src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.cpp

Tue, 18 Sep 2012 23:35:42 -0700

author
jmasa
date
Tue, 18 Sep 2012 23:35:42 -0700
changeset 4196
685df3c6f84b
parent 4177
633ba56cb013
child 4391
0b54ffe4c2d3
child 4465
203f64878aab
permissions
-rw-r--r--

7045397: NPG: Add freelists to class loader arenas.
Reviewed-by: coleenp, stefank, jprovino, ohair

     1 /*
     2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/classLoaderData.hpp"
    27 #include "classfile/symbolTable.hpp"
    28 #include "classfile/systemDictionary.hpp"
    29 #include "code/codeCache.hpp"
    30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
    32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
    33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
    34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
    35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
    36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
    37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
    38 #include "gc_implementation/parNew/parNewGeneration.hpp"
    39 #include "gc_implementation/shared/collectorCounters.hpp"
    40 #include "gc_implementation/shared/isGCActiveMark.hpp"
    41 #include "gc_interface/collectedHeap.inline.hpp"
    42 #include "memory/cardTableRS.hpp"
    43 #include "memory/collectorPolicy.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/genCollectedHeap.hpp"
    46 #include "memory/genMarkSweep.hpp"
    47 #include "memory/genOopClosures.inline.hpp"
    48 #include "memory/iterator.hpp"
    49 #include "memory/referencePolicy.hpp"
    50 #include "memory/resourceArea.hpp"
    51 #include "oops/oop.inline.hpp"
    52 #include "prims/jvmtiExport.hpp"
    53 #include "runtime/globals_extension.hpp"
    54 #include "runtime/handles.inline.hpp"
    55 #include "runtime/java.hpp"
    56 #include "runtime/vmThread.hpp"
    57 #include "services/memoryService.hpp"
    58 #include "services/runtimeService.hpp"
    60 // statics
    61 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
    62 bool          CMSCollector::_full_gc_requested          = false;
    64 //////////////////////////////////////////////////////////////////
    65 // In support of CMS/VM thread synchronization
    66 //////////////////////////////////////////////////////////////////
    67 // We split use of the CGC_lock into 2 "levels".
    68 // The low-level locking is of the usual CGC_lock monitor. We introduce
    69 // a higher level "token" (hereafter "CMS token") built on top of the
    70 // low level monitor (hereafter "CGC lock").
    71 // The token-passing protocol gives priority to the VM thread. The
    72 // CMS-lock doesn't provide any fairness guarantees, but clients
    73 // should ensure that it is only held for very short, bounded
    74 // durations.
    75 //
    76 // When either of the CMS thread or the VM thread is involved in
    77 // collection operations during which it does not want the other
    78 // thread to interfere, it obtains the CMS token.
    79 //
    80 // If either thread tries to get the token while the other has
    81 // it, that thread waits. However, if the VM thread and CMS thread
    82 // both want the token, then the VM thread gets priority while the
    83 // CMS thread waits. This ensures, for instance, that the "concurrent"
    84 // phases of the CMS thread's work do not block out the VM thread
    85 // for long periods of time as the CMS thread continues to hog
    86 // the token. (See bug 4616232).
    87 //
    88 // The baton-passing functions are, however, controlled by the
    89 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
    90 // and here the low-level CMS lock, not the high level token,
    91 // ensures mutual exclusion.
    92 //
    93 // Two important conditions that we have to satisfy:
    94 // 1. if a thread does a low-level wait on the CMS lock, then it
    95 //    relinquishes the CMS token if it were holding that token
    96 //    when it acquired the low-level CMS lock.
    97 // 2. any low-level notifications on the low-level lock
    98 //    should only be sent when a thread has relinquished the token.
    99 //
   100 // In the absence of either property, we'd have potential deadlock.
   101 //
   102 // We protect each of the CMS (concurrent and sequential) phases
   103 // with the CMS _token_, not the CMS _lock_.
   104 //
   105 // The only code protected by CMS lock is the token acquisition code
   106 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
   107 // baton-passing code.
   108 //
   109 // Unfortunately, i couldn't come up with a good abstraction to factor and
   110 // hide the naked CGC_lock manipulation in the baton-passing code
   111 // further below. That's something we should try to do. Also, the proof
   112 // of correctness of this 2-level locking scheme is far from obvious,
   113 // and potentially quite slippery. We have an uneasy supsicion, for instance,
   114 // that there may be a theoretical possibility of delay/starvation in the
   115 // low-level lock/wait/notify scheme used for the baton-passing because of
   116 // potential intereference with the priority scheme embodied in the
   117 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
   118 // invocation further below and marked with "XXX 20011219YSR".
   119 // Indeed, as we note elsewhere, this may become yet more slippery
   120 // in the presence of multiple CMS and/or multiple VM threads. XXX
   122 class CMSTokenSync: public StackObj {
   123  private:
   124   bool _is_cms_thread;
   125  public:
   126   CMSTokenSync(bool is_cms_thread):
   127     _is_cms_thread(is_cms_thread) {
   128     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
   129            "Incorrect argument to constructor");
   130     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
   131   }
   133   ~CMSTokenSync() {
   134     assert(_is_cms_thread ?
   135              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
   136              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
   137           "Incorrect state");
   138     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
   139   }
   140 };
   142 // Convenience class that does a CMSTokenSync, and then acquires
   143 // upto three locks.
   144 class CMSTokenSyncWithLocks: public CMSTokenSync {
   145  private:
   146   // Note: locks are acquired in textual declaration order
   147   // and released in the opposite order
   148   MutexLockerEx _locker1, _locker2, _locker3;
   149  public:
   150   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
   151                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
   152     CMSTokenSync(is_cms_thread),
   153     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
   154     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
   155     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
   156   { }
   157 };
   160 // Wrapper class to temporarily disable icms during a foreground cms collection.
   161 class ICMSDisabler: public StackObj {
   162  public:
   163   // The ctor disables icms and wakes up the thread so it notices the change;
   164   // the dtor re-enables icms.  Note that the CMSCollector methods will check
   165   // CMSIncrementalMode.
   166   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
   167   ~ICMSDisabler() { CMSCollector::enable_icms(); }
   168 };
   170 //////////////////////////////////////////////////////////////////
   171 //  Concurrent Mark-Sweep Generation /////////////////////////////
   172 //////////////////////////////////////////////////////////////////
   174 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
   176 // This struct contains per-thread things necessary to support parallel
   177 // young-gen collection.
   178 class CMSParGCThreadState: public CHeapObj<mtGC> {
   179  public:
   180   CFLS_LAB lab;
   181   PromotionInfo promo;
   183   // Constructor.
   184   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
   185     promo.setSpace(cfls);
   186   }
   187 };
   189 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
   190      ReservedSpace rs, size_t initial_byte_size, int level,
   191      CardTableRS* ct, bool use_adaptive_freelists,
   192      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
   193   CardGeneration(rs, initial_byte_size, level, ct),
   194   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
   195   _debug_collection_type(Concurrent_collection_type)
   196 {
   197   HeapWord* bottom = (HeapWord*) _virtual_space.low();
   198   HeapWord* end    = (HeapWord*) _virtual_space.high();
   200   _direct_allocated_words = 0;
   201   NOT_PRODUCT(
   202     _numObjectsPromoted = 0;
   203     _numWordsPromoted = 0;
   204     _numObjectsAllocated = 0;
   205     _numWordsAllocated = 0;
   206   )
   208   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
   209                                            use_adaptive_freelists,
   210                                            dictionaryChoice);
   211   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
   212   if (_cmsSpace == NULL) {
   213     vm_exit_during_initialization(
   214       "CompactibleFreeListSpace allocation failure");
   215   }
   216   _cmsSpace->_gen = this;
   218   _gc_stats = new CMSGCStats();
   220   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
   221   // offsets match. The ability to tell free chunks from objects
   222   // depends on this property.
   223   debug_only(
   224     FreeChunk* junk = NULL;
   225     assert(UseCompressedKlassPointers ||
   226            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
   227            "Offset of FreeChunk::_prev within FreeChunk must match"
   228            "  that of OopDesc::_klass within OopDesc");
   229   )
   230   if (CollectedHeap::use_parallel_gc_threads()) {
   231     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
   232     _par_gc_thread_states =
   233       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
   234     if (_par_gc_thread_states == NULL) {
   235       vm_exit_during_initialization("Could not allocate par gc structs");
   236     }
   237     for (uint i = 0; i < ParallelGCThreads; i++) {
   238       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
   239       if (_par_gc_thread_states[i] == NULL) {
   240         vm_exit_during_initialization("Could not allocate par gc structs");
   241       }
   242     }
   243   } else {
   244     _par_gc_thread_states = NULL;
   245   }
   246   _incremental_collection_failed = false;
   247   // The "dilatation_factor" is the expansion that can occur on
   248   // account of the fact that the minimum object size in the CMS
   249   // generation may be larger than that in, say, a contiguous young
   250   //  generation.
   251   // Ideally, in the calculation below, we'd compute the dilatation
   252   // factor as: MinChunkSize/(promoting_gen's min object size)
   253   // Since we do not have such a general query interface for the
   254   // promoting generation, we'll instead just use the mimimum
   255   // object size (which today is a header's worth of space);
   256   // note that all arithmetic is in units of HeapWords.
   257   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
   258   assert(_dilatation_factor >= 1.0, "from previous assert");
   259 }
   262 // The field "_initiating_occupancy" represents the occupancy percentage
   263 // at which we trigger a new collection cycle.  Unless explicitly specified
   264 // via CMSInitiatingOccupancyFraction (argument "io" below), it
   265 // is calculated by:
   266 //
   267 //   Let "f" be MinHeapFreeRatio in
   268 //
   269 //    _intiating_occupancy = 100-f +
   270 //                           f * (CMSTriggerRatio/100)
   271 //   where CMSTriggerRatio is the argument "tr" below.
   272 //
   273 // That is, if we assume the heap is at its desired maximum occupancy at the
   274 // end of a collection, we let CMSTriggerRatio of the (purported) free
   275 // space be allocated before initiating a new collection cycle.
   276 //
   277 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
   278   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
   279   if (io >= 0) {
   280     _initiating_occupancy = (double)io / 100.0;
   281   } else {
   282     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
   283                              (double)(tr * MinHeapFreeRatio) / 100.0)
   284                             / 100.0;
   285   }
   286 }
   288 void ConcurrentMarkSweepGeneration::ref_processor_init() {
   289   assert(collector() != NULL, "no collector");
   290   collector()->ref_processor_init();
   291 }
   293 void CMSCollector::ref_processor_init() {
   294   if (_ref_processor == NULL) {
   295     // Allocate and initialize a reference processor
   296     _ref_processor =
   297       new ReferenceProcessor(_span,                               // span
   298                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
   299                              (int) ParallelGCThreads,             // mt processing degree
   300                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
   301                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
   302                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
   303                              &_is_alive_closure,                  // closure for liveness info
   304                              false);                              // next field updates do not need write barrier
   305     // Initialize the _ref_processor field of CMSGen
   306     _cmsGen->set_ref_processor(_ref_processor);
   308   }
   309 }
   311 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
   312   GenCollectedHeap* gch = GenCollectedHeap::heap();
   313   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   314     "Wrong type of heap");
   315   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
   316     gch->gen_policy()->size_policy();
   317   assert(sp->is_gc_cms_adaptive_size_policy(),
   318     "Wrong type of size policy");
   319   return sp;
   320 }
   322 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
   323   CMSGCAdaptivePolicyCounters* results =
   324     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
   325   assert(
   326     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
   327     "Wrong gc policy counter kind");
   328   return results;
   329 }
   332 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
   334   const char* gen_name = "old";
   336   // Generation Counters - generation 1, 1 subspace
   337   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
   339   _space_counters = new GSpaceCounters(gen_name, 0,
   340                                        _virtual_space.reserved_size(),
   341                                        this, _gen_counters);
   342 }
   344 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
   345   _cms_gen(cms_gen)
   346 {
   347   assert(alpha <= 100, "bad value");
   348   _saved_alpha = alpha;
   350   // Initialize the alphas to the bootstrap value of 100.
   351   _gc0_alpha = _cms_alpha = 100;
   353   _cms_begin_time.update();
   354   _cms_end_time.update();
   356   _gc0_duration = 0.0;
   357   _gc0_period = 0.0;
   358   _gc0_promoted = 0;
   360   _cms_duration = 0.0;
   361   _cms_period = 0.0;
   362   _cms_allocated = 0;
   364   _cms_used_at_gc0_begin = 0;
   365   _cms_used_at_gc0_end = 0;
   366   _allow_duty_cycle_reduction = false;
   367   _valid_bits = 0;
   368   _icms_duty_cycle = CMSIncrementalDutyCycle;
   369 }
   371 double CMSStats::cms_free_adjustment_factor(size_t free) const {
   372   // TBD: CR 6909490
   373   return 1.0;
   374 }
   376 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
   377 }
   379 // If promotion failure handling is on use
   380 // the padded average size of the promotion for each
   381 // young generation collection.
   382 double CMSStats::time_until_cms_gen_full() const {
   383   size_t cms_free = _cms_gen->cmsSpace()->free();
   384   GenCollectedHeap* gch = GenCollectedHeap::heap();
   385   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
   386                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
   387   if (cms_free > expected_promotion) {
   388     // Start a cms collection if there isn't enough space to promote
   389     // for the next minor collection.  Use the padded average as
   390     // a safety factor.
   391     cms_free -= expected_promotion;
   393     // Adjust by the safety factor.
   394     double cms_free_dbl = (double)cms_free;
   395     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
   396     // Apply a further correction factor which tries to adjust
   397     // for recent occurance of concurrent mode failures.
   398     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
   399     cms_free_dbl = cms_free_dbl * cms_adjustment;
   401     if (PrintGCDetails && Verbose) {
   402       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
   403         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
   404         cms_free, expected_promotion);
   405       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
   406         cms_free_dbl, cms_consumption_rate() + 1.0);
   407     }
   408     // Add 1 in case the consumption rate goes to zero.
   409     return cms_free_dbl / (cms_consumption_rate() + 1.0);
   410   }
   411   return 0.0;
   412 }
   414 // Compare the duration of the cms collection to the
   415 // time remaining before the cms generation is empty.
   416 // Note that the time from the start of the cms collection
   417 // to the start of the cms sweep (less than the total
   418 // duration of the cms collection) can be used.  This
   419 // has been tried and some applications experienced
   420 // promotion failures early in execution.  This was
   421 // possibly because the averages were not accurate
   422 // enough at the beginning.
   423 double CMSStats::time_until_cms_start() const {
   424   // We add "gc0_period" to the "work" calculation
   425   // below because this query is done (mostly) at the
   426   // end of a scavenge, so we need to conservatively
   427   // account for that much possible delay
   428   // in the query so as to avoid concurrent mode failures
   429   // due to starting the collection just a wee bit too
   430   // late.
   431   double work = cms_duration() + gc0_period();
   432   double deadline = time_until_cms_gen_full();
   433   // If a concurrent mode failure occurred recently, we want to be
   434   // more conservative and halve our expected time_until_cms_gen_full()
   435   if (work > deadline) {
   436     if (Verbose && PrintGCDetails) {
   437       gclog_or_tty->print(
   438         " CMSCollector: collect because of anticipated promotion "
   439         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
   440         gc0_period(), time_until_cms_gen_full());
   441     }
   442     return 0.0;
   443   }
   444   return work - deadline;
   445 }
   447 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
   448 // amount of change to prevent wild oscillation.
   449 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
   450                                               unsigned int new_duty_cycle) {
   451   assert(old_duty_cycle <= 100, "bad input value");
   452   assert(new_duty_cycle <= 100, "bad input value");
   454   // Note:  use subtraction with caution since it may underflow (values are
   455   // unsigned).  Addition is safe since we're in the range 0-100.
   456   unsigned int damped_duty_cycle = new_duty_cycle;
   457   if (new_duty_cycle < old_duty_cycle) {
   458     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
   459     if (new_duty_cycle + largest_delta < old_duty_cycle) {
   460       damped_duty_cycle = old_duty_cycle - largest_delta;
   461     }
   462   } else if (new_duty_cycle > old_duty_cycle) {
   463     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
   464     if (new_duty_cycle > old_duty_cycle + largest_delta) {
   465       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
   466     }
   467   }
   468   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
   470   if (CMSTraceIncrementalPacing) {
   471     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
   472                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
   473   }
   474   return damped_duty_cycle;
   475 }
   477 unsigned int CMSStats::icms_update_duty_cycle_impl() {
   478   assert(CMSIncrementalPacing && valid(),
   479          "should be handled in icms_update_duty_cycle()");
   481   double cms_time_so_far = cms_timer().seconds();
   482   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
   483   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
   485   // Avoid division by 0.
   486   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
   487   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
   489   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
   490   if (new_duty_cycle > _icms_duty_cycle) {
   491     // Avoid very small duty cycles (1 or 2); 0 is allowed.
   492     if (new_duty_cycle > 2) {
   493       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
   494                                                 new_duty_cycle);
   495     }
   496   } else if (_allow_duty_cycle_reduction) {
   497     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
   498     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
   499     // Respect the minimum duty cycle.
   500     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
   501     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
   502   }
   504   if (PrintGCDetails || CMSTraceIncrementalPacing) {
   505     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
   506   }
   508   _allow_duty_cycle_reduction = false;
   509   return _icms_duty_cycle;
   510 }
   512 #ifndef PRODUCT
   513 void CMSStats::print_on(outputStream *st) const {
   514   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
   515   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
   516                gc0_duration(), gc0_period(), gc0_promoted());
   517   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
   518             cms_duration(), cms_duration_per_mb(),
   519             cms_period(), cms_allocated());
   520   st->print(",cms_since_beg=%g,cms_since_end=%g",
   521             cms_time_since_begin(), cms_time_since_end());
   522   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
   523             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
   524   if (CMSIncrementalMode) {
   525     st->print(",dc=%d", icms_duty_cycle());
   526   }
   528   if (valid()) {
   529     st->print(",promo_rate=%g,cms_alloc_rate=%g",
   530               promotion_rate(), cms_allocation_rate());
   531     st->print(",cms_consumption_rate=%g,time_until_full=%g",
   532               cms_consumption_rate(), time_until_cms_gen_full());
   533   }
   534   st->print(" ");
   535 }
   536 #endif // #ifndef PRODUCT
   538 CMSCollector::CollectorState CMSCollector::_collectorState =
   539                              CMSCollector::Idling;
   540 bool CMSCollector::_foregroundGCIsActive = false;
   541 bool CMSCollector::_foregroundGCShouldWait = false;
   543 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
   544                            CardTableRS*                   ct,
   545                            ConcurrentMarkSweepPolicy*     cp):
   546   _cmsGen(cmsGen),
   547   _ct(ct),
   548   _ref_processor(NULL),    // will be set later
   549   _conc_workers(NULL),     // may be set later
   550   _abort_preclean(false),
   551   _start_sampling(false),
   552   _between_prologue_and_epilogue(false),
   553   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
   554   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
   555                  -1 /* lock-free */, "No_lock" /* dummy */),
   556   _modUnionClosure(&_modUnionTable),
   557   _modUnionClosurePar(&_modUnionTable),
   558   // Adjust my span to cover old (cms) gen
   559   _span(cmsGen->reserved()),
   560   // Construct the is_alive_closure with _span & markBitMap
   561   _is_alive_closure(_span, &_markBitMap),
   562   _restart_addr(NULL),
   563   _overflow_list(NULL),
   564   _stats(cmsGen),
   565   _eden_chunk_array(NULL),     // may be set in ctor body
   566   _eden_chunk_capacity(0),     // -- ditto --
   567   _eden_chunk_index(0),        // -- ditto --
   568   _survivor_plab_array(NULL),  // -- ditto --
   569   _survivor_chunk_array(NULL), // -- ditto --
   570   _survivor_chunk_capacity(0), // -- ditto --
   571   _survivor_chunk_index(0),    // -- ditto --
   572   _ser_pmc_preclean_ovflw(0),
   573   _ser_kac_preclean_ovflw(0),
   574   _ser_pmc_remark_ovflw(0),
   575   _par_pmc_remark_ovflw(0),
   576   _ser_kac_ovflw(0),
   577   _par_kac_ovflw(0),
   578 #ifndef PRODUCT
   579   _num_par_pushes(0),
   580 #endif
   581   _collection_count_start(0),
   582   _verifying(false),
   583   _icms_start_limit(NULL),
   584   _icms_stop_limit(NULL),
   585   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
   586   _completed_initialization(false),
   587   _collector_policy(cp),
   588   _should_unload_classes(false),
   589   _concurrent_cycles_since_last_unload(0),
   590   _roots_scanning_options(0),
   591   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
   592   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding)
   593 {
   594   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
   595     ExplicitGCInvokesConcurrent = true;
   596   }
   597   // Now expand the span and allocate the collection support structures
   598   // (MUT, marking bit map etc.) to cover both generations subject to
   599   // collection.
   601   // For use by dirty card to oop closures.
   602   _cmsGen->cmsSpace()->set_collector(this);
   604   // Allocate MUT and marking bit map
   605   {
   606     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
   607     if (!_markBitMap.allocate(_span)) {
   608       warning("Failed to allocate CMS Bit Map");
   609       return;
   610     }
   611     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
   612   }
   613   {
   614     _modUnionTable.allocate(_span);
   615     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
   616   }
   618   if (!_markStack.allocate(MarkStackSize)) {
   619     warning("Failed to allocate CMS Marking Stack");
   620     return;
   621   }
   623   // Support for multi-threaded concurrent phases
   624   if (CMSConcurrentMTEnabled) {
   625     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
   626       // just for now
   627       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
   628     }
   629     if (ConcGCThreads > 1) {
   630       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
   631                                  ConcGCThreads, true);
   632       if (_conc_workers == NULL) {
   633         warning("GC/CMS: _conc_workers allocation failure: "
   634               "forcing -CMSConcurrentMTEnabled");
   635         CMSConcurrentMTEnabled = false;
   636       } else {
   637         _conc_workers->initialize_workers();
   638       }
   639     } else {
   640       CMSConcurrentMTEnabled = false;
   641     }
   642   }
   643   if (!CMSConcurrentMTEnabled) {
   644     ConcGCThreads = 0;
   645   } else {
   646     // Turn off CMSCleanOnEnter optimization temporarily for
   647     // the MT case where it's not fixed yet; see 6178663.
   648     CMSCleanOnEnter = false;
   649   }
   650   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
   651          "Inconsistency");
   653   // Parallel task queues; these are shared for the
   654   // concurrent and stop-world phases of CMS, but
   655   // are not shared with parallel scavenge (ParNew).
   656   {
   657     uint i;
   658     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
   660     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
   661          || ParallelRefProcEnabled)
   662         && num_queues > 0) {
   663       _task_queues = new OopTaskQueueSet(num_queues);
   664       if (_task_queues == NULL) {
   665         warning("task_queues allocation failure.");
   666         return;
   667       }
   668       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
   669       if (_hash_seed == NULL) {
   670         warning("_hash_seed array allocation failure");
   671         return;
   672       }
   674       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
   675       for (i = 0; i < num_queues; i++) {
   676         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
   677         if (q == NULL) {
   678           warning("work_queue allocation failure.");
   679           return;
   680         }
   681         _task_queues->register_queue(i, q);
   682       }
   683       for (i = 0; i < num_queues; i++) {
   684         _task_queues->queue(i)->initialize();
   685         _hash_seed[i] = 17;  // copied from ParNew
   686       }
   687     }
   688   }
   690   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
   692   // Clip CMSBootstrapOccupancy between 0 and 100.
   693   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
   694                          /(double)100;
   696   _full_gcs_since_conc_gc = 0;
   698   // Now tell CMS generations the identity of their collector
   699   ConcurrentMarkSweepGeneration::set_collector(this);
   701   // Create & start a CMS thread for this CMS collector
   702   _cmsThread = ConcurrentMarkSweepThread::start(this);
   703   assert(cmsThread() != NULL, "CMS Thread should have been created");
   704   assert(cmsThread()->collector() == this,
   705          "CMS Thread should refer to this gen");
   706   assert(CGC_lock != NULL, "Where's the CGC_lock?");
   708   // Support for parallelizing young gen rescan
   709   GenCollectedHeap* gch = GenCollectedHeap::heap();
   710   _young_gen = gch->prev_gen(_cmsGen);
   711   if (gch->supports_inline_contig_alloc()) {
   712     _top_addr = gch->top_addr();
   713     _end_addr = gch->end_addr();
   714     assert(_young_gen != NULL, "no _young_gen");
   715     _eden_chunk_index = 0;
   716     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
   717     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
   718     if (_eden_chunk_array == NULL) {
   719       _eden_chunk_capacity = 0;
   720       warning("GC/CMS: _eden_chunk_array allocation failure");
   721     }
   722   }
   723   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
   725   // Support for parallelizing survivor space rescan
   726   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
   727     const size_t max_plab_samples =
   728       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
   730     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
   731     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
   732     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
   733     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
   734         || _cursor == NULL) {
   735       warning("Failed to allocate survivor plab/chunk array");
   736       if (_survivor_plab_array  != NULL) {
   737         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
   738         _survivor_plab_array = NULL;
   739       }
   740       if (_survivor_chunk_array != NULL) {
   741         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
   742         _survivor_chunk_array = NULL;
   743       }
   744       if (_cursor != NULL) {
   745         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
   746         _cursor = NULL;
   747       }
   748     } else {
   749       _survivor_chunk_capacity = 2*max_plab_samples;
   750       for (uint i = 0; i < ParallelGCThreads; i++) {
   751         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
   752         if (vec == NULL) {
   753           warning("Failed to allocate survivor plab array");
   754           for (int j = i; j > 0; j--) {
   755             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
   756           }
   757           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
   758           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
   759           _survivor_plab_array = NULL;
   760           _survivor_chunk_array = NULL;
   761           _survivor_chunk_capacity = 0;
   762           break;
   763         } else {
   764           ChunkArray* cur =
   765             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
   766                                                         max_plab_samples);
   767           assert(cur->end() == 0, "Should be 0");
   768           assert(cur->array() == vec, "Should be vec");
   769           assert(cur->capacity() == max_plab_samples, "Error");
   770         }
   771       }
   772     }
   773   }
   774   assert(   (   _survivor_plab_array  != NULL
   775              && _survivor_chunk_array != NULL)
   776          || (   _survivor_chunk_capacity == 0
   777              && _survivor_chunk_index == 0),
   778          "Error");
   780   // Choose what strong roots should be scanned depending on verification options
   781   if (!CMSClassUnloadingEnabled) {
   782     // If class unloading is disabled we want to include all classes into the root set.
   783     add_root_scanning_option(SharedHeap::SO_AllClasses);
   784   } else {
   785     add_root_scanning_option(SharedHeap::SO_SystemClasses);
   786   }
   788   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
   789   _gc_counters = new CollectorCounters("CMS", 1);
   790   _completed_initialization = true;
   791   _inter_sweep_timer.start();  // start of time
   792 }
   794 const char* ConcurrentMarkSweepGeneration::name() const {
   795   return "concurrent mark-sweep generation";
   796 }
   797 void ConcurrentMarkSweepGeneration::update_counters() {
   798   if (UsePerfData) {
   799     _space_counters->update_all();
   800     _gen_counters->update_all();
   801   }
   802 }
   804 // this is an optimized version of update_counters(). it takes the
   805 // used value as a parameter rather than computing it.
   806 //
   807 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
   808   if (UsePerfData) {
   809     _space_counters->update_used(used);
   810     _space_counters->update_capacity();
   811     _gen_counters->update_all();
   812   }
   813 }
   815 void ConcurrentMarkSweepGeneration::print() const {
   816   Generation::print();
   817   cmsSpace()->print();
   818 }
   820 #ifndef PRODUCT
   821 void ConcurrentMarkSweepGeneration::print_statistics() {
   822   cmsSpace()->printFLCensus(0);
   823 }
   824 #endif
   826 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
   827   GenCollectedHeap* gch = GenCollectedHeap::heap();
   828   if (PrintGCDetails) {
   829     if (Verbose) {
   830       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
   831         level(), short_name(), s, used(), capacity());
   832     } else {
   833       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
   834         level(), short_name(), s, used() / K, capacity() / K);
   835     }
   836   }
   837   if (Verbose) {
   838     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
   839               gch->used(), gch->capacity());
   840   } else {
   841     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
   842               gch->used() / K, gch->capacity() / K);
   843   }
   844 }
   846 size_t
   847 ConcurrentMarkSweepGeneration::contiguous_available() const {
   848   // dld proposes an improvement in precision here. If the committed
   849   // part of the space ends in a free block we should add that to
   850   // uncommitted size in the calculation below. Will make this
   851   // change later, staying with the approximation below for the
   852   // time being. -- ysr.
   853   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
   854 }
   856 size_t
   857 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
   858   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
   859 }
   861 size_t ConcurrentMarkSweepGeneration::max_available() const {
   862   return free() + _virtual_space.uncommitted_size();
   863 }
   865 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
   866   size_t available = max_available();
   867   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
   868   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
   869   if (Verbose && PrintGCDetails) {
   870     gclog_or_tty->print_cr(
   871       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
   872       "max_promo("SIZE_FORMAT")",
   873       res? "":" not", available, res? ">=":"<",
   874       av_promo, max_promotion_in_bytes);
   875   }
   876   return res;
   877 }
   879 // At a promotion failure dump information on block layout in heap
   880 // (cms old generation).
   881 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
   882   if (CMSDumpAtPromotionFailure) {
   883     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
   884   }
   885 }
   887 CompactibleSpace*
   888 ConcurrentMarkSweepGeneration::first_compaction_space() const {
   889   return _cmsSpace;
   890 }
   892 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
   893   // Clear the promotion information.  These pointers can be adjusted
   894   // along with all the other pointers into the heap but
   895   // compaction is expected to be a rare event with
   896   // a heap using cms so don't do it without seeing the need.
   897   if (CollectedHeap::use_parallel_gc_threads()) {
   898     for (uint i = 0; i < ParallelGCThreads; i++) {
   899       _par_gc_thread_states[i]->promo.reset();
   900     }
   901   }
   902 }
   904 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
   905   blk->do_space(_cmsSpace);
   906 }
   908 void ConcurrentMarkSweepGeneration::compute_new_size() {
   909   assert_locked_or_safepoint(Heap_lock);
   911   // If incremental collection failed, we just want to expand
   912   // to the limit.
   913   if (incremental_collection_failed()) {
   914     clear_incremental_collection_failed();
   915     grow_to_reserved();
   916     return;
   917   }
   919   size_t expand_bytes = 0;
   920   double free_percentage = ((double) free()) / capacity();
   921   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
   922   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
   924   // compute expansion delta needed for reaching desired free percentage
   925   if (free_percentage < desired_free_percentage) {
   926     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   927     assert(desired_capacity >= capacity(), "invalid expansion size");
   928     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
   929   }
   930   if (expand_bytes > 0) {
   931     if (PrintGCDetails && Verbose) {
   932       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
   933       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
   934       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
   935       gclog_or_tty->print_cr("  Desired free fraction %f",
   936         desired_free_percentage);
   937       gclog_or_tty->print_cr("  Maximum free fraction %f",
   938         maximum_free_percentage);
   939       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
   940       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
   941         desired_capacity/1000);
   942       int prev_level = level() - 1;
   943       if (prev_level >= 0) {
   944         size_t prev_size = 0;
   945         GenCollectedHeap* gch = GenCollectedHeap::heap();
   946         Generation* prev_gen = gch->_gens[prev_level];
   947         prev_size = prev_gen->capacity();
   948           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
   949                                  prev_size/1000);
   950       }
   951       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
   952         unsafe_max_alloc_nogc()/1000);
   953       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
   954         contiguous_available()/1000);
   955       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
   956         expand_bytes);
   957     }
   958     // safe if expansion fails
   959     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
   960     if (PrintGCDetails && Verbose) {
   961       gclog_or_tty->print_cr("  Expanded free fraction %f",
   962         ((double) free()) / capacity());
   963     }
   964   }
   965 }
   967 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
   968   return cmsSpace()->freelistLock();
   969 }
   971 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
   972                                                   bool   tlab) {
   973   CMSSynchronousYieldRequest yr;
   974   MutexLockerEx x(freelistLock(),
   975                   Mutex::_no_safepoint_check_flag);
   976   return have_lock_and_allocate(size, tlab);
   977 }
   979 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
   980                                                   bool   tlab /* ignored */) {
   981   assert_lock_strong(freelistLock());
   982   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
   983   HeapWord* res = cmsSpace()->allocate(adjustedSize);
   984   // Allocate the object live (grey) if the background collector has
   985   // started marking. This is necessary because the marker may
   986   // have passed this address and consequently this object will
   987   // not otherwise be greyed and would be incorrectly swept up.
   988   // Note that if this object contains references, the writing
   989   // of those references will dirty the card containing this object
   990   // allowing the object to be blackened (and its references scanned)
   991   // either during a preclean phase or at the final checkpoint.
   992   if (res != NULL) {
   993     // We may block here with an uninitialized object with
   994     // its mark-bit or P-bits not yet set. Such objects need
   995     // to be safely navigable by block_start().
   996     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
   997     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
   998     collector()->direct_allocated(res, adjustedSize);
   999     _direct_allocated_words += adjustedSize;
  1000     // allocation counters
  1001     NOT_PRODUCT(
  1002       _numObjectsAllocated++;
  1003       _numWordsAllocated += (int)adjustedSize;
  1006   return res;
  1009 // In the case of direct allocation by mutators in a generation that
  1010 // is being concurrently collected, the object must be allocated
  1011 // live (grey) if the background collector has started marking.
  1012 // This is necessary because the marker may
  1013 // have passed this address and consequently this object will
  1014 // not otherwise be greyed and would be incorrectly swept up.
  1015 // Note that if this object contains references, the writing
  1016 // of those references will dirty the card containing this object
  1017 // allowing the object to be blackened (and its references scanned)
  1018 // either during a preclean phase or at the final checkpoint.
  1019 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
  1020   assert(_markBitMap.covers(start, size), "Out of bounds");
  1021   if (_collectorState >= Marking) {
  1022     MutexLockerEx y(_markBitMap.lock(),
  1023                     Mutex::_no_safepoint_check_flag);
  1024     // [see comments preceding SweepClosure::do_blk() below for details]
  1025     //
  1026     // Can the P-bits be deleted now?  JJJ
  1027     //
  1028     // 1. need to mark the object as live so it isn't collected
  1029     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
  1030     // 3. need to mark the end of the object so marking, precleaning or sweeping
  1031     //    can skip over uninitialized or unparsable objects. An allocated
  1032     //    object is considered uninitialized for our purposes as long as
  1033     //    its klass word is NULL.  All old gen objects are parsable
  1034     //    as soon as they are initialized.)
  1035     _markBitMap.mark(start);          // object is live
  1036     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
  1037     _markBitMap.mark(start + size - 1);
  1038                                       // mark end of object
  1040   // check that oop looks uninitialized
  1041   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
  1044 void CMSCollector::promoted(bool par, HeapWord* start,
  1045                             bool is_obj_array, size_t obj_size) {
  1046   assert(_markBitMap.covers(start), "Out of bounds");
  1047   // See comment in direct_allocated() about when objects should
  1048   // be allocated live.
  1049   if (_collectorState >= Marking) {
  1050     // we already hold the marking bit map lock, taken in
  1051     // the prologue
  1052     if (par) {
  1053       _markBitMap.par_mark(start);
  1054     } else {
  1055       _markBitMap.mark(start);
  1057     // We don't need to mark the object as uninitialized (as
  1058     // in direct_allocated above) because this is being done with the
  1059     // world stopped and the object will be initialized by the
  1060     // time the marking, precleaning or sweeping get to look at it.
  1061     // But see the code for copying objects into the CMS generation,
  1062     // where we need to ensure that concurrent readers of the
  1063     // block offset table are able to safely navigate a block that
  1064     // is in flux from being free to being allocated (and in
  1065     // transition while being copied into) and subsequently
  1066     // becoming a bona-fide object when the copy/promotion is complete.
  1067     assert(SafepointSynchronize::is_at_safepoint(),
  1068            "expect promotion only at safepoints");
  1070     if (_collectorState < Sweeping) {
  1071       // Mark the appropriate cards in the modUnionTable, so that
  1072       // this object gets scanned before the sweep. If this is
  1073       // not done, CMS generation references in the object might
  1074       // not get marked.
  1075       // For the case of arrays, which are otherwise precisely
  1076       // marked, we need to dirty the entire array, not just its head.
  1077       if (is_obj_array) {
  1078         // The [par_]mark_range() method expects mr.end() below to
  1079         // be aligned to the granularity of a bit's representation
  1080         // in the heap. In the case of the MUT below, that's a
  1081         // card size.
  1082         MemRegion mr(start,
  1083                      (HeapWord*)round_to((intptr_t)(start + obj_size),
  1084                         CardTableModRefBS::card_size /* bytes */));
  1085         if (par) {
  1086           _modUnionTable.par_mark_range(mr);
  1087         } else {
  1088           _modUnionTable.mark_range(mr);
  1090       } else {  // not an obj array; we can just mark the head
  1091         if (par) {
  1092           _modUnionTable.par_mark(start);
  1093         } else {
  1094           _modUnionTable.mark(start);
  1101 static inline size_t percent_of_space(Space* space, HeapWord* addr)
  1103   size_t delta = pointer_delta(addr, space->bottom());
  1104   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
  1107 void CMSCollector::icms_update_allocation_limits()
  1109   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
  1110   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
  1112   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
  1113   if (CMSTraceIncrementalPacing) {
  1114     stats().print();
  1117   assert(duty_cycle <= 100, "invalid duty cycle");
  1118   if (duty_cycle != 0) {
  1119     // The duty_cycle is a percentage between 0 and 100; convert to words and
  1120     // then compute the offset from the endpoints of the space.
  1121     size_t free_words = eden->free() / HeapWordSize;
  1122     double free_words_dbl = (double)free_words;
  1123     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
  1124     size_t offset_words = (free_words - duty_cycle_words) / 2;
  1126     _icms_start_limit = eden->top() + offset_words;
  1127     _icms_stop_limit = eden->end() - offset_words;
  1129     // The limits may be adjusted (shifted to the right) by
  1130     // CMSIncrementalOffset, to allow the application more mutator time after a
  1131     // young gen gc (when all mutators were stopped) and before CMS starts and
  1132     // takes away one or more cpus.
  1133     if (CMSIncrementalOffset != 0) {
  1134       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
  1135       size_t adjustment = (size_t)adjustment_dbl;
  1136       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
  1137       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
  1138         _icms_start_limit += adjustment;
  1139         _icms_stop_limit = tmp_stop;
  1143   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
  1144     _icms_start_limit = _icms_stop_limit = eden->end();
  1147   // Install the new start limit.
  1148   eden->set_soft_end(_icms_start_limit);
  1150   if (CMSTraceIncrementalMode) {
  1151     gclog_or_tty->print(" icms alloc limits:  "
  1152                            PTR_FORMAT "," PTR_FORMAT
  1153                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
  1154                            _icms_start_limit, _icms_stop_limit,
  1155                            percent_of_space(eden, _icms_start_limit),
  1156                            percent_of_space(eden, _icms_stop_limit));
  1157     if (Verbose) {
  1158       gclog_or_tty->print("eden:  ");
  1159       eden->print_on(gclog_or_tty);
  1164 // Any changes here should try to maintain the invariant
  1165 // that if this method is called with _icms_start_limit
  1166 // and _icms_stop_limit both NULL, then it should return NULL
  1167 // and not notify the icms thread.
  1168 HeapWord*
  1169 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
  1170                                        size_t word_size)
  1172   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
  1173   // nop.
  1174   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
  1175     if (top <= _icms_start_limit) {
  1176       if (CMSTraceIncrementalMode) {
  1177         space->print_on(gclog_or_tty);
  1178         gclog_or_tty->stamp();
  1179         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
  1180                                ", new limit=" PTR_FORMAT
  1181                                " (" SIZE_FORMAT "%%)",
  1182                                top, _icms_stop_limit,
  1183                                percent_of_space(space, _icms_stop_limit));
  1185       ConcurrentMarkSweepThread::start_icms();
  1186       assert(top < _icms_stop_limit, "Tautology");
  1187       if (word_size < pointer_delta(_icms_stop_limit, top)) {
  1188         return _icms_stop_limit;
  1191       // The allocation will cross both the _start and _stop limits, so do the
  1192       // stop notification also and return end().
  1193       if (CMSTraceIncrementalMode) {
  1194         space->print_on(gclog_or_tty);
  1195         gclog_or_tty->stamp();
  1196         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
  1197                                ", new limit=" PTR_FORMAT
  1198                                " (" SIZE_FORMAT "%%)",
  1199                                top, space->end(),
  1200                                percent_of_space(space, space->end()));
  1202       ConcurrentMarkSweepThread::stop_icms();
  1203       return space->end();
  1206     if (top <= _icms_stop_limit) {
  1207       if (CMSTraceIncrementalMode) {
  1208         space->print_on(gclog_or_tty);
  1209         gclog_or_tty->stamp();
  1210         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
  1211                                ", new limit=" PTR_FORMAT
  1212                                " (" SIZE_FORMAT "%%)",
  1213                                top, space->end(),
  1214                                percent_of_space(space, space->end()));
  1216       ConcurrentMarkSweepThread::stop_icms();
  1217       return space->end();
  1220     if (CMSTraceIncrementalMode) {
  1221       space->print_on(gclog_or_tty);
  1222       gclog_or_tty->stamp();
  1223       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
  1224                              ", new limit=" PTR_FORMAT,
  1225                              top, NULL);
  1229   return NULL;
  1232 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
  1233   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1234   // allocate, copy and if necessary update promoinfo --
  1235   // delegate to underlying space.
  1236   assert_lock_strong(freelistLock());
  1238 #ifndef PRODUCT
  1239   if (Universe::heap()->promotion_should_fail()) {
  1240     return NULL;
  1242 #endif  // #ifndef PRODUCT
  1244   oop res = _cmsSpace->promote(obj, obj_size);
  1245   if (res == NULL) {
  1246     // expand and retry
  1247     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
  1248     expand(s*HeapWordSize, MinHeapDeltaBytes,
  1249       CMSExpansionCause::_satisfy_promotion);
  1250     // Since there's currently no next generation, we don't try to promote
  1251     // into a more senior generation.
  1252     assert(next_gen() == NULL, "assumption, based upon which no attempt "
  1253                                "is made to pass on a possibly failing "
  1254                                "promotion to next generation");
  1255     res = _cmsSpace->promote(obj, obj_size);
  1257   if (res != NULL) {
  1258     // See comment in allocate() about when objects should
  1259     // be allocated live.
  1260     assert(obj->is_oop(), "Will dereference klass pointer below");
  1261     collector()->promoted(false,           // Not parallel
  1262                           (HeapWord*)res, obj->is_objArray(), obj_size);
  1263     // promotion counters
  1264     NOT_PRODUCT(
  1265       _numObjectsPromoted++;
  1266       _numWordsPromoted +=
  1267         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
  1270   return res;
  1274 HeapWord*
  1275 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
  1276                                              HeapWord* top,
  1277                                              size_t word_sz)
  1279   return collector()->allocation_limit_reached(space, top, word_sz);
  1282 // IMPORTANT: Notes on object size recognition in CMS.
  1283 // ---------------------------------------------------
  1284 // A block of storage in the CMS generation is always in
  1285 // one of three states. A free block (FREE), an allocated
  1286 // object (OBJECT) whose size() method reports the correct size,
  1287 // and an intermediate state (TRANSIENT) in which its size cannot
  1288 // be accurately determined.
  1289 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
  1290 // -----------------------------------------------------
  1291 // FREE:      klass_word & 1 == 1; mark_word holds block size
  1292 //
  1293 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
  1294 //            obj->size() computes correct size
  1295 //
  1296 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
  1297 //
  1298 // STATE IDENTIFICATION: (64 bit+COOPS)
  1299 // ------------------------------------
  1300 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
  1301 //
  1302 // OBJECT:    klass_word installed; klass_word != 0;
  1303 //            obj->size() computes correct size
  1304 //
  1305 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
  1306 //
  1307 //
  1308 // STATE TRANSITION DIAGRAM
  1309 //
  1310 //        mut / parnew                     mut  /  parnew
  1311 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
  1312 //  ^                                                                   |
  1313 //  |------------------------ DEAD <------------------------------------|
  1314 //         sweep                            mut
  1315 //
  1316 // While a block is in TRANSIENT state its size cannot be determined
  1317 // so readers will either need to come back later or stall until
  1318 // the size can be determined. Note that for the case of direct
  1319 // allocation, P-bits, when available, may be used to determine the
  1320 // size of an object that may not yet have been initialized.
  1322 // Things to support parallel young-gen collection.
  1323 oop
  1324 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
  1325                                            oop old, markOop m,
  1326                                            size_t word_sz) {
  1327 #ifndef PRODUCT
  1328   if (Universe::heap()->promotion_should_fail()) {
  1329     return NULL;
  1331 #endif  // #ifndef PRODUCT
  1333   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1334   PromotionInfo* promoInfo = &ps->promo;
  1335   // if we are tracking promotions, then first ensure space for
  1336   // promotion (including spooling space for saving header if necessary).
  1337   // then allocate and copy, then track promoted info if needed.
  1338   // When tracking (see PromotionInfo::track()), the mark word may
  1339   // be displaced and in this case restoration of the mark word
  1340   // occurs in the (oop_since_save_marks_)iterate phase.
  1341   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
  1342     // Out of space for allocating spooling buffers;
  1343     // try expanding and allocating spooling buffers.
  1344     if (!expand_and_ensure_spooling_space(promoInfo)) {
  1345       return NULL;
  1348   assert(promoInfo->has_spooling_space(), "Control point invariant");
  1349   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
  1350   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
  1351   if (obj_ptr == NULL) {
  1352      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
  1353      if (obj_ptr == NULL) {
  1354        return NULL;
  1357   oop obj = oop(obj_ptr);
  1358   OrderAccess::storestore();
  1359   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1360   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
  1361   // IMPORTANT: See note on object initialization for CMS above.
  1362   // Otherwise, copy the object.  Here we must be careful to insert the
  1363   // klass pointer last, since this marks the block as an allocated object.
  1364   // Except with compressed oops it's the mark word.
  1365   HeapWord* old_ptr = (HeapWord*)old;
  1366   // Restore the mark word copied above.
  1367   obj->set_mark(m);
  1368   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1369   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
  1370   OrderAccess::storestore();
  1372   if (UseCompressedKlassPointers) {
  1373     // Copy gap missed by (aligned) header size calculation below
  1374     obj->set_klass_gap(old->klass_gap());
  1376   if (word_sz > (size_t)oopDesc::header_size()) {
  1377     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
  1378                                  obj_ptr + oopDesc::header_size(),
  1379                                  word_sz - oopDesc::header_size());
  1382   // Now we can track the promoted object, if necessary.  We take care
  1383   // to delay the transition from uninitialized to full object
  1384   // (i.e., insertion of klass pointer) until after, so that it
  1385   // atomically becomes a promoted object.
  1386   if (promoInfo->tracking()) {
  1387     promoInfo->track((PromotedObject*)obj, old->klass());
  1389   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
  1390   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
  1391   assert(old->is_oop(), "Will use and dereference old klass ptr below");
  1393   // Finally, install the klass pointer (this should be volatile).
  1394   OrderAccess::storestore();
  1395   obj->set_klass(old->klass());
  1396   // We should now be able to calculate the right size for this object
  1397   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
  1399   collector()->promoted(true,          // parallel
  1400                         obj_ptr, old->is_objArray(), word_sz);
  1402   NOT_PRODUCT(
  1403     Atomic::inc_ptr(&_numObjectsPromoted);
  1404     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
  1407   return obj;
  1410 void
  1411 ConcurrentMarkSweepGeneration::
  1412 par_promote_alloc_undo(int thread_num,
  1413                        HeapWord* obj, size_t word_sz) {
  1414   // CMS does not support promotion undo.
  1415   ShouldNotReachHere();
  1418 void
  1419 ConcurrentMarkSweepGeneration::
  1420 par_promote_alloc_done(int thread_num) {
  1421   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1422   ps->lab.retire(thread_num);
  1425 void
  1426 ConcurrentMarkSweepGeneration::
  1427 par_oop_since_save_marks_iterate_done(int thread_num) {
  1428   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
  1429   ParScanWithoutBarrierClosure* dummy_cl = NULL;
  1430   ps->promo.promoted_oops_iterate_nv(dummy_cl);
  1433 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
  1434                                                    size_t size,
  1435                                                    bool   tlab)
  1437   // We allow a STW collection only if a full
  1438   // collection was requested.
  1439   return full || should_allocate(size, tlab); // FIX ME !!!
  1440   // This and promotion failure handling are connected at the
  1441   // hip and should be fixed by untying them.
  1444 bool CMSCollector::shouldConcurrentCollect() {
  1445   if (_full_gc_requested) {
  1446     if (Verbose && PrintGCDetails) {
  1447       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
  1448                              " gc request (or gc_locker)");
  1450     return true;
  1453   // For debugging purposes, change the type of collection.
  1454   // If the rotation is not on the concurrent collection
  1455   // type, don't start a concurrent collection.
  1456   NOT_PRODUCT(
  1457     if (RotateCMSCollectionTypes &&
  1458         (_cmsGen->debug_collection_type() !=
  1459           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
  1460       assert(_cmsGen->debug_collection_type() !=
  1461         ConcurrentMarkSweepGeneration::Unknown_collection_type,
  1462         "Bad cms collection type");
  1463       return false;
  1467   FreelistLocker x(this);
  1468   // ------------------------------------------------------------------
  1469   // Print out lots of information which affects the initiation of
  1470   // a collection.
  1471   if (PrintCMSInitiationStatistics && stats().valid()) {
  1472     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
  1473     gclog_or_tty->stamp();
  1474     gclog_or_tty->print_cr("");
  1475     stats().print_on(gclog_or_tty);
  1476     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
  1477       stats().time_until_cms_gen_full());
  1478     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
  1479     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
  1480                            _cmsGen->contiguous_available());
  1481     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
  1482     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
  1483     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
  1484     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
  1485     gclog_or_tty->print_cr("metadata initialized %d",
  1486       MetaspaceGC::should_concurrent_collect());
  1488   // ------------------------------------------------------------------
  1490   // If the estimated time to complete a cms collection (cms_duration())
  1491   // is less than the estimated time remaining until the cms generation
  1492   // is full, start a collection.
  1493   if (!UseCMSInitiatingOccupancyOnly) {
  1494     if (stats().valid()) {
  1495       if (stats().time_until_cms_start() == 0.0) {
  1496         return true;
  1498     } else {
  1499       // We want to conservatively collect somewhat early in order
  1500       // to try and "bootstrap" our CMS/promotion statistics;
  1501       // this branch will not fire after the first successful CMS
  1502       // collection because the stats should then be valid.
  1503       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
  1504         if (Verbose && PrintGCDetails) {
  1505           gclog_or_tty->print_cr(
  1506             " CMSCollector: collect for bootstrapping statistics:"
  1507             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
  1508             _bootstrap_occupancy);
  1510         return true;
  1515   // Otherwise, we start a collection cycle if
  1516   // old gen want a collection cycle started. Each may use
  1517   // an appropriate criterion for making this decision.
  1518   // XXX We need to make sure that the gen expansion
  1519   // criterion dovetails well with this. XXX NEED TO FIX THIS
  1520   if (_cmsGen->should_concurrent_collect()) {
  1521     if (Verbose && PrintGCDetails) {
  1522       gclog_or_tty->print_cr("CMS old gen initiated");
  1524     return true;
  1527   // We start a collection if we believe an incremental collection may fail;
  1528   // this is not likely to be productive in practice because it's probably too
  1529   // late anyway.
  1530   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1531   assert(gch->collector_policy()->is_two_generation_policy(),
  1532          "You may want to check the correctness of the following");
  1533   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
  1534     if (Verbose && PrintGCDetails) {
  1535       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
  1537     return true;
  1540   if (MetaspaceGC::should_concurrent_collect()) {
  1541       if (Verbose && PrintGCDetails) {
  1542       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
  1544       return true;
  1547   return false;
  1550 // Clear _expansion_cause fields of constituent generations
  1551 void CMSCollector::clear_expansion_cause() {
  1552   _cmsGen->clear_expansion_cause();
  1555 // We should be conservative in starting a collection cycle.  To
  1556 // start too eagerly runs the risk of collecting too often in the
  1557 // extreme.  To collect too rarely falls back on full collections,
  1558 // which works, even if not optimum in terms of concurrent work.
  1559 // As a work around for too eagerly collecting, use the flag
  1560 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
  1561 // giving the user an easily understandable way of controlling the
  1562 // collections.
  1563 // We want to start a new collection cycle if any of the following
  1564 // conditions hold:
  1565 // . our current occupancy exceeds the configured initiating occupancy
  1566 //   for this generation, or
  1567 // . we recently needed to expand this space and have not, since that
  1568 //   expansion, done a collection of this generation, or
  1569 // . the underlying space believes that it may be a good idea to initiate
  1570 //   a concurrent collection (this may be based on criteria such as the
  1571 //   following: the space uses linear allocation and linear allocation is
  1572 //   going to fail, or there is believed to be excessive fragmentation in
  1573 //   the generation, etc... or ...
  1574 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
  1575 //   the case of the old generation; see CR 6543076):
  1576 //   we may be approaching a point at which allocation requests may fail because
  1577 //   we will be out of sufficient free space given allocation rate estimates.]
  1578 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
  1580   assert_lock_strong(freelistLock());
  1581   if (occupancy() > initiating_occupancy()) {
  1582     if (PrintGCDetails && Verbose) {
  1583       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
  1584         short_name(), occupancy(), initiating_occupancy());
  1586     return true;
  1588   if (UseCMSInitiatingOccupancyOnly) {
  1589     return false;
  1591   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
  1592     if (PrintGCDetails && Verbose) {
  1593       gclog_or_tty->print(" %s: collect because expanded for allocation ",
  1594         short_name());
  1596     return true;
  1598   if (_cmsSpace->should_concurrent_collect()) {
  1599     if (PrintGCDetails && Verbose) {
  1600       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
  1601         short_name());
  1603     return true;
  1605   return false;
  1608 void ConcurrentMarkSweepGeneration::collect(bool   full,
  1609                                             bool   clear_all_soft_refs,
  1610                                             size_t size,
  1611                                             bool   tlab)
  1613   collector()->collect(full, clear_all_soft_refs, size, tlab);
  1616 void CMSCollector::collect(bool   full,
  1617                            bool   clear_all_soft_refs,
  1618                            size_t size,
  1619                            bool   tlab)
  1621   if (!UseCMSCollectionPassing && _collectorState > Idling) {
  1622     // For debugging purposes skip the collection if the state
  1623     // is not currently idle
  1624     if (TraceCMSState) {
  1625       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
  1626         Thread::current(), full, _collectorState);
  1628     return;
  1631   // The following "if" branch is present for defensive reasons.
  1632   // In the current uses of this interface, it can be replaced with:
  1633   // assert(!GC_locker.is_active(), "Can't be called otherwise");
  1634   // But I am not placing that assert here to allow future
  1635   // generality in invoking this interface.
  1636   if (GC_locker::is_active()) {
  1637     // A consistency test for GC_locker
  1638     assert(GC_locker::needs_gc(), "Should have been set already");
  1639     // Skip this foreground collection, instead
  1640     // expanding the heap if necessary.
  1641     // Need the free list locks for the call to free() in compute_new_size()
  1642     compute_new_size();
  1643     return;
  1645   acquire_control_and_collect(full, clear_all_soft_refs);
  1646   _full_gcs_since_conc_gc++;
  1650 void CMSCollector::request_full_gc(unsigned int full_gc_count) {
  1651   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1652   unsigned int gc_count = gch->total_full_collections();
  1653   if (gc_count == full_gc_count) {
  1654     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
  1655     _full_gc_requested = true;
  1656     CGC_lock->notify();   // nudge CMS thread
  1657   } else {
  1658     assert(gc_count > full_gc_count, "Error: causal loop");
  1663 // The foreground and background collectors need to coordinate in order
  1664 // to make sure that they do not mutually interfere with CMS collections.
  1665 // When a background collection is active,
  1666 // the foreground collector may need to take over (preempt) and
  1667 // synchronously complete an ongoing collection. Depending on the
  1668 // frequency of the background collections and the heap usage
  1669 // of the application, this preemption can be seldom or frequent.
  1670 // There are only certain
  1671 // points in the background collection that the "collection-baton"
  1672 // can be passed to the foreground collector.
  1673 //
  1674 // The foreground collector will wait for the baton before
  1675 // starting any part of the collection.  The foreground collector
  1676 // will only wait at one location.
  1677 //
  1678 // The background collector will yield the baton before starting a new
  1679 // phase of the collection (e.g., before initial marking, marking from roots,
  1680 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
  1681 // of the loop which switches the phases. The background collector does some
  1682 // of the phases (initial mark, final re-mark) with the world stopped.
  1683 // Because of locking involved in stopping the world,
  1684 // the foreground collector should not block waiting for the background
  1685 // collector when it is doing a stop-the-world phase.  The background
  1686 // collector will yield the baton at an additional point just before
  1687 // it enters a stop-the-world phase.  Once the world is stopped, the
  1688 // background collector checks the phase of the collection.  If the
  1689 // phase has not changed, it proceeds with the collection.  If the
  1690 // phase has changed, it skips that phase of the collection.  See
  1691 // the comments on the use of the Heap_lock in collect_in_background().
  1692 //
  1693 // Variable used in baton passing.
  1694 //   _foregroundGCIsActive - Set to true by the foreground collector when
  1695 //      it wants the baton.  The foreground clears it when it has finished
  1696 //      the collection.
  1697 //   _foregroundGCShouldWait - Set to true by the background collector
  1698 //        when it is running.  The foreground collector waits while
  1699 //      _foregroundGCShouldWait is true.
  1700 //  CGC_lock - monitor used to protect access to the above variables
  1701 //      and to notify the foreground and background collectors.
  1702 //  _collectorState - current state of the CMS collection.
  1703 //
  1704 // The foreground collector
  1705 //   acquires the CGC_lock
  1706 //   sets _foregroundGCIsActive
  1707 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
  1708 //     various locks acquired in preparation for the collection
  1709 //     are released so as not to block the background collector
  1710 //     that is in the midst of a collection
  1711 //   proceeds with the collection
  1712 //   clears _foregroundGCIsActive
  1713 //   returns
  1714 //
  1715 // The background collector in a loop iterating on the phases of the
  1716 //      collection
  1717 //   acquires the CGC_lock
  1718 //   sets _foregroundGCShouldWait
  1719 //   if _foregroundGCIsActive is set
  1720 //     clears _foregroundGCShouldWait, notifies _CGC_lock
  1721 //     waits on _CGC_lock for _foregroundGCIsActive to become false
  1722 //     and exits the loop.
  1723 //   otherwise
  1724 //     proceed with that phase of the collection
  1725 //     if the phase is a stop-the-world phase,
  1726 //       yield the baton once more just before enqueueing
  1727 //       the stop-world CMS operation (executed by the VM thread).
  1728 //   returns after all phases of the collection are done
  1729 //
  1731 void CMSCollector::acquire_control_and_collect(bool full,
  1732         bool clear_all_soft_refs) {
  1733   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  1734   assert(!Thread::current()->is_ConcurrentGC_thread(),
  1735          "shouldn't try to acquire control from self!");
  1737   // Start the protocol for acquiring control of the
  1738   // collection from the background collector (aka CMS thread).
  1739   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1740          "VM thread should have CMS token");
  1741   // Remember the possibly interrupted state of an ongoing
  1742   // concurrent collection
  1743   CollectorState first_state = _collectorState;
  1745   // Signal to a possibly ongoing concurrent collection that
  1746   // we want to do a foreground collection.
  1747   _foregroundGCIsActive = true;
  1749   // Disable incremental mode during a foreground collection.
  1750   ICMSDisabler icms_disabler;
  1752   // release locks and wait for a notify from the background collector
  1753   // releasing the locks in only necessary for phases which
  1754   // do yields to improve the granularity of the collection.
  1755   assert_lock_strong(bitMapLock());
  1756   // We need to lock the Free list lock for the space that we are
  1757   // currently collecting.
  1758   assert(haveFreelistLocks(), "Must be holding free list locks");
  1759   bitMapLock()->unlock();
  1760   releaseFreelistLocks();
  1762     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  1763     if (_foregroundGCShouldWait) {
  1764       // We are going to be waiting for action for the CMS thread;
  1765       // it had better not be gone (for instance at shutdown)!
  1766       assert(ConcurrentMarkSweepThread::cmst() != NULL,
  1767              "CMS thread must be running");
  1768       // Wait here until the background collector gives us the go-ahead
  1769       ConcurrentMarkSweepThread::clear_CMS_flag(
  1770         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
  1771       // Get a possibly blocked CMS thread going:
  1772       //   Note that we set _foregroundGCIsActive true above,
  1773       //   without protection of the CGC_lock.
  1774       CGC_lock->notify();
  1775       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
  1776              "Possible deadlock");
  1777       while (_foregroundGCShouldWait) {
  1778         // wait for notification
  1779         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  1780         // Possibility of delay/starvation here, since CMS token does
  1781         // not know to give priority to VM thread? Actually, i think
  1782         // there wouldn't be any delay/starvation, but the proof of
  1783         // that "fact" (?) appears non-trivial. XXX 20011219YSR
  1785       ConcurrentMarkSweepThread::set_CMS_flag(
  1786         ConcurrentMarkSweepThread::CMS_vm_has_token);
  1789   // The CMS_token is already held.  Get back the other locks.
  1790   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  1791          "VM thread should have CMS token");
  1792   getFreelistLocks();
  1793   bitMapLock()->lock_without_safepoint_check();
  1794   if (TraceCMSState) {
  1795     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
  1796       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
  1797     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
  1800   // Check if we need to do a compaction, or if not, whether
  1801   // we need to start the mark-sweep from scratch.
  1802   bool should_compact    = false;
  1803   bool should_start_over = false;
  1804   decide_foreground_collection_type(clear_all_soft_refs,
  1805     &should_compact, &should_start_over);
  1807 NOT_PRODUCT(
  1808   if (RotateCMSCollectionTypes) {
  1809     if (_cmsGen->debug_collection_type() ==
  1810         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
  1811       should_compact = true;
  1812     } else if (_cmsGen->debug_collection_type() ==
  1813                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
  1814       should_compact = false;
  1819   if (PrintGCDetails && first_state > Idling) {
  1820     GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
  1821     if (GCCause::is_user_requested_gc(cause) ||
  1822         GCCause::is_serviceability_requested_gc(cause)) {
  1823       gclog_or_tty->print(" (concurrent mode interrupted)");
  1824     } else {
  1825       gclog_or_tty->print(" (concurrent mode failure)");
  1829   if (should_compact) {
  1830     // If the collection is being acquired from the background
  1831     // collector, there may be references on the discovered
  1832     // references lists that have NULL referents (being those
  1833     // that were concurrently cleared by a mutator) or
  1834     // that are no longer active (having been enqueued concurrently
  1835     // by the mutator).
  1836     // Scrub the list of those references because Mark-Sweep-Compact
  1837     // code assumes referents are not NULL and that all discovered
  1838     // Reference objects are active.
  1839     ref_processor()->clean_up_discovered_references();
  1841     do_compaction_work(clear_all_soft_refs);
  1843     // Has the GC time limit been exceeded?
  1844     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
  1845     size_t max_eden_size = young_gen->max_capacity() -
  1846                            young_gen->to()->capacity() -
  1847                            young_gen->from()->capacity();
  1848     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1849     GCCause::Cause gc_cause = gch->gc_cause();
  1850     size_policy()->check_gc_overhead_limit(_young_gen->used(),
  1851                                            young_gen->eden()->used(),
  1852                                            _cmsGen->max_capacity(),
  1853                                            max_eden_size,
  1854                                            full,
  1855                                            gc_cause,
  1856                                            gch->collector_policy());
  1857   } else {
  1858     do_mark_sweep_work(clear_all_soft_refs, first_state,
  1859       should_start_over);
  1861   // Reset the expansion cause, now that we just completed
  1862   // a collection cycle.
  1863   clear_expansion_cause();
  1864   _foregroundGCIsActive = false;
  1865   return;
  1868 // Resize the tenured generation
  1869 // after obtaining the free list locks for the
  1870 // two generations.
  1871 void CMSCollector::compute_new_size() {
  1872   assert_locked_or_safepoint(Heap_lock);
  1873   FreelistLocker z(this);
  1874   MetaspaceGC::compute_new_size();
  1875   _cmsGen->compute_new_size();
  1878 // A work method used by foreground collection to determine
  1879 // what type of collection (compacting or not, continuing or fresh)
  1880 // it should do.
  1881 // NOTE: the intent is to make UseCMSCompactAtFullCollection
  1882 // and CMSCompactWhenClearAllSoftRefs the default in the future
  1883 // and do away with the flags after a suitable period.
  1884 void CMSCollector::decide_foreground_collection_type(
  1885   bool clear_all_soft_refs, bool* should_compact,
  1886   bool* should_start_over) {
  1887   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
  1888   // flag is set, and we have either requested a System.gc() or
  1889   // the number of full gc's since the last concurrent cycle
  1890   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
  1891   // or if an incremental collection has failed
  1892   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1893   assert(gch->collector_policy()->is_two_generation_policy(),
  1894          "You may want to check the correctness of the following");
  1895   // Inform cms gen if this was due to partial collection failing.
  1896   // The CMS gen may use this fact to determine its expansion policy.
  1897   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
  1898     assert(!_cmsGen->incremental_collection_failed(),
  1899            "Should have been noticed, reacted to and cleared");
  1900     _cmsGen->set_incremental_collection_failed();
  1902   *should_compact =
  1903     UseCMSCompactAtFullCollection &&
  1904     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
  1905      GCCause::is_user_requested_gc(gch->gc_cause()) ||
  1906      gch->incremental_collection_will_fail(true /* consult_young */));
  1907   *should_start_over = false;
  1908   if (clear_all_soft_refs && !*should_compact) {
  1909     // We are about to do a last ditch collection attempt
  1910     // so it would normally make sense to do a compaction
  1911     // to reclaim as much space as possible.
  1912     if (CMSCompactWhenClearAllSoftRefs) {
  1913       // Default: The rationale is that in this case either
  1914       // we are past the final marking phase, in which case
  1915       // we'd have to start over, or so little has been done
  1916       // that there's little point in saving that work. Compaction
  1917       // appears to be the sensible choice in either case.
  1918       *should_compact = true;
  1919     } else {
  1920       // We have been asked to clear all soft refs, but not to
  1921       // compact. Make sure that we aren't past the final checkpoint
  1922       // phase, for that is where we process soft refs. If we are already
  1923       // past that phase, we'll need to redo the refs discovery phase and
  1924       // if necessary clear soft refs that weren't previously
  1925       // cleared. We do so by remembering the phase in which
  1926       // we came in, and if we are past the refs processing
  1927       // phase, we'll choose to just redo the mark-sweep
  1928       // collection from scratch.
  1929       if (_collectorState > FinalMarking) {
  1930         // We are past the refs processing phase;
  1931         // start over and do a fresh synchronous CMS cycle
  1932         _collectorState = Resetting; // skip to reset to start new cycle
  1933         reset(false /* == !asynch */);
  1934         *should_start_over = true;
  1935       } // else we can continue a possibly ongoing current cycle
  1940 // A work method used by the foreground collector to do
  1941 // a mark-sweep-compact.
  1942 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
  1943   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1944   TraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, gclog_or_tty);
  1945   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
  1946     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
  1947       "collections passed to foreground collector", _full_gcs_since_conc_gc);
  1950   // Sample collection interval time and reset for collection pause.
  1951   if (UseAdaptiveSizePolicy) {
  1952     size_policy()->msc_collection_begin();
  1955   // Temporarily widen the span of the weak reference processing to
  1956   // the entire heap.
  1957   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
  1958   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
  1959   // Temporarily, clear the "is_alive_non_header" field of the
  1960   // reference processor.
  1961   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
  1962   // Temporarily make reference _processing_ single threaded (non-MT).
  1963   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
  1964   // Temporarily make refs discovery atomic
  1965   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
  1966   // Temporarily make reference _discovery_ single threaded (non-MT)
  1967   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
  1969   ref_processor()->set_enqueuing_is_done(false);
  1970   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
  1971   ref_processor()->setup_policy(clear_all_soft_refs);
  1972   // If an asynchronous collection finishes, the _modUnionTable is
  1973   // all clear.  If we are assuming the collection from an asynchronous
  1974   // collection, clear the _modUnionTable.
  1975   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
  1976     "_modUnionTable should be clear if the baton was not passed");
  1977   _modUnionTable.clear_all();
  1978   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
  1979     "mod union for klasses should be clear if the baton was passed");
  1980   _ct->klass_rem_set()->clear_mod_union();
  1982   // We must adjust the allocation statistics being maintained
  1983   // in the free list space. We do so by reading and clearing
  1984   // the sweep timer and updating the block flux rate estimates below.
  1985   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
  1986   if (_inter_sweep_timer.is_active()) {
  1987     _inter_sweep_timer.stop();
  1988     // Note that we do not use this sample to update the _inter_sweep_estimate.
  1989     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
  1990                                             _inter_sweep_estimate.padded_average(),
  1991                                             _intra_sweep_estimate.padded_average());
  1994   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
  1995     ref_processor(), clear_all_soft_refs);
  1996   #ifdef ASSERT
  1997     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
  1998     size_t free_size = cms_space->free();
  1999     assert(free_size ==
  2000            pointer_delta(cms_space->end(), cms_space->compaction_top())
  2001            * HeapWordSize,
  2002       "All the free space should be compacted into one chunk at top");
  2003     assert(cms_space->dictionary()->total_chunk_size(
  2004                                       debug_only(cms_space->freelistLock())) == 0 ||
  2005            cms_space->totalSizeInIndexedFreeLists() == 0,
  2006       "All the free space should be in a single chunk");
  2007     size_t num = cms_space->totalCount();
  2008     assert((free_size == 0 && num == 0) ||
  2009            (free_size > 0  && (num == 1 || num == 2)),
  2010          "There should be at most 2 free chunks after compaction");
  2011   #endif // ASSERT
  2012   _collectorState = Resetting;
  2013   assert(_restart_addr == NULL,
  2014          "Should have been NULL'd before baton was passed");
  2015   reset(false /* == !asynch */);
  2016   _cmsGen->reset_after_compaction();
  2017   _concurrent_cycles_since_last_unload = 0;
  2019   // Clear any data recorded in the PLAB chunk arrays.
  2020   if (_survivor_plab_array != NULL) {
  2021     reset_survivor_plab_arrays();
  2024   // Adjust the per-size allocation stats for the next epoch.
  2025   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
  2026   // Restart the "inter sweep timer" for the next epoch.
  2027   _inter_sweep_timer.reset();
  2028   _inter_sweep_timer.start();
  2030   // Sample collection pause time and reset for collection interval.
  2031   if (UseAdaptiveSizePolicy) {
  2032     size_policy()->msc_collection_end(gch->gc_cause());
  2035   // For a mark-sweep-compact, compute_new_size() will be called
  2036   // in the heap's do_collection() method.
  2039 // A work method used by the foreground collector to do
  2040 // a mark-sweep, after taking over from a possibly on-going
  2041 // concurrent mark-sweep collection.
  2042 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
  2043   CollectorState first_state, bool should_start_over) {
  2044   if (PrintGC && Verbose) {
  2045     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
  2046       "collector with count %d",
  2047       _full_gcs_since_conc_gc);
  2049   switch (_collectorState) {
  2050     case Idling:
  2051       if (first_state == Idling || should_start_over) {
  2052         // The background GC was not active, or should
  2053         // restarted from scratch;  start the cycle.
  2054         _collectorState = InitialMarking;
  2056       // If first_state was not Idling, then a background GC
  2057       // was in progress and has now finished.  No need to do it
  2058       // again.  Leave the state as Idling.
  2059       break;
  2060     case Precleaning:
  2061       // In the foreground case don't do the precleaning since
  2062       // it is not done concurrently and there is extra work
  2063       // required.
  2064       _collectorState = FinalMarking;
  2066   if (PrintGCDetails &&
  2067       (_collectorState > Idling ||
  2068        !GCCause::is_user_requested_gc(GenCollectedHeap::heap()->gc_cause()))) {
  2069     gclog_or_tty->print(" (concurrent mode failure)");
  2071   collect_in_foreground(clear_all_soft_refs);
  2073   // For a mark-sweep, compute_new_size() will be called
  2074   // in the heap's do_collection() method.
  2078 void CMSCollector::getFreelistLocks() const {
  2079   // Get locks for all free lists in all generations that this
  2080   // collector is responsible for
  2081   _cmsGen->freelistLock()->lock_without_safepoint_check();
  2084 void CMSCollector::releaseFreelistLocks() const {
  2085   // Release locks for all free lists in all generations that this
  2086   // collector is responsible for
  2087   _cmsGen->freelistLock()->unlock();
  2090 bool CMSCollector::haveFreelistLocks() const {
  2091   // Check locks for all free lists in all generations that this
  2092   // collector is responsible for
  2093   assert_lock_strong(_cmsGen->freelistLock());
  2094   PRODUCT_ONLY(ShouldNotReachHere());
  2095   return true;
  2098 // A utility class that is used by the CMS collector to
  2099 // temporarily "release" the foreground collector from its
  2100 // usual obligation to wait for the background collector to
  2101 // complete an ongoing phase before proceeding.
  2102 class ReleaseForegroundGC: public StackObj {
  2103  private:
  2104   CMSCollector* _c;
  2105  public:
  2106   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
  2107     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
  2108     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2109     // allow a potentially blocked foreground collector to proceed
  2110     _c->_foregroundGCShouldWait = false;
  2111     if (_c->_foregroundGCIsActive) {
  2112       CGC_lock->notify();
  2114     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2115            "Possible deadlock");
  2118   ~ReleaseForegroundGC() {
  2119     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
  2120     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2121     _c->_foregroundGCShouldWait = true;
  2123 };
  2125 // There are separate collect_in_background and collect_in_foreground because of
  2126 // the different locking requirements of the background collector and the
  2127 // foreground collector.  There was originally an attempt to share
  2128 // one "collect" method between the background collector and the foreground
  2129 // collector but the if-then-else required made it cleaner to have
  2130 // separate methods.
  2131 void CMSCollector::collect_in_background(bool clear_all_soft_refs) {
  2132   assert(Thread::current()->is_ConcurrentGC_thread(),
  2133     "A CMS asynchronous collection is only allowed on a CMS thread.");
  2135   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2137     bool safepoint_check = Mutex::_no_safepoint_check_flag;
  2138     MutexLockerEx hl(Heap_lock, safepoint_check);
  2139     FreelistLocker fll(this);
  2140     MutexLockerEx x(CGC_lock, safepoint_check);
  2141     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
  2142       // The foreground collector is active or we're
  2143       // not using asynchronous collections.  Skip this
  2144       // background collection.
  2145       assert(!_foregroundGCShouldWait, "Should be clear");
  2146       return;
  2147     } else {
  2148       assert(_collectorState == Idling, "Should be idling before start.");
  2149       _collectorState = InitialMarking;
  2150       // Reset the expansion cause, now that we are about to begin
  2151       // a new cycle.
  2152       clear_expansion_cause();
  2154       // Clear the MetaspaceGC flag since a concurrent collection
  2155       // is starting but also clear it after the collection.
  2156       MetaspaceGC::set_should_concurrent_collect(false);
  2158     // Decide if we want to enable class unloading as part of the
  2159     // ensuing concurrent GC cycle.
  2160     update_should_unload_classes();
  2161     _full_gc_requested = false;           // acks all outstanding full gc requests
  2162     // Signal that we are about to start a collection
  2163     gch->increment_total_full_collections();  // ... starting a collection cycle
  2164     _collection_count_start = gch->total_full_collections();
  2167   // Used for PrintGC
  2168   size_t prev_used;
  2169   if (PrintGC && Verbose) {
  2170     prev_used = _cmsGen->used(); // XXXPERM
  2173   // The change of the collection state is normally done at this level;
  2174   // the exceptions are phases that are executed while the world is
  2175   // stopped.  For those phases the change of state is done while the
  2176   // world is stopped.  For baton passing purposes this allows the
  2177   // background collector to finish the phase and change state atomically.
  2178   // The foreground collector cannot wait on a phase that is done
  2179   // while the world is stopped because the foreground collector already
  2180   // has the world stopped and would deadlock.
  2181   while (_collectorState != Idling) {
  2182     if (TraceCMSState) {
  2183       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2184         Thread::current(), _collectorState);
  2186     // The foreground collector
  2187     //   holds the Heap_lock throughout its collection.
  2188     //   holds the CMS token (but not the lock)
  2189     //     except while it is waiting for the background collector to yield.
  2190     //
  2191     // The foreground collector should be blocked (not for long)
  2192     //   if the background collector is about to start a phase
  2193     //   executed with world stopped.  If the background
  2194     //   collector has already started such a phase, the
  2195     //   foreground collector is blocked waiting for the
  2196     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
  2197     //   are executed in the VM thread.
  2198     //
  2199     // The locking order is
  2200     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
  2201     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
  2202     //   CMS token  (claimed in
  2203     //                stop_world_and_do() -->
  2204     //                  safepoint_synchronize() -->
  2205     //                    CMSThread::synchronize())
  2208       // Check if the FG collector wants us to yield.
  2209       CMSTokenSync x(true); // is cms thread
  2210       if (waitForForegroundGC()) {
  2211         // We yielded to a foreground GC, nothing more to be
  2212         // done this round.
  2213         assert(_foregroundGCShouldWait == false, "We set it to false in "
  2214                "waitForForegroundGC()");
  2215         if (TraceCMSState) {
  2216           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2217             " exiting collection CMS state %d",
  2218             Thread::current(), _collectorState);
  2220         return;
  2221       } else {
  2222         // The background collector can run but check to see if the
  2223         // foreground collector has done a collection while the
  2224         // background collector was waiting to get the CGC_lock
  2225         // above.  If yes, break so that _foregroundGCShouldWait
  2226         // is cleared before returning.
  2227         if (_collectorState == Idling) {
  2228           break;
  2233     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
  2234       "should be waiting");
  2236     switch (_collectorState) {
  2237       case InitialMarking:
  2239           ReleaseForegroundGC x(this);
  2240           stats().record_cms_begin();
  2242           VM_CMS_Initial_Mark initial_mark_op(this);
  2243           VMThread::execute(&initial_mark_op);
  2245         // The collector state may be any legal state at this point
  2246         // since the background collector may have yielded to the
  2247         // foreground collector.
  2248         break;
  2249       case Marking:
  2250         // initial marking in checkpointRootsInitialWork has been completed
  2251         if (markFromRoots(true)) { // we were successful
  2252           assert(_collectorState == Precleaning, "Collector state should "
  2253             "have changed");
  2254         } else {
  2255           assert(_foregroundGCIsActive, "Internal state inconsistency");
  2257         break;
  2258       case Precleaning:
  2259         if (UseAdaptiveSizePolicy) {
  2260           size_policy()->concurrent_precleaning_begin();
  2262         // marking from roots in markFromRoots has been completed
  2263         preclean();
  2264         if (UseAdaptiveSizePolicy) {
  2265           size_policy()->concurrent_precleaning_end();
  2267         assert(_collectorState == AbortablePreclean ||
  2268                _collectorState == FinalMarking,
  2269                "Collector state should have changed");
  2270         break;
  2271       case AbortablePreclean:
  2272         if (UseAdaptiveSizePolicy) {
  2273         size_policy()->concurrent_phases_resume();
  2275         abortable_preclean();
  2276         if (UseAdaptiveSizePolicy) {
  2277           size_policy()->concurrent_precleaning_end();
  2279         assert(_collectorState == FinalMarking, "Collector state should "
  2280           "have changed");
  2281         break;
  2282       case FinalMarking:
  2284           ReleaseForegroundGC x(this);
  2286           VM_CMS_Final_Remark final_remark_op(this);
  2287           VMThread::execute(&final_remark_op);
  2289         assert(_foregroundGCShouldWait, "block post-condition");
  2290         break;
  2291       case Sweeping:
  2292         if (UseAdaptiveSizePolicy) {
  2293           size_policy()->concurrent_sweeping_begin();
  2295         // final marking in checkpointRootsFinal has been completed
  2296         sweep(true);
  2297         assert(_collectorState == Resizing, "Collector state change "
  2298           "to Resizing must be done under the free_list_lock");
  2299         _full_gcs_since_conc_gc = 0;
  2301         // Stop the timers for adaptive size policy for the concurrent phases
  2302         if (UseAdaptiveSizePolicy) {
  2303           size_policy()->concurrent_sweeping_end();
  2304           size_policy()->concurrent_phases_end(gch->gc_cause(),
  2305                                              gch->prev_gen(_cmsGen)->capacity(),
  2306                                              _cmsGen->free());
  2309       case Resizing: {
  2310         // Sweeping has been completed...
  2311         // At this point the background collection has completed.
  2312         // Don't move the call to compute_new_size() down
  2313         // into code that might be executed if the background
  2314         // collection was preempted.
  2316           ReleaseForegroundGC x(this);   // unblock FG collection
  2317           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
  2318           CMSTokenSync        z(true);   // not strictly needed.
  2319           if (_collectorState == Resizing) {
  2320             compute_new_size();
  2321             _collectorState = Resetting;
  2322           } else {
  2323             assert(_collectorState == Idling, "The state should only change"
  2324                    " because the foreground collector has finished the collection");
  2327         break;
  2329       case Resetting:
  2330         // CMS heap resizing has been completed
  2331         reset(true);
  2332         assert(_collectorState == Idling, "Collector state should "
  2333           "have changed");
  2335         MetaspaceGC::set_should_concurrent_collect(false);
  2337         stats().record_cms_end();
  2338         // Don't move the concurrent_phases_end() and compute_new_size()
  2339         // calls to here because a preempted background collection
  2340         // has it's state set to "Resetting".
  2341         break;
  2342       case Idling:
  2343       default:
  2344         ShouldNotReachHere();
  2345         break;
  2347     if (TraceCMSState) {
  2348       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2349         Thread::current(), _collectorState);
  2351     assert(_foregroundGCShouldWait, "block post-condition");
  2354   // Should this be in gc_epilogue?
  2355   collector_policy()->counters()->update_counters();
  2358     // Clear _foregroundGCShouldWait and, in the event that the
  2359     // foreground collector is waiting, notify it, before
  2360     // returning.
  2361     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2362     _foregroundGCShouldWait = false;
  2363     if (_foregroundGCIsActive) {
  2364       CGC_lock->notify();
  2366     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2367            "Possible deadlock");
  2369   if (TraceCMSState) {
  2370     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2371       " exiting collection CMS state %d",
  2372       Thread::current(), _collectorState);
  2374   if (PrintGC && Verbose) {
  2375     _cmsGen->print_heap_change(prev_used);
  2379 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs) {
  2380   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
  2381          "Foreground collector should be waiting, not executing");
  2382   assert(Thread::current()->is_VM_thread(), "A foreground collection"
  2383     "may only be done by the VM Thread with the world stopped");
  2384   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
  2385          "VM thread should have CMS token");
  2387   NOT_PRODUCT(TraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
  2388     true, gclog_or_tty);)
  2389   if (UseAdaptiveSizePolicy) {
  2390     size_policy()->ms_collection_begin();
  2392   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
  2394   HandleMark hm;  // Discard invalid handles created during verification
  2396   if (VerifyBeforeGC &&
  2397       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2398     Universe::verify();
  2401   // Snapshot the soft reference policy to be used in this collection cycle.
  2402   ref_processor()->setup_policy(clear_all_soft_refs);
  2404   bool init_mark_was_synchronous = false; // until proven otherwise
  2405   while (_collectorState != Idling) {
  2406     if (TraceCMSState) {
  2407       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
  2408         Thread::current(), _collectorState);
  2410     switch (_collectorState) {
  2411       case InitialMarking:
  2412         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
  2413         checkpointRootsInitial(false);
  2414         assert(_collectorState == Marking, "Collector state should have changed"
  2415           " within checkpointRootsInitial()");
  2416         break;
  2417       case Marking:
  2418         // initial marking in checkpointRootsInitialWork has been completed
  2419         if (VerifyDuringGC &&
  2420             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2421           gclog_or_tty->print("Verify before initial mark: ");
  2422           Universe::verify();
  2425           bool res = markFromRoots(false);
  2426           assert(res && _collectorState == FinalMarking, "Collector state should "
  2427             "have changed");
  2428           break;
  2430       case FinalMarking:
  2431         if (VerifyDuringGC &&
  2432             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2433           gclog_or_tty->print("Verify before re-mark: ");
  2434           Universe::verify();
  2436         checkpointRootsFinal(false, clear_all_soft_refs,
  2437                              init_mark_was_synchronous);
  2438         assert(_collectorState == Sweeping, "Collector state should not "
  2439           "have changed within checkpointRootsFinal()");
  2440         break;
  2441       case Sweeping:
  2442         // final marking in checkpointRootsFinal has been completed
  2443         if (VerifyDuringGC &&
  2444             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2445           gclog_or_tty->print("Verify before sweep: ");
  2446           Universe::verify();
  2448         sweep(false);
  2449         assert(_collectorState == Resizing, "Incorrect state");
  2450         break;
  2451       case Resizing: {
  2452         // Sweeping has been completed; the actual resize in this case
  2453         // is done separately; nothing to be done in this state.
  2454         _collectorState = Resetting;
  2455         break;
  2457       case Resetting:
  2458         // The heap has been resized.
  2459         if (VerifyDuringGC &&
  2460             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2461           gclog_or_tty->print("Verify before reset: ");
  2462           Universe::verify();
  2464         reset(false);
  2465         assert(_collectorState == Idling, "Collector state should "
  2466           "have changed");
  2467         break;
  2468       case Precleaning:
  2469       case AbortablePreclean:
  2470         // Elide the preclean phase
  2471         _collectorState = FinalMarking;
  2472         break;
  2473       default:
  2474         ShouldNotReachHere();
  2476     if (TraceCMSState) {
  2477       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
  2478         Thread::current(), _collectorState);
  2482   if (UseAdaptiveSizePolicy) {
  2483     GenCollectedHeap* gch = GenCollectedHeap::heap();
  2484     size_policy()->ms_collection_end(gch->gc_cause());
  2487   if (VerifyAfterGC &&
  2488       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  2489     Universe::verify();
  2491   if (TraceCMSState) {
  2492     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
  2493       " exiting collection CMS state %d",
  2494       Thread::current(), _collectorState);
  2498 bool CMSCollector::waitForForegroundGC() {
  2499   bool res = false;
  2500   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  2501          "CMS thread should have CMS token");
  2502   // Block the foreground collector until the
  2503   // background collectors decides whether to
  2504   // yield.
  2505   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  2506   _foregroundGCShouldWait = true;
  2507   if (_foregroundGCIsActive) {
  2508     // The background collector yields to the
  2509     // foreground collector and returns a value
  2510     // indicating that it has yielded.  The foreground
  2511     // collector can proceed.
  2512     res = true;
  2513     _foregroundGCShouldWait = false;
  2514     ConcurrentMarkSweepThread::clear_CMS_flag(
  2515       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2516     ConcurrentMarkSweepThread::set_CMS_flag(
  2517       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2518     // Get a possibly blocked foreground thread going
  2519     CGC_lock->notify();
  2520     if (TraceCMSState) {
  2521       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
  2522         Thread::current(), _collectorState);
  2524     while (_foregroundGCIsActive) {
  2525       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
  2527     ConcurrentMarkSweepThread::set_CMS_flag(
  2528       ConcurrentMarkSweepThread::CMS_cms_has_token);
  2529     ConcurrentMarkSweepThread::clear_CMS_flag(
  2530       ConcurrentMarkSweepThread::CMS_cms_wants_token);
  2532   if (TraceCMSState) {
  2533     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
  2534       Thread::current(), _collectorState);
  2536   return res;
  2539 // Because of the need to lock the free lists and other structures in
  2540 // the collector, common to all the generations that the collector is
  2541 // collecting, we need the gc_prologues of individual CMS generations
  2542 // delegate to their collector. It may have been simpler had the
  2543 // current infrastructure allowed one to call a prologue on a
  2544 // collector. In the absence of that we have the generation's
  2545 // prologue delegate to the collector, which delegates back
  2546 // some "local" work to a worker method in the individual generations
  2547 // that it's responsible for collecting, while itself doing any
  2548 // work common to all generations it's responsible for. A similar
  2549 // comment applies to the  gc_epilogue()'s.
  2550 // The role of the varaible _between_prologue_and_epilogue is to
  2551 // enforce the invocation protocol.
  2552 void CMSCollector::gc_prologue(bool full) {
  2553   // Call gc_prologue_work() for the CMSGen
  2554   // we are responsible for.
  2556   // The following locking discipline assumes that we are only called
  2557   // when the world is stopped.
  2558   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
  2560   // The CMSCollector prologue must call the gc_prologues for the
  2561   // "generations" that it's responsible
  2562   // for.
  2564   assert(   Thread::current()->is_VM_thread()
  2565          || (   CMSScavengeBeforeRemark
  2566              && Thread::current()->is_ConcurrentGC_thread()),
  2567          "Incorrect thread type for prologue execution");
  2569   if (_between_prologue_and_epilogue) {
  2570     // We have already been invoked; this is a gc_prologue delegation
  2571     // from yet another CMS generation that we are responsible for, just
  2572     // ignore it since all relevant work has already been done.
  2573     return;
  2576   // set a bit saying prologue has been called; cleared in epilogue
  2577   _between_prologue_and_epilogue = true;
  2578   // Claim locks for common data structures, then call gc_prologue_work()
  2579   // for each CMSGen.
  2581   getFreelistLocks();   // gets free list locks on constituent spaces
  2582   bitMapLock()->lock_without_safepoint_check();
  2584   // Should call gc_prologue_work() for all cms gens we are responsible for
  2585   bool duringMarking =    _collectorState >= Marking
  2586                          && _collectorState < Sweeping;
  2588   // The young collections clear the modified oops state, which tells if
  2589   // there are any modified oops in the class. The remark phase also needs
  2590   // that information. Tell the young collection to save the union of all
  2591   // modified klasses.
  2592   if (duringMarking) {
  2593     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
  2596   bool registerClosure = duringMarking;
  2598   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
  2599                                                &_modUnionClosurePar
  2600                                                : &_modUnionClosure;
  2601   _cmsGen->gc_prologue_work(full, registerClosure, muc);
  2603   if (!full) {
  2604     stats().record_gc0_begin();
  2608 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
  2609   // Delegate to CMScollector which knows how to coordinate between
  2610   // this and any other CMS generations that it is responsible for
  2611   // collecting.
  2612   collector()->gc_prologue(full);
  2615 // This is a "private" interface for use by this generation's CMSCollector.
  2616 // Not to be called directly by any other entity (for instance,
  2617 // GenCollectedHeap, which calls the "public" gc_prologue method above).
  2618 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
  2619   bool registerClosure, ModUnionClosure* modUnionClosure) {
  2620   assert(!incremental_collection_failed(), "Shouldn't be set yet");
  2621   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
  2622     "Should be NULL");
  2623   if (registerClosure) {
  2624     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
  2626   cmsSpace()->gc_prologue();
  2627   // Clear stat counters
  2628   NOT_PRODUCT(
  2629     assert(_numObjectsPromoted == 0, "check");
  2630     assert(_numWordsPromoted   == 0, "check");
  2631     if (Verbose && PrintGC) {
  2632       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
  2633                           SIZE_FORMAT" bytes concurrently",
  2634       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
  2636     _numObjectsAllocated = 0;
  2637     _numWordsAllocated   = 0;
  2641 void CMSCollector::gc_epilogue(bool full) {
  2642   // The following locking discipline assumes that we are only called
  2643   // when the world is stopped.
  2644   assert(SafepointSynchronize::is_at_safepoint(),
  2645          "world is stopped assumption");
  2647   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
  2648   // if linear allocation blocks need to be appropriately marked to allow the
  2649   // the blocks to be parsable. We also check here whether we need to nudge the
  2650   // CMS collector thread to start a new cycle (if it's not already active).
  2651   assert(   Thread::current()->is_VM_thread()
  2652          || (   CMSScavengeBeforeRemark
  2653              && Thread::current()->is_ConcurrentGC_thread()),
  2654          "Incorrect thread type for epilogue execution");
  2656   if (!_between_prologue_and_epilogue) {
  2657     // We have already been invoked; this is a gc_epilogue delegation
  2658     // from yet another CMS generation that we are responsible for, just
  2659     // ignore it since all relevant work has already been done.
  2660     return;
  2662   assert(haveFreelistLocks(), "must have freelist locks");
  2663   assert_lock_strong(bitMapLock());
  2665   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
  2667   _cmsGen->gc_epilogue_work(full);
  2669   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
  2670     // in case sampling was not already enabled, enable it
  2671     _start_sampling = true;
  2673   // reset _eden_chunk_array so sampling starts afresh
  2674   _eden_chunk_index = 0;
  2676   size_t cms_used   = _cmsGen->cmsSpace()->used();
  2678   // update performance counters - this uses a special version of
  2679   // update_counters() that allows the utilization to be passed as a
  2680   // parameter, avoiding multiple calls to used().
  2681   //
  2682   _cmsGen->update_counters(cms_used);
  2684   if (CMSIncrementalMode) {
  2685     icms_update_allocation_limits();
  2688   bitMapLock()->unlock();
  2689   releaseFreelistLocks();
  2691   if (!CleanChunkPoolAsync) {
  2692     Chunk::clean_chunk_pool();
  2695   _between_prologue_and_epilogue = false;  // ready for next cycle
  2698 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
  2699   collector()->gc_epilogue(full);
  2701   // Also reset promotion tracking in par gc thread states.
  2702   if (CollectedHeap::use_parallel_gc_threads()) {
  2703     for (uint i = 0; i < ParallelGCThreads; i++) {
  2704       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
  2709 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
  2710   assert(!incremental_collection_failed(), "Should have been cleared");
  2711   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
  2712   cmsSpace()->gc_epilogue();
  2713     // Print stat counters
  2714   NOT_PRODUCT(
  2715     assert(_numObjectsAllocated == 0, "check");
  2716     assert(_numWordsAllocated == 0, "check");
  2717     if (Verbose && PrintGC) {
  2718       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
  2719                           SIZE_FORMAT" bytes",
  2720                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
  2722     _numObjectsPromoted = 0;
  2723     _numWordsPromoted   = 0;
  2726   if (PrintGC && Verbose) {
  2727     // Call down the chain in contiguous_available needs the freelistLock
  2728     // so print this out before releasing the freeListLock.
  2729     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
  2730                         contiguous_available());
  2734 #ifndef PRODUCT
  2735 bool CMSCollector::have_cms_token() {
  2736   Thread* thr = Thread::current();
  2737   if (thr->is_VM_thread()) {
  2738     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
  2739   } else if (thr->is_ConcurrentGC_thread()) {
  2740     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
  2741   } else if (thr->is_GC_task_thread()) {
  2742     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
  2743            ParGCRareEvent_lock->owned_by_self();
  2745   return false;
  2747 #endif
  2749 // Check reachability of the given heap address in CMS generation,
  2750 // treating all other generations as roots.
  2751 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
  2752   // We could "guarantee" below, rather than assert, but i'll
  2753   // leave these as "asserts" so that an adventurous debugger
  2754   // could try this in the product build provided some subset of
  2755   // the conditions were met, provided they were intersted in the
  2756   // results and knew that the computation below wouldn't interfere
  2757   // with other concurrent computations mutating the structures
  2758   // being read or written.
  2759   assert(SafepointSynchronize::is_at_safepoint(),
  2760          "Else mutations in object graph will make answer suspect");
  2761   assert(have_cms_token(), "Should hold cms token");
  2762   assert(haveFreelistLocks(), "must hold free list locks");
  2763   assert_lock_strong(bitMapLock());
  2765   // Clear the marking bit map array before starting, but, just
  2766   // for kicks, first report if the given address is already marked
  2767   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
  2768                 _markBitMap.isMarked(addr) ? "" : " not");
  2770   if (verify_after_remark()) {
  2771     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2772     bool result = verification_mark_bm()->isMarked(addr);
  2773     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
  2774                            result ? "IS" : "is NOT");
  2775     return result;
  2776   } else {
  2777     gclog_or_tty->print_cr("Could not compute result");
  2778     return false;
  2782 ////////////////////////////////////////////////////////
  2783 // CMS Verification Support
  2784 ////////////////////////////////////////////////////////
  2785 // Following the remark phase, the following invariant
  2786 // should hold -- each object in the CMS heap which is
  2787 // marked in markBitMap() should be marked in the verification_mark_bm().
  2789 class VerifyMarkedClosure: public BitMapClosure {
  2790   CMSBitMap* _marks;
  2791   bool       _failed;
  2793  public:
  2794   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
  2796   bool do_bit(size_t offset) {
  2797     HeapWord* addr = _marks->offsetToHeapWord(offset);
  2798     if (!_marks->isMarked(addr)) {
  2799       oop(addr)->print_on(gclog_or_tty);
  2800       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
  2801       _failed = true;
  2803     return true;
  2806   bool failed() { return _failed; }
  2807 };
  2809 bool CMSCollector::verify_after_remark() {
  2810   gclog_or_tty->print(" [Verifying CMS Marking... ");
  2811   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
  2812   static bool init = false;
  2814   assert(SafepointSynchronize::is_at_safepoint(),
  2815          "Else mutations in object graph will make answer suspect");
  2816   assert(have_cms_token(),
  2817          "Else there may be mutual interference in use of "
  2818          " verification data structures");
  2819   assert(_collectorState > Marking && _collectorState <= Sweeping,
  2820          "Else marking info checked here may be obsolete");
  2821   assert(haveFreelistLocks(), "must hold free list locks");
  2822   assert_lock_strong(bitMapLock());
  2825   // Allocate marking bit map if not already allocated
  2826   if (!init) { // first time
  2827     if (!verification_mark_bm()->allocate(_span)) {
  2828       return false;
  2830     init = true;
  2833   assert(verification_mark_stack()->isEmpty(), "Should be empty");
  2835   // Turn off refs discovery -- so we will be tracing through refs.
  2836   // This is as intended, because by this time
  2837   // GC must already have cleared any refs that need to be cleared,
  2838   // and traced those that need to be marked; moreover,
  2839   // the marking done here is not going to intefere in any
  2840   // way with the marking information used by GC.
  2841   NoRefDiscovery no_discovery(ref_processor());
  2843   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  2845   // Clear any marks from a previous round
  2846   verification_mark_bm()->clear_all();
  2847   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
  2848   verify_work_stacks_empty();
  2850   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2851   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  2852   // Update the saved marks which may affect the root scans.
  2853   gch->save_marks();
  2855   if (CMSRemarkVerifyVariant == 1) {
  2856     // In this first variant of verification, we complete
  2857     // all marking, then check if the new marks-verctor is
  2858     // a subset of the CMS marks-vector.
  2859     verify_after_remark_work_1();
  2860   } else if (CMSRemarkVerifyVariant == 2) {
  2861     // In this second variant of verification, we flag an error
  2862     // (i.e. an object reachable in the new marks-vector not reachable
  2863     // in the CMS marks-vector) immediately, also indicating the
  2864     // identify of an object (A) that references the unmarked object (B) --
  2865     // presumably, a mutation to A failed to be picked up by preclean/remark?
  2866     verify_after_remark_work_2();
  2867   } else {
  2868     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
  2869             CMSRemarkVerifyVariant);
  2871   gclog_or_tty->print(" done] ");
  2872   return true;
  2875 void CMSCollector::verify_after_remark_work_1() {
  2876   ResourceMark rm;
  2877   HandleMark  hm;
  2878   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2880   // Get a clear set of claim bits for the strong roots processing to work with.
  2881   ClassLoaderDataGraph::clear_claimed_marks();
  2883   // Mark from roots one level into CMS
  2884   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
  2885   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2887   gch->gen_process_strong_roots(_cmsGen->level(),
  2888                                 true,   // younger gens are roots
  2889                                 true,   // activate StrongRootsScope
  2890                                 false,  // not scavenging
  2891                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2892                                 &notOlder,
  2893                                 true,   // walk code active on stacks
  2894                                 NULL,
  2895                                 NULL); // SSS: Provide correct closure
  2897   // Now mark from the roots
  2898   MarkFromRootsClosure markFromRootsClosure(this, _span,
  2899     verification_mark_bm(), verification_mark_stack(),
  2900     false /* don't yield */, true /* verifying */);
  2901   assert(_restart_addr == NULL, "Expected pre-condition");
  2902   verification_mark_bm()->iterate(&markFromRootsClosure);
  2903   while (_restart_addr != NULL) {
  2904     // Deal with stack overflow: by restarting at the indicated
  2905     // address.
  2906     HeapWord* ra = _restart_addr;
  2907     markFromRootsClosure.reset(ra);
  2908     _restart_addr = NULL;
  2909     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2911   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2912   verify_work_stacks_empty();
  2914   // Marking completed -- now verify that each bit marked in
  2915   // verification_mark_bm() is also marked in markBitMap(); flag all
  2916   // errors by printing corresponding objects.
  2917   VerifyMarkedClosure vcl(markBitMap());
  2918   verification_mark_bm()->iterate(&vcl);
  2919   if (vcl.failed()) {
  2920     gclog_or_tty->print("Verification failed");
  2921     Universe::heap()->print_on(gclog_or_tty);
  2922     fatal("CMS: failed marking verification after remark");
  2926 class VerifyKlassOopsKlassClosure : public KlassClosure {
  2927   class VerifyKlassOopsClosure : public OopClosure {
  2928     CMSBitMap* _bitmap;
  2929    public:
  2930     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
  2931     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
  2932     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
  2933   } _oop_closure;
  2934  public:
  2935   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
  2936   void do_klass(Klass* k) {
  2937     k->oops_do(&_oop_closure);
  2939 };
  2941 void CMSCollector::verify_after_remark_work_2() {
  2942   ResourceMark rm;
  2943   HandleMark  hm;
  2944   GenCollectedHeap* gch = GenCollectedHeap::heap();
  2946   // Get a clear set of claim bits for the strong roots processing to work with.
  2947   ClassLoaderDataGraph::clear_claimed_marks();
  2949   // Mark from roots one level into CMS
  2950   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
  2951                                      markBitMap());
  2952   CMKlassClosure klass_closure(&notOlder);
  2954   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  2955   gch->gen_process_strong_roots(_cmsGen->level(),
  2956                                 true,   // younger gens are roots
  2957                                 true,   // activate StrongRootsScope
  2958                                 false,  // not scavenging
  2959                                 SharedHeap::ScanningOption(roots_scanning_options()),
  2960                                 &notOlder,
  2961                                 true,   // walk code active on stacks
  2962                                 NULL,
  2963                                 &klass_closure);
  2965   // Now mark from the roots
  2966   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
  2967     verification_mark_bm(), markBitMap(), verification_mark_stack());
  2968   assert(_restart_addr == NULL, "Expected pre-condition");
  2969   verification_mark_bm()->iterate(&markFromRootsClosure);
  2970   while (_restart_addr != NULL) {
  2971     // Deal with stack overflow: by restarting at the indicated
  2972     // address.
  2973     HeapWord* ra = _restart_addr;
  2974     markFromRootsClosure.reset(ra);
  2975     _restart_addr = NULL;
  2976     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
  2978   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
  2979   verify_work_stacks_empty();
  2981   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
  2982   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
  2984   // Marking completed -- now verify that each bit marked in
  2985   // verification_mark_bm() is also marked in markBitMap(); flag all
  2986   // errors by printing corresponding objects.
  2987   VerifyMarkedClosure vcl(markBitMap());
  2988   verification_mark_bm()->iterate(&vcl);
  2989   assert(!vcl.failed(), "Else verification above should not have succeeded");
  2992 void ConcurrentMarkSweepGeneration::save_marks() {
  2993   // delegate to CMS space
  2994   cmsSpace()->save_marks();
  2995   for (uint i = 0; i < ParallelGCThreads; i++) {
  2996     _par_gc_thread_states[i]->promo.startTrackingPromotions();
  3000 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
  3001   return cmsSpace()->no_allocs_since_save_marks();
  3004 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
  3006 void ConcurrentMarkSweepGeneration::                            \
  3007 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
  3008   cl->set_generation(this);                                     \
  3009   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
  3010   cl->reset_generation();                                       \
  3011   save_marks();                                                 \
  3014 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
  3016 void
  3017 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
  3019   // Not currently implemented; need to do the following. -- ysr.
  3020   // dld -- I think that is used for some sort of allocation profiler.  So it
  3021   // really means the objects allocated by the mutator since the last
  3022   // GC.  We could potentially implement this cheaply by recording only
  3023   // the direct allocations in a side data structure.
  3024   //
  3025   // I think we probably ought not to be required to support these
  3026   // iterations at any arbitrary point; I think there ought to be some
  3027   // call to enable/disable allocation profiling in a generation/space,
  3028   // and the iterator ought to return the objects allocated in the
  3029   // gen/space since the enable call, or the last iterator call (which
  3030   // will probably be at a GC.)  That way, for gens like CM&S that would
  3031   // require some extra data structure to support this, we only pay the
  3032   // cost when it's in use...
  3033   cmsSpace()->object_iterate_since_last_GC(blk);
  3036 void
  3037 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
  3038   cl->set_generation(this);
  3039   younger_refs_in_space_iterate(_cmsSpace, cl);
  3040   cl->reset_generation();
  3043 void
  3044 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
  3045   if (freelistLock()->owned_by_self()) {
  3046     Generation::oop_iterate(mr, cl);
  3047   } else {
  3048     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3049     Generation::oop_iterate(mr, cl);
  3053 void
  3054 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
  3055   if (freelistLock()->owned_by_self()) {
  3056     Generation::oop_iterate(cl);
  3057   } else {
  3058     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3059     Generation::oop_iterate(cl);
  3063 void
  3064 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
  3065   if (freelistLock()->owned_by_self()) {
  3066     Generation::object_iterate(cl);
  3067   } else {
  3068     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3069     Generation::object_iterate(cl);
  3073 void
  3074 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
  3075   if (freelistLock()->owned_by_self()) {
  3076     Generation::safe_object_iterate(cl);
  3077   } else {
  3078     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3079     Generation::safe_object_iterate(cl);
  3083 void
  3084 ConcurrentMarkSweepGeneration::post_compact() {
  3087 void
  3088 ConcurrentMarkSweepGeneration::prepare_for_verify() {
  3089   // Fix the linear allocation blocks to look like free blocks.
  3091   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3092   // are not called when the heap is verified during universe initialization and
  3093   // at vm shutdown.
  3094   if (freelistLock()->owned_by_self()) {
  3095     cmsSpace()->prepare_for_verify();
  3096   } else {
  3097     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3098     cmsSpace()->prepare_for_verify();
  3102 void
  3103 ConcurrentMarkSweepGeneration::verify() {
  3104   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
  3105   // are not called when the heap is verified during universe initialization and
  3106   // at vm shutdown.
  3107   if (freelistLock()->owned_by_self()) {
  3108     cmsSpace()->verify();
  3109   } else {
  3110     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
  3111     cmsSpace()->verify();
  3115 void CMSCollector::verify() {
  3116   _cmsGen->verify();
  3119 #ifndef PRODUCT
  3120 bool CMSCollector::overflow_list_is_empty() const {
  3121   assert(_num_par_pushes >= 0, "Inconsistency");
  3122   if (_overflow_list == NULL) {
  3123     assert(_num_par_pushes == 0, "Inconsistency");
  3125   return _overflow_list == NULL;
  3128 // The methods verify_work_stacks_empty() and verify_overflow_empty()
  3129 // merely consolidate assertion checks that appear to occur together frequently.
  3130 void CMSCollector::verify_work_stacks_empty() const {
  3131   assert(_markStack.isEmpty(), "Marking stack should be empty");
  3132   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3135 void CMSCollector::verify_overflow_empty() const {
  3136   assert(overflow_list_is_empty(), "Overflow list should be empty");
  3137   assert(no_preserved_marks(), "No preserved marks");
  3139 #endif // PRODUCT
  3141 // Decide if we want to enable class unloading as part of the
  3142 // ensuing concurrent GC cycle. We will collect and
  3143 // unload classes if it's the case that:
  3144 // (1) an explicit gc request has been made and the flag
  3145 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
  3146 // (2) (a) class unloading is enabled at the command line, and
  3147 //     (b) old gen is getting really full
  3148 // NOTE: Provided there is no change in the state of the heap between
  3149 // calls to this method, it should have idempotent results. Moreover,
  3150 // its results should be monotonically increasing (i.e. going from 0 to 1,
  3151 // but not 1 to 0) between successive calls between which the heap was
  3152 // not collected. For the implementation below, it must thus rely on
  3153 // the property that concurrent_cycles_since_last_unload()
  3154 // will not decrease unless a collection cycle happened and that
  3155 // _cmsGen->is_too_full() are
  3156 // themselves also monotonic in that sense. See check_monotonicity()
  3157 // below.
  3158 void CMSCollector::update_should_unload_classes() {
  3159   _should_unload_classes = false;
  3160   // Condition 1 above
  3161   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
  3162     _should_unload_classes = true;
  3163   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
  3164     // Disjuncts 2.b.(i,ii,iii) above
  3165     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
  3166                               CMSClassUnloadingMaxInterval)
  3167                            || _cmsGen->is_too_full();
  3171 bool ConcurrentMarkSweepGeneration::is_too_full() const {
  3172   bool res = should_concurrent_collect();
  3173   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
  3174   return res;
  3177 void CMSCollector::setup_cms_unloading_and_verification_state() {
  3178   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
  3179                              || VerifyBeforeExit;
  3180   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
  3182   if (should_unload_classes()) {   // Should unload classes this cycle
  3183     remove_root_scanning_option(rso);  // Shrink the root set appropriately
  3184     set_verifying(should_verify);    // Set verification state for this cycle
  3185     return;                            // Nothing else needs to be done at this time
  3188   // Not unloading classes this cycle
  3189   assert(!should_unload_classes(), "Inconsitency!");
  3190   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
  3191     // Include symbols, strings and code cache elements to prevent their resurrection.
  3192     add_root_scanning_option(rso);
  3193     set_verifying(true);
  3194   } else if (verifying() && !should_verify) {
  3195     // We were verifying, but some verification flags got disabled.
  3196     set_verifying(false);
  3197     // Exclude symbols, strings and code cache elements from root scanning to
  3198     // reduce IM and RM pauses.
  3199     remove_root_scanning_option(rso);
  3204 #ifndef PRODUCT
  3205 HeapWord* CMSCollector::block_start(const void* p) const {
  3206   const HeapWord* addr = (HeapWord*)p;
  3207   if (_span.contains(p)) {
  3208     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
  3209       return _cmsGen->cmsSpace()->block_start(p);
  3212   return NULL;
  3214 #endif
  3216 HeapWord*
  3217 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
  3218                                                    bool   tlab,
  3219                                                    bool   parallel) {
  3220   CMSSynchronousYieldRequest yr;
  3221   assert(!tlab, "Can't deal with TLAB allocation");
  3222   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
  3223   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
  3224     CMSExpansionCause::_satisfy_allocation);
  3225   if (GCExpandToAllocateDelayMillis > 0) {
  3226     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3228   return have_lock_and_allocate(word_size, tlab);
  3231 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
  3232 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
  3233 // to CardGeneration and share it...
  3234 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
  3235   return CardGeneration::expand(bytes, expand_bytes);
  3238 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
  3239   CMSExpansionCause::Cause cause)
  3242   bool success = expand(bytes, expand_bytes);
  3244   // remember why we expanded; this information is used
  3245   // by shouldConcurrentCollect() when making decisions on whether to start
  3246   // a new CMS cycle.
  3247   if (success) {
  3248     set_expansion_cause(cause);
  3249     if (PrintGCDetails && Verbose) {
  3250       gclog_or_tty->print_cr("Expanded CMS gen for %s",
  3251         CMSExpansionCause::to_string(cause));
  3256 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
  3257   HeapWord* res = NULL;
  3258   MutexLocker x(ParGCRareEvent_lock);
  3259   while (true) {
  3260     // Expansion by some other thread might make alloc OK now:
  3261     res = ps->lab.alloc(word_sz);
  3262     if (res != NULL) return res;
  3263     // If there's not enough expansion space available, give up.
  3264     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
  3265       return NULL;
  3267     // Otherwise, we try expansion.
  3268     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
  3269       CMSExpansionCause::_allocate_par_lab);
  3270     // Now go around the loop and try alloc again;
  3271     // A competing par_promote might beat us to the expansion space,
  3272     // so we may go around the loop again if promotion fails agaion.
  3273     if (GCExpandToAllocateDelayMillis > 0) {
  3274       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3280 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
  3281   PromotionInfo* promo) {
  3282   MutexLocker x(ParGCRareEvent_lock);
  3283   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
  3284   while (true) {
  3285     // Expansion by some other thread might make alloc OK now:
  3286     if (promo->ensure_spooling_space()) {
  3287       assert(promo->has_spooling_space(),
  3288              "Post-condition of successful ensure_spooling_space()");
  3289       return true;
  3291     // If there's not enough expansion space available, give up.
  3292     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
  3293       return false;
  3295     // Otherwise, we try expansion.
  3296     expand(refill_size_bytes, MinHeapDeltaBytes,
  3297       CMSExpansionCause::_allocate_par_spooling_space);
  3298     // Now go around the loop and try alloc again;
  3299     // A competing allocation might beat us to the expansion space,
  3300     // so we may go around the loop again if allocation fails again.
  3301     if (GCExpandToAllocateDelayMillis > 0) {
  3302       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
  3309 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
  3310   assert_locked_or_safepoint(Heap_lock);
  3311   size_t size = ReservedSpace::page_align_size_down(bytes);
  3312   if (size > 0) {
  3313     shrink_by(size);
  3317 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
  3318   assert_locked_or_safepoint(Heap_lock);
  3319   bool result = _virtual_space.expand_by(bytes);
  3320   if (result) {
  3321     HeapWord* old_end = _cmsSpace->end();
  3322     size_t new_word_size =
  3323       heap_word_size(_virtual_space.committed_size());
  3324     MemRegion mr(_cmsSpace->bottom(), new_word_size);
  3325     _bts->resize(new_word_size);  // resize the block offset shared array
  3326     Universe::heap()->barrier_set()->resize_covered_region(mr);
  3327     // Hmmmm... why doesn't CFLS::set_end verify locking?
  3328     // This is quite ugly; FIX ME XXX
  3329     _cmsSpace->assert_locked(freelistLock());
  3330     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  3332     // update the space and generation capacity counters
  3333     if (UsePerfData) {
  3334       _space_counters->update_capacity();
  3335       _gen_counters->update_all();
  3338     if (Verbose && PrintGC) {
  3339       size_t new_mem_size = _virtual_space.committed_size();
  3340       size_t old_mem_size = new_mem_size - bytes;
  3341       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
  3342                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
  3345   return result;
  3348 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
  3349   assert_locked_or_safepoint(Heap_lock);
  3350   bool success = true;
  3351   const size_t remaining_bytes = _virtual_space.uncommitted_size();
  3352   if (remaining_bytes > 0) {
  3353     success = grow_by(remaining_bytes);
  3354     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
  3356   return success;
  3359 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
  3360   assert_locked_or_safepoint(Heap_lock);
  3361   assert_lock_strong(freelistLock());
  3362   // XXX Fix when compaction is implemented.
  3363   warning("Shrinking of CMS not yet implemented");
  3364   return;
  3368 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
  3369 // phases.
  3370 class CMSPhaseAccounting: public StackObj {
  3371  public:
  3372   CMSPhaseAccounting(CMSCollector *collector,
  3373                      const char *phase,
  3374                      bool print_cr = true);
  3375   ~CMSPhaseAccounting();
  3377  private:
  3378   CMSCollector *_collector;
  3379   const char *_phase;
  3380   elapsedTimer _wallclock;
  3381   bool _print_cr;
  3383  public:
  3384   // Not MT-safe; so do not pass around these StackObj's
  3385   // where they may be accessed by other threads.
  3386   jlong wallclock_millis() {
  3387     assert(_wallclock.is_active(), "Wall clock should not stop");
  3388     _wallclock.stop();  // to record time
  3389     jlong ret = _wallclock.milliseconds();
  3390     _wallclock.start(); // restart
  3391     return ret;
  3393 };
  3395 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
  3396                                        const char *phase,
  3397                                        bool print_cr) :
  3398   _collector(collector), _phase(phase), _print_cr(print_cr) {
  3400   if (PrintCMSStatistics != 0) {
  3401     _collector->resetYields();
  3403   if (PrintGCDetails && PrintGCTimeStamps) {
  3404     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3405     gclog_or_tty->stamp();
  3406     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
  3407       _collector->cmsGen()->short_name(), _phase);
  3409   _collector->resetTimer();
  3410   _wallclock.start();
  3411   _collector->startTimer();
  3414 CMSPhaseAccounting::~CMSPhaseAccounting() {
  3415   assert(_wallclock.is_active(), "Wall clock should not have stopped");
  3416   _collector->stopTimer();
  3417   _wallclock.stop();
  3418   if (PrintGCDetails) {
  3419     gclog_or_tty->date_stamp(PrintGCDateStamps);
  3420     gclog_or_tty->stamp(PrintGCTimeStamps);
  3421     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
  3422                  _collector->cmsGen()->short_name(),
  3423                  _phase, _collector->timerValue(), _wallclock.seconds());
  3424     if (_print_cr) {
  3425       gclog_or_tty->print_cr("");
  3427     if (PrintCMSStatistics != 0) {
  3428       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
  3429                     _collector->yields());
  3434 // CMS work
  3436 // Checkpoint the roots into this generation from outside
  3437 // this generation. [Note this initial checkpoint need only
  3438 // be approximate -- we'll do a catch up phase subsequently.]
  3439 void CMSCollector::checkpointRootsInitial(bool asynch) {
  3440   assert(_collectorState == InitialMarking, "Wrong collector state");
  3441   check_correct_thread_executing();
  3442   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
  3444   ReferenceProcessor* rp = ref_processor();
  3445   SpecializationStats::clear();
  3446   assert(_restart_addr == NULL, "Control point invariant");
  3447   if (asynch) {
  3448     // acquire locks for subsequent manipulations
  3449     MutexLockerEx x(bitMapLock(),
  3450                     Mutex::_no_safepoint_check_flag);
  3451     checkpointRootsInitialWork(asynch);
  3452     // enable ("weak") refs discovery
  3453     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
  3454     _collectorState = Marking;
  3455   } else {
  3456     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
  3457     // which recognizes if we are a CMS generation, and doesn't try to turn on
  3458     // discovery; verify that they aren't meddling.
  3459     assert(!rp->discovery_is_atomic(),
  3460            "incorrect setting of discovery predicate");
  3461     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
  3462            "ref discovery for this generation kind");
  3463     // already have locks
  3464     checkpointRootsInitialWork(asynch);
  3465     // now enable ("weak") refs discovery
  3466     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
  3467     _collectorState = Marking;
  3469   SpecializationStats::print();
  3472 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
  3473   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
  3474   assert(_collectorState == InitialMarking, "just checking");
  3476   // If there has not been a GC[n-1] since last GC[n] cycle completed,
  3477   // precede our marking with a collection of all
  3478   // younger generations to keep floating garbage to a minimum.
  3479   // XXX: we won't do this for now -- it's an optimization to be done later.
  3481   // already have locks
  3482   assert_lock_strong(bitMapLock());
  3483   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
  3485   // Setup the verification and class unloading state for this
  3486   // CMS collection cycle.
  3487   setup_cms_unloading_and_verification_state();
  3489   NOT_PRODUCT(TraceTime t("\ncheckpointRootsInitialWork",
  3490     PrintGCDetails && Verbose, true, gclog_or_tty);)
  3491   if (UseAdaptiveSizePolicy) {
  3492     size_policy()->checkpoint_roots_initial_begin();
  3495   // Reset all the PLAB chunk arrays if necessary.
  3496   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
  3497     reset_survivor_plab_arrays();
  3500   ResourceMark rm;
  3501   HandleMark  hm;
  3503   FalseClosure falseClosure;
  3504   // In the case of a synchronous collection, we will elide the
  3505   // remark step, so it's important to catch all the nmethod oops
  3506   // in this step.
  3507   // The final 'true' flag to gen_process_strong_roots will ensure this.
  3508   // If 'async' is true, we can relax the nmethod tracing.
  3509   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
  3510   GenCollectedHeap* gch = GenCollectedHeap::heap();
  3512   verify_work_stacks_empty();
  3513   verify_overflow_empty();
  3515   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
  3516   // Update the saved marks which may affect the root scans.
  3517   gch->save_marks();
  3519   // weak reference processing has not started yet.
  3520   ref_processor()->set_enqueuing_is_done(false);
  3522   // Need to remember all newly created CLDs,
  3523   // so that we can guarantee that the remark finds them.
  3524   ClassLoaderDataGraph::remember_new_clds(true);
  3526   // Whenever a CLD is found, it will be claimed before proceeding to mark
  3527   // the klasses. The claimed marks need to be cleared before marking starts.
  3528   ClassLoaderDataGraph::clear_claimed_marks();
  3530   CMKlassClosure klass_closure(&notOlder);
  3532     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  3533     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  3534     gch->gen_process_strong_roots(_cmsGen->level(),
  3535                                   true,   // younger gens are roots
  3536                                   true,   // activate StrongRootsScope
  3537                                   false,  // not scavenging
  3538                                   SharedHeap::ScanningOption(roots_scanning_options()),
  3539                                   &notOlder,
  3540                                   true,   // walk all of code cache if (so & SO_CodeCache)
  3541                                   NULL,
  3542                                   &klass_closure);
  3545   // Clear mod-union table; it will be dirtied in the prologue of
  3546   // CMS generation per each younger generation collection.
  3548   assert(_modUnionTable.isAllClear(),
  3549        "Was cleared in most recent final checkpoint phase"
  3550        " or no bits are set in the gc_prologue before the start of the next "
  3551        "subsequent marking phase.");
  3553   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
  3555   // Save the end of the used_region of the constituent generations
  3556   // to be used to limit the extent of sweep in each generation.
  3557   save_sweep_limits();
  3558   if (UseAdaptiveSizePolicy) {
  3559     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
  3561   verify_overflow_empty();
  3564 bool CMSCollector::markFromRoots(bool asynch) {
  3565   // we might be tempted to assert that:
  3566   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
  3567   //        "inconsistent argument?");
  3568   // However that wouldn't be right, because it's possible that
  3569   // a safepoint is indeed in progress as a younger generation
  3570   // stop-the-world GC happens even as we mark in this generation.
  3571   assert(_collectorState == Marking, "inconsistent state?");
  3572   check_correct_thread_executing();
  3573   verify_overflow_empty();
  3575   bool res;
  3576   if (asynch) {
  3578     // Start the timers for adaptive size policy for the concurrent phases
  3579     // Do it here so that the foreground MS can use the concurrent
  3580     // timer since a foreground MS might has the sweep done concurrently
  3581     // or STW.
  3582     if (UseAdaptiveSizePolicy) {
  3583       size_policy()->concurrent_marking_begin();
  3586     // Weak ref discovery note: We may be discovering weak
  3587     // refs in this generation concurrent (but interleaved) with
  3588     // weak ref discovery by a younger generation collector.
  3590     CMSTokenSyncWithLocks ts(true, bitMapLock());
  3591     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3592     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
  3593     res = markFromRootsWork(asynch);
  3594     if (res) {
  3595       _collectorState = Precleaning;
  3596     } else { // We failed and a foreground collection wants to take over
  3597       assert(_foregroundGCIsActive, "internal state inconsistency");
  3598       assert(_restart_addr == NULL,  "foreground will restart from scratch");
  3599       if (PrintGCDetails) {
  3600         gclog_or_tty->print_cr("bailing out to foreground collection");
  3603     if (UseAdaptiveSizePolicy) {
  3604       size_policy()->concurrent_marking_end();
  3606   } else {
  3607     assert(SafepointSynchronize::is_at_safepoint(),
  3608            "inconsistent with asynch == false");
  3609     if (UseAdaptiveSizePolicy) {
  3610       size_policy()->ms_collection_marking_begin();
  3612     // already have locks
  3613     res = markFromRootsWork(asynch);
  3614     _collectorState = FinalMarking;
  3615     if (UseAdaptiveSizePolicy) {
  3616       GenCollectedHeap* gch = GenCollectedHeap::heap();
  3617       size_policy()->ms_collection_marking_end(gch->gc_cause());
  3620   verify_overflow_empty();
  3621   return res;
  3624 bool CMSCollector::markFromRootsWork(bool asynch) {
  3625   // iterate over marked bits in bit map, doing a full scan and mark
  3626   // from these roots using the following algorithm:
  3627   // . if oop is to the right of the current scan pointer,
  3628   //   mark corresponding bit (we'll process it later)
  3629   // . else (oop is to left of current scan pointer)
  3630   //   push oop on marking stack
  3631   // . drain the marking stack
  3633   // Note that when we do a marking step we need to hold the
  3634   // bit map lock -- recall that direct allocation (by mutators)
  3635   // and promotion (by younger generation collectors) is also
  3636   // marking the bit map. [the so-called allocate live policy.]
  3637   // Because the implementation of bit map marking is not
  3638   // robust wrt simultaneous marking of bits in the same word,
  3639   // we need to make sure that there is no such interference
  3640   // between concurrent such updates.
  3642   // already have locks
  3643   assert_lock_strong(bitMapLock());
  3645   verify_work_stacks_empty();
  3646   verify_overflow_empty();
  3647   bool result = false;
  3648   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
  3649     result = do_marking_mt(asynch);
  3650   } else {
  3651     result = do_marking_st(asynch);
  3653   return result;
  3656 // Forward decl
  3657 class CMSConcMarkingTask;
  3659 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
  3660   CMSCollector*       _collector;
  3661   CMSConcMarkingTask* _task;
  3662  public:
  3663   virtual void yield();
  3665   // "n_threads" is the number of threads to be terminated.
  3666   // "queue_set" is a set of work queues of other threads.
  3667   // "collector" is the CMS collector associated with this task terminator.
  3668   // "yield" indicates whether we need the gang as a whole to yield.
  3669   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
  3670     ParallelTaskTerminator(n_threads, queue_set),
  3671     _collector(collector) { }
  3673   void set_task(CMSConcMarkingTask* task) {
  3674     _task = task;
  3676 };
  3678 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
  3679   CMSConcMarkingTask* _task;
  3680  public:
  3681   bool should_exit_termination();
  3682   void set_task(CMSConcMarkingTask* task) {
  3683     _task = task;
  3685 };
  3687 // MT Concurrent Marking Task
  3688 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
  3689   CMSCollector* _collector;
  3690   int           _n_workers;                  // requested/desired # workers
  3691   bool          _asynch;
  3692   bool          _result;
  3693   CompactibleFreeListSpace*  _cms_space;
  3694   char          _pad_front[64];   // padding to ...
  3695   HeapWord*     _global_finger;   // ... avoid sharing cache line
  3696   char          _pad_back[64];
  3697   HeapWord*     _restart_addr;
  3699   //  Exposed here for yielding support
  3700   Mutex* const _bit_map_lock;
  3702   // The per thread work queues, available here for stealing
  3703   OopTaskQueueSet*  _task_queues;
  3705   // Termination (and yielding) support
  3706   CMSConcMarkingTerminator _term;
  3707   CMSConcMarkingTerminatorTerminator _term_term;
  3709  public:
  3710   CMSConcMarkingTask(CMSCollector* collector,
  3711                  CompactibleFreeListSpace* cms_space,
  3712                  bool asynch,
  3713                  YieldingFlexibleWorkGang* workers,
  3714                  OopTaskQueueSet* task_queues):
  3715     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
  3716     _collector(collector),
  3717     _cms_space(cms_space),
  3718     _asynch(asynch), _n_workers(0), _result(true),
  3719     _task_queues(task_queues),
  3720     _term(_n_workers, task_queues, _collector),
  3721     _bit_map_lock(collector->bitMapLock())
  3723     _requested_size = _n_workers;
  3724     _term.set_task(this);
  3725     _term_term.set_task(this);
  3726     _restart_addr = _global_finger = _cms_space->bottom();
  3730   OopTaskQueueSet* task_queues()  { return _task_queues; }
  3732   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  3734   HeapWord** global_finger_addr() { return &_global_finger; }
  3736   CMSConcMarkingTerminator* terminator() { return &_term; }
  3738   virtual void set_for_termination(int active_workers) {
  3739     terminator()->reset_for_reuse(active_workers);
  3742   void work(uint worker_id);
  3743   bool should_yield() {
  3744     return    ConcurrentMarkSweepThread::should_yield()
  3745            && !_collector->foregroundGCIsActive()
  3746            && _asynch;
  3749   virtual void coordinator_yield();  // stuff done by coordinator
  3750   bool result() { return _result; }
  3752   void reset(HeapWord* ra) {
  3753     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
  3754     _restart_addr = _global_finger = ra;
  3755     _term.reset_for_reuse();
  3758   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3759                                            OopTaskQueue* work_q);
  3761  private:
  3762   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
  3763   void do_work_steal(int i);
  3764   void bump_global_finger(HeapWord* f);
  3765 };
  3767 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
  3768   assert(_task != NULL, "Error");
  3769   return _task->yielding();
  3770   // Note that we do not need the disjunct || _task->should_yield() above
  3771   // because we want terminating threads to yield only if the task
  3772   // is already in the midst of yielding, which happens only after at least one
  3773   // thread has yielded.
  3776 void CMSConcMarkingTerminator::yield() {
  3777   if (_task->should_yield()) {
  3778     _task->yield();
  3779   } else {
  3780     ParallelTaskTerminator::yield();
  3784 ////////////////////////////////////////////////////////////////
  3785 // Concurrent Marking Algorithm Sketch
  3786 ////////////////////////////////////////////////////////////////
  3787 // Until all tasks exhausted (both spaces):
  3788 // -- claim next available chunk
  3789 // -- bump global finger via CAS
  3790 // -- find first object that starts in this chunk
  3791 //    and start scanning bitmap from that position
  3792 // -- scan marked objects for oops
  3793 // -- CAS-mark target, and if successful:
  3794 //    . if target oop is above global finger (volatile read)
  3795 //      nothing to do
  3796 //    . if target oop is in chunk and above local finger
  3797 //        then nothing to do
  3798 //    . else push on work-queue
  3799 // -- Deal with possible overflow issues:
  3800 //    . local work-queue overflow causes stuff to be pushed on
  3801 //      global (common) overflow queue
  3802 //    . always first empty local work queue
  3803 //    . then get a batch of oops from global work queue if any
  3804 //    . then do work stealing
  3805 // -- When all tasks claimed (both spaces)
  3806 //    and local work queue empty,
  3807 //    then in a loop do:
  3808 //    . check global overflow stack; steal a batch of oops and trace
  3809 //    . try to steal from other threads oif GOS is empty
  3810 //    . if neither is available, offer termination
  3811 // -- Terminate and return result
  3812 //
  3813 void CMSConcMarkingTask::work(uint worker_id) {
  3814   elapsedTimer _timer;
  3815   ResourceMark rm;
  3816   HandleMark hm;
  3818   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3820   // Before we begin work, our work queue should be empty
  3821   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
  3822   // Scan the bitmap covering _cms_space, tracing through grey objects.
  3823   _timer.start();
  3824   do_scan_and_mark(worker_id, _cms_space);
  3825   _timer.stop();
  3826   if (PrintCMSStatistics != 0) {
  3827     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
  3828       worker_id, _timer.seconds());
  3829       // XXX: need xxx/xxx type of notation, two timers
  3832   // ... do work stealing
  3833   _timer.reset();
  3834   _timer.start();
  3835   do_work_steal(worker_id);
  3836   _timer.stop();
  3837   if (PrintCMSStatistics != 0) {
  3838     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
  3839       worker_id, _timer.seconds());
  3840       // XXX: need xxx/xxx type of notation, two timers
  3842   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
  3843   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
  3844   // Note that under the current task protocol, the
  3845   // following assertion is true even of the spaces
  3846   // expanded since the completion of the concurrent
  3847   // marking. XXX This will likely change under a strict
  3848   // ABORT semantics.
  3849   // After perm removal the comparison was changed to
  3850   // greater than or equal to from strictly greater than.
  3851   // Before perm removal the highest address sweep would
  3852   // have been at the end of perm gen but now is at the
  3853   // end of the tenured gen.
  3854   assert(_global_finger >=  _cms_space->end(),
  3855          "All tasks have been completed");
  3856   DEBUG_ONLY(_collector->verify_overflow_empty();)
  3859 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
  3860   HeapWord* read = _global_finger;
  3861   HeapWord* cur  = read;
  3862   while (f > read) {
  3863     cur = read;
  3864     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
  3865     if (cur == read) {
  3866       // our cas succeeded
  3867       assert(_global_finger >= f, "protocol consistency");
  3868       break;
  3873 // This is really inefficient, and should be redone by
  3874 // using (not yet available) block-read and -write interfaces to the
  3875 // stack and the work_queue. XXX FIX ME !!!
  3876 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
  3877                                                       OopTaskQueue* work_q) {
  3878   // Fast lock-free check
  3879   if (ovflw_stk->length() == 0) {
  3880     return false;
  3882   assert(work_q->size() == 0, "Shouldn't steal");
  3883   MutexLockerEx ml(ovflw_stk->par_lock(),
  3884                    Mutex::_no_safepoint_check_flag);
  3885   // Grab up to 1/4 the size of the work queue
  3886   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  3887                     (size_t)ParGCDesiredObjsFromOverflowList);
  3888   num = MIN2(num, ovflw_stk->length());
  3889   for (int i = (int) num; i > 0; i--) {
  3890     oop cur = ovflw_stk->pop();
  3891     assert(cur != NULL, "Counted wrong?");
  3892     work_q->push(cur);
  3894   return num > 0;
  3897 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
  3898   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  3899   int n_tasks = pst->n_tasks();
  3900   // We allow that there may be no tasks to do here because
  3901   // we are restarting after a stack overflow.
  3902   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
  3903   uint nth_task = 0;
  3905   HeapWord* aligned_start = sp->bottom();
  3906   if (sp->used_region().contains(_restart_addr)) {
  3907     // Align down to a card boundary for the start of 0th task
  3908     // for this space.
  3909     aligned_start =
  3910       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
  3911                                  CardTableModRefBS::card_size);
  3914   size_t chunk_size = sp->marking_task_size();
  3915   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  3916     // Having claimed the nth task in this space,
  3917     // compute the chunk that it corresponds to:
  3918     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
  3919                                aligned_start + (nth_task+1)*chunk_size);
  3920     // Try and bump the global finger via a CAS;
  3921     // note that we need to do the global finger bump
  3922     // _before_ taking the intersection below, because
  3923     // the task corresponding to that region will be
  3924     // deemed done even if the used_region() expands
  3925     // because of allocation -- as it almost certainly will
  3926     // during start-up while the threads yield in the
  3927     // closure below.
  3928     HeapWord* finger = span.end();
  3929     bump_global_finger(finger);   // atomically
  3930     // There are null tasks here corresponding to chunks
  3931     // beyond the "top" address of the space.
  3932     span = span.intersection(sp->used_region());
  3933     if (!span.is_empty()) {  // Non-null task
  3934       HeapWord* prev_obj;
  3935       assert(!span.contains(_restart_addr) || nth_task == 0,
  3936              "Inconsistency");
  3937       if (nth_task == 0) {
  3938         // For the 0th task, we'll not need to compute a block_start.
  3939         if (span.contains(_restart_addr)) {
  3940           // In the case of a restart because of stack overflow,
  3941           // we might additionally skip a chunk prefix.
  3942           prev_obj = _restart_addr;
  3943         } else {
  3944           prev_obj = span.start();
  3946       } else {
  3947         // We want to skip the first object because
  3948         // the protocol is to scan any object in its entirety
  3949         // that _starts_ in this span; a fortiori, any
  3950         // object starting in an earlier span is scanned
  3951         // as part of an earlier claimed task.
  3952         // Below we use the "careful" version of block_start
  3953         // so we do not try to navigate uninitialized objects.
  3954         prev_obj = sp->block_start_careful(span.start());
  3955         // Below we use a variant of block_size that uses the
  3956         // Printezis bits to avoid waiting for allocated
  3957         // objects to become initialized/parsable.
  3958         while (prev_obj < span.start()) {
  3959           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
  3960           if (sz > 0) {
  3961             prev_obj += sz;
  3962           } else {
  3963             // In this case we may end up doing a bit of redundant
  3964             // scanning, but that appears unavoidable, short of
  3965             // locking the free list locks; see bug 6324141.
  3966             break;
  3970       if (prev_obj < span.end()) {
  3971         MemRegion my_span = MemRegion(prev_obj, span.end());
  3972         // Do the marking work within a non-empty span --
  3973         // the last argument to the constructor indicates whether the
  3974         // iteration should be incremental with periodic yields.
  3975         Par_MarkFromRootsClosure cl(this, _collector, my_span,
  3976                                     &_collector->_markBitMap,
  3977                                     work_queue(i),
  3978                                     &_collector->_markStack,
  3979                                     _asynch);
  3980         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
  3981       } // else nothing to do for this task
  3982     }   // else nothing to do for this task
  3984   // We'd be tempted to assert here that since there are no
  3985   // more tasks left to claim in this space, the global_finger
  3986   // must exceed space->top() and a fortiori space->end(). However,
  3987   // that would not quite be correct because the bumping of
  3988   // global_finger occurs strictly after the claiming of a task,
  3989   // so by the time we reach here the global finger may not yet
  3990   // have been bumped up by the thread that claimed the last
  3991   // task.
  3992   pst->all_tasks_completed();
  3995 class Par_ConcMarkingClosure: public CMSOopClosure {
  3996  private:
  3997   CMSCollector* _collector;
  3998   CMSConcMarkingTask* _task;
  3999   MemRegion     _span;
  4000   CMSBitMap*    _bit_map;
  4001   CMSMarkStack* _overflow_stack;
  4002   OopTaskQueue* _work_queue;
  4003  protected:
  4004   DO_OOP_WORK_DEFN
  4005  public:
  4006   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
  4007                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
  4008     CMSOopClosure(collector->ref_processor()),
  4009     _collector(collector),
  4010     _task(task),
  4011     _span(collector->_span),
  4012     _work_queue(work_queue),
  4013     _bit_map(bit_map),
  4014     _overflow_stack(overflow_stack)
  4015   { }
  4016   virtual void do_oop(oop* p);
  4017   virtual void do_oop(narrowOop* p);
  4019   void trim_queue(size_t max);
  4020   void handle_stack_overflow(HeapWord* lost);
  4021   void do_yield_check() {
  4022     if (_task->should_yield()) {
  4023       _task->yield();
  4026 };
  4028 // Grey object scanning during work stealing phase --
  4029 // the salient assumption here is that any references
  4030 // that are in these stolen objects being scanned must
  4031 // already have been initialized (else they would not have
  4032 // been published), so we do not need to check for
  4033 // uninitialized objects before pushing here.
  4034 void Par_ConcMarkingClosure::do_oop(oop obj) {
  4035   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  4036   HeapWord* addr = (HeapWord*)obj;
  4037   // Check if oop points into the CMS generation
  4038   // and is not marked
  4039   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  4040     // a white object ...
  4041     // If we manage to "claim" the object, by being the
  4042     // first thread to mark it, then we push it on our
  4043     // marking stack
  4044     if (_bit_map->par_mark(addr)) {     // ... now grey
  4045       // push on work queue (grey set)
  4046       bool simulate_overflow = false;
  4047       NOT_PRODUCT(
  4048         if (CMSMarkStackOverflowALot &&
  4049             _collector->simulate_overflow()) {
  4050           // simulate a stack overflow
  4051           simulate_overflow = true;
  4054       if (simulate_overflow ||
  4055           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  4056         // stack overflow
  4057         if (PrintCMSStatistics != 0) {
  4058           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  4059                                  SIZE_FORMAT, _overflow_stack->capacity());
  4061         // We cannot assert that the overflow stack is full because
  4062         // it may have been emptied since.
  4063         assert(simulate_overflow ||
  4064                _work_queue->size() == _work_queue->max_elems(),
  4065               "Else push should have succeeded");
  4066         handle_stack_overflow(addr);
  4068     } // Else, some other thread got there first
  4069     do_yield_check();
  4073 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
  4074 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
  4076 void Par_ConcMarkingClosure::trim_queue(size_t max) {
  4077   while (_work_queue->size() > max) {
  4078     oop new_oop;
  4079     if (_work_queue->pop_local(new_oop)) {
  4080       assert(new_oop->is_oop(), "Should be an oop");
  4081       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
  4082       assert(_span.contains((HeapWord*)new_oop), "Not in span");
  4083       new_oop->oop_iterate(this);  // do_oop() above
  4084       do_yield_check();
  4089 // Upon stack overflow, we discard (part of) the stack,
  4090 // remembering the least address amongst those discarded
  4091 // in CMSCollector's _restart_address.
  4092 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
  4093   // We need to do this under a mutex to prevent other
  4094   // workers from interfering with the work done below.
  4095   MutexLockerEx ml(_overflow_stack->par_lock(),
  4096                    Mutex::_no_safepoint_check_flag);
  4097   // Remember the least grey address discarded
  4098   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  4099   _collector->lower_restart_addr(ra);
  4100   _overflow_stack->reset();  // discard stack contents
  4101   _overflow_stack->expand(); // expand the stack if possible
  4105 void CMSConcMarkingTask::do_work_steal(int i) {
  4106   OopTaskQueue* work_q = work_queue(i);
  4107   oop obj_to_scan;
  4108   CMSBitMap* bm = &(_collector->_markBitMap);
  4109   CMSMarkStack* ovflw = &(_collector->_markStack);
  4110   int* seed = _collector->hash_seed(i);
  4111   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
  4112   while (true) {
  4113     cl.trim_queue(0);
  4114     assert(work_q->size() == 0, "Should have been emptied above");
  4115     if (get_work_from_overflow_stack(ovflw, work_q)) {
  4116       // Can't assert below because the work obtained from the
  4117       // overflow stack may already have been stolen from us.
  4118       // assert(work_q->size() > 0, "Work from overflow stack");
  4119       continue;
  4120     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  4121       assert(obj_to_scan->is_oop(), "Should be an oop");
  4122       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
  4123       obj_to_scan->oop_iterate(&cl);
  4124     } else if (terminator()->offer_termination(&_term_term)) {
  4125       assert(work_q->size() == 0, "Impossible!");
  4126       break;
  4127     } else if (yielding() || should_yield()) {
  4128       yield();
  4133 // This is run by the CMS (coordinator) thread.
  4134 void CMSConcMarkingTask::coordinator_yield() {
  4135   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4136          "CMS thread should hold CMS token");
  4137   // First give up the locks, then yield, then re-lock
  4138   // We should probably use a constructor/destructor idiom to
  4139   // do this unlock/lock or modify the MutexUnlocker class to
  4140   // serve our purpose. XXX
  4141   assert_lock_strong(_bit_map_lock);
  4142   _bit_map_lock->unlock();
  4143   ConcurrentMarkSweepThread::desynchronize(true);
  4144   ConcurrentMarkSweepThread::acknowledge_yield_request();
  4145   _collector->stopTimer();
  4146   if (PrintCMSStatistics != 0) {
  4147     _collector->incrementYields();
  4149   _collector->icms_wait();
  4151   // It is possible for whichever thread initiated the yield request
  4152   // not to get a chance to wake up and take the bitmap lock between
  4153   // this thread releasing it and reacquiring it. So, while the
  4154   // should_yield() flag is on, let's sleep for a bit to give the
  4155   // other thread a chance to wake up. The limit imposed on the number
  4156   // of iterations is defensive, to avoid any unforseen circumstances
  4157   // putting us into an infinite loop. Since it's always been this
  4158   // (coordinator_yield()) method that was observed to cause the
  4159   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
  4160   // which is by default non-zero. For the other seven methods that
  4161   // also perform the yield operation, as are using a different
  4162   // parameter (CMSYieldSleepCount) which is by default zero. This way we
  4163   // can enable the sleeping for those methods too, if necessary.
  4164   // See 6442774.
  4165   //
  4166   // We really need to reconsider the synchronization between the GC
  4167   // thread and the yield-requesting threads in the future and we
  4168   // should really use wait/notify, which is the recommended
  4169   // way of doing this type of interaction. Additionally, we should
  4170   // consolidate the eight methods that do the yield operation and they
  4171   // are almost identical into one for better maintenability and
  4172   // readability. See 6445193.
  4173   //
  4174   // Tony 2006.06.29
  4175   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
  4176                    ConcurrentMarkSweepThread::should_yield() &&
  4177                    !CMSCollector::foregroundGCIsActive(); ++i) {
  4178     os::sleep(Thread::current(), 1, false);
  4179     ConcurrentMarkSweepThread::acknowledge_yield_request();
  4182   ConcurrentMarkSweepThread::synchronize(true);
  4183   _bit_map_lock->lock_without_safepoint_check();
  4184   _collector->startTimer();
  4187 bool CMSCollector::do_marking_mt(bool asynch) {
  4188   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
  4189   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
  4190                                        conc_workers()->total_workers(),
  4191                                        conc_workers()->active_workers(),
  4192                                        Threads::number_of_non_daemon_threads());
  4193   conc_workers()->set_active_workers(num_workers);
  4195   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  4197   CMSConcMarkingTask tsk(this,
  4198                          cms_space,
  4199                          asynch,
  4200                          conc_workers(),
  4201                          task_queues());
  4203   // Since the actual number of workers we get may be different
  4204   // from the number we requested above, do we need to do anything different
  4205   // below? In particular, may be we need to subclass the SequantialSubTasksDone
  4206   // class?? XXX
  4207   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
  4209   // Refs discovery is already non-atomic.
  4210   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
  4211   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
  4212   conc_workers()->start_task(&tsk);
  4213   while (tsk.yielded()) {
  4214     tsk.coordinator_yield();
  4215     conc_workers()->continue_task(&tsk);
  4217   // If the task was aborted, _restart_addr will be non-NULL
  4218   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
  4219   while (_restart_addr != NULL) {
  4220     // XXX For now we do not make use of ABORTED state and have not
  4221     // yet implemented the right abort semantics (even in the original
  4222     // single-threaded CMS case). That needs some more investigation
  4223     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
  4224     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
  4225     // If _restart_addr is non-NULL, a marking stack overflow
  4226     // occurred; we need to do a fresh marking iteration from the
  4227     // indicated restart address.
  4228     if (_foregroundGCIsActive && asynch) {
  4229       // We may be running into repeated stack overflows, having
  4230       // reached the limit of the stack size, while making very
  4231       // slow forward progress. It may be best to bail out and
  4232       // let the foreground collector do its job.
  4233       // Clear _restart_addr, so that foreground GC
  4234       // works from scratch. This avoids the headache of
  4235       // a "rescan" which would otherwise be needed because
  4236       // of the dirty mod union table & card table.
  4237       _restart_addr = NULL;
  4238       return false;
  4240     // Adjust the task to restart from _restart_addr
  4241     tsk.reset(_restart_addr);
  4242     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
  4243                   _restart_addr);
  4244     _restart_addr = NULL;
  4245     // Get the workers going again
  4246     conc_workers()->start_task(&tsk);
  4247     while (tsk.yielded()) {
  4248       tsk.coordinator_yield();
  4249       conc_workers()->continue_task(&tsk);
  4252   assert(tsk.completed(), "Inconsistency");
  4253   assert(tsk.result() == true, "Inconsistency");
  4254   return true;
  4257 bool CMSCollector::do_marking_st(bool asynch) {
  4258   ResourceMark rm;
  4259   HandleMark   hm;
  4261   // Temporarily make refs discovery single threaded (non-MT)
  4262   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
  4263   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
  4264     &_markStack, CMSYield && asynch);
  4265   // the last argument to iterate indicates whether the iteration
  4266   // should be incremental with periodic yields.
  4267   _markBitMap.iterate(&markFromRootsClosure);
  4268   // If _restart_addr is non-NULL, a marking stack overflow
  4269   // occurred; we need to do a fresh iteration from the
  4270   // indicated restart address.
  4271   while (_restart_addr != NULL) {
  4272     if (_foregroundGCIsActive && asynch) {
  4273       // We may be running into repeated stack overflows, having
  4274       // reached the limit of the stack size, while making very
  4275       // slow forward progress. It may be best to bail out and
  4276       // let the foreground collector do its job.
  4277       // Clear _restart_addr, so that foreground GC
  4278       // works from scratch. This avoids the headache of
  4279       // a "rescan" which would otherwise be needed because
  4280       // of the dirty mod union table & card table.
  4281       _restart_addr = NULL;
  4282       return false;  // indicating failure to complete marking
  4284     // Deal with stack overflow:
  4285     // we restart marking from _restart_addr
  4286     HeapWord* ra = _restart_addr;
  4287     markFromRootsClosure.reset(ra);
  4288     _restart_addr = NULL;
  4289     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
  4291   return true;
  4294 void CMSCollector::preclean() {
  4295   check_correct_thread_executing();
  4296   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
  4297   verify_work_stacks_empty();
  4298   verify_overflow_empty();
  4299   _abort_preclean = false;
  4300   if (CMSPrecleaningEnabled) {
  4301     _eden_chunk_index = 0;
  4302     size_t used = get_eden_used();
  4303     size_t capacity = get_eden_capacity();
  4304     // Don't start sampling unless we will get sufficiently
  4305     // many samples.
  4306     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
  4307                 * CMSScheduleRemarkEdenPenetration)) {
  4308       _start_sampling = true;
  4309     } else {
  4310       _start_sampling = false;
  4312     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4313     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
  4314     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
  4316   CMSTokenSync x(true); // is cms thread
  4317   if (CMSPrecleaningEnabled) {
  4318     sample_eden();
  4319     _collectorState = AbortablePreclean;
  4320   } else {
  4321     _collectorState = FinalMarking;
  4323   verify_work_stacks_empty();
  4324   verify_overflow_empty();
  4327 // Try and schedule the remark such that young gen
  4328 // occupancy is CMSScheduleRemarkEdenPenetration %.
  4329 void CMSCollector::abortable_preclean() {
  4330   check_correct_thread_executing();
  4331   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
  4332   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
  4334   // If Eden's current occupancy is below this threshold,
  4335   // immediately schedule the remark; else preclean
  4336   // past the next scavenge in an effort to
  4337   // schedule the pause as described avove. By choosing
  4338   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
  4339   // we will never do an actual abortable preclean cycle.
  4340   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
  4341     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  4342     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
  4343     // We need more smarts in the abortable preclean
  4344     // loop below to deal with cases where allocation
  4345     // in young gen is very very slow, and our precleaning
  4346     // is running a losing race against a horde of
  4347     // mutators intent on flooding us with CMS updates
  4348     // (dirty cards).
  4349     // One, admittedly dumb, strategy is to give up
  4350     // after a certain number of abortable precleaning loops
  4351     // or after a certain maximum time. We want to make
  4352     // this smarter in the next iteration.
  4353     // XXX FIX ME!!! YSR
  4354     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
  4355     while (!(should_abort_preclean() ||
  4356              ConcurrentMarkSweepThread::should_terminate())) {
  4357       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
  4358       cumworkdone += workdone;
  4359       loops++;
  4360       // Voluntarily terminate abortable preclean phase if we have
  4361       // been at it for too long.
  4362       if ((CMSMaxAbortablePrecleanLoops != 0) &&
  4363           loops >= CMSMaxAbortablePrecleanLoops) {
  4364         if (PrintGCDetails) {
  4365           gclog_or_tty->print(" CMS: abort preclean due to loops ");
  4367         break;
  4369       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
  4370         if (PrintGCDetails) {
  4371           gclog_or_tty->print(" CMS: abort preclean due to time ");
  4373         break;
  4375       // If we are doing little work each iteration, we should
  4376       // take a short break.
  4377       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
  4378         // Sleep for some time, waiting for work to accumulate
  4379         stopTimer();
  4380         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
  4381         startTimer();
  4382         waited++;
  4385     if (PrintCMSStatistics > 0) {
  4386       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
  4387                           loops, waited, cumworkdone);
  4390   CMSTokenSync x(true); // is cms thread
  4391   if (_collectorState != Idling) {
  4392     assert(_collectorState == AbortablePreclean,
  4393            "Spontaneous state transition?");
  4394     _collectorState = FinalMarking;
  4395   } // Else, a foreground collection completed this CMS cycle.
  4396   return;
  4399 // Respond to an Eden sampling opportunity
  4400 void CMSCollector::sample_eden() {
  4401   // Make sure a young gc cannot sneak in between our
  4402   // reading and recording of a sample.
  4403   assert(Thread::current()->is_ConcurrentGC_thread(),
  4404          "Only the cms thread may collect Eden samples");
  4405   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  4406          "Should collect samples while holding CMS token");
  4407   if (!_start_sampling) {
  4408     return;
  4410   if (_eden_chunk_array) {
  4411     if (_eden_chunk_index < _eden_chunk_capacity) {
  4412       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
  4413       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
  4414              "Unexpected state of Eden");
  4415       // We'd like to check that what we just sampled is an oop-start address;
  4416       // however, we cannot do that here since the object may not yet have been
  4417       // initialized. So we'll instead do the check when we _use_ this sample
  4418       // later.
  4419       if (_eden_chunk_index == 0 ||
  4420           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
  4421                          _eden_chunk_array[_eden_chunk_index-1])
  4422            >= CMSSamplingGrain)) {
  4423         _eden_chunk_index++;  // commit sample
  4427   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
  4428     size_t used = get_eden_used();
  4429     size_t capacity = get_eden_capacity();
  4430     assert(used <= capacity, "Unexpected state of Eden");
  4431     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
  4432       _abort_preclean = true;
  4438 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
  4439   assert(_collectorState == Precleaning ||
  4440          _collectorState == AbortablePreclean, "incorrect state");
  4441   ResourceMark rm;
  4442   HandleMark   hm;
  4444   // Precleaning is currently not MT but the reference processor
  4445   // may be set for MT.  Disable it temporarily here.
  4446   ReferenceProcessor* rp = ref_processor();
  4447   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
  4449   // Do one pass of scrubbing the discovered reference lists
  4450   // to remove any reference objects with strongly-reachable
  4451   // referents.
  4452   if (clean_refs) {
  4453     CMSPrecleanRefsYieldClosure yield_cl(this);
  4454     assert(rp->span().equals(_span), "Spans should be equal");
  4455     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
  4456                                    &_markStack, true /* preclean */);
  4457     CMSDrainMarkingStackClosure complete_trace(this,
  4458                                    _span, &_markBitMap, &_markStack,
  4459                                    &keep_alive, true /* preclean */);
  4461     // We don't want this step to interfere with a young
  4462     // collection because we don't want to take CPU
  4463     // or memory bandwidth away from the young GC threads
  4464     // (which may be as many as there are CPUs).
  4465     // Note that we don't need to protect ourselves from
  4466     // interference with mutators because they can't
  4467     // manipulate the discovered reference lists nor affect
  4468     // the computed reachability of the referents, the
  4469     // only properties manipulated by the precleaning
  4470     // of these reference lists.
  4471     stopTimer();
  4472     CMSTokenSyncWithLocks x(true /* is cms thread */,
  4473                             bitMapLock());
  4474     startTimer();
  4475     sample_eden();
  4477     // The following will yield to allow foreground
  4478     // collection to proceed promptly. XXX YSR:
  4479     // The code in this method may need further
  4480     // tweaking for better performance and some restructuring
  4481     // for cleaner interfaces.
  4482     rp->preclean_discovered_references(
  4483           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl);
  4486   if (clean_survivor) {  // preclean the active survivor space(s)
  4487     assert(_young_gen->kind() == Generation::DefNew ||
  4488            _young_gen->kind() == Generation::ParNew ||
  4489            _young_gen->kind() == Generation::ASParNew,
  4490          "incorrect type for cast");
  4491     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  4492     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
  4493                              &_markBitMap, &_modUnionTable,
  4494                              &_markStack, true /* precleaning phase */);
  4495     stopTimer();
  4496     CMSTokenSyncWithLocks ts(true /* is cms thread */,
  4497                              bitMapLock());
  4498     startTimer();
  4499     unsigned int before_count =
  4500       GenCollectedHeap::heap()->total_collections();
  4501     SurvivorSpacePrecleanClosure
  4502       sss_cl(this, _span, &_markBitMap, &_markStack,
  4503              &pam_cl, before_count, CMSYield);
  4504     dng->from()->object_iterate_careful(&sss_cl);
  4505     dng->to()->object_iterate_careful(&sss_cl);
  4507   MarkRefsIntoAndScanClosure
  4508     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
  4509              &_markStack, this, CMSYield,
  4510              true /* precleaning phase */);
  4511   // CAUTION: The following closure has persistent state that may need to
  4512   // be reset upon a decrease in the sequence of addresses it
  4513   // processes.
  4514   ScanMarkedObjectsAgainCarefullyClosure
  4515     smoac_cl(this, _span,
  4516       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
  4518   // Preclean dirty cards in ModUnionTable and CardTable using
  4519   // appropriate convergence criterion;
  4520   // repeat CMSPrecleanIter times unless we find that
  4521   // we are losing.
  4522   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
  4523   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
  4524          "Bad convergence multiplier");
  4525   assert(CMSPrecleanThreshold >= 100,
  4526          "Unreasonably low CMSPrecleanThreshold");
  4528   size_t numIter, cumNumCards, lastNumCards, curNumCards;
  4529   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
  4530        numIter < CMSPrecleanIter;
  4531        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
  4532     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
  4533     if (Verbose && PrintGCDetails) {
  4534       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
  4536     // Either there are very few dirty cards, so re-mark
  4537     // pause will be small anyway, or our pre-cleaning isn't
  4538     // that much faster than the rate at which cards are being
  4539     // dirtied, so we might as well stop and re-mark since
  4540     // precleaning won't improve our re-mark time by much.
  4541     if (curNumCards <= CMSPrecleanThreshold ||
  4542         (numIter > 0 &&
  4543          (curNumCards * CMSPrecleanDenominator >
  4544          lastNumCards * CMSPrecleanNumerator))) {
  4545       numIter++;
  4546       cumNumCards += curNumCards;
  4547       break;
  4551   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
  4553   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
  4554   cumNumCards += curNumCards;
  4555   if (PrintGCDetails && PrintCMSStatistics != 0) {
  4556     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
  4557                   curNumCards, cumNumCards, numIter);
  4559   return cumNumCards;   // as a measure of useful work done
  4562 // PRECLEANING NOTES:
  4563 // Precleaning involves:
  4564 // . reading the bits of the modUnionTable and clearing the set bits.
  4565 // . For the cards corresponding to the set bits, we scan the
  4566 //   objects on those cards. This means we need the free_list_lock
  4567 //   so that we can safely iterate over the CMS space when scanning
  4568 //   for oops.
  4569 // . When we scan the objects, we'll be both reading and setting
  4570 //   marks in the marking bit map, so we'll need the marking bit map.
  4571 // . For protecting _collector_state transitions, we take the CGC_lock.
  4572 //   Note that any races in the reading of of card table entries by the
  4573 //   CMS thread on the one hand and the clearing of those entries by the
  4574 //   VM thread or the setting of those entries by the mutator threads on the
  4575 //   other are quite benign. However, for efficiency it makes sense to keep
  4576 //   the VM thread from racing with the CMS thread while the latter is
  4577 //   dirty card info to the modUnionTable. We therefore also use the
  4578 //   CGC_lock to protect the reading of the card table and the mod union
  4579 //   table by the CM thread.
  4580 // . We run concurrently with mutator updates, so scanning
  4581 //   needs to be done carefully  -- we should not try to scan
  4582 //   potentially uninitialized objects.
  4583 //
  4584 // Locking strategy: While holding the CGC_lock, we scan over and
  4585 // reset a maximal dirty range of the mod union / card tables, then lock
  4586 // the free_list_lock and bitmap lock to do a full marking, then
  4587 // release these locks; and repeat the cycle. This allows for a
  4588 // certain amount of fairness in the sharing of these locks between
  4589 // the CMS collector on the one hand, and the VM thread and the
  4590 // mutators on the other.
  4592 // NOTE: preclean_mod_union_table() and preclean_card_table()
  4593 // further below are largely identical; if you need to modify
  4594 // one of these methods, please check the other method too.
  4596 size_t CMSCollector::preclean_mod_union_table(
  4597   ConcurrentMarkSweepGeneration* gen,
  4598   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4599   verify_work_stacks_empty();
  4600   verify_overflow_empty();
  4602   // strategy: starting with the first card, accumulate contiguous
  4603   // ranges of dirty cards; clear these cards, then scan the region
  4604   // covered by these cards.
  4606   // Since all of the MUT is committed ahead, we can just use
  4607   // that, in case the generations expand while we are precleaning.
  4608   // It might also be fine to just use the committed part of the
  4609   // generation, but we might potentially miss cards when the
  4610   // generation is rapidly expanding while we are in the midst
  4611   // of precleaning.
  4612   HeapWord* startAddr = gen->reserved().start();
  4613   HeapWord* endAddr   = gen->reserved().end();
  4615   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4617   size_t numDirtyCards, cumNumDirtyCards;
  4618   HeapWord *nextAddr, *lastAddr;
  4619   for (cumNumDirtyCards = numDirtyCards = 0,
  4620        nextAddr = lastAddr = startAddr;
  4621        nextAddr < endAddr;
  4622        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4624     ResourceMark rm;
  4625     HandleMark   hm;
  4627     MemRegion dirtyRegion;
  4629       stopTimer();
  4630       // Potential yield point
  4631       CMSTokenSync ts(true);
  4632       startTimer();
  4633       sample_eden();
  4634       // Get dirty region starting at nextOffset (inclusive),
  4635       // simultaneously clearing it.
  4636       dirtyRegion =
  4637         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
  4638       assert(dirtyRegion.start() >= nextAddr,
  4639              "returned region inconsistent?");
  4641     // Remember where the next search should begin.
  4642     // The returned region (if non-empty) is a right open interval,
  4643     // so lastOffset is obtained from the right end of that
  4644     // interval.
  4645     lastAddr = dirtyRegion.end();
  4646     // Should do something more transparent and less hacky XXX
  4647     numDirtyCards =
  4648       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
  4650     // We'll scan the cards in the dirty region (with periodic
  4651     // yields for foreground GC as needed).
  4652     if (!dirtyRegion.is_empty()) {
  4653       assert(numDirtyCards > 0, "consistency check");
  4654       HeapWord* stop_point = NULL;
  4655       stopTimer();
  4656       // Potential yield point
  4657       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
  4658                                bitMapLock());
  4659       startTimer();
  4661         verify_work_stacks_empty();
  4662         verify_overflow_empty();
  4663         sample_eden();
  4664         stop_point =
  4665           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4667       if (stop_point != NULL) {
  4668         // The careful iteration stopped early either because it found an
  4669         // uninitialized object, or because we were in the midst of an
  4670         // "abortable preclean", which should now be aborted. Redirty
  4671         // the bits corresponding to the partially-scanned or unscanned
  4672         // cards. We'll either restart at the next block boundary or
  4673         // abort the preclean.
  4674         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
  4675                "Should only be AbortablePreclean.");
  4676         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
  4677         if (should_abort_preclean()) {
  4678           break; // out of preclean loop
  4679         } else {
  4680           // Compute the next address at which preclean should pick up;
  4681           // might need bitMapLock in order to read P-bits.
  4682           lastAddr = next_card_start_after_block(stop_point);
  4685     } else {
  4686       assert(lastAddr == endAddr, "consistency check");
  4687       assert(numDirtyCards == 0, "consistency check");
  4688       break;
  4691   verify_work_stacks_empty();
  4692   verify_overflow_empty();
  4693   return cumNumDirtyCards;
  4696 // NOTE: preclean_mod_union_table() above and preclean_card_table()
  4697 // below are largely identical; if you need to modify
  4698 // one of these methods, please check the other method too.
  4700 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
  4701   ScanMarkedObjectsAgainCarefullyClosure* cl) {
  4702   // strategy: it's similar to precleamModUnionTable above, in that
  4703   // we accumulate contiguous ranges of dirty cards, mark these cards
  4704   // precleaned, then scan the region covered by these cards.
  4705   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
  4706   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
  4708   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
  4710   size_t numDirtyCards, cumNumDirtyCards;
  4711   HeapWord *lastAddr, *nextAddr;
  4713   for (cumNumDirtyCards = numDirtyCards = 0,
  4714        nextAddr = lastAddr = startAddr;
  4715        nextAddr < endAddr;
  4716        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
  4718     ResourceMark rm;
  4719     HandleMark   hm;
  4721     MemRegion dirtyRegion;
  4723       // See comments in "Precleaning notes" above on why we
  4724       // do this locking. XXX Could the locking overheads be
  4725       // too high when dirty cards are sparse? [I don't think so.]
  4726       stopTimer();
  4727       CMSTokenSync x(true); // is cms thread
  4728       startTimer();
  4729       sample_eden();
  4730       // Get and clear dirty region from card table
  4731       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
  4732                                     MemRegion(nextAddr, endAddr),
  4733                                     true,
  4734                                     CardTableModRefBS::precleaned_card_val());
  4736       assert(dirtyRegion.start() >= nextAddr,
  4737              "returned region inconsistent?");
  4739     lastAddr = dirtyRegion.end();
  4740     numDirtyCards =
  4741       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
  4743     if (!dirtyRegion.is_empty()) {
  4744       stopTimer();
  4745       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
  4746       startTimer();
  4747       sample_eden();
  4748       verify_work_stacks_empty();
  4749       verify_overflow_empty();
  4750       HeapWord* stop_point =
  4751         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
  4752       if (stop_point != NULL) {
  4753         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
  4754                "Should only be AbortablePreclean.");
  4755         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
  4756         if (should_abort_preclean()) {
  4757           break; // out of preclean loop
  4758         } else {
  4759           // Compute the next address at which preclean should pick up.
  4760           lastAddr = next_card_start_after_block(stop_point);
  4763     } else {
  4764       break;
  4767   verify_work_stacks_empty();
  4768   verify_overflow_empty();
  4769   return cumNumDirtyCards;
  4772 class PrecleanKlassClosure : public KlassClosure {
  4773   CMKlassClosure _cm_klass_closure;
  4774  public:
  4775   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
  4776   void do_klass(Klass* k) {
  4777     if (k->has_accumulated_modified_oops()) {
  4778       k->clear_accumulated_modified_oops();
  4780       _cm_klass_closure.do_klass(k);
  4783 };
  4785 // The freelist lock is needed to prevent asserts, is it really needed?
  4786 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
  4788   cl->set_freelistLock(freelistLock);
  4790   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
  4792   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
  4793   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
  4794   PrecleanKlassClosure preclean_klass_closure(cl);
  4795   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
  4797   verify_work_stacks_empty();
  4798   verify_overflow_empty();
  4801 void CMSCollector::checkpointRootsFinal(bool asynch,
  4802   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4803   assert(_collectorState == FinalMarking, "incorrect state transition?");
  4804   check_correct_thread_executing();
  4805   // world is stopped at this checkpoint
  4806   assert(SafepointSynchronize::is_at_safepoint(),
  4807          "world should be stopped");
  4808   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
  4810   verify_work_stacks_empty();
  4811   verify_overflow_empty();
  4813   SpecializationStats::clear();
  4814   if (PrintGCDetails) {
  4815     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
  4816                         _young_gen->used() / K,
  4817                         _young_gen->capacity() / K);
  4819   if (asynch) {
  4820     if (CMSScavengeBeforeRemark) {
  4821       GenCollectedHeap* gch = GenCollectedHeap::heap();
  4822       // Temporarily set flag to false, GCH->do_collection will
  4823       // expect it to be false and set to true
  4824       FlagSetting fl(gch->_is_gc_active, false);
  4825       NOT_PRODUCT(TraceTime t("Scavenge-Before-Remark",
  4826         PrintGCDetails && Verbose, true, gclog_or_tty);)
  4827       int level = _cmsGen->level() - 1;
  4828       if (level >= 0) {
  4829         gch->do_collection(true,        // full (i.e. force, see below)
  4830                            false,       // !clear_all_soft_refs
  4831                            0,           // size
  4832                            false,       // is_tlab
  4833                            level        // max_level
  4834                           );
  4837     FreelistLocker x(this);
  4838     MutexLockerEx y(bitMapLock(),
  4839                     Mutex::_no_safepoint_check_flag);
  4840     assert(!init_mark_was_synchronous, "but that's impossible!");
  4841     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
  4842   } else {
  4843     // already have all the locks
  4844     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
  4845                              init_mark_was_synchronous);
  4847   verify_work_stacks_empty();
  4848   verify_overflow_empty();
  4849   SpecializationStats::print();
  4852 void CMSCollector::checkpointRootsFinalWork(bool asynch,
  4853   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
  4855   NOT_PRODUCT(TraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, gclog_or_tty);)
  4857   assert(haveFreelistLocks(), "must have free list locks");
  4858   assert_lock_strong(bitMapLock());
  4860   if (UseAdaptiveSizePolicy) {
  4861     size_policy()->checkpoint_roots_final_begin();
  4864   ResourceMark rm;
  4865   HandleMark   hm;
  4867   GenCollectedHeap* gch = GenCollectedHeap::heap();
  4869   if (should_unload_classes()) {
  4870     CodeCache::gc_prologue();
  4872   assert(haveFreelistLocks(), "must have free list locks");
  4873   assert_lock_strong(bitMapLock());
  4875   if (!init_mark_was_synchronous) {
  4876     // We might assume that we need not fill TLAB's when
  4877     // CMSScavengeBeforeRemark is set, because we may have just done
  4878     // a scavenge which would have filled all TLAB's -- and besides
  4879     // Eden would be empty. This however may not always be the case --
  4880     // for instance although we asked for a scavenge, it may not have
  4881     // happened because of a JNI critical section. We probably need
  4882     // a policy for deciding whether we can in that case wait until
  4883     // the critical section releases and then do the remark following
  4884     // the scavenge, and skip it here. In the absence of that policy,
  4885     // or of an indication of whether the scavenge did indeed occur,
  4886     // we cannot rely on TLAB's having been filled and must do
  4887     // so here just in case a scavenge did not happen.
  4888     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
  4889     // Update the saved marks which may affect the root scans.
  4890     gch->save_marks();
  4893       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
  4895       // Note on the role of the mod union table:
  4896       // Since the marker in "markFromRoots" marks concurrently with
  4897       // mutators, it is possible for some reachable objects not to have been
  4898       // scanned. For instance, an only reference to an object A was
  4899       // placed in object B after the marker scanned B. Unless B is rescanned,
  4900       // A would be collected. Such updates to references in marked objects
  4901       // are detected via the mod union table which is the set of all cards
  4902       // dirtied since the first checkpoint in this GC cycle and prior to
  4903       // the most recent young generation GC, minus those cleaned up by the
  4904       // concurrent precleaning.
  4905       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
  4906         TraceTime t("Rescan (parallel) ", PrintGCDetails, false, gclog_or_tty);
  4907         do_remark_parallel();
  4908       } else {
  4909         TraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
  4910                     gclog_or_tty);
  4911         do_remark_non_parallel();
  4914   } else {
  4915     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
  4916     // The initial mark was stop-world, so there's no rescanning to
  4917     // do; go straight on to the next step below.
  4919   verify_work_stacks_empty();
  4920   verify_overflow_empty();
  4923     NOT_PRODUCT(TraceTime ts("refProcessingWork", PrintGCDetails, false, gclog_or_tty);)
  4924     refProcessingWork(asynch, clear_all_soft_refs);
  4926   verify_work_stacks_empty();
  4927   verify_overflow_empty();
  4929   if (should_unload_classes()) {
  4930     CodeCache::gc_epilogue();
  4932   JvmtiExport::gc_epilogue();
  4934   // If we encountered any (marking stack / work queue) overflow
  4935   // events during the current CMS cycle, take appropriate
  4936   // remedial measures, where possible, so as to try and avoid
  4937   // recurrence of that condition.
  4938   assert(_markStack.isEmpty(), "No grey objects");
  4939   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
  4940                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
  4941   if (ser_ovflw > 0) {
  4942     if (PrintCMSStatistics != 0) {
  4943       gclog_or_tty->print_cr("Marking stack overflow (benign) "
  4944         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
  4945         ", kac_preclean="SIZE_FORMAT")",
  4946         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
  4947         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
  4949     _markStack.expand();
  4950     _ser_pmc_remark_ovflw = 0;
  4951     _ser_pmc_preclean_ovflw = 0;
  4952     _ser_kac_preclean_ovflw = 0;
  4953     _ser_kac_ovflw = 0;
  4955   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
  4956     if (PrintCMSStatistics != 0) {
  4957       gclog_or_tty->print_cr("Work queue overflow (benign) "
  4958         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
  4959         _par_pmc_remark_ovflw, _par_kac_ovflw);
  4961     _par_pmc_remark_ovflw = 0;
  4962     _par_kac_ovflw = 0;
  4964   if (PrintCMSStatistics != 0) {
  4965      if (_markStack._hit_limit > 0) {
  4966        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
  4967                               _markStack._hit_limit);
  4969      if (_markStack._failed_double > 0) {
  4970        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
  4971                               " current capacity "SIZE_FORMAT,
  4972                               _markStack._failed_double,
  4973                               _markStack.capacity());
  4976   _markStack._hit_limit = 0;
  4977   _markStack._failed_double = 0;
  4979   if ((VerifyAfterGC || VerifyDuringGC) &&
  4980       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  4981     verify_after_remark();
  4984   // Change under the freelistLocks.
  4985   _collectorState = Sweeping;
  4986   // Call isAllClear() under bitMapLock
  4987   assert(_modUnionTable.isAllClear(),
  4988       "Should be clear by end of the final marking");
  4989   assert(_ct->klass_rem_set()->mod_union_is_clear(),
  4990       "Should be clear by end of the final marking");
  4991   if (UseAdaptiveSizePolicy) {
  4992     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
  4996 // Parallel remark task
  4997 class CMSParRemarkTask: public AbstractGangTask {
  4998   CMSCollector* _collector;
  4999   int           _n_workers;
  5000   CompactibleFreeListSpace* _cms_space;
  5002   // The per-thread work queues, available here for stealing.
  5003   OopTaskQueueSet*       _task_queues;
  5004   ParallelTaskTerminator _term;
  5006  public:
  5007   // A value of 0 passed to n_workers will cause the number of
  5008   // workers to be taken from the active workers in the work gang.
  5009   CMSParRemarkTask(CMSCollector* collector,
  5010                    CompactibleFreeListSpace* cms_space,
  5011                    int n_workers, FlexibleWorkGang* workers,
  5012                    OopTaskQueueSet* task_queues):
  5013     AbstractGangTask("Rescan roots and grey objects in parallel"),
  5014     _collector(collector),
  5015     _cms_space(cms_space),
  5016     _n_workers(n_workers),
  5017     _task_queues(task_queues),
  5018     _term(n_workers, task_queues) { }
  5020   OopTaskQueueSet* task_queues() { return _task_queues; }
  5022   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5024   ParallelTaskTerminator* terminator() { return &_term; }
  5025   int n_workers() { return _n_workers; }
  5027   void work(uint worker_id);
  5029  private:
  5030   // Work method in support of parallel rescan ... of young gen spaces
  5031   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5032                              ContiguousSpace* space,
  5033                              HeapWord** chunk_array, size_t chunk_top);
  5035   // ... of  dirty cards in old space
  5036   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
  5037                                   Par_MarkRefsIntoAndScanClosure* cl);
  5039   // ... work stealing for the above
  5040   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
  5041 };
  5043 class RemarkKlassClosure : public KlassClosure {
  5044   CMKlassClosure _cm_klass_closure;
  5045  public:
  5046   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
  5047   void do_klass(Klass* k) {
  5048     // Check if we have modified any oops in the Klass during the concurrent marking.
  5049     if (k->has_accumulated_modified_oops()) {
  5050       k->clear_accumulated_modified_oops();
  5052       // We could have transfered the current modified marks to the accumulated marks,
  5053       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
  5054     } else if (k->has_modified_oops()) {
  5055       // Don't clear anything, this info is needed by the next young collection.
  5056     } else {
  5057       // No modified oops in the Klass.
  5058       return;
  5061     // The klass has modified fields, need to scan the klass.
  5062     _cm_klass_closure.do_klass(k);
  5064 };
  5066 // work_queue(i) is passed to the closure
  5067 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
  5068 // also is passed to do_dirty_card_rescan_tasks() and to
  5069 // do_work_steal() to select the i-th task_queue.
  5071 void CMSParRemarkTask::work(uint worker_id) {
  5072   elapsedTimer _timer;
  5073   ResourceMark rm;
  5074   HandleMark   hm;
  5076   // ---------- rescan from roots --------------
  5077   _timer.start();
  5078   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5079   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
  5080     _collector->_span, _collector->ref_processor(),
  5081     &(_collector->_markBitMap),
  5082     work_queue(worker_id));
  5084   // Rescan young gen roots first since these are likely
  5085   // coarsely partitioned and may, on that account, constitute
  5086   // the critical path; thus, it's best to start off that
  5087   // work first.
  5088   // ---------- young gen roots --------------
  5090     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
  5091     EdenSpace* eden_space = dng->eden();
  5092     ContiguousSpace* from_space = dng->from();
  5093     ContiguousSpace* to_space   = dng->to();
  5095     HeapWord** eca = _collector->_eden_chunk_array;
  5096     size_t     ect = _collector->_eden_chunk_index;
  5097     HeapWord** sca = _collector->_survivor_chunk_array;
  5098     size_t     sct = _collector->_survivor_chunk_index;
  5100     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
  5101     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
  5103     do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0);
  5104     do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct);
  5105     do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect);
  5107     _timer.stop();
  5108     if (PrintCMSStatistics != 0) {
  5109       gclog_or_tty->print_cr(
  5110         "Finished young gen rescan work in %dth thread: %3.3f sec",
  5111         worker_id, _timer.seconds());
  5115   // ---------- remaining roots --------------
  5116   _timer.reset();
  5117   _timer.start();
  5118   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
  5119                                 false,     // yg was scanned above
  5120                                 false,     // this is parallel code
  5121                                 false,     // not scavenging
  5122                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
  5123                                 &par_mrias_cl,
  5124                                 true,   // walk all of code cache if (so & SO_CodeCache)
  5125                                 NULL,
  5126                                 NULL);     // The dirty klasses will be handled below
  5127   assert(_collector->should_unload_classes()
  5128          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
  5129          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5130   _timer.stop();
  5131   if (PrintCMSStatistics != 0) {
  5132     gclog_or_tty->print_cr(
  5133       "Finished remaining root rescan work in %dth thread: %3.3f sec",
  5134       worker_id, _timer.seconds());
  5137   // ---------- unhandled CLD scanning ----------
  5138   if (worker_id == 0) { // Single threaded at the moment.
  5139     _timer.reset();
  5140     _timer.start();
  5142     // Scan all new class loader data objects and new dependencies that were
  5143     // introduced during concurrent marking.
  5144     ResourceMark rm;
  5145     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
  5146     for (int i = 0; i < array->length(); i++) {
  5147       par_mrias_cl.do_class_loader_data(array->at(i));
  5150     // We don't need to keep track of new CLDs anymore.
  5151     ClassLoaderDataGraph::remember_new_clds(false);
  5153     _timer.stop();
  5154     if (PrintCMSStatistics != 0) {
  5155       gclog_or_tty->print_cr(
  5156           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
  5157           worker_id, _timer.seconds());
  5161   // ---------- dirty klass scanning ----------
  5162   if (worker_id == 0) { // Single threaded at the moment.
  5163     _timer.reset();
  5164     _timer.start();
  5166     // Scan all classes that was dirtied during the concurrent marking phase.
  5167     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
  5168     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
  5170     _timer.stop();
  5171     if (PrintCMSStatistics != 0) {
  5172       gclog_or_tty->print_cr(
  5173           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
  5174           worker_id, _timer.seconds());
  5178   // We might have added oops to ClassLoaderData::_handles during the
  5179   // concurrent marking phase. These oops point to newly allocated objects
  5180   // that are guaranteed to be kept alive. Either by the direct allocation
  5181   // code, or when the young collector processes the strong roots. Hence,
  5182   // we don't have to revisit the _handles block during the remark phase.
  5184   // ---------- rescan dirty cards ------------
  5185   _timer.reset();
  5186   _timer.start();
  5188   // Do the rescan tasks for each of the two spaces
  5189   // (cms_space) in turn.
  5190   // "worker_id" is passed to select the task_queue for "worker_id"
  5191   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
  5192   _timer.stop();
  5193   if (PrintCMSStatistics != 0) {
  5194     gclog_or_tty->print_cr(
  5195       "Finished dirty card rescan work in %dth thread: %3.3f sec",
  5196       worker_id, _timer.seconds());
  5199   // ---------- steal work from other threads ...
  5200   // ---------- ... and drain overflow list.
  5201   _timer.reset();
  5202   _timer.start();
  5203   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
  5204   _timer.stop();
  5205   if (PrintCMSStatistics != 0) {
  5206     gclog_or_tty->print_cr(
  5207       "Finished work stealing in %dth thread: %3.3f sec",
  5208       worker_id, _timer.seconds());
  5212 // Note that parameter "i" is not used.
  5213 void
  5214 CMSParRemarkTask::do_young_space_rescan(int i,
  5215   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
  5216   HeapWord** chunk_array, size_t chunk_top) {
  5217   // Until all tasks completed:
  5218   // . claim an unclaimed task
  5219   // . compute region boundaries corresponding to task claimed
  5220   //   using chunk_array
  5221   // . par_oop_iterate(cl) over that region
  5223   ResourceMark rm;
  5224   HandleMark   hm;
  5226   SequentialSubTasksDone* pst = space->par_seq_tasks();
  5227   assert(pst->valid(), "Uninitialized use?");
  5229   uint nth_task = 0;
  5230   uint n_tasks  = pst->n_tasks();
  5232   HeapWord *start, *end;
  5233   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5234     // We claimed task # nth_task; compute its boundaries.
  5235     if (chunk_top == 0) {  // no samples were taken
  5236       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
  5237       start = space->bottom();
  5238       end   = space->top();
  5239     } else if (nth_task == 0) {
  5240       start = space->bottom();
  5241       end   = chunk_array[nth_task];
  5242     } else if (nth_task < (uint)chunk_top) {
  5243       assert(nth_task >= 1, "Control point invariant");
  5244       start = chunk_array[nth_task - 1];
  5245       end   = chunk_array[nth_task];
  5246     } else {
  5247       assert(nth_task == (uint)chunk_top, "Control point invariant");
  5248       start = chunk_array[chunk_top - 1];
  5249       end   = space->top();
  5251     MemRegion mr(start, end);
  5252     // Verify that mr is in space
  5253     assert(mr.is_empty() || space->used_region().contains(mr),
  5254            "Should be in space");
  5255     // Verify that "start" is an object boundary
  5256     assert(mr.is_empty() || oop(mr.start())->is_oop(),
  5257            "Should be an oop");
  5258     space->par_oop_iterate(mr, cl);
  5260   pst->all_tasks_completed();
  5263 void
  5264 CMSParRemarkTask::do_dirty_card_rescan_tasks(
  5265   CompactibleFreeListSpace* sp, int i,
  5266   Par_MarkRefsIntoAndScanClosure* cl) {
  5267   // Until all tasks completed:
  5268   // . claim an unclaimed task
  5269   // . compute region boundaries corresponding to task claimed
  5270   // . transfer dirty bits ct->mut for that region
  5271   // . apply rescanclosure to dirty mut bits for that region
  5273   ResourceMark rm;
  5274   HandleMark   hm;
  5276   OopTaskQueue* work_q = work_queue(i);
  5277   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
  5278   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
  5279   // CAUTION: This closure has state that persists across calls to
  5280   // the work method dirty_range_iterate_clear() in that it has
  5281   // imbedded in it a (subtype of) UpwardsObjectClosure. The
  5282   // use of that state in the imbedded UpwardsObjectClosure instance
  5283   // assumes that the cards are always iterated (even if in parallel
  5284   // by several threads) in monotonically increasing order per each
  5285   // thread. This is true of the implementation below which picks
  5286   // card ranges (chunks) in monotonically increasing order globally
  5287   // and, a-fortiori, in monotonically increasing order per thread
  5288   // (the latter order being a subsequence of the former).
  5289   // If the work code below is ever reorganized into a more chaotic
  5290   // work-partitioning form than the current "sequential tasks"
  5291   // paradigm, the use of that persistent state will have to be
  5292   // revisited and modified appropriately. See also related
  5293   // bug 4756801 work on which should examine this code to make
  5294   // sure that the changes there do not run counter to the
  5295   // assumptions made here and necessary for correctness and
  5296   // efficiency. Note also that this code might yield inefficient
  5297   // behaviour in the case of very large objects that span one or
  5298   // more work chunks. Such objects would potentially be scanned
  5299   // several times redundantly. Work on 4756801 should try and
  5300   // address that performance anomaly if at all possible. XXX
  5301   MemRegion  full_span  = _collector->_span;
  5302   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
  5303   MarkFromDirtyCardsClosure
  5304     greyRescanClosure(_collector, full_span, // entire span of interest
  5305                       sp, bm, work_q, cl);
  5307   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
  5308   assert(pst->valid(), "Uninitialized use?");
  5309   uint nth_task = 0;
  5310   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
  5311   MemRegion span = sp->used_region();
  5312   HeapWord* start_addr = span.start();
  5313   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
  5314                                            alignment);
  5315   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
  5316   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
  5317          start_addr, "Check alignment");
  5318   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
  5319          chunk_size, "Check alignment");
  5321   while (!pst->is_task_claimed(/* reference */ nth_task)) {
  5322     // Having claimed the nth_task, compute corresponding mem-region,
  5323     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
  5324     // The alignment restriction ensures that we do not need any
  5325     // synchronization with other gang-workers while setting or
  5326     // clearing bits in thus chunk of the MUT.
  5327     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
  5328                                     start_addr + (nth_task+1)*chunk_size);
  5329     // The last chunk's end might be way beyond end of the
  5330     // used region. In that case pull back appropriately.
  5331     if (this_span.end() > end_addr) {
  5332       this_span.set_end(end_addr);
  5333       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
  5335     // Iterate over the dirty cards covering this chunk, marking them
  5336     // precleaned, and setting the corresponding bits in the mod union
  5337     // table. Since we have been careful to partition at Card and MUT-word
  5338     // boundaries no synchronization is needed between parallel threads.
  5339     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
  5340                                                  &modUnionClosure);
  5342     // Having transferred these marks into the modUnionTable,
  5343     // rescan the marked objects on the dirty cards in the modUnionTable.
  5344     // Even if this is at a synchronous collection, the initial marking
  5345     // may have been done during an asynchronous collection so there
  5346     // may be dirty bits in the mod-union table.
  5347     _collector->_modUnionTable.dirty_range_iterate_clear(
  5348                   this_span, &greyRescanClosure);
  5349     _collector->_modUnionTable.verifyNoOneBitsInRange(
  5350                                  this_span.start(),
  5351                                  this_span.end());
  5353   pst->all_tasks_completed();  // declare that i am done
  5356 // . see if we can share work_queues with ParNew? XXX
  5357 void
  5358 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
  5359                                 int* seed) {
  5360   OopTaskQueue* work_q = work_queue(i);
  5361   NOT_PRODUCT(int num_steals = 0;)
  5362   oop obj_to_scan;
  5363   CMSBitMap* bm = &(_collector->_markBitMap);
  5365   while (true) {
  5366     // Completely finish any left over work from (an) earlier round(s)
  5367     cl->trim_queue(0);
  5368     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  5369                                          (size_t)ParGCDesiredObjsFromOverflowList);
  5370     // Now check if there's any work in the overflow list
  5371     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
  5372     // only affects the number of attempts made to get work from the
  5373     // overflow list and does not affect the number of workers.  Just
  5374     // pass ParallelGCThreads so this behavior is unchanged.
  5375     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5376                                                 work_q,
  5377                                                 ParallelGCThreads)) {
  5378       // found something in global overflow list;
  5379       // not yet ready to go stealing work from others.
  5380       // We'd like to assert(work_q->size() != 0, ...)
  5381       // because we just took work from the overflow list,
  5382       // but of course we can't since all of that could have
  5383       // been already stolen from us.
  5384       // "He giveth and He taketh away."
  5385       continue;
  5387     // Verify that we have no work before we resort to stealing
  5388     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5389     // Try to steal from other queues that have work
  5390     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5391       NOT_PRODUCT(num_steals++;)
  5392       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5393       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5394       // Do scanning work
  5395       obj_to_scan->oop_iterate(cl);
  5396       // Loop around, finish this work, and try to steal some more
  5397     } else if (terminator()->offer_termination()) {
  5398         break;  // nirvana from the infinite cycle
  5401   NOT_PRODUCT(
  5402     if (PrintCMSStatistics != 0) {
  5403       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5406   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
  5407          "Else our work is not yet done");
  5410 // Return a thread-local PLAB recording array, as appropriate.
  5411 void* CMSCollector::get_data_recorder(int thr_num) {
  5412   if (_survivor_plab_array != NULL &&
  5413       (CMSPLABRecordAlways ||
  5414        (_collectorState > Marking && _collectorState < FinalMarking))) {
  5415     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
  5416     ChunkArray* ca = &_survivor_plab_array[thr_num];
  5417     ca->reset();   // clear it so that fresh data is recorded
  5418     return (void*) ca;
  5419   } else {
  5420     return NULL;
  5424 // Reset all the thread-local PLAB recording arrays
  5425 void CMSCollector::reset_survivor_plab_arrays() {
  5426   for (uint i = 0; i < ParallelGCThreads; i++) {
  5427     _survivor_plab_array[i].reset();
  5431 // Merge the per-thread plab arrays into the global survivor chunk
  5432 // array which will provide the partitioning of the survivor space
  5433 // for CMS rescan.
  5434 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
  5435                                               int no_of_gc_threads) {
  5436   assert(_survivor_plab_array  != NULL, "Error");
  5437   assert(_survivor_chunk_array != NULL, "Error");
  5438   assert(_collectorState == FinalMarking, "Error");
  5439   for (int j = 0; j < no_of_gc_threads; j++) {
  5440     _cursor[j] = 0;
  5442   HeapWord* top = surv->top();
  5443   size_t i;
  5444   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
  5445     HeapWord* min_val = top;          // Higher than any PLAB address
  5446     uint      min_tid = 0;            // position of min_val this round
  5447     for (int j = 0; j < no_of_gc_threads; j++) {
  5448       ChunkArray* cur_sca = &_survivor_plab_array[j];
  5449       if (_cursor[j] == cur_sca->end()) {
  5450         continue;
  5452       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
  5453       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
  5454       assert(surv->used_region().contains(cur_val), "Out of bounds value");
  5455       if (cur_val < min_val) {
  5456         min_tid = j;
  5457         min_val = cur_val;
  5458       } else {
  5459         assert(cur_val < top, "All recorded addresses should be less");
  5462     // At this point min_val and min_tid are respectively
  5463     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
  5464     // and the thread (j) that witnesses that address.
  5465     // We record this address in the _survivor_chunk_array[i]
  5466     // and increment _cursor[min_tid] prior to the next round i.
  5467     if (min_val == top) {
  5468       break;
  5470     _survivor_chunk_array[i] = min_val;
  5471     _cursor[min_tid]++;
  5473   // We are all done; record the size of the _survivor_chunk_array
  5474   _survivor_chunk_index = i; // exclusive: [0, i)
  5475   if (PrintCMSStatistics > 0) {
  5476     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
  5478   // Verify that we used up all the recorded entries
  5479   #ifdef ASSERT
  5480     size_t total = 0;
  5481     for (int j = 0; j < no_of_gc_threads; j++) {
  5482       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
  5483       total += _cursor[j];
  5485     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
  5486     // Check that the merged array is in sorted order
  5487     if (total > 0) {
  5488       for (size_t i = 0; i < total - 1; i++) {
  5489         if (PrintCMSStatistics > 0) {
  5490           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
  5491                               i, _survivor_chunk_array[i]);
  5493         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
  5494                "Not sorted");
  5497   #endif // ASSERT
  5500 // Set up the space's par_seq_tasks structure for work claiming
  5501 // for parallel rescan of young gen.
  5502 // See ParRescanTask where this is currently used.
  5503 void
  5504 CMSCollector::
  5505 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
  5506   assert(n_threads > 0, "Unexpected n_threads argument");
  5507   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
  5509   // Eden space
  5511     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
  5512     assert(!pst->valid(), "Clobbering existing data?");
  5513     // Each valid entry in [0, _eden_chunk_index) represents a task.
  5514     size_t n_tasks = _eden_chunk_index + 1;
  5515     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
  5516     // Sets the condition for completion of the subtask (how many threads
  5517     // need to finish in order to be done).
  5518     pst->set_n_threads(n_threads);
  5519     pst->set_n_tasks((int)n_tasks);
  5522   // Merge the survivor plab arrays into _survivor_chunk_array
  5523   if (_survivor_plab_array != NULL) {
  5524     merge_survivor_plab_arrays(dng->from(), n_threads);
  5525   } else {
  5526     assert(_survivor_chunk_index == 0, "Error");
  5529   // To space
  5531     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
  5532     assert(!pst->valid(), "Clobbering existing data?");
  5533     // Sets the condition for completion of the subtask (how many threads
  5534     // need to finish in order to be done).
  5535     pst->set_n_threads(n_threads);
  5536     pst->set_n_tasks(1);
  5537     assert(pst->valid(), "Error");
  5540   // From space
  5542     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
  5543     assert(!pst->valid(), "Clobbering existing data?");
  5544     size_t n_tasks = _survivor_chunk_index + 1;
  5545     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
  5546     // Sets the condition for completion of the subtask (how many threads
  5547     // need to finish in order to be done).
  5548     pst->set_n_threads(n_threads);
  5549     pst->set_n_tasks((int)n_tasks);
  5550     assert(pst->valid(), "Error");
  5554 // Parallel version of remark
  5555 void CMSCollector::do_remark_parallel() {
  5556   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5557   FlexibleWorkGang* workers = gch->workers();
  5558   assert(workers != NULL, "Need parallel worker threads.");
  5559   // Choose to use the number of GC workers most recently set
  5560   // into "active_workers".  If active_workers is not set, set it
  5561   // to ParallelGCThreads.
  5562   int n_workers = workers->active_workers();
  5563   if (n_workers == 0) {
  5564     assert(n_workers > 0, "Should have been set during scavenge");
  5565     n_workers = ParallelGCThreads;
  5566     workers->set_active_workers(n_workers);
  5568   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
  5570   CMSParRemarkTask tsk(this,
  5571     cms_space,
  5572     n_workers, workers, task_queues());
  5574   // Set up for parallel process_strong_roots work.
  5575   gch->set_par_threads(n_workers);
  5576   // We won't be iterating over the cards in the card table updating
  5577   // the younger_gen cards, so we shouldn't call the following else
  5578   // the verification code as well as subsequent younger_refs_iterate
  5579   // code would get confused. XXX
  5580   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
  5582   // The young gen rescan work will not be done as part of
  5583   // process_strong_roots (which currently doesn't knw how to
  5584   // parallelize such a scan), but rather will be broken up into
  5585   // a set of parallel tasks (via the sampling that the [abortable]
  5586   // preclean phase did of EdenSpace, plus the [two] tasks of
  5587   // scanning the [two] survivor spaces. Further fine-grain
  5588   // parallelization of the scanning of the survivor spaces
  5589   // themselves, and of precleaning of the younger gen itself
  5590   // is deferred to the future.
  5591   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
  5593   // The dirty card rescan work is broken up into a "sequence"
  5594   // of parallel tasks (per constituent space) that are dynamically
  5595   // claimed by the parallel threads.
  5596   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
  5598   // It turns out that even when we're using 1 thread, doing the work in a
  5599   // separate thread causes wide variance in run times.  We can't help this
  5600   // in the multi-threaded case, but we special-case n=1 here to get
  5601   // repeatable measurements of the 1-thread overhead of the parallel code.
  5602   if (n_workers > 1) {
  5603     // Make refs discovery MT-safe, if it isn't already: it may not
  5604     // necessarily be so, since it's possible that we are doing
  5605     // ST marking.
  5606     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
  5607     GenCollectedHeap::StrongRootsScope srs(gch);
  5608     workers->run_task(&tsk);
  5609   } else {
  5610     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
  5611     GenCollectedHeap::StrongRootsScope srs(gch);
  5612     tsk.work(0);
  5615   gch->set_par_threads(0);  // 0 ==> non-parallel.
  5616   // restore, single-threaded for now, any preserved marks
  5617   // as a result of work_q overflow
  5618   restore_preserved_marks_if_any();
  5621 // Non-parallel version of remark
  5622 void CMSCollector::do_remark_non_parallel() {
  5623   ResourceMark rm;
  5624   HandleMark   hm;
  5625   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5626   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
  5628   MarkRefsIntoAndScanClosure
  5629     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
  5630              &_markStack, this,
  5631              false /* should_yield */, false /* not precleaning */);
  5632   MarkFromDirtyCardsClosure
  5633     markFromDirtyCardsClosure(this, _span,
  5634                               NULL,  // space is set further below
  5635                               &_markBitMap, &_markStack, &mrias_cl);
  5637     TraceTime t("grey object rescan", PrintGCDetails, false, gclog_or_tty);
  5638     // Iterate over the dirty cards, setting the corresponding bits in the
  5639     // mod union table.
  5641       ModUnionClosure modUnionClosure(&_modUnionTable);
  5642       _ct->ct_bs()->dirty_card_iterate(
  5643                       _cmsGen->used_region(),
  5644                       &modUnionClosure);
  5646     // Having transferred these marks into the modUnionTable, we just need
  5647     // to rescan the marked objects on the dirty cards in the modUnionTable.
  5648     // The initial marking may have been done during an asynchronous
  5649     // collection so there may be dirty bits in the mod-union table.
  5650     const int alignment =
  5651       CardTableModRefBS::card_size * BitsPerWord;
  5653       // ... First handle dirty cards in CMS gen
  5654       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
  5655       MemRegion ur = _cmsGen->used_region();
  5656       HeapWord* lb = ur.start();
  5657       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
  5658       MemRegion cms_span(lb, ub);
  5659       _modUnionTable.dirty_range_iterate_clear(cms_span,
  5660                                                &markFromDirtyCardsClosure);
  5661       verify_work_stacks_empty();
  5662       if (PrintCMSStatistics != 0) {
  5663         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
  5664           markFromDirtyCardsClosure.num_dirty_cards());
  5668   if (VerifyDuringGC &&
  5669       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
  5670     HandleMark hm;  // Discard invalid handles created during verification
  5671     Universe::verify();
  5674     TraceTime t("root rescan", PrintGCDetails, false, gclog_or_tty);
  5676     verify_work_stacks_empty();
  5678     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
  5679     GenCollectedHeap::StrongRootsScope srs(gch);
  5680     gch->gen_process_strong_roots(_cmsGen->level(),
  5681                                   true,  // younger gens as roots
  5682                                   false, // use the local StrongRootsScope
  5683                                   false, // not scavenging
  5684                                   SharedHeap::ScanningOption(roots_scanning_options()),
  5685                                   &mrias_cl,
  5686                                   true,   // walk code active on stacks
  5687                                   NULL,
  5688                                   NULL);  // The dirty klasses will be handled below
  5690     assert(should_unload_classes()
  5691            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
  5692            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
  5696     TraceTime t("visit unhandled CLDs", PrintGCDetails, false, gclog_or_tty);
  5698     verify_work_stacks_empty();
  5700     // Scan all class loader data objects that might have been introduced
  5701     // during concurrent marking.
  5702     ResourceMark rm;
  5703     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
  5704     for (int i = 0; i < array->length(); i++) {
  5705       mrias_cl.do_class_loader_data(array->at(i));
  5708     // We don't need to keep track of new CLDs anymore.
  5709     ClassLoaderDataGraph::remember_new_clds(false);
  5711     verify_work_stacks_empty();
  5715     TraceTime t("dirty klass scan", PrintGCDetails, false, gclog_or_tty);
  5717     verify_work_stacks_empty();
  5719     RemarkKlassClosure remark_klass_closure(&mrias_cl);
  5720     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
  5722     verify_work_stacks_empty();
  5725   // We might have added oops to ClassLoaderData::_handles during the
  5726   // concurrent marking phase. These oops point to newly allocated objects
  5727   // that are guaranteed to be kept alive. Either by the direct allocation
  5728   // code, or when the young collector processes the strong roots. Hence,
  5729   // we don't have to revisit the _handles block during the remark phase.
  5731   verify_work_stacks_empty();
  5732   // Restore evacuated mark words, if any, used for overflow list links
  5733   if (!CMSOverflowEarlyRestoration) {
  5734     restore_preserved_marks_if_any();
  5736   verify_overflow_empty();
  5739 ////////////////////////////////////////////////////////
  5740 // Parallel Reference Processing Task Proxy Class
  5741 ////////////////////////////////////////////////////////
  5742 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
  5743   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
  5744   CMSCollector*          _collector;
  5745   CMSBitMap*             _mark_bit_map;
  5746   const MemRegion        _span;
  5747   ProcessTask&           _task;
  5749 public:
  5750   CMSRefProcTaskProxy(ProcessTask&     task,
  5751                       CMSCollector*    collector,
  5752                       const MemRegion& span,
  5753                       CMSBitMap*       mark_bit_map,
  5754                       AbstractWorkGang* workers,
  5755                       OopTaskQueueSet* task_queues):
  5756     // XXX Should superclass AGTWOQ also know about AWG since it knows
  5757     // about the task_queues used by the AWG? Then it could initialize
  5758     // the terminator() object. See 6984287. The set_for_termination()
  5759     // below is a temporary band-aid for the regression in 6984287.
  5760     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
  5761       task_queues),
  5762     _task(task),
  5763     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
  5765     assert(_collector->_span.equals(_span) && !_span.is_empty(),
  5766            "Inconsistency in _span");
  5767     set_for_termination(workers->active_workers());
  5770   OopTaskQueueSet* task_queues() { return queues(); }
  5772   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
  5774   void do_work_steal(int i,
  5775                      CMSParDrainMarkingStackClosure* drain,
  5776                      CMSParKeepAliveClosure* keep_alive,
  5777                      int* seed);
  5779   virtual void work(uint worker_id);
  5780 };
  5782 void CMSRefProcTaskProxy::work(uint worker_id) {
  5783   assert(_collector->_span.equals(_span), "Inconsistency in _span");
  5784   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
  5785                                         _mark_bit_map,
  5786                                         work_queue(worker_id));
  5787   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
  5788                                                  _mark_bit_map,
  5789                                                  work_queue(worker_id));
  5790   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
  5791   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
  5792   if (_task.marks_oops_alive()) {
  5793     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
  5794                   _collector->hash_seed(worker_id));
  5796   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
  5797   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
  5800 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
  5801   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
  5802   EnqueueTask& _task;
  5804 public:
  5805   CMSRefEnqueueTaskProxy(EnqueueTask& task)
  5806     : AbstractGangTask("Enqueue reference objects in parallel"),
  5807       _task(task)
  5808   { }
  5810   virtual void work(uint worker_id)
  5812     _task.work(worker_id);
  5814 };
  5816 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
  5817   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
  5818    _span(span),
  5819    _bit_map(bit_map),
  5820    _work_queue(work_queue),
  5821    _mark_and_push(collector, span, bit_map, work_queue),
  5822    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  5823                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
  5824 { }
  5826 // . see if we can share work_queues with ParNew? XXX
  5827 void CMSRefProcTaskProxy::do_work_steal(int i,
  5828   CMSParDrainMarkingStackClosure* drain,
  5829   CMSParKeepAliveClosure* keep_alive,
  5830   int* seed) {
  5831   OopTaskQueue* work_q = work_queue(i);
  5832   NOT_PRODUCT(int num_steals = 0;)
  5833   oop obj_to_scan;
  5835   while (true) {
  5836     // Completely finish any left over work from (an) earlier round(s)
  5837     drain->trim_queue(0);
  5838     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  5839                                          (size_t)ParGCDesiredObjsFromOverflowList);
  5840     // Now check if there's any work in the overflow list
  5841     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
  5842     // only affects the number of attempts made to get work from the
  5843     // overflow list and does not affect the number of workers.  Just
  5844     // pass ParallelGCThreads so this behavior is unchanged.
  5845     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
  5846                                                 work_q,
  5847                                                 ParallelGCThreads)) {
  5848       // Found something in global overflow list;
  5849       // not yet ready to go stealing work from others.
  5850       // We'd like to assert(work_q->size() != 0, ...)
  5851       // because we just took work from the overflow list,
  5852       // but of course we can't, since all of that might have
  5853       // been already stolen from us.
  5854       continue;
  5856     // Verify that we have no work before we resort to stealing
  5857     assert(work_q->size() == 0, "Have work, shouldn't steal");
  5858     // Try to steal from other queues that have work
  5859     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
  5860       NOT_PRODUCT(num_steals++;)
  5861       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
  5862       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
  5863       // Do scanning work
  5864       obj_to_scan->oop_iterate(keep_alive);
  5865       // Loop around, finish this work, and try to steal some more
  5866     } else if (terminator()->offer_termination()) {
  5867       break;  // nirvana from the infinite cycle
  5870   NOT_PRODUCT(
  5871     if (PrintCMSStatistics != 0) {
  5872       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
  5877 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
  5879   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5880   FlexibleWorkGang* workers = gch->workers();
  5881   assert(workers != NULL, "Need parallel worker threads.");
  5882   CMSRefProcTaskProxy rp_task(task, &_collector,
  5883                               _collector.ref_processor()->span(),
  5884                               _collector.markBitMap(),
  5885                               workers, _collector.task_queues());
  5886   workers->run_task(&rp_task);
  5889 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
  5892   GenCollectedHeap* gch = GenCollectedHeap::heap();
  5893   FlexibleWorkGang* workers = gch->workers();
  5894   assert(workers != NULL, "Need parallel worker threads.");
  5895   CMSRefEnqueueTaskProxy enq_task(task);
  5896   workers->run_task(&enq_task);
  5899 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
  5901   ResourceMark rm;
  5902   HandleMark   hm;
  5904   ReferenceProcessor* rp = ref_processor();
  5905   assert(rp->span().equals(_span), "Spans should be equal");
  5906   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
  5907   // Process weak references.
  5908   rp->setup_policy(clear_all_soft_refs);
  5909   verify_work_stacks_empty();
  5911   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
  5912                                           &_markStack, false /* !preclean */);
  5913   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
  5914                                 _span, &_markBitMap, &_markStack,
  5915                                 &cmsKeepAliveClosure, false /* !preclean */);
  5917     TraceTime t("weak refs processing", PrintGCDetails, false, gclog_or_tty);
  5918     if (rp->processing_is_mt()) {
  5919       // Set the degree of MT here.  If the discovery is done MT, there
  5920       // may have been a different number of threads doing the discovery
  5921       // and a different number of discovered lists may have Ref objects.
  5922       // That is OK as long as the Reference lists are balanced (see
  5923       // balance_all_queues() and balance_queues()).
  5924       GenCollectedHeap* gch = GenCollectedHeap::heap();
  5925       int active_workers = ParallelGCThreads;
  5926       FlexibleWorkGang* workers = gch->workers();
  5927       if (workers != NULL) {
  5928         active_workers = workers->active_workers();
  5929         // The expectation is that active_workers will have already
  5930         // been set to a reasonable value.  If it has not been set,
  5931         // investigate.
  5932         assert(active_workers > 0, "Should have been set during scavenge");
  5934       rp->set_active_mt_degree(active_workers);
  5935       CMSRefProcTaskExecutor task_executor(*this);
  5936       rp->process_discovered_references(&_is_alive_closure,
  5937                                         &cmsKeepAliveClosure,
  5938                                         &cmsDrainMarkingStackClosure,
  5939                                         &task_executor);
  5940     } else {
  5941       rp->process_discovered_references(&_is_alive_closure,
  5942                                         &cmsKeepAliveClosure,
  5943                                         &cmsDrainMarkingStackClosure,
  5944                                         NULL);
  5946     verify_work_stacks_empty();
  5949   if (should_unload_classes()) {
  5951       TraceTime t("class unloading", PrintGCDetails, false, gclog_or_tty);
  5953       // Follow SystemDictionary roots and unload classes
  5954       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
  5956       // Follow CodeCache roots and unload any methods marked for unloading
  5957       CodeCache::do_unloading(&_is_alive_closure, purged_class);
  5959       cmsDrainMarkingStackClosure.do_void();
  5960       verify_work_stacks_empty();
  5962       // Update subklass/sibling/implementor links in KlassKlass descendants
  5963       Klass::clean_weak_klass_links(&_is_alive_closure);
  5964       // Nothing should have been pushed onto the working stacks.
  5965       verify_work_stacks_empty();
  5969       TraceTime t("scrub symbol table", PrintGCDetails, false, gclog_or_tty);
  5970       // Clean up unreferenced symbols in symbol table.
  5971       SymbolTable::unlink();
  5975   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
  5976   // Need to check if we really scanned the StringTable.
  5977   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
  5978     TraceTime t("scrub string table", PrintGCDetails, false, gclog_or_tty);
  5979     // Now clean up stale oops in StringTable
  5980     StringTable::unlink(&_is_alive_closure);
  5983   verify_work_stacks_empty();
  5984   // Restore any preserved marks as a result of mark stack or
  5985   // work queue overflow
  5986   restore_preserved_marks_if_any();  // done single-threaded for now
  5988   rp->set_enqueuing_is_done(true);
  5989   if (rp->processing_is_mt()) {
  5990     rp->balance_all_queues();
  5991     CMSRefProcTaskExecutor task_executor(*this);
  5992     rp->enqueue_discovered_references(&task_executor);
  5993   } else {
  5994     rp->enqueue_discovered_references(NULL);
  5996   rp->verify_no_references_recorded();
  5997   assert(!rp->discovery_enabled(), "should have been disabled");
  6000 #ifndef PRODUCT
  6001 void CMSCollector::check_correct_thread_executing() {
  6002   Thread* t = Thread::current();
  6003   // Only the VM thread or the CMS thread should be here.
  6004   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
  6005          "Unexpected thread type");
  6006   // If this is the vm thread, the foreground process
  6007   // should not be waiting.  Note that _foregroundGCIsActive is
  6008   // true while the foreground collector is waiting.
  6009   if (_foregroundGCShouldWait) {
  6010     // We cannot be the VM thread
  6011     assert(t->is_ConcurrentGC_thread(),
  6012            "Should be CMS thread");
  6013   } else {
  6014     // We can be the CMS thread only if we are in a stop-world
  6015     // phase of CMS collection.
  6016     if (t->is_ConcurrentGC_thread()) {
  6017       assert(_collectorState == InitialMarking ||
  6018              _collectorState == FinalMarking,
  6019              "Should be a stop-world phase");
  6020       // The CMS thread should be holding the CMS_token.
  6021       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6022              "Potential interference with concurrently "
  6023              "executing VM thread");
  6027 #endif
  6029 void CMSCollector::sweep(bool asynch) {
  6030   assert(_collectorState == Sweeping, "just checking");
  6031   check_correct_thread_executing();
  6032   verify_work_stacks_empty();
  6033   verify_overflow_empty();
  6034   increment_sweep_count();
  6035   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
  6037   _inter_sweep_timer.stop();
  6038   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
  6039   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
  6041   assert(!_intra_sweep_timer.is_active(), "Should not be active");
  6042   _intra_sweep_timer.reset();
  6043   _intra_sweep_timer.start();
  6044   if (asynch) {
  6045     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6046     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
  6047     // First sweep the old gen
  6049       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
  6050                                bitMapLock());
  6051       sweepWork(_cmsGen, asynch);
  6054     // Update Universe::_heap_*_at_gc figures.
  6055     // We need all the free list locks to make the abstract state
  6056     // transition from Sweeping to Resetting. See detailed note
  6057     // further below.
  6059       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
  6060       // Update heap occupancy information which is used as
  6061       // input to soft ref clearing policy at the next gc.
  6062       Universe::update_heap_info_at_gc();
  6063       _collectorState = Resizing;
  6065   } else {
  6066     // already have needed locks
  6067     sweepWork(_cmsGen,  asynch);
  6068     // Update heap occupancy information which is used as
  6069     // input to soft ref clearing policy at the next gc.
  6070     Universe::update_heap_info_at_gc();
  6071     _collectorState = Resizing;
  6073   verify_work_stacks_empty();
  6074   verify_overflow_empty();
  6076   _intra_sweep_timer.stop();
  6077   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
  6079   _inter_sweep_timer.reset();
  6080   _inter_sweep_timer.start();
  6082   // We need to use a monotonically non-deccreasing time in ms
  6083   // or we will see time-warp warnings and os::javaTimeMillis()
  6084   // does not guarantee monotonicity.
  6085   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  6086   update_time_of_last_gc(now);
  6088   // NOTE on abstract state transitions:
  6089   // Mutators allocate-live and/or mark the mod-union table dirty
  6090   // based on the state of the collection.  The former is done in
  6091   // the interval [Marking, Sweeping] and the latter in the interval
  6092   // [Marking, Sweeping).  Thus the transitions into the Marking state
  6093   // and out of the Sweeping state must be synchronously visible
  6094   // globally to the mutators.
  6095   // The transition into the Marking state happens with the world
  6096   // stopped so the mutators will globally see it.  Sweeping is
  6097   // done asynchronously by the background collector so the transition
  6098   // from the Sweeping state to the Resizing state must be done
  6099   // under the freelistLock (as is the check for whether to
  6100   // allocate-live and whether to dirty the mod-union table).
  6101   assert(_collectorState == Resizing, "Change of collector state to"
  6102     " Resizing must be done under the freelistLocks (plural)");
  6104   // Now that sweeping has been completed, we clear
  6105   // the incremental_collection_failed flag,
  6106   // thus inviting a younger gen collection to promote into
  6107   // this generation. If such a promotion may still fail,
  6108   // the flag will be set again when a young collection is
  6109   // attempted.
  6110   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6111   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
  6112   gch->update_full_collections_completed(_collection_count_start);
  6115 // FIX ME!!! Looks like this belongs in CFLSpace, with
  6116 // CMSGen merely delegating to it.
  6117 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
  6118   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
  6119   HeapWord*  minAddr        = _cmsSpace->bottom();
  6120   HeapWord*  largestAddr    =
  6121     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
  6122   if (largestAddr == NULL) {
  6123     // The dictionary appears to be empty.  In this case
  6124     // try to coalesce at the end of the heap.
  6125     largestAddr = _cmsSpace->end();
  6127   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
  6128   size_t nearLargestOffset =
  6129     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
  6130   if (PrintFLSStatistics != 0) {
  6131     gclog_or_tty->print_cr(
  6132       "CMS: Large Block: " PTR_FORMAT ";"
  6133       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
  6134       largestAddr,
  6135       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
  6137   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
  6140 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
  6141   return addr >= _cmsSpace->nearLargestChunk();
  6144 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
  6145   return _cmsSpace->find_chunk_at_end();
  6148 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
  6149                                                     bool full) {
  6150   // The next lower level has been collected.  Gather any statistics
  6151   // that are of interest at this point.
  6152   if (!full && (current_level + 1) == level()) {
  6153     // Gather statistics on the young generation collection.
  6154     collector()->stats().record_gc0_end(used());
  6158 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
  6159   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6160   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  6161     "Wrong type of heap");
  6162   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
  6163     gch->gen_policy()->size_policy();
  6164   assert(sp->is_gc_cms_adaptive_size_policy(),
  6165     "Wrong type of size policy");
  6166   return sp;
  6169 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
  6170   if (PrintGCDetails && Verbose) {
  6171     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
  6173   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
  6174   _debug_collection_type =
  6175     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
  6176   if (PrintGCDetails && Verbose) {
  6177     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
  6181 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
  6182   bool asynch) {
  6183   // We iterate over the space(s) underlying this generation,
  6184   // checking the mark bit map to see if the bits corresponding
  6185   // to specific blocks are marked or not. Blocks that are
  6186   // marked are live and are not swept up. All remaining blocks
  6187   // are swept up, with coalescing on-the-fly as we sweep up
  6188   // contiguous free and/or garbage blocks:
  6189   // We need to ensure that the sweeper synchronizes with allocators
  6190   // and stop-the-world collectors. In particular, the following
  6191   // locks are used:
  6192   // . CMS token: if this is held, a stop the world collection cannot occur
  6193   // . freelistLock: if this is held no allocation can occur from this
  6194   //                 generation by another thread
  6195   // . bitMapLock: if this is held, no other thread can access or update
  6196   //
  6198   // Note that we need to hold the freelistLock if we use
  6199   // block iterate below; else the iterator might go awry if
  6200   // a mutator (or promotion) causes block contents to change
  6201   // (for instance if the allocator divvies up a block).
  6202   // If we hold the free list lock, for all practical purposes
  6203   // young generation GC's can't occur (they'll usually need to
  6204   // promote), so we might as well prevent all young generation
  6205   // GC's while we do a sweeping step. For the same reason, we might
  6206   // as well take the bit map lock for the entire duration
  6208   // check that we hold the requisite locks
  6209   assert(have_cms_token(), "Should hold cms token");
  6210   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
  6211          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
  6212         "Should possess CMS token to sweep");
  6213   assert_lock_strong(gen->freelistLock());
  6214   assert_lock_strong(bitMapLock());
  6216   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
  6217   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
  6218   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
  6219                                       _inter_sweep_estimate.padded_average(),
  6220                                       _intra_sweep_estimate.padded_average());
  6221   gen->setNearLargestChunk();
  6224     SweepClosure sweepClosure(this, gen, &_markBitMap,
  6225                             CMSYield && asynch);
  6226     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
  6227     // We need to free-up/coalesce garbage/blocks from a
  6228     // co-terminal free run. This is done in the SweepClosure
  6229     // destructor; so, do not remove this scope, else the
  6230     // end-of-sweep-census below will be off by a little bit.
  6232   gen->cmsSpace()->sweep_completed();
  6233   gen->cmsSpace()->endSweepFLCensus(sweep_count());
  6234   if (should_unload_classes()) {                // unloaded classes this cycle,
  6235     _concurrent_cycles_since_last_unload = 0;   // ... reset count
  6236   } else {                                      // did not unload classes,
  6237     _concurrent_cycles_since_last_unload++;     // ... increment count
  6241 // Reset CMS data structures (for now just the marking bit map)
  6242 // preparatory for the next cycle.
  6243 void CMSCollector::reset(bool asynch) {
  6244   GenCollectedHeap* gch = GenCollectedHeap::heap();
  6245   CMSAdaptiveSizePolicy* sp = size_policy();
  6246   AdaptiveSizePolicyOutput(sp, gch->total_collections());
  6247   if (asynch) {
  6248     CMSTokenSyncWithLocks ts(true, bitMapLock());
  6250     // If the state is not "Resetting", the foreground  thread
  6251     // has done a collection and the resetting.
  6252     if (_collectorState != Resetting) {
  6253       assert(_collectorState == Idling, "The state should only change"
  6254         " because the foreground collector has finished the collection");
  6255       return;
  6258     // Clear the mark bitmap (no grey objects to start with)
  6259     // for the next cycle.
  6260     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6261     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
  6263     HeapWord* curAddr = _markBitMap.startWord();
  6264     while (curAddr < _markBitMap.endWord()) {
  6265       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
  6266       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
  6267       _markBitMap.clear_large_range(chunk);
  6268       if (ConcurrentMarkSweepThread::should_yield() &&
  6269           !foregroundGCIsActive() &&
  6270           CMSYield) {
  6271         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6272                "CMS thread should hold CMS token");
  6273         assert_lock_strong(bitMapLock());
  6274         bitMapLock()->unlock();
  6275         ConcurrentMarkSweepThread::desynchronize(true);
  6276         ConcurrentMarkSweepThread::acknowledge_yield_request();
  6277         stopTimer();
  6278         if (PrintCMSStatistics != 0) {
  6279           incrementYields();
  6281         icms_wait();
  6283         // See the comment in coordinator_yield()
  6284         for (unsigned i = 0; i < CMSYieldSleepCount &&
  6285                          ConcurrentMarkSweepThread::should_yield() &&
  6286                          !CMSCollector::foregroundGCIsActive(); ++i) {
  6287           os::sleep(Thread::current(), 1, false);
  6288           ConcurrentMarkSweepThread::acknowledge_yield_request();
  6291         ConcurrentMarkSweepThread::synchronize(true);
  6292         bitMapLock()->lock_without_safepoint_check();
  6293         startTimer();
  6295       curAddr = chunk.end();
  6297     // A successful mostly concurrent collection has been done.
  6298     // Because only the full (i.e., concurrent mode failure) collections
  6299     // are being measured for gc overhead limits, clean the "near" flag
  6300     // and count.
  6301     sp->reset_gc_overhead_limit_count();
  6302     _collectorState = Idling;
  6303   } else {
  6304     // already have the lock
  6305     assert(_collectorState == Resetting, "just checking");
  6306     assert_lock_strong(bitMapLock());
  6307     _markBitMap.clear_all();
  6308     _collectorState = Idling;
  6311   // Stop incremental mode after a cycle completes, so that any future cycles
  6312   // are triggered by allocation.
  6313   stop_icms();
  6315   NOT_PRODUCT(
  6316     if (RotateCMSCollectionTypes) {
  6317       _cmsGen->rotate_debug_collection_type();
  6322 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
  6323   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  6324   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  6325   TraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
  6326   TraceCollectorStats tcs(counters());
  6328   switch (op) {
  6329     case CMS_op_checkpointRootsInitial: {
  6330       SvcGCMarker sgcm(SvcGCMarker::OTHER);
  6331       checkpointRootsInitial(true);       // asynch
  6332       if (PrintGC) {
  6333         _cmsGen->printOccupancy("initial-mark");
  6335       break;
  6337     case CMS_op_checkpointRootsFinal: {
  6338       SvcGCMarker sgcm(SvcGCMarker::OTHER);
  6339       checkpointRootsFinal(true,    // asynch
  6340                            false,   // !clear_all_soft_refs
  6341                            false);  // !init_mark_was_synchronous
  6342       if (PrintGC) {
  6343         _cmsGen->printOccupancy("remark");
  6345       break;
  6347     default:
  6348       fatal("No such CMS_op");
  6352 #ifndef PRODUCT
  6353 size_t const CMSCollector::skip_header_HeapWords() {
  6354   return FreeChunk::header_size();
  6357 // Try and collect here conditions that should hold when
  6358 // CMS thread is exiting. The idea is that the foreground GC
  6359 // thread should not be blocked if it wants to terminate
  6360 // the CMS thread and yet continue to run the VM for a while
  6361 // after that.
  6362 void CMSCollector::verify_ok_to_terminate() const {
  6363   assert(Thread::current()->is_ConcurrentGC_thread(),
  6364          "should be called by CMS thread");
  6365   assert(!_foregroundGCShouldWait, "should be false");
  6366   // We could check here that all the various low-level locks
  6367   // are not held by the CMS thread, but that is overkill; see
  6368   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
  6369   // is checked.
  6371 #endif
  6373 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
  6374    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
  6375           "missing Printezis mark?");
  6376   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6377   size_t size = pointer_delta(nextOneAddr + 1, addr);
  6378   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6379          "alignment problem");
  6380   assert(size >= 3, "Necessary for Printezis marks to work");
  6381   return size;
  6384 // A variant of the above (block_size_using_printezis_bits()) except
  6385 // that we return 0 if the P-bits are not yet set.
  6386 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
  6387   if (_markBitMap.isMarked(addr + 1)) {
  6388     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
  6389     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
  6390     size_t size = pointer_delta(nextOneAddr + 1, addr);
  6391     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6392            "alignment problem");
  6393     assert(size >= 3, "Necessary for Printezis marks to work");
  6394     return size;
  6396   return 0;
  6399 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
  6400   size_t sz = 0;
  6401   oop p = (oop)addr;
  6402   if (p->klass_or_null() != NULL) {
  6403     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6404   } else {
  6405     sz = block_size_using_printezis_bits(addr);
  6407   assert(sz > 0, "size must be nonzero");
  6408   HeapWord* next_block = addr + sz;
  6409   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
  6410                                              CardTableModRefBS::card_size);
  6411   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
  6412          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
  6413          "must be different cards");
  6414   return next_card;
  6418 // CMS Bit Map Wrapper /////////////////////////////////////////
  6420 // Construct a CMS bit map infrastructure, but don't create the
  6421 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
  6422 // further below.
  6423 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
  6424   _bm(),
  6425   _shifter(shifter),
  6426   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
  6428   _bmStartWord = 0;
  6429   _bmWordSize  = 0;
  6432 bool CMSBitMap::allocate(MemRegion mr) {
  6433   _bmStartWord = mr.start();
  6434   _bmWordSize  = mr.word_size();
  6435   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
  6436                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
  6437   if (!brs.is_reserved()) {
  6438     warning("CMS bit map allocation failure");
  6439     return false;
  6441   // For now we'll just commit all of the bit map up fromt.
  6442   // Later on we'll try to be more parsimonious with swap.
  6443   if (!_virtual_space.initialize(brs, brs.size())) {
  6444     warning("CMS bit map backing store failure");
  6445     return false;
  6447   assert(_virtual_space.committed_size() == brs.size(),
  6448          "didn't reserve backing store for all of CMS bit map?");
  6449   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
  6450   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
  6451          _bmWordSize, "inconsistency in bit map sizing");
  6452   _bm.set_size(_bmWordSize >> _shifter);
  6454   // bm.clear(); // can we rely on getting zero'd memory? verify below
  6455   assert(isAllClear(),
  6456          "Expected zero'd memory from ReservedSpace constructor");
  6457   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
  6458          "consistency check");
  6459   return true;
  6462 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
  6463   HeapWord *next_addr, *end_addr, *last_addr;
  6464   assert_locked();
  6465   assert(covers(mr), "out-of-range error");
  6466   // XXX assert that start and end are appropriately aligned
  6467   for (next_addr = mr.start(), end_addr = mr.end();
  6468        next_addr < end_addr; next_addr = last_addr) {
  6469     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
  6470     last_addr = dirty_region.end();
  6471     if (!dirty_region.is_empty()) {
  6472       cl->do_MemRegion(dirty_region);
  6473     } else {
  6474       assert(last_addr == end_addr, "program logic");
  6475       return;
  6480 #ifndef PRODUCT
  6481 void CMSBitMap::assert_locked() const {
  6482   CMSLockVerifier::assert_locked(lock());
  6485 bool CMSBitMap::covers(MemRegion mr) const {
  6486   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  6487   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
  6488          "size inconsistency");
  6489   return (mr.start() >= _bmStartWord) &&
  6490          (mr.end()   <= endWord());
  6493 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
  6494     return (start >= _bmStartWord && (start + size) <= endWord());
  6497 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
  6498   // verify that there are no 1 bits in the interval [left, right)
  6499   FalseBitMapClosure falseBitMapClosure;
  6500   iterate(&falseBitMapClosure, left, right);
  6503 void CMSBitMap::region_invariant(MemRegion mr)
  6505   assert_locked();
  6506   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
  6507   assert(!mr.is_empty(), "unexpected empty region");
  6508   assert(covers(mr), "mr should be covered by bit map");
  6509   // convert address range into offset range
  6510   size_t start_ofs = heapWordToOffset(mr.start());
  6511   // Make sure that end() is appropriately aligned
  6512   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
  6513                         (1 << (_shifter+LogHeapWordSize))),
  6514          "Misaligned mr.end()");
  6515   size_t end_ofs   = heapWordToOffset(mr.end());
  6516   assert(end_ofs > start_ofs, "Should mark at least one bit");
  6519 #endif
  6521 bool CMSMarkStack::allocate(size_t size) {
  6522   // allocate a stack of the requisite depth
  6523   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6524                    size * sizeof(oop)));
  6525   if (!rs.is_reserved()) {
  6526     warning("CMSMarkStack allocation failure");
  6527     return false;
  6529   if (!_virtual_space.initialize(rs, rs.size())) {
  6530     warning("CMSMarkStack backing store failure");
  6531     return false;
  6533   assert(_virtual_space.committed_size() == rs.size(),
  6534          "didn't reserve backing store for all of CMS stack?");
  6535   _base = (oop*)(_virtual_space.low());
  6536   _index = 0;
  6537   _capacity = size;
  6538   NOT_PRODUCT(_max_depth = 0);
  6539   return true;
  6542 // XXX FIX ME !!! In the MT case we come in here holding a
  6543 // leaf lock. For printing we need to take a further lock
  6544 // which has lower rank. We need to recallibrate the two
  6545 // lock-ranks involved in order to be able to rpint the
  6546 // messages below. (Or defer the printing to the caller.
  6547 // For now we take the expedient path of just disabling the
  6548 // messages for the problematic case.)
  6549 void CMSMarkStack::expand() {
  6550   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
  6551   if (_capacity == MarkStackSizeMax) {
  6552     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6553       // We print a warning message only once per CMS cycle.
  6554       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
  6556     return;
  6558   // Double capacity if possible
  6559   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
  6560   // Do not give up existing stack until we have managed to
  6561   // get the double capacity that we desired.
  6562   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
  6563                    new_capacity * sizeof(oop)));
  6564   if (rs.is_reserved()) {
  6565     // Release the backing store associated with old stack
  6566     _virtual_space.release();
  6567     // Reinitialize virtual space for new stack
  6568     if (!_virtual_space.initialize(rs, rs.size())) {
  6569       fatal("Not enough swap for expanded marking stack");
  6571     _base = (oop*)(_virtual_space.low());
  6572     _index = 0;
  6573     _capacity = new_capacity;
  6574   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
  6575     // Failed to double capacity, continue;
  6576     // we print a detail message only once per CMS cycle.
  6577     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
  6578             SIZE_FORMAT"K",
  6579             _capacity / K, new_capacity / K);
  6584 // Closures
  6585 // XXX: there seems to be a lot of code  duplication here;
  6586 // should refactor and consolidate common code.
  6588 // This closure is used to mark refs into the CMS generation in
  6589 // the CMS bit map. Called at the first checkpoint. This closure
  6590 // assumes that we do not need to re-mark dirty cards; if the CMS
  6591 // generation on which this is used is not an oldest
  6592 // generation then this will lose younger_gen cards!
  6594 MarkRefsIntoClosure::MarkRefsIntoClosure(
  6595   MemRegion span, CMSBitMap* bitMap):
  6596     _span(span),
  6597     _bitMap(bitMap)
  6599     assert(_ref_processor == NULL, "deliberately left NULL");
  6600     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
  6603 void MarkRefsIntoClosure::do_oop(oop obj) {
  6604   // if p points into _span, then mark corresponding bit in _markBitMap
  6605   assert(obj->is_oop(), "expected an oop");
  6606   HeapWord* addr = (HeapWord*)obj;
  6607   if (_span.contains(addr)) {
  6608     // this should be made more efficient
  6609     _bitMap->mark(addr);
  6613 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
  6614 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
  6616 // A variant of the above, used for CMS marking verification.
  6617 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
  6618   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
  6619     _span(span),
  6620     _verification_bm(verification_bm),
  6621     _cms_bm(cms_bm)
  6623     assert(_ref_processor == NULL, "deliberately left NULL");
  6624     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
  6627 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
  6628   // if p points into _span, then mark corresponding bit in _markBitMap
  6629   assert(obj->is_oop(), "expected an oop");
  6630   HeapWord* addr = (HeapWord*)obj;
  6631   if (_span.contains(addr)) {
  6632     _verification_bm->mark(addr);
  6633     if (!_cms_bm->isMarked(addr)) {
  6634       oop(addr)->print();
  6635       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
  6636       fatal("... aborting");
  6641 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6642 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
  6644 //////////////////////////////////////////////////
  6645 // MarkRefsIntoAndScanClosure
  6646 //////////////////////////////////////////////////
  6648 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
  6649                                                        ReferenceProcessor* rp,
  6650                                                        CMSBitMap* bit_map,
  6651                                                        CMSBitMap* mod_union_table,
  6652                                                        CMSMarkStack*  mark_stack,
  6653                                                        CMSCollector* collector,
  6654                                                        bool should_yield,
  6655                                                        bool concurrent_precleaning):
  6656   _collector(collector),
  6657   _span(span),
  6658   _bit_map(bit_map),
  6659   _mark_stack(mark_stack),
  6660   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
  6661                       mark_stack, concurrent_precleaning),
  6662   _yield(should_yield),
  6663   _concurrent_precleaning(concurrent_precleaning),
  6664   _freelistLock(NULL)
  6666   _ref_processor = rp;
  6667   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6670 // This closure is used to mark refs into the CMS generation at the
  6671 // second (final) checkpoint, and to scan and transitively follow
  6672 // the unmarked oops. It is also used during the concurrent precleaning
  6673 // phase while scanning objects on dirty cards in the CMS generation.
  6674 // The marks are made in the marking bit map and the marking stack is
  6675 // used for keeping the (newly) grey objects during the scan.
  6676 // The parallel version (Par_...) appears further below.
  6677 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6678   if (obj != NULL) {
  6679     assert(obj->is_oop(), "expected an oop");
  6680     HeapWord* addr = (HeapWord*)obj;
  6681     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  6682     assert(_collector->overflow_list_is_empty(),
  6683            "overflow list should be empty");
  6684     if (_span.contains(addr) &&
  6685         !_bit_map->isMarked(addr)) {
  6686       // mark bit map (object is now grey)
  6687       _bit_map->mark(addr);
  6688       // push on marking stack (stack should be empty), and drain the
  6689       // stack by applying this closure to the oops in the oops popped
  6690       // from the stack (i.e. blacken the grey objects)
  6691       bool res = _mark_stack->push(obj);
  6692       assert(res, "Should have space to push on empty stack");
  6693       do {
  6694         oop new_oop = _mark_stack->pop();
  6695         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6696         assert(_bit_map->isMarked((HeapWord*)new_oop),
  6697                "only grey objects on this stack");
  6698         // iterate over the oops in this oop, marking and pushing
  6699         // the ones in CMS heap (i.e. in _span).
  6700         new_oop->oop_iterate(&_pushAndMarkClosure);
  6701         // check if it's time to yield
  6702         do_yield_check();
  6703       } while (!_mark_stack->isEmpty() ||
  6704                (!_concurrent_precleaning && take_from_overflow_list()));
  6705         // if marking stack is empty, and we are not doing this
  6706         // during precleaning, then check the overflow list
  6708     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  6709     assert(_collector->overflow_list_is_empty(),
  6710            "overflow list was drained above");
  6711     // We could restore evacuated mark words, if any, used for
  6712     // overflow list links here because the overflow list is
  6713     // provably empty here. That would reduce the maximum
  6714     // size requirements for preserved_{oop,mark}_stack.
  6715     // But we'll just postpone it until we are all done
  6716     // so we can just stream through.
  6717     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
  6718       _collector->restore_preserved_marks_if_any();
  6719       assert(_collector->no_preserved_marks(), "No preserved marks");
  6721     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
  6722            "All preserved marks should have been restored above");
  6726 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6727 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6729 void MarkRefsIntoAndScanClosure::do_yield_work() {
  6730   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6731          "CMS thread should hold CMS token");
  6732   assert_lock_strong(_freelistLock);
  6733   assert_lock_strong(_bit_map->lock());
  6734   // relinquish the free_list_lock and bitMaplock()
  6735   _bit_map->lock()->unlock();
  6736   _freelistLock->unlock();
  6737   ConcurrentMarkSweepThread::desynchronize(true);
  6738   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6739   _collector->stopTimer();
  6740   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6741   if (PrintCMSStatistics != 0) {
  6742     _collector->incrementYields();
  6744   _collector->icms_wait();
  6746   // See the comment in coordinator_yield()
  6747   for (unsigned i = 0;
  6748        i < CMSYieldSleepCount &&
  6749        ConcurrentMarkSweepThread::should_yield() &&
  6750        !CMSCollector::foregroundGCIsActive();
  6751        ++i) {
  6752     os::sleep(Thread::current(), 1, false);
  6753     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6756   ConcurrentMarkSweepThread::synchronize(true);
  6757   _freelistLock->lock_without_safepoint_check();
  6758   _bit_map->lock()->lock_without_safepoint_check();
  6759   _collector->startTimer();
  6762 ///////////////////////////////////////////////////////////
  6763 // Par_MarkRefsIntoAndScanClosure: a parallel version of
  6764 //                                 MarkRefsIntoAndScanClosure
  6765 ///////////////////////////////////////////////////////////
  6766 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
  6767   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
  6768   CMSBitMap* bit_map, OopTaskQueue* work_queue):
  6769   _span(span),
  6770   _bit_map(bit_map),
  6771   _work_queue(work_queue),
  6772   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
  6773                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
  6774   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
  6776   _ref_processor = rp;
  6777   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  6780 // This closure is used to mark refs into the CMS generation at the
  6781 // second (final) checkpoint, and to scan and transitively follow
  6782 // the unmarked oops. The marks are made in the marking bit map and
  6783 // the work_queue is used for keeping the (newly) grey objects during
  6784 // the scan phase whence they are also available for stealing by parallel
  6785 // threads. Since the marking bit map is shared, updates are
  6786 // synchronized (via CAS).
  6787 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
  6788   if (obj != NULL) {
  6789     // Ignore mark word because this could be an already marked oop
  6790     // that may be chained at the end of the overflow list.
  6791     assert(obj->is_oop(true), "expected an oop");
  6792     HeapWord* addr = (HeapWord*)obj;
  6793     if (_span.contains(addr) &&
  6794         !_bit_map->isMarked(addr)) {
  6795       // mark bit map (object will become grey):
  6796       // It is possible for several threads to be
  6797       // trying to "claim" this object concurrently;
  6798       // the unique thread that succeeds in marking the
  6799       // object first will do the subsequent push on
  6800       // to the work queue (or overflow list).
  6801       if (_bit_map->par_mark(addr)) {
  6802         // push on work_queue (which may not be empty), and trim the
  6803         // queue to an appropriate length by applying this closure to
  6804         // the oops in the oops popped from the stack (i.e. blacken the
  6805         // grey objects)
  6806         bool res = _work_queue->push(obj);
  6807         assert(res, "Low water mark should be less than capacity?");
  6808         trim_queue(_low_water_mark);
  6809       } // Else, another thread claimed the object
  6814 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6815 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
  6817 // This closure is used to rescan the marked objects on the dirty cards
  6818 // in the mod union table and the card table proper.
  6819 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
  6820   oop p, MemRegion mr) {
  6822   size_t size = 0;
  6823   HeapWord* addr = (HeapWord*)p;
  6824   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6825   assert(_span.contains(addr), "we are scanning the CMS generation");
  6826   // check if it's time to yield
  6827   if (do_yield_check()) {
  6828     // We yielded for some foreground stop-world work,
  6829     // and we have been asked to abort this ongoing preclean cycle.
  6830     return 0;
  6832   if (_bitMap->isMarked(addr)) {
  6833     // it's marked; is it potentially uninitialized?
  6834     if (p->klass_or_null() != NULL) {
  6835         // an initialized object; ignore mark word in verification below
  6836         // since we are running concurrent with mutators
  6837         assert(p->is_oop(true), "should be an oop");
  6838         if (p->is_objArray()) {
  6839           // objArrays are precisely marked; restrict scanning
  6840           // to dirty cards only.
  6841           size = CompactibleFreeListSpace::adjustObjectSize(
  6842                    p->oop_iterate(_scanningClosure, mr));
  6843         } else {
  6844           // A non-array may have been imprecisely marked; we need
  6845           // to scan object in its entirety.
  6846           size = CompactibleFreeListSpace::adjustObjectSize(
  6847                    p->oop_iterate(_scanningClosure));
  6849         #ifdef DEBUG
  6850           size_t direct_size =
  6851             CompactibleFreeListSpace::adjustObjectSize(p->size());
  6852           assert(size == direct_size, "Inconsistency in size");
  6853           assert(size >= 3, "Necessary for Printezis marks to work");
  6854           if (!_bitMap->isMarked(addr+1)) {
  6855             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
  6856           } else {
  6857             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
  6858             assert(_bitMap->isMarked(addr+size-1),
  6859                    "inconsistent Printezis mark");
  6861         #endif // DEBUG
  6862     } else {
  6863       // an unitialized object
  6864       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
  6865       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  6866       size = pointer_delta(nextOneAddr + 1, addr);
  6867       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  6868              "alignment problem");
  6869       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
  6870       // will dirty the card when the klass pointer is installed in the
  6871       // object (signalling the completion of initialization).
  6873   } else {
  6874     // Either a not yet marked object or an uninitialized object
  6875     if (p->klass_or_null() == NULL) {
  6876       // An uninitialized object, skip to the next card, since
  6877       // we may not be able to read its P-bits yet.
  6878       assert(size == 0, "Initial value");
  6879     } else {
  6880       // An object not (yet) reached by marking: we merely need to
  6881       // compute its size so as to go look at the next block.
  6882       assert(p->is_oop(true), "should be an oop");
  6883       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
  6886   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6887   return size;
  6890 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
  6891   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6892          "CMS thread should hold CMS token");
  6893   assert_lock_strong(_freelistLock);
  6894   assert_lock_strong(_bitMap->lock());
  6895   // relinquish the free_list_lock and bitMaplock()
  6896   _bitMap->lock()->unlock();
  6897   _freelistLock->unlock();
  6898   ConcurrentMarkSweepThread::desynchronize(true);
  6899   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6900   _collector->stopTimer();
  6901   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6902   if (PrintCMSStatistics != 0) {
  6903     _collector->incrementYields();
  6905   _collector->icms_wait();
  6907   // See the comment in coordinator_yield()
  6908   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6909                    ConcurrentMarkSweepThread::should_yield() &&
  6910                    !CMSCollector::foregroundGCIsActive(); ++i) {
  6911     os::sleep(Thread::current(), 1, false);
  6912     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6915   ConcurrentMarkSweepThread::synchronize(true);
  6916   _freelistLock->lock_without_safepoint_check();
  6917   _bitMap->lock()->lock_without_safepoint_check();
  6918   _collector->startTimer();
  6922 //////////////////////////////////////////////////////////////////
  6923 // SurvivorSpacePrecleanClosure
  6924 //////////////////////////////////////////////////////////////////
  6925 // This (single-threaded) closure is used to preclean the oops in
  6926 // the survivor spaces.
  6927 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
  6929   HeapWord* addr = (HeapWord*)p;
  6930   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
  6931   assert(!_span.contains(addr), "we are scanning the survivor spaces");
  6932   assert(p->klass_or_null() != NULL, "object should be initializd");
  6933   // an initialized object; ignore mark word in verification below
  6934   // since we are running concurrent with mutators
  6935   assert(p->is_oop(true), "should be an oop");
  6936   // Note that we do not yield while we iterate over
  6937   // the interior oops of p, pushing the relevant ones
  6938   // on our marking stack.
  6939   size_t size = p->oop_iterate(_scanning_closure);
  6940   do_yield_check();
  6941   // Observe that below, we do not abandon the preclean
  6942   // phase as soon as we should; rather we empty the
  6943   // marking stack before returning. This is to satisfy
  6944   // some existing assertions. In general, it may be a
  6945   // good idea to abort immediately and complete the marking
  6946   // from the grey objects at a later time.
  6947   while (!_mark_stack->isEmpty()) {
  6948     oop new_oop = _mark_stack->pop();
  6949     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  6950     assert(_bit_map->isMarked((HeapWord*)new_oop),
  6951            "only grey objects on this stack");
  6952     // iterate over the oops in this oop, marking and pushing
  6953     // the ones in CMS heap (i.e. in _span).
  6954     new_oop->oop_iterate(_scanning_closure);
  6955     // check if it's time to yield
  6956     do_yield_check();
  6958   unsigned int after_count =
  6959     GenCollectedHeap::heap()->total_collections();
  6960   bool abort = (_before_count != after_count) ||
  6961                _collector->should_abort_preclean();
  6962   return abort ? 0 : size;
  6965 void SurvivorSpacePrecleanClosure::do_yield_work() {
  6966   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  6967          "CMS thread should hold CMS token");
  6968   assert_lock_strong(_bit_map->lock());
  6969   // Relinquish the bit map lock
  6970   _bit_map->lock()->unlock();
  6971   ConcurrentMarkSweepThread::desynchronize(true);
  6972   ConcurrentMarkSweepThread::acknowledge_yield_request();
  6973   _collector->stopTimer();
  6974   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  6975   if (PrintCMSStatistics != 0) {
  6976     _collector->incrementYields();
  6978   _collector->icms_wait();
  6980   // See the comment in coordinator_yield()
  6981   for (unsigned i = 0; i < CMSYieldSleepCount &&
  6982                        ConcurrentMarkSweepThread::should_yield() &&
  6983                        !CMSCollector::foregroundGCIsActive(); ++i) {
  6984     os::sleep(Thread::current(), 1, false);
  6985     ConcurrentMarkSweepThread::acknowledge_yield_request();
  6988   ConcurrentMarkSweepThread::synchronize(true);
  6989   _bit_map->lock()->lock_without_safepoint_check();
  6990   _collector->startTimer();
  6993 // This closure is used to rescan the marked objects on the dirty cards
  6994 // in the mod union table and the card table proper. In the parallel
  6995 // case, although the bitMap is shared, we do a single read so the
  6996 // isMarked() query is "safe".
  6997 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
  6998   // Ignore mark word because we are running concurrent with mutators
  6999   assert(p->is_oop_or_null(true), "expected an oop or null");
  7000   HeapWord* addr = (HeapWord*)p;
  7001   assert(_span.contains(addr), "we are scanning the CMS generation");
  7002   bool is_obj_array = false;
  7003   #ifdef DEBUG
  7004     if (!_parallel) {
  7005       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
  7006       assert(_collector->overflow_list_is_empty(),
  7007              "overflow list should be empty");
  7010   #endif // DEBUG
  7011   if (_bit_map->isMarked(addr)) {
  7012     // Obj arrays are precisely marked, non-arrays are not;
  7013     // so we scan objArrays precisely and non-arrays in their
  7014     // entirety.
  7015     if (p->is_objArray()) {
  7016       is_obj_array = true;
  7017       if (_parallel) {
  7018         p->oop_iterate(_par_scan_closure, mr);
  7019       } else {
  7020         p->oop_iterate(_scan_closure, mr);
  7022     } else {
  7023       if (_parallel) {
  7024         p->oop_iterate(_par_scan_closure);
  7025       } else {
  7026         p->oop_iterate(_scan_closure);
  7030   #ifdef DEBUG
  7031     if (!_parallel) {
  7032       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
  7033       assert(_collector->overflow_list_is_empty(),
  7034              "overflow list should be empty");
  7037   #endif // DEBUG
  7038   return is_obj_array;
  7041 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
  7042                         MemRegion span,
  7043                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7044                         bool should_yield, bool verifying):
  7045   _collector(collector),
  7046   _span(span),
  7047   _bitMap(bitMap),
  7048   _mut(&collector->_modUnionTable),
  7049   _markStack(markStack),
  7050   _yield(should_yield),
  7051   _skipBits(0)
  7053   assert(_markStack->isEmpty(), "stack should be empty");
  7054   _finger = _bitMap->startWord();
  7055   _threshold = _finger;
  7056   assert(_collector->_restart_addr == NULL, "Sanity check");
  7057   assert(_span.contains(_finger), "Out of bounds _finger?");
  7058   DEBUG_ONLY(_verifying = verifying;)
  7061 void MarkFromRootsClosure::reset(HeapWord* addr) {
  7062   assert(_markStack->isEmpty(), "would cause duplicates on stack");
  7063   assert(_span.contains(addr), "Out of bounds _finger?");
  7064   _finger = addr;
  7065   _threshold = (HeapWord*)round_to(
  7066                  (intptr_t)_finger, CardTableModRefBS::card_size);
  7069 // Should revisit to see if this should be restructured for
  7070 // greater efficiency.
  7071 bool MarkFromRootsClosure::do_bit(size_t offset) {
  7072   if (_skipBits > 0) {
  7073     _skipBits--;
  7074     return true;
  7076   // convert offset into a HeapWord*
  7077   HeapWord* addr = _bitMap->startWord() + offset;
  7078   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
  7079          "address out of range");
  7080   assert(_bitMap->isMarked(addr), "tautology");
  7081   if (_bitMap->isMarked(addr+1)) {
  7082     // this is an allocated but not yet initialized object
  7083     assert(_skipBits == 0, "tautology");
  7084     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
  7085     oop p = oop(addr);
  7086     if (p->klass_or_null() == NULL) {
  7087       DEBUG_ONLY(if (!_verifying) {)
  7088         // We re-dirty the cards on which this object lies and increase
  7089         // the _threshold so that we'll come back to scan this object
  7090         // during the preclean or remark phase. (CMSCleanOnEnter)
  7091         if (CMSCleanOnEnter) {
  7092           size_t sz = _collector->block_size_using_printezis_bits(addr);
  7093           HeapWord* end_card_addr   = (HeapWord*)round_to(
  7094                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  7095           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  7096           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  7097           // Bump _threshold to end_card_addr; note that
  7098           // _threshold cannot possibly exceed end_card_addr, anyhow.
  7099           // This prevents future clearing of the card as the scan proceeds
  7100           // to the right.
  7101           assert(_threshold <= end_card_addr,
  7102                  "Because we are just scanning into this object");
  7103           if (_threshold < end_card_addr) {
  7104             _threshold = end_card_addr;
  7106           if (p->klass_or_null() != NULL) {
  7107             // Redirty the range of cards...
  7108             _mut->mark_range(redirty_range);
  7109           } // ...else the setting of klass will dirty the card anyway.
  7111       DEBUG_ONLY(})
  7112       return true;
  7115   scanOopsInOop(addr);
  7116   return true;
  7119 // We take a break if we've been at this for a while,
  7120 // so as to avoid monopolizing the locks involved.
  7121 void MarkFromRootsClosure::do_yield_work() {
  7122   // First give up the locks, then yield, then re-lock
  7123   // We should probably use a constructor/destructor idiom to
  7124   // do this unlock/lock or modify the MutexUnlocker class to
  7125   // serve our purpose. XXX
  7126   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7127          "CMS thread should hold CMS token");
  7128   assert_lock_strong(_bitMap->lock());
  7129   _bitMap->lock()->unlock();
  7130   ConcurrentMarkSweepThread::desynchronize(true);
  7131   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7132   _collector->stopTimer();
  7133   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7134   if (PrintCMSStatistics != 0) {
  7135     _collector->incrementYields();
  7137   _collector->icms_wait();
  7139   // See the comment in coordinator_yield()
  7140   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7141                        ConcurrentMarkSweepThread::should_yield() &&
  7142                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7143     os::sleep(Thread::current(), 1, false);
  7144     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7147   ConcurrentMarkSweepThread::synchronize(true);
  7148   _bitMap->lock()->lock_without_safepoint_check();
  7149   _collector->startTimer();
  7152 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
  7153   assert(_bitMap->isMarked(ptr), "expected bit to be set");
  7154   assert(_markStack->isEmpty(),
  7155          "should drain stack to limit stack usage");
  7156   // convert ptr to an oop preparatory to scanning
  7157   oop obj = oop(ptr);
  7158   // Ignore mark word in verification below, since we
  7159   // may be running concurrent with mutators.
  7160   assert(obj->is_oop(true), "should be an oop");
  7161   assert(_finger <= ptr, "_finger runneth ahead");
  7162   // advance the finger to right end of this object
  7163   _finger = ptr + obj->size();
  7164   assert(_finger > ptr, "we just incremented it above");
  7165   // On large heaps, it may take us some time to get through
  7166   // the marking phase (especially if running iCMS). During
  7167   // this time it's possible that a lot of mutations have
  7168   // accumulated in the card table and the mod union table --
  7169   // these mutation records are redundant until we have
  7170   // actually traced into the corresponding card.
  7171   // Here, we check whether advancing the finger would make
  7172   // us cross into a new card, and if so clear corresponding
  7173   // cards in the MUT (preclean them in the card-table in the
  7174   // future).
  7176   DEBUG_ONLY(if (!_verifying) {)
  7177     // The clean-on-enter optimization is disabled by default,
  7178     // until we fix 6178663.
  7179     if (CMSCleanOnEnter && (_finger > _threshold)) {
  7180       // [_threshold, _finger) represents the interval
  7181       // of cards to be cleared  in MUT (or precleaned in card table).
  7182       // The set of cards to be cleared is all those that overlap
  7183       // with the interval [_threshold, _finger); note that
  7184       // _threshold is always kept card-aligned but _finger isn't
  7185       // always card-aligned.
  7186       HeapWord* old_threshold = _threshold;
  7187       assert(old_threshold == (HeapWord*)round_to(
  7188               (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7189              "_threshold should always be card-aligned");
  7190       _threshold = (HeapWord*)round_to(
  7191                      (intptr_t)_finger, CardTableModRefBS::card_size);
  7192       MemRegion mr(old_threshold, _threshold);
  7193       assert(!mr.is_empty(), "Control point invariant");
  7194       assert(_span.contains(mr), "Should clear within span");
  7195       _mut->clear_range(mr);
  7197   DEBUG_ONLY(})
  7198   // Note: the finger doesn't advance while we drain
  7199   // the stack below.
  7200   PushOrMarkClosure pushOrMarkClosure(_collector,
  7201                                       _span, _bitMap, _markStack,
  7202                                       _finger, this);
  7203   bool res = _markStack->push(obj);
  7204   assert(res, "Empty non-zero size stack should have space for single push");
  7205   while (!_markStack->isEmpty()) {
  7206     oop new_oop = _markStack->pop();
  7207     // Skip verifying header mark word below because we are
  7208     // running concurrent with mutators.
  7209     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7210     // now scan this oop's oops
  7211     new_oop->oop_iterate(&pushOrMarkClosure);
  7212     do_yield_check();
  7214   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
  7217 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
  7218                        CMSCollector* collector, MemRegion span,
  7219                        CMSBitMap* bit_map,
  7220                        OopTaskQueue* work_queue,
  7221                        CMSMarkStack*  overflow_stack,
  7222                        bool should_yield):
  7223   _collector(collector),
  7224   _whole_span(collector->_span),
  7225   _span(span),
  7226   _bit_map(bit_map),
  7227   _mut(&collector->_modUnionTable),
  7228   _work_queue(work_queue),
  7229   _overflow_stack(overflow_stack),
  7230   _yield(should_yield),
  7231   _skip_bits(0),
  7232   _task(task)
  7234   assert(_work_queue->size() == 0, "work_queue should be empty");
  7235   _finger = span.start();
  7236   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
  7237   assert(_span.contains(_finger), "Out of bounds _finger?");
  7240 // Should revisit to see if this should be restructured for
  7241 // greater efficiency.
  7242 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
  7243   if (_skip_bits > 0) {
  7244     _skip_bits--;
  7245     return true;
  7247   // convert offset into a HeapWord*
  7248   HeapWord* addr = _bit_map->startWord() + offset;
  7249   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
  7250          "address out of range");
  7251   assert(_bit_map->isMarked(addr), "tautology");
  7252   if (_bit_map->isMarked(addr+1)) {
  7253     // this is an allocated object that might not yet be initialized
  7254     assert(_skip_bits == 0, "tautology");
  7255     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
  7256     oop p = oop(addr);
  7257     if (p->klass_or_null() == NULL) {
  7258       // in the case of Clean-on-Enter optimization, redirty card
  7259       // and avoid clearing card by increasing  the threshold.
  7260       return true;
  7263   scan_oops_in_oop(addr);
  7264   return true;
  7267 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
  7268   assert(_bit_map->isMarked(ptr), "expected bit to be set");
  7269   // Should we assert that our work queue is empty or
  7270   // below some drain limit?
  7271   assert(_work_queue->size() == 0,
  7272          "should drain stack to limit stack usage");
  7273   // convert ptr to an oop preparatory to scanning
  7274   oop obj = oop(ptr);
  7275   // Ignore mark word in verification below, since we
  7276   // may be running concurrent with mutators.
  7277   assert(obj->is_oop(true), "should be an oop");
  7278   assert(_finger <= ptr, "_finger runneth ahead");
  7279   // advance the finger to right end of this object
  7280   _finger = ptr + obj->size();
  7281   assert(_finger > ptr, "we just incremented it above");
  7282   // On large heaps, it may take us some time to get through
  7283   // the marking phase (especially if running iCMS). During
  7284   // this time it's possible that a lot of mutations have
  7285   // accumulated in the card table and the mod union table --
  7286   // these mutation records are redundant until we have
  7287   // actually traced into the corresponding card.
  7288   // Here, we check whether advancing the finger would make
  7289   // us cross into a new card, and if so clear corresponding
  7290   // cards in the MUT (preclean them in the card-table in the
  7291   // future).
  7293   // The clean-on-enter optimization is disabled by default,
  7294   // until we fix 6178663.
  7295   if (CMSCleanOnEnter && (_finger > _threshold)) {
  7296     // [_threshold, _finger) represents the interval
  7297     // of cards to be cleared  in MUT (or precleaned in card table).
  7298     // The set of cards to be cleared is all those that overlap
  7299     // with the interval [_threshold, _finger); note that
  7300     // _threshold is always kept card-aligned but _finger isn't
  7301     // always card-aligned.
  7302     HeapWord* old_threshold = _threshold;
  7303     assert(old_threshold == (HeapWord*)round_to(
  7304             (intptr_t)old_threshold, CardTableModRefBS::card_size),
  7305            "_threshold should always be card-aligned");
  7306     _threshold = (HeapWord*)round_to(
  7307                    (intptr_t)_finger, CardTableModRefBS::card_size);
  7308     MemRegion mr(old_threshold, _threshold);
  7309     assert(!mr.is_empty(), "Control point invariant");
  7310     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
  7311     _mut->clear_range(mr);
  7314   // Note: the local finger doesn't advance while we drain
  7315   // the stack below, but the global finger sure can and will.
  7316   HeapWord** gfa = _task->global_finger_addr();
  7317   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
  7318                                       _span, _bit_map,
  7319                                       _work_queue,
  7320                                       _overflow_stack,
  7321                                       _finger,
  7322                                       gfa, this);
  7323   bool res = _work_queue->push(obj);   // overflow could occur here
  7324   assert(res, "Will hold once we use workqueues");
  7325   while (true) {
  7326     oop new_oop;
  7327     if (!_work_queue->pop_local(new_oop)) {
  7328       // We emptied our work_queue; check if there's stuff that can
  7329       // be gotten from the overflow stack.
  7330       if (CMSConcMarkingTask::get_work_from_overflow_stack(
  7331             _overflow_stack, _work_queue)) {
  7332         do_yield_check();
  7333         continue;
  7334       } else {  // done
  7335         break;
  7338     // Skip verifying header mark word below because we are
  7339     // running concurrent with mutators.
  7340     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
  7341     // now scan this oop's oops
  7342     new_oop->oop_iterate(&pushOrMarkClosure);
  7343     do_yield_check();
  7345   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
  7348 // Yield in response to a request from VM Thread or
  7349 // from mutators.
  7350 void Par_MarkFromRootsClosure::do_yield_work() {
  7351   assert(_task != NULL, "sanity");
  7352   _task->yield();
  7355 // A variant of the above used for verifying CMS marking work.
  7356 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
  7357                         MemRegion span,
  7358                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7359                         CMSMarkStack*  mark_stack):
  7360   _collector(collector),
  7361   _span(span),
  7362   _verification_bm(verification_bm),
  7363   _cms_bm(cms_bm),
  7364   _mark_stack(mark_stack),
  7365   _pam_verify_closure(collector, span, verification_bm, cms_bm,
  7366                       mark_stack)
  7368   assert(_mark_stack->isEmpty(), "stack should be empty");
  7369   _finger = _verification_bm->startWord();
  7370   assert(_collector->_restart_addr == NULL, "Sanity check");
  7371   assert(_span.contains(_finger), "Out of bounds _finger?");
  7374 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
  7375   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
  7376   assert(_span.contains(addr), "Out of bounds _finger?");
  7377   _finger = addr;
  7380 // Should revisit to see if this should be restructured for
  7381 // greater efficiency.
  7382 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
  7383   // convert offset into a HeapWord*
  7384   HeapWord* addr = _verification_bm->startWord() + offset;
  7385   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
  7386          "address out of range");
  7387   assert(_verification_bm->isMarked(addr), "tautology");
  7388   assert(_cms_bm->isMarked(addr), "tautology");
  7390   assert(_mark_stack->isEmpty(),
  7391          "should drain stack to limit stack usage");
  7392   // convert addr to an oop preparatory to scanning
  7393   oop obj = oop(addr);
  7394   assert(obj->is_oop(), "should be an oop");
  7395   assert(_finger <= addr, "_finger runneth ahead");
  7396   // advance the finger to right end of this object
  7397   _finger = addr + obj->size();
  7398   assert(_finger > addr, "we just incremented it above");
  7399   // Note: the finger doesn't advance while we drain
  7400   // the stack below.
  7401   bool res = _mark_stack->push(obj);
  7402   assert(res, "Empty non-zero size stack should have space for single push");
  7403   while (!_mark_stack->isEmpty()) {
  7404     oop new_oop = _mark_stack->pop();
  7405     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
  7406     // now scan this oop's oops
  7407     new_oop->oop_iterate(&_pam_verify_closure);
  7409   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
  7410   return true;
  7413 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
  7414   CMSCollector* collector, MemRegion span,
  7415   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
  7416   CMSMarkStack*  mark_stack):
  7417   CMSOopClosure(collector->ref_processor()),
  7418   _collector(collector),
  7419   _span(span),
  7420   _verification_bm(verification_bm),
  7421   _cms_bm(cms_bm),
  7422   _mark_stack(mark_stack)
  7423 { }
  7425 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
  7426 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
  7428 // Upon stack overflow, we discard (part of) the stack,
  7429 // remembering the least address amongst those discarded
  7430 // in CMSCollector's _restart_address.
  7431 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
  7432   // Remember the least grey address discarded
  7433   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
  7434   _collector->lower_restart_addr(ra);
  7435   _mark_stack->reset();  // discard stack contents
  7436   _mark_stack->expand(); // expand the stack if possible
  7439 void PushAndMarkVerifyClosure::do_oop(oop obj) {
  7440   assert(obj->is_oop_or_null(), "expected an oop or NULL");
  7441   HeapWord* addr = (HeapWord*)obj;
  7442   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
  7443     // Oop lies in _span and isn't yet grey or black
  7444     _verification_bm->mark(addr);            // now grey
  7445     if (!_cms_bm->isMarked(addr)) {
  7446       oop(addr)->print();
  7447       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
  7448                              addr);
  7449       fatal("... aborting");
  7452     if (!_mark_stack->push(obj)) { // stack overflow
  7453       if (PrintCMSStatistics != 0) {
  7454         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7455                                SIZE_FORMAT, _mark_stack->capacity());
  7457       assert(_mark_stack->isFull(), "Else push should have succeeded");
  7458       handle_stack_overflow(addr);
  7460     // anything including and to the right of _finger
  7461     // will be scanned as we iterate over the remainder of the
  7462     // bit map
  7466 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
  7467                      MemRegion span,
  7468                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
  7469                      HeapWord* finger, MarkFromRootsClosure* parent) :
  7470   CMSOopClosure(collector->ref_processor()),
  7471   _collector(collector),
  7472   _span(span),
  7473   _bitMap(bitMap),
  7474   _markStack(markStack),
  7475   _finger(finger),
  7476   _parent(parent)
  7477 { }
  7479 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
  7480                      MemRegion span,
  7481                      CMSBitMap* bit_map,
  7482                      OopTaskQueue* work_queue,
  7483                      CMSMarkStack*  overflow_stack,
  7484                      HeapWord* finger,
  7485                      HeapWord** global_finger_addr,
  7486                      Par_MarkFromRootsClosure* parent) :
  7487   CMSOopClosure(collector->ref_processor()),
  7488   _collector(collector),
  7489   _whole_span(collector->_span),
  7490   _span(span),
  7491   _bit_map(bit_map),
  7492   _work_queue(work_queue),
  7493   _overflow_stack(overflow_stack),
  7494   _finger(finger),
  7495   _global_finger_addr(global_finger_addr),
  7496   _parent(parent)
  7497 { }
  7499 // Assumes thread-safe access by callers, who are
  7500 // responsible for mutual exclusion.
  7501 void CMSCollector::lower_restart_addr(HeapWord* low) {
  7502   assert(_span.contains(low), "Out of bounds addr");
  7503   if (_restart_addr == NULL) {
  7504     _restart_addr = low;
  7505   } else {
  7506     _restart_addr = MIN2(_restart_addr, low);
  7510 // Upon stack overflow, we discard (part of) the stack,
  7511 // remembering the least address amongst those discarded
  7512 // in CMSCollector's _restart_address.
  7513 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7514   // Remember the least grey address discarded
  7515   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
  7516   _collector->lower_restart_addr(ra);
  7517   _markStack->reset();  // discard stack contents
  7518   _markStack->expand(); // expand the stack if possible
  7521 // Upon stack overflow, we discard (part of) the stack,
  7522 // remembering the least address amongst those discarded
  7523 // in CMSCollector's _restart_address.
  7524 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
  7525   // We need to do this under a mutex to prevent other
  7526   // workers from interfering with the work done below.
  7527   MutexLockerEx ml(_overflow_stack->par_lock(),
  7528                    Mutex::_no_safepoint_check_flag);
  7529   // Remember the least grey address discarded
  7530   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
  7531   _collector->lower_restart_addr(ra);
  7532   _overflow_stack->reset();  // discard stack contents
  7533   _overflow_stack->expand(); // expand the stack if possible
  7536 void CMKlassClosure::do_klass(Klass* k) {
  7537   assert(_oop_closure != NULL, "Not initialized?");
  7538   k->oops_do(_oop_closure);
  7541 void PushOrMarkClosure::do_oop(oop obj) {
  7542   // Ignore mark word because we are running concurrent with mutators.
  7543   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7544   HeapWord* addr = (HeapWord*)obj;
  7545   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
  7546     // Oop lies in _span and isn't yet grey or black
  7547     _bitMap->mark(addr);            // now grey
  7548     if (addr < _finger) {
  7549       // the bit map iteration has already either passed, or
  7550       // sampled, this bit in the bit map; we'll need to
  7551       // use the marking stack to scan this oop's oops.
  7552       bool simulate_overflow = false;
  7553       NOT_PRODUCT(
  7554         if (CMSMarkStackOverflowALot &&
  7555             _collector->simulate_overflow()) {
  7556           // simulate a stack overflow
  7557           simulate_overflow = true;
  7560       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
  7561         if (PrintCMSStatistics != 0) {
  7562           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7563                                  SIZE_FORMAT, _markStack->capacity());
  7565         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
  7566         handle_stack_overflow(addr);
  7569     // anything including and to the right of _finger
  7570     // will be scanned as we iterate over the remainder of the
  7571     // bit map
  7572     do_yield_check();
  7576 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
  7577 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
  7579 void Par_PushOrMarkClosure::do_oop(oop obj) {
  7580   // Ignore mark word because we are running concurrent with mutators.
  7581   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
  7582   HeapWord* addr = (HeapWord*)obj;
  7583   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7584     // Oop lies in _span and isn't yet grey or black
  7585     // We read the global_finger (volatile read) strictly after marking oop
  7586     bool res = _bit_map->par_mark(addr);    // now grey
  7587     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
  7588     // Should we push this marked oop on our stack?
  7589     // -- if someone else marked it, nothing to do
  7590     // -- if target oop is above global finger nothing to do
  7591     // -- if target oop is in chunk and above local finger
  7592     //      then nothing to do
  7593     // -- else push on work queue
  7594     if (   !res       // someone else marked it, they will deal with it
  7595         || (addr >= *gfa)  // will be scanned in a later task
  7596         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
  7597       return;
  7599     // the bit map iteration has already either passed, or
  7600     // sampled, this bit in the bit map; we'll need to
  7601     // use the marking stack to scan this oop's oops.
  7602     bool simulate_overflow = false;
  7603     NOT_PRODUCT(
  7604       if (CMSMarkStackOverflowALot &&
  7605           _collector->simulate_overflow()) {
  7606         // simulate a stack overflow
  7607         simulate_overflow = true;
  7610     if (simulate_overflow ||
  7611         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
  7612       // stack overflow
  7613       if (PrintCMSStatistics != 0) {
  7614         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
  7615                                SIZE_FORMAT, _overflow_stack->capacity());
  7617       // We cannot assert that the overflow stack is full because
  7618       // it may have been emptied since.
  7619       assert(simulate_overflow ||
  7620              _work_queue->size() == _work_queue->max_elems(),
  7621             "Else push should have succeeded");
  7622       handle_stack_overflow(addr);
  7624     do_yield_check();
  7628 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
  7629 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
  7631 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
  7632                                        MemRegion span,
  7633                                        ReferenceProcessor* rp,
  7634                                        CMSBitMap* bit_map,
  7635                                        CMSBitMap* mod_union_table,
  7636                                        CMSMarkStack*  mark_stack,
  7637                                        bool           concurrent_precleaning):
  7638   CMSOopClosure(rp),
  7639   _collector(collector),
  7640   _span(span),
  7641   _bit_map(bit_map),
  7642   _mod_union_table(mod_union_table),
  7643   _mark_stack(mark_stack),
  7644   _concurrent_precleaning(concurrent_precleaning)
  7646   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7649 // Grey object rescan during pre-cleaning and second checkpoint phases --
  7650 // the non-parallel version (the parallel version appears further below.)
  7651 void PushAndMarkClosure::do_oop(oop obj) {
  7652   // Ignore mark word verification. If during concurrent precleaning,
  7653   // the object monitor may be locked. If during the checkpoint
  7654   // phases, the object may already have been reached by a  different
  7655   // path and may be at the end of the global overflow list (so
  7656   // the mark word may be NULL).
  7657   assert(obj->is_oop_or_null(true /* ignore mark word */),
  7658          "expected an oop or NULL");
  7659   HeapWord* addr = (HeapWord*)obj;
  7660   // Check if oop points into the CMS generation
  7661   // and is not marked
  7662   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7663     // a white object ...
  7664     _bit_map->mark(addr);         // ... now grey
  7665     // push on the marking stack (grey set)
  7666     bool simulate_overflow = false;
  7667     NOT_PRODUCT(
  7668       if (CMSMarkStackOverflowALot &&
  7669           _collector->simulate_overflow()) {
  7670         // simulate a stack overflow
  7671         simulate_overflow = true;
  7674     if (simulate_overflow || !_mark_stack->push(obj)) {
  7675       if (_concurrent_precleaning) {
  7676          // During precleaning we can just dirty the appropriate card(s)
  7677          // in the mod union table, thus ensuring that the object remains
  7678          // in the grey set  and continue. In the case of object arrays
  7679          // we need to dirty all of the cards that the object spans,
  7680          // since the rescan of object arrays will be limited to the
  7681          // dirty cards.
  7682          // Note that no one can be intefering with us in this action
  7683          // of dirtying the mod union table, so no locking or atomics
  7684          // are required.
  7685          if (obj->is_objArray()) {
  7686            size_t sz = obj->size();
  7687            HeapWord* end_card_addr = (HeapWord*)round_to(
  7688                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
  7689            MemRegion redirty_range = MemRegion(addr, end_card_addr);
  7690            assert(!redirty_range.is_empty(), "Arithmetical tautology");
  7691            _mod_union_table->mark_range(redirty_range);
  7692          } else {
  7693            _mod_union_table->mark(addr);
  7695          _collector->_ser_pmc_preclean_ovflw++;
  7696       } else {
  7697          // During the remark phase, we need to remember this oop
  7698          // in the overflow list.
  7699          _collector->push_on_overflow_list(obj);
  7700          _collector->_ser_pmc_remark_ovflw++;
  7706 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
  7707                                                MemRegion span,
  7708                                                ReferenceProcessor* rp,
  7709                                                CMSBitMap* bit_map,
  7710                                                OopTaskQueue* work_queue):
  7711   CMSOopClosure(rp),
  7712   _collector(collector),
  7713   _span(span),
  7714   _bit_map(bit_map),
  7715   _work_queue(work_queue)
  7717   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
  7720 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
  7721 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
  7723 // Grey object rescan during second checkpoint phase --
  7724 // the parallel version.
  7725 void Par_PushAndMarkClosure::do_oop(oop obj) {
  7726   // In the assert below, we ignore the mark word because
  7727   // this oop may point to an already visited object that is
  7728   // on the overflow stack (in which case the mark word has
  7729   // been hijacked for chaining into the overflow stack --
  7730   // if this is the last object in the overflow stack then
  7731   // its mark word will be NULL). Because this object may
  7732   // have been subsequently popped off the global overflow
  7733   // stack, and the mark word possibly restored to the prototypical
  7734   // value, by the time we get to examined this failing assert in
  7735   // the debugger, is_oop_or_null(false) may subsequently start
  7736   // to hold.
  7737   assert(obj->is_oop_or_null(true),
  7738          "expected an oop or NULL");
  7739   HeapWord* addr = (HeapWord*)obj;
  7740   // Check if oop points into the CMS generation
  7741   // and is not marked
  7742   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
  7743     // a white object ...
  7744     // If we manage to "claim" the object, by being the
  7745     // first thread to mark it, then we push it on our
  7746     // marking stack
  7747     if (_bit_map->par_mark(addr)) {     // ... now grey
  7748       // push on work queue (grey set)
  7749       bool simulate_overflow = false;
  7750       NOT_PRODUCT(
  7751         if (CMSMarkStackOverflowALot &&
  7752             _collector->par_simulate_overflow()) {
  7753           // simulate a stack overflow
  7754           simulate_overflow = true;
  7757       if (simulate_overflow || !_work_queue->push(obj)) {
  7758         _collector->par_push_on_overflow_list(obj);
  7759         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
  7761     } // Else, some other thread got there first
  7765 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
  7766 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
  7768 void CMSPrecleanRefsYieldClosure::do_yield_work() {
  7769   Mutex* bml = _collector->bitMapLock();
  7770   assert_lock_strong(bml);
  7771   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  7772          "CMS thread should hold CMS token");
  7774   bml->unlock();
  7775   ConcurrentMarkSweepThread::desynchronize(true);
  7777   ConcurrentMarkSweepThread::acknowledge_yield_request();
  7779   _collector->stopTimer();
  7780   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  7781   if (PrintCMSStatistics != 0) {
  7782     _collector->incrementYields();
  7784   _collector->icms_wait();
  7786   // See the comment in coordinator_yield()
  7787   for (unsigned i = 0; i < CMSYieldSleepCount &&
  7788                        ConcurrentMarkSweepThread::should_yield() &&
  7789                        !CMSCollector::foregroundGCIsActive(); ++i) {
  7790     os::sleep(Thread::current(), 1, false);
  7791     ConcurrentMarkSweepThread::acknowledge_yield_request();
  7794   ConcurrentMarkSweepThread::synchronize(true);
  7795   bml->lock();
  7797   _collector->startTimer();
  7800 bool CMSPrecleanRefsYieldClosure::should_return() {
  7801   if (ConcurrentMarkSweepThread::should_yield()) {
  7802     do_yield_work();
  7804   return _collector->foregroundGCIsActive();
  7807 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
  7808   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
  7809          "mr should be aligned to start at a card boundary");
  7810   // We'd like to assert:
  7811   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
  7812   //        "mr should be a range of cards");
  7813   // However, that would be too strong in one case -- the last
  7814   // partition ends at _unallocated_block which, in general, can be
  7815   // an arbitrary boundary, not necessarily card aligned.
  7816   if (PrintCMSStatistics != 0) {
  7817     _num_dirty_cards +=
  7818          mr.word_size()/CardTableModRefBS::card_size_in_words;
  7820   _space->object_iterate_mem(mr, &_scan_cl);
  7823 SweepClosure::SweepClosure(CMSCollector* collector,
  7824                            ConcurrentMarkSweepGeneration* g,
  7825                            CMSBitMap* bitMap, bool should_yield) :
  7826   _collector(collector),
  7827   _g(g),
  7828   _sp(g->cmsSpace()),
  7829   _limit(_sp->sweep_limit()),
  7830   _freelistLock(_sp->freelistLock()),
  7831   _bitMap(bitMap),
  7832   _yield(should_yield),
  7833   _inFreeRange(false),           // No free range at beginning of sweep
  7834   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
  7835   _lastFreeRangeCoalesced(false),
  7836   _freeFinger(g->used_region().start())
  7838   NOT_PRODUCT(
  7839     _numObjectsFreed = 0;
  7840     _numWordsFreed   = 0;
  7841     _numObjectsLive = 0;
  7842     _numWordsLive = 0;
  7843     _numObjectsAlreadyFree = 0;
  7844     _numWordsAlreadyFree = 0;
  7845     _last_fc = NULL;
  7847     _sp->initializeIndexedFreeListArrayReturnedBytes();
  7848     _sp->dictionary()->initialize_dict_returned_bytes();
  7850   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7851          "sweep _limit out of bounds");
  7852   if (CMSTraceSweeper) {
  7853     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
  7854                         _limit);
  7858 void SweepClosure::print_on(outputStream* st) const {
  7859   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
  7860                 _sp->bottom(), _sp->end());
  7861   tty->print_cr("_limit = " PTR_FORMAT, _limit);
  7862   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
  7863   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
  7864   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
  7865                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
  7868 #ifndef PRODUCT
  7869 // Assertion checking only:  no useful work in product mode --
  7870 // however, if any of the flags below become product flags,
  7871 // you may need to review this code to see if it needs to be
  7872 // enabled in product mode.
  7873 SweepClosure::~SweepClosure() {
  7874   assert_lock_strong(_freelistLock);
  7875   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7876          "sweep _limit out of bounds");
  7877   if (inFreeRange()) {
  7878     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
  7879     print();
  7880     ShouldNotReachHere();
  7882   if (Verbose && PrintGC) {
  7883     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
  7884                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
  7885     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
  7886                            SIZE_FORMAT" bytes  "
  7887       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
  7888       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
  7889       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
  7890     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
  7891                         * sizeof(HeapWord);
  7892     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
  7894     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
  7895       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
  7896       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
  7897       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
  7898       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
  7899       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
  7900         indexListReturnedBytes);
  7901       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
  7902         dict_returned_bytes);
  7905   if (CMSTraceSweeper) {
  7906     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
  7907                            _limit);
  7910 #endif  // PRODUCT
  7912 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
  7913     bool freeRangeInFreeLists) {
  7914   if (CMSTraceSweeper) {
  7915     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
  7916                freeFinger, freeRangeInFreeLists);
  7918   assert(!inFreeRange(), "Trampling existing free range");
  7919   set_inFreeRange(true);
  7920   set_lastFreeRangeCoalesced(false);
  7922   set_freeFinger(freeFinger);
  7923   set_freeRangeInFreeLists(freeRangeInFreeLists);
  7924   if (CMSTestInFreeList) {
  7925     if (freeRangeInFreeLists) {
  7926       FreeChunk* fc = (FreeChunk*) freeFinger;
  7927       assert(fc->is_free(), "A chunk on the free list should be free.");
  7928       assert(fc->size() > 0, "Free range should have a size");
  7929       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
  7934 // Note that the sweeper runs concurrently with mutators. Thus,
  7935 // it is possible for direct allocation in this generation to happen
  7936 // in the middle of the sweep. Note that the sweeper also coalesces
  7937 // contiguous free blocks. Thus, unless the sweeper and the allocator
  7938 // synchronize appropriately freshly allocated blocks may get swept up.
  7939 // This is accomplished by the sweeper locking the free lists while
  7940 // it is sweeping. Thus blocks that are determined to be free are
  7941 // indeed free. There is however one additional complication:
  7942 // blocks that have been allocated since the final checkpoint and
  7943 // mark, will not have been marked and so would be treated as
  7944 // unreachable and swept up. To prevent this, the allocator marks
  7945 // the bit map when allocating during the sweep phase. This leads,
  7946 // however, to a further complication -- objects may have been allocated
  7947 // but not yet initialized -- in the sense that the header isn't yet
  7948 // installed. The sweeper can not then determine the size of the block
  7949 // in order to skip over it. To deal with this case, we use a technique
  7950 // (due to Printezis) to encode such uninitialized block sizes in the
  7951 // bit map. Since the bit map uses a bit per every HeapWord, but the
  7952 // CMS generation has a minimum object size of 3 HeapWords, it follows
  7953 // that "normal marks" won't be adjacent in the bit map (there will
  7954 // always be at least two 0 bits between successive 1 bits). We make use
  7955 // of these "unused" bits to represent uninitialized blocks -- the bit
  7956 // corresponding to the start of the uninitialized object and the next
  7957 // bit are both set. Finally, a 1 bit marks the end of the object that
  7958 // started with the two consecutive 1 bits to indicate its potentially
  7959 // uninitialized state.
  7961 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
  7962   FreeChunk* fc = (FreeChunk*)addr;
  7963   size_t res;
  7965   // Check if we are done sweeping. Below we check "addr >= _limit" rather
  7966   // than "addr == _limit" because although _limit was a block boundary when
  7967   // we started the sweep, it may no longer be one because heap expansion
  7968   // may have caused us to coalesce the block ending at the address _limit
  7969   // with a newly expanded chunk (this happens when _limit was set to the
  7970   // previous _end of the space), so we may have stepped past _limit:
  7971   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
  7972   if (addr >= _limit) { // we have swept up to or past the limit: finish up
  7973     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
  7974            "sweep _limit out of bounds");
  7975     assert(addr < _sp->end(), "addr out of bounds");
  7976     // Flush any free range we might be holding as a single
  7977     // coalesced chunk to the appropriate free list.
  7978     if (inFreeRange()) {
  7979       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
  7980              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
  7981       flush_cur_free_chunk(freeFinger(),
  7982                            pointer_delta(addr, freeFinger()));
  7983       if (CMSTraceSweeper) {
  7984         gclog_or_tty->print("Sweep: last chunk: ");
  7985         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
  7986                    "[coalesced:"SIZE_FORMAT"]\n",
  7987                    freeFinger(), pointer_delta(addr, freeFinger()),
  7988                    lastFreeRangeCoalesced());
  7992     // help the iterator loop finish
  7993     return pointer_delta(_sp->end(), addr);
  7996   assert(addr < _limit, "sweep invariant");
  7997   // check if we should yield
  7998   do_yield_check(addr);
  7999   if (fc->is_free()) {
  8000     // Chunk that is already free
  8001     res = fc->size();
  8002     do_already_free_chunk(fc);
  8003     debug_only(_sp->verifyFreeLists());
  8004     // If we flush the chunk at hand in lookahead_and_flush()
  8005     // and it's coalesced with a preceding chunk, then the
  8006     // process of "mangling" the payload of the coalesced block
  8007     // will cause erasure of the size information from the
  8008     // (erstwhile) header of all the coalesced blocks but the
  8009     // first, so the first disjunct in the assert will not hold
  8010     // in that specific case (in which case the second disjunct
  8011     // will hold).
  8012     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
  8013            "Otherwise the size info doesn't change at this step");
  8014     NOT_PRODUCT(
  8015       _numObjectsAlreadyFree++;
  8016       _numWordsAlreadyFree += res;
  8018     NOT_PRODUCT(_last_fc = fc;)
  8019   } else if (!_bitMap->isMarked(addr)) {
  8020     // Chunk is fresh garbage
  8021     res = do_garbage_chunk(fc);
  8022     debug_only(_sp->verifyFreeLists());
  8023     NOT_PRODUCT(
  8024       _numObjectsFreed++;
  8025       _numWordsFreed += res;
  8027   } else {
  8028     // Chunk that is alive.
  8029     res = do_live_chunk(fc);
  8030     debug_only(_sp->verifyFreeLists());
  8031     NOT_PRODUCT(
  8032         _numObjectsLive++;
  8033         _numWordsLive += res;
  8036   return res;
  8039 // For the smart allocation, record following
  8040 //  split deaths - a free chunk is removed from its free list because
  8041 //      it is being split into two or more chunks.
  8042 //  split birth - a free chunk is being added to its free list because
  8043 //      a larger free chunk has been split and resulted in this free chunk.
  8044 //  coal death - a free chunk is being removed from its free list because
  8045 //      it is being coalesced into a large free chunk.
  8046 //  coal birth - a free chunk is being added to its free list because
  8047 //      it was created when two or more free chunks where coalesced into
  8048 //      this free chunk.
  8049 //
  8050 // These statistics are used to determine the desired number of free
  8051 // chunks of a given size.  The desired number is chosen to be relative
  8052 // to the end of a CMS sweep.  The desired number at the end of a sweep
  8053 // is the
  8054 //      count-at-end-of-previous-sweep (an amount that was enough)
  8055 //              - count-at-beginning-of-current-sweep  (the excess)
  8056 //              + split-births  (gains in this size during interval)
  8057 //              - split-deaths  (demands on this size during interval)
  8058 // where the interval is from the end of one sweep to the end of the
  8059 // next.
  8060 //
  8061 // When sweeping the sweeper maintains an accumulated chunk which is
  8062 // the chunk that is made up of chunks that have been coalesced.  That
  8063 // will be termed the left-hand chunk.  A new chunk of garbage that
  8064 // is being considered for coalescing will be referred to as the
  8065 // right-hand chunk.
  8066 //
  8067 // When making a decision on whether to coalesce a right-hand chunk with
  8068 // the current left-hand chunk, the current count vs. the desired count
  8069 // of the left-hand chunk is considered.  Also if the right-hand chunk
  8070 // is near the large chunk at the end of the heap (see
  8071 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
  8072 // left-hand chunk is coalesced.
  8073 //
  8074 // When making a decision about whether to split a chunk, the desired count
  8075 // vs. the current count of the candidate to be split is also considered.
  8076 // If the candidate is underpopulated (currently fewer chunks than desired)
  8077 // a chunk of an overpopulated (currently more chunks than desired) size may
  8078 // be chosen.  The "hint" associated with a free list, if non-null, points
  8079 // to a free list which may be overpopulated.
  8080 //
  8082 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
  8083   const size_t size = fc->size();
  8084   // Chunks that cannot be coalesced are not in the
  8085   // free lists.
  8086   if (CMSTestInFreeList && !fc->cantCoalesce()) {
  8087     assert(_sp->verify_chunk_in_free_list(fc),
  8088       "free chunk should be in free lists");
  8090   // a chunk that is already free, should not have been
  8091   // marked in the bit map
  8092   HeapWord* const addr = (HeapWord*) fc;
  8093   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
  8094   // Verify that the bit map has no bits marked between
  8095   // addr and purported end of this block.
  8096   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8098   // Some chunks cannot be coalesced under any circumstances.
  8099   // See the definition of cantCoalesce().
  8100   if (!fc->cantCoalesce()) {
  8101     // This chunk can potentially be coalesced.
  8102     if (_sp->adaptive_freelists()) {
  8103       // All the work is done in
  8104       do_post_free_or_garbage_chunk(fc, size);
  8105     } else {  // Not adaptive free lists
  8106       // this is a free chunk that can potentially be coalesced by the sweeper;
  8107       if (!inFreeRange()) {
  8108         // if the next chunk is a free block that can't be coalesced
  8109         // it doesn't make sense to remove this chunk from the free lists
  8110         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
  8111         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
  8112         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
  8113             nextChunk->is_free()               &&     // ... which is free...
  8114             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
  8115           // nothing to do
  8116         } else {
  8117           // Potentially the start of a new free range:
  8118           // Don't eagerly remove it from the free lists.
  8119           // No need to remove it if it will just be put
  8120           // back again.  (Also from a pragmatic point of view
  8121           // if it is a free block in a region that is beyond
  8122           // any allocated blocks, an assertion will fail)
  8123           // Remember the start of a free run.
  8124           initialize_free_range(addr, true);
  8125           // end - can coalesce with next chunk
  8127       } else {
  8128         // the midst of a free range, we are coalescing
  8129         print_free_block_coalesced(fc);
  8130         if (CMSTraceSweeper) {
  8131           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
  8133         // remove it from the free lists
  8134         _sp->removeFreeChunkFromFreeLists(fc);
  8135         set_lastFreeRangeCoalesced(true);
  8136         // If the chunk is being coalesced and the current free range is
  8137         // in the free lists, remove the current free range so that it
  8138         // will be returned to the free lists in its entirety - all
  8139         // the coalesced pieces included.
  8140         if (freeRangeInFreeLists()) {
  8141           FreeChunk* ffc = (FreeChunk*) freeFinger();
  8142           assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8143             "Size of free range is inconsistent with chunk size.");
  8144           if (CMSTestInFreeList) {
  8145             assert(_sp->verify_chunk_in_free_list(ffc),
  8146               "free range is not in free lists");
  8148           _sp->removeFreeChunkFromFreeLists(ffc);
  8149           set_freeRangeInFreeLists(false);
  8153     // Note that if the chunk is not coalescable (the else arm
  8154     // below), we unconditionally flush, without needing to do
  8155     // a "lookahead," as we do below.
  8156     if (inFreeRange()) lookahead_and_flush(fc, size);
  8157   } else {
  8158     // Code path common to both original and adaptive free lists.
  8160     // cant coalesce with previous block; this should be treated
  8161     // as the end of a free run if any
  8162     if (inFreeRange()) {
  8163       // we kicked some butt; time to pick up the garbage
  8164       assert(freeFinger() < addr, "freeFinger points too high");
  8165       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8167     // else, nothing to do, just continue
  8171 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
  8172   // This is a chunk of garbage.  It is not in any free list.
  8173   // Add it to a free list or let it possibly be coalesced into
  8174   // a larger chunk.
  8175   HeapWord* const addr = (HeapWord*) fc;
  8176   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8178   if (_sp->adaptive_freelists()) {
  8179     // Verify that the bit map has no bits marked between
  8180     // addr and purported end of just dead object.
  8181     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8183     do_post_free_or_garbage_chunk(fc, size);
  8184   } else {
  8185     if (!inFreeRange()) {
  8186       // start of a new free range
  8187       assert(size > 0, "A free range should have a size");
  8188       initialize_free_range(addr, false);
  8189     } else {
  8190       // this will be swept up when we hit the end of the
  8191       // free range
  8192       if (CMSTraceSweeper) {
  8193         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
  8195       // If the chunk is being coalesced and the current free range is
  8196       // in the free lists, remove the current free range so that it
  8197       // will be returned to the free lists in its entirety - all
  8198       // the coalesced pieces included.
  8199       if (freeRangeInFreeLists()) {
  8200         FreeChunk* ffc = (FreeChunk*)freeFinger();
  8201         assert(ffc->size() == pointer_delta(addr, freeFinger()),
  8202           "Size of free range is inconsistent with chunk size.");
  8203         if (CMSTestInFreeList) {
  8204           assert(_sp->verify_chunk_in_free_list(ffc),
  8205             "free range is not in free lists");
  8207         _sp->removeFreeChunkFromFreeLists(ffc);
  8208         set_freeRangeInFreeLists(false);
  8210       set_lastFreeRangeCoalesced(true);
  8212     // this will be swept up when we hit the end of the free range
  8214     // Verify that the bit map has no bits marked between
  8215     // addr and purported end of just dead object.
  8216     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
  8218   assert(_limit >= addr + size,
  8219          "A freshly garbage chunk can't possibly straddle over _limit");
  8220   if (inFreeRange()) lookahead_and_flush(fc, size);
  8221   return size;
  8224 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
  8225   HeapWord* addr = (HeapWord*) fc;
  8226   // The sweeper has just found a live object. Return any accumulated
  8227   // left hand chunk to the free lists.
  8228   if (inFreeRange()) {
  8229     assert(freeFinger() < addr, "freeFinger points too high");
  8230     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8233   // This object is live: we'd normally expect this to be
  8234   // an oop, and like to assert the following:
  8235   // assert(oop(addr)->is_oop(), "live block should be an oop");
  8236   // However, as we commented above, this may be an object whose
  8237   // header hasn't yet been initialized.
  8238   size_t size;
  8239   assert(_bitMap->isMarked(addr), "Tautology for this control point");
  8240   if (_bitMap->isMarked(addr + 1)) {
  8241     // Determine the size from the bit map, rather than trying to
  8242     // compute it from the object header.
  8243     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
  8244     size = pointer_delta(nextOneAddr + 1, addr);
  8245     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
  8246            "alignment problem");
  8248 #ifdef DEBUG
  8249       if (oop(addr)->klass_or_null() != NULL) {
  8250         // Ignore mark word because we are running concurrent with mutators
  8251         assert(oop(addr)->is_oop(true), "live block should be an oop");
  8252         assert(size ==
  8253                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
  8254                "P-mark and computed size do not agree");
  8256 #endif
  8258   } else {
  8259     // This should be an initialized object that's alive.
  8260     assert(oop(addr)->klass_or_null() != NULL,
  8261            "Should be an initialized object");
  8262     // Ignore mark word because we are running concurrent with mutators
  8263     assert(oop(addr)->is_oop(true), "live block should be an oop");
  8264     // Verify that the bit map has no bits marked between
  8265     // addr and purported end of this block.
  8266     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
  8267     assert(size >= 3, "Necessary for Printezis marks to work");
  8268     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
  8269     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
  8271   return size;
  8274 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
  8275                                                  size_t chunkSize) {
  8276   // do_post_free_or_garbage_chunk() should only be called in the case
  8277   // of the adaptive free list allocator.
  8278   const bool fcInFreeLists = fc->is_free();
  8279   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
  8280   assert((HeapWord*)fc <= _limit, "sweep invariant");
  8281   if (CMSTestInFreeList && fcInFreeLists) {
  8282     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
  8285   if (CMSTraceSweeper) {
  8286     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
  8289   HeapWord* const fc_addr = (HeapWord*) fc;
  8291   bool coalesce;
  8292   const size_t left  = pointer_delta(fc_addr, freeFinger());
  8293   const size_t right = chunkSize;
  8294   switch (FLSCoalescePolicy) {
  8295     // numeric value forms a coalition aggressiveness metric
  8296     case 0:  { // never coalesce
  8297       coalesce = false;
  8298       break;
  8300     case 1: { // coalesce if left & right chunks on overpopulated lists
  8301       coalesce = _sp->coalOverPopulated(left) &&
  8302                  _sp->coalOverPopulated(right);
  8303       break;
  8305     case 2: { // coalesce if left chunk on overpopulated list (default)
  8306       coalesce = _sp->coalOverPopulated(left);
  8307       break;
  8309     case 3: { // coalesce if left OR right chunk on overpopulated list
  8310       coalesce = _sp->coalOverPopulated(left) ||
  8311                  _sp->coalOverPopulated(right);
  8312       break;
  8314     case 4: { // always coalesce
  8315       coalesce = true;
  8316       break;
  8318     default:
  8319      ShouldNotReachHere();
  8322   // Should the current free range be coalesced?
  8323   // If the chunk is in a free range and either we decided to coalesce above
  8324   // or the chunk is near the large block at the end of the heap
  8325   // (isNearLargestChunk() returns true), then coalesce this chunk.
  8326   const bool doCoalesce = inFreeRange()
  8327                           && (coalesce || _g->isNearLargestChunk(fc_addr));
  8328   if (doCoalesce) {
  8329     // Coalesce the current free range on the left with the new
  8330     // chunk on the right.  If either is on a free list,
  8331     // it must be removed from the list and stashed in the closure.
  8332     if (freeRangeInFreeLists()) {
  8333       FreeChunk* const ffc = (FreeChunk*)freeFinger();
  8334       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
  8335         "Size of free range is inconsistent with chunk size.");
  8336       if (CMSTestInFreeList) {
  8337         assert(_sp->verify_chunk_in_free_list(ffc),
  8338           "Chunk is not in free lists");
  8340       _sp->coalDeath(ffc->size());
  8341       _sp->removeFreeChunkFromFreeLists(ffc);
  8342       set_freeRangeInFreeLists(false);
  8344     if (fcInFreeLists) {
  8345       _sp->coalDeath(chunkSize);
  8346       assert(fc->size() == chunkSize,
  8347         "The chunk has the wrong size or is not in the free lists");
  8348       _sp->removeFreeChunkFromFreeLists(fc);
  8350     set_lastFreeRangeCoalesced(true);
  8351     print_free_block_coalesced(fc);
  8352   } else {  // not in a free range and/or should not coalesce
  8353     // Return the current free range and start a new one.
  8354     if (inFreeRange()) {
  8355       // In a free range but cannot coalesce with the right hand chunk.
  8356       // Put the current free range into the free lists.
  8357       flush_cur_free_chunk(freeFinger(),
  8358                            pointer_delta(fc_addr, freeFinger()));
  8360     // Set up for new free range.  Pass along whether the right hand
  8361     // chunk is in the free lists.
  8362     initialize_free_range((HeapWord*)fc, fcInFreeLists);
  8366 // Lookahead flush:
  8367 // If we are tracking a free range, and this is the last chunk that
  8368 // we'll look at because its end crosses past _limit, we'll preemptively
  8369 // flush it along with any free range we may be holding on to. Note that
  8370 // this can be the case only for an already free or freshly garbage
  8371 // chunk. If this block is an object, it can never straddle
  8372 // over _limit. The "straddling" occurs when _limit is set at
  8373 // the previous end of the space when this cycle started, and
  8374 // a subsequent heap expansion caused the previously co-terminal
  8375 // free block to be coalesced with the newly expanded portion,
  8376 // thus rendering _limit a non-block-boundary making it dangerous
  8377 // for the sweeper to step over and examine.
  8378 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
  8379   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8380   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
  8381   assert(_sp->used_region().contains(eob - 1),
  8382          err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
  8383                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
  8384                  _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
  8385   if (eob >= _limit) {
  8386     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
  8387     if (CMSTraceSweeper) {
  8388       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
  8389                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
  8390                              "[" PTR_FORMAT "," PTR_FORMAT ")",
  8391                              _limit, fc, eob, _sp->bottom(), _sp->end());
  8393     // Return the storage we are tracking back into the free lists.
  8394     if (CMSTraceSweeper) {
  8395       gclog_or_tty->print_cr("Flushing ... ");
  8397     assert(freeFinger() < eob, "Error");
  8398     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
  8402 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
  8403   assert(inFreeRange(), "Should only be called if currently in a free range.");
  8404   assert(size > 0,
  8405     "A zero sized chunk cannot be added to the free lists.");
  8406   if (!freeRangeInFreeLists()) {
  8407     if (CMSTestInFreeList) {
  8408       FreeChunk* fc = (FreeChunk*) chunk;
  8409       fc->set_size(size);
  8410       assert(!_sp->verify_chunk_in_free_list(fc),
  8411         "chunk should not be in free lists yet");
  8413     if (CMSTraceSweeper) {
  8414       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
  8415                     chunk, size);
  8417     // A new free range is going to be starting.  The current
  8418     // free range has not been added to the free lists yet or
  8419     // was removed so add it back.
  8420     // If the current free range was coalesced, then the death
  8421     // of the free range was recorded.  Record a birth now.
  8422     if (lastFreeRangeCoalesced()) {
  8423       _sp->coalBirth(size);
  8425     _sp->addChunkAndRepairOffsetTable(chunk, size,
  8426             lastFreeRangeCoalesced());
  8427   } else if (CMSTraceSweeper) {
  8428     gclog_or_tty->print_cr("Already in free list: nothing to flush");
  8430   set_inFreeRange(false);
  8431   set_freeRangeInFreeLists(false);
  8434 // We take a break if we've been at this for a while,
  8435 // so as to avoid monopolizing the locks involved.
  8436 void SweepClosure::do_yield_work(HeapWord* addr) {
  8437   // Return current free chunk being used for coalescing (if any)
  8438   // to the appropriate freelist.  After yielding, the next
  8439   // free block encountered will start a coalescing range of
  8440   // free blocks.  If the next free block is adjacent to the
  8441   // chunk just flushed, they will need to wait for the next
  8442   // sweep to be coalesced.
  8443   if (inFreeRange()) {
  8444     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
  8447   // First give up the locks, then yield, then re-lock.
  8448   // We should probably use a constructor/destructor idiom to
  8449   // do this unlock/lock or modify the MutexUnlocker class to
  8450   // serve our purpose. XXX
  8451   assert_lock_strong(_bitMap->lock());
  8452   assert_lock_strong(_freelistLock);
  8453   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
  8454          "CMS thread should hold CMS token");
  8455   _bitMap->lock()->unlock();
  8456   _freelistLock->unlock();
  8457   ConcurrentMarkSweepThread::desynchronize(true);
  8458   ConcurrentMarkSweepThread::acknowledge_yield_request();
  8459   _collector->stopTimer();
  8460   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
  8461   if (PrintCMSStatistics != 0) {
  8462     _collector->incrementYields();
  8464   _collector->icms_wait();
  8466   // See the comment in coordinator_yield()
  8467   for (unsigned i = 0; i < CMSYieldSleepCount &&
  8468                        ConcurrentMarkSweepThread::should_yield() &&
  8469                        !CMSCollector::foregroundGCIsActive(); ++i) {
  8470     os::sleep(Thread::current(), 1, false);
  8471     ConcurrentMarkSweepThread::acknowledge_yield_request();
  8474   ConcurrentMarkSweepThread::synchronize(true);
  8475   _freelistLock->lock();
  8476   _bitMap->lock()->lock_without_safepoint_check();
  8477   _collector->startTimer();
  8480 #ifndef PRODUCT
  8481 // This is actually very useful in a product build if it can
  8482 // be called from the debugger.  Compile it into the product
  8483 // as needed.
  8484 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
  8485   return debug_cms_space->verify_chunk_in_free_list(fc);
  8487 #endif
  8489 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
  8490   if (CMSTraceSweeper) {
  8491     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
  8492                            fc, fc->size());
  8496 // CMSIsAliveClosure
  8497 bool CMSIsAliveClosure::do_object_b(oop obj) {
  8498   HeapWord* addr = (HeapWord*)obj;
  8499   return addr != NULL &&
  8500          (!_span.contains(addr) || _bit_map->isMarked(addr));
  8504 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
  8505                       MemRegion span,
  8506                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
  8507                       bool cpc):
  8508   _collector(collector),
  8509   _span(span),
  8510   _bit_map(bit_map),
  8511   _mark_stack(mark_stack),
  8512   _concurrent_precleaning(cpc) {
  8513   assert(!_span.is_empty(), "Empty span could spell trouble");
  8517 // CMSKeepAliveClosure: the serial version
  8518 void CMSKeepAliveClosure::do_oop(oop obj) {
  8519   HeapWord* addr = (HeapWord*)obj;
  8520   if (_span.contains(addr) &&
  8521       !_bit_map->isMarked(addr)) {
  8522     _bit_map->mark(addr);
  8523     bool simulate_overflow = false;
  8524     NOT_PRODUCT(
  8525       if (CMSMarkStackOverflowALot &&
  8526           _collector->simulate_overflow()) {
  8527         // simulate a stack overflow
  8528         simulate_overflow = true;
  8531     if (simulate_overflow || !_mark_stack->push(obj)) {
  8532       if (_concurrent_precleaning) {
  8533         // We dirty the overflown object and let the remark
  8534         // phase deal with it.
  8535         assert(_collector->overflow_list_is_empty(), "Error");
  8536         // In the case of object arrays, we need to dirty all of
  8537         // the cards that the object spans. No locking or atomics
  8538         // are needed since no one else can be mutating the mod union
  8539         // table.
  8540         if (obj->is_objArray()) {
  8541           size_t sz = obj->size();
  8542           HeapWord* end_card_addr =
  8543             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
  8544           MemRegion redirty_range = MemRegion(addr, end_card_addr);
  8545           assert(!redirty_range.is_empty(), "Arithmetical tautology");
  8546           _collector->_modUnionTable.mark_range(redirty_range);
  8547         } else {
  8548           _collector->_modUnionTable.mark(addr);
  8550         _collector->_ser_kac_preclean_ovflw++;
  8551       } else {
  8552         _collector->push_on_overflow_list(obj);
  8553         _collector->_ser_kac_ovflw++;
  8559 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
  8560 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
  8562 // CMSParKeepAliveClosure: a parallel version of the above.
  8563 // The work queues are private to each closure (thread),
  8564 // but (may be) available for stealing by other threads.
  8565 void CMSParKeepAliveClosure::do_oop(oop obj) {
  8566   HeapWord* addr = (HeapWord*)obj;
  8567   if (_span.contains(addr) &&
  8568       !_bit_map->isMarked(addr)) {
  8569     // In general, during recursive tracing, several threads
  8570     // may be concurrently getting here; the first one to
  8571     // "tag" it, claims it.
  8572     if (_bit_map->par_mark(addr)) {
  8573       bool res = _work_queue->push(obj);
  8574       assert(res, "Low water mark should be much less than capacity");
  8575       // Do a recursive trim in the hope that this will keep
  8576       // stack usage lower, but leave some oops for potential stealers
  8577       trim_queue(_low_water_mark);
  8578     } // Else, another thread got there first
  8582 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
  8583 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
  8585 void CMSParKeepAliveClosure::trim_queue(uint max) {
  8586   while (_work_queue->size() > max) {
  8587     oop new_oop;
  8588     if (_work_queue->pop_local(new_oop)) {
  8589       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
  8590       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8591              "no white objects on this stack!");
  8592       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8593       // iterate over the oops in this oop, marking and pushing
  8594       // the ones in CMS heap (i.e. in _span).
  8595       new_oop->oop_iterate(&_mark_and_push);
  8600 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
  8601                                 CMSCollector* collector,
  8602                                 MemRegion span, CMSBitMap* bit_map,
  8603                                 OopTaskQueue* work_queue):
  8604   _collector(collector),
  8605   _span(span),
  8606   _bit_map(bit_map),
  8607   _work_queue(work_queue) { }
  8609 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
  8610   HeapWord* addr = (HeapWord*)obj;
  8611   if (_span.contains(addr) &&
  8612       !_bit_map->isMarked(addr)) {
  8613     if (_bit_map->par_mark(addr)) {
  8614       bool simulate_overflow = false;
  8615       NOT_PRODUCT(
  8616         if (CMSMarkStackOverflowALot &&
  8617             _collector->par_simulate_overflow()) {
  8618           // simulate a stack overflow
  8619           simulate_overflow = true;
  8622       if (simulate_overflow || !_work_queue->push(obj)) {
  8623         _collector->par_push_on_overflow_list(obj);
  8624         _collector->_par_kac_ovflw++;
  8626     } // Else another thread got there already
  8630 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8631 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
  8633 //////////////////////////////////////////////////////////////////
  8634 //  CMSExpansionCause                /////////////////////////////
  8635 //////////////////////////////////////////////////////////////////
  8636 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
  8637   switch (cause) {
  8638     case _no_expansion:
  8639       return "No expansion";
  8640     case _satisfy_free_ratio:
  8641       return "Free ratio";
  8642     case _satisfy_promotion:
  8643       return "Satisfy promotion";
  8644     case _satisfy_allocation:
  8645       return "allocation";
  8646     case _allocate_par_lab:
  8647       return "Par LAB";
  8648     case _allocate_par_spooling_space:
  8649       return "Par Spooling Space";
  8650     case _adaptive_size_policy:
  8651       return "Ergonomics";
  8652     default:
  8653       return "unknown";
  8657 void CMSDrainMarkingStackClosure::do_void() {
  8658   // the max number to take from overflow list at a time
  8659   const size_t num = _mark_stack->capacity()/4;
  8660   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
  8661          "Overflow list should be NULL during concurrent phases");
  8662   while (!_mark_stack->isEmpty() ||
  8663          // if stack is empty, check the overflow list
  8664          _collector->take_from_overflow_list(num, _mark_stack)) {
  8665     oop obj = _mark_stack->pop();
  8666     HeapWord* addr = (HeapWord*)obj;
  8667     assert(_span.contains(addr), "Should be within span");
  8668     assert(_bit_map->isMarked(addr), "Should be marked");
  8669     assert(obj->is_oop(), "Should be an oop");
  8670     obj->oop_iterate(_keep_alive);
  8674 void CMSParDrainMarkingStackClosure::do_void() {
  8675   // drain queue
  8676   trim_queue(0);
  8679 // Trim our work_queue so its length is below max at return
  8680 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
  8681   while (_work_queue->size() > max) {
  8682     oop new_oop;
  8683     if (_work_queue->pop_local(new_oop)) {
  8684       assert(new_oop->is_oop(), "Expected an oop");
  8685       assert(_bit_map->isMarked((HeapWord*)new_oop),
  8686              "no white objects on this stack!");
  8687       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
  8688       // iterate over the oops in this oop, marking and pushing
  8689       // the ones in CMS heap (i.e. in _span).
  8690       new_oop->oop_iterate(&_mark_and_push);
  8695 ////////////////////////////////////////////////////////////////////
  8696 // Support for Marking Stack Overflow list handling and related code
  8697 ////////////////////////////////////////////////////////////////////
  8698 // Much of the following code is similar in shape and spirit to the
  8699 // code used in ParNewGC. We should try and share that code
  8700 // as much as possible in the future.
  8702 #ifndef PRODUCT
  8703 // Debugging support for CMSStackOverflowALot
  8705 // It's OK to call this multi-threaded;  the worst thing
  8706 // that can happen is that we'll get a bunch of closely
  8707 // spaced simulated oveflows, but that's OK, in fact
  8708 // probably good as it would exercise the overflow code
  8709 // under contention.
  8710 bool CMSCollector::simulate_overflow() {
  8711   if (_overflow_counter-- <= 0) { // just being defensive
  8712     _overflow_counter = CMSMarkStackOverflowInterval;
  8713     return true;
  8714   } else {
  8715     return false;
  8719 bool CMSCollector::par_simulate_overflow() {
  8720   return simulate_overflow();
  8722 #endif
  8724 // Single-threaded
  8725 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
  8726   assert(stack->isEmpty(), "Expected precondition");
  8727   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
  8728   size_t i = num;
  8729   oop  cur = _overflow_list;
  8730   const markOop proto = markOopDesc::prototype();
  8731   NOT_PRODUCT(ssize_t n = 0;)
  8732   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
  8733     next = oop(cur->mark());
  8734     cur->set_mark(proto);   // until proven otherwise
  8735     assert(cur->is_oop(), "Should be an oop");
  8736     bool res = stack->push(cur);
  8737     assert(res, "Bit off more than can chew?");
  8738     NOT_PRODUCT(n++;)
  8740   _overflow_list = cur;
  8741 #ifndef PRODUCT
  8742   assert(_num_par_pushes >= n, "Too many pops?");
  8743   _num_par_pushes -=n;
  8744 #endif
  8745   return !stack->isEmpty();
  8748 #define BUSY  (oop(0x1aff1aff))
  8749 // (MT-safe) Get a prefix of at most "num" from the list.
  8750 // The overflow list is chained through the mark word of
  8751 // each object in the list. We fetch the entire list,
  8752 // break off a prefix of the right size and return the
  8753 // remainder. If other threads try to take objects from
  8754 // the overflow list at that time, they will wait for
  8755 // some time to see if data becomes available. If (and
  8756 // only if) another thread places one or more object(s)
  8757 // on the global list before we have returned the suffix
  8758 // to the global list, we will walk down our local list
  8759 // to find its end and append the global list to
  8760 // our suffix before returning it. This suffix walk can
  8761 // prove to be expensive (quadratic in the amount of traffic)
  8762 // when there are many objects in the overflow list and
  8763 // there is much producer-consumer contention on the list.
  8764 // *NOTE*: The overflow list manipulation code here and
  8765 // in ParNewGeneration:: are very similar in shape,
  8766 // except that in the ParNew case we use the old (from/eden)
  8767 // copy of the object to thread the list via its klass word.
  8768 // Because of the common code, if you make any changes in
  8769 // the code below, please check the ParNew version to see if
  8770 // similar changes might be needed.
  8771 // CR 6797058 has been filed to consolidate the common code.
  8772 bool CMSCollector::par_take_from_overflow_list(size_t num,
  8773                                                OopTaskQueue* work_q,
  8774                                                int no_of_gc_threads) {
  8775   assert(work_q->size() == 0, "First empty local work queue");
  8776   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
  8777   if (_overflow_list == NULL) {
  8778     return false;
  8780   // Grab the entire list; we'll put back a suffix
  8781   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  8782   Thread* tid = Thread::current();
  8783   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
  8784   // set to ParallelGCThreads.
  8785   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
  8786   size_t sleep_time_millis = MAX2((size_t)1, num/100);
  8787   // If the list is busy, we spin for a short while,
  8788   // sleeping between attempts to get the list.
  8789   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
  8790     os::sleep(tid, sleep_time_millis, false);
  8791     if (_overflow_list == NULL) {
  8792       // Nothing left to take
  8793       return false;
  8794     } else if (_overflow_list != BUSY) {
  8795       // Try and grab the prefix
  8796       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  8799   // If the list was found to be empty, or we spun long
  8800   // enough, we give up and return empty-handed. If we leave
  8801   // the list in the BUSY state below, it must be the case that
  8802   // some other thread holds the overflow list and will set it
  8803   // to a non-BUSY state in the future.
  8804   if (prefix == NULL || prefix == BUSY) {
  8805      // Nothing to take or waited long enough
  8806      if (prefix == NULL) {
  8807        // Write back the NULL in case we overwrote it with BUSY above
  8808        // and it is still the same value.
  8809        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  8811      return false;
  8813   assert(prefix != NULL && prefix != BUSY, "Error");
  8814   size_t i = num;
  8815   oop cur = prefix;
  8816   // Walk down the first "num" objects, unless we reach the end.
  8817   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
  8818   if (cur->mark() == NULL) {
  8819     // We have "num" or fewer elements in the list, so there
  8820     // is nothing to return to the global list.
  8821     // Write back the NULL in lieu of the BUSY we wrote
  8822     // above, if it is still the same value.
  8823     if (_overflow_list == BUSY) {
  8824       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  8826   } else {
  8827     // Chop off the suffix and rerturn it to the global list.
  8828     assert(cur->mark() != BUSY, "Error");
  8829     oop suffix_head = cur->mark(); // suffix will be put back on global list
  8830     cur->set_mark(NULL);           // break off suffix
  8831     // It's possible that the list is still in the empty(busy) state
  8832     // we left it in a short while ago; in that case we may be
  8833     // able to place back the suffix without incurring the cost
  8834     // of a walk down the list.
  8835     oop observed_overflow_list = _overflow_list;
  8836     oop cur_overflow_list = observed_overflow_list;
  8837     bool attached = false;
  8838     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
  8839       observed_overflow_list =
  8840         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  8841       if (cur_overflow_list == observed_overflow_list) {
  8842         attached = true;
  8843         break;
  8844       } else cur_overflow_list = observed_overflow_list;
  8846     if (!attached) {
  8847       // Too bad, someone else sneaked in (at least) an element; we'll need
  8848       // to do a splice. Find tail of suffix so we can prepend suffix to global
  8849       // list.
  8850       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
  8851       oop suffix_tail = cur;
  8852       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
  8853              "Tautology");
  8854       observed_overflow_list = _overflow_list;
  8855       do {
  8856         cur_overflow_list = observed_overflow_list;
  8857         if (cur_overflow_list != BUSY) {
  8858           // Do the splice ...
  8859           suffix_tail->set_mark(markOop(cur_overflow_list));
  8860         } else { // cur_overflow_list == BUSY
  8861           suffix_tail->set_mark(NULL);
  8863         // ... and try to place spliced list back on overflow_list ...
  8864         observed_overflow_list =
  8865           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
  8866       } while (cur_overflow_list != observed_overflow_list);
  8867       // ... until we have succeeded in doing so.
  8871   // Push the prefix elements on work_q
  8872   assert(prefix != NULL, "control point invariant");
  8873   const markOop proto = markOopDesc::prototype();
  8874   oop next;
  8875   NOT_PRODUCT(ssize_t n = 0;)
  8876   for (cur = prefix; cur != NULL; cur = next) {
  8877     next = oop(cur->mark());
  8878     cur->set_mark(proto);   // until proven otherwise
  8879     assert(cur->is_oop(), "Should be an oop");
  8880     bool res = work_q->push(cur);
  8881     assert(res, "Bit off more than we can chew?");
  8882     NOT_PRODUCT(n++;)
  8884 #ifndef PRODUCT
  8885   assert(_num_par_pushes >= n, "Too many pops?");
  8886   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  8887 #endif
  8888   return true;
  8891 // Single-threaded
  8892 void CMSCollector::push_on_overflow_list(oop p) {
  8893   NOT_PRODUCT(_num_par_pushes++;)
  8894   assert(p->is_oop(), "Not an oop");
  8895   preserve_mark_if_necessary(p);
  8896   p->set_mark((markOop)_overflow_list);
  8897   _overflow_list = p;
  8900 // Multi-threaded; use CAS to prepend to overflow list
  8901 void CMSCollector::par_push_on_overflow_list(oop p) {
  8902   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
  8903   assert(p->is_oop(), "Not an oop");
  8904   par_preserve_mark_if_necessary(p);
  8905   oop observed_overflow_list = _overflow_list;
  8906   oop cur_overflow_list;
  8907   do {
  8908     cur_overflow_list = observed_overflow_list;
  8909     if (cur_overflow_list != BUSY) {
  8910       p->set_mark(markOop(cur_overflow_list));
  8911     } else {
  8912       p->set_mark(NULL);
  8914     observed_overflow_list =
  8915       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
  8916   } while (cur_overflow_list != observed_overflow_list);
  8918 #undef BUSY
  8920 // Single threaded
  8921 // General Note on GrowableArray: pushes may silently fail
  8922 // because we are (temporarily) out of C-heap for expanding
  8923 // the stack. The problem is quite ubiquitous and affects
  8924 // a lot of code in the JVM. The prudent thing for GrowableArray
  8925 // to do (for now) is to exit with an error. However, that may
  8926 // be too draconian in some cases because the caller may be
  8927 // able to recover without much harm. For such cases, we
  8928 // should probably introduce a "soft_push" method which returns
  8929 // an indication of success or failure with the assumption that
  8930 // the caller may be able to recover from a failure; code in
  8931 // the VM can then be changed, incrementally, to deal with such
  8932 // failures where possible, thus, incrementally hardening the VM
  8933 // in such low resource situations.
  8934 void CMSCollector::preserve_mark_work(oop p, markOop m) {
  8935   _preserved_oop_stack.push(p);
  8936   _preserved_mark_stack.push(m);
  8937   assert(m == p->mark(), "Mark word changed");
  8938   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
  8939          "bijection");
  8942 // Single threaded
  8943 void CMSCollector::preserve_mark_if_necessary(oop p) {
  8944   markOop m = p->mark();
  8945   if (m->must_be_preserved(p)) {
  8946     preserve_mark_work(p, m);
  8950 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
  8951   markOop m = p->mark();
  8952   if (m->must_be_preserved(p)) {
  8953     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  8954     // Even though we read the mark word without holding
  8955     // the lock, we are assured that it will not change
  8956     // because we "own" this oop, so no other thread can
  8957     // be trying to push it on the overflow list; see
  8958     // the assertion in preserve_mark_work() that checks
  8959     // that m == p->mark().
  8960     preserve_mark_work(p, m);
  8964 // We should be able to do this multi-threaded,
  8965 // a chunk of stack being a task (this is
  8966 // correct because each oop only ever appears
  8967 // once in the overflow list. However, it's
  8968 // not very easy to completely overlap this with
  8969 // other operations, so will generally not be done
  8970 // until all work's been completed. Because we
  8971 // expect the preserved oop stack (set) to be small,
  8972 // it's probably fine to do this single-threaded.
  8973 // We can explore cleverer concurrent/overlapped/parallel
  8974 // processing of preserved marks if we feel the
  8975 // need for this in the future. Stack overflow should
  8976 // be so rare in practice and, when it happens, its
  8977 // effect on performance so great that this will
  8978 // likely just be in the noise anyway.
  8979 void CMSCollector::restore_preserved_marks_if_any() {
  8980   assert(SafepointSynchronize::is_at_safepoint(),
  8981          "world should be stopped");
  8982   assert(Thread::current()->is_ConcurrentGC_thread() ||
  8983          Thread::current()->is_VM_thread(),
  8984          "should be single-threaded");
  8985   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
  8986          "bijection");
  8988   while (!_preserved_oop_stack.is_empty()) {
  8989     oop p = _preserved_oop_stack.pop();
  8990     assert(p->is_oop(), "Should be an oop");
  8991     assert(_span.contains(p), "oop should be in _span");
  8992     assert(p->mark() == markOopDesc::prototype(),
  8993            "Set when taken from overflow list");
  8994     markOop m = _preserved_mark_stack.pop();
  8995     p->set_mark(m);
  8997   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
  8998          "stacks were cleared above");
  9001 #ifndef PRODUCT
  9002 bool CMSCollector::no_preserved_marks() const {
  9003   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
  9005 #endif
  9007 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
  9009   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  9010   CMSAdaptiveSizePolicy* size_policy =
  9011     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
  9012   assert(size_policy->is_gc_cms_adaptive_size_policy(),
  9013     "Wrong type for size policy");
  9014   return size_policy;
  9017 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
  9018                                            size_t desired_promo_size) {
  9019   if (cur_promo_size < desired_promo_size) {
  9020     size_t expand_bytes = desired_promo_size - cur_promo_size;
  9021     if (PrintAdaptiveSizePolicy && Verbose) {
  9022       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  9023         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
  9024         expand_bytes);
  9026     expand(expand_bytes,
  9027            MinHeapDeltaBytes,
  9028            CMSExpansionCause::_adaptive_size_policy);
  9029   } else if (desired_promo_size < cur_promo_size) {
  9030     size_t shrink_bytes = cur_promo_size - desired_promo_size;
  9031     if (PrintAdaptiveSizePolicy && Verbose) {
  9032       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
  9033         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
  9034         shrink_bytes);
  9036     shrink(shrink_bytes);
  9040 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
  9041   GenCollectedHeap* gch = GenCollectedHeap::heap();
  9042   CMSGCAdaptivePolicyCounters* counters =
  9043     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
  9044   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
  9045     "Wrong kind of counters");
  9046   return counters;
  9050 void ASConcurrentMarkSweepGeneration::update_counters() {
  9051   if (UsePerfData) {
  9052     _space_counters->update_all();
  9053     _gen_counters->update_all();
  9054     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  9055     GenCollectedHeap* gch = GenCollectedHeap::heap();
  9056     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  9057     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  9058       "Wrong gc statistics type");
  9059     counters->update_counters(gc_stats_l);
  9063 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
  9064   if (UsePerfData) {
  9065     _space_counters->update_used(used);
  9066     _space_counters->update_capacity();
  9067     _gen_counters->update_all();
  9069     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  9070     GenCollectedHeap* gch = GenCollectedHeap::heap();
  9071     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
  9072     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
  9073       "Wrong gc statistics type");
  9074     counters->update_counters(gc_stats_l);
  9078 // The desired expansion delta is computed so that:
  9079 // . desired free percentage or greater is used
  9080 void ASConcurrentMarkSweepGeneration::compute_new_size() {
  9081   assert_locked_or_safepoint(Heap_lock);
  9083   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
  9085   // If incremental collection failed, we just want to expand
  9086   // to the limit.
  9087   if (incremental_collection_failed()) {
  9088     clear_incremental_collection_failed();
  9089     grow_to_reserved();
  9090     return;
  9093   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
  9095   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
  9096     "Wrong type of heap");
  9097   int prev_level = level() - 1;
  9098   assert(prev_level >= 0, "The cms generation is the lowest generation");
  9099   Generation* prev_gen = gch->get_gen(prev_level);
  9100   assert(prev_gen->kind() == Generation::ASParNew,
  9101     "Wrong type of young generation");
  9102   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
  9103   size_t cur_eden = younger_gen->eden()->capacity();
  9104   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
  9105   size_t cur_promo = free();
  9106   size_policy->compute_tenured_generation_free_space(cur_promo,
  9107                                                        max_available(),
  9108                                                        cur_eden);
  9109   resize(cur_promo, size_policy->promo_size());
  9111   // Record the new size of the space in the cms generation
  9112   // that is available for promotions.  This is temporary.
  9113   // It should be the desired promo size.
  9114   size_policy->avg_cms_promo()->sample(free());
  9115   size_policy->avg_old_live()->sample(used());
  9117   if (UsePerfData) {
  9118     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
  9119     counters->update_cms_capacity_counter(capacity());
  9123 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
  9124   assert_locked_or_safepoint(Heap_lock);
  9125   assert_lock_strong(freelistLock());
  9126   HeapWord* old_end = _cmsSpace->end();
  9127   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
  9128   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
  9129   FreeChunk* chunk_at_end = find_chunk_at_end();
  9130   if (chunk_at_end == NULL) {
  9131     // No room to shrink
  9132     if (PrintGCDetails && Verbose) {
  9133       gclog_or_tty->print_cr("No room to shrink: old_end  "
  9134         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
  9135         " chunk_at_end  " PTR_FORMAT,
  9136         old_end, unallocated_start, chunk_at_end);
  9138     return;
  9139   } else {
  9141     // Find the chunk at the end of the space and determine
  9142     // how much it can be shrunk.
  9143     size_t shrinkable_size_in_bytes = chunk_at_end->size();
  9144     size_t aligned_shrinkable_size_in_bytes =
  9145       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
  9146     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
  9147       "Inconsistent chunk at end of space");
  9148     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
  9149     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
  9151     // Shrink the underlying space
  9152     _virtual_space.shrink_by(bytes);
  9153     if (PrintGCDetails && Verbose) {
  9154       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
  9155         " desired_bytes " SIZE_FORMAT
  9156         " shrinkable_size_in_bytes " SIZE_FORMAT
  9157         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
  9158         "  bytes  " SIZE_FORMAT,
  9159         desired_bytes, shrinkable_size_in_bytes,
  9160         aligned_shrinkable_size_in_bytes, bytes);
  9161       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
  9162         "  unallocated_start  " SIZE_FORMAT,
  9163         old_end, unallocated_start);
  9166     // If the space did shrink (shrinking is not guaranteed),
  9167     // shrink the chunk at the end by the appropriate amount.
  9168     if (((HeapWord*)_virtual_space.high()) < old_end) {
  9169       size_t new_word_size =
  9170         heap_word_size(_virtual_space.committed_size());
  9172       // Have to remove the chunk from the dictionary because it is changing
  9173       // size and might be someplace elsewhere in the dictionary.
  9175       // Get the chunk at end, shrink it, and put it
  9176       // back.
  9177       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
  9178       size_t word_size_change = word_size_before - new_word_size;
  9179       size_t chunk_at_end_old_size = chunk_at_end->size();
  9180       assert(chunk_at_end_old_size >= word_size_change,
  9181         "Shrink is too large");
  9182       chunk_at_end->set_size(chunk_at_end_old_size -
  9183                           word_size_change);
  9184       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
  9185         word_size_change);
  9187       _cmsSpace->returnChunkToDictionary(chunk_at_end);
  9189       MemRegion mr(_cmsSpace->bottom(), new_word_size);
  9190       _bts->resize(new_word_size);  // resize the block offset shared array
  9191       Universe::heap()->barrier_set()->resize_covered_region(mr);
  9192       _cmsSpace->assert_locked();
  9193       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
  9195       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
  9197       // update the space and generation capacity counters
  9198       if (UsePerfData) {
  9199         _space_counters->update_capacity();
  9200         _gen_counters->update_all();
  9203       if (Verbose && PrintGCDetails) {
  9204         size_t new_mem_size = _virtual_space.committed_size();
  9205         size_t old_mem_size = new_mem_size + bytes;
  9206         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
  9207                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
  9211     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
  9212       "Inconsistency at end of space");
  9213     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
  9214       "Shrinking is inconsistent");
  9215     return;
  9219 // Transfer some number of overflown objects to usual marking
  9220 // stack. Return true if some objects were transferred.
  9221 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
  9222   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
  9223                     (size_t)ParGCDesiredObjsFromOverflowList);
  9225   bool res = _collector->take_from_overflow_list(num, _mark_stack);
  9226   assert(_collector->overflow_list_is_empty() || res,
  9227          "If list is not empty, we should have taken something");
  9228   assert(!res || !_mark_stack->isEmpty(),
  9229          "If we took something, it should now be on our stack");
  9230   return res;
  9233 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
  9234   size_t res = _sp->block_size_no_stall(addr, _collector);
  9235   if (_sp->block_is_obj(addr)) {
  9236     if (_live_bit_map->isMarked(addr)) {
  9237       // It can't have been dead in a previous cycle
  9238       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
  9239     } else {
  9240       _dead_bit_map->mark(addr);      // mark the dead object
  9243   // Could be 0, if the block size could not be computed without stalling.
  9244   return res;
  9247 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
  9249   switch (phase) {
  9250     case CMSCollector::InitialMarking:
  9251       initialize(true  /* fullGC */ ,
  9252                  cause /* cause of the GC */,
  9253                  true  /* recordGCBeginTime */,
  9254                  true  /* recordPreGCUsage */,
  9255                  false /* recordPeakUsage */,
  9256                  false /* recordPostGCusage */,
  9257                  true  /* recordAccumulatedGCTime */,
  9258                  false /* recordGCEndTime */,
  9259                  false /* countCollection */  );
  9260       break;
  9262     case CMSCollector::FinalMarking:
  9263       initialize(true  /* fullGC */ ,
  9264                  cause /* cause of the GC */,
  9265                  false /* recordGCBeginTime */,
  9266                  false /* recordPreGCUsage */,
  9267                  false /* recordPeakUsage */,
  9268                  false /* recordPostGCusage */,
  9269                  true  /* recordAccumulatedGCTime */,
  9270                  false /* recordGCEndTime */,
  9271                  false /* countCollection */  );
  9272       break;
  9274     case CMSCollector::Sweeping:
  9275       initialize(true  /* fullGC */ ,
  9276                  cause /* cause of the GC */,
  9277                  false /* recordGCBeginTime */,
  9278                  false /* recordPreGCUsage */,
  9279                  true  /* recordPeakUsage */,
  9280                  true  /* recordPostGCusage */,
  9281                  false /* recordAccumulatedGCTime */,
  9282                  true  /* recordGCEndTime */,
  9283                  true  /* countCollection */  );
  9284       break;
  9286     default:
  9287       ShouldNotReachHere();

mercurial