src/share/vm/opto/memnode.cpp

Mon, 25 Feb 2013 14:13:04 +0100

author
roland
date
Mon, 25 Feb 2013 14:13:04 +0100
changeset 4657
6931f425c517
parent 4479
b30b3c2a0cf2
child 4695
ff55877839bc
permissions
-rw-r--r--

8007294: ReduceFieldZeroing doesn't check for dependent load and can lead to incorrect execution
Summary: InitializeNode::can_capture_store() must check that the captured store doesn't overwrite a memory location that is loaded before the store.
Reviewed-by: kvn

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "memory/allocation.inline.hpp"
    29 #include "oops/objArrayKlass.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/cfgnode.hpp"
    32 #include "opto/compile.hpp"
    33 #include "opto/connode.hpp"
    34 #include "opto/loopnode.hpp"
    35 #include "opto/machnode.hpp"
    36 #include "opto/matcher.hpp"
    37 #include "opto/memnode.hpp"
    38 #include "opto/mulnode.hpp"
    39 #include "opto/phaseX.hpp"
    40 #include "opto/regmask.hpp"
    42 // Portions of code courtesy of Clifford Click
    44 // Optimization - Graph Style
    46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
    48 //=============================================================================
    49 uint MemNode::size_of() const { return sizeof(*this); }
    51 const TypePtr *MemNode::adr_type() const {
    52   Node* adr = in(Address);
    53   const TypePtr* cross_check = NULL;
    54   DEBUG_ONLY(cross_check = _adr_type);
    55   return calculate_adr_type(adr->bottom_type(), cross_check);
    56 }
    58 #ifndef PRODUCT
    59 void MemNode::dump_spec(outputStream *st) const {
    60   if (in(Address) == NULL)  return; // node is dead
    61 #ifndef ASSERT
    62   // fake the missing field
    63   const TypePtr* _adr_type = NULL;
    64   if (in(Address) != NULL)
    65     _adr_type = in(Address)->bottom_type()->isa_ptr();
    66 #endif
    67   dump_adr_type(this, _adr_type, st);
    69   Compile* C = Compile::current();
    70   if( C->alias_type(_adr_type)->is_volatile() )
    71     st->print(" Volatile!");
    72 }
    74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
    75   st->print(" @");
    76   if (adr_type == NULL) {
    77     st->print("NULL");
    78   } else {
    79     adr_type->dump_on(st);
    80     Compile* C = Compile::current();
    81     Compile::AliasType* atp = NULL;
    82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
    83     if (atp == NULL)
    84       st->print(", idx=?\?;");
    85     else if (atp->index() == Compile::AliasIdxBot)
    86       st->print(", idx=Bot;");
    87     else if (atp->index() == Compile::AliasIdxTop)
    88       st->print(", idx=Top;");
    89     else if (atp->index() == Compile::AliasIdxRaw)
    90       st->print(", idx=Raw;");
    91     else {
    92       ciField* field = atp->field();
    93       if (field) {
    94         st->print(", name=");
    95         field->print_name_on(st);
    96       }
    97       st->print(", idx=%d;", atp->index());
    98     }
    99   }
   100 }
   102 extern void print_alias_types();
   104 #endif
   106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   107   const TypeOopPtr *tinst = t_adr->isa_oopptr();
   108   if (tinst == NULL || !tinst->is_known_instance_field())
   109     return mchain;  // don't try to optimize non-instance types
   110   uint instance_id = tinst->instance_id();
   111   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
   112   Node *prev = NULL;
   113   Node *result = mchain;
   114   while (prev != result) {
   115     prev = result;
   116     if (result == start_mem)
   117       break;  // hit one of our sentinels
   118     // skip over a call which does not affect this memory slice
   119     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   120       Node *proj_in = result->in(0);
   121       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
   122         break;  // hit one of our sentinels
   123       } else if (proj_in->is_Call()) {
   124         CallNode *call = proj_in->as_Call();
   125         if (!call->may_modify(t_adr, phase)) {
   126           result = call->in(TypeFunc::Memory);
   127         }
   128       } else if (proj_in->is_Initialize()) {
   129         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   130         // Stop if this is the initialization for the object instance which
   131         // which contains this memory slice, otherwise skip over it.
   132         if (alloc != NULL && alloc->_idx != instance_id) {
   133           result = proj_in->in(TypeFunc::Memory);
   134         }
   135       } else if (proj_in->is_MemBar()) {
   136         result = proj_in->in(TypeFunc::Memory);
   137       } else {
   138         assert(false, "unexpected projection");
   139       }
   140     } else if (result->is_ClearArray()) {
   141       if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
   142         // Can not bypass initialization of the instance
   143         // we are looking for.
   144         break;
   145       }
   146       // Otherwise skip it (the call updated 'result' value).
   147     } else if (result->is_MergeMem()) {
   148       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
   149     }
   150   }
   151   return result;
   152 }
   154 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
   155   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
   156   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
   157   PhaseIterGVN *igvn = phase->is_IterGVN();
   158   Node *result = mchain;
   159   result = optimize_simple_memory_chain(result, t_adr, phase);
   160   if (is_instance && igvn != NULL  && result->is_Phi()) {
   161     PhiNode *mphi = result->as_Phi();
   162     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   163     const TypePtr *t = mphi->adr_type();
   164     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
   165         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
   166         t->is_oopptr()->cast_to_exactness(true)
   167          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
   168          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
   169       // clone the Phi with our address type
   170       result = mphi->split_out_instance(t_adr, igvn);
   171     } else {
   172       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
   173     }
   174   }
   175   return result;
   176 }
   178 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
   179   uint alias_idx = phase->C->get_alias_index(tp);
   180   Node *mem = mmem;
   181 #ifdef ASSERT
   182   {
   183     // Check that current type is consistent with the alias index used during graph construction
   184     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
   185     bool consistent =  adr_check == NULL || adr_check->empty() ||
   186                        phase->C->must_alias(adr_check, alias_idx );
   187     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
   188     if( !consistent && adr_check != NULL && !adr_check->empty() &&
   189                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
   190         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
   191         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
   192           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
   193           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
   194       // don't assert if it is dead code.
   195       consistent = true;
   196     }
   197     if( !consistent ) {
   198       st->print("alias_idx==%d, adr_check==", alias_idx);
   199       if( adr_check == NULL ) {
   200         st->print("NULL");
   201       } else {
   202         adr_check->dump();
   203       }
   204       st->cr();
   205       print_alias_types();
   206       assert(consistent, "adr_check must match alias idx");
   207     }
   208   }
   209 #endif
   210   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
   211   // means an array I have not precisely typed yet.  Do not do any
   212   // alias stuff with it any time soon.
   213   const TypeOopPtr *toop = tp->isa_oopptr();
   214   if( tp->base() != Type::AnyPtr &&
   215       !(toop &&
   216         toop->klass() != NULL &&
   217         toop->klass()->is_java_lang_Object() &&
   218         toop->offset() == Type::OffsetBot) ) {
   219     // compress paths and change unreachable cycles to TOP
   220     // If not, we can update the input infinitely along a MergeMem cycle
   221     // Equivalent code in PhiNode::Ideal
   222     Node* m  = phase->transform(mmem);
   223     // If transformed to a MergeMem, get the desired slice
   224     // Otherwise the returned node represents memory for every slice
   225     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
   226     // Update input if it is progress over what we have now
   227   }
   228   return mem;
   229 }
   231 //--------------------------Ideal_common---------------------------------------
   232 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
   233 // Unhook non-raw memories from complete (macro-expanded) initializations.
   234 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
   235   // If our control input is a dead region, kill all below the region
   236   Node *ctl = in(MemNode::Control);
   237   if (ctl && remove_dead_region(phase, can_reshape))
   238     return this;
   239   ctl = in(MemNode::Control);
   240   // Don't bother trying to transform a dead node
   241   if( ctl && ctl->is_top() )  return NodeSentinel;
   243   PhaseIterGVN *igvn = phase->is_IterGVN();
   244   // Wait if control on the worklist.
   245   if (ctl && can_reshape && igvn != NULL) {
   246     Node* bol = NULL;
   247     Node* cmp = NULL;
   248     if (ctl->in(0)->is_If()) {
   249       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
   250       bol = ctl->in(0)->in(1);
   251       if (bol->is_Bool())
   252         cmp = ctl->in(0)->in(1)->in(1);
   253     }
   254     if (igvn->_worklist.member(ctl) ||
   255         (bol != NULL && igvn->_worklist.member(bol)) ||
   256         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
   257       // This control path may be dead.
   258       // Delay this memory node transformation until the control is processed.
   259       phase->is_IterGVN()->_worklist.push(this);
   260       return NodeSentinel; // caller will return NULL
   261     }
   262   }
   263   // Ignore if memory is dead, or self-loop
   264   Node *mem = in(MemNode::Memory);
   265   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
   266   assert( mem != this, "dead loop in MemNode::Ideal" );
   268   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
   269     // This memory slice may be dead.
   270     // Delay this mem node transformation until the memory is processed.
   271     phase->is_IterGVN()->_worklist.push(this);
   272     return NodeSentinel; // caller will return NULL
   273   }
   275   Node *address = in(MemNode::Address);
   276   const Type *t_adr = phase->type( address );
   277   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
   279   if( can_reshape && igvn != NULL &&
   280       (igvn->_worklist.member(address) ||
   281        igvn->_worklist.size() > 0 && (phase->type(address) != adr_type())) ) {
   282     // The address's base and type may change when the address is processed.
   283     // Delay this mem node transformation until the address is processed.
   284     phase->is_IterGVN()->_worklist.push(this);
   285     return NodeSentinel; // caller will return NULL
   286   }
   288   // Do NOT remove or optimize the next lines: ensure a new alias index
   289   // is allocated for an oop pointer type before Escape Analysis.
   290   // Note: C++ will not remove it since the call has side effect.
   291   if ( t_adr->isa_oopptr() ) {
   292     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
   293   }
   295 #ifdef ASSERT
   296   Node* base = NULL;
   297   if (address->is_AddP())
   298     base = address->in(AddPNode::Base);
   299   assert(base == NULL || t_adr->isa_rawptr() ||
   300         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
   301 #endif
   303   // Avoid independent memory operations
   304   Node* old_mem = mem;
   306   // The code which unhooks non-raw memories from complete (macro-expanded)
   307   // initializations was removed. After macro-expansion all stores catched
   308   // by Initialize node became raw stores and there is no information
   309   // which memory slices they modify. So it is unsafe to move any memory
   310   // operation above these stores. Also in most cases hooked non-raw memories
   311   // were already unhooked by using information from detect_ptr_independence()
   312   // and find_previous_store().
   314   if (mem->is_MergeMem()) {
   315     MergeMemNode* mmem = mem->as_MergeMem();
   316     const TypePtr *tp = t_adr->is_ptr();
   318     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
   319   }
   321   if (mem != old_mem) {
   322     set_req(MemNode::Memory, mem);
   323     if (can_reshape && old_mem->outcnt() == 0) {
   324         igvn->_worklist.push(old_mem);
   325     }
   326     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
   327     return this;
   328   }
   330   // let the subclass continue analyzing...
   331   return NULL;
   332 }
   334 // Helper function for proving some simple control dominations.
   335 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
   336 // Already assumes that 'dom' is available at 'sub', and that 'sub'
   337 // is not a constant (dominated by the method's StartNode).
   338 // Used by MemNode::find_previous_store to prove that the
   339 // control input of a memory operation predates (dominates)
   340 // an allocation it wants to look past.
   341 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
   342   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
   343     return false; // Conservative answer for dead code
   345   // Check 'dom'. Skip Proj and CatchProj nodes.
   346   dom = dom->find_exact_control(dom);
   347   if (dom == NULL || dom->is_top())
   348     return false; // Conservative answer for dead code
   350   if (dom == sub) {
   351     // For the case when, for example, 'sub' is Initialize and the original
   352     // 'dom' is Proj node of the 'sub'.
   353     return false;
   354   }
   356   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
   357     return true;
   359   // 'dom' dominates 'sub' if its control edge and control edges
   360   // of all its inputs dominate or equal to sub's control edge.
   362   // Currently 'sub' is either Allocate, Initialize or Start nodes.
   363   // Or Region for the check in LoadNode::Ideal();
   364   // 'sub' should have sub->in(0) != NULL.
   365   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
   366          sub->is_Region(), "expecting only these nodes");
   368   // Get control edge of 'sub'.
   369   Node* orig_sub = sub;
   370   sub = sub->find_exact_control(sub->in(0));
   371   if (sub == NULL || sub->is_top())
   372     return false; // Conservative answer for dead code
   374   assert(sub->is_CFG(), "expecting control");
   376   if (sub == dom)
   377     return true;
   379   if (sub->is_Start() || sub->is_Root())
   380     return false;
   382   {
   383     // Check all control edges of 'dom'.
   385     ResourceMark rm;
   386     Arena* arena = Thread::current()->resource_area();
   387     Node_List nlist(arena);
   388     Unique_Node_List dom_list(arena);
   390     dom_list.push(dom);
   391     bool only_dominating_controls = false;
   393     for (uint next = 0; next < dom_list.size(); next++) {
   394       Node* n = dom_list.at(next);
   395       if (n == orig_sub)
   396         return false; // One of dom's inputs dominated by sub.
   397       if (!n->is_CFG() && n->pinned()) {
   398         // Check only own control edge for pinned non-control nodes.
   399         n = n->find_exact_control(n->in(0));
   400         if (n == NULL || n->is_top())
   401           return false; // Conservative answer for dead code
   402         assert(n->is_CFG(), "expecting control");
   403         dom_list.push(n);
   404       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
   405         only_dominating_controls = true;
   406       } else if (n->is_CFG()) {
   407         if (n->dominates(sub, nlist))
   408           only_dominating_controls = true;
   409         else
   410           return false;
   411       } else {
   412         // First, own control edge.
   413         Node* m = n->find_exact_control(n->in(0));
   414         if (m != NULL) {
   415           if (m->is_top())
   416             return false; // Conservative answer for dead code
   417           dom_list.push(m);
   418         }
   419         // Now, the rest of edges.
   420         uint cnt = n->req();
   421         for (uint i = 1; i < cnt; i++) {
   422           m = n->find_exact_control(n->in(i));
   423           if (m == NULL || m->is_top())
   424             continue;
   425           dom_list.push(m);
   426         }
   427       }
   428     }
   429     return only_dominating_controls;
   430   }
   431 }
   433 //---------------------detect_ptr_independence---------------------------------
   434 // Used by MemNode::find_previous_store to prove that two base
   435 // pointers are never equal.
   436 // The pointers are accompanied by their associated allocations,
   437 // if any, which have been previously discovered by the caller.
   438 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
   439                                       Node* p2, AllocateNode* a2,
   440                                       PhaseTransform* phase) {
   441   // Attempt to prove that these two pointers cannot be aliased.
   442   // They may both manifestly be allocations, and they should differ.
   443   // Or, if they are not both allocations, they can be distinct constants.
   444   // Otherwise, one is an allocation and the other a pre-existing value.
   445   if (a1 == NULL && a2 == NULL) {           // neither an allocation
   446     return (p1 != p2) && p1->is_Con() && p2->is_Con();
   447   } else if (a1 != NULL && a2 != NULL) {    // both allocations
   448     return (a1 != a2);
   449   } else if (a1 != NULL) {                  // one allocation a1
   450     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
   451     return all_controls_dominate(p2, a1);
   452   } else { //(a2 != NULL)                   // one allocation a2
   453     return all_controls_dominate(p1, a2);
   454   }
   455   return false;
   456 }
   459 // The logic for reordering loads and stores uses four steps:
   460 // (a) Walk carefully past stores and initializations which we
   461 //     can prove are independent of this load.
   462 // (b) Observe that the next memory state makes an exact match
   463 //     with self (load or store), and locate the relevant store.
   464 // (c) Ensure that, if we were to wire self directly to the store,
   465 //     the optimizer would fold it up somehow.
   466 // (d) Do the rewiring, and return, depending on some other part of
   467 //     the optimizer to fold up the load.
   468 // This routine handles steps (a) and (b).  Steps (c) and (d) are
   469 // specific to loads and stores, so they are handled by the callers.
   470 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
   471 //
   472 Node* MemNode::find_previous_store(PhaseTransform* phase) {
   473   Node*         ctrl   = in(MemNode::Control);
   474   Node*         adr    = in(MemNode::Address);
   475   intptr_t      offset = 0;
   476   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
   477   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
   479   if (offset == Type::OffsetBot)
   480     return NULL;            // cannot unalias unless there are precise offsets
   482   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
   484   intptr_t size_in_bytes = memory_size();
   486   Node* mem = in(MemNode::Memory);   // start searching here...
   488   int cnt = 50;             // Cycle limiter
   489   for (;;) {                // While we can dance past unrelated stores...
   490     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
   492     if (mem->is_Store()) {
   493       Node* st_adr = mem->in(MemNode::Address);
   494       intptr_t st_offset = 0;
   495       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
   496       if (st_base == NULL)
   497         break;              // inscrutable pointer
   498       if (st_offset != offset && st_offset != Type::OffsetBot) {
   499         const int MAX_STORE = BytesPerLong;
   500         if (st_offset >= offset + size_in_bytes ||
   501             st_offset <= offset - MAX_STORE ||
   502             st_offset <= offset - mem->as_Store()->memory_size()) {
   503           // Success:  The offsets are provably independent.
   504           // (You may ask, why not just test st_offset != offset and be done?
   505           // The answer is that stores of different sizes can co-exist
   506           // in the same sequence of RawMem effects.  We sometimes initialize
   507           // a whole 'tile' of array elements with a single jint or jlong.)
   508           mem = mem->in(MemNode::Memory);
   509           continue;           // (a) advance through independent store memory
   510         }
   511       }
   512       if (st_base != base &&
   513           detect_ptr_independence(base, alloc,
   514                                   st_base,
   515                                   AllocateNode::Ideal_allocation(st_base, phase),
   516                                   phase)) {
   517         // Success:  The bases are provably independent.
   518         mem = mem->in(MemNode::Memory);
   519         continue;           // (a) advance through independent store memory
   520       }
   522       // (b) At this point, if the bases or offsets do not agree, we lose,
   523       // since we have not managed to prove 'this' and 'mem' independent.
   524       if (st_base == base && st_offset == offset) {
   525         return mem;         // let caller handle steps (c), (d)
   526       }
   528     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
   529       InitializeNode* st_init = mem->in(0)->as_Initialize();
   530       AllocateNode*  st_alloc = st_init->allocation();
   531       if (st_alloc == NULL)
   532         break;              // something degenerated
   533       bool known_identical = false;
   534       bool known_independent = false;
   535       if (alloc == st_alloc)
   536         known_identical = true;
   537       else if (alloc != NULL)
   538         known_independent = true;
   539       else if (all_controls_dominate(this, st_alloc))
   540         known_independent = true;
   542       if (known_independent) {
   543         // The bases are provably independent: Either they are
   544         // manifestly distinct allocations, or else the control
   545         // of this load dominates the store's allocation.
   546         int alias_idx = phase->C->get_alias_index(adr_type());
   547         if (alias_idx == Compile::AliasIdxRaw) {
   548           mem = st_alloc->in(TypeFunc::Memory);
   549         } else {
   550           mem = st_init->memory(alias_idx);
   551         }
   552         continue;           // (a) advance through independent store memory
   553       }
   555       // (b) at this point, if we are not looking at a store initializing
   556       // the same allocation we are loading from, we lose.
   557       if (known_identical) {
   558         // From caller, can_see_stored_value will consult find_captured_store.
   559         return mem;         // let caller handle steps (c), (d)
   560       }
   562     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
   563       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
   564       if (mem->is_Proj() && mem->in(0)->is_Call()) {
   565         CallNode *call = mem->in(0)->as_Call();
   566         if (!call->may_modify(addr_t, phase)) {
   567           mem = call->in(TypeFunc::Memory);
   568           continue;         // (a) advance through independent call memory
   569         }
   570       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
   571         mem = mem->in(0)->in(TypeFunc::Memory);
   572         continue;           // (a) advance through independent MemBar memory
   573       } else if (mem->is_ClearArray()) {
   574         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
   575           // (the call updated 'mem' value)
   576           continue;         // (a) advance through independent allocation memory
   577         } else {
   578           // Can not bypass initialization of the instance
   579           // we are looking for.
   580           return mem;
   581         }
   582       } else if (mem->is_MergeMem()) {
   583         int alias_idx = phase->C->get_alias_index(adr_type());
   584         mem = mem->as_MergeMem()->memory_at(alias_idx);
   585         continue;           // (a) advance through independent MergeMem memory
   586       }
   587     }
   589     // Unless there is an explicit 'continue', we must bail out here,
   590     // because 'mem' is an inscrutable memory state (e.g., a call).
   591     break;
   592   }
   594   return NULL;              // bail out
   595 }
   597 //----------------------calculate_adr_type-------------------------------------
   598 // Helper function.  Notices when the given type of address hits top or bottom.
   599 // Also, asserts a cross-check of the type against the expected address type.
   600 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
   601   if (t == Type::TOP)  return NULL; // does not touch memory any more?
   602   #ifdef PRODUCT
   603   cross_check = NULL;
   604   #else
   605   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
   606   #endif
   607   const TypePtr* tp = t->isa_ptr();
   608   if (tp == NULL) {
   609     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
   610     return TypePtr::BOTTOM;           // touches lots of memory
   611   } else {
   612     #ifdef ASSERT
   613     // %%%% [phh] We don't check the alias index if cross_check is
   614     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
   615     if (cross_check != NULL &&
   616         cross_check != TypePtr::BOTTOM &&
   617         cross_check != TypeRawPtr::BOTTOM) {
   618       // Recheck the alias index, to see if it has changed (due to a bug).
   619       Compile* C = Compile::current();
   620       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
   621              "must stay in the original alias category");
   622       // The type of the address must be contained in the adr_type,
   623       // disregarding "null"-ness.
   624       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
   625       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
   626       assert(cross_check->meet(tp_notnull) == cross_check,
   627              "real address must not escape from expected memory type");
   628     }
   629     #endif
   630     return tp;
   631   }
   632 }
   634 //------------------------adr_phi_is_loop_invariant----------------------------
   635 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
   636 // loop is loop invariant. Make a quick traversal of Phi and associated
   637 // CastPP nodes, looking to see if they are a closed group within the loop.
   638 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
   639   // The idea is that the phi-nest must boil down to only CastPP nodes
   640   // with the same data. This implies that any path into the loop already
   641   // includes such a CastPP, and so the original cast, whatever its input,
   642   // must be covered by an equivalent cast, with an earlier control input.
   643   ResourceMark rm;
   645   // The loop entry input of the phi should be the unique dominating
   646   // node for every Phi/CastPP in the loop.
   647   Unique_Node_List closure;
   648   closure.push(adr_phi->in(LoopNode::EntryControl));
   650   // Add the phi node and the cast to the worklist.
   651   Unique_Node_List worklist;
   652   worklist.push(adr_phi);
   653   if( cast != NULL ){
   654     if( !cast->is_ConstraintCast() ) return false;
   655     worklist.push(cast);
   656   }
   658   // Begin recursive walk of phi nodes.
   659   while( worklist.size() ){
   660     // Take a node off the worklist
   661     Node *n = worklist.pop();
   662     if( !closure.member(n) ){
   663       // Add it to the closure.
   664       closure.push(n);
   665       // Make a sanity check to ensure we don't waste too much time here.
   666       if( closure.size() > 20) return false;
   667       // This node is OK if:
   668       //  - it is a cast of an identical value
   669       //  - or it is a phi node (then we add its inputs to the worklist)
   670       // Otherwise, the node is not OK, and we presume the cast is not invariant
   671       if( n->is_ConstraintCast() ){
   672         worklist.push(n->in(1));
   673       } else if( n->is_Phi() ) {
   674         for( uint i = 1; i < n->req(); i++ ) {
   675           worklist.push(n->in(i));
   676         }
   677       } else {
   678         return false;
   679       }
   680     }
   681   }
   683   // Quit when the worklist is empty, and we've found no offending nodes.
   684   return true;
   685 }
   687 //------------------------------Ideal_DU_postCCP-------------------------------
   688 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
   689 // going away in this pass and we need to make this memory op depend on the
   690 // gating null check.
   691 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
   692   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
   693 }
   695 // I tried to leave the CastPP's in.  This makes the graph more accurate in
   696 // some sense; we get to keep around the knowledge that an oop is not-null
   697 // after some test.  Alas, the CastPP's interfere with GVN (some values are
   698 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
   699 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
   700 // some of the more trivial cases in the optimizer.  Removing more useless
   701 // Phi's started allowing Loads to illegally float above null checks.  I gave
   702 // up on this approach.  CNC 10/20/2000
   703 // This static method may be called not from MemNode (EncodePNode calls it).
   704 // Only the control edge of the node 'n' might be updated.
   705 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
   706   Node *skipped_cast = NULL;
   707   // Need a null check?  Regular static accesses do not because they are
   708   // from constant addresses.  Array ops are gated by the range check (which
   709   // always includes a NULL check).  Just check field ops.
   710   if( n->in(MemNode::Control) == NULL ) {
   711     // Scan upwards for the highest location we can place this memory op.
   712     while( true ) {
   713       switch( adr->Opcode() ) {
   715       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
   716         adr = adr->in(AddPNode::Base);
   717         continue;
   719       case Op_DecodeN:         // No change to NULL-ness, so peek thru
   720       case Op_DecodeNKlass:
   721         adr = adr->in(1);
   722         continue;
   724       case Op_EncodeP:
   725       case Op_EncodePKlass:
   726         // EncodeP node's control edge could be set by this method
   727         // when EncodeP node depends on CastPP node.
   728         //
   729         // Use its control edge for memory op because EncodeP may go away
   730         // later when it is folded with following or preceding DecodeN node.
   731         if (adr->in(0) == NULL) {
   732           // Keep looking for cast nodes.
   733           adr = adr->in(1);
   734           continue;
   735         }
   736         ccp->hash_delete(n);
   737         n->set_req(MemNode::Control, adr->in(0));
   738         ccp->hash_insert(n);
   739         return n;
   741       case Op_CastPP:
   742         // If the CastPP is useless, just peek on through it.
   743         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
   744           // Remember the cast that we've peeked though. If we peek
   745           // through more than one, then we end up remembering the highest
   746           // one, that is, if in a loop, the one closest to the top.
   747           skipped_cast = adr;
   748           adr = adr->in(1);
   749           continue;
   750         }
   751         // CastPP is going away in this pass!  We need this memory op to be
   752         // control-dependent on the test that is guarding the CastPP.
   753         ccp->hash_delete(n);
   754         n->set_req(MemNode::Control, adr->in(0));
   755         ccp->hash_insert(n);
   756         return n;
   758       case Op_Phi:
   759         // Attempt to float above a Phi to some dominating point.
   760         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
   761           // If we've already peeked through a Cast (which could have set the
   762           // control), we can't float above a Phi, because the skipped Cast
   763           // may not be loop invariant.
   764           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
   765             adr = adr->in(1);
   766             continue;
   767           }
   768         }
   770         // Intentional fallthrough!
   772         // No obvious dominating point.  The mem op is pinned below the Phi
   773         // by the Phi itself.  If the Phi goes away (no true value is merged)
   774         // then the mem op can float, but not indefinitely.  It must be pinned
   775         // behind the controls leading to the Phi.
   776       case Op_CheckCastPP:
   777         // These usually stick around to change address type, however a
   778         // useless one can be elided and we still need to pick up a control edge
   779         if (adr->in(0) == NULL) {
   780           // This CheckCastPP node has NO control and is likely useless. But we
   781           // need check further up the ancestor chain for a control input to keep
   782           // the node in place. 4959717.
   783           skipped_cast = adr;
   784           adr = adr->in(1);
   785           continue;
   786         }
   787         ccp->hash_delete(n);
   788         n->set_req(MemNode::Control, adr->in(0));
   789         ccp->hash_insert(n);
   790         return n;
   792         // List of "safe" opcodes; those that implicitly block the memory
   793         // op below any null check.
   794       case Op_CastX2P:          // no null checks on native pointers
   795       case Op_Parm:             // 'this' pointer is not null
   796       case Op_LoadP:            // Loading from within a klass
   797       case Op_LoadN:            // Loading from within a klass
   798       case Op_LoadKlass:        // Loading from within a klass
   799       case Op_LoadNKlass:       // Loading from within a klass
   800       case Op_ConP:             // Loading from a klass
   801       case Op_ConN:             // Loading from a klass
   802       case Op_ConNKlass:        // Loading from a klass
   803       case Op_CreateEx:         // Sucking up the guts of an exception oop
   804       case Op_Con:              // Reading from TLS
   805       case Op_CMoveP:           // CMoveP is pinned
   806       case Op_CMoveN:           // CMoveN is pinned
   807         break;                  // No progress
   809       case Op_Proj:             // Direct call to an allocation routine
   810       case Op_SCMemProj:        // Memory state from store conditional ops
   811 #ifdef ASSERT
   812         {
   813           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
   814           const Node* call = adr->in(0);
   815           if (call->is_CallJava()) {
   816             const CallJavaNode* call_java = call->as_CallJava();
   817             const TypeTuple *r = call_java->tf()->range();
   818             assert(r->cnt() > TypeFunc::Parms, "must return value");
   819             const Type* ret_type = r->field_at(TypeFunc::Parms);
   820             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
   821             // We further presume that this is one of
   822             // new_instance_Java, new_array_Java, or
   823             // the like, but do not assert for this.
   824           } else if (call->is_Allocate()) {
   825             // similar case to new_instance_Java, etc.
   826           } else if (!call->is_CallLeaf()) {
   827             // Projections from fetch_oop (OSR) are allowed as well.
   828             ShouldNotReachHere();
   829           }
   830         }
   831 #endif
   832         break;
   833       default:
   834         ShouldNotReachHere();
   835       }
   836       break;
   837     }
   838   }
   840   return  NULL;               // No progress
   841 }
   844 //=============================================================================
   845 uint LoadNode::size_of() const { return sizeof(*this); }
   846 uint LoadNode::cmp( const Node &n ) const
   847 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
   848 const Type *LoadNode::bottom_type() const { return _type; }
   849 uint LoadNode::ideal_reg() const {
   850   return _type->ideal_reg();
   851 }
   853 #ifndef PRODUCT
   854 void LoadNode::dump_spec(outputStream *st) const {
   855   MemNode::dump_spec(st);
   856   if( !Verbose && !WizardMode ) {
   857     // standard dump does this in Verbose and WizardMode
   858     st->print(" #"); _type->dump_on(st);
   859   }
   860 }
   861 #endif
   863 #ifdef ASSERT
   864 //----------------------------is_immutable_value-------------------------------
   865 // Helper function to allow a raw load without control edge for some cases
   866 bool LoadNode::is_immutable_value(Node* adr) {
   867   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
   868           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
   869           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
   870            in_bytes(JavaThread::osthread_offset())));
   871 }
   872 #endif
   874 //----------------------------LoadNode::make-----------------------------------
   875 // Polymorphic factory method:
   876 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
   877   Compile* C = gvn.C;
   879   // sanity check the alias category against the created node type
   880   assert(!(adr_type->isa_oopptr() &&
   881            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
   882          "use LoadKlassNode instead");
   883   assert(!(adr_type->isa_aryptr() &&
   884            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
   885          "use LoadRangeNode instead");
   886   // Check control edge of raw loads
   887   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
   888           // oop will be recorded in oop map if load crosses safepoint
   889           rt->isa_oopptr() || is_immutable_value(adr),
   890           "raw memory operations should have control edge");
   891   switch (bt) {
   892   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
   893   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
   894   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
   895   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
   896   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
   897   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
   898   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt              );
   899   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt              );
   900   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
   901   case T_OBJECT:
   902 #ifdef _LP64
   903     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
   904       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
   905       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
   906     } else
   907 #endif
   908     {
   909       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
   910       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
   911     }
   912   }
   913   ShouldNotReachHere();
   914   return (LoadNode*)NULL;
   915 }
   917 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
   918   bool require_atomic = true;
   919   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
   920 }
   925 //------------------------------hash-------------------------------------------
   926 uint LoadNode::hash() const {
   927   // unroll addition of interesting fields
   928   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
   929 }
   931 //---------------------------can_see_stored_value------------------------------
   932 // This routine exists to make sure this set of tests is done the same
   933 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
   934 // will change the graph shape in a way which makes memory alive twice at the
   935 // same time (uses the Oracle model of aliasing), then some
   936 // LoadXNode::Identity will fold things back to the equivalence-class model
   937 // of aliasing.
   938 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
   939   Node* ld_adr = in(MemNode::Address);
   941   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
   942   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
   943   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
   944       atp->field() != NULL && !atp->field()->is_volatile()) {
   945     uint alias_idx = atp->index();
   946     bool final = atp->field()->is_final();
   947     Node* result = NULL;
   948     Node* current = st;
   949     // Skip through chains of MemBarNodes checking the MergeMems for
   950     // new states for the slice of this load.  Stop once any other
   951     // kind of node is encountered.  Loads from final memory can skip
   952     // through any kind of MemBar but normal loads shouldn't skip
   953     // through MemBarAcquire since the could allow them to move out of
   954     // a synchronized region.
   955     while (current->is_Proj()) {
   956       int opc = current->in(0)->Opcode();
   957       if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
   958           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
   959           opc == Op_MemBarReleaseLock) {
   960         Node* mem = current->in(0)->in(TypeFunc::Memory);
   961         if (mem->is_MergeMem()) {
   962           MergeMemNode* merge = mem->as_MergeMem();
   963           Node* new_st = merge->memory_at(alias_idx);
   964           if (new_st == merge->base_memory()) {
   965             // Keep searching
   966             current = merge->base_memory();
   967             continue;
   968           }
   969           // Save the new memory state for the slice and fall through
   970           // to exit.
   971           result = new_st;
   972         }
   973       }
   974       break;
   975     }
   976     if (result != NULL) {
   977       st = result;
   978     }
   979   }
   982   // Loop around twice in the case Load -> Initialize -> Store.
   983   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
   984   for (int trip = 0; trip <= 1; trip++) {
   986     if (st->is_Store()) {
   987       Node* st_adr = st->in(MemNode::Address);
   988       if (!phase->eqv(st_adr, ld_adr)) {
   989         // Try harder before giving up...  Match raw and non-raw pointers.
   990         intptr_t st_off = 0;
   991         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
   992         if (alloc == NULL)       return NULL;
   993         intptr_t ld_off = 0;
   994         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
   995         if (alloc != allo2)      return NULL;
   996         if (ld_off != st_off)    return NULL;
   997         // At this point we have proven something like this setup:
   998         //  A = Allocate(...)
   999         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
  1000         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
  1001         // (Actually, we haven't yet proven the Q's are the same.)
  1002         // In other words, we are loading from a casted version of
  1003         // the same pointer-and-offset that we stored to.
  1004         // Thus, we are able to replace L by V.
  1006       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
  1007       if (store_Opcode() != st->Opcode())
  1008         return NULL;
  1009       return st->in(MemNode::ValueIn);
  1012     intptr_t offset = 0;  // scratch
  1014     // A load from a freshly-created object always returns zero.
  1015     // (This can happen after LoadNode::Ideal resets the load's memory input
  1016     // to find_captured_store, which returned InitializeNode::zero_memory.)
  1017     if (st->is_Proj() && st->in(0)->is_Allocate() &&
  1018         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
  1019         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
  1020       // return a zero value for the load's basic type
  1021       // (This is one of the few places where a generic PhaseTransform
  1022       // can create new nodes.  Think of it as lazily manifesting
  1023       // virtually pre-existing constants.)
  1024       return phase->zerocon(memory_type());
  1027     // A load from an initialization barrier can match a captured store.
  1028     if (st->is_Proj() && st->in(0)->is_Initialize()) {
  1029       InitializeNode* init = st->in(0)->as_Initialize();
  1030       AllocateNode* alloc = init->allocation();
  1031       if (alloc != NULL &&
  1032           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
  1033         // examine a captured store value
  1034         st = init->find_captured_store(offset, memory_size(), phase);
  1035         if (st != NULL)
  1036           continue;             // take one more trip around
  1040     break;
  1043   return NULL;
  1046 //----------------------is_instance_field_load_with_local_phi------------------
  1047 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
  1048   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
  1049       in(MemNode::Address)->is_AddP() ) {
  1050     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
  1051     // Only instances.
  1052     if( t_oop != NULL && t_oop->is_known_instance_field() &&
  1053         t_oop->offset() != Type::OffsetBot &&
  1054         t_oop->offset() != Type::OffsetTop) {
  1055       return true;
  1058   return false;
  1061 //------------------------------Identity---------------------------------------
  1062 // Loads are identity if previous store is to same address
  1063 Node *LoadNode::Identity( PhaseTransform *phase ) {
  1064   // If the previous store-maker is the right kind of Store, and the store is
  1065   // to the same address, then we are equal to the value stored.
  1066   Node* mem = in(MemNode::Memory);
  1067   Node* value = can_see_stored_value(mem, phase);
  1068   if( value ) {
  1069     // byte, short & char stores truncate naturally.
  1070     // A load has to load the truncated value which requires
  1071     // some sort of masking operation and that requires an
  1072     // Ideal call instead of an Identity call.
  1073     if (memory_size() < BytesPerInt) {
  1074       // If the input to the store does not fit with the load's result type,
  1075       // it must be truncated via an Ideal call.
  1076       if (!phase->type(value)->higher_equal(phase->type(this)))
  1077         return this;
  1079     // (This works even when value is a Con, but LoadNode::Value
  1080     // usually runs first, producing the singleton type of the Con.)
  1081     return value;
  1084   // Search for an existing data phi which was generated before for the same
  1085   // instance's field to avoid infinite generation of phis in a loop.
  1086   Node *region = mem->in(0);
  1087   if (is_instance_field_load_with_local_phi(region)) {
  1088     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
  1089     int this_index  = phase->C->get_alias_index(addr_t);
  1090     int this_offset = addr_t->offset();
  1091     int this_id    = addr_t->is_oopptr()->instance_id();
  1092     const Type* this_type = bottom_type();
  1093     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  1094       Node* phi = region->fast_out(i);
  1095       if (phi->is_Phi() && phi != mem &&
  1096           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
  1097         return phi;
  1102   return this;
  1106 // Returns true if the AliasType refers to the field that holds the
  1107 // cached box array.  Currently only handles the IntegerCache case.
  1108 static bool is_autobox_cache(Compile::AliasType* atp) {
  1109   if (atp != NULL && atp->field() != NULL) {
  1110     ciField* field = atp->field();
  1111     ciSymbol* klass = field->holder()->name();
  1112     if (field->name() == ciSymbol::cache_field_name() &&
  1113         field->holder()->uses_default_loader() &&
  1114         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1115       return true;
  1118   return false;
  1121 // Fetch the base value in the autobox array
  1122 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
  1123   if (atp != NULL && atp->field() != NULL) {
  1124     ciField* field = atp->field();
  1125     ciSymbol* klass = field->holder()->name();
  1126     if (field->name() == ciSymbol::cache_field_name() &&
  1127         field->holder()->uses_default_loader() &&
  1128         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
  1129       assert(field->is_constant(), "what?");
  1130       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
  1131       // Fetch the box object at the base of the array and get its value
  1132       ciInstance* box = array->obj_at(0)->as_instance();
  1133       ciInstanceKlass* ik = box->klass()->as_instance_klass();
  1134       if (ik->nof_nonstatic_fields() == 1) {
  1135         // This should be true nonstatic_field_at requires calling
  1136         // nof_nonstatic_fields so check it anyway
  1137         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
  1138         cache_offset = c.as_int();
  1140       return true;
  1143   return false;
  1146 // Returns true if the AliasType refers to the value field of an
  1147 // autobox object.  Currently only handles Integer.
  1148 static bool is_autobox_object(Compile::AliasType* atp) {
  1149   if (atp != NULL && atp->field() != NULL) {
  1150     ciField* field = atp->field();
  1151     ciSymbol* klass = field->holder()->name();
  1152     if (field->name() == ciSymbol::value_name() &&
  1153         field->holder()->uses_default_loader() &&
  1154         klass == ciSymbol::java_lang_Integer()) {
  1155       return true;
  1158   return false;
  1162 // We're loading from an object which has autobox behaviour.
  1163 // If this object is result of a valueOf call we'll have a phi
  1164 // merging a newly allocated object and a load from the cache.
  1165 // We want to replace this load with the original incoming
  1166 // argument to the valueOf call.
  1167 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
  1168   Node* base = in(Address)->in(AddPNode::Base);
  1169   if (base->is_Phi() && base->req() == 3) {
  1170     AllocateNode* allocation = NULL;
  1171     int allocation_index = -1;
  1172     int load_index = -1;
  1173     for (uint i = 1; i < base->req(); i++) {
  1174       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
  1175       if (allocation != NULL) {
  1176         allocation_index = i;
  1177         load_index = 3 - allocation_index;
  1178         break;
  1181     bool has_load = ( allocation != NULL &&
  1182                       (base->in(load_index)->is_Load() ||
  1183                        base->in(load_index)->is_DecodeN() &&
  1184                        base->in(load_index)->in(1)->is_Load()) );
  1185     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
  1186       // Push the loads from the phi that comes from valueOf up
  1187       // through it to allow elimination of the loads and the recovery
  1188       // of the original value.
  1189       Node* mem_phi = in(Memory);
  1190       Node* offset = in(Address)->in(AddPNode::Offset);
  1191       Node* region = base->in(0);
  1193       Node* in1 = clone();
  1194       Node* in1_addr = in1->in(Address)->clone();
  1195       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
  1196       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
  1197       in1_addr->set_req(AddPNode::Offset, offset);
  1198       in1->set_req(0, region->in(allocation_index));
  1199       in1->set_req(Address, in1_addr);
  1200       in1->set_req(Memory, mem_phi->in(allocation_index));
  1202       Node* in2 = clone();
  1203       Node* in2_addr = in2->in(Address)->clone();
  1204       in2_addr->set_req(AddPNode::Base, base->in(load_index));
  1205       in2_addr->set_req(AddPNode::Address, base->in(load_index));
  1206       in2_addr->set_req(AddPNode::Offset, offset);
  1207       in2->set_req(0, region->in(load_index));
  1208       in2->set_req(Address, in2_addr);
  1209       in2->set_req(Memory, mem_phi->in(load_index));
  1211       in1_addr = phase->transform(in1_addr);
  1212       in1 =      phase->transform(in1);
  1213       in2_addr = phase->transform(in2_addr);
  1214       in2 =      phase->transform(in2);
  1216       PhiNode* result = PhiNode::make_blank(region, this);
  1217       result->set_req(allocation_index, in1);
  1218       result->set_req(load_index, in2);
  1219       return result;
  1221   } else if (base->is_Load() ||
  1222              base->is_DecodeN() && base->in(1)->is_Load()) {
  1223     if (base->is_DecodeN()) {
  1224       // Get LoadN node which loads cached Integer object
  1225       base = base->in(1);
  1227     // Eliminate the load of Integer.value for integers from the cache
  1228     // array by deriving the value from the index into the array.
  1229     // Capture the offset of the load and then reverse the computation.
  1230     Node* load_base = base->in(Address)->in(AddPNode::Base);
  1231     if (load_base->is_DecodeN()) {
  1232       // Get LoadN node which loads IntegerCache.cache field
  1233       load_base = load_base->in(1);
  1235     if (load_base != NULL) {
  1236       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
  1237       intptr_t cache_offset;
  1238       int shift = -1;
  1239       Node* cache = NULL;
  1240       if (is_autobox_cache(atp)) {
  1241         shift  = exact_log2(type2aelembytes(T_OBJECT));
  1242         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
  1244       if (cache != NULL && base->in(Address)->is_AddP()) {
  1245         Node* elements[4];
  1246         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  1247         int cache_low;
  1248         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
  1249           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
  1250           // Add up all the offsets making of the address of the load
  1251           Node* result = elements[0];
  1252           for (int i = 1; i < count; i++) {
  1253             result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
  1255           // Remove the constant offset from the address and then
  1256           // remove the scaling of the offset to recover the original index.
  1257           result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-offset)));
  1258           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
  1259             // Peel the shift off directly but wrap it in a dummy node
  1260             // since Ideal can't return existing nodes
  1261             result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
  1262           } else {
  1263             result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
  1265 #ifdef _LP64
  1266           result = new (phase->C) ConvL2INode(phase->transform(result));
  1267 #endif
  1268           return result;
  1273   return NULL;
  1276 //------------------------------split_through_phi------------------------------
  1277 // Split instance field load through Phi.
  1278 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
  1279   Node* mem     = in(MemNode::Memory);
  1280   Node* address = in(MemNode::Address);
  1281   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1282   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1284   assert(mem->is_Phi() && (t_oop != NULL) &&
  1285          t_oop->is_known_instance_field(), "invalide conditions");
  1287   Node *region = mem->in(0);
  1288   if (region == NULL) {
  1289     return NULL; // Wait stable graph
  1291   uint cnt = mem->req();
  1292   for (uint i = 1; i < cnt; i++) {
  1293     Node* rc = region->in(i);
  1294     if (rc == NULL || phase->type(rc) == Type::TOP)
  1295       return NULL; // Wait stable graph
  1296     Node *in = mem->in(i);
  1297     if (in == NULL) {
  1298       return NULL; // Wait stable graph
  1301   // Check for loop invariant.
  1302   if (cnt == 3) {
  1303     for (uint i = 1; i < cnt; i++) {
  1304       Node *in = mem->in(i);
  1305       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
  1306       if (m == mem) {
  1307         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
  1308         return this;
  1312   // Split through Phi (see original code in loopopts.cpp).
  1313   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
  1315   // Do nothing here if Identity will find a value
  1316   // (to avoid infinite chain of value phis generation).
  1317   if (!phase->eqv(this, this->Identity(phase)))
  1318     return NULL;
  1320   // Skip the split if the region dominates some control edge of the address.
  1321   if (!MemNode::all_controls_dominate(address, region))
  1322     return NULL;
  1324   const Type* this_type = this->bottom_type();
  1325   int this_index  = phase->C->get_alias_index(addr_t);
  1326   int this_offset = addr_t->offset();
  1327   int this_iid    = addr_t->is_oopptr()->instance_id();
  1328   PhaseIterGVN *igvn = phase->is_IterGVN();
  1329   Node *phi = new (igvn->C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
  1330   for (uint i = 1; i < region->req(); i++) {
  1331     Node *x;
  1332     Node* the_clone = NULL;
  1333     if (region->in(i) == phase->C->top()) {
  1334       x = phase->C->top();      // Dead path?  Use a dead data op
  1335     } else {
  1336       x = this->clone();        // Else clone up the data op
  1337       the_clone = x;            // Remember for possible deletion.
  1338       // Alter data node to use pre-phi inputs
  1339       if (this->in(0) == region) {
  1340         x->set_req(0, region->in(i));
  1341       } else {
  1342         x->set_req(0, NULL);
  1344       for (uint j = 1; j < this->req(); j++) {
  1345         Node *in = this->in(j);
  1346         if (in->is_Phi() && in->in(0) == region)
  1347           x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
  1350     // Check for a 'win' on some paths
  1351     const Type *t = x->Value(igvn);
  1353     bool singleton = t->singleton();
  1355     // See comments in PhaseIdealLoop::split_thru_phi().
  1356     if (singleton && t == Type::TOP) {
  1357       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
  1360     if (singleton) {
  1361       x = igvn->makecon(t);
  1362     } else {
  1363       // We now call Identity to try to simplify the cloned node.
  1364       // Note that some Identity methods call phase->type(this).
  1365       // Make sure that the type array is big enough for
  1366       // our new node, even though we may throw the node away.
  1367       // (This tweaking with igvn only works because x is a new node.)
  1368       igvn->set_type(x, t);
  1369       // If x is a TypeNode, capture any more-precise type permanently into Node
  1370       // otherwise it will be not updated during igvn->transform since
  1371       // igvn->type(x) is set to x->Value() already.
  1372       x->raise_bottom_type(t);
  1373       Node *y = x->Identity(igvn);
  1374       if (y != x) {
  1375         x = y;
  1376       } else {
  1377         y = igvn->hash_find(x);
  1378         if (y) {
  1379           x = y;
  1380         } else {
  1381           // Else x is a new node we are keeping
  1382           // We do not need register_new_node_with_optimizer
  1383           // because set_type has already been called.
  1384           igvn->_worklist.push(x);
  1388     if (x != the_clone && the_clone != NULL)
  1389       igvn->remove_dead_node(the_clone);
  1390     phi->set_req(i, x);
  1392   // Record Phi
  1393   igvn->register_new_node_with_optimizer(phi);
  1394   return phi;
  1397 //------------------------------Ideal------------------------------------------
  1398 // If the load is from Field memory and the pointer is non-null, we can
  1399 // zero out the control input.
  1400 // If the offset is constant and the base is an object allocation,
  1401 // try to hook me up to the exact initializing store.
  1402 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1403   Node* p = MemNode::Ideal_common(phase, can_reshape);
  1404   if (p)  return (p == NodeSentinel) ? NULL : p;
  1406   Node* ctrl    = in(MemNode::Control);
  1407   Node* address = in(MemNode::Address);
  1409   // Skip up past a SafePoint control.  Cannot do this for Stores because
  1410   // pointer stores & cardmarks must stay on the same side of a SafePoint.
  1411   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
  1412       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
  1413     ctrl = ctrl->in(0);
  1414     set_req(MemNode::Control,ctrl);
  1417   intptr_t ignore = 0;
  1418   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
  1419   if (base != NULL
  1420       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
  1421     // Check for useless control edge in some common special cases
  1422     if (in(MemNode::Control) != NULL
  1423         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
  1424         && all_controls_dominate(base, phase->C->start())) {
  1425       // A method-invariant, non-null address (constant or 'this' argument).
  1426       set_req(MemNode::Control, NULL);
  1429     if (EliminateAutoBox && can_reshape) {
  1430       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
  1431       Compile::AliasType* atp = phase->C->alias_type(adr_type());
  1432       if (is_autobox_object(atp)) {
  1433         Node* result = eliminate_autobox(phase);
  1434         if (result != NULL) return result;
  1439   Node* mem = in(MemNode::Memory);
  1440   const TypePtr *addr_t = phase->type(address)->isa_ptr();
  1442   if (addr_t != NULL) {
  1443     // try to optimize our memory input
  1444     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
  1445     if (opt_mem != mem) {
  1446       set_req(MemNode::Memory, opt_mem);
  1447       if (phase->type( opt_mem ) == Type::TOP) return NULL;
  1448       return this;
  1450     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
  1451     if (can_reshape && opt_mem->is_Phi() &&
  1452         (t_oop != NULL) && t_oop->is_known_instance_field()) {
  1453       PhaseIterGVN *igvn = phase->is_IterGVN();
  1454       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
  1455         // Delay this transformation until memory Phi is processed.
  1456         phase->is_IterGVN()->_worklist.push(this);
  1457         return NULL;
  1459       // Split instance field load through Phi.
  1460       Node* result = split_through_phi(phase);
  1461       if (result != NULL) return result;
  1465   // Check for prior store with a different base or offset; make Load
  1466   // independent.  Skip through any number of them.  Bail out if the stores
  1467   // are in an endless dead cycle and report no progress.  This is a key
  1468   // transform for Reflection.  However, if after skipping through the Stores
  1469   // we can't then fold up against a prior store do NOT do the transform as
  1470   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
  1471   // array memory alive twice: once for the hoisted Load and again after the
  1472   // bypassed Store.  This situation only works if EVERYBODY who does
  1473   // anti-dependence work knows how to bypass.  I.e. we need all
  1474   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
  1475   // the alias index stuff.  So instead, peek through Stores and IFF we can
  1476   // fold up, do so.
  1477   Node* prev_mem = find_previous_store(phase);
  1478   // Steps (a), (b):  Walk past independent stores to find an exact match.
  1479   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
  1480     // (c) See if we can fold up on the spot, but don't fold up here.
  1481     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
  1482     // just return a prior value, which is done by Identity calls.
  1483     if (can_see_stored_value(prev_mem, phase)) {
  1484       // Make ready for step (d):
  1485       set_req(MemNode::Memory, prev_mem);
  1486       return this;
  1490   return NULL;                  // No further progress
  1493 // Helper to recognize certain Klass fields which are invariant across
  1494 // some group of array types (e.g., int[] or all T[] where T < Object).
  1495 const Type*
  1496 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
  1497                                  ciKlass* klass) const {
  1498   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
  1499     // The field is Klass::_modifier_flags.  Return its (constant) value.
  1500     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
  1501     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
  1502     return TypeInt::make(klass->modifier_flags());
  1504   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
  1505     // The field is Klass::_access_flags.  Return its (constant) value.
  1506     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
  1507     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
  1508     return TypeInt::make(klass->access_flags());
  1510   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
  1511     // The field is Klass::_layout_helper.  Return its constant value if known.
  1512     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1513     return TypeInt::make(klass->layout_helper());
  1516   // No match.
  1517   return NULL;
  1520 //------------------------------Value-----------------------------------------
  1521 const Type *LoadNode::Value( PhaseTransform *phase ) const {
  1522   // Either input is TOP ==> the result is TOP
  1523   Node* mem = in(MemNode::Memory);
  1524   const Type *t1 = phase->type(mem);
  1525   if (t1 == Type::TOP)  return Type::TOP;
  1526   Node* adr = in(MemNode::Address);
  1527   const TypePtr* tp = phase->type(adr)->isa_ptr();
  1528   if (tp == NULL || tp->empty())  return Type::TOP;
  1529   int off = tp->offset();
  1530   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
  1531   Compile* C = phase->C;
  1533   // Try to guess loaded type from pointer type
  1534   if (tp->base() == Type::AryPtr) {
  1535     const Type *t = tp->is_aryptr()->elem();
  1536     // Don't do this for integer types. There is only potential profit if
  1537     // the element type t is lower than _type; that is, for int types, if _type is
  1538     // more restrictive than t.  This only happens here if one is short and the other
  1539     // char (both 16 bits), and in those cases we've made an intentional decision
  1540     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
  1541     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
  1542     //
  1543     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
  1544     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
  1545     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
  1546     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
  1547     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
  1548     // In fact, that could have been the original type of p1, and p1 could have
  1549     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
  1550     // expression (LShiftL quux 3) independently optimized to the constant 8.
  1551     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
  1552         && (_type->isa_vect() == NULL)
  1553         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
  1554       // t might actually be lower than _type, if _type is a unique
  1555       // concrete subclass of abstract class t.
  1556       // Make sure the reference is not into the header, by comparing
  1557       // the offset against the offset of the start of the array's data.
  1558       // Different array types begin at slightly different offsets (12 vs. 16).
  1559       // We choose T_BYTE as an example base type that is least restrictive
  1560       // as to alignment, which will therefore produce the smallest
  1561       // possible base offset.
  1562       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  1563       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
  1564         const Type* jt = t->join(_type);
  1565         // In any case, do not allow the join, per se, to empty out the type.
  1566         if (jt->empty() && !t->empty()) {
  1567           // This can happen if a interface-typed array narrows to a class type.
  1568           jt = _type;
  1571         if (EliminateAutoBox && adr->is_AddP()) {
  1572           // The pointers in the autobox arrays are always non-null
  1573           Node* base = adr->in(AddPNode::Base);
  1574           if (base != NULL &&
  1575               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
  1576             Compile::AliasType* atp = C->alias_type(base->adr_type());
  1577             if (is_autobox_cache(atp)) {
  1578               return jt->join(TypePtr::NOTNULL)->is_ptr();
  1582         return jt;
  1585   } else if (tp->base() == Type::InstPtr) {
  1586     ciEnv* env = C->env();
  1587     const TypeInstPtr* tinst = tp->is_instptr();
  1588     ciKlass* klass = tinst->klass();
  1589     assert( off != Type::OffsetBot ||
  1590             // arrays can be cast to Objects
  1591             tp->is_oopptr()->klass()->is_java_lang_Object() ||
  1592             // unsafe field access may not have a constant offset
  1593             C->has_unsafe_access(),
  1594             "Field accesses must be precise" );
  1595     // For oop loads, we expect the _type to be precise
  1596     if (klass == env->String_klass() &&
  1597         adr->is_AddP() && off != Type::OffsetBot) {
  1598       // For constant Strings treat the final fields as compile time constants.
  1599       Node* base = adr->in(AddPNode::Base);
  1600       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
  1601       if (t != NULL && t->singleton()) {
  1602         ciField* field = env->String_klass()->get_field_by_offset(off, false);
  1603         if (field != NULL && field->is_final()) {
  1604           ciObject* string = t->const_oop();
  1605           ciConstant constant = string->as_instance()->field_value(field);
  1606           if (constant.basic_type() == T_INT) {
  1607             return TypeInt::make(constant.as_int());
  1608           } else if (constant.basic_type() == T_ARRAY) {
  1609             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1610               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1611             } else {
  1612               return TypeOopPtr::make_from_constant(constant.as_object(), true);
  1618     // Optimizations for constant objects
  1619     ciObject* const_oop = tinst->const_oop();
  1620     if (const_oop != NULL) {
  1621       // For constant CallSites treat the target field as a compile time constant.
  1622       if (const_oop->is_call_site()) {
  1623         ciCallSite* call_site = const_oop->as_call_site();
  1624         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
  1625         if (field != NULL && field->is_call_site_target()) {
  1626           ciMethodHandle* target = call_site->get_target();
  1627           if (target != NULL) {  // just in case
  1628             ciConstant constant(T_OBJECT, target);
  1629             const Type* t;
  1630             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  1631               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
  1632             } else {
  1633               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
  1635             // Add a dependence for invalidation of the optimization.
  1636             if (!call_site->is_constant_call_site()) {
  1637               C->dependencies()->assert_call_site_target_value(call_site, target);
  1639             return t;
  1644   } else if (tp->base() == Type::KlassPtr) {
  1645     assert( off != Type::OffsetBot ||
  1646             // arrays can be cast to Objects
  1647             tp->is_klassptr()->klass()->is_java_lang_Object() ||
  1648             // also allow array-loading from the primary supertype
  1649             // array during subtype checks
  1650             Opcode() == Op_LoadKlass,
  1651             "Field accesses must be precise" );
  1652     // For klass/static loads, we expect the _type to be precise
  1655   const TypeKlassPtr *tkls = tp->isa_klassptr();
  1656   if (tkls != NULL && !StressReflectiveCode) {
  1657     ciKlass* klass = tkls->klass();
  1658     if (klass->is_loaded() && tkls->klass_is_exact()) {
  1659       // We are loading a field from a Klass metaobject whose identity
  1660       // is known at compile time (the type is "exact" or "precise").
  1661       // Check for fields we know are maintained as constants by the VM.
  1662       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
  1663         // The field is Klass::_super_check_offset.  Return its (constant) value.
  1664         // (Folds up type checking code.)
  1665         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
  1666         return TypeInt::make(klass->super_check_offset());
  1668       // Compute index into primary_supers array
  1669       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
  1670       // Check for overflowing; use unsigned compare to handle the negative case.
  1671       if( depth < ciKlass::primary_super_limit() ) {
  1672         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1673         // (Folds up type checking code.)
  1674         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1675         ciKlass *ss = klass->super_of_depth(depth);
  1676         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1678       const Type* aift = load_array_final_field(tkls, klass);
  1679       if (aift != NULL)  return aift;
  1680       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
  1681           && klass->is_array_klass()) {
  1682         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
  1683         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
  1684         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
  1685         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
  1687       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
  1688         // The field is Klass::_java_mirror.  Return its (constant) value.
  1689         // (Folds up the 2nd indirection in anObjConstant.getClass().)
  1690         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
  1691         return TypeInstPtr::make(klass->java_mirror());
  1695     // We can still check if we are loading from the primary_supers array at a
  1696     // shallow enough depth.  Even though the klass is not exact, entries less
  1697     // than or equal to its super depth are correct.
  1698     if (klass->is_loaded() ) {
  1699       ciType *inner = klass;
  1700       while( inner->is_obj_array_klass() )
  1701         inner = inner->as_obj_array_klass()->base_element_type();
  1702       if( inner->is_instance_klass() &&
  1703           !inner->as_instance_klass()->flags().is_interface() ) {
  1704         // Compute index into primary_supers array
  1705         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
  1706         // Check for overflowing; use unsigned compare to handle the negative case.
  1707         if( depth < ciKlass::primary_super_limit() &&
  1708             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
  1709           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
  1710           // (Folds up type checking code.)
  1711           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
  1712           ciKlass *ss = klass->super_of_depth(depth);
  1713           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
  1718     // If the type is enough to determine that the thing is not an array,
  1719     // we can give the layout_helper a positive interval type.
  1720     // This will help short-circuit some reflective code.
  1721     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
  1722         && !klass->is_array_klass() // not directly typed as an array
  1723         && !klass->is_interface()  // specifically not Serializable & Cloneable
  1724         && !klass->is_java_lang_Object()   // not the supertype of all T[]
  1725         ) {
  1726       // Note:  When interfaces are reliable, we can narrow the interface
  1727       // test to (klass != Serializable && klass != Cloneable).
  1728       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
  1729       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
  1730       // The key property of this type is that it folds up tests
  1731       // for array-ness, since it proves that the layout_helper is positive.
  1732       // Thus, a generic value like the basic object layout helper works fine.
  1733       return TypeInt::make(min_size, max_jint, Type::WidenMin);
  1737   // If we are loading from a freshly-allocated object, produce a zero,
  1738   // if the load is provably beyond the header of the object.
  1739   // (Also allow a variable load from a fresh array to produce zero.)
  1740   const TypeOopPtr *tinst = tp->isa_oopptr();
  1741   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
  1742   if (ReduceFieldZeroing || is_instance) {
  1743     Node* value = can_see_stored_value(mem,phase);
  1744     if (value != NULL && value->is_Con()) {
  1745       assert(value->bottom_type()->higher_equal(_type),"sanity");
  1746       return value->bottom_type();
  1750   if (is_instance) {
  1751     // If we have an instance type and our memory input is the
  1752     // programs's initial memory state, there is no matching store,
  1753     // so just return a zero of the appropriate type
  1754     Node *mem = in(MemNode::Memory);
  1755     if (mem->is_Parm() && mem->in(0)->is_Start()) {
  1756       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
  1757       return Type::get_zero_type(_type->basic_type());
  1760   return _type;
  1763 //------------------------------match_edge-------------------------------------
  1764 // Do we Match on this edge index or not?  Match only the address.
  1765 uint LoadNode::match_edge(uint idx) const {
  1766   return idx == MemNode::Address;
  1769 //--------------------------LoadBNode::Ideal--------------------------------------
  1770 //
  1771 //  If the previous store is to the same address as this load,
  1772 //  and the value stored was larger than a byte, replace this load
  1773 //  with the value stored truncated to a byte.  If no truncation is
  1774 //  needed, the replacement is done in LoadNode::Identity().
  1775 //
  1776 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1777   Node* mem = in(MemNode::Memory);
  1778   Node* value = can_see_stored_value(mem,phase);
  1779   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1780     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
  1781     return new (phase->C) RShiftINode(result, phase->intcon(24));
  1783   // Identity call will handle the case where truncation is not needed.
  1784   return LoadNode::Ideal(phase, can_reshape);
  1787 const Type* LoadBNode::Value(PhaseTransform *phase) const {
  1788   Node* mem = in(MemNode::Memory);
  1789   Node* value = can_see_stored_value(mem,phase);
  1790   if (value != NULL && value->is_Con() &&
  1791       !value->bottom_type()->higher_equal(_type)) {
  1792     // If the input to the store does not fit with the load's result type,
  1793     // it must be truncated. We can't delay until Ideal call since
  1794     // a singleton Value is needed for split_thru_phi optimization.
  1795     int con = value->get_int();
  1796     return TypeInt::make((con << 24) >> 24);
  1798   return LoadNode::Value(phase);
  1801 //--------------------------LoadUBNode::Ideal-------------------------------------
  1802 //
  1803 //  If the previous store is to the same address as this load,
  1804 //  and the value stored was larger than a byte, replace this load
  1805 //  with the value stored truncated to a byte.  If no truncation is
  1806 //  needed, the replacement is done in LoadNode::Identity().
  1807 //
  1808 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
  1809   Node* mem = in(MemNode::Memory);
  1810   Node* value = can_see_stored_value(mem, phase);
  1811   if (value && !phase->type(value)->higher_equal(_type))
  1812     return new (phase->C) AndINode(value, phase->intcon(0xFF));
  1813   // Identity call will handle the case where truncation is not needed.
  1814   return LoadNode::Ideal(phase, can_reshape);
  1817 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
  1818   Node* mem = in(MemNode::Memory);
  1819   Node* value = can_see_stored_value(mem,phase);
  1820   if (value != NULL && value->is_Con() &&
  1821       !value->bottom_type()->higher_equal(_type)) {
  1822     // If the input to the store does not fit with the load's result type,
  1823     // it must be truncated. We can't delay until Ideal call since
  1824     // a singleton Value is needed for split_thru_phi optimization.
  1825     int con = value->get_int();
  1826     return TypeInt::make(con & 0xFF);
  1828   return LoadNode::Value(phase);
  1831 //--------------------------LoadUSNode::Ideal-------------------------------------
  1832 //
  1833 //  If the previous store is to the same address as this load,
  1834 //  and the value stored was larger than a char, replace this load
  1835 //  with the value stored truncated to a char.  If no truncation is
  1836 //  needed, the replacement is done in LoadNode::Identity().
  1837 //
  1838 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1839   Node* mem = in(MemNode::Memory);
  1840   Node* value = can_see_stored_value(mem,phase);
  1841   if( value && !phase->type(value)->higher_equal( _type ) )
  1842     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
  1843   // Identity call will handle the case where truncation is not needed.
  1844   return LoadNode::Ideal(phase, can_reshape);
  1847 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
  1848   Node* mem = in(MemNode::Memory);
  1849   Node* value = can_see_stored_value(mem,phase);
  1850   if (value != NULL && value->is_Con() &&
  1851       !value->bottom_type()->higher_equal(_type)) {
  1852     // If the input to the store does not fit with the load's result type,
  1853     // it must be truncated. We can't delay until Ideal call since
  1854     // a singleton Value is needed for split_thru_phi optimization.
  1855     int con = value->get_int();
  1856     return TypeInt::make(con & 0xFFFF);
  1858   return LoadNode::Value(phase);
  1861 //--------------------------LoadSNode::Ideal--------------------------------------
  1862 //
  1863 //  If the previous store is to the same address as this load,
  1864 //  and the value stored was larger than a short, replace this load
  1865 //  with the value stored truncated to a short.  If no truncation is
  1866 //  needed, the replacement is done in LoadNode::Identity().
  1867 //
  1868 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1869   Node* mem = in(MemNode::Memory);
  1870   Node* value = can_see_stored_value(mem,phase);
  1871   if( value && !phase->type(value)->higher_equal( _type ) ) {
  1872     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
  1873     return new (phase->C) RShiftINode(result, phase->intcon(16));
  1875   // Identity call will handle the case where truncation is not needed.
  1876   return LoadNode::Ideal(phase, can_reshape);
  1879 const Type* LoadSNode::Value(PhaseTransform *phase) const {
  1880   Node* mem = in(MemNode::Memory);
  1881   Node* value = can_see_stored_value(mem,phase);
  1882   if (value != NULL && value->is_Con() &&
  1883       !value->bottom_type()->higher_equal(_type)) {
  1884     // If the input to the store does not fit with the load's result type,
  1885     // it must be truncated. We can't delay until Ideal call since
  1886     // a singleton Value is needed for split_thru_phi optimization.
  1887     int con = value->get_int();
  1888     return TypeInt::make((con << 16) >> 16);
  1890   return LoadNode::Value(phase);
  1893 //=============================================================================
  1894 //----------------------------LoadKlassNode::make------------------------------
  1895 // Polymorphic factory method:
  1896 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
  1897   Compile* C = gvn.C;
  1898   Node *ctl = NULL;
  1899   // sanity check the alias category against the created node type
  1900   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
  1901   assert(adr_type != NULL, "expecting TypeKlassPtr");
  1902 #ifdef _LP64
  1903   if (adr_type->is_ptr_to_narrowklass()) {
  1904     assert(UseCompressedKlassPointers, "no compressed klasses");
  1905     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass()));
  1906     return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
  1908 #endif
  1909   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
  1910   return new (C) LoadKlassNode(ctl, mem, adr, at, tk);
  1913 //------------------------------Value------------------------------------------
  1914 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
  1915   return klass_value_common(phase);
  1918 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
  1919   // Either input is TOP ==> the result is TOP
  1920   const Type *t1 = phase->type( in(MemNode::Memory) );
  1921   if (t1 == Type::TOP)  return Type::TOP;
  1922   Node *adr = in(MemNode::Address);
  1923   const Type *t2 = phase->type( adr );
  1924   if (t2 == Type::TOP)  return Type::TOP;
  1925   const TypePtr *tp = t2->is_ptr();
  1926   if (TypePtr::above_centerline(tp->ptr()) ||
  1927       tp->ptr() == TypePtr::Null)  return Type::TOP;
  1929   // Return a more precise klass, if possible
  1930   const TypeInstPtr *tinst = tp->isa_instptr();
  1931   if (tinst != NULL) {
  1932     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
  1933     int offset = tinst->offset();
  1934     if (ik == phase->C->env()->Class_klass()
  1935         && (offset == java_lang_Class::klass_offset_in_bytes() ||
  1936             offset == java_lang_Class::array_klass_offset_in_bytes())) {
  1937       // We are loading a special hidden field from a Class mirror object,
  1938       // the field which points to the VM's Klass metaobject.
  1939       ciType* t = tinst->java_mirror_type();
  1940       // java_mirror_type returns non-null for compile-time Class constants.
  1941       if (t != NULL) {
  1942         // constant oop => constant klass
  1943         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  1944           return TypeKlassPtr::make(ciArrayKlass::make(t));
  1946         if (!t->is_klass()) {
  1947           // a primitive Class (e.g., int.class) has NULL for a klass field
  1948           return TypePtr::NULL_PTR;
  1950         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
  1951         return TypeKlassPtr::make(t->as_klass());
  1953       // non-constant mirror, so we can't tell what's going on
  1955     if( !ik->is_loaded() )
  1956       return _type;             // Bail out if not loaded
  1957     if (offset == oopDesc::klass_offset_in_bytes()) {
  1958       if (tinst->klass_is_exact()) {
  1959         return TypeKlassPtr::make(ik);
  1961       // See if we can become precise: no subklasses and no interface
  1962       // (Note:  We need to support verified interfaces.)
  1963       if (!ik->is_interface() && !ik->has_subklass()) {
  1964         //assert(!UseExactTypes, "this code should be useless with exact types");
  1965         // Add a dependence; if any subclass added we need to recompile
  1966         if (!ik->is_final()) {
  1967           // %%% should use stronger assert_unique_concrete_subtype instead
  1968           phase->C->dependencies()->assert_leaf_type(ik);
  1970         // Return precise klass
  1971         return TypeKlassPtr::make(ik);
  1974       // Return root of possible klass
  1975       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
  1979   // Check for loading klass from an array
  1980   const TypeAryPtr *tary = tp->isa_aryptr();
  1981   if( tary != NULL ) {
  1982     ciKlass *tary_klass = tary->klass();
  1983     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
  1984         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
  1985       if (tary->klass_is_exact()) {
  1986         return TypeKlassPtr::make(tary_klass);
  1988       ciArrayKlass *ak = tary->klass()->as_array_klass();
  1989       // If the klass is an object array, we defer the question to the
  1990       // array component klass.
  1991       if( ak->is_obj_array_klass() ) {
  1992         assert( ak->is_loaded(), "" );
  1993         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
  1994         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
  1995           ciInstanceKlass* ik = base_k->as_instance_klass();
  1996           // See if we can become precise: no subklasses and no interface
  1997           if (!ik->is_interface() && !ik->has_subklass()) {
  1998             //assert(!UseExactTypes, "this code should be useless with exact types");
  1999             // Add a dependence; if any subclass added we need to recompile
  2000             if (!ik->is_final()) {
  2001               phase->C->dependencies()->assert_leaf_type(ik);
  2003             // Return precise array klass
  2004             return TypeKlassPtr::make(ak);
  2007         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  2008       } else {                  // Found a type-array?
  2009         //assert(!UseExactTypes, "this code should be useless with exact types");
  2010         assert( ak->is_type_array_klass(), "" );
  2011         return TypeKlassPtr::make(ak); // These are always precise
  2016   // Check for loading klass from an array klass
  2017   const TypeKlassPtr *tkls = tp->isa_klassptr();
  2018   if (tkls != NULL && !StressReflectiveCode) {
  2019     ciKlass* klass = tkls->klass();
  2020     if( !klass->is_loaded() )
  2021       return _type;             // Bail out if not loaded
  2022     if( klass->is_obj_array_klass() &&
  2023         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
  2024       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
  2025       // // Always returning precise element type is incorrect,
  2026       // // e.g., element type could be object and array may contain strings
  2027       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
  2029       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
  2030       // according to the element type's subclassing.
  2031       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
  2033     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
  2034         tkls->offset() == in_bytes(Klass::super_offset())) {
  2035       ciKlass* sup = klass->as_instance_klass()->super();
  2036       // The field is Klass::_super.  Return its (constant) value.
  2037       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
  2038       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
  2042   // Bailout case
  2043   return LoadNode::Value(phase);
  2046 //------------------------------Identity---------------------------------------
  2047 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
  2048 // Also feed through the klass in Allocate(...klass...)._klass.
  2049 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
  2050   return klass_identity_common(phase);
  2053 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
  2054   Node* x = LoadNode::Identity(phase);
  2055   if (x != this)  return x;
  2057   // Take apart the address into an oop and and offset.
  2058   // Return 'this' if we cannot.
  2059   Node*    adr    = in(MemNode::Address);
  2060   intptr_t offset = 0;
  2061   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2062   if (base == NULL)     return this;
  2063   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
  2064   if (toop == NULL)     return this;
  2066   // We can fetch the klass directly through an AllocateNode.
  2067   // This works even if the klass is not constant (clone or newArray).
  2068   if (offset == oopDesc::klass_offset_in_bytes()) {
  2069     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
  2070     if (allocated_klass != NULL) {
  2071       return allocated_klass;
  2075   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
  2076   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
  2077   // See inline_native_Class_query for occurrences of these patterns.
  2078   // Java Example:  x.getClass().isAssignableFrom(y)
  2079   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
  2080   //
  2081   // This improves reflective code, often making the Class
  2082   // mirror go completely dead.  (Current exception:  Class
  2083   // mirrors may appear in debug info, but we could clean them out by
  2084   // introducing a new debug info operator for Klass*.java_mirror).
  2085   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
  2086       && (offset == java_lang_Class::klass_offset_in_bytes() ||
  2087           offset == java_lang_Class::array_klass_offset_in_bytes())) {
  2088     // We are loading a special hidden field from a Class mirror,
  2089     // the field which points to its Klass or ArrayKlass metaobject.
  2090     if (base->is_Load()) {
  2091       Node* adr2 = base->in(MemNode::Address);
  2092       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
  2093       if (tkls != NULL && !tkls->empty()
  2094           && (tkls->klass()->is_instance_klass() ||
  2095               tkls->klass()->is_array_klass())
  2096           && adr2->is_AddP()
  2097           ) {
  2098         int mirror_field = in_bytes(Klass::java_mirror_offset());
  2099         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
  2100           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
  2102         if (tkls->offset() == mirror_field) {
  2103           return adr2->in(AddPNode::Base);
  2109   return this;
  2113 //------------------------------Value------------------------------------------
  2114 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
  2115   const Type *t = klass_value_common(phase);
  2116   if (t == Type::TOP)
  2117     return t;
  2119   return t->make_narrowklass();
  2122 //------------------------------Identity---------------------------------------
  2123 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
  2124 // Also feed through the klass in Allocate(...klass...)._klass.
  2125 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
  2126   Node *x = klass_identity_common(phase);
  2128   const Type *t = phase->type( x );
  2129   if( t == Type::TOP ) return x;
  2130   if( t->isa_narrowklass()) return x;
  2131   assert (!t->isa_narrowoop(), "no narrow oop here");
  2133   return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
  2136 //------------------------------Value-----------------------------------------
  2137 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
  2138   // Either input is TOP ==> the result is TOP
  2139   const Type *t1 = phase->type( in(MemNode::Memory) );
  2140   if( t1 == Type::TOP ) return Type::TOP;
  2141   Node *adr = in(MemNode::Address);
  2142   const Type *t2 = phase->type( adr );
  2143   if( t2 == Type::TOP ) return Type::TOP;
  2144   const TypePtr *tp = t2->is_ptr();
  2145   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
  2146   const TypeAryPtr *tap = tp->isa_aryptr();
  2147   if( !tap ) return _type;
  2148   return tap->size();
  2151 //-------------------------------Ideal---------------------------------------
  2152 // Feed through the length in AllocateArray(...length...)._length.
  2153 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2154   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2155   if (p)  return (p == NodeSentinel) ? NULL : p;
  2157   // Take apart the address into an oop and and offset.
  2158   // Return 'this' if we cannot.
  2159   Node*    adr    = in(MemNode::Address);
  2160   intptr_t offset = 0;
  2161   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
  2162   if (base == NULL)     return NULL;
  2163   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2164   if (tary == NULL)     return NULL;
  2166   // We can fetch the length directly through an AllocateArrayNode.
  2167   // This works even if the length is not constant (clone or newArray).
  2168   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2169     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2170     if (alloc != NULL) {
  2171       Node* allocated_length = alloc->Ideal_length();
  2172       Node* len = alloc->make_ideal_length(tary, phase);
  2173       if (allocated_length != len) {
  2174         // New CastII improves on this.
  2175         return len;
  2180   return NULL;
  2183 //------------------------------Identity---------------------------------------
  2184 // Feed through the length in AllocateArray(...length...)._length.
  2185 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
  2186   Node* x = LoadINode::Identity(phase);
  2187   if (x != this)  return x;
  2189   // Take apart the address into an oop and and offset.
  2190   // Return 'this' if we cannot.
  2191   Node*    adr    = in(MemNode::Address);
  2192   intptr_t offset = 0;
  2193   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
  2194   if (base == NULL)     return this;
  2195   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
  2196   if (tary == NULL)     return this;
  2198   // We can fetch the length directly through an AllocateArrayNode.
  2199   // This works even if the length is not constant (clone or newArray).
  2200   if (offset == arrayOopDesc::length_offset_in_bytes()) {
  2201     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
  2202     if (alloc != NULL) {
  2203       Node* allocated_length = alloc->Ideal_length();
  2204       // Do not allow make_ideal_length to allocate a CastII node.
  2205       Node* len = alloc->make_ideal_length(tary, phase, false);
  2206       if (allocated_length == len) {
  2207         // Return allocated_length only if it would not be improved by a CastII.
  2208         return allocated_length;
  2213   return this;
  2217 //=============================================================================
  2218 //---------------------------StoreNode::make-----------------------------------
  2219 // Polymorphic factory method:
  2220 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
  2221   Compile* C = gvn.C;
  2222   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
  2223           ctl != NULL, "raw memory operations should have control edge");
  2225   switch (bt) {
  2226   case T_BOOLEAN:
  2227   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val);
  2228   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val);
  2229   case T_CHAR:
  2230   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val);
  2231   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val);
  2232   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val);
  2233   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val);
  2234   case T_METADATA:
  2235   case T_ADDRESS:
  2236   case T_OBJECT:
  2237 #ifdef _LP64
  2238     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2239       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
  2240       return new (C) StoreNNode(ctl, mem, adr, adr_type, val);
  2241     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
  2242                (UseCompressedKlassPointers && val->bottom_type()->isa_klassptr() &&
  2243                 adr->bottom_type()->isa_rawptr())) {
  2244       val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
  2245       return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val);
  2247 #endif
  2249       return new (C) StorePNode(ctl, mem, adr, adr_type, val);
  2252   ShouldNotReachHere();
  2253   return (StoreNode*)NULL;
  2256 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
  2257   bool require_atomic = true;
  2258   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
  2262 //--------------------------bottom_type----------------------------------------
  2263 const Type *StoreNode::bottom_type() const {
  2264   return Type::MEMORY;
  2267 //------------------------------hash-------------------------------------------
  2268 uint StoreNode::hash() const {
  2269   // unroll addition of interesting fields
  2270   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
  2272   // Since they are not commoned, do not hash them:
  2273   return NO_HASH;
  2276 //------------------------------Ideal------------------------------------------
  2277 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
  2278 // When a store immediately follows a relevant allocation/initialization,
  2279 // try to capture it into the initialization, or hoist it above.
  2280 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2281   Node* p = MemNode::Ideal_common(phase, can_reshape);
  2282   if (p)  return (p == NodeSentinel) ? NULL : p;
  2284   Node* mem     = in(MemNode::Memory);
  2285   Node* address = in(MemNode::Address);
  2287   // Back-to-back stores to same address?  Fold em up.  Generally
  2288   // unsafe if I have intervening uses...  Also disallowed for StoreCM
  2289   // since they must follow each StoreP operation.  Redundant StoreCMs
  2290   // are eliminated just before matching in final_graph_reshape.
  2291   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
  2292       mem->Opcode() != Op_StoreCM) {
  2293     // Looking at a dead closed cycle of memory?
  2294     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
  2296     assert(Opcode() == mem->Opcode() ||
  2297            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
  2298            "no mismatched stores, except on raw memory");
  2300     if (mem->outcnt() == 1 &&           // check for intervening uses
  2301         mem->as_Store()->memory_size() <= this->memory_size()) {
  2302       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
  2303       // For example, 'mem' might be the final state at a conditional return.
  2304       // Or, 'mem' might be used by some node which is live at the same time
  2305       // 'this' is live, which might be unschedulable.  So, require exactly
  2306       // ONE user, the 'this' store, until such time as we clone 'mem' for
  2307       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
  2308       if (can_reshape) {  // (%%% is this an anachronism?)
  2309         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
  2310                   phase->is_IterGVN());
  2311       } else {
  2312         // It's OK to do this in the parser, since DU info is always accurate,
  2313         // and the parser always refers to nodes via SafePointNode maps.
  2314         set_req(MemNode::Memory, mem->in(MemNode::Memory));
  2316       return this;
  2320   // Capture an unaliased, unconditional, simple store into an initializer.
  2321   // Or, if it is independent of the allocation, hoist it above the allocation.
  2322   if (ReduceFieldZeroing && /*can_reshape &&*/
  2323       mem->is_Proj() && mem->in(0)->is_Initialize()) {
  2324     InitializeNode* init = mem->in(0)->as_Initialize();
  2325     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
  2326     if (offset > 0) {
  2327       Node* moved = init->capture_store(this, offset, phase, can_reshape);
  2328       // If the InitializeNode captured me, it made a raw copy of me,
  2329       // and I need to disappear.
  2330       if (moved != NULL) {
  2331         // %%% hack to ensure that Ideal returns a new node:
  2332         mem = MergeMemNode::make(phase->C, mem);
  2333         return mem;             // fold me away
  2338   return NULL;                  // No further progress
  2341 //------------------------------Value-----------------------------------------
  2342 const Type *StoreNode::Value( PhaseTransform *phase ) const {
  2343   // Either input is TOP ==> the result is TOP
  2344   const Type *t1 = phase->type( in(MemNode::Memory) );
  2345   if( t1 == Type::TOP ) return Type::TOP;
  2346   const Type *t2 = phase->type( in(MemNode::Address) );
  2347   if( t2 == Type::TOP ) return Type::TOP;
  2348   const Type *t3 = phase->type( in(MemNode::ValueIn) );
  2349   if( t3 == Type::TOP ) return Type::TOP;
  2350   return Type::MEMORY;
  2353 //------------------------------Identity---------------------------------------
  2354 // Remove redundant stores:
  2355 //   Store(m, p, Load(m, p)) changes to m.
  2356 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
  2357 Node *StoreNode::Identity( PhaseTransform *phase ) {
  2358   Node* mem = in(MemNode::Memory);
  2359   Node* adr = in(MemNode::Address);
  2360   Node* val = in(MemNode::ValueIn);
  2362   // Load then Store?  Then the Store is useless
  2363   if (val->is_Load() &&
  2364       val->in(MemNode::Address)->eqv_uncast(adr) &&
  2365       val->in(MemNode::Memory )->eqv_uncast(mem) &&
  2366       val->as_Load()->store_Opcode() == Opcode()) {
  2367     return mem;
  2370   // Two stores in a row of the same value?
  2371   if (mem->is_Store() &&
  2372       mem->in(MemNode::Address)->eqv_uncast(adr) &&
  2373       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
  2374       mem->Opcode() == Opcode()) {
  2375     return mem;
  2378   // Store of zero anywhere into a freshly-allocated object?
  2379   // Then the store is useless.
  2380   // (It must already have been captured by the InitializeNode.)
  2381   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
  2382     // a newly allocated object is already all-zeroes everywhere
  2383     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
  2384       return mem;
  2387     // the store may also apply to zero-bits in an earlier object
  2388     Node* prev_mem = find_previous_store(phase);
  2389     // Steps (a), (b):  Walk past independent stores to find an exact match.
  2390     if (prev_mem != NULL) {
  2391       Node* prev_val = can_see_stored_value(prev_mem, phase);
  2392       if (prev_val != NULL && phase->eqv(prev_val, val)) {
  2393         // prev_val and val might differ by a cast; it would be good
  2394         // to keep the more informative of the two.
  2395         return mem;
  2400   return this;
  2403 //------------------------------match_edge-------------------------------------
  2404 // Do we Match on this edge index or not?  Match only memory & value
  2405 uint StoreNode::match_edge(uint idx) const {
  2406   return idx == MemNode::Address || idx == MemNode::ValueIn;
  2409 //------------------------------cmp--------------------------------------------
  2410 // Do not common stores up together.  They generally have to be split
  2411 // back up anyways, so do not bother.
  2412 uint StoreNode::cmp( const Node &n ) const {
  2413   return (&n == this);          // Always fail except on self
  2416 //------------------------------Ideal_masked_input-----------------------------
  2417 // Check for a useless mask before a partial-word store
  2418 // (StoreB ... (AndI valIn conIa) )
  2419 // If (conIa & mask == mask) this simplifies to
  2420 // (StoreB ... (valIn) )
  2421 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
  2422   Node *val = in(MemNode::ValueIn);
  2423   if( val->Opcode() == Op_AndI ) {
  2424     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2425     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
  2426       set_req(MemNode::ValueIn, val->in(1));
  2427       return this;
  2430   return NULL;
  2434 //------------------------------Ideal_sign_extended_input----------------------
  2435 // Check for useless sign-extension before a partial-word store
  2436 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
  2437 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
  2438 // (StoreB ... (valIn) )
  2439 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
  2440   Node *val = in(MemNode::ValueIn);
  2441   if( val->Opcode() == Op_RShiftI ) {
  2442     const TypeInt *t = phase->type( val->in(2) )->isa_int();
  2443     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
  2444       Node *shl = val->in(1);
  2445       if( shl->Opcode() == Op_LShiftI ) {
  2446         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
  2447         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
  2448           set_req(MemNode::ValueIn, shl->in(1));
  2449           return this;
  2454   return NULL;
  2457 //------------------------------value_never_loaded-----------------------------------
  2458 // Determine whether there are any possible loads of the value stored.
  2459 // For simplicity, we actually check if there are any loads from the
  2460 // address stored to, not just for loads of the value stored by this node.
  2461 //
  2462 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
  2463   Node *adr = in(Address);
  2464   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
  2465   if (adr_oop == NULL)
  2466     return false;
  2467   if (!adr_oop->is_known_instance_field())
  2468     return false; // if not a distinct instance, there may be aliases of the address
  2469   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
  2470     Node *use = adr->fast_out(i);
  2471     int opc = use->Opcode();
  2472     if (use->is_Load() || use->is_LoadStore()) {
  2473       return false;
  2476   return true;
  2479 //=============================================================================
  2480 //------------------------------Ideal------------------------------------------
  2481 // If the store is from an AND mask that leaves the low bits untouched, then
  2482 // we can skip the AND operation.  If the store is from a sign-extension
  2483 // (a left shift, then right shift) we can skip both.
  2484 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2485   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
  2486   if( progress != NULL ) return progress;
  2488   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
  2489   if( progress != NULL ) return progress;
  2491   // Finally check the default case
  2492   return StoreNode::Ideal(phase, can_reshape);
  2495 //=============================================================================
  2496 //------------------------------Ideal------------------------------------------
  2497 // If the store is from an AND mask that leaves the low bits untouched, then
  2498 // we can skip the AND operation
  2499 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2500   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
  2501   if( progress != NULL ) return progress;
  2503   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
  2504   if( progress != NULL ) return progress;
  2506   // Finally check the default case
  2507   return StoreNode::Ideal(phase, can_reshape);
  2510 //=============================================================================
  2511 //------------------------------Identity---------------------------------------
  2512 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
  2513   // No need to card mark when storing a null ptr
  2514   Node* my_store = in(MemNode::OopStore);
  2515   if (my_store->is_Store()) {
  2516     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
  2517     if( t1 == TypePtr::NULL_PTR ) {
  2518       return in(MemNode::Memory);
  2521   return this;
  2524 //=============================================================================
  2525 //------------------------------Ideal---------------------------------------
  2526 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2527   Node* progress = StoreNode::Ideal(phase, can_reshape);
  2528   if (progress != NULL) return progress;
  2530   Node* my_store = in(MemNode::OopStore);
  2531   if (my_store->is_MergeMem()) {
  2532     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
  2533     set_req(MemNode::OopStore, mem);
  2534     return this;
  2537   return NULL;
  2540 //------------------------------Value-----------------------------------------
  2541 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
  2542   // Either input is TOP ==> the result is TOP
  2543   const Type *t = phase->type( in(MemNode::Memory) );
  2544   if( t == Type::TOP ) return Type::TOP;
  2545   t = phase->type( in(MemNode::Address) );
  2546   if( t == Type::TOP ) return Type::TOP;
  2547   t = phase->type( in(MemNode::ValueIn) );
  2548   if( t == Type::TOP ) return Type::TOP;
  2549   // If extra input is TOP ==> the result is TOP
  2550   t = phase->type( in(MemNode::OopStore) );
  2551   if( t == Type::TOP ) return Type::TOP;
  2553   return StoreNode::Value( phase );
  2557 //=============================================================================
  2558 //----------------------------------SCMemProjNode------------------------------
  2559 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
  2561   return bottom_type();
  2564 //=============================================================================
  2565 //----------------------------------LoadStoreNode------------------------------
  2566 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
  2567   : Node(required),
  2568     _type(rt),
  2569     _adr_type(at)
  2571   init_req(MemNode::Control, c  );
  2572   init_req(MemNode::Memory , mem);
  2573   init_req(MemNode::Address, adr);
  2574   init_req(MemNode::ValueIn, val);
  2575   init_class_id(Class_LoadStore);
  2578 uint LoadStoreNode::ideal_reg() const {
  2579   return _type->ideal_reg();
  2582 bool LoadStoreNode::result_not_used() const {
  2583   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
  2584     Node *x = fast_out(i);
  2585     if (x->Opcode() == Op_SCMemProj) continue;
  2586     return false;
  2588   return true;
  2591 uint LoadStoreNode::size_of() const { return sizeof(*this); }
  2593 //=============================================================================
  2594 //----------------------------------LoadStoreConditionalNode--------------------
  2595 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
  2596   init_req(ExpectedIn, ex );
  2599 //=============================================================================
  2600 //-------------------------------adr_type--------------------------------------
  2601 // Do we Match on this edge index or not?  Do not match memory
  2602 const TypePtr* ClearArrayNode::adr_type() const {
  2603   Node *adr = in(3);
  2604   return MemNode::calculate_adr_type(adr->bottom_type());
  2607 //------------------------------match_edge-------------------------------------
  2608 // Do we Match on this edge index or not?  Do not match memory
  2609 uint ClearArrayNode::match_edge(uint idx) const {
  2610   return idx > 1;
  2613 //------------------------------Identity---------------------------------------
  2614 // Clearing a zero length array does nothing
  2615 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
  2616   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
  2619 //------------------------------Idealize---------------------------------------
  2620 // Clearing a short array is faster with stores
  2621 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
  2622   const int unit = BytesPerLong;
  2623   const TypeX* t = phase->type(in(2))->isa_intptr_t();
  2624   if (!t)  return NULL;
  2625   if (!t->is_con())  return NULL;
  2626   intptr_t raw_count = t->get_con();
  2627   intptr_t size = raw_count;
  2628   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
  2629   // Clearing nothing uses the Identity call.
  2630   // Negative clears are possible on dead ClearArrays
  2631   // (see jck test stmt114.stmt11402.val).
  2632   if (size <= 0 || size % unit != 0)  return NULL;
  2633   intptr_t count = size / unit;
  2634   // Length too long; use fast hardware clear
  2635   if (size > Matcher::init_array_short_size)  return NULL;
  2636   Node *mem = in(1);
  2637   if( phase->type(mem)==Type::TOP ) return NULL;
  2638   Node *adr = in(3);
  2639   const Type* at = phase->type(adr);
  2640   if( at==Type::TOP ) return NULL;
  2641   const TypePtr* atp = at->isa_ptr();
  2642   // adjust atp to be the correct array element address type
  2643   if (atp == NULL)  atp = TypePtr::BOTTOM;
  2644   else              atp = atp->add_offset(Type::OffsetBot);
  2645   // Get base for derived pointer purposes
  2646   if( adr->Opcode() != Op_AddP ) Unimplemented();
  2647   Node *base = adr->in(1);
  2649   Node *zero = phase->makecon(TypeLong::ZERO);
  2650   Node *off  = phase->MakeConX(BytesPerLong);
  2651   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
  2652   count--;
  2653   while( count-- ) {
  2654     mem = phase->transform(mem);
  2655     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
  2656     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
  2658   return mem;
  2661 //----------------------------step_through----------------------------------
  2662 // Return allocation input memory edge if it is different instance
  2663 // or itself if it is the one we are looking for.
  2664 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
  2665   Node* n = *np;
  2666   assert(n->is_ClearArray(), "sanity");
  2667   intptr_t offset;
  2668   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
  2669   // This method is called only before Allocate nodes are expanded during
  2670   // macro nodes expansion. Before that ClearArray nodes are only generated
  2671   // in LibraryCallKit::generate_arraycopy() which follows allocations.
  2672   assert(alloc != NULL, "should have allocation");
  2673   if (alloc->_idx == instance_id) {
  2674     // Can not bypass initialization of the instance we are looking for.
  2675     return false;
  2677   // Otherwise skip it.
  2678   InitializeNode* init = alloc->initialization();
  2679   if (init != NULL)
  2680     *np = init->in(TypeFunc::Memory);
  2681   else
  2682     *np = alloc->in(TypeFunc::Memory);
  2683   return true;
  2686 //----------------------------clear_memory-------------------------------------
  2687 // Generate code to initialize object storage to zero.
  2688 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2689                                    intptr_t start_offset,
  2690                                    Node* end_offset,
  2691                                    PhaseGVN* phase) {
  2692   Compile* C = phase->C;
  2693   intptr_t offset = start_offset;
  2695   int unit = BytesPerLong;
  2696   if ((offset % unit) != 0) {
  2697     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
  2698     adr = phase->transform(adr);
  2699     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2700     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2701     mem = phase->transform(mem);
  2702     offset += BytesPerInt;
  2704   assert((offset % unit) == 0, "");
  2706   // Initialize the remaining stuff, if any, with a ClearArray.
  2707   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
  2710 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2711                                    Node* start_offset,
  2712                                    Node* end_offset,
  2713                                    PhaseGVN* phase) {
  2714   if (start_offset == end_offset) {
  2715     // nothing to do
  2716     return mem;
  2719   Compile* C = phase->C;
  2720   int unit = BytesPerLong;
  2721   Node* zbase = start_offset;
  2722   Node* zend  = end_offset;
  2724   // Scale to the unit required by the CPU:
  2725   if (!Matcher::init_array_count_is_in_bytes) {
  2726     Node* shift = phase->intcon(exact_log2(unit));
  2727     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
  2728     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
  2731   // Bulk clear double-words
  2732   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
  2733   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
  2734   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
  2735   return phase->transform(mem);
  2738 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
  2739                                    intptr_t start_offset,
  2740                                    intptr_t end_offset,
  2741                                    PhaseGVN* phase) {
  2742   if (start_offset == end_offset) {
  2743     // nothing to do
  2744     return mem;
  2747   Compile* C = phase->C;
  2748   assert((end_offset % BytesPerInt) == 0, "odd end offset");
  2749   intptr_t done_offset = end_offset;
  2750   if ((done_offset % BytesPerLong) != 0) {
  2751     done_offset -= BytesPerInt;
  2753   if (done_offset > start_offset) {
  2754     mem = clear_memory(ctl, mem, dest,
  2755                        start_offset, phase->MakeConX(done_offset), phase);
  2757   if (done_offset < end_offset) { // emit the final 32-bit store
  2758     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
  2759     adr = phase->transform(adr);
  2760     const TypePtr* atp = TypeRawPtr::BOTTOM;
  2761     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
  2762     mem = phase->transform(mem);
  2763     done_offset += BytesPerInt;
  2765   assert(done_offset == end_offset, "");
  2766   return mem;
  2769 //=============================================================================
  2770 // Do not match memory edge.
  2771 uint StrIntrinsicNode::match_edge(uint idx) const {
  2772   return idx == 2 || idx == 3;
  2775 //------------------------------Ideal------------------------------------------
  2776 // Return a node which is more "ideal" than the current node.  Strip out
  2777 // control copies
  2778 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2779   if (remove_dead_region(phase, can_reshape)) return this;
  2780   // Don't bother trying to transform a dead node
  2781   if (in(0) && in(0)->is_top())  return NULL;
  2783   if (can_reshape) {
  2784     Node* mem = phase->transform(in(MemNode::Memory));
  2785     // If transformed to a MergeMem, get the desired slice
  2786     uint alias_idx = phase->C->get_alias_index(adr_type());
  2787     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
  2788     if (mem != in(MemNode::Memory)) {
  2789       set_req(MemNode::Memory, mem);
  2790       return this;
  2793   return NULL;
  2796 //------------------------------Value------------------------------------------
  2797 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
  2798   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  2799   return bottom_type();
  2802 //=============================================================================
  2803 //------------------------------match_edge-------------------------------------
  2804 // Do not match memory edge
  2805 uint EncodeISOArrayNode::match_edge(uint idx) const {
  2806   return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
  2809 //------------------------------Ideal------------------------------------------
  2810 // Return a node which is more "ideal" than the current node.  Strip out
  2811 // control copies
  2812 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2813   return remove_dead_region(phase, can_reshape) ? this : NULL;
  2816 //------------------------------Value------------------------------------------
  2817 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
  2818   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
  2819   return bottom_type();
  2822 //=============================================================================
  2823 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
  2824   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
  2825     _adr_type(C->get_adr_type(alias_idx))
  2827   init_class_id(Class_MemBar);
  2828   Node* top = C->top();
  2829   init_req(TypeFunc::I_O,top);
  2830   init_req(TypeFunc::FramePtr,top);
  2831   init_req(TypeFunc::ReturnAdr,top);
  2832   if (precedent != NULL)
  2833     init_req(TypeFunc::Parms, precedent);
  2836 //------------------------------cmp--------------------------------------------
  2837 uint MemBarNode::hash() const { return NO_HASH; }
  2838 uint MemBarNode::cmp( const Node &n ) const {
  2839   return (&n == this);          // Always fail except on self
  2842 //------------------------------make-------------------------------------------
  2843 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
  2844   switch (opcode) {
  2845   case Op_MemBarAcquire:   return new(C) MemBarAcquireNode(C,  atp, pn);
  2846   case Op_MemBarRelease:   return new(C) MemBarReleaseNode(C,  atp, pn);
  2847   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C,  atp, pn);
  2848   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C,  atp, pn);
  2849   case Op_MemBarVolatile:  return new(C) MemBarVolatileNode(C, atp, pn);
  2850   case Op_MemBarCPUOrder:  return new(C) MemBarCPUOrderNode(C, atp, pn);
  2851   case Op_Initialize:      return new(C) InitializeNode(C,     atp, pn);
  2852   case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C,  atp, pn);
  2853   default:                 ShouldNotReachHere(); return NULL;
  2857 //------------------------------Ideal------------------------------------------
  2858 // Return a node which is more "ideal" than the current node.  Strip out
  2859 // control copies
  2860 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  2861   if (remove_dead_region(phase, can_reshape)) return this;
  2862   // Don't bother trying to transform a dead node
  2863   if (in(0) && in(0)->is_top())  return NULL;
  2865   // Eliminate volatile MemBars for scalar replaced objects.
  2866   if (can_reshape && req() == (Precedent+1) &&
  2867       (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
  2868     // Volatile field loads and stores.
  2869     Node* my_mem = in(MemBarNode::Precedent);
  2870     if (my_mem != NULL && my_mem->is_Mem()) {
  2871       const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
  2872       // Check for scalar replaced object reference.
  2873       if( t_oop != NULL && t_oop->is_known_instance_field() &&
  2874           t_oop->offset() != Type::OffsetBot &&
  2875           t_oop->offset() != Type::OffsetTop) {
  2876         // Replace MemBar projections by its inputs.
  2877         PhaseIterGVN* igvn = phase->is_IterGVN();
  2878         igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
  2879         igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
  2880         // Must return either the original node (now dead) or a new node
  2881         // (Do not return a top here, since that would break the uniqueness of top.)
  2882         return new (phase->C) ConINode(TypeInt::ZERO);
  2886   return NULL;
  2889 //------------------------------Value------------------------------------------
  2890 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
  2891   if( !in(0) ) return Type::TOP;
  2892   if( phase->type(in(0)) == Type::TOP )
  2893     return Type::TOP;
  2894   return TypeTuple::MEMBAR;
  2897 //------------------------------match------------------------------------------
  2898 // Construct projections for memory.
  2899 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
  2900   switch (proj->_con) {
  2901   case TypeFunc::Control:
  2902   case TypeFunc::Memory:
  2903     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  2905   ShouldNotReachHere();
  2906   return NULL;
  2909 //===========================InitializeNode====================================
  2910 // SUMMARY:
  2911 // This node acts as a memory barrier on raw memory, after some raw stores.
  2912 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
  2913 // The Initialize can 'capture' suitably constrained stores as raw inits.
  2914 // It can coalesce related raw stores into larger units (called 'tiles').
  2915 // It can avoid zeroing new storage for memory units which have raw inits.
  2916 // At macro-expansion, it is marked 'complete', and does not optimize further.
  2917 //
  2918 // EXAMPLE:
  2919 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
  2920 //   ctl = incoming control; mem* = incoming memory
  2921 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
  2922 // First allocate uninitialized memory and fill in the header:
  2923 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
  2924 //   ctl := alloc.Control; mem* := alloc.Memory*
  2925 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
  2926 // Then initialize to zero the non-header parts of the raw memory block:
  2927 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
  2928 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
  2929 // After the initialize node executes, the object is ready for service:
  2930 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
  2931 // Suppose its body is immediately initialized as {1,2}:
  2932 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  2933 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  2934 //   mem.SLICE(#short[*]) := store2
  2935 //
  2936 // DETAILS:
  2937 // An InitializeNode collects and isolates object initialization after
  2938 // an AllocateNode and before the next possible safepoint.  As a
  2939 // memory barrier (MemBarNode), it keeps critical stores from drifting
  2940 // down past any safepoint or any publication of the allocation.
  2941 // Before this barrier, a newly-allocated object may have uninitialized bits.
  2942 // After this barrier, it may be treated as a real oop, and GC is allowed.
  2943 //
  2944 // The semantics of the InitializeNode include an implicit zeroing of
  2945 // the new object from object header to the end of the object.
  2946 // (The object header and end are determined by the AllocateNode.)
  2947 //
  2948 // Certain stores may be added as direct inputs to the InitializeNode.
  2949 // These stores must update raw memory, and they must be to addresses
  2950 // derived from the raw address produced by AllocateNode, and with
  2951 // a constant offset.  They must be ordered by increasing offset.
  2952 // The first one is at in(RawStores), the last at in(req()-1).
  2953 // Unlike most memory operations, they are not linked in a chain,
  2954 // but are displayed in parallel as users of the rawmem output of
  2955 // the allocation.
  2956 //
  2957 // (See comments in InitializeNode::capture_store, which continue
  2958 // the example given above.)
  2959 //
  2960 // When the associated Allocate is macro-expanded, the InitializeNode
  2961 // may be rewritten to optimize collected stores.  A ClearArrayNode
  2962 // may also be created at that point to represent any required zeroing.
  2963 // The InitializeNode is then marked 'complete', prohibiting further
  2964 // capturing of nearby memory operations.
  2965 //
  2966 // During macro-expansion, all captured initializations which store
  2967 // constant values of 32 bits or smaller are coalesced (if advantageous)
  2968 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
  2969 // initialized in fewer memory operations.  Memory words which are
  2970 // covered by neither tiles nor non-constant stores are pre-zeroed
  2971 // by explicit stores of zero.  (The code shape happens to do all
  2972 // zeroing first, then all other stores, with both sequences occurring
  2973 // in order of ascending offsets.)
  2974 //
  2975 // Alternatively, code may be inserted between an AllocateNode and its
  2976 // InitializeNode, to perform arbitrary initialization of the new object.
  2977 // E.g., the object copying intrinsics insert complex data transfers here.
  2978 // The initialization must then be marked as 'complete' disable the
  2979 // built-in zeroing semantics and the collection of initializing stores.
  2980 //
  2981 // While an InitializeNode is incomplete, reads from the memory state
  2982 // produced by it are optimizable if they match the control edge and
  2983 // new oop address associated with the allocation/initialization.
  2984 // They return a stored value (if the offset matches) or else zero.
  2985 // A write to the memory state, if it matches control and address,
  2986 // and if it is to a constant offset, may be 'captured' by the
  2987 // InitializeNode.  It is cloned as a raw memory operation and rewired
  2988 // inside the initialization, to the raw oop produced by the allocation.
  2989 // Operations on addresses which are provably distinct (e.g., to
  2990 // other AllocateNodes) are allowed to bypass the initialization.
  2991 //
  2992 // The effect of all this is to consolidate object initialization
  2993 // (both arrays and non-arrays, both piecewise and bulk) into a
  2994 // single location, where it can be optimized as a unit.
  2995 //
  2996 // Only stores with an offset less than TrackedInitializationLimit words
  2997 // will be considered for capture by an InitializeNode.  This puts a
  2998 // reasonable limit on the complexity of optimized initializations.
  3000 //---------------------------InitializeNode------------------------------------
  3001 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
  3002   : _is_complete(Incomplete), _does_not_escape(false),
  3003     MemBarNode(C, adr_type, rawoop)
  3005   init_class_id(Class_Initialize);
  3007   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
  3008   assert(in(RawAddress) == rawoop, "proper init");
  3009   // Note:  allocation() can be NULL, for secondary initialization barriers
  3012 // Since this node is not matched, it will be processed by the
  3013 // register allocator.  Declare that there are no constraints
  3014 // on the allocation of the RawAddress edge.
  3015 const RegMask &InitializeNode::in_RegMask(uint idx) const {
  3016   // This edge should be set to top, by the set_complete.  But be conservative.
  3017   if (idx == InitializeNode::RawAddress)
  3018     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
  3019   return RegMask::Empty;
  3022 Node* InitializeNode::memory(uint alias_idx) {
  3023   Node* mem = in(Memory);
  3024   if (mem->is_MergeMem()) {
  3025     return mem->as_MergeMem()->memory_at(alias_idx);
  3026   } else {
  3027     // incoming raw memory is not split
  3028     return mem;
  3032 bool InitializeNode::is_non_zero() {
  3033   if (is_complete())  return false;
  3034   remove_extra_zeroes();
  3035   return (req() > RawStores);
  3038 void InitializeNode::set_complete(PhaseGVN* phase) {
  3039   assert(!is_complete(), "caller responsibility");
  3040   _is_complete = Complete;
  3042   // After this node is complete, it contains a bunch of
  3043   // raw-memory initializations.  There is no need for
  3044   // it to have anything to do with non-raw memory effects.
  3045   // Therefore, tell all non-raw users to re-optimize themselves,
  3046   // after skipping the memory effects of this initialization.
  3047   PhaseIterGVN* igvn = phase->is_IterGVN();
  3048   if (igvn)  igvn->add_users_to_worklist(this);
  3051 // convenience function
  3052 // return false if the init contains any stores already
  3053 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
  3054   InitializeNode* init = initialization();
  3055   if (init == NULL || init->is_complete())  return false;
  3056   init->remove_extra_zeroes();
  3057   // for now, if this allocation has already collected any inits, bail:
  3058   if (init->is_non_zero())  return false;
  3059   init->set_complete(phase);
  3060   return true;
  3063 void InitializeNode::remove_extra_zeroes() {
  3064   if (req() == RawStores)  return;
  3065   Node* zmem = zero_memory();
  3066   uint fill = RawStores;
  3067   for (uint i = fill; i < req(); i++) {
  3068     Node* n = in(i);
  3069     if (n->is_top() || n == zmem)  continue;  // skip
  3070     if (fill < i)  set_req(fill, n);          // compact
  3071     ++fill;
  3073   // delete any empty spaces created:
  3074   while (fill < req()) {
  3075     del_req(fill);
  3079 // Helper for remembering which stores go with which offsets.
  3080 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
  3081   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
  3082   intptr_t offset = -1;
  3083   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
  3084                                                phase, offset);
  3085   if (base == NULL)     return -1;  // something is dead,
  3086   if (offset < 0)       return -1;  //        dead, dead
  3087   return offset;
  3090 // Helper for proving that an initialization expression is
  3091 // "simple enough" to be folded into an object initialization.
  3092 // Attempts to prove that a store's initial value 'n' can be captured
  3093 // within the initialization without creating a vicious cycle, such as:
  3094 //     { Foo p = new Foo(); p.next = p; }
  3095 // True for constants and parameters and small combinations thereof.
  3096 bool InitializeNode::detect_init_independence(Node* n,
  3097                                               bool st_is_pinned,
  3098                                               int& count) {
  3099   if (n == NULL)      return true;   // (can this really happen?)
  3100   if (n->is_Proj())   n = n->in(0);
  3101   if (n == this)      return false;  // found a cycle
  3102   if (n->is_Con())    return true;
  3103   if (n->is_Start())  return true;   // params, etc., are OK
  3104   if (n->is_Root())   return true;   // even better
  3106   Node* ctl = n->in(0);
  3107   if (ctl != NULL && !ctl->is_top()) {
  3108     if (ctl->is_Proj())  ctl = ctl->in(0);
  3109     if (ctl == this)  return false;
  3111     // If we already know that the enclosing memory op is pinned right after
  3112     // the init, then any control flow that the store has picked up
  3113     // must have preceded the init, or else be equal to the init.
  3114     // Even after loop optimizations (which might change control edges)
  3115     // a store is never pinned *before* the availability of its inputs.
  3116     if (!MemNode::all_controls_dominate(n, this))
  3117       return false;                  // failed to prove a good control
  3121   // Check data edges for possible dependencies on 'this'.
  3122   if ((count += 1) > 20)  return false;  // complexity limit
  3123   for (uint i = 1; i < n->req(); i++) {
  3124     Node* m = n->in(i);
  3125     if (m == NULL || m == n || m->is_top())  continue;
  3126     uint first_i = n->find_edge(m);
  3127     if (i != first_i)  continue;  // process duplicate edge just once
  3128     if (!detect_init_independence(m, st_is_pinned, count)) {
  3129       return false;
  3133   return true;
  3136 // Here are all the checks a Store must pass before it can be moved into
  3137 // an initialization.  Returns zero if a check fails.
  3138 // On success, returns the (constant) offset to which the store applies,
  3139 // within the initialized memory.
  3140 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
  3141   const int FAIL = 0;
  3142   if (st->req() != MemNode::ValueIn + 1)
  3143     return FAIL;                // an inscrutable StoreNode (card mark?)
  3144   Node* ctl = st->in(MemNode::Control);
  3145   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
  3146     return FAIL;                // must be unconditional after the initialization
  3147   Node* mem = st->in(MemNode::Memory);
  3148   if (!(mem->is_Proj() && mem->in(0) == this))
  3149     return FAIL;                // must not be preceded by other stores
  3150   Node* adr = st->in(MemNode::Address);
  3151   intptr_t offset;
  3152   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
  3153   if (alloc == NULL)
  3154     return FAIL;                // inscrutable address
  3155   if (alloc != allocation())
  3156     return FAIL;                // wrong allocation!  (store needs to float up)
  3157   Node* val = st->in(MemNode::ValueIn);
  3158   int complexity_count = 0;
  3159   if (!detect_init_independence(val, true, complexity_count))
  3160     return FAIL;                // stored value must be 'simple enough'
  3162   // The Store can be captured only if nothing after the allocation
  3163   // and before the Store is using the memory location that the store
  3164   // overwrites.
  3165   bool failed = false;
  3166   // If is_complete_with_arraycopy() is true the shape of the graph is
  3167   // well defined and is safe so no need for extra checks.
  3168   if (!is_complete_with_arraycopy()) {
  3169     // We are going to look at each use of the memory state following
  3170     // the allocation to make sure nothing reads the memory that the
  3171     // Store writes.
  3172     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
  3173     int alias_idx = phase->C->get_alias_index(t_adr);
  3174     ResourceMark rm;
  3175     Unique_Node_List mems;
  3176     mems.push(mem);
  3177     Node* unique_merge = NULL;
  3178     for (uint next = 0; next < mems.size(); ++next) {
  3179       Node *m  = mems.at(next);
  3180       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  3181         Node *n = m->fast_out(j);
  3182         if (n->outcnt() == 0) {
  3183           continue;
  3185         if (n == st) {
  3186           continue;
  3187         } else if (n->in(0) != NULL && n->in(0) != ctl) {
  3188           // If the control of this use is different from the control
  3189           // of the Store which is right after the InitializeNode then
  3190           // this node cannot be between the InitializeNode and the
  3191           // Store.
  3192           continue;
  3193         } else if (n->is_MergeMem()) {
  3194           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
  3195             // We can hit a MergeMemNode (that will likely go away
  3196             // later) that is a direct use of the memory state
  3197             // following the InitializeNode on the same slice as the
  3198             // store node that we'd like to capture. We need to check
  3199             // the uses of the MergeMemNode.
  3200             mems.push(n);
  3202         } else if (n->is_Mem()) {
  3203           Node* other_adr = n->in(MemNode::Address);
  3204           if (other_adr == adr) {
  3205             failed = true;
  3206             break;
  3207           } else {
  3208             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
  3209             if (other_t_adr != NULL) {
  3210               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
  3211               if (other_alias_idx == alias_idx) {
  3212                 // A load from the same memory slice as the store right
  3213                 // after the InitializeNode. We check the control of the
  3214                 // object/array that is loaded from. If it's the same as
  3215                 // the store control then we cannot capture the store.
  3216                 assert(!n->is_Store(), "2 stores to same slice on same control?");
  3217                 Node* base = other_adr;
  3218                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
  3219                 base = base->in(AddPNode::Base);
  3220                 if (base != NULL) {
  3221                   base = base->uncast();
  3222                   if (base->is_Proj() && base->in(0) == alloc) {
  3223                     failed = true;
  3224                     break;
  3230         } else {
  3231           failed = true;
  3232           break;
  3237   if (failed) {
  3238     if (!can_reshape) {
  3239       // We decided we couldn't capture the store during parsing. We
  3240       // should try again during the next IGVN once the graph is
  3241       // cleaner.
  3242       phase->C->record_for_igvn(st);
  3244     return FAIL;
  3247   return offset;                // success
  3250 // Find the captured store in(i) which corresponds to the range
  3251 // [start..start+size) in the initialized object.
  3252 // If there is one, return its index i.  If there isn't, return the
  3253 // negative of the index where it should be inserted.
  3254 // Return 0 if the queried range overlaps an initialization boundary
  3255 // or if dead code is encountered.
  3256 // If size_in_bytes is zero, do not bother with overlap checks.
  3257 int InitializeNode::captured_store_insertion_point(intptr_t start,
  3258                                                    int size_in_bytes,
  3259                                                    PhaseTransform* phase) {
  3260   const int FAIL = 0, MAX_STORE = BytesPerLong;
  3262   if (is_complete())
  3263     return FAIL;                // arraycopy got here first; punt
  3265   assert(allocation() != NULL, "must be present");
  3267   // no negatives, no header fields:
  3268   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
  3270   // after a certain size, we bail out on tracking all the stores:
  3271   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3272   if (start >= ti_limit)  return FAIL;
  3274   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
  3275     if (i >= limit)  return -(int)i; // not found; here is where to put it
  3277     Node*    st     = in(i);
  3278     intptr_t st_off = get_store_offset(st, phase);
  3279     if (st_off < 0) {
  3280       if (st != zero_memory()) {
  3281         return FAIL;            // bail out if there is dead garbage
  3283     } else if (st_off > start) {
  3284       // ...we are done, since stores are ordered
  3285       if (st_off < start + size_in_bytes) {
  3286         return FAIL;            // the next store overlaps
  3288       return -(int)i;           // not found; here is where to put it
  3289     } else if (st_off < start) {
  3290       if (size_in_bytes != 0 &&
  3291           start < st_off + MAX_STORE &&
  3292           start < st_off + st->as_Store()->memory_size()) {
  3293         return FAIL;            // the previous store overlaps
  3295     } else {
  3296       if (size_in_bytes != 0 &&
  3297           st->as_Store()->memory_size() != size_in_bytes) {
  3298         return FAIL;            // mismatched store size
  3300       return i;
  3303     ++i;
  3307 // Look for a captured store which initializes at the offset 'start'
  3308 // with the given size.  If there is no such store, and no other
  3309 // initialization interferes, then return zero_memory (the memory
  3310 // projection of the AllocateNode).
  3311 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
  3312                                           PhaseTransform* phase) {
  3313   assert(stores_are_sane(phase), "");
  3314   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3315   if (i == 0) {
  3316     return NULL;                // something is dead
  3317   } else if (i < 0) {
  3318     return zero_memory();       // just primordial zero bits here
  3319   } else {
  3320     Node* st = in(i);           // here is the store at this position
  3321     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
  3322     return st;
  3326 // Create, as a raw pointer, an address within my new object at 'offset'.
  3327 Node* InitializeNode::make_raw_address(intptr_t offset,
  3328                                        PhaseTransform* phase) {
  3329   Node* addr = in(RawAddress);
  3330   if (offset != 0) {
  3331     Compile* C = phase->C;
  3332     addr = phase->transform( new (C) AddPNode(C->top(), addr,
  3333                                                  phase->MakeConX(offset)) );
  3335   return addr;
  3338 // Clone the given store, converting it into a raw store
  3339 // initializing a field or element of my new object.
  3340 // Caller is responsible for retiring the original store,
  3341 // with subsume_node or the like.
  3342 //
  3343 // From the example above InitializeNode::InitializeNode,
  3344 // here are the old stores to be captured:
  3345 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
  3346 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
  3347 //
  3348 // Here is the changed code; note the extra edges on init:
  3349 //   alloc = (Allocate ...)
  3350 //   rawoop = alloc.RawAddress
  3351 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
  3352 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
  3353 //   init = (Initialize alloc.Control alloc.Memory rawoop
  3354 //                      rawstore1 rawstore2)
  3355 //
  3356 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
  3357                                     PhaseTransform* phase, bool can_reshape) {
  3358   assert(stores_are_sane(phase), "");
  3360   if (start < 0)  return NULL;
  3361   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
  3363   Compile* C = phase->C;
  3364   int size_in_bytes = st->memory_size();
  3365   int i = captured_store_insertion_point(start, size_in_bytes, phase);
  3366   if (i == 0)  return NULL;     // bail out
  3367   Node* prev_mem = NULL;        // raw memory for the captured store
  3368   if (i > 0) {
  3369     prev_mem = in(i);           // there is a pre-existing store under this one
  3370     set_req(i, C->top());       // temporarily disconnect it
  3371     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
  3372   } else {
  3373     i = -i;                     // no pre-existing store
  3374     prev_mem = zero_memory();   // a slice of the newly allocated object
  3375     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
  3376       set_req(--i, C->top());   // reuse this edge; it has been folded away
  3377     else
  3378       ins_req(i, C->top());     // build a new edge
  3380   Node* new_st = st->clone();
  3381   new_st->set_req(MemNode::Control, in(Control));
  3382   new_st->set_req(MemNode::Memory,  prev_mem);
  3383   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
  3384   new_st = phase->transform(new_st);
  3386   // At this point, new_st might have swallowed a pre-existing store
  3387   // at the same offset, or perhaps new_st might have disappeared,
  3388   // if it redundantly stored the same value (or zero to fresh memory).
  3390   // In any case, wire it in:
  3391   set_req(i, new_st);
  3393   // The caller may now kill the old guy.
  3394   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
  3395   assert(check_st == new_st || check_st == NULL, "must be findable");
  3396   assert(!is_complete(), "");
  3397   return new_st;
  3400 static bool store_constant(jlong* tiles, int num_tiles,
  3401                            intptr_t st_off, int st_size,
  3402                            jlong con) {
  3403   if ((st_off & (st_size-1)) != 0)
  3404     return false;               // strange store offset (assume size==2**N)
  3405   address addr = (address)tiles + st_off;
  3406   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
  3407   switch (st_size) {
  3408   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
  3409   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
  3410   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
  3411   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
  3412   default: return false;        // strange store size (detect size!=2**N here)
  3414   return true;                  // return success to caller
  3417 // Coalesce subword constants into int constants and possibly
  3418 // into long constants.  The goal, if the CPU permits,
  3419 // is to initialize the object with a small number of 64-bit tiles.
  3420 // Also, convert floating-point constants to bit patterns.
  3421 // Non-constants are not relevant to this pass.
  3422 //
  3423 // In terms of the running example on InitializeNode::InitializeNode
  3424 // and InitializeNode::capture_store, here is the transformation
  3425 // of rawstore1 and rawstore2 into rawstore12:
  3426 //   alloc = (Allocate ...)
  3427 //   rawoop = alloc.RawAddress
  3428 //   tile12 = 0x00010002
  3429 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
  3430 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
  3431 //
  3432 void
  3433 InitializeNode::coalesce_subword_stores(intptr_t header_size,
  3434                                         Node* size_in_bytes,
  3435                                         PhaseGVN* phase) {
  3436   Compile* C = phase->C;
  3438   assert(stores_are_sane(phase), "");
  3439   // Note:  After this pass, they are not completely sane,
  3440   // since there may be some overlaps.
  3442   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
  3444   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
  3445   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
  3446   size_limit = MIN2(size_limit, ti_limit);
  3447   size_limit = align_size_up(size_limit, BytesPerLong);
  3448   int num_tiles = size_limit / BytesPerLong;
  3450   // allocate space for the tile map:
  3451   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
  3452   jlong  tiles_buf[small_len];
  3453   Node*  nodes_buf[small_len];
  3454   jlong  inits_buf[small_len];
  3455   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
  3456                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3457   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
  3458                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
  3459   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
  3460                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
  3461   // tiles: exact bitwise model of all primitive constants
  3462   // nodes: last constant-storing node subsumed into the tiles model
  3463   // inits: which bytes (in each tile) are touched by any initializations
  3465   //// Pass A: Fill in the tile model with any relevant stores.
  3467   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
  3468   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
  3469   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
  3470   Node* zmem = zero_memory(); // initially zero memory state
  3471   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3472     Node* st = in(i);
  3473     intptr_t st_off = get_store_offset(st, phase);
  3475     // Figure out the store's offset and constant value:
  3476     if (st_off < header_size)             continue; //skip (ignore header)
  3477     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
  3478     int st_size = st->as_Store()->memory_size();
  3479     if (st_off + st_size > size_limit)    break;
  3481     // Record which bytes are touched, whether by constant or not.
  3482     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
  3483       continue;                 // skip (strange store size)
  3485     const Type* val = phase->type(st->in(MemNode::ValueIn));
  3486     if (!val->singleton())                continue; //skip (non-con store)
  3487     BasicType type = val->basic_type();
  3489     jlong con = 0;
  3490     switch (type) {
  3491     case T_INT:    con = val->is_int()->get_con();  break;
  3492     case T_LONG:   con = val->is_long()->get_con(); break;
  3493     case T_FLOAT:  con = jint_cast(val->getf());    break;
  3494     case T_DOUBLE: con = jlong_cast(val->getd());   break;
  3495     default:                              continue; //skip (odd store type)
  3498     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
  3499         st->Opcode() == Op_StoreL) {
  3500       continue;                 // This StoreL is already optimal.
  3503     // Store down the constant.
  3504     store_constant(tiles, num_tiles, st_off, st_size, con);
  3506     intptr_t j = st_off >> LogBytesPerLong;
  3508     if (type == T_INT && st_size == BytesPerInt
  3509         && (st_off & BytesPerInt) == BytesPerInt) {
  3510       jlong lcon = tiles[j];
  3511       if (!Matcher::isSimpleConstant64(lcon) &&
  3512           st->Opcode() == Op_StoreI) {
  3513         // This StoreI is already optimal by itself.
  3514         jint* intcon = (jint*) &tiles[j];
  3515         intcon[1] = 0;  // undo the store_constant()
  3517         // If the previous store is also optimal by itself, back up and
  3518         // undo the action of the previous loop iteration... if we can.
  3519         // But if we can't, just let the previous half take care of itself.
  3520         st = nodes[j];
  3521         st_off -= BytesPerInt;
  3522         con = intcon[0];
  3523         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
  3524           assert(st_off >= header_size, "still ignoring header");
  3525           assert(get_store_offset(st, phase) == st_off, "must be");
  3526           assert(in(i-1) == zmem, "must be");
  3527           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
  3528           assert(con == tcon->is_int()->get_con(), "must be");
  3529           // Undo the effects of the previous loop trip, which swallowed st:
  3530           intcon[0] = 0;        // undo store_constant()
  3531           set_req(i-1, st);     // undo set_req(i, zmem)
  3532           nodes[j] = NULL;      // undo nodes[j] = st
  3533           --old_subword;        // undo ++old_subword
  3535         continue;               // This StoreI is already optimal.
  3539     // This store is not needed.
  3540     set_req(i, zmem);
  3541     nodes[j] = st;              // record for the moment
  3542     if (st_size < BytesPerLong) // something has changed
  3543           ++old_subword;        // includes int/float, but who's counting...
  3544     else  ++old_long;
  3547   if ((old_subword + old_long) == 0)
  3548     return;                     // nothing more to do
  3550   //// Pass B: Convert any non-zero tiles into optimal constant stores.
  3551   // Be sure to insert them before overlapping non-constant stores.
  3552   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
  3553   for (int j = 0; j < num_tiles; j++) {
  3554     jlong con  = tiles[j];
  3555     jlong init = inits[j];
  3556     if (con == 0)  continue;
  3557     jint con0,  con1;           // split the constant, address-wise
  3558     jint init0, init1;          // split the init map, address-wise
  3559     { union { jlong con; jint intcon[2]; } u;
  3560       u.con = con;
  3561       con0  = u.intcon[0];
  3562       con1  = u.intcon[1];
  3563       u.con = init;
  3564       init0 = u.intcon[0];
  3565       init1 = u.intcon[1];
  3568     Node* old = nodes[j];
  3569     assert(old != NULL, "need the prior store");
  3570     intptr_t offset = (j * BytesPerLong);
  3572     bool split = !Matcher::isSimpleConstant64(con);
  3574     if (offset < header_size) {
  3575       assert(offset + BytesPerInt >= header_size, "second int counts");
  3576       assert(*(jint*)&tiles[j] == 0, "junk in header");
  3577       split = true;             // only the second word counts
  3578       // Example:  int a[] = { 42 ... }
  3579     } else if (con0 == 0 && init0 == -1) {
  3580       split = true;             // first word is covered by full inits
  3581       // Example:  int a[] = { ... foo(), 42 ... }
  3582     } else if (con1 == 0 && init1 == -1) {
  3583       split = true;             // second word is covered by full inits
  3584       // Example:  int a[] = { ... 42, foo() ... }
  3587     // Here's a case where init0 is neither 0 nor -1:
  3588     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
  3589     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
  3590     // In this case the tile is not split; it is (jlong)42.
  3591     // The big tile is stored down, and then the foo() value is inserted.
  3592     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
  3594     Node* ctl = old->in(MemNode::Control);
  3595     Node* adr = make_raw_address(offset, phase);
  3596     const TypePtr* atp = TypeRawPtr::BOTTOM;
  3598     // One or two coalesced stores to plop down.
  3599     Node*    st[2];
  3600     intptr_t off[2];
  3601     int  nst = 0;
  3602     if (!split) {
  3603       ++new_long;
  3604       off[nst] = offset;
  3605       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3606                                   phase->longcon(con), T_LONG);
  3607     } else {
  3608       // Omit either if it is a zero.
  3609       if (con0 != 0) {
  3610         ++new_int;
  3611         off[nst]  = offset;
  3612         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3613                                     phase->intcon(con0), T_INT);
  3615       if (con1 != 0) {
  3616         ++new_int;
  3617         offset += BytesPerInt;
  3618         adr = make_raw_address(offset, phase);
  3619         off[nst]  = offset;
  3620         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
  3621                                     phase->intcon(con1), T_INT);
  3625     // Insert second store first, then the first before the second.
  3626     // Insert each one just before any overlapping non-constant stores.
  3627     while (nst > 0) {
  3628       Node* st1 = st[--nst];
  3629       C->copy_node_notes_to(st1, old);
  3630       st1 = phase->transform(st1);
  3631       offset = off[nst];
  3632       assert(offset >= header_size, "do not smash header");
  3633       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
  3634       guarantee(ins_idx != 0, "must re-insert constant store");
  3635       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
  3636       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
  3637         set_req(--ins_idx, st1);
  3638       else
  3639         ins_req(ins_idx, st1);
  3643   if (PrintCompilation && WizardMode)
  3644     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
  3645                   old_subword, old_long, new_int, new_long);
  3646   if (C->log() != NULL)
  3647     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
  3648                    old_subword, old_long, new_int, new_long);
  3650   // Clean up any remaining occurrences of zmem:
  3651   remove_extra_zeroes();
  3654 // Explore forward from in(start) to find the first fully initialized
  3655 // word, and return its offset.  Skip groups of subword stores which
  3656 // together initialize full words.  If in(start) is itself part of a
  3657 // fully initialized word, return the offset of in(start).  If there
  3658 // are no following full-word stores, or if something is fishy, return
  3659 // a negative value.
  3660 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
  3661   int       int_map = 0;
  3662   intptr_t  int_map_off = 0;
  3663   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
  3665   for (uint i = start, limit = req(); i < limit; i++) {
  3666     Node* st = in(i);
  3668     intptr_t st_off = get_store_offset(st, phase);
  3669     if (st_off < 0)  break;  // return conservative answer
  3671     int st_size = st->as_Store()->memory_size();
  3672     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
  3673       return st_off;            // we found a complete word init
  3676     // update the map:
  3678     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
  3679     if (this_int_off != int_map_off) {
  3680       // reset the map:
  3681       int_map = 0;
  3682       int_map_off = this_int_off;
  3685     int subword_off = st_off - this_int_off;
  3686     int_map |= right_n_bits(st_size) << subword_off;
  3687     if ((int_map & FULL_MAP) == FULL_MAP) {
  3688       return this_int_off;      // we found a complete word init
  3691     // Did this store hit or cross the word boundary?
  3692     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
  3693     if (next_int_off == this_int_off + BytesPerInt) {
  3694       // We passed the current int, without fully initializing it.
  3695       int_map_off = next_int_off;
  3696       int_map >>= BytesPerInt;
  3697     } else if (next_int_off > this_int_off + BytesPerInt) {
  3698       // We passed the current and next int.
  3699       return this_int_off + BytesPerInt;
  3703   return -1;
  3707 // Called when the associated AllocateNode is expanded into CFG.
  3708 // At this point, we may perform additional optimizations.
  3709 // Linearize the stores by ascending offset, to make memory
  3710 // activity as coherent as possible.
  3711 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  3712                                       intptr_t header_size,
  3713                                       Node* size_in_bytes,
  3714                                       PhaseGVN* phase) {
  3715   assert(!is_complete(), "not already complete");
  3716   assert(stores_are_sane(phase), "");
  3717   assert(allocation() != NULL, "must be present");
  3719   remove_extra_zeroes();
  3721   if (ReduceFieldZeroing || ReduceBulkZeroing)
  3722     // reduce instruction count for common initialization patterns
  3723     coalesce_subword_stores(header_size, size_in_bytes, phase);
  3725   Node* zmem = zero_memory();   // initially zero memory state
  3726   Node* inits = zmem;           // accumulating a linearized chain of inits
  3727   #ifdef ASSERT
  3728   intptr_t first_offset = allocation()->minimum_header_size();
  3729   intptr_t last_init_off = first_offset;  // previous init offset
  3730   intptr_t last_init_end = first_offset;  // previous init offset+size
  3731   intptr_t last_tile_end = first_offset;  // previous tile offset+size
  3732   #endif
  3733   intptr_t zeroes_done = header_size;
  3735   bool do_zeroing = true;       // we might give up if inits are very sparse
  3736   int  big_init_gaps = 0;       // how many large gaps have we seen?
  3738   if (ZeroTLAB)  do_zeroing = false;
  3739   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
  3741   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
  3742     Node* st = in(i);
  3743     intptr_t st_off = get_store_offset(st, phase);
  3744     if (st_off < 0)
  3745       break;                    // unknown junk in the inits
  3746     if (st->in(MemNode::Memory) != zmem)
  3747       break;                    // complicated store chains somehow in list
  3749     int st_size = st->as_Store()->memory_size();
  3750     intptr_t next_init_off = st_off + st_size;
  3752     if (do_zeroing && zeroes_done < next_init_off) {
  3753       // See if this store needs a zero before it or under it.
  3754       intptr_t zeroes_needed = st_off;
  3756       if (st_size < BytesPerInt) {
  3757         // Look for subword stores which only partially initialize words.
  3758         // If we find some, we must lay down some word-level zeroes first,
  3759         // underneath the subword stores.
  3760         //
  3761         // Examples:
  3762         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
  3763         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
  3764         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
  3765         //
  3766         // Note:  coalesce_subword_stores may have already done this,
  3767         // if it was prompted by constant non-zero subword initializers.
  3768         // But this case can still arise with non-constant stores.
  3770         intptr_t next_full_store = find_next_fullword_store(i, phase);
  3772         // In the examples above:
  3773         //   in(i)          p   q   r   s     x   y     z
  3774         //   st_off        12  13  14  15    12  13    14
  3775         //   st_size        1   1   1   1     1   1     1
  3776         //   next_full_s.  12  16  16  16    16  16    16
  3777         //   z's_done      12  16  16  16    12  16    12
  3778         //   z's_needed    12  16  16  16    16  16    16
  3779         //   zsize          0   0   0   0     4   0     4
  3780         if (next_full_store < 0) {
  3781           // Conservative tack:  Zero to end of current word.
  3782           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
  3783         } else {
  3784           // Zero to beginning of next fully initialized word.
  3785           // Or, don't zero at all, if we are already in that word.
  3786           assert(next_full_store >= zeroes_needed, "must go forward");
  3787           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
  3788           zeroes_needed = next_full_store;
  3792       if (zeroes_needed > zeroes_done) {
  3793         intptr_t zsize = zeroes_needed - zeroes_done;
  3794         // Do some incremental zeroing on rawmem, in parallel with inits.
  3795         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3796         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3797                                               zeroes_done, zeroes_needed,
  3798                                               phase);
  3799         zeroes_done = zeroes_needed;
  3800         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
  3801           do_zeroing = false;   // leave the hole, next time
  3805     // Collect the store and move on:
  3806     st->set_req(MemNode::Memory, inits);
  3807     inits = st;                 // put it on the linearized chain
  3808     set_req(i, zmem);           // unhook from previous position
  3810     if (zeroes_done == st_off)
  3811       zeroes_done = next_init_off;
  3813     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
  3815     #ifdef ASSERT
  3816     // Various order invariants.  Weaker than stores_are_sane because
  3817     // a large constant tile can be filled in by smaller non-constant stores.
  3818     assert(st_off >= last_init_off, "inits do not reverse");
  3819     last_init_off = st_off;
  3820     const Type* val = NULL;
  3821     if (st_size >= BytesPerInt &&
  3822         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
  3823         (int)val->basic_type() < (int)T_OBJECT) {
  3824       assert(st_off >= last_tile_end, "tiles do not overlap");
  3825       assert(st_off >= last_init_end, "tiles do not overwrite inits");
  3826       last_tile_end = MAX2(last_tile_end, next_init_off);
  3827     } else {
  3828       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
  3829       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
  3830       assert(st_off      >= last_init_end, "inits do not overlap");
  3831       last_init_end = next_init_off;  // it's a non-tile
  3833     #endif //ASSERT
  3836   remove_extra_zeroes();        // clear out all the zmems left over
  3837   add_req(inits);
  3839   if (!ZeroTLAB) {
  3840     // If anything remains to be zeroed, zero it all now.
  3841     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
  3842     // if it is the last unused 4 bytes of an instance, forget about it
  3843     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
  3844     if (zeroes_done + BytesPerLong >= size_limit) {
  3845       assert(allocation() != NULL, "");
  3846       if (allocation()->Opcode() == Op_Allocate) {
  3847         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
  3848         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
  3849         if (zeroes_done == k->layout_helper())
  3850           zeroes_done = size_limit;
  3853     if (zeroes_done < size_limit) {
  3854       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
  3855                                             zeroes_done, size_in_bytes, phase);
  3859   set_complete(phase);
  3860   return rawmem;
  3864 #ifdef ASSERT
  3865 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
  3866   if (is_complete())
  3867     return true;                // stores could be anything at this point
  3868   assert(allocation() != NULL, "must be present");
  3869   intptr_t last_off = allocation()->minimum_header_size();
  3870   for (uint i = InitializeNode::RawStores; i < req(); i++) {
  3871     Node* st = in(i);
  3872     intptr_t st_off = get_store_offset(st, phase);
  3873     if (st_off < 0)  continue;  // ignore dead garbage
  3874     if (last_off > st_off) {
  3875       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
  3876       this->dump(2);
  3877       assert(false, "ascending store offsets");
  3878       return false;
  3880     last_off = st_off + st->as_Store()->memory_size();
  3882   return true;
  3884 #endif //ASSERT
  3889 //============================MergeMemNode=====================================
  3890 //
  3891 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
  3892 // contributing store or call operations.  Each contributor provides the memory
  3893 // state for a particular "alias type" (see Compile::alias_type).  For example,
  3894 // if a MergeMem has an input X for alias category #6, then any memory reference
  3895 // to alias category #6 may use X as its memory state input, as an exact equivalent
  3896 // to using the MergeMem as a whole.
  3897 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
  3898 //
  3899 // (Here, the <N> notation gives the index of the relevant adr_type.)
  3900 //
  3901 // In one special case (and more cases in the future), alias categories overlap.
  3902 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
  3903 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
  3904 // it is exactly equivalent to that state W:
  3905 //   MergeMem(<Bot>: W) <==> W
  3906 //
  3907 // Usually, the merge has more than one input.  In that case, where inputs
  3908 // overlap (i.e., one is Bot), the narrower alias type determines the memory
  3909 // state for that type, and the wider alias type (Bot) fills in everywhere else:
  3910 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
  3911 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
  3912 //
  3913 // A merge can take a "wide" memory state as one of its narrow inputs.
  3914 // This simply means that the merge observes out only the relevant parts of
  3915 // the wide input.  That is, wide memory states arriving at narrow merge inputs
  3916 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
  3917 //
  3918 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
  3919 // and that memory slices "leak through":
  3920 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
  3921 //
  3922 // But, in such a cascade, repeated memory slices can "block the leak":
  3923 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
  3924 //
  3925 // In the last example, Y is not part of the combined memory state of the
  3926 // outermost MergeMem.  The system must, of course, prevent unschedulable
  3927 // memory states from arising, so you can be sure that the state Y is somehow
  3928 // a precursor to state Y'.
  3929 //
  3930 //
  3931 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
  3932 // of each MergeMemNode array are exactly the numerical alias indexes, including
  3933 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
  3934 // Compile::alias_type (and kin) produce and manage these indexes.
  3935 //
  3936 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
  3937 // (Note that this provides quick access to the top node inside MergeMem methods,
  3938 // without the need to reach out via TLS to Compile::current.)
  3939 //
  3940 // As a consequence of what was just described, a MergeMem that represents a full
  3941 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
  3942 // containing all alias categories.
  3943 //
  3944 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
  3945 //
  3946 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
  3947 // a memory state for the alias type <N>, or else the top node, meaning that
  3948 // there is no particular input for that alias type.  Note that the length of
  3949 // a MergeMem is variable, and may be extended at any time to accommodate new
  3950 // memory states at larger alias indexes.  When merges grow, they are of course
  3951 // filled with "top" in the unused in() positions.
  3952 //
  3953 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
  3954 // (Top was chosen because it works smoothly with passes like GCM.)
  3955 //
  3956 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
  3957 // the type of random VM bits like TLS references.)  Since it is always the
  3958 // first non-Bot memory slice, some low-level loops use it to initialize an
  3959 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
  3960 //
  3961 //
  3962 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
  3963 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
  3964 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
  3965 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
  3966 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
  3967 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
  3968 //
  3969 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
  3970 // really that different from the other memory inputs.  An abbreviation called
  3971 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
  3972 //
  3973 //
  3974 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
  3975 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
  3976 // that "emerges though" the base memory will be marked as excluding the alias types
  3977 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
  3978 //
  3979 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
  3980 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
  3981 //
  3982 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
  3983 // (It is currently unimplemented.)  As you can see, the resulting merge is
  3984 // actually a disjoint union of memory states, rather than an overlay.
  3985 //
  3987 //------------------------------MergeMemNode-----------------------------------
  3988 Node* MergeMemNode::make_empty_memory() {
  3989   Node* empty_memory = (Node*) Compile::current()->top();
  3990   assert(empty_memory->is_top(), "correct sentinel identity");
  3991   return empty_memory;
  3994 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
  3995   init_class_id(Class_MergeMem);
  3996   // all inputs are nullified in Node::Node(int)
  3997   // set_input(0, NULL);  // no control input
  3999   // Initialize the edges uniformly to top, for starters.
  4000   Node* empty_mem = make_empty_memory();
  4001   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
  4002     init_req(i,empty_mem);
  4004   assert(empty_memory() == empty_mem, "");
  4006   if( new_base != NULL && new_base->is_MergeMem() ) {
  4007     MergeMemNode* mdef = new_base->as_MergeMem();
  4008     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
  4009     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
  4010       mms.set_memory(mms.memory2());
  4012     assert(base_memory() == mdef->base_memory(), "");
  4013   } else {
  4014     set_base_memory(new_base);
  4018 // Make a new, untransformed MergeMem with the same base as 'mem'.
  4019 // If mem is itself a MergeMem, populate the result with the same edges.
  4020 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
  4021   return new(C) MergeMemNode(mem);
  4024 //------------------------------cmp--------------------------------------------
  4025 uint MergeMemNode::hash() const { return NO_HASH; }
  4026 uint MergeMemNode::cmp( const Node &n ) const {
  4027   return (&n == this);          // Always fail except on self
  4030 //------------------------------Identity---------------------------------------
  4031 Node* MergeMemNode::Identity(PhaseTransform *phase) {
  4032   // Identity if this merge point does not record any interesting memory
  4033   // disambiguations.
  4034   Node* base_mem = base_memory();
  4035   Node* empty_mem = empty_memory();
  4036   if (base_mem != empty_mem) {  // Memory path is not dead?
  4037     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4038       Node* mem = in(i);
  4039       if (mem != empty_mem && mem != base_mem) {
  4040         return this;            // Many memory splits; no change
  4044   return base_mem;              // No memory splits; ID on the one true input
  4047 //------------------------------Ideal------------------------------------------
  4048 // This method is invoked recursively on chains of MergeMem nodes
  4049 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  4050   // Remove chain'd MergeMems
  4051   //
  4052   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
  4053   // relative to the "in(Bot)".  Since we are patching both at the same time,
  4054   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
  4055   // but rewrite each "in(i)" relative to the new "in(Bot)".
  4056   Node *progress = NULL;
  4059   Node* old_base = base_memory();
  4060   Node* empty_mem = empty_memory();
  4061   if (old_base == empty_mem)
  4062     return NULL; // Dead memory path.
  4064   MergeMemNode* old_mbase;
  4065   if (old_base != NULL && old_base->is_MergeMem())
  4066     old_mbase = old_base->as_MergeMem();
  4067   else
  4068     old_mbase = NULL;
  4069   Node* new_base = old_base;
  4071   // simplify stacked MergeMems in base memory
  4072   if (old_mbase)  new_base = old_mbase->base_memory();
  4074   // the base memory might contribute new slices beyond my req()
  4075   if (old_mbase)  grow_to_match(old_mbase);
  4077   // Look carefully at the base node if it is a phi.
  4078   PhiNode* phi_base;
  4079   if (new_base != NULL && new_base->is_Phi())
  4080     phi_base = new_base->as_Phi();
  4081   else
  4082     phi_base = NULL;
  4084   Node*    phi_reg = NULL;
  4085   uint     phi_len = (uint)-1;
  4086   if (phi_base != NULL && !phi_base->is_copy()) {
  4087     // do not examine phi if degraded to a copy
  4088     phi_reg = phi_base->region();
  4089     phi_len = phi_base->req();
  4090     // see if the phi is unfinished
  4091     for (uint i = 1; i < phi_len; i++) {
  4092       if (phi_base->in(i) == NULL) {
  4093         // incomplete phi; do not look at it yet!
  4094         phi_reg = NULL;
  4095         phi_len = (uint)-1;
  4096         break;
  4101   // Note:  We do not call verify_sparse on entry, because inputs
  4102   // can normalize to the base_memory via subsume_node or similar
  4103   // mechanisms.  This method repairs that damage.
  4105   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
  4107   // Look at each slice.
  4108   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4109     Node* old_in = in(i);
  4110     // calculate the old memory value
  4111     Node* old_mem = old_in;
  4112     if (old_mem == empty_mem)  old_mem = old_base;
  4113     assert(old_mem == memory_at(i), "");
  4115     // maybe update (reslice) the old memory value
  4117     // simplify stacked MergeMems
  4118     Node* new_mem = old_mem;
  4119     MergeMemNode* old_mmem;
  4120     if (old_mem != NULL && old_mem->is_MergeMem())
  4121       old_mmem = old_mem->as_MergeMem();
  4122     else
  4123       old_mmem = NULL;
  4124     if (old_mmem == this) {
  4125       // This can happen if loops break up and safepoints disappear.
  4126       // A merge of BotPtr (default) with a RawPtr memory derived from a
  4127       // safepoint can be rewritten to a merge of the same BotPtr with
  4128       // the BotPtr phi coming into the loop.  If that phi disappears
  4129       // also, we can end up with a self-loop of the mergemem.
  4130       // In general, if loops degenerate and memory effects disappear,
  4131       // a mergemem can be left looking at itself.  This simply means
  4132       // that the mergemem's default should be used, since there is
  4133       // no longer any apparent effect on this slice.
  4134       // Note: If a memory slice is a MergeMem cycle, it is unreachable
  4135       //       from start.  Update the input to TOP.
  4136       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
  4138     else if (old_mmem != NULL) {
  4139       new_mem = old_mmem->memory_at(i);
  4141     // else preceding memory was not a MergeMem
  4143     // replace equivalent phis (unfortunately, they do not GVN together)
  4144     if (new_mem != NULL && new_mem != new_base &&
  4145         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
  4146       if (new_mem->is_Phi()) {
  4147         PhiNode* phi_mem = new_mem->as_Phi();
  4148         for (uint i = 1; i < phi_len; i++) {
  4149           if (phi_base->in(i) != phi_mem->in(i)) {
  4150             phi_mem = NULL;
  4151             break;
  4154         if (phi_mem != NULL) {
  4155           // equivalent phi nodes; revert to the def
  4156           new_mem = new_base;
  4161     // maybe store down a new value
  4162     Node* new_in = new_mem;
  4163     if (new_in == new_base)  new_in = empty_mem;
  4165     if (new_in != old_in) {
  4166       // Warning:  Do not combine this "if" with the previous "if"
  4167       // A memory slice might have be be rewritten even if it is semantically
  4168       // unchanged, if the base_memory value has changed.
  4169       set_req(i, new_in);
  4170       progress = this;          // Report progress
  4174   if (new_base != old_base) {
  4175     set_req(Compile::AliasIdxBot, new_base);
  4176     // Don't use set_base_memory(new_base), because we need to update du.
  4177     assert(base_memory() == new_base, "");
  4178     progress = this;
  4181   if( base_memory() == this ) {
  4182     // a self cycle indicates this memory path is dead
  4183     set_req(Compile::AliasIdxBot, empty_mem);
  4186   // Resolve external cycles by calling Ideal on a MergeMem base_memory
  4187   // Recursion must occur after the self cycle check above
  4188   if( base_memory()->is_MergeMem() ) {
  4189     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
  4190     Node *m = phase->transform(new_mbase);  // Rollup any cycles
  4191     if( m != NULL && (m->is_top() ||
  4192         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
  4193       // propagate rollup of dead cycle to self
  4194       set_req(Compile::AliasIdxBot, empty_mem);
  4198   if( base_memory() == empty_mem ) {
  4199     progress = this;
  4200     // Cut inputs during Parse phase only.
  4201     // During Optimize phase a dead MergeMem node will be subsumed by Top.
  4202     if( !can_reshape ) {
  4203       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4204         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
  4209   if( !progress && base_memory()->is_Phi() && can_reshape ) {
  4210     // Check if PhiNode::Ideal's "Split phis through memory merges"
  4211     // transform should be attempted. Look for this->phi->this cycle.
  4212     uint merge_width = req();
  4213     if (merge_width > Compile::AliasIdxRaw) {
  4214       PhiNode* phi = base_memory()->as_Phi();
  4215       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
  4216         if (phi->in(i) == this) {
  4217           phase->is_IterGVN()->_worklist.push(phi);
  4218           break;
  4224   assert(progress || verify_sparse(), "please, no dups of base");
  4225   return progress;
  4228 //-------------------------set_base_memory-------------------------------------
  4229 void MergeMemNode::set_base_memory(Node *new_base) {
  4230   Node* empty_mem = empty_memory();
  4231   set_req(Compile::AliasIdxBot, new_base);
  4232   assert(memory_at(req()) == new_base, "must set default memory");
  4233   // Clear out other occurrences of new_base:
  4234   if (new_base != empty_mem) {
  4235     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4236       if (in(i) == new_base)  set_req(i, empty_mem);
  4241 //------------------------------out_RegMask------------------------------------
  4242 const RegMask &MergeMemNode::out_RegMask() const {
  4243   return RegMask::Empty;
  4246 //------------------------------dump_spec--------------------------------------
  4247 #ifndef PRODUCT
  4248 void MergeMemNode::dump_spec(outputStream *st) const {
  4249   st->print(" {");
  4250   Node* base_mem = base_memory();
  4251   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
  4252     Node* mem = memory_at(i);
  4253     if (mem == base_mem) { st->print(" -"); continue; }
  4254     st->print( " N%d:", mem->_idx );
  4255     Compile::current()->get_adr_type(i)->dump_on(st);
  4257   st->print(" }");
  4259 #endif // !PRODUCT
  4262 #ifdef ASSERT
  4263 static bool might_be_same(Node* a, Node* b) {
  4264   if (a == b)  return true;
  4265   if (!(a->is_Phi() || b->is_Phi()))  return false;
  4266   // phis shift around during optimization
  4267   return true;  // pretty stupid...
  4270 // verify a narrow slice (either incoming or outgoing)
  4271 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
  4272   if (!VerifyAliases)       return;  // don't bother to verify unless requested
  4273   if (is_error_reported())  return;  // muzzle asserts when debugging an error
  4274   if (Node::in_dump())      return;  // muzzle asserts when printing
  4275   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
  4276   assert(n != NULL, "");
  4277   // Elide intervening MergeMem's
  4278   while (n->is_MergeMem()) {
  4279     n = n->as_MergeMem()->memory_at(alias_idx);
  4281   Compile* C = Compile::current();
  4282   const TypePtr* n_adr_type = n->adr_type();
  4283   if (n == m->empty_memory()) {
  4284     // Implicit copy of base_memory()
  4285   } else if (n_adr_type != TypePtr::BOTTOM) {
  4286     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
  4287     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
  4288   } else {
  4289     // A few places like make_runtime_call "know" that VM calls are narrow,
  4290     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
  4291     bool expected_wide_mem = false;
  4292     if (n == m->base_memory()) {
  4293       expected_wide_mem = true;
  4294     } else if (alias_idx == Compile::AliasIdxRaw ||
  4295                n == m->memory_at(Compile::AliasIdxRaw)) {
  4296       expected_wide_mem = true;
  4297     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
  4298       // memory can "leak through" calls on channels that
  4299       // are write-once.  Allow this also.
  4300       expected_wide_mem = true;
  4302     assert(expected_wide_mem, "expected narrow slice replacement");
  4305 #else // !ASSERT
  4306 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
  4307 #endif
  4310 //-----------------------------memory_at---------------------------------------
  4311 Node* MergeMemNode::memory_at(uint alias_idx) const {
  4312   assert(alias_idx >= Compile::AliasIdxRaw ||
  4313          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
  4314          "must avoid base_memory and AliasIdxTop");
  4316   // Otherwise, it is a narrow slice.
  4317   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
  4318   Compile *C = Compile::current();
  4319   if (is_empty_memory(n)) {
  4320     // the array is sparse; empty slots are the "top" node
  4321     n = base_memory();
  4322     assert(Node::in_dump()
  4323            || n == NULL || n->bottom_type() == Type::TOP
  4324            || n->adr_type() == NULL // address is TOP
  4325            || n->adr_type() == TypePtr::BOTTOM
  4326            || n->adr_type() == TypeRawPtr::BOTTOM
  4327            || Compile::current()->AliasLevel() == 0,
  4328            "must be a wide memory");
  4329     // AliasLevel == 0 if we are organizing the memory states manually.
  4330     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
  4331   } else {
  4332     // make sure the stored slice is sane
  4333     #ifdef ASSERT
  4334     if (is_error_reported() || Node::in_dump()) {
  4335     } else if (might_be_same(n, base_memory())) {
  4336       // Give it a pass:  It is a mostly harmless repetition of the base.
  4337       // This can arise normally from node subsumption during optimization.
  4338     } else {
  4339       verify_memory_slice(this, alias_idx, n);
  4341     #endif
  4343   return n;
  4346 //---------------------------set_memory_at-------------------------------------
  4347 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
  4348   verify_memory_slice(this, alias_idx, n);
  4349   Node* empty_mem = empty_memory();
  4350   if (n == base_memory())  n = empty_mem;  // collapse default
  4351   uint need_req = alias_idx+1;
  4352   if (req() < need_req) {
  4353     if (n == empty_mem)  return;  // already the default, so do not grow me
  4354     // grow the sparse array
  4355     do {
  4356       add_req(empty_mem);
  4357     } while (req() < need_req);
  4359   set_req( alias_idx, n );
  4364 //--------------------------iteration_setup------------------------------------
  4365 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
  4366   if (other != NULL) {
  4367     grow_to_match(other);
  4368     // invariant:  the finite support of mm2 is within mm->req()
  4369     #ifdef ASSERT
  4370     for (uint i = req(); i < other->req(); i++) {
  4371       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
  4373     #endif
  4375   // Replace spurious copies of base_memory by top.
  4376   Node* base_mem = base_memory();
  4377   if (base_mem != NULL && !base_mem->is_top()) {
  4378     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
  4379       if (in(i) == base_mem)
  4380         set_req(i, empty_memory());
  4385 //---------------------------grow_to_match-------------------------------------
  4386 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
  4387   Node* empty_mem = empty_memory();
  4388   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
  4389   // look for the finite support of the other memory
  4390   for (uint i = other->req(); --i >= req(); ) {
  4391     if (other->in(i) != empty_mem) {
  4392       uint new_len = i+1;
  4393       while (req() < new_len)  add_req(empty_mem);
  4394       break;
  4399 //---------------------------verify_sparse-------------------------------------
  4400 #ifndef PRODUCT
  4401 bool MergeMemNode::verify_sparse() const {
  4402   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
  4403   Node* base_mem = base_memory();
  4404   // The following can happen in degenerate cases, since empty==top.
  4405   if (is_empty_memory(base_mem))  return true;
  4406   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
  4407     assert(in(i) != NULL, "sane slice");
  4408     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
  4410   return true;
  4413 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
  4414   Node* n;
  4415   n = mm->in(idx);
  4416   if (mem == n)  return true;  // might be empty_memory()
  4417   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
  4418   if (mem == n)  return true;
  4419   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
  4420     if (mem == n)  return true;
  4421     if (n == NULL)  break;
  4423   return false;
  4425 #endif // !PRODUCT

mercurial