src/share/vm/opto/chaitin.cpp

Thu, 31 Jul 2014 19:59:36 +0200

author
roland
date
Thu, 31 Jul 2014 19:59:36 +0200
changeset 7003
69ea58782b1a
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
child 7564
9df0d8f65fea
permissions
-rw-r--r--

8054054: 8040121 is broken
Summary: C++ code pattern from 8040121 is incorrect
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "compiler/oopMap.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "opto/addnode.hpp"
    30 #include "opto/block.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/chaitin.hpp"
    34 #include "opto/coalesce.hpp"
    35 #include "opto/connode.hpp"
    36 #include "opto/idealGraphPrinter.hpp"
    37 #include "opto/indexSet.hpp"
    38 #include "opto/machnode.hpp"
    39 #include "opto/memnode.hpp"
    40 #include "opto/opcodes.hpp"
    41 #include "opto/rootnode.hpp"
    43 #ifndef PRODUCT
    44 void LRG::dump() const {
    45   ttyLocker ttyl;
    46   tty->print("%d ",num_regs());
    47   _mask.dump();
    48   if( _msize_valid ) {
    49     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
    50     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
    51   } else {
    52     tty->print(", #?(%d) ",_mask.Size());
    53   }
    55   tty->print("EffDeg: ");
    56   if( _degree_valid ) tty->print( "%d ", _eff_degree );
    57   else tty->print("? ");
    59   if( is_multidef() ) {
    60     tty->print("MultiDef ");
    61     if (_defs != NULL) {
    62       tty->print("(");
    63       for (int i = 0; i < _defs->length(); i++) {
    64         tty->print("N%d ", _defs->at(i)->_idx);
    65       }
    66       tty->print(") ");
    67     }
    68   }
    69   else if( _def == 0 ) tty->print("Dead ");
    70   else tty->print("Def: N%d ",_def->_idx);
    72   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
    73   // Flags
    74   if( _is_oop ) tty->print("Oop ");
    75   if( _is_float ) tty->print("Float ");
    76   if( _is_vector ) tty->print("Vector ");
    77   if( _was_spilled1 ) tty->print("Spilled ");
    78   if( _was_spilled2 ) tty->print("Spilled2 ");
    79   if( _direct_conflict ) tty->print("Direct_conflict ");
    80   if( _fat_proj ) tty->print("Fat ");
    81   if( _was_lo ) tty->print("Lo ");
    82   if( _has_copy ) tty->print("Copy ");
    83   if( _at_risk ) tty->print("Risk ");
    85   if( _must_spill ) tty->print("Must_spill ");
    86   if( _is_bound ) tty->print("Bound ");
    87   if( _msize_valid ) {
    88     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
    89   }
    91   tty->cr();
    92 }
    93 #endif
    95 // Compute score from cost and area.  Low score is best to spill.
    96 static double raw_score( double cost, double area ) {
    97   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
    98 }
   100 double LRG::score() const {
   101   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
   102   // Bigger area lowers score, encourages spilling this live range.
   103   // Bigger cost raise score, prevents spilling this live range.
   104   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
   105   // to turn a divide by a constant into a multiply by the reciprical).
   106   double score = raw_score( _cost, _area);
   108   // Account for area.  Basically, LRGs covering large areas are better
   109   // to spill because more other LRGs get freed up.
   110   if( _area == 0.0 )            // No area?  Then no progress to spill
   111     return 1e35;
   113   if( _was_spilled2 )           // If spilled once before, we are unlikely
   114     return score + 1e30;        // to make progress again.
   116   if( _cost >= _area*3.0 )      // Tiny area relative to cost
   117     return score + 1e17;        // Probably no progress to spill
   119   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
   120     return score + 1e10;        // Likely no progress to spill
   122   return score;
   123 }
   125 #define NUMBUCKS 3
   127 // Straight out of Tarjan's union-find algorithm
   128 uint LiveRangeMap::find_compress(uint lrg) {
   129   uint cur = lrg;
   130   uint next = _uf_map.at(cur);
   131   while (next != cur) { // Scan chain of equivalences
   132     assert( next < cur, "always union smaller");
   133     cur = next; // until find a fixed-point
   134     next = _uf_map.at(cur);
   135   }
   137   // Core of union-find algorithm: update chain of
   138   // equivalences to be equal to the root.
   139   while (lrg != next) {
   140     uint tmp = _uf_map.at(lrg);
   141     _uf_map.at_put(lrg, next);
   142     lrg = tmp;
   143   }
   144   return lrg;
   145 }
   147 // Reset the Union-Find map to identity
   148 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
   149   _max_lrg_id= max_lrg_id;
   150   // Force the Union-Find mapping to be at least this large
   151   _uf_map.at_put_grow(_max_lrg_id, 0);
   152   // Initialize it to be the ID mapping.
   153   for (uint i = 0; i < _max_lrg_id; ++i) {
   154     _uf_map.at_put(i, i);
   155   }
   156 }
   158 // Make all Nodes map directly to their final live range; no need for
   159 // the Union-Find mapping after this call.
   160 void LiveRangeMap::compress_uf_map_for_nodes() {
   161   // For all Nodes, compress mapping
   162   uint unique = _names.length();
   163   for (uint i = 0; i < unique; ++i) {
   164     uint lrg = _names.at(i);
   165     uint compressed_lrg = find(lrg);
   166     if (lrg != compressed_lrg) {
   167       _names.at_put(i, compressed_lrg);
   168     }
   169   }
   170 }
   172 // Like Find above, but no path compress, so bad asymptotic behavior
   173 uint LiveRangeMap::find_const(uint lrg) const {
   174   if (!lrg) {
   175     return lrg; // Ignore the zero LRG
   176   }
   178   // Off the end?  This happens during debugging dumps when you got
   179   // brand new live ranges but have not told the allocator yet.
   180   if (lrg >= _max_lrg_id) {
   181     return lrg;
   182   }
   184   uint next = _uf_map.at(lrg);
   185   while (next != lrg) { // Scan chain of equivalences
   186     assert(next < lrg, "always union smaller");
   187     lrg = next; // until find a fixed-point
   188     next = _uf_map.at(lrg);
   189   }
   190   return next;
   191 }
   193 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
   194   : PhaseRegAlloc(unique, cfg, matcher,
   195 #ifndef PRODUCT
   196        print_chaitin_statistics
   197 #else
   198        NULL
   199 #endif
   200        )
   201   , _lrg_map(Thread::current()->resource_area(), unique)
   202   , _live(0)
   203   , _spilled_once(Thread::current()->resource_area())
   204   , _spilled_twice(Thread::current()->resource_area())
   205   , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
   206   , _oldphi(unique)
   207 #ifndef PRODUCT
   208   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
   209 #endif
   210 {
   211   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
   213   _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
   215   // Build a list of basic blocks, sorted by frequency
   216   _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
   217   // Experiment with sorting strategies to speed compilation
   218   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
   219   Block **buckets[NUMBUCKS];             // Array of buckets
   220   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
   221   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
   222   for (uint i = 0; i < NUMBUCKS; i++) {
   223     buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
   224     buckcnt[i] = 0;
   225     // Bump by three orders of magnitude each time
   226     cutoff *= 0.001;
   227     buckval[i] = cutoff;
   228     for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
   229       buckets[i][j] = NULL;
   230     }
   231   }
   232   // Sort blocks into buckets
   233   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
   234     for (uint j = 0; j < NUMBUCKS; j++) {
   235       if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
   236         // Assign block to end of list for appropriate bucket
   237         buckets[j][buckcnt[j]++] = _cfg.get_block(i);
   238         break; // kick out of inner loop
   239       }
   240     }
   241   }
   242   // Dump buckets into final block array
   243   uint blkcnt = 0;
   244   for (uint i = 0; i < NUMBUCKS; i++) {
   245     for (uint j = 0; j < buckcnt[i]; j++) {
   246       _blks[blkcnt++] = buckets[i][j];
   247     }
   248   }
   250   assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
   251 }
   253 // union 2 sets together.
   254 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
   255   uint src = _lrg_map.find(src_n);
   256   uint dst = _lrg_map.find(dst_n);
   257   assert(src, "");
   258   assert(dst, "");
   259   assert(src < _lrg_map.max_lrg_id(), "oob");
   260   assert(dst < _lrg_map.max_lrg_id(), "oob");
   261   assert(src < dst, "always union smaller");
   262   _lrg_map.uf_map(dst, src);
   263 }
   265 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
   266   // Make the Node->LRG mapping
   267   _lrg_map.extend(x->_idx,lrg);
   268   // Make the Union-Find mapping an identity function
   269   _lrg_map.uf_extend(lrg, lrg);
   270 }
   273 int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
   274   assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
   275   DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
   276   int found_projs = 0;
   277   uint cnt = orig->outcnt();
   278   for (uint i = 0; i < cnt; i++) {
   279     Node* proj = orig->raw_out(i);
   280     if (proj->is_MachProj()) {
   281       assert(proj->outcnt() == 0, "only kill projections are expected here");
   282       assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
   283       found_projs++;
   284       // Copy kill projections after the cloned node
   285       Node* kills = proj->clone();
   286       kills->set_req(0, copy);
   287       b->insert_node(kills, idx++);
   288       _cfg.map_node_to_block(kills, b);
   289       new_lrg(kills, max_lrg_id++);
   290     }
   291   }
   292   return found_projs;
   293 }
   295 // Renumber the live ranges to compact them.  Makes the IFG smaller.
   296 void PhaseChaitin::compact() {
   297   // Current the _uf_map contains a series of short chains which are headed
   298   // by a self-cycle.  All the chains run from big numbers to little numbers.
   299   // The Find() call chases the chains & shortens them for the next Find call.
   300   // We are going to change this structure slightly.  Numbers above a moving
   301   // wave 'i' are unchanged.  Numbers below 'j' point directly to their
   302   // compacted live range with no further chaining.  There are no chains or
   303   // cycles below 'i', so the Find call no longer works.
   304   uint j=1;
   305   uint i;
   306   for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
   307     uint lr = _lrg_map.uf_live_range_id(i);
   308     // Ignore unallocated live ranges
   309     if (!lr) {
   310       continue;
   311     }
   312     assert(lr <= i, "");
   313     _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
   314   }
   315   // Now change the Node->LR mapping to reflect the compacted names
   316   uint unique = _lrg_map.size();
   317   for (i = 0; i < unique; i++) {
   318     uint lrg_id = _lrg_map.live_range_id(i);
   319     _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
   320   }
   322   // Reset the Union-Find mapping
   323   _lrg_map.reset_uf_map(j);
   324 }
   326 void PhaseChaitin::Register_Allocate() {
   328   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
   329   // slots in this area are called "arg_slots".  Above the NEW FP (and in
   330   // registers) is the outgoing argument area; above that is the spill/temp
   331   // area.  These are all "frame_slots".  Arg_slots start at the zero
   332   // stack_slots and count up to the known arg_size.  Frame_slots start at
   333   // the stack_slot #arg_size and go up.  After allocation I map stack
   334   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
   335   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
   337   _trip_cnt = 0;
   338   _alternate = 0;
   339   _matcher._allocation_started = true;
   341   ResourceArea split_arena;     // Arena for Split local resources
   342   ResourceArea live_arena;      // Arena for liveness & IFG info
   343   ResourceMark rm(&live_arena);
   345   // Need live-ness for the IFG; need the IFG for coalescing.  If the
   346   // liveness is JUST for coalescing, then I can get some mileage by renaming
   347   // all copy-related live ranges low and then using the max copy-related
   348   // live range as a cut-off for LIVE and the IFG.  In other words, I can
   349   // build a subset of LIVE and IFG just for copies.
   350   PhaseLive live(_cfg, _lrg_map.names(), &live_arena);
   352   // Need IFG for coalescing and coloring
   353   PhaseIFG ifg(&live_arena);
   354   _ifg = &ifg;
   356   // Come out of SSA world to the Named world.  Assign (virtual) registers to
   357   // Nodes.  Use the same register for all inputs and the output of PhiNodes
   358   // - effectively ending SSA form.  This requires either coalescing live
   359   // ranges or inserting copies.  For the moment, we insert "virtual copies"
   360   // - we pretend there is a copy prior to each Phi in predecessor blocks.
   361   // We will attempt to coalesce such "virtual copies" before we manifest
   362   // them for real.
   363   de_ssa();
   365 #ifdef ASSERT
   366   // Veify the graph before RA.
   367   verify(&live_arena);
   368 #endif
   370   {
   371     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   372     _live = NULL;                 // Mark live as being not available
   373     rm.reset_to_mark();           // Reclaim working storage
   374     IndexSet::reset_memory(C, &live_arena);
   375     ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
   376     gather_lrg_masks( false );    // Collect LRG masks
   377     live.compute(_lrg_map.max_lrg_id()); // Compute liveness
   378     _live = &live;                // Mark LIVE as being available
   379   }
   381   // Base pointers are currently "used" by instructions which define new
   382   // derived pointers.  This makes base pointers live up to the where the
   383   // derived pointer is made, but not beyond.  Really, they need to be live
   384   // across any GC point where the derived value is live.  So this code looks
   385   // at all the GC points, and "stretches" the live range of any base pointer
   386   // to the GC point.
   387   if (stretch_base_pointer_live_ranges(&live_arena)) {
   388     NOT_PRODUCT(Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler);)
   389     // Since some live range stretched, I need to recompute live
   390     _live = NULL;
   391     rm.reset_to_mark();         // Reclaim working storage
   392     IndexSet::reset_memory(C, &live_arena);
   393     ifg.init(_lrg_map.max_lrg_id());
   394     gather_lrg_masks(false);
   395     live.compute(_lrg_map.max_lrg_id());
   396     _live = &live;
   397   }
   398   // Create the interference graph using virtual copies
   399   build_ifg_virtual();  // Include stack slots this time
   401   // Aggressive (but pessimistic) copy coalescing.
   402   // This pass works on virtual copies.  Any virtual copies which are not
   403   // coalesced get manifested as actual copies
   404   {
   405     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
   406     // faster.  Union requires a 'for all' operation which is slow on the
   407     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
   408     // meaning I can visit all the Nodes neighbors less than a Node in time
   409     // O(# of neighbors), but I have to visit all the Nodes greater than a
   410     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
   411     _ifg->SquareUp();
   413     PhaseAggressiveCoalesce coalesce(*this);
   414     coalesce.coalesce_driver();
   415     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
   416     // not match the Phi itself, insert a copy.
   417     coalesce.insert_copies(_matcher);
   418     if (C->failing()) {
   419       return;
   420     }
   421   }
   423   // After aggressive coalesce, attempt a first cut at coloring.
   424   // To color, we need the IFG and for that we need LIVE.
   425   {
   426     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   427     _live = NULL;
   428     rm.reset_to_mark();           // Reclaim working storage
   429     IndexSet::reset_memory(C, &live_arena);
   430     ifg.init(_lrg_map.max_lrg_id());
   431     gather_lrg_masks( true );
   432     live.compute(_lrg_map.max_lrg_id());
   433     _live = &live;
   434   }
   436   // Build physical interference graph
   437   uint must_spill = 0;
   438   must_spill = build_ifg_physical(&live_arena);
   439   // If we have a guaranteed spill, might as well spill now
   440   if (must_spill) {
   441     if(!_lrg_map.max_lrg_id()) {
   442       return;
   443     }
   444     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
   445     C->check_node_count(10*must_spill, "out of nodes before split");
   446     if (C->failing()) {
   447       return;
   448     }
   450     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
   451     _lrg_map.set_max_lrg_id(new_max_lrg_id);
   452     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   453     // or we failed to split
   454     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
   455     if (C->failing()) {
   456       return;
   457     }
   459     NOT_PRODUCT(C->verify_graph_edges();)
   461     compact();                  // Compact LRGs; return new lower max lrg
   463     {
   464       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   465       _live = NULL;
   466       rm.reset_to_mark();         // Reclaim working storage
   467       IndexSet::reset_memory(C, &live_arena);
   468       ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
   469       gather_lrg_masks( true );   // Collect intersect mask
   470       live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
   471       _live = &live;
   472     }
   473     build_ifg_physical(&live_arena);
   474     _ifg->SquareUp();
   475     _ifg->Compute_Effective_Degree();
   476     // Only do conservative coalescing if requested
   477     if (OptoCoalesce) {
   478       // Conservative (and pessimistic) copy coalescing of those spills
   479       PhaseConservativeCoalesce coalesce(*this);
   480       // If max live ranges greater than cutoff, don't color the stack.
   481       // This cutoff can be larger than below since it is only done once.
   482       coalesce.coalesce_driver();
   483     }
   484     _lrg_map.compress_uf_map_for_nodes();
   486 #ifdef ASSERT
   487     verify(&live_arena, true);
   488 #endif
   489   } else {
   490     ifg.SquareUp();
   491     ifg.Compute_Effective_Degree();
   492 #ifdef ASSERT
   493     set_was_low();
   494 #endif
   495   }
   497   // Prepare for Simplify & Select
   498   cache_lrg_info();           // Count degree of LRGs
   500   // Simplify the InterFerence Graph by removing LRGs of low degree.
   501   // LRGs of low degree are trivially colorable.
   502   Simplify();
   504   // Select colors by re-inserting LRGs back into the IFG in reverse order.
   505   // Return whether or not something spills.
   506   uint spills = Select( );
   508   // If we spill, split and recycle the entire thing
   509   while( spills ) {
   510     if( _trip_cnt++ > 24 ) {
   511       DEBUG_ONLY( dump_for_spill_split_recycle(); )
   512       if( _trip_cnt > 27 ) {
   513         C->record_method_not_compilable("failed spill-split-recycle sanity check");
   514         return;
   515       }
   516     }
   518     if (!_lrg_map.max_lrg_id()) {
   519       return;
   520     }
   521     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
   522     _lrg_map.set_max_lrg_id(new_max_lrg_id);
   523     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   524     C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
   525     if (C->failing()) {
   526       return;
   527     }
   529     compact(); // Compact LRGs; return new lower max lrg
   531     // Nuke the live-ness and interference graph and LiveRanGe info
   532     {
   533       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   534       _live = NULL;
   535       rm.reset_to_mark();         // Reclaim working storage
   536       IndexSet::reset_memory(C, &live_arena);
   537       ifg.init(_lrg_map.max_lrg_id());
   539       // Create LiveRanGe array.
   540       // Intersect register masks for all USEs and DEFs
   541       gather_lrg_masks(true);
   542       live.compute(_lrg_map.max_lrg_id());
   543       _live = &live;
   544     }
   545     must_spill = build_ifg_physical(&live_arena);
   546     _ifg->SquareUp();
   547     _ifg->Compute_Effective_Degree();
   549     // Only do conservative coalescing if requested
   550     if (OptoCoalesce) {
   551       // Conservative (and pessimistic) copy coalescing
   552       PhaseConservativeCoalesce coalesce(*this);
   553       // Check for few live ranges determines how aggressive coalesce is.
   554       coalesce.coalesce_driver();
   555     }
   556     _lrg_map.compress_uf_map_for_nodes();
   557 #ifdef ASSERT
   558     verify(&live_arena, true);
   559 #endif
   560     cache_lrg_info();           // Count degree of LRGs
   562     // Simplify the InterFerence Graph by removing LRGs of low degree.
   563     // LRGs of low degree are trivially colorable.
   564     Simplify();
   566     // Select colors by re-inserting LRGs back into the IFG in reverse order.
   567     // Return whether or not something spills.
   568     spills = Select();
   569   }
   571   // Count number of Simplify-Select trips per coloring success.
   572   _allocator_attempts += _trip_cnt + 1;
   573   _allocator_successes += 1;
   575   // Peephole remove copies
   576   post_allocate_copy_removal();
   578 #ifdef ASSERT
   579   // Veify the graph after RA.
   580   verify(&live_arena);
   581 #endif
   583   // max_reg is past the largest *register* used.
   584   // Convert that to a frame_slot number.
   585   if (_max_reg <= _matcher._new_SP) {
   586     _framesize = C->out_preserve_stack_slots();
   587   }
   588   else {
   589     _framesize = _max_reg -_matcher._new_SP;
   590   }
   591   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
   593   // This frame must preserve the required fp alignment
   594   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
   595   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
   596 #ifndef PRODUCT
   597   _total_framesize += _framesize;
   598   if ((int)_framesize > _max_framesize) {
   599     _max_framesize = _framesize;
   600   }
   601 #endif
   603   // Convert CISC spills
   604   fixup_spills();
   606   // Log regalloc results
   607   CompileLog* log = Compile::current()->log();
   608   if (log != NULL) {
   609     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
   610   }
   612   if (C->failing()) {
   613     return;
   614   }
   616   NOT_PRODUCT(C->verify_graph_edges();)
   618   // Move important info out of the live_arena to longer lasting storage.
   619   alloc_node_regs(_lrg_map.size());
   620   for (uint i=0; i < _lrg_map.size(); i++) {
   621     if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
   622       LRG &lrg = lrgs(_lrg_map.live_range_id(i));
   623       if (!lrg.alive()) {
   624         set_bad(i);
   625       } else if (lrg.num_regs() == 1) {
   626         set1(i, lrg.reg());
   627       } else {                  // Must be a register-set
   628         if (!lrg._fat_proj) {   // Must be aligned adjacent register set
   629           // Live ranges record the highest register in their mask.
   630           // We want the low register for the AD file writer's convenience.
   631           OptoReg::Name hi = lrg.reg(); // Get hi register
   632           OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
   633           // We have to use pair [lo,lo+1] even for wide vectors because
   634           // the rest of code generation works only with pairs. It is safe
   635           // since for registers encoding only 'lo' is used.
   636           // Second reg from pair is used in ScheduleAndBundle on SPARC where
   637           // vector max size is 8 which corresponds to registers pair.
   638           // It is also used in BuildOopMaps but oop operations are not
   639           // vectorized.
   640           set2(i, lo);
   641         } else {                // Misaligned; extract 2 bits
   642           OptoReg::Name hi = lrg.reg(); // Get hi register
   643           lrg.Remove(hi);       // Yank from mask
   644           int lo = lrg.mask().find_first_elem(); // Find lo
   645           set_pair(i, hi, lo);
   646         }
   647       }
   648       if( lrg._is_oop ) _node_oops.set(i);
   649     } else {
   650       set_bad(i);
   651     }
   652   }
   654   // Done!
   655   _live = NULL;
   656   _ifg = NULL;
   657   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
   658 }
   660 void PhaseChaitin::de_ssa() {
   661   // Set initial Names for all Nodes.  Most Nodes get the virtual register
   662   // number.  A few get the ZERO live range number.  These do not
   663   // get allocated, but instead rely on correct scheduling to ensure that
   664   // only one instance is simultaneously live at a time.
   665   uint lr_counter = 1;
   666   for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
   667     Block* block = _cfg.get_block(i);
   668     uint cnt = block->number_of_nodes();
   670     // Handle all the normal Nodes in the block
   671     for( uint j = 0; j < cnt; j++ ) {
   672       Node *n = block->get_node(j);
   673       // Pre-color to the zero live range, or pick virtual register
   674       const RegMask &rm = n->out_RegMask();
   675       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
   676     }
   677   }
   679   // Reset the Union-Find mapping to be identity
   680   _lrg_map.reset_uf_map(lr_counter);
   681 }
   684 // Gather LiveRanGe information, including register masks.  Modification of
   685 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
   686 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
   688   // Nail down the frame pointer live range
   689   uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
   690   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
   692   // For all blocks
   693   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
   694     Block* block = _cfg.get_block(i);
   696     // For all instructions
   697     for (uint j = 1; j < block->number_of_nodes(); j++) {
   698       Node* n = block->get_node(j);
   699       uint input_edge_start =1; // Skip control most nodes
   700       if (n->is_Mach()) {
   701         input_edge_start = n->as_Mach()->oper_input_base();
   702       }
   703       uint idx = n->is_Copy();
   705       // Get virtual register number, same as LiveRanGe index
   706       uint vreg = _lrg_map.live_range_id(n);
   707       LRG& lrg = lrgs(vreg);
   708       if (vreg) {              // No vreg means un-allocable (e.g. memory)
   710         // Collect has-copy bit
   711         if (idx) {
   712           lrg._has_copy = 1;
   713           uint clidx = _lrg_map.live_range_id(n->in(idx));
   714           LRG& copy_src = lrgs(clidx);
   715           copy_src._has_copy = 1;
   716         }
   718         // Check for float-vs-int live range (used in register-pressure
   719         // calculations)
   720         const Type *n_type = n->bottom_type();
   721         if (n_type->is_floatingpoint()) {
   722           lrg._is_float = 1;
   723         }
   725         // Check for twice prior spilling.  Once prior spilling might have
   726         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
   727         // further spilling is unlikely to make progress.
   728         if (_spilled_once.test(n->_idx)) {
   729           lrg._was_spilled1 = 1;
   730           if (_spilled_twice.test(n->_idx)) {
   731             lrg._was_spilled2 = 1;
   732           }
   733         }
   735 #ifndef PRODUCT
   736         if (trace_spilling() && lrg._def != NULL) {
   737           // collect defs for MultiDef printing
   738           if (lrg._defs == NULL) {
   739             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
   740             lrg._defs->append(lrg._def);
   741           }
   742           lrg._defs->append(n);
   743         }
   744 #endif
   746         // Check for a single def LRG; these can spill nicely
   747         // via rematerialization.  Flag as NULL for no def found
   748         // yet, or 'n' for single def or -1 for many defs.
   749         lrg._def = lrg._def ? NodeSentinel : n;
   751         // Limit result register mask to acceptable registers
   752         const RegMask &rm = n->out_RegMask();
   753         lrg.AND( rm );
   755         int ireg = n->ideal_reg();
   756         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
   757                 "oops must be in Op_RegP's" );
   759         // Check for vector live range (only if vector register is used).
   760         // On SPARC vector uses RegD which could be misaligned so it is not
   761         // processes as vector in RA.
   762         if (RegMask::is_vector(ireg))
   763           lrg._is_vector = 1;
   764         assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL,
   765                "vector must be in vector registers");
   767         // Check for bound register masks
   768         const RegMask &lrgmask = lrg.mask();
   769         if (lrgmask.is_bound(ireg)) {
   770           lrg._is_bound = 1;
   771         }
   773         // Check for maximum frequency value
   774         if (lrg._maxfreq < block->_freq) {
   775           lrg._maxfreq = block->_freq;
   776         }
   778         // Check for oop-iness, or long/double
   779         // Check for multi-kill projection
   780         switch (ireg) {
   781         case MachProjNode::fat_proj:
   782           // Fat projections have size equal to number of registers killed
   783           lrg.set_num_regs(rm.Size());
   784           lrg.set_reg_pressure(lrg.num_regs());
   785           lrg._fat_proj = 1;
   786           lrg._is_bound = 1;
   787           break;
   788         case Op_RegP:
   789 #ifdef _LP64
   790           lrg.set_num_regs(2);  // Size is 2 stack words
   791 #else
   792           lrg.set_num_regs(1);  // Size is 1 stack word
   793 #endif
   794           // Register pressure is tracked relative to the maximum values
   795           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
   796           // and relative to other types which compete for the same regs.
   797           //
   798           // The following table contains suggested values based on the
   799           // architectures as defined in each .ad file.
   800           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
   801           // compile-speed or performance.
   802           // Note1:
   803           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
   804           // since .ad registers are defined as high and low halves.
   805           // These reg_pressure values remain compatible with the code
   806           // in is_high_pressure() which relates get_invalid_mask_size(),
   807           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
   808           // Note2:
   809           // SPARC -d32 has 24 registers available for integral values,
   810           // but only 10 of these are safe for 64-bit longs.
   811           // Using set_reg_pressure(2) for both int and long means
   812           // the allocator will believe it can fit 26 longs into
   813           // registers.  Using 2 for longs and 1 for ints means the
   814           // allocator will attempt to put 52 integers into registers.
   815           // The settings below limit this problem to methods with
   816           // many long values which are being run on 32-bit SPARC.
   817           //
   818           // ------------------- reg_pressure --------------------
   819           // Each entry is reg_pressure_per_value,number_of_regs
   820           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
   821           // IA32     2     1     1          1    1          6           6
   822           // IA64     1     1     1          1    1         50          41
   823           // SPARC    2     2     2          2    2         48 (24)     52 (26)
   824           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
   825           // AMD64    1     1     1          1    1         14          15
   826           // -----------------------------------------------------
   827 #if defined(SPARC)
   828           lrg.set_reg_pressure(2);  // use for v9 as well
   829 #else
   830           lrg.set_reg_pressure(1);  // normally one value per register
   831 #endif
   832           if( n_type->isa_oop_ptr() ) {
   833             lrg._is_oop = 1;
   834           }
   835           break;
   836         case Op_RegL:           // Check for long or double
   837         case Op_RegD:
   838           lrg.set_num_regs(2);
   839           // Define platform specific register pressure
   840 #if defined(SPARC) || defined(ARM)
   841           lrg.set_reg_pressure(2);
   842 #elif defined(IA32)
   843           if( ireg == Op_RegL ) {
   844             lrg.set_reg_pressure(2);
   845           } else {
   846             lrg.set_reg_pressure(1);
   847           }
   848 #else
   849           lrg.set_reg_pressure(1);  // normally one value per register
   850 #endif
   851           // If this def of a double forces a mis-aligned double,
   852           // flag as '_fat_proj' - really flag as allowing misalignment
   853           // AND changes how we count interferences.  A mis-aligned
   854           // double can interfere with TWO aligned pairs, or effectively
   855           // FOUR registers!
   856           if (rm.is_misaligned_pair()) {
   857             lrg._fat_proj = 1;
   858             lrg._is_bound = 1;
   859           }
   860           break;
   861         case Op_RegF:
   862         case Op_RegI:
   863         case Op_RegN:
   864         case Op_RegFlags:
   865         case 0:                 // not an ideal register
   866           lrg.set_num_regs(1);
   867 #ifdef SPARC
   868           lrg.set_reg_pressure(2);
   869 #else
   870           lrg.set_reg_pressure(1);
   871 #endif
   872           break;
   873         case Op_VecS:
   874           assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
   875           assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
   876           lrg.set_num_regs(RegMask::SlotsPerVecS);
   877           lrg.set_reg_pressure(1);
   878           break;
   879         case Op_VecD:
   880           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
   881           assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
   882           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
   883           lrg.set_num_regs(RegMask::SlotsPerVecD);
   884           lrg.set_reg_pressure(1);
   885           break;
   886         case Op_VecX:
   887           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
   888           assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
   889           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
   890           lrg.set_num_regs(RegMask::SlotsPerVecX);
   891           lrg.set_reg_pressure(1);
   892           break;
   893         case Op_VecY:
   894           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
   895           assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
   896           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
   897           lrg.set_num_regs(RegMask::SlotsPerVecY);
   898           lrg.set_reg_pressure(1);
   899           break;
   900         default:
   901           ShouldNotReachHere();
   902         }
   903       }
   905       // Now do the same for inputs
   906       uint cnt = n->req();
   907       // Setup for CISC SPILLING
   908       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
   909       if( UseCISCSpill && after_aggressive ) {
   910         inp = n->cisc_operand();
   911         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
   912           // Convert operand number to edge index number
   913           inp = n->as_Mach()->operand_index(inp);
   914       }
   915       // Prepare register mask for each input
   916       for( uint k = input_edge_start; k < cnt; k++ ) {
   917         uint vreg = _lrg_map.live_range_id(n->in(k));
   918         if (!vreg) {
   919           continue;
   920         }
   922         // If this instruction is CISC Spillable, add the flags
   923         // bit to its appropriate input
   924         if( UseCISCSpill && after_aggressive && inp == k ) {
   925 #ifndef PRODUCT
   926           if( TraceCISCSpill ) {
   927             tty->print("  use_cisc_RegMask: ");
   928             n->dump();
   929           }
   930 #endif
   931           n->as_Mach()->use_cisc_RegMask();
   932         }
   934         LRG &lrg = lrgs(vreg);
   935         // // Testing for floating point code shape
   936         // Node *test = n->in(k);
   937         // if( test->is_Mach() ) {
   938         //   MachNode *m = test->as_Mach();
   939         //   int  op = m->ideal_Opcode();
   940         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
   941         //     int zzz = 1;
   942         //   }
   943         // }
   945         // Limit result register mask to acceptable registers.
   946         // Do not limit registers from uncommon uses before
   947         // AggressiveCoalesce.  This effectively pre-virtual-splits
   948         // around uncommon uses of common defs.
   949         const RegMask &rm = n->in_RegMask(k);
   950         if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
   951           // Since we are BEFORE aggressive coalesce, leave the register
   952           // mask untrimmed by the call.  This encourages more coalescing.
   953           // Later, AFTER aggressive, this live range will have to spill
   954           // but the spiller handles slow-path calls very nicely.
   955         } else {
   956           lrg.AND( rm );
   957         }
   959         // Check for bound register masks
   960         const RegMask &lrgmask = lrg.mask();
   961         int kreg = n->in(k)->ideal_reg();
   962         bool is_vect = RegMask::is_vector(kreg);
   963         assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
   964                is_vect || kreg == Op_RegD || kreg == Op_RegL,
   965                "vector must be in vector registers");
   966         if (lrgmask.is_bound(kreg))
   967           lrg._is_bound = 1;
   969         // If this use of a double forces a mis-aligned double,
   970         // flag as '_fat_proj' - really flag as allowing misalignment
   971         // AND changes how we count interferences.  A mis-aligned
   972         // double can interfere with TWO aligned pairs, or effectively
   973         // FOUR registers!
   974 #ifdef ASSERT
   975         if (is_vect) {
   976           assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
   977           assert(!lrg._fat_proj, "sanity");
   978           assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
   979         }
   980 #endif
   981         if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
   982           lrg._fat_proj = 1;
   983           lrg._is_bound = 1;
   984         }
   985         // if the LRG is an unaligned pair, we will have to spill
   986         // so clear the LRG's register mask if it is not already spilled
   987         if (!is_vect && !n->is_SpillCopy() &&
   988             (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
   989             lrgmask.is_misaligned_pair()) {
   990           lrg.Clear();
   991         }
   993         // Check for maximum frequency value
   994         if (lrg._maxfreq < block->_freq) {
   995           lrg._maxfreq = block->_freq;
   996         }
   998       } // End for all allocated inputs
   999     } // end for all instructions
  1000   } // end for all blocks
  1002   // Final per-liverange setup
  1003   for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
  1004     LRG &lrg = lrgs(i2);
  1005     assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
  1006     if (lrg.num_regs() > 1 && !lrg._fat_proj) {
  1007       lrg.clear_to_sets();
  1009     lrg.compute_set_mask_size();
  1010     if (lrg.not_free()) {      // Handle case where we lose from the start
  1011       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
  1012       lrg._direct_conflict = 1;
  1014     lrg.set_degree(0);          // no neighbors in IFG yet
  1018 // Set the was-lo-degree bit.  Conservative coalescing should not change the
  1019 // colorability of the graph.  If any live range was of low-degree before
  1020 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
  1021 // The bit is checked in Simplify.
  1022 void PhaseChaitin::set_was_low() {
  1023 #ifdef ASSERT
  1024   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1025     int size = lrgs(i).num_regs();
  1026     uint old_was_lo = lrgs(i)._was_lo;
  1027     lrgs(i)._was_lo = 0;
  1028     if( lrgs(i).lo_degree() ) {
  1029       lrgs(i)._was_lo = 1;      // Trivially of low degree
  1030     } else {                    // Else check the Brigg's assertion
  1031       // Brigg's observation is that the lo-degree neighbors of a
  1032       // hi-degree live range will not interfere with the color choices
  1033       // of said hi-degree live range.  The Simplify reverse-stack-coloring
  1034       // order takes care of the details.  Hence you do not have to count
  1035       // low-degree neighbors when determining if this guy colors.
  1036       int briggs_degree = 0;
  1037       IndexSet *s = _ifg->neighbors(i);
  1038       IndexSetIterator elements(s);
  1039       uint lidx;
  1040       while((lidx = elements.next()) != 0) {
  1041         if( !lrgs(lidx).lo_degree() )
  1042           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
  1044       if( briggs_degree < lrgs(i).degrees_of_freedom() )
  1045         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
  1047     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
  1049 #endif
  1052 #define REGISTER_CONSTRAINED 16
  1054 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
  1055 void PhaseChaitin::cache_lrg_info( ) {
  1057   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1058     LRG &lrg = lrgs(i);
  1060     // Check for being of low degree: means we can be trivially colored.
  1061     // Low degree, dead or must-spill guys just get to simplify right away
  1062     if( lrg.lo_degree() ||
  1063        !lrg.alive() ||
  1064         lrg._must_spill ) {
  1065       // Split low degree list into those guys that must get a
  1066       // register and those that can go to register or stack.
  1067       // The idea is LRGs that can go register or stack color first when
  1068       // they have a good chance of getting a register.  The register-only
  1069       // lo-degree live ranges always get a register.
  1070       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
  1071       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
  1072         lrg._next = _lo_stk_degree;
  1073         _lo_stk_degree = i;
  1074       } else {
  1075         lrg._next = _lo_degree;
  1076         _lo_degree = i;
  1078     } else {                    // Else high degree
  1079       lrgs(_hi_degree)._prev = i;
  1080       lrg._next = _hi_degree;
  1081       lrg._prev = 0;
  1082       _hi_degree = i;
  1087 // Simplify the IFG by removing LRGs of low degree that have NO copies
  1088 void PhaseChaitin::Pre_Simplify( ) {
  1090   // Warm up the lo-degree no-copy list
  1091   int lo_no_copy = 0;
  1092   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1093     if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
  1094         !lrgs(i).alive() ||
  1095         lrgs(i)._must_spill) {
  1096       lrgs(i)._next = lo_no_copy;
  1097       lo_no_copy = i;
  1101   while( lo_no_copy ) {
  1102     uint lo = lo_no_copy;
  1103     lo_no_copy = lrgs(lo)._next;
  1104     int size = lrgs(lo).num_regs();
  1106     // Put the simplified guy on the simplified list.
  1107     lrgs(lo)._next = _simplified;
  1108     _simplified = lo;
  1110     // Yank this guy from the IFG.
  1111     IndexSet *adj = _ifg->remove_node( lo );
  1113     // If any neighbors' degrees fall below their number of
  1114     // allowed registers, then put that neighbor on the low degree
  1115     // list.  Note that 'degree' can only fall and 'numregs' is
  1116     // unchanged by this action.  Thus the two are equal at most once,
  1117     // so LRGs hit the lo-degree worklists at most once.
  1118     IndexSetIterator elements(adj);
  1119     uint neighbor;
  1120     while ((neighbor = elements.next()) != 0) {
  1121       LRG *n = &lrgs(neighbor);
  1122       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
  1124       // Check for just becoming of-low-degree
  1125       if( n->just_lo_degree() && !n->_has_copy ) {
  1126         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
  1127         // Put on lo-degree list
  1128         n->_next = lo_no_copy;
  1129         lo_no_copy = neighbor;
  1132   } // End of while lo-degree no_copy worklist not empty
  1134   // No more lo-degree no-copy live ranges to simplify
  1137 // Simplify the IFG by removing LRGs of low degree.
  1138 void PhaseChaitin::Simplify( ) {
  1140   while( 1 ) {                  // Repeat till simplified it all
  1141     // May want to explore simplifying lo_degree before _lo_stk_degree.
  1142     // This might result in more spills coloring into registers during
  1143     // Select().
  1144     while( _lo_degree || _lo_stk_degree ) {
  1145       // If possible, pull from lo_stk first
  1146       uint lo;
  1147       if( _lo_degree ) {
  1148         lo = _lo_degree;
  1149         _lo_degree = lrgs(lo)._next;
  1150       } else {
  1151         lo = _lo_stk_degree;
  1152         _lo_stk_degree = lrgs(lo)._next;
  1155       // Put the simplified guy on the simplified list.
  1156       lrgs(lo)._next = _simplified;
  1157       _simplified = lo;
  1158       // If this guy is "at risk" then mark his current neighbors
  1159       if( lrgs(lo)._at_risk ) {
  1160         IndexSetIterator elements(_ifg->neighbors(lo));
  1161         uint datum;
  1162         while ((datum = elements.next()) != 0) {
  1163           lrgs(datum)._risk_bias = lo;
  1167       // Yank this guy from the IFG.
  1168       IndexSet *adj = _ifg->remove_node( lo );
  1170       // If any neighbors' degrees fall below their number of
  1171       // allowed registers, then put that neighbor on the low degree
  1172       // list.  Note that 'degree' can only fall and 'numregs' is
  1173       // unchanged by this action.  Thus the two are equal at most once,
  1174       // so LRGs hit the lo-degree worklist at most once.
  1175       IndexSetIterator elements(adj);
  1176       uint neighbor;
  1177       while ((neighbor = elements.next()) != 0) {
  1178         LRG *n = &lrgs(neighbor);
  1179 #ifdef ASSERT
  1180         if( VerifyOpto || VerifyRegisterAllocator ) {
  1181           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
  1183 #endif
  1185         // Check for just becoming of-low-degree just counting registers.
  1186         // _must_spill live ranges are already on the low degree list.
  1187         if( n->just_lo_degree() && !n->_must_spill ) {
  1188           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
  1189           // Pull from hi-degree list
  1190           uint prev = n->_prev;
  1191           uint next = n->_next;
  1192           if( prev ) lrgs(prev)._next = next;
  1193           else _hi_degree = next;
  1194           lrgs(next)._prev = prev;
  1195           n->_next = _lo_degree;
  1196           _lo_degree = neighbor;
  1199     } // End of while lo-degree/lo_stk_degree worklist not empty
  1201     // Check for got everything: is hi-degree list empty?
  1202     if( !_hi_degree ) break;
  1204     // Time to pick a potential spill guy
  1205     uint lo_score = _hi_degree;
  1206     double score = lrgs(lo_score).score();
  1207     double area = lrgs(lo_score)._area;
  1208     double cost = lrgs(lo_score)._cost;
  1209     bool bound = lrgs(lo_score)._is_bound;
  1211     // Find cheapest guy
  1212     debug_only( int lo_no_simplify=0; );
  1213     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
  1214       assert( !(*_ifg->_yanked)[i], "" );
  1215       // It's just vaguely possible to move hi-degree to lo-degree without
  1216       // going through a just-lo-degree stage: If you remove a double from
  1217       // a float live range it's degree will drop by 2 and you can skip the
  1218       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
  1219       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
  1220       if( lrgs(i).lo_degree() ) {
  1221         lo_score = i;
  1222         break;
  1224       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
  1225       double iscore = lrgs(i).score();
  1226       double iarea = lrgs(i)._area;
  1227       double icost = lrgs(i)._cost;
  1228       bool ibound = lrgs(i)._is_bound;
  1230       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
  1231       // wins.  Ties happen because all live ranges in question have spilled
  1232       // a few times before and the spill-score adds a huge number which
  1233       // washes out the low order bits.  We are choosing the lesser of 2
  1234       // evils; in this case pick largest area to spill.
  1235       // Ties also happen when live ranges are defined and used only inside
  1236       // one block. In which case their area is 0 and score set to max.
  1237       // In such case choose bound live range over unbound to free registers
  1238       // or with smaller cost to spill.
  1239       if( iscore < score ||
  1240           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
  1241           (iscore == score && iarea == area &&
  1242            ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
  1243         lo_score = i;
  1244         score = iscore;
  1245         area = iarea;
  1246         cost = icost;
  1247         bound = ibound;
  1250     LRG *lo_lrg = &lrgs(lo_score);
  1251     // The live range we choose for spilling is either hi-degree, or very
  1252     // rarely it can be low-degree.  If we choose a hi-degree live range
  1253     // there better not be any lo-degree choices.
  1254     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
  1256     // Pull from hi-degree list
  1257     uint prev = lo_lrg->_prev;
  1258     uint next = lo_lrg->_next;
  1259     if( prev ) lrgs(prev)._next = next;
  1260     else _hi_degree = next;
  1261     lrgs(next)._prev = prev;
  1262     // Jam him on the lo-degree list, despite his high degree.
  1263     // Maybe he'll get a color, and maybe he'll spill.
  1264     // Only Select() will know.
  1265     lrgs(lo_score)._at_risk = true;
  1266     _lo_degree = lo_score;
  1267     lo_lrg->_next = 0;
  1269   } // End of while not simplified everything
  1273 // Is 'reg' register legal for 'lrg'?
  1274 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
  1275   if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
  1276       lrg.mask().Member(OptoReg::add(reg,-chunk))) {
  1277     // RA uses OptoReg which represent the highest element of a registers set.
  1278     // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
  1279     // in which XMMd is used by RA to represent such vectors. A double value
  1280     // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
  1281     // The register mask uses largest bits set of overlapping register sets.
  1282     // On x86 with AVX it uses 8 bits for each XMM registers set.
  1283     //
  1284     // The 'lrg' already has cleared-to-set register mask (done in Select()
  1285     // before calling choose_color()). Passing mask.Member(reg) check above
  1286     // indicates that the size (num_regs) of 'reg' set is less or equal to
  1287     // 'lrg' set size.
  1288     // For set size 1 any register which is member of 'lrg' mask is legal.
  1289     if (lrg.num_regs()==1)
  1290       return true;
  1291     // For larger sets only an aligned register with the same set size is legal.
  1292     int mask = lrg.num_regs()-1;
  1293     if ((reg&mask) == mask)
  1294       return true;
  1296   return false;
  1299 // Choose a color using the biasing heuristic
  1300 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
  1302   // Check for "at_risk" LRG's
  1303   uint risk_lrg = _lrg_map.find(lrg._risk_bias);
  1304   if( risk_lrg != 0 ) {
  1305     // Walk the colored neighbors of the "at_risk" candidate
  1306     // Choose a color which is both legal and already taken by a neighbor
  1307     // of the "at_risk" candidate in order to improve the chances of the
  1308     // "at_risk" candidate of coloring
  1309     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
  1310     uint datum;
  1311     while ((datum = elements.next()) != 0) {
  1312       OptoReg::Name reg = lrgs(datum).reg();
  1313       // If this LRG's register is legal for us, choose it
  1314       if (is_legal_reg(lrg, reg, chunk))
  1315         return reg;
  1319   uint copy_lrg = _lrg_map.find(lrg._copy_bias);
  1320   if( copy_lrg != 0 ) {
  1321     // If he has a color,
  1322     if( !(*(_ifg->_yanked))[copy_lrg] ) {
  1323       OptoReg::Name reg = lrgs(copy_lrg).reg();
  1324       //  And it is legal for you,
  1325       if (is_legal_reg(lrg, reg, chunk))
  1326         return reg;
  1327     } else if( chunk == 0 ) {
  1328       // Choose a color which is legal for him
  1329       RegMask tempmask = lrg.mask();
  1330       tempmask.AND(lrgs(copy_lrg).mask());
  1331       tempmask.clear_to_sets(lrg.num_regs());
  1332       OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
  1333       if (OptoReg::is_valid(reg))
  1334         return reg;
  1338   // If no bias info exists, just go with the register selection ordering
  1339   if (lrg._is_vector || lrg.num_regs() == 2) {
  1340     // Find an aligned set
  1341     return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
  1344   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
  1345   // copy removal to remove many more copies, by preventing a just-assigned
  1346   // register from being repeatedly assigned.
  1347   OptoReg::Name reg = lrg.mask().find_first_elem();
  1348   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
  1349     // This 'Remove; find; Insert' idiom is an expensive way to find the
  1350     // SECOND element in the mask.
  1351     lrg.Remove(reg);
  1352     OptoReg::Name reg2 = lrg.mask().find_first_elem();
  1353     lrg.Insert(reg);
  1354     if( OptoReg::is_reg(reg2))
  1355       reg = reg2;
  1357   return OptoReg::add( reg, chunk );
  1360 // Choose a color in the current chunk
  1361 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
  1362   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
  1363   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
  1365   if( lrg.num_regs() == 1 ||    // Common Case
  1366       !lrg._fat_proj )          // Aligned+adjacent pairs ok
  1367     // Use a heuristic to "bias" the color choice
  1368     return bias_color(lrg, chunk);
  1370   assert(!lrg._is_vector, "should be not vector here" );
  1371   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
  1373   // Fat-proj case or misaligned double argument.
  1374   assert(lrg.compute_mask_size() == lrg.num_regs() ||
  1375          lrg.num_regs() == 2,"fat projs exactly color" );
  1376   assert( !chunk, "always color in 1st chunk" );
  1377   // Return the highest element in the set.
  1378   return lrg.mask().find_last_elem();
  1381 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
  1382 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
  1383 // everything going back is guaranteed a color.  Select that color.  If some
  1384 // hi-degree LRG cannot get a color then we record that we must spill.
  1385 uint PhaseChaitin::Select( ) {
  1386   uint spill_reg = LRG::SPILL_REG;
  1387   _max_reg = OptoReg::Name(0);  // Past max register used
  1388   while( _simplified ) {
  1389     // Pull next LRG from the simplified list - in reverse order of removal
  1390     uint lidx = _simplified;
  1391     LRG *lrg = &lrgs(lidx);
  1392     _simplified = lrg->_next;
  1395 #ifndef PRODUCT
  1396     if (trace_spilling()) {
  1397       ttyLocker ttyl;
  1398       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
  1399                     lrg->degrees_of_freedom());
  1400       lrg->dump();
  1402 #endif
  1404     // Re-insert into the IFG
  1405     _ifg->re_insert(lidx);
  1406     if( !lrg->alive() ) continue;
  1407     // capture allstackedness flag before mask is hacked
  1408     const int is_allstack = lrg->mask().is_AllStack();
  1410     // Yeah, yeah, yeah, I know, I know.  I can refactor this
  1411     // to avoid the GOTO, although the refactored code will not
  1412     // be much clearer.  We arrive here IFF we have a stack-based
  1413     // live range that cannot color in the current chunk, and it
  1414     // has to move into the next free stack chunk.
  1415     int chunk = 0;              // Current chunk is first chunk
  1416     retry_next_chunk:
  1418     // Remove neighbor colors
  1419     IndexSet *s = _ifg->neighbors(lidx);
  1421     debug_only(RegMask orig_mask = lrg->mask();)
  1422     IndexSetIterator elements(s);
  1423     uint neighbor;
  1424     while ((neighbor = elements.next()) != 0) {
  1425       // Note that neighbor might be a spill_reg.  In this case, exclusion
  1426       // of its color will be a no-op, since the spill_reg chunk is in outer
  1427       // space.  Also, if neighbor is in a different chunk, this exclusion
  1428       // will be a no-op.  (Later on, if lrg runs out of possible colors in
  1429       // its chunk, a new chunk of color may be tried, in which case
  1430       // examination of neighbors is started again, at retry_next_chunk.)
  1431       LRG &nlrg = lrgs(neighbor);
  1432       OptoReg::Name nreg = nlrg.reg();
  1433       // Only subtract masks in the same chunk
  1434       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
  1435 #ifndef PRODUCT
  1436         uint size = lrg->mask().Size();
  1437         RegMask rm = lrg->mask();
  1438 #endif
  1439         lrg->SUBTRACT(nlrg.mask());
  1440 #ifndef PRODUCT
  1441         if (trace_spilling() && lrg->mask().Size() != size) {
  1442           ttyLocker ttyl;
  1443           tty->print("L%d ", lidx);
  1444           rm.dump();
  1445           tty->print(" intersected L%d ", neighbor);
  1446           nlrg.mask().dump();
  1447           tty->print(" removed ");
  1448           rm.SUBTRACT(lrg->mask());
  1449           rm.dump();
  1450           tty->print(" leaving ");
  1451           lrg->mask().dump();
  1452           tty->cr();
  1454 #endif
  1457     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
  1458     // Aligned pairs need aligned masks
  1459     assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1460     if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
  1461       lrg->clear_to_sets();
  1464     // Check if a color is available and if so pick the color
  1465     OptoReg::Name reg = choose_color( *lrg, chunk );
  1466 #ifdef SPARC
  1467     debug_only(lrg->compute_set_mask_size());
  1468     assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
  1469 #endif
  1471     //---------------
  1472     // If we fail to color and the AllStack flag is set, trigger
  1473     // a chunk-rollover event
  1474     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
  1475       // Bump register mask up to next stack chunk
  1476       chunk += RegMask::CHUNK_SIZE;
  1477       lrg->Set_All();
  1479       goto retry_next_chunk;
  1482     //---------------
  1483     // Did we get a color?
  1484     else if( OptoReg::is_valid(reg)) {
  1485 #ifndef PRODUCT
  1486       RegMask avail_rm = lrg->mask();
  1487 #endif
  1489       // Record selected register
  1490       lrg->set_reg(reg);
  1492       if( reg >= _max_reg )     // Compute max register limit
  1493         _max_reg = OptoReg::add(reg,1);
  1494       // Fold reg back into normal space
  1495       reg = OptoReg::add(reg,-chunk);
  1497       // If the live range is not bound, then we actually had some choices
  1498       // to make.  In this case, the mask has more bits in it than the colors
  1499       // chosen.  Restrict the mask to just what was picked.
  1500       int n_regs = lrg->num_regs();
  1501       assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1502       if (n_regs == 1 || !lrg->_fat_proj) {
  1503         assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
  1504         lrg->Clear();           // Clear the mask
  1505         lrg->Insert(reg);       // Set regmask to match selected reg
  1506         // For vectors and pairs, also insert the low bit of the pair
  1507         for (int i = 1; i < n_regs; i++)
  1508           lrg->Insert(OptoReg::add(reg,-i));
  1509         lrg->set_mask_size(n_regs);
  1510       } else {                  // Else fatproj
  1511         // mask must be equal to fatproj bits, by definition
  1513 #ifndef PRODUCT
  1514       if (trace_spilling()) {
  1515         ttyLocker ttyl;
  1516         tty->print("L%d selected ", lidx);
  1517         lrg->mask().dump();
  1518         tty->print(" from ");
  1519         avail_rm.dump();
  1520         tty->cr();
  1522 #endif
  1523       // Note that reg is the highest-numbered register in the newly-bound mask.
  1524     } // end color available case
  1526     //---------------
  1527     // Live range is live and no colors available
  1528     else {
  1529       assert( lrg->alive(), "" );
  1530       assert( !lrg->_fat_proj || lrg->is_multidef() ||
  1531               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
  1532       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
  1534       // Assign the special spillreg register
  1535       lrg->set_reg(OptoReg::Name(spill_reg++));
  1536       // Do not empty the regmask; leave mask_size lying around
  1537       // for use during Spilling
  1538 #ifndef PRODUCT
  1539       if( trace_spilling() ) {
  1540         ttyLocker ttyl;
  1541         tty->print("L%d spilling with neighbors: ", lidx);
  1542         s->dump();
  1543         debug_only(tty->print(" original mask: "));
  1544         debug_only(orig_mask.dump());
  1545         dump_lrg(lidx);
  1547 #endif
  1548     } // end spill case
  1552   return spill_reg-LRG::SPILL_REG;      // Return number of spills
  1555 // Copy 'was_spilled'-edness from the source Node to the dst Node.
  1556 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
  1557   if( _spilled_once.test(src->_idx) ) {
  1558     _spilled_once.set(dst->_idx);
  1559     lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
  1560     if( _spilled_twice.test(src->_idx) ) {
  1561       _spilled_twice.set(dst->_idx);
  1562       lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
  1567 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
  1568 void PhaseChaitin::set_was_spilled( Node *n ) {
  1569   if( _spilled_once.test_set(n->_idx) )
  1570     _spilled_twice.set(n->_idx);
  1573 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
  1574 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
  1575 void PhaseChaitin::fixup_spills() {
  1576   // This function does only cisc spill work.
  1577   if( !UseCISCSpill ) return;
  1579   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
  1581   // Grab the Frame Pointer
  1582   Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
  1584   // For all blocks
  1585   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  1586     Block* block = _cfg.get_block(i);
  1588     // For all instructions in block
  1589     uint last_inst = block->end_idx();
  1590     for (uint j = 1; j <= last_inst; j++) {
  1591       Node* n = block->get_node(j);
  1593       // Dead instruction???
  1594       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
  1595               C->top() == n ||  // Or the random TOP node
  1596               n->is_Proj(),     // Or a fat-proj kill node
  1597               "No dead instructions after post-alloc" );
  1599       int inp = n->cisc_operand();
  1600       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
  1601         // Convert operand number to edge index number
  1602         MachNode *mach = n->as_Mach();
  1603         inp = mach->operand_index(inp);
  1604         Node *src = n->in(inp);   // Value to load or store
  1605         LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
  1606         OptoReg::Name src_reg = lrg_cisc.reg();
  1607         // Doubles record the HIGH register of an adjacent pair.
  1608         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
  1609         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
  1610           // This is a CISC Spill, get stack offset and construct new node
  1611 #ifndef PRODUCT
  1612           if( TraceCISCSpill ) {
  1613             tty->print("    reg-instr:  ");
  1614             n->dump();
  1616 #endif
  1617           int stk_offset = reg2offset(src_reg);
  1618           // Bailout if we might exceed node limit when spilling this instruction
  1619           C->check_node_count(0, "out of nodes fixing spills");
  1620           if (C->failing())  return;
  1621           // Transform node
  1622           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
  1623           cisc->set_req(inp,fp);          // Base register is frame pointer
  1624           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
  1625             assert( cisc->oper_input_base() == 2, "Only adding one edge");
  1626             cisc->ins_req(1,src);         // Requires a memory edge
  1628           block->map_node(cisc, j);          // Insert into basic block
  1629           n->subsume_by(cisc, C); // Correct graph
  1630           //
  1631           ++_used_cisc_instructions;
  1632 #ifndef PRODUCT
  1633           if( TraceCISCSpill ) {
  1634             tty->print("    cisc-instr: ");
  1635             cisc->dump();
  1637 #endif
  1638         } else {
  1639 #ifndef PRODUCT
  1640           if( TraceCISCSpill ) {
  1641             tty->print("    using reg-instr: ");
  1642             n->dump();
  1644 #endif
  1645           ++_unused_cisc_instructions;    // input can be on stack
  1649     } // End of for all instructions
  1651   } // End of for all blocks
  1654 // Helper to stretch above; recursively discover the base Node for a
  1655 // given derived Node.  Easy for AddP-related machine nodes, but needs
  1656 // to be recursive for derived Phis.
  1657 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
  1658   // See if already computed; if so return it
  1659   if( derived_base_map[derived->_idx] )
  1660     return derived_base_map[derived->_idx];
  1662   // See if this happens to be a base.
  1663   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
  1664   // pointers derived from NULL!  These are always along paths that
  1665   // can't happen at run-time but the optimizer cannot deduce it so
  1666   // we have to handle it gracefully.
  1667   assert(!derived->bottom_type()->isa_narrowoop() ||
  1668           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1669   const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1670   // If its an OOP with a non-zero offset, then it is derived.
  1671   if( tj == NULL || tj->_offset == 0 ) {
  1672     derived_base_map[derived->_idx] = derived;
  1673     return derived;
  1675   // Derived is NULL+offset?  Base is NULL!
  1676   if( derived->is_Con() ) {
  1677     Node *base = _matcher.mach_null();
  1678     assert(base != NULL, "sanity");
  1679     if (base->in(0) == NULL) {
  1680       // Initialize it once and make it shared:
  1681       // set control to _root and place it into Start block
  1682       // (where top() node is placed).
  1683       base->init_req(0, _cfg.get_root_node());
  1684       Block *startb = _cfg.get_block_for_node(C->top());
  1685       uint node_pos = startb->find_node(C->top());
  1686       startb->insert_node(base, node_pos);
  1687       _cfg.map_node_to_block(base, startb);
  1688       assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
  1690       // The loadConP0 might have projection nodes depending on architecture
  1691       // Add the projection nodes to the CFG
  1692       for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) {
  1693         Node* use = base->fast_out(i);
  1694         if (use->is_MachProj()) {
  1695           startb->insert_node(use, ++node_pos);
  1696           _cfg.map_node_to_block(use, startb);
  1697           new_lrg(use, maxlrg++);
  1701     if (_lrg_map.live_range_id(base) == 0) {
  1702       new_lrg(base, maxlrg++);
  1704     assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
  1705     derived_base_map[derived->_idx] = base;
  1706     return base;
  1709   // Check for AddP-related opcodes
  1710   if (!derived->is_Phi()) {
  1711     assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
  1712     Node *base = derived->in(AddPNode::Base);
  1713     derived_base_map[derived->_idx] = base;
  1714     return base;
  1717   // Recursively find bases for Phis.
  1718   // First check to see if we can avoid a base Phi here.
  1719   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
  1720   uint i;
  1721   for( i = 2; i < derived->req(); i++ )
  1722     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
  1723       break;
  1724   // Went to the end without finding any different bases?
  1725   if( i == derived->req() ) {   // No need for a base Phi here
  1726     derived_base_map[derived->_idx] = base;
  1727     return base;
  1730   // Now we see we need a base-Phi here to merge the bases
  1731   const Type *t = base->bottom_type();
  1732   base = new (C) PhiNode( derived->in(0), t );
  1733   for( i = 1; i < derived->req(); i++ ) {
  1734     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
  1735     t = t->meet(base->in(i)->bottom_type());
  1737   base->as_Phi()->set_type(t);
  1739   // Search the current block for an existing base-Phi
  1740   Block *b = _cfg.get_block_for_node(derived);
  1741   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
  1742     Node *phi = b->get_node(i);
  1743     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
  1744       b->insert_node(base,  i); // Must insert created Phi here as base
  1745       _cfg.map_node_to_block(base, b);
  1746       new_lrg(base,maxlrg++);
  1747       break;
  1749     // See if Phi matches.
  1750     uint j;
  1751     for( j = 1; j < base->req(); j++ )
  1752       if( phi->in(j) != base->in(j) &&
  1753           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
  1754         break;
  1755     if( j == base->req() ) {    // All inputs match?
  1756       base = phi;               // Then use existing 'phi' and drop 'base'
  1757       break;
  1762   // Cache info for later passes
  1763   derived_base_map[derived->_idx] = base;
  1764   return base;
  1767 // At each Safepoint, insert extra debug edges for each pair of derived value/
  1768 // base pointer that is live across the Safepoint for oopmap building.  The
  1769 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
  1770 // required edge set.
  1771 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
  1772   int must_recompute_live = false;
  1773   uint maxlrg = _lrg_map.max_lrg_id();
  1774   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
  1775   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
  1777   // For all blocks in RPO do...
  1778   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  1779     Block* block = _cfg.get_block(i);
  1780     // Note use of deep-copy constructor.  I cannot hammer the original
  1781     // liveout bits, because they are needed by the following coalesce pass.
  1782     IndexSet liveout(_live->live(block));
  1784     for (uint j = block->end_idx() + 1; j > 1; j--) {
  1785       Node* n = block->get_node(j - 1);
  1787       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
  1788       // like to see in the same register.  Compare uses the loop-phi and so
  1789       // extends its live range BUT cannot be part of the cycle.  If this
  1790       // extended live range overlaps with the update of the loop-phi value
  1791       // we need both alive at the same time -- which requires at least 1
  1792       // copy.  But because Intel has only 2-address registers we end up with
  1793       // at least 2 copies, one before the loop-phi update instruction and
  1794       // one after.  Instead we split the input to the compare just after the
  1795       // phi.
  1796       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
  1797         Node *phi = n->in(1);
  1798         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
  1799           Block *phi_block = _cfg.get_block_for_node(phi);
  1800           if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
  1801             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
  1802             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
  1803             insert_proj( phi_block, 1, spill, maxlrg++ );
  1804             n->set_req(1,spill);
  1805             must_recompute_live = true;
  1810       // Get value being defined
  1811       uint lidx = _lrg_map.live_range_id(n);
  1812       // Ignore the occasional brand-new live range
  1813       if (lidx && lidx < _lrg_map.max_lrg_id()) {
  1814         // Remove from live-out set
  1815         liveout.remove(lidx);
  1817         // Copies do not define a new value and so do not interfere.
  1818         // Remove the copies source from the liveout set before interfering.
  1819         uint idx = n->is_Copy();
  1820         if (idx) {
  1821           liveout.remove(_lrg_map.live_range_id(n->in(idx)));
  1825       // Found a safepoint?
  1826       JVMState *jvms = n->jvms();
  1827       if( jvms ) {
  1828         // Now scan for a live derived pointer
  1829         IndexSetIterator elements(&liveout);
  1830         uint neighbor;
  1831         while ((neighbor = elements.next()) != 0) {
  1832           // Find reaching DEF for base and derived values
  1833           // This works because we are still in SSA during this call.
  1834           Node *derived = lrgs(neighbor)._def;
  1835           const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1836           assert(!derived->bottom_type()->isa_narrowoop() ||
  1837                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1838           // If its an OOP with a non-zero offset, then it is derived.
  1839           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
  1840             Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
  1841             assert(base->_idx < _lrg_map.size(), "");
  1842             // Add reaching DEFs of derived pointer and base pointer as a
  1843             // pair of inputs
  1844             n->add_req(derived);
  1845             n->add_req(base);
  1847             // See if the base pointer is already live to this point.
  1848             // Since I'm working on the SSA form, live-ness amounts to
  1849             // reaching def's.  So if I find the base's live range then
  1850             // I know the base's def reaches here.
  1851             if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
  1852                  !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
  1853                  (_lrg_map.live_range_id(base) > 0) && // not a constant
  1854                  _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
  1855               // Base pointer is not currently live.  Since I stretched
  1856               // the base pointer to here and it crosses basic-block
  1857               // boundaries, the global live info is now incorrect.
  1858               // Recompute live.
  1859               must_recompute_live = true;
  1860             } // End of if base pointer is not live to debug info
  1862         } // End of scan all live data for derived ptrs crossing GC point
  1863       } // End of if found a GC point
  1865       // Make all inputs live
  1866       if (!n->is_Phi()) {      // Phi function uses come from prior block
  1867         for (uint k = 1; k < n->req(); k++) {
  1868           uint lidx = _lrg_map.live_range_id(n->in(k));
  1869           if (lidx < _lrg_map.max_lrg_id()) {
  1870             liveout.insert(lidx);
  1875     } // End of forall instructions in block
  1876     liveout.clear();  // Free the memory used by liveout.
  1878   } // End of forall blocks
  1879   _lrg_map.set_max_lrg_id(maxlrg);
  1881   // If I created a new live range I need to recompute live
  1882   if (maxlrg != _ifg->_maxlrg) {
  1883     must_recompute_live = true;
  1886   return must_recompute_live != 0;
  1889 // Extend the node to LRG mapping
  1891 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
  1892   _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
  1895 #ifndef PRODUCT
  1896 void PhaseChaitin::dump(const Node *n) const {
  1897   uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
  1898   tty->print("L%d",r);
  1899   if (r && n->Opcode() != Op_Phi) {
  1900     if( _node_regs ) {          // Got a post-allocation copy of allocation?
  1901       tty->print("[");
  1902       OptoReg::Name second = get_reg_second(n);
  1903       if( OptoReg::is_valid(second) ) {
  1904         if( OptoReg::is_reg(second) )
  1905           tty->print("%s:",Matcher::regName[second]);
  1906         else
  1907           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
  1909       OptoReg::Name first = get_reg_first(n);
  1910       if( OptoReg::is_reg(first) )
  1911         tty->print("%s]",Matcher::regName[first]);
  1912       else
  1913          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
  1914     } else
  1915     n->out_RegMask().dump();
  1917   tty->print("/N%d\t",n->_idx);
  1918   tty->print("%s === ", n->Name());
  1919   uint k;
  1920   for (k = 0; k < n->req(); k++) {
  1921     Node *m = n->in(k);
  1922     if (!m) {
  1923       tty->print("_ ");
  1925     else {
  1926       uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
  1927       tty->print("L%d",r);
  1928       // Data MultiNode's can have projections with no real registers.
  1929       // Don't die while dumping them.
  1930       int op = n->Opcode();
  1931       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
  1932         if( _node_regs ) {
  1933           tty->print("[");
  1934           OptoReg::Name second = get_reg_second(n->in(k));
  1935           if( OptoReg::is_valid(second) ) {
  1936             if( OptoReg::is_reg(second) )
  1937               tty->print("%s:",Matcher::regName[second]);
  1938             else
  1939               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
  1940                          reg2offset_unchecked(second));
  1942           OptoReg::Name first = get_reg_first(n->in(k));
  1943           if( OptoReg::is_reg(first) )
  1944             tty->print("%s]",Matcher::regName[first]);
  1945           else
  1946             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
  1947                        reg2offset_unchecked(first));
  1948         } else
  1949           n->in_RegMask(k).dump();
  1951       tty->print("/N%d ",m->_idx);
  1954   if( k < n->len() && n->in(k) ) tty->print("| ");
  1955   for( ; k < n->len(); k++ ) {
  1956     Node *m = n->in(k);
  1957     if(!m) {
  1958       break;
  1960     uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
  1961     tty->print("L%d",r);
  1962     tty->print("/N%d ",m->_idx);
  1964   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
  1965   else n->dump_spec(tty);
  1966   if( _spilled_once.test(n->_idx ) ) {
  1967     tty->print(" Spill_1");
  1968     if( _spilled_twice.test(n->_idx ) )
  1969       tty->print(" Spill_2");
  1971   tty->print("\n");
  1974 void PhaseChaitin::dump(const Block *b) const {
  1975   b->dump_head(&_cfg);
  1977   // For all instructions
  1978   for( uint j = 0; j < b->number_of_nodes(); j++ )
  1979     dump(b->get_node(j));
  1980   // Print live-out info at end of block
  1981   if( _live ) {
  1982     tty->print("Liveout: ");
  1983     IndexSet *live = _live->live(b);
  1984     IndexSetIterator elements(live);
  1985     tty->print("{");
  1986     uint i;
  1987     while ((i = elements.next()) != 0) {
  1988       tty->print("L%d ", _lrg_map.find_const(i));
  1990     tty->print_cr("}");
  1992   tty->print("\n");
  1995 void PhaseChaitin::dump() const {
  1996   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
  1997               _matcher._new_SP, _framesize );
  1999   // For all blocks
  2000   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  2001     dump(_cfg.get_block(i));
  2003   // End of per-block dump
  2004   tty->print("\n");
  2006   if (!_ifg) {
  2007     tty->print("(No IFG.)\n");
  2008     return;
  2011   // Dump LRG array
  2012   tty->print("--- Live RanGe Array ---\n");
  2013   for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
  2014     tty->print("L%d: ",i2);
  2015     if (i2 < _ifg->_maxlrg) {
  2016       lrgs(i2).dump();
  2018     else {
  2019       tty->print_cr("new LRG");
  2022   tty->cr();
  2024   // Dump lo-degree list
  2025   tty->print("Lo degree: ");
  2026   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
  2027     tty->print("L%d ",i3);
  2028   tty->cr();
  2030   // Dump lo-stk-degree list
  2031   tty->print("Lo stk degree: ");
  2032   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
  2033     tty->print("L%d ",i4);
  2034   tty->cr();
  2036   // Dump lo-degree list
  2037   tty->print("Hi degree: ");
  2038   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
  2039     tty->print("L%d ",i5);
  2040   tty->cr();
  2043 void PhaseChaitin::dump_degree_lists() const {
  2044   // Dump lo-degree list
  2045   tty->print("Lo degree: ");
  2046   for( uint i = _lo_degree; i; i = lrgs(i)._next )
  2047     tty->print("L%d ",i);
  2048   tty->cr();
  2050   // Dump lo-stk-degree list
  2051   tty->print("Lo stk degree: ");
  2052   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
  2053     tty->print("L%d ",i2);
  2054   tty->cr();
  2056   // Dump lo-degree list
  2057   tty->print("Hi degree: ");
  2058   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
  2059     tty->print("L%d ",i3);
  2060   tty->cr();
  2063 void PhaseChaitin::dump_simplified() const {
  2064   tty->print("Simplified: ");
  2065   for( uint i = _simplified; i; i = lrgs(i)._next )
  2066     tty->print("L%d ",i);
  2067   tty->cr();
  2070 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
  2071   if ((int)reg < 0)
  2072     sprintf(buf, "<OptoReg::%d>", (int)reg);
  2073   else if (OptoReg::is_reg(reg))
  2074     strcpy(buf, Matcher::regName[reg]);
  2075   else
  2076     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
  2077             pc->reg2offset(reg));
  2078   return buf+strlen(buf);
  2081 // Dump a register name into a buffer.  Be intelligent if we get called
  2082 // before allocation is complete.
  2083 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
  2084   if( !this ) {                 // Not got anything?
  2085     sprintf(buf,"N%d",n->_idx); // Then use Node index
  2086   } else if( _node_regs ) {
  2087     // Post allocation, use direct mappings, no LRG info available
  2088     print_reg( get_reg_first(n), this, buf );
  2089   } else {
  2090     uint lidx = _lrg_map.find_const(n); // Grab LRG number
  2091     if( !_ifg ) {
  2092       sprintf(buf,"L%d",lidx);  // No register binding yet
  2093     } else if( !lidx ) {        // Special, not allocated value
  2094       strcpy(buf,"Special");
  2095     } else {
  2096       if (lrgs(lidx)._is_vector) {
  2097         if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
  2098           print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
  2099         else
  2100           sprintf(buf,"L%d",lidx); // No register binding yet
  2101       } else if( (lrgs(lidx).num_regs() == 1)
  2102                  ? lrgs(lidx).mask().is_bound1()
  2103                  : lrgs(lidx).mask().is_bound_pair() ) {
  2104         // Hah!  We have a bound machine register
  2105         print_reg( lrgs(lidx).reg(), this, buf );
  2106       } else {
  2107         sprintf(buf,"L%d",lidx); // No register binding yet
  2111   return buf+strlen(buf);
  2114 void PhaseChaitin::dump_for_spill_split_recycle() const {
  2115   if( WizardMode && (PrintCompilation || PrintOpto) ) {
  2116     // Display which live ranges need to be split and the allocator's state
  2117     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
  2118     for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
  2119       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
  2120         tty->print("L%d: ", bidx);
  2121         lrgs(bidx).dump();
  2124     tty->cr();
  2125     dump();
  2129 void PhaseChaitin::dump_frame() const {
  2130   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
  2131   const TypeTuple *domain = C->tf()->domain();
  2132   const int        argcnt = domain->cnt() - TypeFunc::Parms;
  2134   // Incoming arguments in registers dump
  2135   for( int k = 0; k < argcnt; k++ ) {
  2136     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
  2137     if( OptoReg::is_reg(parmreg))  {
  2138       const char *reg_name = OptoReg::regname(parmreg);
  2139       tty->print("#r%3.3d %s", parmreg, reg_name);
  2140       parmreg = _matcher._parm_regs[k].second();
  2141       if( OptoReg::is_reg(parmreg))  {
  2142         tty->print(":%s", OptoReg::regname(parmreg));
  2144       tty->print("   : parm %d: ", k);
  2145       domain->field_at(k + TypeFunc::Parms)->dump();
  2146       tty->cr();
  2150   // Check for un-owned padding above incoming args
  2151   OptoReg::Name reg = _matcher._new_SP;
  2152   if( reg > _matcher._in_arg_limit ) {
  2153     reg = OptoReg::add(reg, -1);
  2154     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
  2157   // Incoming argument area dump
  2158   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
  2159   while( reg > begin_in_arg ) {
  2160     reg = OptoReg::add(reg, -1);
  2161     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  2162     int j;
  2163     for( j = 0; j < argcnt; j++) {
  2164       if( _matcher._parm_regs[j].first() == reg ||
  2165           _matcher._parm_regs[j].second() == reg ) {
  2166         tty->print("parm %d: ",j);
  2167         domain->field_at(j + TypeFunc::Parms)->dump();
  2168         tty->cr();
  2169         break;
  2172     if( j >= argcnt )
  2173       tty->print_cr("HOLE, owned by SELF");
  2176   // Old outgoing preserve area
  2177   while( reg > _matcher._old_SP ) {
  2178     reg = OptoReg::add(reg, -1);
  2179     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
  2182   // Old SP
  2183   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
  2184     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
  2186   // Preserve area dump
  2187   int fixed_slots = C->fixed_slots();
  2188   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
  2189   OptoReg::Name return_addr = _matcher.return_addr();
  2191   reg = OptoReg::add(reg, -1);
  2192   while (OptoReg::is_stack(reg)) {
  2193     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  2194     if (return_addr == reg) {
  2195       tty->print_cr("return address");
  2196     } else if (reg >= begin_in_preserve) {
  2197       // Preserved slots are present on x86
  2198       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
  2199         tty->print_cr("saved fp register");
  2200       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
  2201                VerifyStackAtCalls)
  2202         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
  2203       else
  2204         tty->print_cr("in_preserve");
  2205     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
  2206       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
  2207     } else {
  2208       tty->print_cr("pad2, stack alignment");
  2210     reg = OptoReg::add(reg, -1);
  2213   // Spill area dump
  2214   reg = OptoReg::add(_matcher._new_SP, _framesize );
  2215   while( reg > _matcher._out_arg_limit ) {
  2216     reg = OptoReg::add(reg, -1);
  2217     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
  2220   // Outgoing argument area dump
  2221   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
  2222     reg = OptoReg::add(reg, -1);
  2223     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
  2226   // Outgoing new preserve area
  2227   while( reg > _matcher._new_SP ) {
  2228     reg = OptoReg::add(reg, -1);
  2229     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
  2231   tty->print_cr("#");
  2234 void PhaseChaitin::dump_bb( uint pre_order ) const {
  2235   tty->print_cr("---dump of B%d---",pre_order);
  2236   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  2237     Block* block = _cfg.get_block(i);
  2238     if (block->_pre_order == pre_order) {
  2239       dump(block);
  2244 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
  2245   tty->print_cr("---dump of L%d---",lidx);
  2247   if (_ifg) {
  2248     if (lidx >= _lrg_map.max_lrg_id()) {
  2249       tty->print("Attempt to print live range index beyond max live range.\n");
  2250       return;
  2252     tty->print("L%d: ",lidx);
  2253     if (lidx < _ifg->_maxlrg) {
  2254       lrgs(lidx).dump();
  2255     } else {
  2256       tty->print_cr("new LRG");
  2259   if( _ifg && lidx < _ifg->_maxlrg) {
  2260     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
  2261     _ifg->neighbors(lidx)->dump();
  2262     tty->cr();
  2264   // For all blocks
  2265   for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
  2266     Block* block = _cfg.get_block(i);
  2267     int dump_once = 0;
  2269     // For all instructions
  2270     for( uint j = 0; j < block->number_of_nodes(); j++ ) {
  2271       Node *n = block->get_node(j);
  2272       if (_lrg_map.find_const(n) == lidx) {
  2273         if (!dump_once++) {
  2274           tty->cr();
  2275           block->dump_head(&_cfg);
  2277         dump(n);
  2278         continue;
  2280       if (!defs_only) {
  2281         uint cnt = n->req();
  2282         for( uint k = 1; k < cnt; k++ ) {
  2283           Node *m = n->in(k);
  2284           if (!m)  {
  2285             continue;  // be robust in the dumper
  2287           if (_lrg_map.find_const(m) == lidx) {
  2288             if (!dump_once++) {
  2289               tty->cr();
  2290               block->dump_head(&_cfg);
  2292             dump(n);
  2297   } // End of per-block dump
  2298   tty->cr();
  2300 #endif // not PRODUCT
  2302 int PhaseChaitin::_final_loads  = 0;
  2303 int PhaseChaitin::_final_stores = 0;
  2304 int PhaseChaitin::_final_memoves= 0;
  2305 int PhaseChaitin::_final_copies = 0;
  2306 double PhaseChaitin::_final_load_cost  = 0;
  2307 double PhaseChaitin::_final_store_cost = 0;
  2308 double PhaseChaitin::_final_memove_cost= 0;
  2309 double PhaseChaitin::_final_copy_cost  = 0;
  2310 int PhaseChaitin::_conserv_coalesce = 0;
  2311 int PhaseChaitin::_conserv_coalesce_pair = 0;
  2312 int PhaseChaitin::_conserv_coalesce_trie = 0;
  2313 int PhaseChaitin::_conserv_coalesce_quad = 0;
  2314 int PhaseChaitin::_post_alloc = 0;
  2315 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
  2316 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
  2317 int PhaseChaitin::_used_cisc_instructions   = 0;
  2318 int PhaseChaitin::_unused_cisc_instructions = 0;
  2319 int PhaseChaitin::_allocator_attempts       = 0;
  2320 int PhaseChaitin::_allocator_successes      = 0;
  2322 #ifndef PRODUCT
  2323 uint PhaseChaitin::_high_pressure           = 0;
  2324 uint PhaseChaitin::_low_pressure            = 0;
  2326 void PhaseChaitin::print_chaitin_statistics() {
  2327   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
  2328   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
  2329   tty->print_cr("Adjusted spill cost = %7.0f.",
  2330                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
  2331                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
  2332   tty->print("Conservatively coalesced %d copies, %d pairs",
  2333                 _conserv_coalesce, _conserv_coalesce_pair);
  2334   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
  2335     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
  2336   tty->print_cr(", %d post alloc.", _post_alloc);
  2337   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
  2338     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
  2339                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
  2340   if( _used_cisc_instructions || _unused_cisc_instructions )
  2341     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
  2342                    _used_cisc_instructions, _unused_cisc_instructions);
  2343   if( _allocator_successes != 0 )
  2344     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
  2345   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
  2347 #endif // not PRODUCT

mercurial