
   788     array->append(new ConstantIntValue(acc.words[1]));
   789     array->append(new ConstantIntValue(acc.words[0]));
   790 #endif
   791     break;
   792   }
   793   case Type::Long: {
   794     jlong d = t->is_long()->get_con();
   795 #ifdef _LP64
   796     array->append(new ConstantIntValue(0));
   797     array->append(new ConstantLongValue(d));
   798 #else
   799     // Repack the long as two jints.
   800     // The convention the interpreter uses is that the second local
   801     // holds the first raw word of the native double representation.
   802     // This is actually reasonable, since locals and stack arrays
   803     // grow downwards in all implementations.
   804     // (If, on some machine, the interpreter's Java locals or stack
   805     // were to grow upwards, the embedded doubles would be word-swapped.)
   806     jlong_accessor acc;
   807     acc.long_value = d;
   808     array->append(new ConstantIntValue(acc.words[1]));
   809     array->append(new ConstantIntValue(acc.words[0]));
   810 #endif
   811     break;
   812   }
   813   case Type::Top:               // Add an illegal value here
   814     array->append(new LocationValue(Location()));
   815     break;
   816   default:
   817     ShouldNotReachHere();
   818     break;
   819   }
   820 }
   822 // Determine if this node starts a bundle
   823 bool Compile::starts_bundle(const Node *n) const {
   824   return (_node_bundling_limit > n->_idx &&
   825           _node_bundling_base[n->_idx].starts_bundle());
   826 }
   828 //--------------------------Process_OopMap_Node--------------------------------
   829 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
   831   // Handle special safepoint nodes for synchronization
   832   MachSafePointNode *sfn   = mach->as_MachSafePoint();
   833   MachCallNode      *mcall;
   835 #ifdef ENABLE_ZAP_DEAD_LOCALS
   836   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
   837 #endif
   839   int safepoint_pc_offset = current_offset;
   840   bool is_method_handle_invoke = false;
   841   bool return_oop = false;
   843   // Add the safepoint in the DebugInfoRecorder
   844   if( !mach->is_MachCall() ) {
   845     mcall = NULL;
   846     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
   847   } else {
   848     mcall = mach->as_MachCall();
   850     // Is the call a MethodHandle call?
   851     if (mcall->is_MachCallJava()) {
   852       if (mcall->as_MachCallJava()->_method_handle_invoke) {
   853         assert(has_method_handle_invokes(), "must have been set during call generation");
   854         is_method_handle_invoke = true;
   855       }
   856     }
   858     // Check if a call returns an object.
   859     if (mcall->return_value_is_used() &&
   860         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
   861       return_oop = true;
   862     }
   863     safepoint_pc_offset += mcall->ret_addr_offset();
   864     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
   865   }
   867   // Loop over the JVMState list to add scope information
   868   // Do not skip safepoints with a NULL method, they need monitor info
   869   JVMState* youngest_jvms = sfn->jvms();
   870   int max_depth = youngest_jvms->depth();
   872   // Allocate the object pool for scalar-replaced objects -- the map from
   873   // small-integer keys (which can be recorded in the local and ostack
   874   // arrays) to descriptions of the object state.
   875   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
   877   // Visit scopes from oldest to youngest.
   878   for (int depth = 1; depth <= max_depth; depth++) {
   879     JVMState* jvms = youngest_jvms->of_depth(depth);
   880     int idx;
   881     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
   882     // Safepoints that do not have method() set only provide oop-map and monitor info
   883     // to support GC; these do not support deoptimization.
   884     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
   885     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
   886     int num_mon  = jvms->nof_monitors();
   887     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
   888            "JVMS local count must match that of the method");
   890     // Add Local and Expression Stack Information
   892     // Insert locals into the locarray
   893     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
   894     for( idx = 0; idx < num_locs; idx++ ) {
   895       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
   896     }
   898     // Insert expression stack entries into the exparray
   899     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
   900     for( idx = 0; idx < num_exps; idx++ ) {
   901       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
   902     }
   904     // Add in mappings of the monitors
   905     assert( !method ||
   906             !method->is_synchronized() ||
   907             method->is_native() ||
   908             num_mon > 0 ||
   909             !GenerateSynchronizationCode,
   910             "monitors must always exist for synchronized methods");
   912     // Build the growable array of ScopeValues for exp stack
   913     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
   915     // Loop over monitors and insert into array
   916     for (idx = 0; idx < num_mon; idx++) {
   917       // Grab the node that defines this monitor
   918       Node* box_node = sfn->monitor_box(jvms, idx);
   919       Node* obj_node = sfn->monitor_obj(jvms, idx);
   921       // Create ScopeValue for object
   922       ScopeValue *scval = NULL;
   924       if (obj_node->is_SafePointScalarObject()) {
   925         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
   926         scval = Compile::sv_for_node_id(objs, spobj->_idx);
   927         if (scval == NULL) {
   928           const Type *t = spobj->bottom_type();
   929           ciKlass* cik = t->is_oopptr()->klass();
   930           assert(cik->is_instance_klass() ||
   931                  cik->is_array_klass(), "Not supported allocation.");
   932           ObjectValue* sv = new ObjectValue(spobj->_idx,
   933                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
   934           Compile::set_sv_for_object_node(objs, sv);
   936           uint first_ind = spobj->first_index(youngest_jvms);
   937           for (uint i = 0; i < spobj->n_fields(); i++) {
   938             Node* fld_node = sfn->in(first_ind+i);
   939             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
   940           }
   941           scval = sv;
   942         }
   943       } else if (!obj_node->is_Con()) {
   944         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
   945         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
   946           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
   947         } else {
   948           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
   949         }
   950       } else {
   951         const TypePtr *tp = obj_node->get_ptr_type();
   952         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
   953       }
   955       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
   956       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
   957       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
   958       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
   959     }
   961     // We dump the object pool first, since deoptimization reads it in first.
   962     debug_info()->dump_object_pool(objs);
   964     // Build first class objects to pass to scope
   965     DebugToken *locvals = debug_info()->create_scope_values(locarray);
   966     DebugToken *expvals = debug_info()->create_scope_values(exparray);
   967     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
   969     // Make method available for all Safepoints
   970     ciMethod* scope_method = method ? method : _method;
   971     // Describe the scope here
   972     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
   973     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
   974     // Now we can describe the scope.
   975     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
   976   } // End jvms loop
   978   // Mark the end of the scope set.
   979   debug_info()->end_safepoint(safepoint_pc_offset);
   980 }
   984 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
   985 class NonSafepointEmitter {
   986   Compile*  C;
   987   JVMState* _pending_jvms;
   988   int       _pending_offset;
   990   void emit_non_safepoint();
   992  public:
   993   NonSafepointEmitter(Compile* compile) {
   994     this->C = compile;
   995     _pending_jvms = NULL;
   996     _pending_offset = 0;
   997   }
   999   void observe_instruction(Node* n, int pc_offset) {
  1000     if (!C->debug_info()->recording_non_safepoints())  return;
  1002     Node_Notes* nn = C->node_notes_at(n->_idx);
  1003     if (nn == NULL || nn->jvms() == NULL)  return;
  1004     if (_pending_jvms != NULL &&
  1005         _pending_jvms->same_calls_as(nn->jvms())) {
  1006       // Repeated JVMS?  Stretch it up here.
  1007       _pending_offset = pc_offset;
  1008     } else {
  1009       if (_pending_jvms != NULL &&
  1010           _pending_offset < pc_offset) {
  1011         emit_non_safepoint();
  1013       _pending_jvms = NULL;
  1014       if (pc_offset > C->debug_info()->last_pc_offset()) {
  1015         // This is the only way _pending_jvms can become non-NULL:
  1016         _pending_jvms = nn->jvms();
  1017         _pending_offset = pc_offset;
  1022   // Stay out of the way of real safepoints:
  1023   void observe_safepoint(JVMState* jvms, int pc_offset) {
  1024     if (_pending_jvms != NULL &&
  1025         !_pending_jvms->same_calls_as(jvms) &&
  1026         _pending_offset < pc_offset) {
  1027       emit_non_safepoint();
  1029     _pending_jvms = NULL;
  1032   void flush_at_end() {
  1033     if (_pending_jvms != NULL) {
  1034       emit_non_safepoint();
  1036     _pending_jvms = NULL;
  1038 };
  1040 void NonSafepointEmitter::emit_non_safepoint() {
  1041   JVMState* youngest_jvms = _pending_jvms;
  1042   int       pc_offset     = _pending_offset;
  1044   // Clear it now:
  1045   _pending_jvms = NULL;
  1047   DebugInformationRecorder* debug_info = C->debug_info();
  1048   assert(debug_info->recording_non_safepoints(), "sanity");
  1050   debug_info->add_non_safepoint(pc_offset);
  1051   int max_depth = youngest_jvms->depth();
  1053   // Visit scopes from oldest to youngest.
  1054   for (int depth = 1; depth <= max_depth; depth++) {
  1055     JVMState* jvms = youngest_jvms->of_depth(depth);
  1056     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
  1057     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
  1058     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
  1061   // Mark the end of the scope set.
  1062   debug_info->end_non_safepoint(pc_offset);
  1065 //------------------------------init_buffer------------------------------------
  1066 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
  1068   // Set the initially allocated size
  1069   int  code_req   = initial_code_capacity;
  1070   int  locs_req   = initial_locs_capacity;
  1071   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
  1072   int  const_req  = initial_const_capacity;
  1074   int  pad_req    = NativeCall::instruction_size;
  1075   // The extra spacing after the code is necessary on some platforms.
  1076   // Sometimes we need to patch in a jump after the last instruction,
  1077   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
  1079   // Compute the byte offset where we can store the deopt pc.
  1080   if (fixed_slots() != 0) {
  1081     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
  1084   // Compute prolog code size
  1085   _method_size = 0;
  1086   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
  1087 #if defined(IA64) && !defined(AIX)
  1088   if (save_argument_registers()) {
  1089     // 4815101: this is a stub with implicit and unknown precision fp args.
  1090     // The usual spill mechanism can only generate stfd's in this case, which
  1091     // doesn't work if the fp reg to spill contains a single-precision denorm.
  1092     // Instead, we hack around the normal spill mechanism using stfspill's and
  1093     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
  1094     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
  1095     //
  1096     // If we ever implement 16-byte 'registers' == stack slots, we can
  1097     // get rid of this hack and have SpillCopy generate stfspill/ldffill
  1098     // instead of stfd/stfs/ldfd/ldfs.
  1099     _frame_slots += 8*(16/BytesPerInt);
  1101 #endif
  1102   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
  1104   if (has_mach_constant_base_node()) {
  1105     uint add_size = 0;
  1106     // Fill the constant table.
  1107     // Note:  This must happen before shorten_branches.
  1108     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  1109       Block* b = _cfg->get_block(i);
  1111       for (uint j = 0; j < b->number_of_nodes(); j++) {
  1112         Node* n = b->get_node(j);
  1114         // If the node is a MachConstantNode evaluate the constant
  1115         // value section.
  1116         if (n->is_MachConstant()) {
  1117           MachConstantNode* machcon = n->as_MachConstant();
  1118           machcon->eval_constant(C);
  1119         } else if (n->is_Mach()) {
  1120           // On Power there are more nodes that issue constants.
  1121           add_size += (n->as_Mach()->ins_num_consts() * 8);
  1126     // Calculate the offsets of the constants and the size of the
  1127     // constant table (including the padding to the next section).
  1128     constant_table().calculate_offsets_and_size();
  1129     const_req = constant_table().size() + add_size;
  1132   // Initialize the space for the BufferBlob used to find and verify
  1133   // instruction size in MachNode::emit_size()
  1134   init_scratch_buffer_blob(const_req);
  1135   if (failing())  return NULL; // Out of memory
  1137   // Pre-compute the length of blocks and replace
  1138   // long branches with short if machine supports it.
  1139   shorten_branches(blk_starts, code_req, locs_req, stub_req);
  1141   // nmethod and CodeBuffer count stubs & constants as part of method's code.
  1142   // class HandlerImpl is platform-specific and defined in the *.ad files.
  1143   int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
  1144   int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
  1145   stub_req += MAX_stubs_size;   // ensure per-stub margin
  1146   code_req += MAX_inst_size;    // ensure per-instruction margin
  1148   if (StressCodeBuffers)
  1149     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
  1151   int total_req =
  1152     const_req +
  1153     code_req +
  1154     pad_req +
  1155     stub_req +
  1156     exception_handler_req +
  1157     deopt_handler_req;               // deopt handler
  1159   if (has_method_handle_invokes())
  1160     total_req += deopt_handler_req;  // deopt MH handler
  1162   CodeBuffer* cb = code_buffer();
  1163   cb->initialize(total_req, locs_req);
  1165   // Have we run out of code space?
  1166   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1167     C->record_failure("CodeCache is full");
  1168     return NULL;
  1170   // Configure the code buffer.
  1171   cb->initialize_consts_size(const_req);
  1172   cb->initialize_stubs_size(stub_req);
  1173   cb->initialize_oop_recorder(env()->oop_recorder());
  1175   // fill in the nop array for bundling computations
  1176   MachNode *_nop_list[Bundle::_nop_count];
  1177   Bundle::initialize_nops(_nop_list, this);
  1179   return cb;
  1182 //------------------------------fill_buffer------------------------------------
  1183 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
  1184   // blk_starts[] contains offsets calculated during short branches processing,
  1185   // offsets should not be increased during following steps.
  1187   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
  1188   // of a loop. It is used to determine the padding for loop alignment.
  1189   compute_loop_first_inst_sizes();
  1191   // Create oopmap set.
  1192   _oop_map_set = new OopMapSet();
  1194   // !!!!! This preserves old handling of oopmaps for now
  1195   debug_info()->set_oopmaps(_oop_map_set);
  1197   uint nblocks  = _cfg->number_of_blocks();
  1198   // Count and start of implicit null check instructions
  1199   uint inct_cnt = 0;
  1200   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
  1202   // Count and start of calls
  1203   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
  1205   uint  return_offset = 0;
  1206   int nop_size = (new (this) MachNopNode())->size(_regalloc);
  1208   int previous_offset = 0;
  1209   int current_offset  = 0;
  1210   int last_call_offset = -1;
  1211   int last_avoid_back_to_back_offset = -1;
  1212 #ifdef ASSERT
  1213   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
  1214   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
  1215   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
  1216   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
  1217 #endif
  1219   // Create an array of unused labels, one for each basic block, if printing is enabled
  1220 #ifndef PRODUCT
  1221   int *node_offsets      = NULL;
  1222   uint node_offset_limit = unique();
  1224   if (print_assembly())
  1225     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
  1226 #endif
  1228   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
  1230   // Emit the constant table.
  1231   if (has_mach_constant_base_node()) {
  1232     constant_table().emit(*cb);
  1235   // Create an array of labels, one for each basic block
  1236   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
  1237   for (uint i=0; i <= nblocks; i++) {
  1238     blk_labels[i].init();
  1241   // ------------------
  1242   // Now fill in the code buffer
  1243   Node *delay_slot = NULL;
  1245   for (uint i = 0; i < nblocks; i++) {
  1246     Block* block = _cfg->get_block(i);
  1247     Node* head = block->head();
  1249     // If this block needs to start aligned (i.e, can be reached other
  1250     // than by falling-thru from the previous block), then force the
  1251     // start of a new bundle.
  1252     if (Pipeline::requires_bundling() && starts_bundle(head)) {
  1253       cb->flush_bundle(true);
  1256 #ifdef ASSERT
  1257     if (!block->is_connector()) {
  1258       stringStream st;
  1259       block->dump_head(_cfg, &st);
  1260       MacroAssembler(cb).block_comment(st.as_string());
  1262     jmp_target[i] = 0;
  1263     jmp_offset[i] = 0;
  1264     jmp_size[i]   = 0;
  1265     jmp_rule[i]   = 0;
  1266 #endif
  1267     int blk_offset = current_offset;
  1269     // Define the label at the beginning of the basic block
  1270     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
  1272     uint last_inst = block->number_of_nodes();
  1274     // Emit block normally, except for last instruction.
  1275     // Emit means "dump code bits into code buffer".
  1276     for (uint j = 0; j<last_inst; j++) {
  1278       // Get the node
  1279       Node* n = block->get_node(j);
  1281       // See if delay slots are supported
  1282       if (valid_bundle_info(n) &&
  1283           node_bundling(n)->used_in_unconditional_delay()) {
  1284         assert(delay_slot == NULL, "no use of delay slot node");
  1285         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
  1287         delay_slot = n;
  1288         continue;
  1291       // If this starts a new instruction group, then flush the current one
  1292       // (but allow split bundles)
  1293       if (Pipeline::requires_bundling() && starts_bundle(n))
  1294         cb->flush_bundle(false);
  1296       // The following logic is duplicated in the code ifdeffed for
  1297       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
  1298       // should be factored out.  Or maybe dispersed to the nodes?
  1300       // Special handling for SafePoint/Call Nodes
  1301       bool is_mcall = false;
  1302       if (n->is_Mach()) {
  1303         MachNode *mach = n->as_Mach();
  1304         is_mcall = n->is_MachCall();
  1305         bool is_sfn = n->is_MachSafePoint();
  1307         // If this requires all previous instructions be flushed, then do so
  1308         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
  1309           cb->flush_bundle(true);
  1310           current_offset = cb->insts_size();
  1313         // A padding may be needed again since a previous instruction
  1314         // could be moved to delay slot.
  1316         // align the instruction if necessary
  1317         int padding = mach->compute_padding(current_offset);
  1318         // Make sure safepoint node for polling is distinct from a call's
  1319         // return by adding a nop if needed.
  1320         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
  1321           padding = nop_size;
  1323         if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
  1324             current_offset == last_avoid_back_to_back_offset) {
  1325           // Avoid back to back some instructions.
  1326           padding = nop_size;
  1329         if(padding > 0) {
  1330           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
  1331           int nops_cnt = padding / nop_size;
  1332           MachNode *nop = new (this) MachNopNode(nops_cnt);
  1333           block->insert_node(nop, j++);
  1334           last_inst++;
  1335           _cfg->map_node_to_block(nop, block);
  1336           nop->emit(*cb, _regalloc);
  1337           cb->flush_bundle(true);
  1338           current_offset = cb->insts_size();
  1341         // Remember the start of the last call in a basic block
  1342         if (is_mcall) {
  1343           MachCallNode *mcall = mach->as_MachCall();
  1345           // This destination address is NOT PC-relative
  1346           mcall->method_set((intptr_t)mcall->entry_point());
  1348           // Save the return address
  1349           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
  1351           if (mcall->is_MachCallLeaf()) {
  1352             is_mcall = false;
  1353             is_sfn = false;
  1357         // sfn will be valid whenever mcall is valid now because of inheritance
  1358         if (is_sfn || is_mcall) {
  1360           // Handle special safepoint nodes for synchronization
  1361           if (!is_mcall) {
  1362             MachSafePointNode *sfn = mach->as_MachSafePoint();
  1363             // !!!!! Stubs only need an oopmap right now, so bail out
  1364             if (sfn->jvms()->method() == NULL) {
  1365               // Write the oopmap directly to the code blob??!!
  1366 #             ifdef ENABLE_ZAP_DEAD_LOCALS
  1367               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
  1368 #             endif
  1369               continue;
  1371           } // End synchronization
  1373           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1374                                            current_offset);
  1375           Process_OopMap_Node(mach, current_offset);
  1376         } // End if safepoint
  1378         // If this is a null check, then add the start of the previous instruction to the list
  1379         else if( mach->is_MachNullCheck() ) {
  1380           inct_starts[inct_cnt++] = previous_offset;
  1383         // If this is a branch, then fill in the label with the target BB's label
  1384         else if (mach->is_MachBranch()) {
  1385           // This requires the TRUE branch target be in succs[0]
  1386           uint block_num = block->non_connector_successor(0)->_pre_order;
  1388           // Try to replace long branch if delay slot is not used,
  1389           // it is mostly for back branches since forward branch's
  1390           // distance is not updated yet.
  1391           bool delay_slot_is_used = valid_bundle_info(n) &&
  1392                                     node_bundling(n)->use_unconditional_delay();
  1393           if (!delay_slot_is_used && mach->may_be_short_branch()) {
  1394            assert(delay_slot == NULL, "not expecting delay slot node");
  1395            int br_size = n->size(_regalloc);
  1396             int offset = blk_starts[block_num] - current_offset;
  1397             if (block_num >= i) {
  1398               // Current and following block's offset are not
  1399               // finalized yet, adjust distance by the difference
  1400               // between calculated and final offsets of current block.
  1401               offset -= (blk_starts[i] - blk_offset);
  1403             // In the following code a nop could be inserted before
  1404             // the branch which will increase the backward distance.
  1405             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
  1406             if (needs_padding && offset <= 0)
  1407               offset -= nop_size;
  1409             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
  1410               // We've got a winner.  Replace this branch.
  1411               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
  1413               // Update the jmp_size.
  1414               int new_size = replacement->size(_regalloc);
  1415               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
  1416               // Insert padding between avoid_back_to_back branches.
  1417               if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
  1418                 MachNode *nop = new (this) MachNopNode();
  1419                 block->insert_node(nop, j++);
  1420                 _cfg->map_node_to_block(nop, block);
  1421                 last_inst++;
  1422                 nop->emit(*cb, _regalloc);
  1423                 cb->flush_bundle(true);
  1424                 current_offset = cb->insts_size();
  1426 #ifdef ASSERT
  1427               jmp_target[i] = block_num;
  1428               jmp_offset[i] = current_offset - blk_offset;
  1429               jmp_size[i]   = new_size;
  1430               jmp_rule[i]   = mach->rule();
  1431 #endif
  1432               block->map_node(replacement, j);
  1433               mach->subsume_by(replacement, C);
  1434               n    = replacement;
  1435               mach = replacement;
  1438           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
  1439         } else if (mach->ideal_Opcode() == Op_Jump) {
  1440           for (uint h = 0; h < block->_num_succs; h++) {
  1441             Block* succs_block = block->_succs[h];
  1442             for (uint j = 1; j < succs_block->num_preds(); j++) {
  1443               Node* jpn = succs_block->pred(j);
  1444               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
  1445                 uint block_num = succs_block->non_connector()->_pre_order;
  1446                 Label *blkLabel = &blk_labels[block_num];
  1447                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
  1452 #ifdef ASSERT
  1453         // Check that oop-store precedes the card-mark
  1454         else if (mach->ideal_Opcode() == Op_StoreCM) {
  1455           uint storeCM_idx = j;
  1456           int count = 0;
  1457           for (uint prec = mach->req(); prec < mach->len(); prec++) {
  1458             Node *oop_store = mach->in(prec);  // Precedence edge
  1459             if (oop_store == NULL) continue;
  1460             count++;
  1461             uint i4;
  1462             for (i4 = 0; i4 < last_inst; ++i4) {
  1463               if (block->get_node(i4) == oop_store) {
  1464                 break;
  1467             // Note: This test can provide a false failure if other precedence
  1468             // edges have been added to the storeCMNode.
  1469             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
  1471           assert(count > 0, "storeCM expects at least one precedence edge");
  1473 #endif
  1474         else if (!n->is_Proj()) {
  1475           // Remember the beginning of the previous instruction, in case
  1476           // it's followed by a flag-kill and a null-check.  Happens on
  1477           // Intel all the time, with add-to-memory kind of opcodes.
  1478           previous_offset = current_offset;
  1481         // Not an else-if!
  1482         // If this is a trap based cmp then add its offset to the list.
  1483         if (mach->is_TrapBasedCheckNode()) {
  1484           inct_starts[inct_cnt++] = current_offset;
  1488       // Verify that there is sufficient space remaining
  1489       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
  1490       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1491         C->record_failure("CodeCache is full");
  1492         return;
  1495       // Save the offset for the listing
  1496 #ifndef PRODUCT
  1497       if (node_offsets && n->_idx < node_offset_limit)
  1498         node_offsets[n->_idx] = cb->insts_size();
  1499 #endif
  1501       // "Normal" instruction case
  1502       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
  1503       n->emit(*cb, _regalloc);
  1504       current_offset  = cb->insts_size();
  1506 #ifdef ASSERT
  1507       if (n->size(_regalloc) < (current_offset-instr_offset)) {
  1508         n->dump();
  1509         assert(false, "wrong size of mach node");
  1511 #endif
  1512       non_safepoints.observe_instruction(n, current_offset);
  1514       // mcall is last "call" that can be a safepoint
  1515       // record it so we can see if a poll will directly follow it
  1516       // in which case we'll need a pad to make the PcDesc sites unique
  1517       // see  5010568. This can be slightly inaccurate but conservative
  1518       // in the case that return address is not actually at current_offset.
  1519       // This is a small price to pay.
  1521       if (is_mcall) {
  1522         last_call_offset = current_offset;
  1525       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
  1526         // Avoid back to back some instructions.
  1527         last_avoid_back_to_back_offset = current_offset;
  1530       // See if this instruction has a delay slot
  1531       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1532         assert(delay_slot != NULL, "expecting delay slot node");
  1534         // Back up 1 instruction
  1535         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
  1537         // Save the offset for the listing
  1538 #ifndef PRODUCT
  1539         if (node_offsets && delay_slot->_idx < node_offset_limit)
  1540           node_offsets[delay_slot->_idx] = cb->insts_size();
  1541 #endif
  1543         // Support a SafePoint in the delay slot
  1544         if (delay_slot->is_MachSafePoint()) {
  1545           MachNode *mach = delay_slot->as_Mach();
  1546           // !!!!! Stubs only need an oopmap right now, so bail out
  1547           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
  1548             // Write the oopmap directly to the code blob??!!
  1549 #           ifdef ENABLE_ZAP_DEAD_LOCALS
  1550             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
  1551 #           endif
  1552             delay_slot = NULL;
  1553             continue;
  1556           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
  1557           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
  1558                                            adjusted_offset);
  1559           // Generate an OopMap entry
  1560           Process_OopMap_Node(mach, adjusted_offset);
  1563         // Insert the delay slot instruction
  1564         delay_slot->emit(*cb, _regalloc);
  1566         // Don't reuse it
  1567         delay_slot = NULL;
  1570     } // End for all instructions in block
  1572     // If the next block is the top of a loop, pad this block out to align
  1573     // the loop top a little. Helps prevent pipe stalls at loop back branches.
  1574     if (i < nblocks-1) {
  1575       Block *nb = _cfg->get_block(i + 1);
  1576       int padding = nb->alignment_padding(current_offset);
  1577       if( padding > 0 ) {
  1578         MachNode *nop = new (this) MachNopNode(padding / nop_size);
  1579         block->insert_node(nop, block->number_of_nodes());
  1580         _cfg->map_node_to_block(nop, block);
  1581         nop->emit(*cb, _regalloc);
  1582         current_offset = cb->insts_size();
  1585     // Verify that the distance for generated before forward
  1586     // short branches is still valid.
  1587     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
  1589     // Save new block start offset
  1590     blk_starts[i] = blk_offset;
  1591   } // End of for all blocks
  1592   blk_starts[nblocks] = current_offset;
  1594   non_safepoints.flush_at_end();
  1596   // Offset too large?
  1597   if (failing())  return;
  1599   // Define a pseudo-label at the end of the code
  1600   MacroAssembler(cb).bind( blk_labels[nblocks] );
  1602   // Compute the size of the first block
  1603   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
  1605   assert(cb->insts_size() < 500000, "method is unreasonably large");
  1607 #ifdef ASSERT
  1608   for (uint i = 0; i < nblocks; i++) { // For all blocks
  1609     if (jmp_target[i] != 0) {
  1610       int br_size = jmp_size[i];
  1611       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
  1612       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
  1613         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
  1614         assert(false, "Displacement too large for short jmp");
  1618 #endif
  1620 #ifndef PRODUCT
  1621   // Information on the size of the method, without the extraneous code
  1622   Scheduling::increment_method_size(cb->insts_size());
  1623 #endif
  1625   // ------------------
  1626   // Fill in exception table entries.
  1627   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
  1629   // Only java methods have exception handlers and deopt handlers
  1630   // class HandlerImpl is platform-specific and defined in the *.ad files.
  1631   if (_method) {
  1632     // Emit the exception handler code.
  1633     _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
  1634     // Emit the deopt handler code.
  1635     _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
  1637     // Emit the MethodHandle deopt handler code (if required).
  1638     if (has_method_handle_invokes()) {
  1639       // We can use the same code as for the normal deopt handler, we
  1640       // just need a different entry point address.
  1641       _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
  1645   // One last check for failed CodeBuffer::expand:
  1646   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
  1647     C->record_failure("CodeCache is full");
  1648     return;
  1651 #ifndef PRODUCT
  1652   // Dump the assembly code, including basic-block numbers
  1653   if (print_assembly()) {
  1654     ttyLocker ttyl;  // keep the following output all in one block
  1655     if (!VMThread::should_terminate()) {  // test this under the tty lock
  1656       // This output goes directly to the tty, not the compiler log.
  1657       // To enable tools to match it up with the compilation activity,
  1658       // be sure to tag this tty output with the compile ID.
  1659       if (xtty != NULL) {
  1660         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
  1661                    is_osr_compilation()    ? " compile_kind='osr'" :
  1662                    "");
  1664       if (method() != NULL) {
  1665         method()->print_metadata();
  1667       dump_asm(node_offsets, node_offset_limit);
  1668       if (xtty != NULL) {
  1669         xtty->tail("opto_assembly");
  1673 #endif
  1677 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
  1678   _inc_table.set_size(cnt);
  1680   uint inct_cnt = 0;
  1681   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
  1682     Block* block = _cfg->get_block(i);
  1683     Node *n = NULL;
  1684     int j;
  1686     // Find the branch; ignore trailing NOPs.
  1687     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
  1688       n = block->get_node(j);
  1689       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
  1690         break;
  1694     // If we didn't find anything, continue
  1695     if (j < 0) {
  1696       continue;
  1699     // Compute ExceptionHandlerTable subtable entry and add it
  1700     // (skip empty blocks)
  1701     if (n->is_Catch()) {
  1703       // Get the offset of the return from the call
  1704       uint call_return = call_returns[block->_pre_order];
  1705 #ifdef ASSERT
  1706       assert( call_return > 0, "no call seen for this basic block" );
  1707       while (block->get_node(--j)->is_MachProj()) ;
  1708       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
  1709 #endif
  1710       // last instruction is a CatchNode, find it's CatchProjNodes
  1711       int nof_succs = block->_num_succs;
  1712       // allocate space
  1713       GrowableArray<intptr_t> handler_bcis(nof_succs);
  1714       GrowableArray<intptr_t> handler_pcos(nof_succs);
  1715       // iterate through all successors
  1716       for (int j = 0; j < nof_succs; j++) {
  1717         Block* s = block->_succs[j];
  1718         bool found_p = false;
  1719         for (uint k = 1; k < s->num_preds(); k++) {
  1720           Node* pk = s->pred(k);
  1721           if (pk->is_CatchProj() && pk->in(0) == n) {
  1722             const CatchProjNode* p = pk->as_CatchProj();
  1723             found_p = true;
  1724             // add the corresponding handler bci & pco information
  1725             if (p->_con != CatchProjNode::fall_through_index) {
  1726               // p leads to an exception handler (and is not fall through)
  1727               assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
  1728               // no duplicates, please
  1729               if (!handler_bcis.contains(p->handler_bci())) {
  1730                 uint block_num = s->non_connector()->_pre_order;
  1731                 handler_bcis.append(p->handler_bci());
  1732                 handler_pcos.append(blk_labels[block_num].loc_pos());
  1737         assert(found_p, "no matching predecessor found");
  1738         // Note:  Due to empty block removal, one block may have
  1739         // several CatchProj inputs, from the same Catch.
  1742       // Set the offset of the return from the call
  1743       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
  1744       continue;
  1747     // Handle implicit null exception table updates
  1748     if (n->is_MachNullCheck()) {
  1749       uint block_num = block->non_connector_successor(0)->_pre_order;
  1750       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
  1751       continue;
  1753     // Handle implicit exception table updates: trap instructions.
  1754     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
  1755       uint block_num = block->non_connector_successor(0)->_pre_order;
  1756       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
  1757       continue;
  1759   } // End of for all blocks fill in exception table entries
  1762 // Static Variables
  1763 #ifndef PRODUCT
  1764 uint Scheduling::_total_nop_size = 0;
  1765 uint Scheduling::_total_method_size = 0;
  1766 uint Scheduling::_total_branches = 0;
  1767 uint Scheduling::_total_unconditional_delays = 0;
  1768 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
  1769 #endif
  1771 // Initializer for class Scheduling
  1773 Scheduling::Scheduling(Arena *arena, Compile &compile)
  1774   : _arena(arena),
  1775     _cfg(compile.cfg()),
  1776     _regalloc(compile.regalloc()),
  1777     _reg_node(arena),
  1778     _bundle_instr_count(0),
  1779     _bundle_cycle_number(0),
  1780     _scheduled(arena),
  1781     _available(arena),
  1782     _next_node(NULL),
  1783     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
  1784     _pinch_free_list(arena)
  1785 #ifndef PRODUCT
  1786   , _branches(0)
  1787   , _unconditional_delays(0)
  1788 #endif
  1790   // Create a MachNopNode
  1791   _nop = new (&compile) MachNopNode();
  1793   // Now that the nops are in the array, save the count
  1794   // (but allow entries for the nops)
  1795   _node_bundling_limit = compile.unique();
  1796   uint node_max = _regalloc->node_regs_max_index();
  1798   compile.set_node_bundling_limit(_node_bundling_limit);
  1800   // This one is persistent within the Compile class
  1801   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
  1803   // Allocate space for fixed-size arrays
  1804   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1805   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
  1806   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
  1808   // Clear the arrays
  1809   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
  1810   memset(_node_latency,       0, node_max * sizeof(unsigned short));
  1811   memset(_uses,               0, node_max * sizeof(short));
  1812   memset(_current_latency,    0, node_max * sizeof(unsigned short));
  1814   // Clear the bundling information
  1815   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
  1817   // Get the last node
  1818   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
  1820   _next_node = block->get_node(block->number_of_nodes() - 1);
  1823 #ifndef PRODUCT
  1824 // Scheduling destructor
  1825 Scheduling::~Scheduling() {
  1826   _total_branches             += _branches;
  1827   _total_unconditional_delays += _unconditional_delays;
  1829 #endif
  1831 // Step ahead "i" cycles
  1832 void Scheduling::step(uint i) {
  1834   Bundle *bundle = node_bundling(_next_node);
  1835   bundle->set_starts_bundle();
  1837   // Update the bundle record, but leave the flags information alone
  1838   if (_bundle_instr_count > 0) {
  1839     bundle->set_instr_count(_bundle_instr_count);
  1840     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1843   // Update the state information
  1844   _bundle_instr_count = 0;
  1845   _bundle_cycle_number += i;
  1846   _bundle_use.step(i);
  1849 void Scheduling::step_and_clear() {
  1850   Bundle *bundle = node_bundling(_next_node);
  1851   bundle->set_starts_bundle();
  1853   // Update the bundle record
  1854   if (_bundle_instr_count > 0) {
  1855     bundle->set_instr_count(_bundle_instr_count);
  1856     bundle->set_resources_used(_bundle_use.resourcesUsed());
  1858     _bundle_cycle_number += 1;
  1861   // Clear the bundling information
  1862   _bundle_instr_count = 0;
  1863   _bundle_use.reset();
  1865   memcpy(_bundle_use_elements,
  1866     Pipeline_Use::elaborated_elements,
  1867     sizeof(Pipeline_Use::elaborated_elements));
  1870 // Perform instruction scheduling and bundling over the sequence of
  1871 // instructions in backwards order.
  1872 void Compile::ScheduleAndBundle() {
  1874   // Don't optimize this if it isn't a method
  1875   if (!_method)
  1876     return;
  1878   // Don't optimize this if scheduling is disabled
  1879   if (!do_scheduling())
  1880     return;
  1882   // Scheduling code works only with pairs (8 bytes) maximum.
  1883   if (max_vector_size() > 8)
  1884     return;
  1886   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
  1888   // Create a data structure for all the scheduling information
  1889   Scheduling scheduling(Thread::current()->resource_area(), *this);
  1891   // Walk backwards over each basic block, computing the needed alignment
  1892   // Walk over all the basic blocks
  1893   scheduling.DoScheduling();
  1896 // Compute the latency of all the instructions.  This is fairly simple,
  1897 // because we already have a legal ordering.  Walk over the instructions
  1898 // from first to last, and compute the latency of the instruction based
  1899 // on the latency of the preceding instruction(s).
  1900 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
  1901 #ifndef PRODUCT
  1902   if (_cfg->C->trace_opto_output())
  1903     tty->print("# -> ComputeLocalLatenciesForward\n");
  1904 #endif
  1906   // Walk over all the schedulable instructions
  1907   for( uint j=_bb_start; j < _bb_end; j++ ) {
  1909     // This is a kludge, forcing all latency calculations to start at 1.
  1910     // Used to allow latency 0 to force an instruction to the beginning
  1911     // of the bb
  1912     uint latency = 1;
  1913     Node *use = bb->get_node(j);
  1914     uint nlen = use->len();
  1916     // Walk over all the inputs
  1917     for ( uint k=0; k < nlen; k++ ) {
  1918       Node *def = use->in(k);
  1919       if (!def)
  1920         continue;
  1922       uint l = _node_latency[def->_idx] + use->latency(k);
  1923       if (latency < l)
  1924         latency = l;
  1927     _node_latency[use->_idx] = latency;
  1929 #ifndef PRODUCT
  1930     if (_cfg->C->trace_opto_output()) {
  1931       tty->print("# latency %4d: ", latency);
  1932       use->dump();
  1934 #endif
  1937 #ifndef PRODUCT
  1938   if (_cfg->C->trace_opto_output())
  1939     tty->print("# <- ComputeLocalLatenciesForward\n");
  1940 #endif
  1942 } // end ComputeLocalLatenciesForward
  1944 // See if this node fits into the present instruction bundle
  1945 bool Scheduling::NodeFitsInBundle(Node *n) {
  1946   uint n_idx = n->_idx;
  1948   // If this is the unconditional delay instruction, then it fits
  1949   if (n == _unconditional_delay_slot) {
  1950 #ifndef PRODUCT
  1951     if (_cfg->C->trace_opto_output())
  1952       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
  1953 #endif
  1954     return (true);
  1957   // If the node cannot be scheduled this cycle, skip it
  1958   if (_current_latency[n_idx] > _bundle_cycle_number) {
  1959 #ifndef PRODUCT
  1960     if (_cfg->C->trace_opto_output())
  1961       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
  1962         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
  1963 #endif
  1964     return (false);
  1967   const Pipeline *node_pipeline = n->pipeline();
  1969   uint instruction_count = node_pipeline->instructionCount();
  1970   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  1971     instruction_count = 0;
  1972   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  1973     instruction_count++;
  1975   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
  1976 #ifndef PRODUCT
  1977     if (_cfg->C->trace_opto_output())
  1978       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
  1979         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
  1980 #endif
  1981     return (false);
  1984   // Don't allow non-machine nodes to be handled this way
  1985   if (!n->is_Mach() && instruction_count == 0)
  1986     return (false);
  1988   // See if there is any overlap
  1989   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
  1991   if (delay > 0) {
  1992 #ifndef PRODUCT
  1993     if (_cfg->C->trace_opto_output())
  1994       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
  1995 #endif
  1996     return false;
  1999 #ifndef PRODUCT
  2000   if (_cfg->C->trace_opto_output())
  2001     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
  2002 #endif
  2004   return true;
  2007 Node * Scheduling::ChooseNodeToBundle() {
  2008   uint siz = _available.size();
  2010   if (siz == 0) {
  2012 #ifndef PRODUCT
  2013     if (_cfg->C->trace_opto_output())
  2014       tty->print("#   ChooseNodeToBundle: NULL\n");
  2015 #endif
  2016     return (NULL);
  2019   // Fast path, if only 1 instruction in the bundle
  2020   if (siz == 1) {
  2021 #ifndef PRODUCT
  2022     if (_cfg->C->trace_opto_output()) {
  2023       tty->print("#   ChooseNodeToBundle (only 1): ");
  2024       _available[0]->dump();
  2026 #endif
  2027     return (_available[0]);
  2030   // Don't bother, if the bundle is already full
  2031   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
  2032     for ( uint i = 0; i < siz; i++ ) {
  2033       Node *n = _available[i];
  2035       // Skip projections, we'll handle them another way
  2036       if (n->is_Proj())
  2037         continue;
  2039       // This presupposed that instructions are inserted into the
  2040       // available list in a legality order; i.e. instructions that
  2041       // must be inserted first are at the head of the list
  2042       if (NodeFitsInBundle(n)) {
  2043 #ifndef PRODUCT
  2044         if (_cfg->C->trace_opto_output()) {
  2045           tty->print("#   ChooseNodeToBundle: ");
  2046           n->dump();
  2048 #endif
  2049         return (n);
  2054   // Nothing fits in this bundle, choose the highest priority
  2055 #ifndef PRODUCT
  2056   if (_cfg->C->trace_opto_output()) {
  2057     tty->print("#   ChooseNodeToBundle: ");
  2058     _available[0]->dump();
  2060 #endif
  2062   return _available[0];
  2065 void Scheduling::AddNodeToAvailableList(Node *n) {
  2066   assert( !n->is_Proj(), "projections never directly made available" );
  2067 #ifndef PRODUCT
  2068   if (_cfg->C->trace_opto_output()) {
  2069     tty->print("#   AddNodeToAvailableList: ");
  2070     n->dump();
  2072 #endif
  2074   int latency = _current_latency[n->_idx];
  2076   // Insert in latency order (insertion sort)
  2077   uint i;
  2078   for ( i=0; i < _available.size(); i++ )
  2079     if (_current_latency[_available[i]->_idx] > latency)
  2080       break;
  2082   // Special Check for compares following branches
  2083   if( n->is_Mach() && _scheduled.size() > 0 ) {
  2084     int op = n->as_Mach()->ideal_Opcode();
  2085     Node *last = _scheduled[0];
  2086     if( last->is_MachIf() && last->in(1) == n &&
  2087         ( op == Op_CmpI ||
  2088           op == Op_CmpU ||
  2089           op == Op_CmpP ||
  2090           op == Op_CmpF ||
  2091           op == Op_CmpD ||
  2092           op == Op_CmpL ) ) {
  2094       // Recalculate position, moving to front of same latency
  2095       for ( i=0 ; i < _available.size(); i++ )
  2096         if (_current_latency[_available[i]->_idx] >= latency)
  2097           break;
  2101   // Insert the node in the available list
  2102   _available.insert(i, n);
  2104 #ifndef PRODUCT
  2105   if (_cfg->C->trace_opto_output())
  2106     dump_available();
  2107 #endif
  2110 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
  2111   for ( uint i=0; i < n->len(); i++ ) {
  2112     Node *def = n->in(i);
  2113     if (!def) continue;
  2114     if( def->is_Proj() )        // If this is a machine projection, then
  2115       def = def->in(0);         // propagate usage thru to the base instruction
  2117     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
  2118       continue;
  2121     // Compute the latency
  2122     uint l = _bundle_cycle_number + n->latency(i);
  2123     if (_current_latency[def->_idx] < l)
  2124       _current_latency[def->_idx] = l;
  2126     // If this does not have uses then schedule it
  2127     if ((--_uses[def->_idx]) == 0)
  2128       AddNodeToAvailableList(def);
  2132 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
  2133 #ifndef PRODUCT
  2134   if (_cfg->C->trace_opto_output()) {
  2135     tty->print("#   AddNodeToBundle: ");
  2136     n->dump();
  2138 #endif
  2140   // Remove this from the available list
  2141   uint i;
  2142   for (i = 0; i < _available.size(); i++)
  2143     if (_available[i] == n)
  2144       break;
  2145   assert(i < _available.size(), "entry in _available list not found");
  2146   _available.remove(i);
  2148   // See if this fits in the current bundle
  2149   const Pipeline *node_pipeline = n->pipeline();
  2150   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
  2152   // Check for instructions to be placed in the delay slot. We
  2153   // do this before we actually schedule the current instruction,
  2154   // because the delay slot follows the current instruction.
  2155   if (Pipeline::_branch_has_delay_slot &&
  2156       node_pipeline->hasBranchDelay() &&
  2157       !_unconditional_delay_slot) {
  2159     uint siz = _available.size();
  2161     // Conditional branches can support an instruction that
  2162     // is unconditionally executed and not dependent by the
  2163     // branch, OR a conditionally executed instruction if
  2164     // the branch is taken.  In practice, this means that
  2165     // the first instruction at the branch target is
  2166     // copied to the delay slot, and the branch goes to
  2167     // the instruction after that at the branch target
  2168     if ( n->is_MachBranch() ) {
  2170       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
  2171       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
  2173 #ifndef PRODUCT
  2174       _branches++;
  2175 #endif
  2177       // At least 1 instruction is on the available list
  2178       // that is not dependent on the branch
  2179       for (uint i = 0; i < siz; i++) {
  2180         Node *d = _available[i];
  2181         const Pipeline *avail_pipeline = d->pipeline();
  2183         // Don't allow safepoints in the branch shadow, that will
  2184         // cause a number of difficulties
  2185         if ( avail_pipeline->instructionCount() == 1 &&
  2186             !avail_pipeline->hasMultipleBundles() &&
  2187             !avail_pipeline->hasBranchDelay() &&
  2188             Pipeline::instr_has_unit_size() &&
  2189             d->size(_regalloc) == Pipeline::instr_unit_size() &&
  2190             NodeFitsInBundle(d) &&
  2191             !node_bundling(d)->used_in_delay()) {
  2193           if (d->is_Mach() && !d->is_MachSafePoint()) {
  2194             // A node that fits in the delay slot was found, so we need to
  2195             // set the appropriate bits in the bundle pipeline information so
  2196             // that it correctly indicates resource usage.  Later, when we
  2197             // attempt to add this instruction to the bundle, we will skip
  2198             // setting the resource usage.
  2199             _unconditional_delay_slot = d;
  2200             node_bundling(n)->set_use_unconditional_delay();
  2201             node_bundling(d)->set_used_in_unconditional_delay();
  2202             _bundle_use.add_usage(avail_pipeline->resourceUse());
  2203             _current_latency[d->_idx] = _bundle_cycle_number;
  2204             _next_node = d;
  2205             ++_bundle_instr_count;
  2206 #ifndef PRODUCT
  2207             _unconditional_delays++;
  2208 #endif
  2209             break;
  2215     // No delay slot, add a nop to the usage
  2216     if (!_unconditional_delay_slot) {
  2217       // See if adding an instruction in the delay slot will overflow
  2218       // the bundle.
  2219       if (!NodeFitsInBundle(_nop)) {
  2220 #ifndef PRODUCT
  2221         if (_cfg->C->trace_opto_output())
  2222           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
  2223 #endif
  2224         step(1);
  2227       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
  2228       _next_node = _nop;
  2229       ++_bundle_instr_count;
  2232     // See if the instruction in the delay slot requires a
  2233     // step of the bundles
  2234     if (!NodeFitsInBundle(n)) {
  2235 #ifndef PRODUCT
  2236         if (_cfg->C->trace_opto_output())
  2237           tty->print("#  *** STEP(branch won't fit) ***\n");
  2238 #endif
  2239         // Update the state information
  2240         _bundle_instr_count = 0;
  2241         _bundle_cycle_number += 1;
  2242         _bundle_use.step(1);
  2246   // Get the number of instructions
  2247   uint instruction_count = node_pipeline->instructionCount();
  2248   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
  2249     instruction_count = 0;
  2251   // Compute the latency information
  2252   uint delay = 0;
  2254   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
  2255     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
  2256     if (relative_latency < 0)
  2257       relative_latency = 0;
  2259     delay = _bundle_use.full_latency(relative_latency, node_usage);
  2261     // Does not fit in this bundle, start a new one
  2262     if (delay > 0) {
  2263       step(delay);
  2265 #ifndef PRODUCT
  2266       if (_cfg->C->trace_opto_output())
  2267         tty->print("#  *** STEP(%d) ***\n", delay);
  2268 #endif
  2272   // If this was placed in the delay slot, ignore it
  2273   if (n != _unconditional_delay_slot) {
  2275     if (delay == 0) {
  2276       if (node_pipeline->hasMultipleBundles()) {
  2277 #ifndef PRODUCT
  2278         if (_cfg->C->trace_opto_output())
  2279           tty->print("#  *** STEP(multiple instructions) ***\n");
  2280 #endif
  2281         step(1);
  2284       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
  2285 #ifndef PRODUCT
  2286         if (_cfg->C->trace_opto_output())
  2287           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
  2288             instruction_count + _bundle_instr_count,
  2289             Pipeline::_max_instrs_per_cycle);
  2290 #endif
  2291         step(1);
  2295     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
  2296       _bundle_instr_count++;
  2298     // Set the node's latency
  2299     _current_latency[n->_idx] = _bundle_cycle_number;
  2301     // Now merge the functional unit information
  2302     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
  2303       _bundle_use.add_usage(node_usage);
  2305     // Increment the number of instructions in this bundle
  2306     _bundle_instr_count += instruction_count;
  2308     // Remember this node for later
  2309     if (n->is_Mach())
  2310       _next_node = n;
  2313   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
  2314   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
  2315   // 'Schedule' them (basically ignore in the schedule) but do not insert them
  2316   // into the block.  All other scheduled nodes get put in the schedule here.
  2317   int op = n->Opcode();
  2318   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
  2319       (op != Op_Node &&         // Not an unused antidepedence node and
  2320        // not an unallocated boxlock
  2321        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
  2323     // Push any trailing projections
  2324     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
  2325       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2326         Node *foi = n->fast_out(i);
  2327         if( foi->is_Proj() )
  2328           _scheduled.push(foi);
  2332     // Put the instruction in the schedule list
  2333     _scheduled.push(n);
  2336 #ifndef PRODUCT
  2337   if (_cfg->C->trace_opto_output())
  2338     dump_available();
  2339 #endif
  2341   // Walk all the definitions, decrementing use counts, and
  2342   // if a definition has a 0 use count, place it in the available list.
  2343   DecrementUseCounts(n,bb);
  2346 // This method sets the use count within a basic block.  We will ignore all
  2347 // uses outside the current basic block.  As we are doing a backwards walk,
  2348 // any node we reach that has a use count of 0 may be scheduled.  This also
  2349 // avoids the problem of cyclic references from phi nodes, as long as phi
  2350 // nodes are at the front of the basic block.  This method also initializes
  2351 // the available list to the set of instructions that have no uses within this
  2352 // basic block.
  2353 void Scheduling::ComputeUseCount(const Block *bb) {
  2354 #ifndef PRODUCT
  2355   if (_cfg->C->trace_opto_output())
  2356     tty->print("# -> ComputeUseCount\n");
  2357 #endif
  2359   // Clear the list of available and scheduled instructions, just in case
  2360   _available.clear();
  2361   _scheduled.clear();
  2363   // No delay slot specified
  2364   _unconditional_delay_slot = NULL;
  2366 #ifdef ASSERT
  2367   for( uint i=0; i < bb->number_of_nodes(); i++ )
  2368     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
  2369 #endif
  2371   // Force the _uses count to never go to zero for unscheduable pieces
  2372   // of the block
  2373   for( uint k = 0; k < _bb_start; k++ )
  2374     _uses[bb->get_node(k)->_idx] = 1;
  2375   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
  2376     _uses[bb->get_node(l)->_idx] = 1;
  2378   // Iterate backwards over the instructions in the block.  Don't count the
  2379   // branch projections at end or the block header instructions.
  2380   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
  2381     Node *n = bb->get_node(j);
  2382     if( n->is_Proj() ) continue; // Projections handled another way
  2384     // Account for all uses
  2385     for ( uint k = 0; k < n->len(); k++ ) {
  2386       Node *inp = n->in(k);
  2387       if (!inp) continue;
  2388       assert(inp != n, "no cycles allowed" );
  2389       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
  2390         if (inp->is_Proj()) { // Skip through Proj's
  2391           inp = inp->in(0);
  2393         ++_uses[inp->_idx];     // Count 1 block-local use
  2397     // If this instruction has a 0 use count, then it is available
  2398     if (!_uses[n->_idx]) {
  2399       _current_latency[n->_idx] = _bundle_cycle_number;
  2400       AddNodeToAvailableList(n);
  2403 #ifndef PRODUCT
  2404     if (_cfg->C->trace_opto_output()) {
  2405       tty->print("#   uses: %3d: ", _uses[n->_idx]);
  2406       n->dump();
  2408 #endif
  2411 #ifndef PRODUCT
  2412   if (_cfg->C->trace_opto_output())
  2413     tty->print("# <- ComputeUseCount\n");
  2414 #endif
  2417 // This routine performs scheduling on each basic block in reverse order,
  2418 // using instruction latencies and taking into account function unit
  2419 // availability.
  2420 void Scheduling::DoScheduling() {
  2421 #ifndef PRODUCT
  2422   if (_cfg->C->trace_opto_output())
  2423     tty->print("# -> DoScheduling\n");
  2424 #endif
  2426   Block *succ_bb = NULL;
  2427   Block *bb;
  2429   // Walk over all the basic blocks in reverse order
  2430   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
  2431     bb = _cfg->get_block(i);
  2433 #ifndef PRODUCT
  2434     if (_cfg->C->trace_opto_output()) {
  2435       tty->print("#  Schedule BB#%03d (initial)\n", i);
  2436       for (uint j = 0; j < bb->number_of_nodes(); j++) {
  2437         bb->get_node(j)->dump();
  2440 #endif
  2442     // On the head node, skip processing
  2443     if (bb == _cfg->get_root_block()) {
  2444       continue;
  2447     // Skip empty, connector blocks
  2448     if (bb->is_connector())
  2449       continue;
  2451     // If the following block is not the sole successor of
  2452     // this one, then reset the pipeline information
  2453     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
  2454 #ifndef PRODUCT
  2455       if (_cfg->C->trace_opto_output()) {
  2456         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
  2457                    _next_node->_idx, _bundle_instr_count);
  2459 #endif
  2460       step_and_clear();
  2463     // Leave untouched the starting instruction, any Phis, a CreateEx node
  2464     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
  2465     _bb_end = bb->number_of_nodes()-1;
  2466     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
  2467       Node *n = bb->get_node(_bb_start);
  2468       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
  2469       // Also, MachIdealNodes do not get scheduled
  2470       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
  2471       MachNode *mach = n->as_Mach();
  2472       int iop = mach->ideal_Opcode();
  2473       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
  2474       if( iop == Op_Con ) continue;      // Do not schedule Top
  2475       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
  2476           mach->pipeline() == MachNode::pipeline_class() &&
  2477           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
  2478         continue;
  2479       break;                    // Funny loop structure to be sure...
  2481     // Compute last "interesting" instruction in block - last instruction we
  2482     // might schedule.  _bb_end points just after last schedulable inst.  We
  2483     // normally schedule conditional branches (despite them being forced last
  2484     // in the block), because they have delay slots we can fill.  Calls all
  2485     // have their delay slots filled in the template expansions, so we don't
  2486     // bother scheduling them.
  2487     Node *last = bb->get_node(_bb_end);
  2488     // Ignore trailing NOPs.
  2489     while (_bb_end > 0 && last->is_Mach() &&
  2490            last->as_Mach()->ideal_Opcode() == Op_Con) {
  2491       last = bb->get_node(--_bb_end);
  2493     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
  2494     if( last->is_Catch() ||
  2495        // Exclude unreachable path case when Halt node is in a separate block.
  2496        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
  2497       // There must be a prior call.  Skip it.
  2498       while( !bb->get_node(--_bb_end)->is_MachCall() ) {
  2499         assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
  2501     } else if( last->is_MachNullCheck() ) {
  2502       // Backup so the last null-checked memory instruction is
  2503       // outside the schedulable range. Skip over the nullcheck,
  2504       // projection, and the memory nodes.
  2505       Node *mem = last->in(1);
  2506       do {
  2507         _bb_end--;
  2508       } while (mem != bb->get_node(_bb_end));
  2509     } else {
  2510       // Set _bb_end to point after last schedulable inst.
  2511       _bb_end++;
  2514     assert( _bb_start <= _bb_end, "inverted block ends" );
  2516     // Compute the register antidependencies for the basic block
  2517     ComputeRegisterAntidependencies(bb);
  2518     if (_cfg->C->failing())  return;  // too many D-U pinch points
  2520     // Compute intra-bb latencies for the nodes
  2521     ComputeLocalLatenciesForward(bb);
  2523     // Compute the usage within the block, and set the list of all nodes
  2524     // in the block that have no uses within the block.
  2525     ComputeUseCount(bb);
  2527     // Schedule the remaining instructions in the block
  2528     while ( _available.size() > 0 ) {
  2529       Node *n = ChooseNodeToBundle();
  2530       guarantee(n != NULL, "no nodes available");
  2531       AddNodeToBundle(n,bb);
  2534     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
  2535 #ifdef ASSERT
  2536     for( uint l = _bb_start; l < _bb_end; l++ ) {
  2537       Node *n = bb->get_node(l);
  2538       uint m;
  2539       for( m = 0; m < _bb_end-_bb_start; m++ )
  2540         if( _scheduled[m] == n )
  2541           break;
  2542       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
  2544 #endif
  2546     // Now copy the instructions (in reverse order) back to the block
  2547     for ( uint k = _bb_start; k < _bb_end; k++ )
  2548       bb->map_node(_scheduled[_bb_end-k-1], k);
  2550 #ifndef PRODUCT
  2551     if (_cfg->C->trace_opto_output()) {
  2552       tty->print("#  Schedule BB#%03d (final)\n", i);
  2553       uint current = 0;
  2554       for (uint j = 0; j < bb->number_of_nodes(); j++) {
  2555         Node *n = bb->get_node(j);
  2556         if( valid_bundle_info(n) ) {
  2557           Bundle *bundle = node_bundling(n);
  2558           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
  2559             tty->print("*** Bundle: ");
  2560             bundle->dump();
  2562           n->dump();
  2566 #endif
  2567 #ifdef ASSERT
  2568   verify_good_schedule(bb,"after block local scheduling");
  2569 #endif
  2572 #ifndef PRODUCT
  2573   if (_cfg->C->trace_opto_output())
  2574     tty->print("# <- DoScheduling\n");
  2575 #endif
  2577   // Record final node-bundling array location
  2578   _regalloc->C->set_node_bundling_base(_node_bundling_base);
  2580 } // end DoScheduling
  2582 // Verify that no live-range used in the block is killed in the block by a
  2583 // wrong DEF.  This doesn't verify live-ranges that span blocks.
  2585 // Check for edge existence.  Used to avoid adding redundant precedence edges.
  2586 static bool edge_from_to( Node *from, Node *to ) {
  2587   for( uint i=0; i<from->len(); i++ )
  2588     if( from->in(i) == to )
  2589       return true;
  2590   return false;
  2593 #ifdef ASSERT
  2594 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
  2595   // Check for bad kills
  2596   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
  2597     Node *prior_use = _reg_node[def];
  2598     if( prior_use && !edge_from_to(prior_use,n) ) {
  2599       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
  2600       n->dump();
  2601       tty->print_cr("...");
  2602       prior_use->dump();
  2603       assert(edge_from_to(prior_use,n),msg);
  2605     _reg_node.map(def,NULL); // Kill live USEs
  2609 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
  2611   // Zap to something reasonable for the verify code
  2612   _reg_node.clear();
  2614   // Walk over the block backwards.  Check to make sure each DEF doesn't
  2615   // kill a live value (other than the one it's supposed to).  Add each
  2616   // USE to the live set.
  2617   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
  2618     Node *n = b->get_node(i);
  2619     int n_op = n->Opcode();
  2620     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
  2621       // Fat-proj kills a slew of registers
  2622       RegMask rm = n->out_RegMask();// Make local copy
  2623       while( rm.is_NotEmpty() ) {
  2624         OptoReg::Name kill = rm.find_first_elem();
  2625         rm.Remove(kill);
  2626         verify_do_def( n, kill, msg );
  2628     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
  2629       // Get DEF'd registers the normal way
  2630       verify_do_def( n, _regalloc->get_reg_first(n), msg );
  2631       verify_do_def( n, _regalloc->get_reg_second(n), msg );
  2634     // Now make all USEs live
  2635     for( uint i=1; i<n->req(); i++ ) {
  2636       Node *def = n->in(i);
  2637       assert(def != 0, "input edge required");
  2638       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
  2639       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
  2640       if( OptoReg::is_valid(reg_lo) ) {
  2641         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
  2642         _reg_node.map(reg_lo,n);
  2644       if( OptoReg::is_valid(reg_hi) ) {
  2645         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
  2646         _reg_node.map(reg_hi,n);
  2652   // Zap to something reasonable for the Antidependence code
  2653   _reg_node.clear();
  2655 #endif
  2657 // Conditionally add precedence edges.  Avoid putting edges on Projs.
  2658 static void add_prec_edge_from_to( Node *from, Node *to ) {
  2659   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
  2660     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
  2661     from = from->in(0);
  2663   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
  2664       !edge_from_to( from, to ) ) // Avoid duplicate edge
  2665     from->add_prec(to);
  2668 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
  2669   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
  2670     return;
  2672   Node *pinch = _reg_node[def_reg]; // Get pinch point
  2673   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
  2674       is_def ) {    // Check for a true def (not a kill)
  2675     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
  2676     return;
  2679   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
  2680   debug_only( def = (Node*)0xdeadbeef; )
  2682   // After some number of kills there _may_ be a later def
  2683   Node *later_def = NULL;
  2685   // Finding a kill requires a real pinch-point.
  2686   // Check for not already having a pinch-point.
  2687   // Pinch points are Op_Node's.
  2688   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
  2689     later_def = pinch;            // Must be def/kill as optimistic pinch-point
  2690     if ( _pinch_free_list.size() > 0) {
  2691       pinch = _pinch_free_list.pop();
  2692     } else {
  2693       pinch = new (_cfg->C) Node(1); // Pinch point to-be
  2695     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
  2696       _cfg->C->record_method_not_compilable("too many D-U pinch points");
  2697       return;
  2699     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
  2700     _reg_node.map(def_reg,pinch); // Record pinch-point
  2701     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
  2702     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
  2703       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
  2704       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
  2705       later_def = NULL;           // and no later def
  2707     pinch->set_req(0,later_def);  // Hook later def so we can find it
  2708   } else {                        // Else have valid pinch point
  2709     if( pinch->in(0) )            // If there is a later-def
  2710       later_def = pinch->in(0);   // Get it
  2713   // Add output-dependence edge from later def to kill
  2714   if( later_def )               // If there is some original def
  2715     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
  2717   // See if current kill is also a use, and so is forced to be the pinch-point.
  2718   if( pinch->Opcode() == Op_Node ) {
  2719     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
  2720     for( uint i=1; i<uses->req(); i++ ) {
  2721       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
  2722           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
  2723         // Yes, found a use/kill pinch-point
  2724         pinch->set_req(0,NULL);  //
  2725         pinch->replace_by(kill); // Move anti-dep edges up
  2726         pinch = kill;
  2727         _reg_node.map(def_reg,pinch);
  2728         return;
  2733   // Add edge from kill to pinch-point
  2734   add_prec_edge_from_to(kill,pinch);
  2737 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
  2738   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
  2739     return;
  2740   Node *pinch = _reg_node[use_reg]; // Get pinch point
  2741   // Check for no later def_reg/kill in block
  2742   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
  2743       // Use has to be block-local as well
  2744       _cfg->get_block_for_node(use) == b) {
  2745     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
  2746         pinch->req() == 1 ) {   // pinch not yet in block?
  2747       pinch->del_req(0);        // yank pointer to later-def, also set flag
  2748       // Insert the pinch-point in the block just after the last use
  2749       b->insert_node(pinch, b->find_node(use) + 1);
  2750       _bb_end++;                // Increase size scheduled region in block
  2753     add_prec_edge_from_to(pinch,use);
  2757 // We insert antidependences between the reads and following write of
  2758 // allocated registers to prevent illegal code motion. Hopefully, the
  2759 // number of added references should be fairly small, especially as we
  2760 // are only adding references within the current basic block.
  2761 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
  2763 #ifdef ASSERT
  2764   verify_good_schedule(b,"before block local scheduling");
  2765 #endif
  2767   // A valid schedule, for each register independently, is an endless cycle
  2768   // of: a def, then some uses (connected to the def by true dependencies),
  2769   // then some kills (defs with no uses), finally the cycle repeats with a new
  2770   // def.  The uses are allowed to float relative to each other, as are the
  2771   // kills.  No use is allowed to slide past a kill (or def).  This requires
  2772   // antidependencies between all uses of a single def and all kills that
  2773   // follow, up to the next def.  More edges are redundant, because later defs
  2774   // & kills are already serialized with true or antidependencies.  To keep
  2775   // the edge count down, we add a 'pinch point' node if there's more than
  2776   // one use or more than one kill/def.
  2778   // We add dependencies in one bottom-up pass.
  2780   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
  2782   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
  2783   // register.  If not, we record the DEF/KILL in _reg_node, the
  2784   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
  2785   // "pinch point", a new Node that's in the graph but not in the block.
  2786   // We put edges from the prior and current DEF/KILLs to the pinch point.
  2787   // We put the pinch point in _reg_node.  If there's already a pinch point
  2788   // we merely add an edge from the current DEF/KILL to the pinch point.
  2790   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
  2791   // put an edge from the pinch point to the USE.
  2793   // To be expedient, the _reg_node array is pre-allocated for the whole
  2794   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
  2795   // or a valid def/kill/pinch-point, or a leftover node from some prior
  2796   // block.  Leftover node from some prior block is treated like a NULL (no
  2797   // prior def, so no anti-dependence needed).  Valid def is distinguished by
  2798   // it being in the current block.
  2799   bool fat_proj_seen = false;
  2800   uint last_safept = _bb_end-1;
  2801   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
  2802   Node* last_safept_node = end_node;
  2803   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
  2804     Node *n = b->get_node(i);
  2805     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
  2806     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
  2807       // Fat-proj kills a slew of registers
  2808       // This can add edges to 'n' and obscure whether or not it was a def,
  2809       // hence the is_def flag.
  2810       fat_proj_seen = true;
  2811       RegMask rm = n->out_RegMask();// Make local copy
  2812       while( rm.is_NotEmpty() ) {
  2813         OptoReg::Name kill = rm.find_first_elem();
  2814         rm.Remove(kill);
  2815         anti_do_def( b, n, kill, is_def );
  2817     } else {
  2818       // Get DEF'd registers the normal way
  2819       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
  2820       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
  2823     // Kill projections on a branch should appear to occur on the
  2824     // branch, not afterwards, so grab the masks from the projections
  2825     // and process them.
  2826     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
  2827       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2828         Node* use = n->fast_out(i);
  2829         if (use->is_Proj()) {
  2830           RegMask rm = use->out_RegMask();// Make local copy
  2831           while( rm.is_NotEmpty() ) {
  2832             OptoReg::Name kill = rm.find_first_elem();
  2833             rm.Remove(kill);
  2834             anti_do_def( b, n, kill, false );
  2840     // Check each register used by this instruction for a following DEF/KILL
  2841     // that must occur afterward and requires an anti-dependence edge.
  2842     for( uint j=0; j<n->req(); j++ ) {
  2843       Node *def = n->in(j);
  2844       if( def ) {
  2845         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
  2846         anti_do_use( b, n, _regalloc->get_reg_first(def) );
  2847         anti_do_use( b, n, _regalloc->get_reg_second(def) );
  2850     // Do not allow defs of new derived values to float above GC
  2851     // points unless the base is definitely available at the GC point.
  2853     Node *m = b->get_node(i);
  2855     // Add precedence edge from following safepoint to use of derived pointer
  2856     if( last_safept_node != end_node &&
  2857         m != last_safept_node) {
  2858       for (uint k = 1; k < m->req(); k++) {
  2859         const Type *t = m->in(k)->bottom_type();
  2860         if( t->isa_oop_ptr() &&
  2861             t->is_ptr()->offset() != 0 ) {
  2862           last_safept_node->add_prec( m );
  2863           break;
  2868     if( n->jvms() ) {           // Precedence edge from derived to safept
  2869       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
  2870       if( b->get_node(last_safept) != last_safept_node ) {
  2871         last_safept = b->find_node(last_safept_node);
  2873       for( uint j=last_safept; j > i; j-- ) {
  2874         Node *mach = b->get_node(j);
  2875         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
  2876           mach->add_prec( n );
  2878       last_safept = i;
  2879       last_safept_node = m;
  2883   if (fat_proj_seen) {
  2884     // Garbage collect pinch nodes that were not consumed.
  2885     // They are usually created by a fat kill MachProj for a call.
  2886     garbage_collect_pinch_nodes();
  2890 // Garbage collect pinch nodes for reuse by other blocks.
  2891 //
  2892 // The block scheduler's insertion of anti-dependence
  2893 // edges creates many pinch nodes when the block contains
  2894 // 2 or more Calls.  A pinch node is used to prevent a
  2895 // combinatorial explosion of edges.  If a set of kills for a
  2896 // register is anti-dependent on a set of uses (or defs), rather
  2897 // than adding an edge in the graph between each pair of kill
  2898 // and use (or def), a pinch is inserted between them:
  2899 //
  2900 //            use1   use2  use3
  2901 //                \   |   /
  2902 //                 \  |  /
  2903 //                  pinch
  2904 //                 /  |  \
  2905 //                /   |   \
  2906 //            kill1 kill2 kill3
  2907 //
  2908 // One pinch node is created per register killed when
  2909 // the second call is encountered during a backwards pass
  2910 // over the block.  Most of these pinch nodes are never
  2911 // wired into the graph because the register is never
  2912 // used or def'ed in the block.
  2913 //
  2914 void Scheduling::garbage_collect_pinch_nodes() {
  2915 #ifndef PRODUCT
  2916     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
  2917 #endif
  2918     int trace_cnt = 0;
  2919     for (uint k = 0; k < _reg_node.Size(); k++) {
  2920       Node* pinch = _reg_node[k];
  2921       if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
  2922           // no predecence input edges
  2923           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
  2924         cleanup_pinch(pinch);
  2925         _pinch_free_list.push(pinch);
  2926         _reg_node.map(k, NULL);
  2927 #ifndef PRODUCT
  2928         if (_cfg->C->trace_opto_output()) {
  2929           trace_cnt++;
  2930           if (trace_cnt > 40) {
  2931             tty->print("\n");
  2932             trace_cnt = 0;
  2934           tty->print(" %d", pinch->_idx);
  2936 #endif
  2939 #ifndef PRODUCT
  2940     if (_cfg->C->trace_opto_output()) tty->print("\n");
  2941 #endif
  2944 // Clean up a pinch node for reuse.
  2945 void Scheduling::cleanup_pinch( Node *pinch ) {
  2946   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
  2948   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
  2949     Node* use = pinch->last_out(i);
  2950     uint uses_found = 0;
  2951     for (uint j = use->req(); j < use->len(); j++) {
  2952       if (use->in(j) == pinch) {
  2953         use->rm_prec(j);
  2954         uses_found++;
  2957     assert(uses_found > 0, "must be a precedence edge");
  2958     i -= uses_found;    // we deleted 1 or more copies of this edge
  2960   // May have a later_def entry
  2961   pinch->set_req(0, NULL);
  2964 #ifndef PRODUCT
  2966 void Scheduling::dump_available() const {
  2967   tty->print("#Availist  ");
  2968   for (uint i = 0; i < _available.size(); i++)
  2969     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
  2970   tty->cr();
  2973 // Print Scheduling Statistics
  2974 void Scheduling::print_statistics() {
  2975   // Print the size added by nops for bundling
  2976   tty->print("Nops added %d bytes to total of %d bytes",
  2977     _total_nop_size, _total_method_size);
  2978   if (_total_method_size > 0)
  2979     tty->print(", for %.2f%%",
  2980       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
  2981   tty->print("\n");
  2983   // Print the number of branch shadows filled
  2984   if (Pipeline::_branch_has_delay_slot) {
  2985     tty->print("Of %d branches, %d had unconditional delay slots filled",
  2986       _total_branches, _total_unconditional_delays);
  2987     if (_total_branches > 0)
  2988       tty->print(", for %.2f%%",
  2989         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
  2990     tty->print("\n");
  2993   uint total_instructions = 0, total_bundles = 0;
  2995   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
  2996     uint bundle_count   = _total_instructions_per_bundle[i];
  2997     total_instructions += bundle_count * i;
  2998     total_bundles      += bundle_count;
  3001   if (total_bundles > 0)
  3002     tty->print("Average ILP (excluding nops) is %.2f\n",
  3003       ((double)total_instructions) / ((double)total_bundles));
  3005 #endif

mercurial