src/share/vm/opto/chaitin.cpp

Tue, 11 Jun 2013 16:34:34 -0400

author
drchase
date
Tue, 11 Jun 2013 16:34:34 -0400
changeset 5285
693e4d04fd09
parent 4949
8373c19be854
child 5509
d1034bd8cefc
permissions
-rw-r--r--

8014959: assert(Compile::current()->live_nodes() < (uint)MaxNodeLimit) failed: Live Node limit exceeded limit
Summary: Insert extra checks and bailouts for too many nodes
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "compiler/oopMap.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "opto/addnode.hpp"
    30 #include "opto/block.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/chaitin.hpp"
    34 #include "opto/coalesce.hpp"
    35 #include "opto/connode.hpp"
    36 #include "opto/idealGraphPrinter.hpp"
    37 #include "opto/indexSet.hpp"
    38 #include "opto/machnode.hpp"
    39 #include "opto/memnode.hpp"
    40 #include "opto/opcodes.hpp"
    41 #include "opto/rootnode.hpp"
    43 //=============================================================================
    45 #ifndef PRODUCT
    46 void LRG::dump( ) const {
    47   ttyLocker ttyl;
    48   tty->print("%d ",num_regs());
    49   _mask.dump();
    50   if( _msize_valid ) {
    51     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
    52     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
    53   } else {
    54     tty->print(", #?(%d) ",_mask.Size());
    55   }
    57   tty->print("EffDeg: ");
    58   if( _degree_valid ) tty->print( "%d ", _eff_degree );
    59   else tty->print("? ");
    61   if( is_multidef() ) {
    62     tty->print("MultiDef ");
    63     if (_defs != NULL) {
    64       tty->print("(");
    65       for (int i = 0; i < _defs->length(); i++) {
    66         tty->print("N%d ", _defs->at(i)->_idx);
    67       }
    68       tty->print(") ");
    69     }
    70   }
    71   else if( _def == 0 ) tty->print("Dead ");
    72   else tty->print("Def: N%d ",_def->_idx);
    74   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
    75   // Flags
    76   if( _is_oop ) tty->print("Oop ");
    77   if( _is_float ) tty->print("Float ");
    78   if( _is_vector ) tty->print("Vector ");
    79   if( _was_spilled1 ) tty->print("Spilled ");
    80   if( _was_spilled2 ) tty->print("Spilled2 ");
    81   if( _direct_conflict ) tty->print("Direct_conflict ");
    82   if( _fat_proj ) tty->print("Fat ");
    83   if( _was_lo ) tty->print("Lo ");
    84   if( _has_copy ) tty->print("Copy ");
    85   if( _at_risk ) tty->print("Risk ");
    87   if( _must_spill ) tty->print("Must_spill ");
    88   if( _is_bound ) tty->print("Bound ");
    89   if( _msize_valid ) {
    90     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
    91   }
    93   tty->cr();
    94 }
    95 #endif
    97 //------------------------------score------------------------------------------
    98 // Compute score from cost and area.  Low score is best to spill.
    99 static double raw_score( double cost, double area ) {
   100   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
   101 }
   103 double LRG::score() const {
   104   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
   105   // Bigger area lowers score, encourages spilling this live range.
   106   // Bigger cost raise score, prevents spilling this live range.
   107   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
   108   // to turn a divide by a constant into a multiply by the reciprical).
   109   double score = raw_score( _cost, _area);
   111   // Account for area.  Basically, LRGs covering large areas are better
   112   // to spill because more other LRGs get freed up.
   113   if( _area == 0.0 )            // No area?  Then no progress to spill
   114     return 1e35;
   116   if( _was_spilled2 )           // If spilled once before, we are unlikely
   117     return score + 1e30;        // to make progress again.
   119   if( _cost >= _area*3.0 )      // Tiny area relative to cost
   120     return score + 1e17;        // Probably no progress to spill
   122   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
   123     return score + 1e10;        // Likely no progress to spill
   125   return score;
   126 }
   128 //------------------------------LRG_List---------------------------------------
   129 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
   130   memset( _lidxs, 0, sizeof(uint)*max );
   131 }
   133 void LRG_List::extend( uint nidx, uint lidx ) {
   134   _nesting.check();
   135   if( nidx >= _max ) {
   136     uint size = 16;
   137     while( size <= nidx ) size <<=1;
   138     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
   139     _max = size;
   140   }
   141   while( _cnt <= nidx )
   142     _lidxs[_cnt++] = 0;
   143   _lidxs[nidx] = lidx;
   144 }
   146 #define NUMBUCKS 3
   148 // Straight out of Tarjan's union-find algorithm
   149 uint LiveRangeMap::find_compress(uint lrg) {
   150   uint cur = lrg;
   151   uint next = _uf_map[cur];
   152   while (next != cur) { // Scan chain of equivalences
   153     assert( next < cur, "always union smaller");
   154     cur = next; // until find a fixed-point
   155     next = _uf_map[cur];
   156   }
   158   // Core of union-find algorithm: update chain of
   159   // equivalences to be equal to the root.
   160   while (lrg != next) {
   161     uint tmp = _uf_map[lrg];
   162     _uf_map.map(lrg, next);
   163     lrg = tmp;
   164   }
   165   return lrg;
   166 }
   168 // Reset the Union-Find map to identity
   169 void LiveRangeMap::reset_uf_map(uint max_lrg_id) {
   170   _max_lrg_id= max_lrg_id;
   171   // Force the Union-Find mapping to be at least this large
   172   _uf_map.extend(_max_lrg_id, 0);
   173   // Initialize it to be the ID mapping.
   174   for (uint i = 0; i < _max_lrg_id; ++i) {
   175     _uf_map.map(i, i);
   176   }
   177 }
   179 // Make all Nodes map directly to their final live range; no need for
   180 // the Union-Find mapping after this call.
   181 void LiveRangeMap::compress_uf_map_for_nodes() {
   182   // For all Nodes, compress mapping
   183   uint unique = _names.Size();
   184   for (uint i = 0; i < unique; ++i) {
   185     uint lrg = _names[i];
   186     uint compressed_lrg = find(lrg);
   187     if (lrg != compressed_lrg) {
   188       _names.map(i, compressed_lrg);
   189     }
   190   }
   191 }
   193 // Like Find above, but no path compress, so bad asymptotic behavior
   194 uint LiveRangeMap::find_const(uint lrg) const {
   195   if (!lrg) {
   196     return lrg; // Ignore the zero LRG
   197   }
   199   // Off the end?  This happens during debugging dumps when you got
   200   // brand new live ranges but have not told the allocator yet.
   201   if (lrg >= _max_lrg_id) {
   202     return lrg;
   203   }
   205   uint next = _uf_map[lrg];
   206   while (next != lrg) { // Scan chain of equivalences
   207     assert(next < lrg, "always union smaller");
   208     lrg = next; // until find a fixed-point
   209     next = _uf_map[lrg];
   210   }
   211   return next;
   212 }
   214 //------------------------------Chaitin----------------------------------------
   215 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
   216   : PhaseRegAlloc(unique, cfg, matcher,
   217 #ifndef PRODUCT
   218        print_chaitin_statistics
   219 #else
   220        NULL
   221 #endif
   222        )
   223   , _lrg_map(unique)
   224   , _live(0)
   225   , _spilled_once(Thread::current()->resource_area())
   226   , _spilled_twice(Thread::current()->resource_area())
   227   , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0)
   228   , _oldphi(unique)
   229 #ifndef PRODUCT
   230   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
   231 #endif
   232 {
   233   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
   235   _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
   237   // Build a list of basic blocks, sorted by frequency
   238   _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
   239   // Experiment with sorting strategies to speed compilation
   240   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
   241   Block **buckets[NUMBUCKS];             // Array of buckets
   242   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
   243   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
   244   for (uint i = 0; i < NUMBUCKS; i++) {
   245     buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg._num_blocks);
   246     buckcnt[i] = 0;
   247     // Bump by three orders of magnitude each time
   248     cutoff *= 0.001;
   249     buckval[i] = cutoff;
   250     for (uint j = 0; j < _cfg._num_blocks; j++) {
   251       buckets[i][j] = NULL;
   252     }
   253   }
   254   // Sort blocks into buckets
   255   for (uint i = 0; i < _cfg._num_blocks; i++) {
   256     for (uint j = 0; j < NUMBUCKS; j++) {
   257       if ((j == NUMBUCKS - 1) || (_cfg._blocks[i]->_freq > buckval[j])) {
   258         // Assign block to end of list for appropriate bucket
   259         buckets[j][buckcnt[j]++] = _cfg._blocks[i];
   260         break; // kick out of inner loop
   261       }
   262     }
   263   }
   264   // Dump buckets into final block array
   265   uint blkcnt = 0;
   266   for (uint i = 0; i < NUMBUCKS; i++) {
   267     for (uint j = 0; j < buckcnt[i]; j++) {
   268       _blks[blkcnt++] = buckets[i][j];
   269     }
   270   }
   272   assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
   273 }
   275 //------------------------------Union------------------------------------------
   276 // union 2 sets together.
   277 void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
   278   uint src = _lrg_map.find(src_n);
   279   uint dst = _lrg_map.find(dst_n);
   280   assert(src, "");
   281   assert(dst, "");
   282   assert(src < _lrg_map.max_lrg_id(), "oob");
   283   assert(dst < _lrg_map.max_lrg_id(), "oob");
   284   assert(src < dst, "always union smaller");
   285   _lrg_map.uf_map(dst, src);
   286 }
   288 //------------------------------new_lrg----------------------------------------
   289 void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
   290   // Make the Node->LRG mapping
   291   _lrg_map.extend(x->_idx,lrg);
   292   // Make the Union-Find mapping an identity function
   293   _lrg_map.uf_extend(lrg, lrg);
   294 }
   297 bool PhaseChaitin::clone_projs_shared(Block *b, uint idx, Node *con, Node *copy, uint max_lrg_id) {
   298   Block *bcon = _cfg._bbs[con->_idx];
   299   uint cindex = bcon->find_node(con);
   300   Node *con_next = bcon->_nodes[cindex+1];
   301   if (con_next->in(0) != con || !con_next->is_MachProj()) {
   302     return false;               // No MachProj's follow
   303   }
   305   // Copy kills after the cloned constant
   306   Node *kills = con_next->clone();
   307   kills->set_req(0, copy);
   308   b->_nodes.insert(idx, kills);
   309   _cfg._bbs.map(kills->_idx, b);
   310   new_lrg(kills, max_lrg_id);
   311   return true;
   312 }
   314 //------------------------------compact----------------------------------------
   315 // Renumber the live ranges to compact them.  Makes the IFG smaller.
   316 void PhaseChaitin::compact() {
   317   // Current the _uf_map contains a series of short chains which are headed
   318   // by a self-cycle.  All the chains run from big numbers to little numbers.
   319   // The Find() call chases the chains & shortens them for the next Find call.
   320   // We are going to change this structure slightly.  Numbers above a moving
   321   // wave 'i' are unchanged.  Numbers below 'j' point directly to their
   322   // compacted live range with no further chaining.  There are no chains or
   323   // cycles below 'i', so the Find call no longer works.
   324   uint j=1;
   325   uint i;
   326   for (i = 1; i < _lrg_map.max_lrg_id(); i++) {
   327     uint lr = _lrg_map.uf_live_range_id(i);
   328     // Ignore unallocated live ranges
   329     if (!lr) {
   330       continue;
   331     }
   332     assert(lr <= i, "");
   333     _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr));
   334   }
   335   // Now change the Node->LR mapping to reflect the compacted names
   336   uint unique = _lrg_map.size();
   337   for (i = 0; i < unique; i++) {
   338     uint lrg_id = _lrg_map.live_range_id(i);
   339     _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id));
   340   }
   342   // Reset the Union-Find mapping
   343   _lrg_map.reset_uf_map(j);
   344 }
   346 void PhaseChaitin::Register_Allocate() {
   348   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
   349   // slots in this area are called "arg_slots".  Above the NEW FP (and in
   350   // registers) is the outgoing argument area; above that is the spill/temp
   351   // area.  These are all "frame_slots".  Arg_slots start at the zero
   352   // stack_slots and count up to the known arg_size.  Frame_slots start at
   353   // the stack_slot #arg_size and go up.  After allocation I map stack
   354   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
   355   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
   357   _trip_cnt = 0;
   358   _alternate = 0;
   359   _matcher._allocation_started = true;
   361   ResourceArea split_arena;     // Arena for Split local resources
   362   ResourceArea live_arena;      // Arena for liveness & IFG info
   363   ResourceMark rm(&live_arena);
   365   // Need live-ness for the IFG; need the IFG for coalescing.  If the
   366   // liveness is JUST for coalescing, then I can get some mileage by renaming
   367   // all copy-related live ranges low and then using the max copy-related
   368   // live range as a cut-off for LIVE and the IFG.  In other words, I can
   369   // build a subset of LIVE and IFG just for copies.
   370   PhaseLive live(_cfg, _lrg_map.names(), &live_arena);
   372   // Need IFG for coalescing and coloring
   373   PhaseIFG ifg(&live_arena);
   374   _ifg = &ifg;
   376   // Come out of SSA world to the Named world.  Assign (virtual) registers to
   377   // Nodes.  Use the same register for all inputs and the output of PhiNodes
   378   // - effectively ending SSA form.  This requires either coalescing live
   379   // ranges or inserting copies.  For the moment, we insert "virtual copies"
   380   // - we pretend there is a copy prior to each Phi in predecessor blocks.
   381   // We will attempt to coalesce such "virtual copies" before we manifest
   382   // them for real.
   383   de_ssa();
   385 #ifdef ASSERT
   386   // Veify the graph before RA.
   387   verify(&live_arena);
   388 #endif
   390   {
   391     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   392     _live = NULL;                 // Mark live as being not available
   393     rm.reset_to_mark();           // Reclaim working storage
   394     IndexSet::reset_memory(C, &live_arena);
   395     ifg.init(_lrg_map.max_lrg_id()); // Empty IFG
   396     gather_lrg_masks( false );    // Collect LRG masks
   397     live.compute(_lrg_map.max_lrg_id()); // Compute liveness
   398     _live = &live;                // Mark LIVE as being available
   399   }
   401   // Base pointers are currently "used" by instructions which define new
   402   // derived pointers.  This makes base pointers live up to the where the
   403   // derived pointer is made, but not beyond.  Really, they need to be live
   404   // across any GC point where the derived value is live.  So this code looks
   405   // at all the GC points, and "stretches" the live range of any base pointer
   406   // to the GC point.
   407   if (stretch_base_pointer_live_ranges(&live_arena)) {
   408     NOT_PRODUCT(Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler);)
   409     // Since some live range stretched, I need to recompute live
   410     _live = NULL;
   411     rm.reset_to_mark();         // Reclaim working storage
   412     IndexSet::reset_memory(C, &live_arena);
   413     ifg.init(_lrg_map.max_lrg_id());
   414     gather_lrg_masks(false);
   415     live.compute(_lrg_map.max_lrg_id());
   416     _live = &live;
   417   }
   418   // Create the interference graph using virtual copies
   419   build_ifg_virtual();  // Include stack slots this time
   421   // Aggressive (but pessimistic) copy coalescing.
   422   // This pass works on virtual copies.  Any virtual copies which are not
   423   // coalesced get manifested as actual copies
   424   {
   425     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
   426     // faster.  Union requires a 'for all' operation which is slow on the
   427     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
   428     // meaning I can visit all the Nodes neighbors less than a Node in time
   429     // O(# of neighbors), but I have to visit all the Nodes greater than a
   430     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
   431     _ifg->SquareUp();
   433     PhaseAggressiveCoalesce coalesce(*this);
   434     coalesce.coalesce_driver();
   435     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
   436     // not match the Phi itself, insert a copy.
   437     coalesce.insert_copies(_matcher);
   438     if (C->failing()) {
   439       return;
   440     }
   441   }
   443   // After aggressive coalesce, attempt a first cut at coloring.
   444   // To color, we need the IFG and for that we need LIVE.
   445   {
   446     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   447     _live = NULL;
   448     rm.reset_to_mark();           // Reclaim working storage
   449     IndexSet::reset_memory(C, &live_arena);
   450     ifg.init(_lrg_map.max_lrg_id());
   451     gather_lrg_masks( true );
   452     live.compute(_lrg_map.max_lrg_id());
   453     _live = &live;
   454   }
   456   // Build physical interference graph
   457   uint must_spill = 0;
   458   must_spill = build_ifg_physical(&live_arena);
   459   // If we have a guaranteed spill, might as well spill now
   460   if (must_spill) {
   461     if(!_lrg_map.max_lrg_id()) {
   462       return;
   463     }
   464     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
   465     C->check_node_count(10*must_spill, "out of nodes before split");
   466     if (C->failing()) {
   467       return;
   468     }
   470     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
   471     _lrg_map.set_max_lrg_id(new_max_lrg_id);
   472     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   473     // or we failed to split
   474     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
   475     if (C->failing()) {
   476       return;
   477     }
   479     NOT_PRODUCT(C->verify_graph_edges();)
   481     compact();                  // Compact LRGs; return new lower max lrg
   483     {
   484       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   485       _live = NULL;
   486       rm.reset_to_mark();         // Reclaim working storage
   487       IndexSet::reset_memory(C, &live_arena);
   488       ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph
   489       gather_lrg_masks( true );   // Collect intersect mask
   490       live.compute(_lrg_map.max_lrg_id()); // Compute LIVE
   491       _live = &live;
   492     }
   493     build_ifg_physical(&live_arena);
   494     _ifg->SquareUp();
   495     _ifg->Compute_Effective_Degree();
   496     // Only do conservative coalescing if requested
   497     if (OptoCoalesce) {
   498       // Conservative (and pessimistic) copy coalescing of those spills
   499       PhaseConservativeCoalesce coalesce(*this);
   500       // If max live ranges greater than cutoff, don't color the stack.
   501       // This cutoff can be larger than below since it is only done once.
   502       coalesce.coalesce_driver();
   503     }
   504     _lrg_map.compress_uf_map_for_nodes();
   506 #ifdef ASSERT
   507     verify(&live_arena, true);
   508 #endif
   509   } else {
   510     ifg.SquareUp();
   511     ifg.Compute_Effective_Degree();
   512 #ifdef ASSERT
   513     set_was_low();
   514 #endif
   515   }
   517   // Prepare for Simplify & Select
   518   cache_lrg_info();           // Count degree of LRGs
   520   // Simplify the InterFerence Graph by removing LRGs of low degree.
   521   // LRGs of low degree are trivially colorable.
   522   Simplify();
   524   // Select colors by re-inserting LRGs back into the IFG in reverse order.
   525   // Return whether or not something spills.
   526   uint spills = Select( );
   528   // If we spill, split and recycle the entire thing
   529   while( spills ) {
   530     if( _trip_cnt++ > 24 ) {
   531       DEBUG_ONLY( dump_for_spill_split_recycle(); )
   532       if( _trip_cnt > 27 ) {
   533         C->record_method_not_compilable("failed spill-split-recycle sanity check");
   534         return;
   535       }
   536     }
   538     if (!_lrg_map.max_lrg_id()) {
   539       return;
   540     }
   541     uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena);  // Split spilling LRG everywhere
   542     _lrg_map.set_max_lrg_id(new_max_lrg_id);
   543     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
   544     C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split");
   545     if (C->failing()) {
   546       return;
   547     }
   549     compact(); // Compact LRGs; return new lower max lrg
   551     // Nuke the live-ness and interference graph and LiveRanGe info
   552     {
   553       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
   554       _live = NULL;
   555       rm.reset_to_mark();         // Reclaim working storage
   556       IndexSet::reset_memory(C, &live_arena);
   557       ifg.init(_lrg_map.max_lrg_id());
   559       // Create LiveRanGe array.
   560       // Intersect register masks for all USEs and DEFs
   561       gather_lrg_masks(true);
   562       live.compute(_lrg_map.max_lrg_id());
   563       _live = &live;
   564     }
   565     must_spill = build_ifg_physical(&live_arena);
   566     _ifg->SquareUp();
   567     _ifg->Compute_Effective_Degree();
   569     // Only do conservative coalescing if requested
   570     if (OptoCoalesce) {
   571       // Conservative (and pessimistic) copy coalescing
   572       PhaseConservativeCoalesce coalesce(*this);
   573       // Check for few live ranges determines how aggressive coalesce is.
   574       coalesce.coalesce_driver();
   575     }
   576     _lrg_map.compress_uf_map_for_nodes();
   577 #ifdef ASSERT
   578     verify(&live_arena, true);
   579 #endif
   580     cache_lrg_info();           // Count degree of LRGs
   582     // Simplify the InterFerence Graph by removing LRGs of low degree.
   583     // LRGs of low degree are trivially colorable.
   584     Simplify();
   586     // Select colors by re-inserting LRGs back into the IFG in reverse order.
   587     // Return whether or not something spills.
   588     spills = Select();
   589   }
   591   // Count number of Simplify-Select trips per coloring success.
   592   _allocator_attempts += _trip_cnt + 1;
   593   _allocator_successes += 1;
   595   // Peephole remove copies
   596   post_allocate_copy_removal();
   598 #ifdef ASSERT
   599   // Veify the graph after RA.
   600   verify(&live_arena);
   601 #endif
   603   // max_reg is past the largest *register* used.
   604   // Convert that to a frame_slot number.
   605   if (_max_reg <= _matcher._new_SP) {
   606     _framesize = C->out_preserve_stack_slots();
   607   }
   608   else {
   609     _framesize = _max_reg -_matcher._new_SP;
   610   }
   611   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
   613   // This frame must preserve the required fp alignment
   614   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
   615   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
   616 #ifndef PRODUCT
   617   _total_framesize += _framesize;
   618   if ((int)_framesize > _max_framesize) {
   619     _max_framesize = _framesize;
   620   }
   621 #endif
   623   // Convert CISC spills
   624   fixup_spills();
   626   // Log regalloc results
   627   CompileLog* log = Compile::current()->log();
   628   if (log != NULL) {
   629     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
   630   }
   632   if (C->failing()) {
   633     return;
   634   }
   636   NOT_PRODUCT(C->verify_graph_edges();)
   638   // Move important info out of the live_arena to longer lasting storage.
   639   alloc_node_regs(_lrg_map.size());
   640   for (uint i=0; i < _lrg_map.size(); i++) {
   641     if (_lrg_map.live_range_id(i)) { // Live range associated with Node?
   642       LRG &lrg = lrgs(_lrg_map.live_range_id(i));
   643       if (!lrg.alive()) {
   644         set_bad(i);
   645       } else if (lrg.num_regs() == 1) {
   646         set1(i, lrg.reg());
   647       } else {                  // Must be a register-set
   648         if (!lrg._fat_proj) {   // Must be aligned adjacent register set
   649           // Live ranges record the highest register in their mask.
   650           // We want the low register for the AD file writer's convenience.
   651           OptoReg::Name hi = lrg.reg(); // Get hi register
   652           OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo
   653           // We have to use pair [lo,lo+1] even for wide vectors because
   654           // the rest of code generation works only with pairs. It is safe
   655           // since for registers encoding only 'lo' is used.
   656           // Second reg from pair is used in ScheduleAndBundle on SPARC where
   657           // vector max size is 8 which corresponds to registers pair.
   658           // It is also used in BuildOopMaps but oop operations are not
   659           // vectorized.
   660           set2(i, lo);
   661         } else {                // Misaligned; extract 2 bits
   662           OptoReg::Name hi = lrg.reg(); // Get hi register
   663           lrg.Remove(hi);       // Yank from mask
   664           int lo = lrg.mask().find_first_elem(); // Find lo
   665           set_pair(i, hi, lo);
   666         }
   667       }
   668       if( lrg._is_oop ) _node_oops.set(i);
   669     } else {
   670       set_bad(i);
   671     }
   672   }
   674   // Done!
   675   _live = NULL;
   676   _ifg = NULL;
   677   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
   678 }
   680 //------------------------------de_ssa-----------------------------------------
   681 void PhaseChaitin::de_ssa() {
   682   // Set initial Names for all Nodes.  Most Nodes get the virtual register
   683   // number.  A few get the ZERO live range number.  These do not
   684   // get allocated, but instead rely on correct scheduling to ensure that
   685   // only one instance is simultaneously live at a time.
   686   uint lr_counter = 1;
   687   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   688     Block *b = _cfg._blocks[i];
   689     uint cnt = b->_nodes.size();
   691     // Handle all the normal Nodes in the block
   692     for( uint j = 0; j < cnt; j++ ) {
   693       Node *n = b->_nodes[j];
   694       // Pre-color to the zero live range, or pick virtual register
   695       const RegMask &rm = n->out_RegMask();
   696       _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
   697     }
   698   }
   699   // Reset the Union-Find mapping to be identity
   700   _lrg_map.reset_uf_map(lr_counter);
   701 }
   704 //------------------------------gather_lrg_masks-------------------------------
   705 // Gather LiveRanGe information, including register masks.  Modification of
   706 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
   707 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
   709   // Nail down the frame pointer live range
   710   uint fp_lrg = _lrg_map.live_range_id(_cfg._root->in(1)->in(TypeFunc::FramePtr));
   711   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
   713   // For all blocks
   714   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
   715     Block *b = _cfg._blocks[i];
   717     // For all instructions
   718     for( uint j = 1; j < b->_nodes.size(); j++ ) {
   719       Node *n = b->_nodes[j];
   720       uint input_edge_start =1; // Skip control most nodes
   721       if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
   722       uint idx = n->is_Copy();
   724       // Get virtual register number, same as LiveRanGe index
   725       uint vreg = _lrg_map.live_range_id(n);
   726       LRG &lrg = lrgs(vreg);
   727       if( vreg ) {              // No vreg means un-allocable (e.g. memory)
   729         // Collect has-copy bit
   730         if( idx ) {
   731           lrg._has_copy = 1;
   732           uint clidx = _lrg_map.live_range_id(n->in(idx));
   733           LRG &copy_src = lrgs(clidx);
   734           copy_src._has_copy = 1;
   735         }
   737         // Check for float-vs-int live range (used in register-pressure
   738         // calculations)
   739         const Type *n_type = n->bottom_type();
   740         if (n_type->is_floatingpoint())
   741           lrg._is_float = 1;
   743         // Check for twice prior spilling.  Once prior spilling might have
   744         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
   745         // further spilling is unlikely to make progress.
   746         if( _spilled_once.test(n->_idx) ) {
   747           lrg._was_spilled1 = 1;
   748           if( _spilled_twice.test(n->_idx) )
   749             lrg._was_spilled2 = 1;
   750         }
   752 #ifndef PRODUCT
   753         if (trace_spilling() && lrg._def != NULL) {
   754           // collect defs for MultiDef printing
   755           if (lrg._defs == NULL) {
   756             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
   757             lrg._defs->append(lrg._def);
   758           }
   759           lrg._defs->append(n);
   760         }
   761 #endif
   763         // Check for a single def LRG; these can spill nicely
   764         // via rematerialization.  Flag as NULL for no def found
   765         // yet, or 'n' for single def or -1 for many defs.
   766         lrg._def = lrg._def ? NodeSentinel : n;
   768         // Limit result register mask to acceptable registers
   769         const RegMask &rm = n->out_RegMask();
   770         lrg.AND( rm );
   772         int ireg = n->ideal_reg();
   773         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
   774                 "oops must be in Op_RegP's" );
   776         // Check for vector live range (only if vector register is used).
   777         // On SPARC vector uses RegD which could be misaligned so it is not
   778         // processes as vector in RA.
   779         if (RegMask::is_vector(ireg))
   780           lrg._is_vector = 1;
   781         assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD,
   782                "vector must be in vector registers");
   784         // Check for bound register masks
   785         const RegMask &lrgmask = lrg.mask();
   786         if (lrgmask.is_bound(ireg))
   787           lrg._is_bound = 1;
   789         // Check for maximum frequency value
   790         if (lrg._maxfreq < b->_freq)
   791           lrg._maxfreq = b->_freq;
   793         // Check for oop-iness, or long/double
   794         // Check for multi-kill projection
   795         switch( ireg ) {
   796         case MachProjNode::fat_proj:
   797           // Fat projections have size equal to number of registers killed
   798           lrg.set_num_regs(rm.Size());
   799           lrg.set_reg_pressure(lrg.num_regs());
   800           lrg._fat_proj = 1;
   801           lrg._is_bound = 1;
   802           break;
   803         case Op_RegP:
   804 #ifdef _LP64
   805           lrg.set_num_regs(2);  // Size is 2 stack words
   806 #else
   807           lrg.set_num_regs(1);  // Size is 1 stack word
   808 #endif
   809           // Register pressure is tracked relative to the maximum values
   810           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
   811           // and relative to other types which compete for the same regs.
   812           //
   813           // The following table contains suggested values based on the
   814           // architectures as defined in each .ad file.
   815           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
   816           // compile-speed or performance.
   817           // Note1:
   818           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
   819           // since .ad registers are defined as high and low halves.
   820           // These reg_pressure values remain compatible with the code
   821           // in is_high_pressure() which relates get_invalid_mask_size(),
   822           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
   823           // Note2:
   824           // SPARC -d32 has 24 registers available for integral values,
   825           // but only 10 of these are safe for 64-bit longs.
   826           // Using set_reg_pressure(2) for both int and long means
   827           // the allocator will believe it can fit 26 longs into
   828           // registers.  Using 2 for longs and 1 for ints means the
   829           // allocator will attempt to put 52 integers into registers.
   830           // The settings below limit this problem to methods with
   831           // many long values which are being run on 32-bit SPARC.
   832           //
   833           // ------------------- reg_pressure --------------------
   834           // Each entry is reg_pressure_per_value,number_of_regs
   835           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
   836           // IA32     2     1     1          1    1          6           6
   837           // IA64     1     1     1          1    1         50          41
   838           // SPARC    2     2     2          2    2         48 (24)     52 (26)
   839           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
   840           // AMD64    1     1     1          1    1         14          15
   841           // -----------------------------------------------------
   842 #if defined(SPARC)
   843           lrg.set_reg_pressure(2);  // use for v9 as well
   844 #else
   845           lrg.set_reg_pressure(1);  // normally one value per register
   846 #endif
   847           if( n_type->isa_oop_ptr() ) {
   848             lrg._is_oop = 1;
   849           }
   850           break;
   851         case Op_RegL:           // Check for long or double
   852         case Op_RegD:
   853           lrg.set_num_regs(2);
   854           // Define platform specific register pressure
   855 #if defined(SPARC) || defined(ARM)
   856           lrg.set_reg_pressure(2);
   857 #elif defined(IA32)
   858           if( ireg == Op_RegL ) {
   859             lrg.set_reg_pressure(2);
   860           } else {
   861             lrg.set_reg_pressure(1);
   862           }
   863 #else
   864           lrg.set_reg_pressure(1);  // normally one value per register
   865 #endif
   866           // If this def of a double forces a mis-aligned double,
   867           // flag as '_fat_proj' - really flag as allowing misalignment
   868           // AND changes how we count interferences.  A mis-aligned
   869           // double can interfere with TWO aligned pairs, or effectively
   870           // FOUR registers!
   871           if (rm.is_misaligned_pair()) {
   872             lrg._fat_proj = 1;
   873             lrg._is_bound = 1;
   874           }
   875           break;
   876         case Op_RegF:
   877         case Op_RegI:
   878         case Op_RegN:
   879         case Op_RegFlags:
   880         case 0:                 // not an ideal register
   881           lrg.set_num_regs(1);
   882 #ifdef SPARC
   883           lrg.set_reg_pressure(2);
   884 #else
   885           lrg.set_reg_pressure(1);
   886 #endif
   887           break;
   888         case Op_VecS:
   889           assert(Matcher::vector_size_supported(T_BYTE,4), "sanity");
   890           assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity");
   891           lrg.set_num_regs(RegMask::SlotsPerVecS);
   892           lrg.set_reg_pressure(1);
   893           break;
   894         case Op_VecD:
   895           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity");
   896           assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity");
   897           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned");
   898           lrg.set_num_regs(RegMask::SlotsPerVecD);
   899           lrg.set_reg_pressure(1);
   900           break;
   901         case Op_VecX:
   902           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity");
   903           assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity");
   904           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned");
   905           lrg.set_num_regs(RegMask::SlotsPerVecX);
   906           lrg.set_reg_pressure(1);
   907           break;
   908         case Op_VecY:
   909           assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity");
   910           assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity");
   911           assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned");
   912           lrg.set_num_regs(RegMask::SlotsPerVecY);
   913           lrg.set_reg_pressure(1);
   914           break;
   915         default:
   916           ShouldNotReachHere();
   917         }
   918       }
   920       // Now do the same for inputs
   921       uint cnt = n->req();
   922       // Setup for CISC SPILLING
   923       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
   924       if( UseCISCSpill && after_aggressive ) {
   925         inp = n->cisc_operand();
   926         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
   927           // Convert operand number to edge index number
   928           inp = n->as_Mach()->operand_index(inp);
   929       }
   930       // Prepare register mask for each input
   931       for( uint k = input_edge_start; k < cnt; k++ ) {
   932         uint vreg = _lrg_map.live_range_id(n->in(k));
   933         if (!vreg) {
   934           continue;
   935         }
   937         // If this instruction is CISC Spillable, add the flags
   938         // bit to its appropriate input
   939         if( UseCISCSpill && after_aggressive && inp == k ) {
   940 #ifndef PRODUCT
   941           if( TraceCISCSpill ) {
   942             tty->print("  use_cisc_RegMask: ");
   943             n->dump();
   944           }
   945 #endif
   946           n->as_Mach()->use_cisc_RegMask();
   947         }
   949         LRG &lrg = lrgs(vreg);
   950         // // Testing for floating point code shape
   951         // Node *test = n->in(k);
   952         // if( test->is_Mach() ) {
   953         //   MachNode *m = test->as_Mach();
   954         //   int  op = m->ideal_Opcode();
   955         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
   956         //     int zzz = 1;
   957         //   }
   958         // }
   960         // Limit result register mask to acceptable registers.
   961         // Do not limit registers from uncommon uses before
   962         // AggressiveCoalesce.  This effectively pre-virtual-splits
   963         // around uncommon uses of common defs.
   964         const RegMask &rm = n->in_RegMask(k);
   965         if( !after_aggressive &&
   966           _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
   967           // Since we are BEFORE aggressive coalesce, leave the register
   968           // mask untrimmed by the call.  This encourages more coalescing.
   969           // Later, AFTER aggressive, this live range will have to spill
   970           // but the spiller handles slow-path calls very nicely.
   971         } else {
   972           lrg.AND( rm );
   973         }
   975         // Check for bound register masks
   976         const RegMask &lrgmask = lrg.mask();
   977         int kreg = n->in(k)->ideal_reg();
   978         bool is_vect = RegMask::is_vector(kreg);
   979         assert(n->in(k)->bottom_type()->isa_vect() == NULL ||
   980                is_vect || kreg == Op_RegD,
   981                "vector must be in vector registers");
   982         if (lrgmask.is_bound(kreg))
   983           lrg._is_bound = 1;
   985         // If this use of a double forces a mis-aligned double,
   986         // flag as '_fat_proj' - really flag as allowing misalignment
   987         // AND changes how we count interferences.  A mis-aligned
   988         // double can interfere with TWO aligned pairs, or effectively
   989         // FOUR registers!
   990 #ifdef ASSERT
   991         if (is_vect) {
   992           assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned");
   993           assert(!lrg._fat_proj, "sanity");
   994           assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity");
   995         }
   996 #endif
   997         if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) {
   998           lrg._fat_proj = 1;
   999           lrg._is_bound = 1;
  1001         // if the LRG is an unaligned pair, we will have to spill
  1002         // so clear the LRG's register mask if it is not already spilled
  1003         if (!is_vect && !n->is_SpillCopy() &&
  1004             (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
  1005             lrgmask.is_misaligned_pair()) {
  1006           lrg.Clear();
  1009         // Check for maximum frequency value
  1010         if( lrg._maxfreq < b->_freq )
  1011           lrg._maxfreq = b->_freq;
  1013       } // End for all allocated inputs
  1014     } // end for all instructions
  1015   } // end for all blocks
  1017   // Final per-liverange setup
  1018   for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) {
  1019     LRG &lrg = lrgs(i2);
  1020     assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
  1021     if (lrg.num_regs() > 1 && !lrg._fat_proj) {
  1022       lrg.clear_to_sets();
  1024     lrg.compute_set_mask_size();
  1025     if (lrg.not_free()) {      // Handle case where we lose from the start
  1026       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
  1027       lrg._direct_conflict = 1;
  1029     lrg.set_degree(0);          // no neighbors in IFG yet
  1033 //------------------------------set_was_low------------------------------------
  1034 // Set the was-lo-degree bit.  Conservative coalescing should not change the
  1035 // colorability of the graph.  If any live range was of low-degree before
  1036 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
  1037 // The bit is checked in Simplify.
  1038 void PhaseChaitin::set_was_low() {
  1039 #ifdef ASSERT
  1040   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1041     int size = lrgs(i).num_regs();
  1042     uint old_was_lo = lrgs(i)._was_lo;
  1043     lrgs(i)._was_lo = 0;
  1044     if( lrgs(i).lo_degree() ) {
  1045       lrgs(i)._was_lo = 1;      // Trivially of low degree
  1046     } else {                    // Else check the Brigg's assertion
  1047       // Brigg's observation is that the lo-degree neighbors of a
  1048       // hi-degree live range will not interfere with the color choices
  1049       // of said hi-degree live range.  The Simplify reverse-stack-coloring
  1050       // order takes care of the details.  Hence you do not have to count
  1051       // low-degree neighbors when determining if this guy colors.
  1052       int briggs_degree = 0;
  1053       IndexSet *s = _ifg->neighbors(i);
  1054       IndexSetIterator elements(s);
  1055       uint lidx;
  1056       while((lidx = elements.next()) != 0) {
  1057         if( !lrgs(lidx).lo_degree() )
  1058           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
  1060       if( briggs_degree < lrgs(i).degrees_of_freedom() )
  1061         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
  1063     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
  1065 #endif
  1068 #define REGISTER_CONSTRAINED 16
  1070 //------------------------------cache_lrg_info---------------------------------
  1071 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
  1072 void PhaseChaitin::cache_lrg_info( ) {
  1074   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1075     LRG &lrg = lrgs(i);
  1077     // Check for being of low degree: means we can be trivially colored.
  1078     // Low degree, dead or must-spill guys just get to simplify right away
  1079     if( lrg.lo_degree() ||
  1080        !lrg.alive() ||
  1081         lrg._must_spill ) {
  1082       // Split low degree list into those guys that must get a
  1083       // register and those that can go to register or stack.
  1084       // The idea is LRGs that can go register or stack color first when
  1085       // they have a good chance of getting a register.  The register-only
  1086       // lo-degree live ranges always get a register.
  1087       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
  1088       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
  1089         lrg._next = _lo_stk_degree;
  1090         _lo_stk_degree = i;
  1091       } else {
  1092         lrg._next = _lo_degree;
  1093         _lo_degree = i;
  1095     } else {                    // Else high degree
  1096       lrgs(_hi_degree)._prev = i;
  1097       lrg._next = _hi_degree;
  1098       lrg._prev = 0;
  1099       _hi_degree = i;
  1104 //------------------------------Pre-Simplify-----------------------------------
  1105 // Simplify the IFG by removing LRGs of low degree that have NO copies
  1106 void PhaseChaitin::Pre_Simplify( ) {
  1108   // Warm up the lo-degree no-copy list
  1109   int lo_no_copy = 0;
  1110   for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) {
  1111     if ((lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
  1112         !lrgs(i).alive() ||
  1113         lrgs(i)._must_spill) {
  1114       lrgs(i)._next = lo_no_copy;
  1115       lo_no_copy = i;
  1119   while( lo_no_copy ) {
  1120     uint lo = lo_no_copy;
  1121     lo_no_copy = lrgs(lo)._next;
  1122     int size = lrgs(lo).num_regs();
  1124     // Put the simplified guy on the simplified list.
  1125     lrgs(lo)._next = _simplified;
  1126     _simplified = lo;
  1128     // Yank this guy from the IFG.
  1129     IndexSet *adj = _ifg->remove_node( lo );
  1131     // If any neighbors' degrees fall below their number of
  1132     // allowed registers, then put that neighbor on the low degree
  1133     // list.  Note that 'degree' can only fall and 'numregs' is
  1134     // unchanged by this action.  Thus the two are equal at most once,
  1135     // so LRGs hit the lo-degree worklists at most once.
  1136     IndexSetIterator elements(adj);
  1137     uint neighbor;
  1138     while ((neighbor = elements.next()) != 0) {
  1139       LRG *n = &lrgs(neighbor);
  1140       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
  1142       // Check for just becoming of-low-degree
  1143       if( n->just_lo_degree() && !n->_has_copy ) {
  1144         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
  1145         // Put on lo-degree list
  1146         n->_next = lo_no_copy;
  1147         lo_no_copy = neighbor;
  1150   } // End of while lo-degree no_copy worklist not empty
  1152   // No more lo-degree no-copy live ranges to simplify
  1155 //------------------------------Simplify---------------------------------------
  1156 // Simplify the IFG by removing LRGs of low degree.
  1157 void PhaseChaitin::Simplify( ) {
  1159   while( 1 ) {                  // Repeat till simplified it all
  1160     // May want to explore simplifying lo_degree before _lo_stk_degree.
  1161     // This might result in more spills coloring into registers during
  1162     // Select().
  1163     while( _lo_degree || _lo_stk_degree ) {
  1164       // If possible, pull from lo_stk first
  1165       uint lo;
  1166       if( _lo_degree ) {
  1167         lo = _lo_degree;
  1168         _lo_degree = lrgs(lo)._next;
  1169       } else {
  1170         lo = _lo_stk_degree;
  1171         _lo_stk_degree = lrgs(lo)._next;
  1174       // Put the simplified guy on the simplified list.
  1175       lrgs(lo)._next = _simplified;
  1176       _simplified = lo;
  1177       // If this guy is "at risk" then mark his current neighbors
  1178       if( lrgs(lo)._at_risk ) {
  1179         IndexSetIterator elements(_ifg->neighbors(lo));
  1180         uint datum;
  1181         while ((datum = elements.next()) != 0) {
  1182           lrgs(datum)._risk_bias = lo;
  1186       // Yank this guy from the IFG.
  1187       IndexSet *adj = _ifg->remove_node( lo );
  1189       // If any neighbors' degrees fall below their number of
  1190       // allowed registers, then put that neighbor on the low degree
  1191       // list.  Note that 'degree' can only fall and 'numregs' is
  1192       // unchanged by this action.  Thus the two are equal at most once,
  1193       // so LRGs hit the lo-degree worklist at most once.
  1194       IndexSetIterator elements(adj);
  1195       uint neighbor;
  1196       while ((neighbor = elements.next()) != 0) {
  1197         LRG *n = &lrgs(neighbor);
  1198 #ifdef ASSERT
  1199         if( VerifyOpto || VerifyRegisterAllocator ) {
  1200           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
  1202 #endif
  1204         // Check for just becoming of-low-degree just counting registers.
  1205         // _must_spill live ranges are already on the low degree list.
  1206         if( n->just_lo_degree() && !n->_must_spill ) {
  1207           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
  1208           // Pull from hi-degree list
  1209           uint prev = n->_prev;
  1210           uint next = n->_next;
  1211           if( prev ) lrgs(prev)._next = next;
  1212           else _hi_degree = next;
  1213           lrgs(next)._prev = prev;
  1214           n->_next = _lo_degree;
  1215           _lo_degree = neighbor;
  1218     } // End of while lo-degree/lo_stk_degree worklist not empty
  1220     // Check for got everything: is hi-degree list empty?
  1221     if( !_hi_degree ) break;
  1223     // Time to pick a potential spill guy
  1224     uint lo_score = _hi_degree;
  1225     double score = lrgs(lo_score).score();
  1226     double area = lrgs(lo_score)._area;
  1227     double cost = lrgs(lo_score)._cost;
  1228     bool bound = lrgs(lo_score)._is_bound;
  1230     // Find cheapest guy
  1231     debug_only( int lo_no_simplify=0; );
  1232     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
  1233       assert( !(*_ifg->_yanked)[i], "" );
  1234       // It's just vaguely possible to move hi-degree to lo-degree without
  1235       // going through a just-lo-degree stage: If you remove a double from
  1236       // a float live range it's degree will drop by 2 and you can skip the
  1237       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
  1238       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
  1239       if( lrgs(i).lo_degree() ) {
  1240         lo_score = i;
  1241         break;
  1243       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
  1244       double iscore = lrgs(i).score();
  1245       double iarea = lrgs(i)._area;
  1246       double icost = lrgs(i)._cost;
  1247       bool ibound = lrgs(i)._is_bound;
  1249       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
  1250       // wins.  Ties happen because all live ranges in question have spilled
  1251       // a few times before and the spill-score adds a huge number which
  1252       // washes out the low order bits.  We are choosing the lesser of 2
  1253       // evils; in this case pick largest area to spill.
  1254       // Ties also happen when live ranges are defined and used only inside
  1255       // one block. In which case their area is 0 and score set to max.
  1256       // In such case choose bound live range over unbound to free registers
  1257       // or with smaller cost to spill.
  1258       if( iscore < score ||
  1259           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
  1260           (iscore == score && iarea == area &&
  1261            ( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
  1262         lo_score = i;
  1263         score = iscore;
  1264         area = iarea;
  1265         cost = icost;
  1266         bound = ibound;
  1269     LRG *lo_lrg = &lrgs(lo_score);
  1270     // The live range we choose for spilling is either hi-degree, or very
  1271     // rarely it can be low-degree.  If we choose a hi-degree live range
  1272     // there better not be any lo-degree choices.
  1273     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
  1275     // Pull from hi-degree list
  1276     uint prev = lo_lrg->_prev;
  1277     uint next = lo_lrg->_next;
  1278     if( prev ) lrgs(prev)._next = next;
  1279     else _hi_degree = next;
  1280     lrgs(next)._prev = prev;
  1281     // Jam him on the lo-degree list, despite his high degree.
  1282     // Maybe he'll get a color, and maybe he'll spill.
  1283     // Only Select() will know.
  1284     lrgs(lo_score)._at_risk = true;
  1285     _lo_degree = lo_score;
  1286     lo_lrg->_next = 0;
  1288   } // End of while not simplified everything
  1292 //------------------------------is_legal_reg-----------------------------------
  1293 // Is 'reg' register legal for 'lrg'?
  1294 static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
  1295   if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
  1296       lrg.mask().Member(OptoReg::add(reg,-chunk))) {
  1297     // RA uses OptoReg which represent the highest element of a registers set.
  1298     // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set
  1299     // in which XMMd is used by RA to represent such vectors. A double value
  1300     // uses [XMM,XMMb] pairs and XMMb is used by RA for it.
  1301     // The register mask uses largest bits set of overlapping register sets.
  1302     // On x86 with AVX it uses 8 bits for each XMM registers set.
  1303     //
  1304     // The 'lrg' already has cleared-to-set register mask (done in Select()
  1305     // before calling choose_color()). Passing mask.Member(reg) check above
  1306     // indicates that the size (num_regs) of 'reg' set is less or equal to
  1307     // 'lrg' set size.
  1308     // For set size 1 any register which is member of 'lrg' mask is legal.
  1309     if (lrg.num_regs()==1)
  1310       return true;
  1311     // For larger sets only an aligned register with the same set size is legal.
  1312     int mask = lrg.num_regs()-1;
  1313     if ((reg&mask) == mask)
  1314       return true;
  1316   return false;
  1319 //------------------------------bias_color-------------------------------------
  1320 // Choose a color using the biasing heuristic
  1321 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
  1323   // Check for "at_risk" LRG's
  1324   uint risk_lrg = _lrg_map.find(lrg._risk_bias);
  1325   if( risk_lrg != 0 ) {
  1326     // Walk the colored neighbors of the "at_risk" candidate
  1327     // Choose a color which is both legal and already taken by a neighbor
  1328     // of the "at_risk" candidate in order to improve the chances of the
  1329     // "at_risk" candidate of coloring
  1330     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
  1331     uint datum;
  1332     while ((datum = elements.next()) != 0) {
  1333       OptoReg::Name reg = lrgs(datum).reg();
  1334       // If this LRG's register is legal for us, choose it
  1335       if (is_legal_reg(lrg, reg, chunk))
  1336         return reg;
  1340   uint copy_lrg = _lrg_map.find(lrg._copy_bias);
  1341   if( copy_lrg != 0 ) {
  1342     // If he has a color,
  1343     if( !(*(_ifg->_yanked))[copy_lrg] ) {
  1344       OptoReg::Name reg = lrgs(copy_lrg).reg();
  1345       //  And it is legal for you,
  1346       if (is_legal_reg(lrg, reg, chunk))
  1347         return reg;
  1348     } else if( chunk == 0 ) {
  1349       // Choose a color which is legal for him
  1350       RegMask tempmask = lrg.mask();
  1351       tempmask.AND(lrgs(copy_lrg).mask());
  1352       tempmask.clear_to_sets(lrg.num_regs());
  1353       OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs());
  1354       if (OptoReg::is_valid(reg))
  1355         return reg;
  1359   // If no bias info exists, just go with the register selection ordering
  1360   if (lrg._is_vector || lrg.num_regs() == 2) {
  1361     // Find an aligned set
  1362     return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk);
  1365   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
  1366   // copy removal to remove many more copies, by preventing a just-assigned
  1367   // register from being repeatedly assigned.
  1368   OptoReg::Name reg = lrg.mask().find_first_elem();
  1369   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
  1370     // This 'Remove; find; Insert' idiom is an expensive way to find the
  1371     // SECOND element in the mask.
  1372     lrg.Remove(reg);
  1373     OptoReg::Name reg2 = lrg.mask().find_first_elem();
  1374     lrg.Insert(reg);
  1375     if( OptoReg::is_reg(reg2))
  1376       reg = reg2;
  1378   return OptoReg::add( reg, chunk );
  1381 //------------------------------choose_color-----------------------------------
  1382 // Choose a color in the current chunk
  1383 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
  1384   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
  1385   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
  1387   if( lrg.num_regs() == 1 ||    // Common Case
  1388       !lrg._fat_proj )          // Aligned+adjacent pairs ok
  1389     // Use a heuristic to "bias" the color choice
  1390     return bias_color(lrg, chunk);
  1392   assert(!lrg._is_vector, "should be not vector here" );
  1393   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
  1395   // Fat-proj case or misaligned double argument.
  1396   assert(lrg.compute_mask_size() == lrg.num_regs() ||
  1397          lrg.num_regs() == 2,"fat projs exactly color" );
  1398   assert( !chunk, "always color in 1st chunk" );
  1399   // Return the highest element in the set.
  1400   return lrg.mask().find_last_elem();
  1403 //------------------------------Select-----------------------------------------
  1404 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
  1405 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
  1406 // everything going back is guaranteed a color.  Select that color.  If some
  1407 // hi-degree LRG cannot get a color then we record that we must spill.
  1408 uint PhaseChaitin::Select( ) {
  1409   uint spill_reg = LRG::SPILL_REG;
  1410   _max_reg = OptoReg::Name(0);  // Past max register used
  1411   while( _simplified ) {
  1412     // Pull next LRG from the simplified list - in reverse order of removal
  1413     uint lidx = _simplified;
  1414     LRG *lrg = &lrgs(lidx);
  1415     _simplified = lrg->_next;
  1418 #ifndef PRODUCT
  1419     if (trace_spilling()) {
  1420       ttyLocker ttyl;
  1421       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
  1422                     lrg->degrees_of_freedom());
  1423       lrg->dump();
  1425 #endif
  1427     // Re-insert into the IFG
  1428     _ifg->re_insert(lidx);
  1429     if( !lrg->alive() ) continue;
  1430     // capture allstackedness flag before mask is hacked
  1431     const int is_allstack = lrg->mask().is_AllStack();
  1433     // Yeah, yeah, yeah, I know, I know.  I can refactor this
  1434     // to avoid the GOTO, although the refactored code will not
  1435     // be much clearer.  We arrive here IFF we have a stack-based
  1436     // live range that cannot color in the current chunk, and it
  1437     // has to move into the next free stack chunk.
  1438     int chunk = 0;              // Current chunk is first chunk
  1439     retry_next_chunk:
  1441     // Remove neighbor colors
  1442     IndexSet *s = _ifg->neighbors(lidx);
  1444     debug_only(RegMask orig_mask = lrg->mask();)
  1445     IndexSetIterator elements(s);
  1446     uint neighbor;
  1447     while ((neighbor = elements.next()) != 0) {
  1448       // Note that neighbor might be a spill_reg.  In this case, exclusion
  1449       // of its color will be a no-op, since the spill_reg chunk is in outer
  1450       // space.  Also, if neighbor is in a different chunk, this exclusion
  1451       // will be a no-op.  (Later on, if lrg runs out of possible colors in
  1452       // its chunk, a new chunk of color may be tried, in which case
  1453       // examination of neighbors is started again, at retry_next_chunk.)
  1454       LRG &nlrg = lrgs(neighbor);
  1455       OptoReg::Name nreg = nlrg.reg();
  1456       // Only subtract masks in the same chunk
  1457       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
  1458 #ifndef PRODUCT
  1459         uint size = lrg->mask().Size();
  1460         RegMask rm = lrg->mask();
  1461 #endif
  1462         lrg->SUBTRACT(nlrg.mask());
  1463 #ifndef PRODUCT
  1464         if (trace_spilling() && lrg->mask().Size() != size) {
  1465           ttyLocker ttyl;
  1466           tty->print("L%d ", lidx);
  1467           rm.dump();
  1468           tty->print(" intersected L%d ", neighbor);
  1469           nlrg.mask().dump();
  1470           tty->print(" removed ");
  1471           rm.SUBTRACT(lrg->mask());
  1472           rm.dump();
  1473           tty->print(" leaving ");
  1474           lrg->mask().dump();
  1475           tty->cr();
  1477 #endif
  1480     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
  1481     // Aligned pairs need aligned masks
  1482     assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1483     if (lrg->num_regs() > 1 && !lrg->_fat_proj) {
  1484       lrg->clear_to_sets();
  1487     // Check if a color is available and if so pick the color
  1488     OptoReg::Name reg = choose_color( *lrg, chunk );
  1489 #ifdef SPARC
  1490     debug_only(lrg->compute_set_mask_size());
  1491     assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
  1492 #endif
  1494     //---------------
  1495     // If we fail to color and the AllStack flag is set, trigger
  1496     // a chunk-rollover event
  1497     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
  1498       // Bump register mask up to next stack chunk
  1499       chunk += RegMask::CHUNK_SIZE;
  1500       lrg->Set_All();
  1502       goto retry_next_chunk;
  1505     //---------------
  1506     // Did we get a color?
  1507     else if( OptoReg::is_valid(reg)) {
  1508 #ifndef PRODUCT
  1509       RegMask avail_rm = lrg->mask();
  1510 #endif
  1512       // Record selected register
  1513       lrg->set_reg(reg);
  1515       if( reg >= _max_reg )     // Compute max register limit
  1516         _max_reg = OptoReg::add(reg,1);
  1517       // Fold reg back into normal space
  1518       reg = OptoReg::add(reg,-chunk);
  1520       // If the live range is not bound, then we actually had some choices
  1521       // to make.  In this case, the mask has more bits in it than the colors
  1522       // chosen.  Restrict the mask to just what was picked.
  1523       int n_regs = lrg->num_regs();
  1524       assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity");
  1525       if (n_regs == 1 || !lrg->_fat_proj) {
  1526         assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecY, "sanity");
  1527         lrg->Clear();           // Clear the mask
  1528         lrg->Insert(reg);       // Set regmask to match selected reg
  1529         // For vectors and pairs, also insert the low bit of the pair
  1530         for (int i = 1; i < n_regs; i++)
  1531           lrg->Insert(OptoReg::add(reg,-i));
  1532         lrg->set_mask_size(n_regs);
  1533       } else {                  // Else fatproj
  1534         // mask must be equal to fatproj bits, by definition
  1536 #ifndef PRODUCT
  1537       if (trace_spilling()) {
  1538         ttyLocker ttyl;
  1539         tty->print("L%d selected ", lidx);
  1540         lrg->mask().dump();
  1541         tty->print(" from ");
  1542         avail_rm.dump();
  1543         tty->cr();
  1545 #endif
  1546       // Note that reg is the highest-numbered register in the newly-bound mask.
  1547     } // end color available case
  1549     //---------------
  1550     // Live range is live and no colors available
  1551     else {
  1552       assert( lrg->alive(), "" );
  1553       assert( !lrg->_fat_proj || lrg->is_multidef() ||
  1554               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
  1555       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
  1557       // Assign the special spillreg register
  1558       lrg->set_reg(OptoReg::Name(spill_reg++));
  1559       // Do not empty the regmask; leave mask_size lying around
  1560       // for use during Spilling
  1561 #ifndef PRODUCT
  1562       if( trace_spilling() ) {
  1563         ttyLocker ttyl;
  1564         tty->print("L%d spilling with neighbors: ", lidx);
  1565         s->dump();
  1566         debug_only(tty->print(" original mask: "));
  1567         debug_only(orig_mask.dump());
  1568         dump_lrg(lidx);
  1570 #endif
  1571     } // end spill case
  1575   return spill_reg-LRG::SPILL_REG;      // Return number of spills
  1579 //------------------------------copy_was_spilled-------------------------------
  1580 // Copy 'was_spilled'-edness from the source Node to the dst Node.
  1581 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
  1582   if( _spilled_once.test(src->_idx) ) {
  1583     _spilled_once.set(dst->_idx);
  1584     lrgs(_lrg_map.find(dst))._was_spilled1 = 1;
  1585     if( _spilled_twice.test(src->_idx) ) {
  1586       _spilled_twice.set(dst->_idx);
  1587       lrgs(_lrg_map.find(dst))._was_spilled2 = 1;
  1592 //------------------------------set_was_spilled--------------------------------
  1593 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
  1594 void PhaseChaitin::set_was_spilled( Node *n ) {
  1595   if( _spilled_once.test_set(n->_idx) )
  1596     _spilled_twice.set(n->_idx);
  1599 //------------------------------fixup_spills-----------------------------------
  1600 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
  1601 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
  1602 void PhaseChaitin::fixup_spills() {
  1603   // This function does only cisc spill work.
  1604   if( !UseCISCSpill ) return;
  1606   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
  1608   // Grab the Frame Pointer
  1609   Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
  1611   // For all blocks
  1612   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  1613     Block *b = _cfg._blocks[i];
  1615     // For all instructions in block
  1616     uint last_inst = b->end_idx();
  1617     for( uint j = 1; j <= last_inst; j++ ) {
  1618       Node *n = b->_nodes[j];
  1620       // Dead instruction???
  1621       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
  1622               C->top() == n ||  // Or the random TOP node
  1623               n->is_Proj(),     // Or a fat-proj kill node
  1624               "No dead instructions after post-alloc" );
  1626       int inp = n->cisc_operand();
  1627       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
  1628         // Convert operand number to edge index number
  1629         MachNode *mach = n->as_Mach();
  1630         inp = mach->operand_index(inp);
  1631         Node *src = n->in(inp);   // Value to load or store
  1632         LRG &lrg_cisc = lrgs(_lrg_map.find_const(src));
  1633         OptoReg::Name src_reg = lrg_cisc.reg();
  1634         // Doubles record the HIGH register of an adjacent pair.
  1635         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
  1636         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
  1637           // This is a CISC Spill, get stack offset and construct new node
  1638 #ifndef PRODUCT
  1639           if( TraceCISCSpill ) {
  1640             tty->print("    reg-instr:  ");
  1641             n->dump();
  1643 #endif
  1644           int stk_offset = reg2offset(src_reg);
  1645           // Bailout if we might exceed node limit when spilling this instruction
  1646           C->check_node_count(0, "out of nodes fixing spills");
  1647           if (C->failing())  return;
  1648           // Transform node
  1649           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
  1650           cisc->set_req(inp,fp);          // Base register is frame pointer
  1651           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
  1652             assert( cisc->oper_input_base() == 2, "Only adding one edge");
  1653             cisc->ins_req(1,src);         // Requires a memory edge
  1655           b->_nodes.map(j,cisc);          // Insert into basic block
  1656           n->subsume_by(cisc, C); // Correct graph
  1657           //
  1658           ++_used_cisc_instructions;
  1659 #ifndef PRODUCT
  1660           if( TraceCISCSpill ) {
  1661             tty->print("    cisc-instr: ");
  1662             cisc->dump();
  1664 #endif
  1665         } else {
  1666 #ifndef PRODUCT
  1667           if( TraceCISCSpill ) {
  1668             tty->print("    using reg-instr: ");
  1669             n->dump();
  1671 #endif
  1672           ++_unused_cisc_instructions;    // input can be on stack
  1676     } // End of for all instructions
  1678   } // End of for all blocks
  1681 //------------------------------find_base_for_derived--------------------------
  1682 // Helper to stretch above; recursively discover the base Node for a
  1683 // given derived Node.  Easy for AddP-related machine nodes, but needs
  1684 // to be recursive for derived Phis.
  1685 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
  1686   // See if already computed; if so return it
  1687   if( derived_base_map[derived->_idx] )
  1688     return derived_base_map[derived->_idx];
  1690   // See if this happens to be a base.
  1691   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
  1692   // pointers derived from NULL!  These are always along paths that
  1693   // can't happen at run-time but the optimizer cannot deduce it so
  1694   // we have to handle it gracefully.
  1695   assert(!derived->bottom_type()->isa_narrowoop() ||
  1696           derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1697   const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1698   // If its an OOP with a non-zero offset, then it is derived.
  1699   if( tj == NULL || tj->_offset == 0 ) {
  1700     derived_base_map[derived->_idx] = derived;
  1701     return derived;
  1703   // Derived is NULL+offset?  Base is NULL!
  1704   if( derived->is_Con() ) {
  1705     Node *base = _matcher.mach_null();
  1706     assert(base != NULL, "sanity");
  1707     if (base->in(0) == NULL) {
  1708       // Initialize it once and make it shared:
  1709       // set control to _root and place it into Start block
  1710       // (where top() node is placed).
  1711       base->init_req(0, _cfg._root);
  1712       Block *startb = _cfg._bbs[C->top()->_idx];
  1713       startb->_nodes.insert(startb->find_node(C->top()), base );
  1714       _cfg._bbs.map( base->_idx, startb );
  1715       assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
  1717     if (_lrg_map.live_range_id(base) == 0) {
  1718       new_lrg(base, maxlrg++);
  1720     assert(base->in(0) == _cfg._root &&
  1721            _cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
  1722     derived_base_map[derived->_idx] = base;
  1723     return base;
  1726   // Check for AddP-related opcodes
  1727   if (!derived->is_Phi()) {
  1728     assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, err_msg_res("but is: %s", derived->Name()));
  1729     Node *base = derived->in(AddPNode::Base);
  1730     derived_base_map[derived->_idx] = base;
  1731     return base;
  1734   // Recursively find bases for Phis.
  1735   // First check to see if we can avoid a base Phi here.
  1736   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
  1737   uint i;
  1738   for( i = 2; i < derived->req(); i++ )
  1739     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
  1740       break;
  1741   // Went to the end without finding any different bases?
  1742   if( i == derived->req() ) {   // No need for a base Phi here
  1743     derived_base_map[derived->_idx] = base;
  1744     return base;
  1747   // Now we see we need a base-Phi here to merge the bases
  1748   const Type *t = base->bottom_type();
  1749   base = new (C) PhiNode( derived->in(0), t );
  1750   for( i = 1; i < derived->req(); i++ ) {
  1751     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
  1752     t = t->meet(base->in(i)->bottom_type());
  1754   base->as_Phi()->set_type(t);
  1756   // Search the current block for an existing base-Phi
  1757   Block *b = _cfg._bbs[derived->_idx];
  1758   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
  1759     Node *phi = b->_nodes[i];
  1760     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
  1761       b->_nodes.insert( i, base ); // Must insert created Phi here as base
  1762       _cfg._bbs.map( base->_idx, b );
  1763       new_lrg(base,maxlrg++);
  1764       break;
  1766     // See if Phi matches.
  1767     uint j;
  1768     for( j = 1; j < base->req(); j++ )
  1769       if( phi->in(j) != base->in(j) &&
  1770           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
  1771         break;
  1772     if( j == base->req() ) {    // All inputs match?
  1773       base = phi;               // Then use existing 'phi' and drop 'base'
  1774       break;
  1779   // Cache info for later passes
  1780   derived_base_map[derived->_idx] = base;
  1781   return base;
  1785 //------------------------------stretch_base_pointer_live_ranges---------------
  1786 // At each Safepoint, insert extra debug edges for each pair of derived value/
  1787 // base pointer that is live across the Safepoint for oopmap building.  The
  1788 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
  1789 // required edge set.
  1790 bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
  1791   int must_recompute_live = false;
  1792   uint maxlrg = _lrg_map.max_lrg_id();
  1793   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
  1794   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
  1796   // For all blocks in RPO do...
  1797   for( uint i=0; i<_cfg._num_blocks; i++ ) {
  1798     Block *b = _cfg._blocks[i];
  1799     // Note use of deep-copy constructor.  I cannot hammer the original
  1800     // liveout bits, because they are needed by the following coalesce pass.
  1801     IndexSet liveout(_live->live(b));
  1803     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
  1804       Node *n = b->_nodes[j-1];
  1806       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
  1807       // like to see in the same register.  Compare uses the loop-phi and so
  1808       // extends its live range BUT cannot be part of the cycle.  If this
  1809       // extended live range overlaps with the update of the loop-phi value
  1810       // we need both alive at the same time -- which requires at least 1
  1811       // copy.  But because Intel has only 2-address registers we end up with
  1812       // at least 2 copies, one before the loop-phi update instruction and
  1813       // one after.  Instead we split the input to the compare just after the
  1814       // phi.
  1815       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
  1816         Node *phi = n->in(1);
  1817         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
  1818           Block *phi_block = _cfg._bbs[phi->_idx];
  1819           if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
  1820             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
  1821             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
  1822             insert_proj( phi_block, 1, spill, maxlrg++ );
  1823             n->set_req(1,spill);
  1824             must_recompute_live = true;
  1829       // Get value being defined
  1830       uint lidx = _lrg_map.live_range_id(n);
  1831       // Ignore the occasional brand-new live range
  1832       if (lidx && lidx < _lrg_map.max_lrg_id()) {
  1833         // Remove from live-out set
  1834         liveout.remove(lidx);
  1836         // Copies do not define a new value and so do not interfere.
  1837         // Remove the copies source from the liveout set before interfering.
  1838         uint idx = n->is_Copy();
  1839         if (idx) {
  1840           liveout.remove(_lrg_map.live_range_id(n->in(idx)));
  1844       // Found a safepoint?
  1845       JVMState *jvms = n->jvms();
  1846       if( jvms ) {
  1847         // Now scan for a live derived pointer
  1848         IndexSetIterator elements(&liveout);
  1849         uint neighbor;
  1850         while ((neighbor = elements.next()) != 0) {
  1851           // Find reaching DEF for base and derived values
  1852           // This works because we are still in SSA during this call.
  1853           Node *derived = lrgs(neighbor)._def;
  1854           const TypePtr *tj = derived->bottom_type()->isa_ptr();
  1855           assert(!derived->bottom_type()->isa_narrowoop() ||
  1856                   derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
  1857           // If its an OOP with a non-zero offset, then it is derived.
  1858           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
  1859             Node *base = find_base_for_derived(derived_base_map, derived, maxlrg);
  1860             assert(base->_idx < _lrg_map.size(), "");
  1861             // Add reaching DEFs of derived pointer and base pointer as a
  1862             // pair of inputs
  1863             n->add_req(derived);
  1864             n->add_req(base);
  1866             // See if the base pointer is already live to this point.
  1867             // Since I'm working on the SSA form, live-ness amounts to
  1868             // reaching def's.  So if I find the base's live range then
  1869             // I know the base's def reaches here.
  1870             if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
  1871                  !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
  1872                  (_lrg_map.live_range_id(base) > 0) && // not a constant
  1873                  _cfg._bbs[base->_idx] != b) { // base not def'd in blk)
  1874               // Base pointer is not currently live.  Since I stretched
  1875               // the base pointer to here and it crosses basic-block
  1876               // boundaries, the global live info is now incorrect.
  1877               // Recompute live.
  1878               must_recompute_live = true;
  1879             } // End of if base pointer is not live to debug info
  1881         } // End of scan all live data for derived ptrs crossing GC point
  1882       } // End of if found a GC point
  1884       // Make all inputs live
  1885       if (!n->is_Phi()) {      // Phi function uses come from prior block
  1886         for (uint k = 1; k < n->req(); k++) {
  1887           uint lidx = _lrg_map.live_range_id(n->in(k));
  1888           if (lidx < _lrg_map.max_lrg_id()) {
  1889             liveout.insert(lidx);
  1894     } // End of forall instructions in block
  1895     liveout.clear();  // Free the memory used by liveout.
  1897   } // End of forall blocks
  1898   _lrg_map.set_max_lrg_id(maxlrg);
  1900   // If I created a new live range I need to recompute live
  1901   if (maxlrg != _ifg->_maxlrg) {
  1902     must_recompute_live = true;
  1905   return must_recompute_live != 0;
  1909 //------------------------------add_reference----------------------------------
  1910 // Extend the node to LRG mapping
  1912 void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
  1913   _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
  1916 //------------------------------dump-------------------------------------------
  1917 #ifndef PRODUCT
  1918 void PhaseChaitin::dump(const Node *n) const {
  1919   uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
  1920   tty->print("L%d",r);
  1921   if (r && n->Opcode() != Op_Phi) {
  1922     if( _node_regs ) {          // Got a post-allocation copy of allocation?
  1923       tty->print("[");
  1924       OptoReg::Name second = get_reg_second(n);
  1925       if( OptoReg::is_valid(second) ) {
  1926         if( OptoReg::is_reg(second) )
  1927           tty->print("%s:",Matcher::regName[second]);
  1928         else
  1929           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
  1931       OptoReg::Name first = get_reg_first(n);
  1932       if( OptoReg::is_reg(first) )
  1933         tty->print("%s]",Matcher::regName[first]);
  1934       else
  1935          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
  1936     } else
  1937     n->out_RegMask().dump();
  1939   tty->print("/N%d\t",n->_idx);
  1940   tty->print("%s === ", n->Name());
  1941   uint k;
  1942   for (k = 0; k < n->req(); k++) {
  1943     Node *m = n->in(k);
  1944     if (!m) {
  1945       tty->print("_ ");
  1947     else {
  1948       uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
  1949       tty->print("L%d",r);
  1950       // Data MultiNode's can have projections with no real registers.
  1951       // Don't die while dumping them.
  1952       int op = n->Opcode();
  1953       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
  1954         if( _node_regs ) {
  1955           tty->print("[");
  1956           OptoReg::Name second = get_reg_second(n->in(k));
  1957           if( OptoReg::is_valid(second) ) {
  1958             if( OptoReg::is_reg(second) )
  1959               tty->print("%s:",Matcher::regName[second]);
  1960             else
  1961               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
  1962                          reg2offset_unchecked(second));
  1964           OptoReg::Name first = get_reg_first(n->in(k));
  1965           if( OptoReg::is_reg(first) )
  1966             tty->print("%s]",Matcher::regName[first]);
  1967           else
  1968             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
  1969                        reg2offset_unchecked(first));
  1970         } else
  1971           n->in_RegMask(k).dump();
  1973       tty->print("/N%d ",m->_idx);
  1976   if( k < n->len() && n->in(k) ) tty->print("| ");
  1977   for( ; k < n->len(); k++ ) {
  1978     Node *m = n->in(k);
  1979     if(!m) {
  1980       break;
  1982     uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0;
  1983     tty->print("L%d",r);
  1984     tty->print("/N%d ",m->_idx);
  1986   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
  1987   else n->dump_spec(tty);
  1988   if( _spilled_once.test(n->_idx ) ) {
  1989     tty->print(" Spill_1");
  1990     if( _spilled_twice.test(n->_idx ) )
  1991       tty->print(" Spill_2");
  1993   tty->print("\n");
  1996 void PhaseChaitin::dump( const Block * b ) const {
  1997   b->dump_head( &_cfg._bbs );
  1999   // For all instructions
  2000   for( uint j = 0; j < b->_nodes.size(); j++ )
  2001     dump(b->_nodes[j]);
  2002   // Print live-out info at end of block
  2003   if( _live ) {
  2004     tty->print("Liveout: ");
  2005     IndexSet *live = _live->live(b);
  2006     IndexSetIterator elements(live);
  2007     tty->print("{");
  2008     uint i;
  2009     while ((i = elements.next()) != 0) {
  2010       tty->print("L%d ", _lrg_map.find_const(i));
  2012     tty->print_cr("}");
  2014   tty->print("\n");
  2017 void PhaseChaitin::dump() const {
  2018   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
  2019               _matcher._new_SP, _framesize );
  2021   // For all blocks
  2022   for( uint i = 0; i < _cfg._num_blocks; i++ )
  2023     dump(_cfg._blocks[i]);
  2024   // End of per-block dump
  2025   tty->print("\n");
  2027   if (!_ifg) {
  2028     tty->print("(No IFG.)\n");
  2029     return;
  2032   // Dump LRG array
  2033   tty->print("--- Live RanGe Array ---\n");
  2034   for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) {
  2035     tty->print("L%d: ",i2);
  2036     if (i2 < _ifg->_maxlrg) {
  2037       lrgs(i2).dump();
  2039     else {
  2040       tty->print_cr("new LRG");
  2043   tty->print_cr("");
  2045   // Dump lo-degree list
  2046   tty->print("Lo degree: ");
  2047   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
  2048     tty->print("L%d ",i3);
  2049   tty->print_cr("");
  2051   // Dump lo-stk-degree list
  2052   tty->print("Lo stk degree: ");
  2053   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
  2054     tty->print("L%d ",i4);
  2055   tty->print_cr("");
  2057   // Dump lo-degree list
  2058   tty->print("Hi degree: ");
  2059   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
  2060     tty->print("L%d ",i5);
  2061   tty->print_cr("");
  2064 //------------------------------dump_degree_lists------------------------------
  2065 void PhaseChaitin::dump_degree_lists() const {
  2066   // Dump lo-degree list
  2067   tty->print("Lo degree: ");
  2068   for( uint i = _lo_degree; i; i = lrgs(i)._next )
  2069     tty->print("L%d ",i);
  2070   tty->print_cr("");
  2072   // Dump lo-stk-degree list
  2073   tty->print("Lo stk degree: ");
  2074   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
  2075     tty->print("L%d ",i2);
  2076   tty->print_cr("");
  2078   // Dump lo-degree list
  2079   tty->print("Hi degree: ");
  2080   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
  2081     tty->print("L%d ",i3);
  2082   tty->print_cr("");
  2085 //------------------------------dump_simplified--------------------------------
  2086 void PhaseChaitin::dump_simplified() const {
  2087   tty->print("Simplified: ");
  2088   for( uint i = _simplified; i; i = lrgs(i)._next )
  2089     tty->print("L%d ",i);
  2090   tty->print_cr("");
  2093 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
  2094   if ((int)reg < 0)
  2095     sprintf(buf, "<OptoReg::%d>", (int)reg);
  2096   else if (OptoReg::is_reg(reg))
  2097     strcpy(buf, Matcher::regName[reg]);
  2098   else
  2099     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
  2100             pc->reg2offset(reg));
  2101   return buf+strlen(buf);
  2104 //------------------------------dump_register----------------------------------
  2105 // Dump a register name into a buffer.  Be intelligent if we get called
  2106 // before allocation is complete.
  2107 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
  2108   if( !this ) {                 // Not got anything?
  2109     sprintf(buf,"N%d",n->_idx); // Then use Node index
  2110   } else if( _node_regs ) {
  2111     // Post allocation, use direct mappings, no LRG info available
  2112     print_reg( get_reg_first(n), this, buf );
  2113   } else {
  2114     uint lidx = _lrg_map.find_const(n); // Grab LRG number
  2115     if( !_ifg ) {
  2116       sprintf(buf,"L%d",lidx);  // No register binding yet
  2117     } else if( !lidx ) {        // Special, not allocated value
  2118       strcpy(buf,"Special");
  2119     } else {
  2120       if (lrgs(lidx)._is_vector) {
  2121         if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs()))
  2122           print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register
  2123         else
  2124           sprintf(buf,"L%d",lidx); // No register binding yet
  2125       } else if( (lrgs(lidx).num_regs() == 1)
  2126                  ? lrgs(lidx).mask().is_bound1()
  2127                  : lrgs(lidx).mask().is_bound_pair() ) {
  2128         // Hah!  We have a bound machine register
  2129         print_reg( lrgs(lidx).reg(), this, buf );
  2130       } else {
  2131         sprintf(buf,"L%d",lidx); // No register binding yet
  2135   return buf+strlen(buf);
  2138 //----------------------dump_for_spill_split_recycle--------------------------
  2139 void PhaseChaitin::dump_for_spill_split_recycle() const {
  2140   if( WizardMode && (PrintCompilation || PrintOpto) ) {
  2141     // Display which live ranges need to be split and the allocator's state
  2142     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
  2143     for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) {
  2144       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
  2145         tty->print("L%d: ", bidx);
  2146         lrgs(bidx).dump();
  2149     tty->cr();
  2150     dump();
  2154 //------------------------------dump_frame------------------------------------
  2155 void PhaseChaitin::dump_frame() const {
  2156   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
  2157   const TypeTuple *domain = C->tf()->domain();
  2158   const int        argcnt = domain->cnt() - TypeFunc::Parms;
  2160   // Incoming arguments in registers dump
  2161   for( int k = 0; k < argcnt; k++ ) {
  2162     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
  2163     if( OptoReg::is_reg(parmreg))  {
  2164       const char *reg_name = OptoReg::regname(parmreg);
  2165       tty->print("#r%3.3d %s", parmreg, reg_name);
  2166       parmreg = _matcher._parm_regs[k].second();
  2167       if( OptoReg::is_reg(parmreg))  {
  2168         tty->print(":%s", OptoReg::regname(parmreg));
  2170       tty->print("   : parm %d: ", k);
  2171       domain->field_at(k + TypeFunc::Parms)->dump();
  2172       tty->print_cr("");
  2176   // Check for un-owned padding above incoming args
  2177   OptoReg::Name reg = _matcher._new_SP;
  2178   if( reg > _matcher._in_arg_limit ) {
  2179     reg = OptoReg::add(reg, -1);
  2180     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
  2183   // Incoming argument area dump
  2184   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
  2185   while( reg > begin_in_arg ) {
  2186     reg = OptoReg::add(reg, -1);
  2187     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  2188     int j;
  2189     for( j = 0; j < argcnt; j++) {
  2190       if( _matcher._parm_regs[j].first() == reg ||
  2191           _matcher._parm_regs[j].second() == reg ) {
  2192         tty->print("parm %d: ",j);
  2193         domain->field_at(j + TypeFunc::Parms)->dump();
  2194         tty->print_cr("");
  2195         break;
  2198     if( j >= argcnt )
  2199       tty->print_cr("HOLE, owned by SELF");
  2202   // Old outgoing preserve area
  2203   while( reg > _matcher._old_SP ) {
  2204     reg = OptoReg::add(reg, -1);
  2205     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
  2208   // Old SP
  2209   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
  2210     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
  2212   // Preserve area dump
  2213   int fixed_slots = C->fixed_slots();
  2214   OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots());
  2215   OptoReg::Name return_addr = _matcher.return_addr();
  2217   reg = OptoReg::add(reg, -1);
  2218   while (OptoReg::is_stack(reg)) {
  2219     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
  2220     if (return_addr == reg) {
  2221       tty->print_cr("return address");
  2222     } else if (reg >= begin_in_preserve) {
  2223       // Preserved slots are present on x86
  2224       if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word))
  2225         tty->print_cr("saved fp register");
  2226       else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) &&
  2227                VerifyStackAtCalls)
  2228         tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
  2229       else
  2230         tty->print_cr("in_preserve");
  2231     } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) {
  2232       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
  2233     } else {
  2234       tty->print_cr("pad2, stack alignment");
  2236     reg = OptoReg::add(reg, -1);
  2239   // Spill area dump
  2240   reg = OptoReg::add(_matcher._new_SP, _framesize );
  2241   while( reg > _matcher._out_arg_limit ) {
  2242     reg = OptoReg::add(reg, -1);
  2243     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
  2246   // Outgoing argument area dump
  2247   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
  2248     reg = OptoReg::add(reg, -1);
  2249     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
  2252   // Outgoing new preserve area
  2253   while( reg > _matcher._new_SP ) {
  2254     reg = OptoReg::add(reg, -1);
  2255     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
  2257   tty->print_cr("#");
  2260 //------------------------------dump_bb----------------------------------------
  2261 void PhaseChaitin::dump_bb( uint pre_order ) const {
  2262   tty->print_cr("---dump of B%d---",pre_order);
  2263   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  2264     Block *b = _cfg._blocks[i];
  2265     if( b->_pre_order == pre_order )
  2266       dump(b);
  2270 //------------------------------dump_lrg---------------------------------------
  2271 void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
  2272   tty->print_cr("---dump of L%d---",lidx);
  2274   if (_ifg) {
  2275     if (lidx >= _lrg_map.max_lrg_id()) {
  2276       tty->print("Attempt to print live range index beyond max live range.\n");
  2277       return;
  2279     tty->print("L%d: ",lidx);
  2280     if (lidx < _ifg->_maxlrg) {
  2281       lrgs(lidx).dump();
  2282     } else {
  2283       tty->print_cr("new LRG");
  2286   if( _ifg && lidx < _ifg->_maxlrg) {
  2287     tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
  2288     _ifg->neighbors(lidx)->dump();
  2289     tty->cr();
  2291   // For all blocks
  2292   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
  2293     Block *b = _cfg._blocks[i];
  2294     int dump_once = 0;
  2296     // For all instructions
  2297     for( uint j = 0; j < b->_nodes.size(); j++ ) {
  2298       Node *n = b->_nodes[j];
  2299       if (_lrg_map.find_const(n) == lidx) {
  2300         if (!dump_once++) {
  2301           tty->cr();
  2302           b->dump_head( &_cfg._bbs );
  2304         dump(n);
  2305         continue;
  2307       if (!defs_only) {
  2308         uint cnt = n->req();
  2309         for( uint k = 1; k < cnt; k++ ) {
  2310           Node *m = n->in(k);
  2311           if (!m)  {
  2312             continue;  // be robust in the dumper
  2314           if (_lrg_map.find_const(m) == lidx) {
  2315             if (!dump_once++) {
  2316               tty->cr();
  2317               b->dump_head(&_cfg._bbs);
  2319             dump(n);
  2324   } // End of per-block dump
  2325   tty->cr();
  2327 #endif // not PRODUCT
  2329 //------------------------------print_chaitin_statistics-------------------------------
  2330 int PhaseChaitin::_final_loads  = 0;
  2331 int PhaseChaitin::_final_stores = 0;
  2332 int PhaseChaitin::_final_memoves= 0;
  2333 int PhaseChaitin::_final_copies = 0;
  2334 double PhaseChaitin::_final_load_cost  = 0;
  2335 double PhaseChaitin::_final_store_cost = 0;
  2336 double PhaseChaitin::_final_memove_cost= 0;
  2337 double PhaseChaitin::_final_copy_cost  = 0;
  2338 int PhaseChaitin::_conserv_coalesce = 0;
  2339 int PhaseChaitin::_conserv_coalesce_pair = 0;
  2340 int PhaseChaitin::_conserv_coalesce_trie = 0;
  2341 int PhaseChaitin::_conserv_coalesce_quad = 0;
  2342 int PhaseChaitin::_post_alloc = 0;
  2343 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
  2344 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
  2345 int PhaseChaitin::_used_cisc_instructions   = 0;
  2346 int PhaseChaitin::_unused_cisc_instructions = 0;
  2347 int PhaseChaitin::_allocator_attempts       = 0;
  2348 int PhaseChaitin::_allocator_successes      = 0;
  2350 #ifndef PRODUCT
  2351 uint PhaseChaitin::_high_pressure           = 0;
  2352 uint PhaseChaitin::_low_pressure            = 0;
  2354 void PhaseChaitin::print_chaitin_statistics() {
  2355   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
  2356   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
  2357   tty->print_cr("Adjusted spill cost = %7.0f.",
  2358                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
  2359                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
  2360   tty->print("Conservatively coalesced %d copies, %d pairs",
  2361                 _conserv_coalesce, _conserv_coalesce_pair);
  2362   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
  2363     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
  2364   tty->print_cr(", %d post alloc.", _post_alloc);
  2365   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
  2366     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
  2367                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
  2368   if( _used_cisc_instructions || _unused_cisc_instructions )
  2369     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
  2370                    _used_cisc_instructions, _unused_cisc_instructions);
  2371   if( _allocator_successes != 0 )
  2372     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
  2373   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
  2375 #endif // not PRODUCT

mercurial