src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.cpp

Tue, 18 Sep 2012 23:35:42 -0700

author
jmasa
date
Tue, 18 Sep 2012 23:35:42 -0700
changeset 4196
685df3c6f84b
parent 4129
22b8d3d181d9
child 5192
14d3f71f831d
permissions
-rw-r--r--

7045397: NPG: Add freelists to class loader arenas.
Reviewed-by: coleenp, stefank, jprovino, ohair

     1 /*
     2  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
    27 #include "gc_implementation/shared/gcStats.hpp"
    28 #include "memory/defNewGeneration.hpp"
    29 #include "memory/genCollectedHeap.hpp"
    30 #include "runtime/thread.hpp"
    31 #ifdef TARGET_OS_FAMILY_linux
    32 # include "os_linux.inline.hpp"
    33 #endif
    34 #ifdef TARGET_OS_FAMILY_solaris
    35 # include "os_solaris.inline.hpp"
    36 #endif
    37 #ifdef TARGET_OS_FAMILY_windows
    38 # include "os_windows.inline.hpp"
    39 #endif
    40 #ifdef TARGET_OS_FAMILY_bsd
    41 # include "os_bsd.inline.hpp"
    42 #endif
    43 elapsedTimer CMSAdaptiveSizePolicy::_concurrent_timer;
    44 elapsedTimer CMSAdaptiveSizePolicy::_STW_timer;
    46 // Defined if the granularity of the time measurements is potentially too large.
    47 #define CLOCK_GRANULARITY_TOO_LARGE
    49 CMSAdaptiveSizePolicy::CMSAdaptiveSizePolicy(size_t init_eden_size,
    50                                              size_t init_promo_size,
    51                                              size_t init_survivor_size,
    52                                              double max_gc_minor_pause_sec,
    53                                              double max_gc_pause_sec,
    54                                              uint gc_cost_ratio) :
    55   AdaptiveSizePolicy(init_eden_size,
    56                      init_promo_size,
    57                      init_survivor_size,
    58                      max_gc_pause_sec,
    59                      gc_cost_ratio) {
    61   clear_internal_time_intervals();
    63   _processor_count = os::active_processor_count();
    65   if (CMSConcurrentMTEnabled && (ConcGCThreads > 1)) {
    66     assert(_processor_count > 0, "Processor count is suspect");
    67     _concurrent_processor_count = MIN2((uint) ConcGCThreads,
    68                                        (uint) _processor_count);
    69   } else {
    70     _concurrent_processor_count = 1;
    71   }
    73   _avg_concurrent_time  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    74   _avg_concurrent_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    75   _avg_concurrent_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    77   _avg_initial_pause    = new AdaptivePaddedAverage(AdaptiveTimeWeight,
    78                                                     PausePadding);
    79   _avg_remark_pause     = new AdaptivePaddedAverage(AdaptiveTimeWeight,
    80                                                     PausePadding);
    82   _avg_cms_STW_time     = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    83   _avg_cms_STW_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    85   _avg_cms_free         = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    86   _avg_cms_free_at_sweep = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    87   _avg_cms_promo        = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    89   // Mark-sweep-compact
    90   _avg_msc_pause        = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    91   _avg_msc_interval     = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    92   _avg_msc_gc_cost      = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    94   // Mark-sweep
    95   _avg_ms_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    96   _avg_ms_interval      = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    97   _avg_ms_gc_cost       = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
    99   // Variables that estimate pause times as a function of generation
   100   // size.
   101   _remark_pause_old_estimator =
   102     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
   103   _initial_pause_old_estimator =
   104     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
   105   _remark_pause_young_estimator =
   106     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
   107   _initial_pause_young_estimator =
   108     new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
   110   // Alignment comes from that used in ReservedSpace.
   111   _generation_alignment = os::vm_allocation_granularity();
   113   // Start the concurrent timer here so that the first
   114   // concurrent_phases_begin() measures a finite mutator
   115   // time.  A finite mutator time is used to determine
   116   // if a concurrent collection has been started.  If this
   117   // proves to be a problem, use some explicit flag to
   118   // signal that a concurrent collection has been started.
   119   _concurrent_timer.start();
   120   _STW_timer.start();
   121 }
   123 double CMSAdaptiveSizePolicy::concurrent_processor_fraction() {
   124   // For now assume no other daemon threads are taking alway
   125   // cpu's from the application.
   126   return ((double) _concurrent_processor_count / (double) _processor_count);
   127 }
   129 double CMSAdaptiveSizePolicy::concurrent_collection_cost(
   130                                                   double interval_in_seconds) {
   131   //  When the precleaning and sweeping phases use multiple
   132   // threads, change one_processor_fraction to
   133   // concurrent_processor_fraction().
   134   double one_processor_fraction = 1.0 / ((double) processor_count());
   135   double concurrent_cost =
   136     collection_cost(_latest_cms_concurrent_marking_time_secs,
   137                 interval_in_seconds) * concurrent_processor_fraction() +
   138     collection_cost(_latest_cms_concurrent_precleaning_time_secs,
   139                 interval_in_seconds) * one_processor_fraction +
   140     collection_cost(_latest_cms_concurrent_sweeping_time_secs,
   141                 interval_in_seconds) * one_processor_fraction;
   142   if (PrintAdaptiveSizePolicy && Verbose) {
   143     gclog_or_tty->print_cr(
   144       "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_cost(%f) "
   145       "_latest_cms_concurrent_marking_cost %f "
   146       "_latest_cms_concurrent_precleaning_cost %f "
   147       "_latest_cms_concurrent_sweeping_cost %f "
   148       "concurrent_processor_fraction %f "
   149       "concurrent_cost %f ",
   150       interval_in_seconds,
   151       collection_cost(_latest_cms_concurrent_marking_time_secs,
   152         interval_in_seconds),
   153       collection_cost(_latest_cms_concurrent_precleaning_time_secs,
   154         interval_in_seconds),
   155       collection_cost(_latest_cms_concurrent_sweeping_time_secs,
   156         interval_in_seconds),
   157       concurrent_processor_fraction(),
   158       concurrent_cost);
   159   }
   160   return concurrent_cost;
   161 }
   163 double CMSAdaptiveSizePolicy::concurrent_collection_time() {
   164   double latest_cms_sum_concurrent_phases_time_secs =
   165     _latest_cms_concurrent_marking_time_secs +
   166     _latest_cms_concurrent_precleaning_time_secs +
   167     _latest_cms_concurrent_sweeping_time_secs;
   168   return latest_cms_sum_concurrent_phases_time_secs;
   169 }
   171 double CMSAdaptiveSizePolicy::scaled_concurrent_collection_time() {
   172   //  When the precleaning and sweeping phases use multiple
   173   // threads, change one_processor_fraction to
   174   // concurrent_processor_fraction().
   175   double one_processor_fraction = 1.0 / ((double) processor_count());
   176   double latest_cms_sum_concurrent_phases_time_secs =
   177     _latest_cms_concurrent_marking_time_secs * concurrent_processor_fraction() +
   178     _latest_cms_concurrent_precleaning_time_secs * one_processor_fraction +
   179     _latest_cms_concurrent_sweeping_time_secs * one_processor_fraction ;
   180   if (PrintAdaptiveSizePolicy && Verbose) {
   181     gclog_or_tty->print_cr(
   182       "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_time "
   183       "_latest_cms_concurrent_marking_time_secs %f "
   184       "_latest_cms_concurrent_precleaning_time_secs %f "
   185       "_latest_cms_concurrent_sweeping_time_secs %f "
   186       "concurrent_processor_fraction %f "
   187       "latest_cms_sum_concurrent_phases_time_secs %f ",
   188       _latest_cms_concurrent_marking_time_secs,
   189       _latest_cms_concurrent_precleaning_time_secs,
   190       _latest_cms_concurrent_sweeping_time_secs,
   191       concurrent_processor_fraction(),
   192       latest_cms_sum_concurrent_phases_time_secs);
   193   }
   194   return latest_cms_sum_concurrent_phases_time_secs;
   195 }
   197 void CMSAdaptiveSizePolicy::update_minor_pause_old_estimator(
   198     double minor_pause_in_ms) {
   199   // Get the equivalent of the free space
   200   // that is available for promotions in the CMS generation
   201   // and use that to update _minor_pause_old_estimator
   203   // Don't implement this until it is needed. A warning is
   204   // printed if _minor_pause_old_estimator is used.
   205 }
   207 void CMSAdaptiveSizePolicy::concurrent_marking_begin() {
   208   if (PrintAdaptiveSizePolicy && Verbose) {
   209     gclog_or_tty->print(" ");
   210     gclog_or_tty->stamp();
   211     gclog_or_tty->print(": concurrent_marking_begin ");
   212   }
   213   //  Update the interval time
   214   _concurrent_timer.stop();
   215   _latest_cms_collection_end_to_collection_start_secs = _concurrent_timer.seconds();
   216   if (PrintAdaptiveSizePolicy && Verbose) {
   217     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_begin: "
   218     "mutator time %f", _latest_cms_collection_end_to_collection_start_secs);
   219   }
   220   _concurrent_timer.reset();
   221   _concurrent_timer.start();
   222 }
   224 void CMSAdaptiveSizePolicy::concurrent_marking_end() {
   225   if (PrintAdaptiveSizePolicy && Verbose) {
   226     gclog_or_tty->stamp();
   227     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_end()");
   228   }
   230   _concurrent_timer.stop();
   231   _latest_cms_concurrent_marking_time_secs = _concurrent_timer.seconds();
   233   if (PrintAdaptiveSizePolicy && Verbose) {
   234     gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_marking_end"
   235       ":concurrent marking time (s) %f",
   236       _latest_cms_concurrent_marking_time_secs);
   237   }
   238 }
   240 void CMSAdaptiveSizePolicy::concurrent_precleaning_begin() {
   241   if (PrintAdaptiveSizePolicy && Verbose) {
   242     gclog_or_tty->stamp();
   243     gclog_or_tty->print_cr(
   244       "CMSAdaptiveSizePolicy::concurrent_precleaning_begin()");
   245   }
   246   _concurrent_timer.reset();
   247   _concurrent_timer.start();
   248 }
   251 void CMSAdaptiveSizePolicy::concurrent_precleaning_end() {
   252   if (PrintAdaptiveSizePolicy && Verbose) {
   253     gclog_or_tty->stamp();
   254     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_precleaning_end()");
   255   }
   257   _concurrent_timer.stop();
   258   // May be set again by a second call during the same collection.
   259   _latest_cms_concurrent_precleaning_time_secs = _concurrent_timer.seconds();
   261   if (PrintAdaptiveSizePolicy && Verbose) {
   262     gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_precleaning_end"
   263       ":concurrent precleaning time (s) %f",
   264       _latest_cms_concurrent_precleaning_time_secs);
   265   }
   266 }
   268 void CMSAdaptiveSizePolicy::concurrent_sweeping_begin() {
   269   if (PrintAdaptiveSizePolicy && Verbose) {
   270     gclog_or_tty->stamp();
   271     gclog_or_tty->print_cr(
   272       "CMSAdaptiveSizePolicy::concurrent_sweeping_begin()");
   273   }
   274   _concurrent_timer.reset();
   275   _concurrent_timer.start();
   276 }
   279 void CMSAdaptiveSizePolicy::concurrent_sweeping_end() {
   280   if (PrintAdaptiveSizePolicy && Verbose) {
   281     gclog_or_tty->stamp();
   282     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_sweeping_end()");
   283   }
   285   _concurrent_timer.stop();
   286   _latest_cms_concurrent_sweeping_time_secs = _concurrent_timer.seconds();
   288   if (PrintAdaptiveSizePolicy && Verbose) {
   289     gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_sweeping_end"
   290       ":concurrent sweeping time (s) %f",
   291       _latest_cms_concurrent_sweeping_time_secs);
   292   }
   293 }
   295 void CMSAdaptiveSizePolicy::concurrent_phases_end(GCCause::Cause gc_cause,
   296                                                   size_t cur_eden,
   297                                                   size_t cur_promo) {
   298   if (PrintAdaptiveSizePolicy && Verbose) {
   299     gclog_or_tty->print(" ");
   300     gclog_or_tty->stamp();
   301     gclog_or_tty->print(": concurrent_phases_end ");
   302   }
   304   // Update the concurrent timer
   305   _concurrent_timer.stop();
   307   if (gc_cause != GCCause::_java_lang_system_gc ||
   308       UseAdaptiveSizePolicyWithSystemGC) {
   310     avg_cms_free()->sample(cur_promo);
   311     double latest_cms_sum_concurrent_phases_time_secs =
   312       concurrent_collection_time();
   314     _avg_concurrent_time->sample(latest_cms_sum_concurrent_phases_time_secs);
   316     // Cost of collection (unit-less)
   318     // Total interval for collection.  May not be valid.  Tests
   319     // below determine whether to use this.
   320     //
   321   if (PrintAdaptiveSizePolicy && Verbose) {
   322     gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::concurrent_phases_end \n"
   323       "_latest_cms_reset_end_to_initial_mark_start_secs %f \n"
   324       "_latest_cms_initial_mark_start_to_end_time_secs %f \n"
   325       "_latest_cms_remark_start_to_end_time_secs %f \n"
   326       "_latest_cms_concurrent_marking_time_secs %f \n"
   327       "_latest_cms_concurrent_precleaning_time_secs %f \n"
   328       "_latest_cms_concurrent_sweeping_time_secs %f \n"
   329       "latest_cms_sum_concurrent_phases_time_secs %f \n"
   330       "_latest_cms_collection_end_to_collection_start_secs %f \n"
   331       "concurrent_processor_fraction %f",
   332       _latest_cms_reset_end_to_initial_mark_start_secs,
   333       _latest_cms_initial_mark_start_to_end_time_secs,
   334       _latest_cms_remark_start_to_end_time_secs,
   335       _latest_cms_concurrent_marking_time_secs,
   336       _latest_cms_concurrent_precleaning_time_secs,
   337       _latest_cms_concurrent_sweeping_time_secs,
   338       latest_cms_sum_concurrent_phases_time_secs,
   339       _latest_cms_collection_end_to_collection_start_secs,
   340       concurrent_processor_fraction());
   341   }
   342     double interval_in_seconds =
   343       _latest_cms_initial_mark_start_to_end_time_secs +
   344       _latest_cms_remark_start_to_end_time_secs +
   345       latest_cms_sum_concurrent_phases_time_secs +
   346       _latest_cms_collection_end_to_collection_start_secs;
   347     assert(interval_in_seconds >= 0.0,
   348       "Bad interval between cms collections");
   350     // Sample for performance counter
   351     avg_concurrent_interval()->sample(interval_in_seconds);
   353     // STW costs (initial and remark pauses)
   354     // Cost of collection (unit-less)
   355     assert(_latest_cms_initial_mark_start_to_end_time_secs >= 0.0,
   356       "Bad initial mark pause");
   357     assert(_latest_cms_remark_start_to_end_time_secs >= 0.0,
   358       "Bad remark pause");
   359     double STW_time_in_seconds =
   360       _latest_cms_initial_mark_start_to_end_time_secs +
   361       _latest_cms_remark_start_to_end_time_secs;
   362     double STW_collection_cost = 0.0;
   363     if (interval_in_seconds > 0.0) {
   364       // cost for the STW phases of the concurrent collection.
   365       STW_collection_cost = STW_time_in_seconds / interval_in_seconds;
   366       avg_cms_STW_gc_cost()->sample(STW_collection_cost);
   367     }
   368     if (PrintAdaptiveSizePolicy && Verbose) {
   369       gclog_or_tty->print("cmsAdaptiveSizePolicy::STW_collection_end: "
   370         "STW gc cost: %f  average: %f", STW_collection_cost,
   371         avg_cms_STW_gc_cost()->average());
   372       gclog_or_tty->print_cr("  STW pause: %f (ms) STW period %f (ms)",
   373         (double) STW_time_in_seconds * MILLIUNITS,
   374         (double) interval_in_seconds * MILLIUNITS);
   375     }
   377     double concurrent_cost = 0.0;
   378     if (latest_cms_sum_concurrent_phases_time_secs > 0.0) {
   379       concurrent_cost = concurrent_collection_cost(interval_in_seconds);
   381       avg_concurrent_gc_cost()->sample(concurrent_cost);
   382       // Average this ms cost into all the other types gc costs
   384       if (PrintAdaptiveSizePolicy && Verbose) {
   385         gclog_or_tty->print("cmsAdaptiveSizePolicy::concurrent_phases_end: "
   386           "concurrent gc cost: %f  average: %f",
   387           concurrent_cost,
   388           _avg_concurrent_gc_cost->average());
   389         gclog_or_tty->print_cr("  concurrent time: %f (ms) cms period %f (ms)"
   390           " processor fraction: %f",
   391           latest_cms_sum_concurrent_phases_time_secs * MILLIUNITS,
   392           interval_in_seconds * MILLIUNITS,
   393           concurrent_processor_fraction());
   394       }
   395     }
   396     double total_collection_cost = STW_collection_cost + concurrent_cost;
   397     avg_major_gc_cost()->sample(total_collection_cost);
   399     // Gather information for estimating future behavior
   400     double initial_pause_in_ms = _latest_cms_initial_mark_start_to_end_time_secs * MILLIUNITS;
   401     double remark_pause_in_ms = _latest_cms_remark_start_to_end_time_secs * MILLIUNITS;
   403     double cur_promo_size_in_mbytes = ((double)cur_promo)/((double)M);
   404     initial_pause_old_estimator()->update(cur_promo_size_in_mbytes,
   405       initial_pause_in_ms);
   406     remark_pause_old_estimator()->update(cur_promo_size_in_mbytes,
   407       remark_pause_in_ms);
   408     major_collection_estimator()->update(cur_promo_size_in_mbytes,
   409       total_collection_cost);
   411     // This estimate uses the average eden size.  It could also
   412     // have used the latest eden size.  Which is better?
   413     double cur_eden_size_in_mbytes = ((double)cur_eden)/((double) M);
   414     initial_pause_young_estimator()->update(cur_eden_size_in_mbytes,
   415       initial_pause_in_ms);
   416     remark_pause_young_estimator()->update(cur_eden_size_in_mbytes,
   417       remark_pause_in_ms);
   418   }
   420   clear_internal_time_intervals();
   422   set_first_after_collection();
   424   // The concurrent phases keeps track of it's own mutator interval
   425   // with this timer.  This allows the stop-the-world phase to
   426   // be included in the mutator time so that the stop-the-world time
   427   // is not double counted.  Reset and start it.
   428   _concurrent_timer.reset();
   429   _concurrent_timer.start();
   431   // The mutator time between STW phases does not include the
   432   // concurrent collection time.
   433   _STW_timer.reset();
   434   _STW_timer.start();
   435 }
   437 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_begin() {
   438   //  Update the interval time
   439   _STW_timer.stop();
   440   _latest_cms_reset_end_to_initial_mark_start_secs = _STW_timer.seconds();
   441   // Reset for the initial mark
   442   _STW_timer.reset();
   443   _STW_timer.start();
   444 }
   446 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_end(
   447     GCCause::Cause gc_cause) {
   448   _STW_timer.stop();
   450   if (gc_cause != GCCause::_java_lang_system_gc ||
   451       UseAdaptiveSizePolicyWithSystemGC) {
   452     _latest_cms_initial_mark_start_to_end_time_secs = _STW_timer.seconds();
   453     avg_initial_pause()->sample(_latest_cms_initial_mark_start_to_end_time_secs);
   455     if (PrintAdaptiveSizePolicy && Verbose) {
   456       gclog_or_tty->print(
   457         "cmsAdaptiveSizePolicy::checkpoint_roots_initial_end: "
   458         "initial pause: %f ", _latest_cms_initial_mark_start_to_end_time_secs);
   459     }
   460   }
   462   _STW_timer.reset();
   463   _STW_timer.start();
   464 }
   466 void CMSAdaptiveSizePolicy::checkpoint_roots_final_begin() {
   467   _STW_timer.stop();
   468   _latest_cms_initial_mark_end_to_remark_start_secs = _STW_timer.seconds();
   469   // Start accumumlating time for the remark in the STW timer.
   470   _STW_timer.reset();
   471   _STW_timer.start();
   472 }
   474 void CMSAdaptiveSizePolicy::checkpoint_roots_final_end(
   475     GCCause::Cause gc_cause) {
   476   _STW_timer.stop();
   477   if (gc_cause != GCCause::_java_lang_system_gc ||
   478       UseAdaptiveSizePolicyWithSystemGC) {
   479     // Total initial mark pause + remark pause.
   480     _latest_cms_remark_start_to_end_time_secs = _STW_timer.seconds();
   481     double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
   482       _latest_cms_remark_start_to_end_time_secs;
   483     double STW_time_in_ms = STW_time_in_seconds * MILLIUNITS;
   485     avg_remark_pause()->sample(_latest_cms_remark_start_to_end_time_secs);
   487     // Sample total for initial mark + remark
   488     avg_cms_STW_time()->sample(STW_time_in_seconds);
   490     if (PrintAdaptiveSizePolicy && Verbose) {
   491       gclog_or_tty->print("cmsAdaptiveSizePolicy::checkpoint_roots_final_end: "
   492         "remark pause: %f", _latest_cms_remark_start_to_end_time_secs);
   493     }
   495   }
   496   // Don't start the STW times here because the concurrent
   497   // sweep and reset has not happened.
   498   //  Keep the old comment above in case I don't understand
   499   // what is going on but now
   500   // Start the STW timer because it is used by ms_collection_begin()
   501   // and ms_collection_end() to get the sweep time if a MS is being
   502   // done in the foreground.
   503   _STW_timer.reset();
   504   _STW_timer.start();
   505 }
   507 void CMSAdaptiveSizePolicy::msc_collection_begin() {
   508   if (PrintAdaptiveSizePolicy && Verbose) {
   509     gclog_or_tty->print(" ");
   510     gclog_or_tty->stamp();
   511     gclog_or_tty->print(": msc_collection_begin ");
   512   }
   513   _STW_timer.stop();
   514   _latest_cms_msc_end_to_msc_start_time_secs = _STW_timer.seconds();
   515   if (PrintAdaptiveSizePolicy && Verbose) {
   516     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::msc_collection_begin: "
   517       "mutator time %f",
   518       _latest_cms_msc_end_to_msc_start_time_secs);
   519   }
   520   avg_msc_interval()->sample(_latest_cms_msc_end_to_msc_start_time_secs);
   521   _STW_timer.reset();
   522   _STW_timer.start();
   523 }
   525 void CMSAdaptiveSizePolicy::msc_collection_end(GCCause::Cause gc_cause) {
   526   if (PrintAdaptiveSizePolicy && Verbose) {
   527     gclog_or_tty->print(" ");
   528     gclog_or_tty->stamp();
   529     gclog_or_tty->print(": msc_collection_end ");
   530   }
   531   _STW_timer.stop();
   532   if (gc_cause != GCCause::_java_lang_system_gc ||
   533         UseAdaptiveSizePolicyWithSystemGC) {
   534     double msc_pause_in_seconds = _STW_timer.seconds();
   535     if ((_latest_cms_msc_end_to_msc_start_time_secs > 0.0) &&
   536         (msc_pause_in_seconds > 0.0)) {
   537       avg_msc_pause()->sample(msc_pause_in_seconds);
   538       double mutator_time_in_seconds = 0.0;
   539       if (_latest_cms_collection_end_to_collection_start_secs == 0.0) {
   540         // This assertion may fail because of time stamp gradularity.
   541         // Comment it out and investiage it at a later time.  The large
   542         // time stamp granularity occurs on some older linux systems.
   543 #ifndef CLOCK_GRANULARITY_TOO_LARGE
   544         assert((_latest_cms_concurrent_marking_time_secs == 0.0) &&
   545                (_latest_cms_concurrent_precleaning_time_secs == 0.0) &&
   546                (_latest_cms_concurrent_sweeping_time_secs == 0.0),
   547           "There should not be any concurrent time");
   548 #endif
   549         // A concurrent collection did not start.  Mutator time
   550         // between collections comes from the STW MSC timer.
   551         mutator_time_in_seconds = _latest_cms_msc_end_to_msc_start_time_secs;
   552       } else {
   553         // The concurrent collection did start so count the mutator
   554         // time to the start of the concurrent collection.  In this
   555         // case the _latest_cms_msc_end_to_msc_start_time_secs measures
   556         // the time between the initial mark or remark and the
   557         // start of the MSC.  That has no real meaning.
   558         mutator_time_in_seconds = _latest_cms_collection_end_to_collection_start_secs;
   559       }
   561       double latest_cms_sum_concurrent_phases_time_secs =
   562         concurrent_collection_time();
   563       double interval_in_seconds =
   564         mutator_time_in_seconds +
   565         _latest_cms_initial_mark_start_to_end_time_secs +
   566         _latest_cms_remark_start_to_end_time_secs +
   567         latest_cms_sum_concurrent_phases_time_secs +
   568         msc_pause_in_seconds;
   570       if (PrintAdaptiveSizePolicy && Verbose) {
   571         gclog_or_tty->print_cr("  interval_in_seconds %f \n"
   572           "     mutator_time_in_seconds %f \n"
   573           "     _latest_cms_initial_mark_start_to_end_time_secs %f\n"
   574           "     _latest_cms_remark_start_to_end_time_secs %f\n"
   575           "     latest_cms_sum_concurrent_phases_time_secs %f\n"
   576           "     msc_pause_in_seconds %f\n",
   577           interval_in_seconds,
   578           mutator_time_in_seconds,
   579           _latest_cms_initial_mark_start_to_end_time_secs,
   580           _latest_cms_remark_start_to_end_time_secs,
   581           latest_cms_sum_concurrent_phases_time_secs,
   582           msc_pause_in_seconds);
   583       }
   585       // The concurrent cost is wasted cost but it should be
   586       // included.
   587       double concurrent_cost = concurrent_collection_cost(interval_in_seconds);
   589       // Initial mark and remark, also wasted.
   590       double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
   591         _latest_cms_remark_start_to_end_time_secs;
   592       double STW_collection_cost =
   593         collection_cost(STW_time_in_seconds, interval_in_seconds) +
   594         concurrent_cost;
   596       if (PrintAdaptiveSizePolicy && Verbose) {
   597         gclog_or_tty->print_cr(" msc_collection_end:\n"
   598           "_latest_cms_collection_end_to_collection_start_secs %f\n"
   599           "_latest_cms_msc_end_to_msc_start_time_secs %f\n"
   600           "_latest_cms_initial_mark_start_to_end_time_secs %f\n"
   601           "_latest_cms_remark_start_to_end_time_secs %f\n"
   602           "latest_cms_sum_concurrent_phases_time_secs %f\n",
   603           _latest_cms_collection_end_to_collection_start_secs,
   604           _latest_cms_msc_end_to_msc_start_time_secs,
   605           _latest_cms_initial_mark_start_to_end_time_secs,
   606           _latest_cms_remark_start_to_end_time_secs,
   607           latest_cms_sum_concurrent_phases_time_secs);
   609         gclog_or_tty->print_cr(" msc_collection_end: \n"
   610           "latest_cms_sum_concurrent_phases_time_secs %f\n"
   611           "STW_time_in_seconds %f\n"
   612           "msc_pause_in_seconds %f\n",
   613           latest_cms_sum_concurrent_phases_time_secs,
   614           STW_time_in_seconds,
   615           msc_pause_in_seconds);
   616       }
   618       double cost = concurrent_cost + STW_collection_cost +
   619         collection_cost(msc_pause_in_seconds, interval_in_seconds);
   621       _avg_msc_gc_cost->sample(cost);
   623       // Average this ms cost into all the other types gc costs
   624       avg_major_gc_cost()->sample(cost);
   626       // Sample for performance counter
   627       _avg_msc_interval->sample(interval_in_seconds);
   628       if (PrintAdaptiveSizePolicy && Verbose) {
   629         gclog_or_tty->print("cmsAdaptiveSizePolicy::msc_collection_end: "
   630           "MSC gc cost: %f  average: %f", cost,
   631           _avg_msc_gc_cost->average());
   633         double msc_pause_in_ms = msc_pause_in_seconds * MILLIUNITS;
   634         gclog_or_tty->print_cr("  MSC pause: %f (ms) MSC period %f (ms)",
   635           msc_pause_in_ms, (double) interval_in_seconds * MILLIUNITS);
   636       }
   637     }
   638   }
   640   clear_internal_time_intervals();
   642   // Can this call be put into the epilogue?
   643   set_first_after_collection();
   645   // The concurrent phases keeps track of it's own mutator interval
   646   // with this timer.  This allows the stop-the-world phase to
   647   // be included in the mutator time so that the stop-the-world time
   648   // is not double counted.  Reset and start it.
   649   _concurrent_timer.stop();
   650   _concurrent_timer.reset();
   651   _concurrent_timer.start();
   653   _STW_timer.reset();
   654   _STW_timer.start();
   655 }
   657 void CMSAdaptiveSizePolicy::ms_collection_begin() {
   658   if (PrintAdaptiveSizePolicy && Verbose) {
   659     gclog_or_tty->print(" ");
   660     gclog_or_tty->stamp();
   661     gclog_or_tty->print(": ms_collection_begin ");
   662   }
   663   _STW_timer.stop();
   664   _latest_cms_ms_end_to_ms_start = _STW_timer.seconds();
   665   if (PrintAdaptiveSizePolicy && Verbose) {
   666     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::ms_collection_begin: "
   667       "mutator time %f",
   668       _latest_cms_ms_end_to_ms_start);
   669   }
   670   avg_ms_interval()->sample(_STW_timer.seconds());
   671   _STW_timer.reset();
   672   _STW_timer.start();
   673 }
   675 void CMSAdaptiveSizePolicy::ms_collection_end(GCCause::Cause gc_cause) {
   676   if (PrintAdaptiveSizePolicy && Verbose) {
   677     gclog_or_tty->print(" ");
   678     gclog_or_tty->stamp();
   679     gclog_or_tty->print(": ms_collection_end ");
   680   }
   681   _STW_timer.stop();
   682   if (gc_cause != GCCause::_java_lang_system_gc ||
   683         UseAdaptiveSizePolicyWithSystemGC) {
   684     // The MS collection is a foreground collection that does all
   685     // the parts of a mostly concurrent collection.
   686     //
   687     // For this collection include the cost of the
   688     //  initial mark
   689     //  remark
   690     //  all concurrent time (scaled down by the
   691     //    concurrent_processor_fraction).  Some
   692     //    may be zero if the baton was passed before
   693     //    it was reached.
   694     //    concurrent marking
   695     //    sweeping
   696     //    resetting
   697     //  STW after baton was passed (STW_in_foreground_in_seconds)
   698     double STW_in_foreground_in_seconds = _STW_timer.seconds();
   700     double latest_cms_sum_concurrent_phases_time_secs =
   701       concurrent_collection_time();
   702     if (PrintAdaptiveSizePolicy && Verbose) {
   703       gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::ms_collecton_end "
   704         "STW_in_foreground_in_seconds %f "
   705         "_latest_cms_initial_mark_start_to_end_time_secs %f "
   706         "_latest_cms_remark_start_to_end_time_secs %f "
   707         "latest_cms_sum_concurrent_phases_time_secs %f "
   708         "_latest_cms_ms_marking_start_to_end_time_secs %f "
   709         "_latest_cms_ms_end_to_ms_start %f",
   710         STW_in_foreground_in_seconds,
   711         _latest_cms_initial_mark_start_to_end_time_secs,
   712         _latest_cms_remark_start_to_end_time_secs,
   713         latest_cms_sum_concurrent_phases_time_secs,
   714         _latest_cms_ms_marking_start_to_end_time_secs,
   715         _latest_cms_ms_end_to_ms_start);
   716     }
   718     double STW_marking_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs +
   719       _latest_cms_remark_start_to_end_time_secs;
   720 #ifndef CLOCK_GRANULARITY_TOO_LARGE
   721     assert(_latest_cms_ms_marking_start_to_end_time_secs == 0.0 ||
   722            latest_cms_sum_concurrent_phases_time_secs == 0.0,
   723            "marking done twice?");
   724 #endif
   725     double ms_time_in_seconds = STW_marking_in_seconds +
   726       STW_in_foreground_in_seconds +
   727       _latest_cms_ms_marking_start_to_end_time_secs +
   728       scaled_concurrent_collection_time();
   729     avg_ms_pause()->sample(ms_time_in_seconds);
   730     // Use the STW costs from the initial mark and remark plus
   731     // the cost of the concurrent phase to calculate a
   732     // collection cost.
   733     double cost = 0.0;
   734     if ((_latest_cms_ms_end_to_ms_start > 0.0) &&
   735         (ms_time_in_seconds > 0.0)) {
   736       double interval_in_seconds =
   737         _latest_cms_ms_end_to_ms_start + ms_time_in_seconds;
   739       if (PrintAdaptiveSizePolicy && Verbose) {
   740         gclog_or_tty->print_cr("\n ms_time_in_seconds  %f  "
   741           "latest_cms_sum_concurrent_phases_time_secs %f  "
   742           "interval_in_seconds %f",
   743           ms_time_in_seconds,
   744           latest_cms_sum_concurrent_phases_time_secs,
   745           interval_in_seconds);
   746       }
   748       cost = collection_cost(ms_time_in_seconds, interval_in_seconds);
   750       _avg_ms_gc_cost->sample(cost);
   751       // Average this ms cost into all the other types gc costs
   752       avg_major_gc_cost()->sample(cost);
   754       // Sample for performance counter
   755       _avg_ms_interval->sample(interval_in_seconds);
   756     }
   757     if (PrintAdaptiveSizePolicy && Verbose) {
   758       gclog_or_tty->print("cmsAdaptiveSizePolicy::ms_collection_end: "
   759         "MS gc cost: %f  average: %f", cost, _avg_ms_gc_cost->average());
   761       double ms_time_in_ms = ms_time_in_seconds * MILLIUNITS;
   762       gclog_or_tty->print_cr("  MS pause: %f (ms) MS period %f (ms)",
   763         ms_time_in_ms,
   764         _latest_cms_ms_end_to_ms_start * MILLIUNITS);
   765     }
   766   }
   768   // Consider putting this code (here to end) into a
   769   // method for convenience.
   770   clear_internal_time_intervals();
   772   set_first_after_collection();
   774   // The concurrent phases keeps track of it's own mutator interval
   775   // with this timer.  This allows the stop-the-world phase to
   776   // be included in the mutator time so that the stop-the-world time
   777   // is not double counted.  Reset and start it.
   778   _concurrent_timer.stop();
   779   _concurrent_timer.reset();
   780   _concurrent_timer.start();
   782   _STW_timer.reset();
   783   _STW_timer.start();
   784 }
   786 void CMSAdaptiveSizePolicy::clear_internal_time_intervals() {
   787   _latest_cms_reset_end_to_initial_mark_start_secs = 0.0;
   788   _latest_cms_initial_mark_end_to_remark_start_secs = 0.0;
   789   _latest_cms_collection_end_to_collection_start_secs = 0.0;
   790   _latest_cms_concurrent_marking_time_secs = 0.0;
   791   _latest_cms_concurrent_precleaning_time_secs = 0.0;
   792   _latest_cms_concurrent_sweeping_time_secs = 0.0;
   793   _latest_cms_msc_end_to_msc_start_time_secs = 0.0;
   794   _latest_cms_ms_end_to_ms_start = 0.0;
   795   _latest_cms_remark_start_to_end_time_secs = 0.0;
   796   _latest_cms_initial_mark_start_to_end_time_secs = 0.0;
   797   _latest_cms_ms_marking_start_to_end_time_secs = 0.0;
   798 }
   800 void CMSAdaptiveSizePolicy::clear_generation_free_space_flags() {
   801   AdaptiveSizePolicy::clear_generation_free_space_flags();
   803   set_change_young_gen_for_maj_pauses(0);
   804 }
   806 void CMSAdaptiveSizePolicy::concurrent_phases_resume() {
   807   if (PrintAdaptiveSizePolicy && Verbose) {
   808     gclog_or_tty->stamp();
   809     gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_phases_resume()");
   810   }
   811   _concurrent_timer.start();
   812 }
   814 double CMSAdaptiveSizePolicy::time_since_major_gc() const {
   815   _concurrent_timer.stop();
   816   double time_since_cms_gc = _concurrent_timer.seconds();
   817   _concurrent_timer.start();
   818   _STW_timer.stop();
   819   double time_since_STW_gc = _STW_timer.seconds();
   820   _STW_timer.start();
   822   return MIN2(time_since_cms_gc, time_since_STW_gc);
   823 }
   825 double CMSAdaptiveSizePolicy::major_gc_interval_average_for_decay() const {
   826   double cms_interval = _avg_concurrent_interval->average();
   827   double msc_interval = _avg_msc_interval->average();
   828   double ms_interval = _avg_ms_interval->average();
   830   return MAX3(cms_interval, msc_interval, ms_interval);
   831 }
   833 double CMSAdaptiveSizePolicy::cms_gc_cost() const {
   834   return avg_major_gc_cost()->average();
   835 }
   837 void CMSAdaptiveSizePolicy::ms_collection_marking_begin() {
   838   _STW_timer.stop();
   839   // Start accumumlating time for the marking in the STW timer.
   840   _STW_timer.reset();
   841   _STW_timer.start();
   842 }
   844 void CMSAdaptiveSizePolicy::ms_collection_marking_end(
   845     GCCause::Cause gc_cause) {
   846   _STW_timer.stop();
   847   if (gc_cause != GCCause::_java_lang_system_gc ||
   848       UseAdaptiveSizePolicyWithSystemGC) {
   849     _latest_cms_ms_marking_start_to_end_time_secs = _STW_timer.seconds();
   850     if (PrintAdaptiveSizePolicy && Verbose) {
   851       gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::"
   852         "msc_collection_marking_end: mutator time %f",
   853         _latest_cms_ms_marking_start_to_end_time_secs);
   854     }
   855   }
   856   _STW_timer.reset();
   857   _STW_timer.start();
   858 }
   860 double CMSAdaptiveSizePolicy::gc_cost() const {
   861   double cms_gen_cost = cms_gc_cost();
   862   double result =  MIN2(1.0, minor_gc_cost() + cms_gen_cost);
   863   assert(result >= 0.0, "Both minor and major costs are non-negative");
   864   return result;
   865 }
   867 // Cost of collection (unit-less)
   868 double CMSAdaptiveSizePolicy::collection_cost(double pause_in_seconds,
   869                                               double interval_in_seconds) {
   870   // Cost of collection (unit-less)
   871   double cost = 0.0;
   872   if ((interval_in_seconds > 0.0) &&
   873       (pause_in_seconds > 0.0)) {
   874     cost =
   875       pause_in_seconds / interval_in_seconds;
   876   }
   877   return cost;
   878 }
   880 size_t CMSAdaptiveSizePolicy::adjust_eden_for_pause_time(size_t cur_eden) {
   881   size_t change = 0;
   882   size_t desired_eden = cur_eden;
   884   // reduce eden size
   885   change = eden_decrement_aligned_down(cur_eden);
   886   desired_eden = cur_eden - change;
   888   if (PrintAdaptiveSizePolicy && Verbose) {
   889     gclog_or_tty->print_cr(
   890       "CMSAdaptiveSizePolicy::adjust_eden_for_pause_time "
   891       "adjusting eden for pause time. "
   892       " starting eden size " SIZE_FORMAT
   893       " reduced eden size " SIZE_FORMAT
   894       " eden delta " SIZE_FORMAT,
   895       cur_eden, desired_eden, change);
   896   }
   898   return desired_eden;
   899 }
   901 size_t CMSAdaptiveSizePolicy::adjust_eden_for_throughput(size_t cur_eden) {
   903   size_t desired_eden = cur_eden;
   905   set_change_young_gen_for_throughput(increase_young_gen_for_througput_true);
   907   size_t change = eden_increment_aligned_up(cur_eden);
   908   size_t scaled_change = scale_by_gen_gc_cost(change, minor_gc_cost());
   910   if (cur_eden + scaled_change > cur_eden) {
   911     desired_eden = cur_eden + scaled_change;
   912   }
   914   _young_gen_change_for_minor_throughput++;
   916   if (PrintAdaptiveSizePolicy && Verbose) {
   917     gclog_or_tty->print_cr(
   918       "CMSAdaptiveSizePolicy::adjust_eden_for_throughput "
   919       "adjusting eden for throughput. "
   920       " starting eden size " SIZE_FORMAT
   921       " increased eden size " SIZE_FORMAT
   922       " eden delta " SIZE_FORMAT,
   923       cur_eden, desired_eden, scaled_change);
   924   }
   926   return desired_eden;
   927 }
   929 size_t CMSAdaptiveSizePolicy::adjust_eden_for_footprint(size_t cur_eden) {
   931   set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
   933   size_t change = eden_decrement(cur_eden);
   934   size_t desired_eden_size = cur_eden - change;
   936   if (PrintAdaptiveSizePolicy && Verbose) {
   937     gclog_or_tty->print_cr(
   938       "CMSAdaptiveSizePolicy::adjust_eden_for_footprint "
   939       "adjusting eden for footprint. "
   940       " starting eden size " SIZE_FORMAT
   941       " reduced eden size " SIZE_FORMAT
   942       " eden delta " SIZE_FORMAT,
   943       cur_eden, desired_eden_size, change);
   944   }
   945   return desired_eden_size;
   946 }
   948 // The eden and promo versions should be combined if possible.
   949 // They are the same except that the sizes of the decrement
   950 // and increment are different for eden and promo.
   951 size_t CMSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) {
   952   size_t delta = eden_decrement(cur_eden);
   953   return align_size_down(delta, generation_alignment());
   954 }
   956 size_t CMSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) {
   957   size_t delta = eden_increment(cur_eden);
   958   return align_size_up(delta, generation_alignment());
   959 }
   961 size_t CMSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) {
   962   size_t delta = promo_decrement(cur_promo);
   963   return align_size_down(delta, generation_alignment());
   964 }
   966 size_t CMSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) {
   967   size_t delta = promo_increment(cur_promo);
   968   return align_size_up(delta, generation_alignment());
   969 }
   972 void CMSAdaptiveSizePolicy::compute_young_generation_free_space(size_t cur_eden,
   973                                           size_t max_eden_size)
   974 {
   975   size_t desired_eden_size = cur_eden;
   976   size_t eden_limit = max_eden_size;
   978   // Printout input
   979   if (PrintGC && PrintAdaptiveSizePolicy) {
   980     gclog_or_tty->print_cr(
   981       "CMSAdaptiveSizePolicy::compute_young_generation_free_space: "
   982       "cur_eden " SIZE_FORMAT,
   983       cur_eden);
   984   }
   986   // Used for diagnostics
   987   clear_generation_free_space_flags();
   989   if (_avg_minor_pause->padded_average() > gc_pause_goal_sec()) {
   990     if (minor_pause_young_estimator()->decrement_will_decrease()) {
   991       // If the minor pause is too long, shrink the young gen.
   992       set_change_young_gen_for_min_pauses(
   993         decrease_young_gen_for_min_pauses_true);
   994       desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
   995     }
   996   } else if ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
   997              (avg_initial_pause()->padded_average() > gc_pause_goal_sec())) {
   998     // The remark or initial pauses are not meeting the goal.  Should
   999     // the generation be shrunk?
  1000     if (get_and_clear_first_after_collection() &&
  1001         ((avg_remark_pause()->padded_average() > gc_pause_goal_sec() &&
  1002           remark_pause_young_estimator()->decrement_will_decrease()) ||
  1003          (avg_initial_pause()->padded_average() > gc_pause_goal_sec() &&
  1004           initial_pause_young_estimator()->decrement_will_decrease()))) {
  1006        set_change_young_gen_for_maj_pauses(
  1007          decrease_young_gen_for_maj_pauses_true);
  1009       // If the remark or initial pause is too long and this is the
  1010       // first young gen collection after a cms collection, shrink
  1011       // the young gen.
  1012       desired_eden_size = adjust_eden_for_pause_time(desired_eden_size);
  1014     // If not the first young gen collection after a cms collection,
  1015     // don't do anything.  In this case an adjustment has already
  1016     // been made and the results of the adjustment has not yet been
  1017     // measured.
  1018   } else if ((minor_gc_cost() >= 0.0) &&
  1019              (adjusted_mutator_cost() < _throughput_goal)) {
  1020     desired_eden_size = adjust_eden_for_throughput(desired_eden_size);
  1021   } else {
  1022     desired_eden_size = adjust_eden_for_footprint(desired_eden_size);
  1025   if (PrintGC && PrintAdaptiveSizePolicy) {
  1026     gclog_or_tty->print_cr(
  1027       "CMSAdaptiveSizePolicy::compute_young_generation_free_space limits:"
  1028       " desired_eden_size: " SIZE_FORMAT
  1029       " old_eden_size: " SIZE_FORMAT,
  1030       desired_eden_size, cur_eden);
  1033   set_eden_size(desired_eden_size);
  1036 size_t CMSAdaptiveSizePolicy::adjust_promo_for_pause_time(size_t cur_promo) {
  1037   size_t change = 0;
  1038   size_t desired_promo = cur_promo;
  1039   // Move this test up to caller like the adjust_eden_for_pause_time()
  1040   // call.
  1041   if ((AdaptiveSizePausePolicy == 0) &&
  1042       ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) ||
  1043       (avg_initial_pause()->padded_average() > gc_pause_goal_sec()))) {
  1044     set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
  1045     change = promo_decrement_aligned_down(cur_promo);
  1046     desired_promo = cur_promo - change;
  1047   } else if ((AdaptiveSizePausePolicy > 0) &&
  1048       (((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) &&
  1049        remark_pause_old_estimator()->decrement_will_decrease()) ||
  1050       ((avg_initial_pause()->padded_average() > gc_pause_goal_sec()) &&
  1051        initial_pause_old_estimator()->decrement_will_decrease()))) {
  1052     set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true);
  1053     change = promo_decrement_aligned_down(cur_promo);
  1054     desired_promo = cur_promo - change;
  1057   if ((change != 0) &&PrintAdaptiveSizePolicy && Verbose) {
  1058     gclog_or_tty->print_cr(
  1059       "CMSAdaptiveSizePolicy::adjust_promo_for_pause_time "
  1060       "adjusting promo for pause time. "
  1061       " starting promo size " SIZE_FORMAT
  1062       " reduced promo size " SIZE_FORMAT
  1063       " promo delta " SIZE_FORMAT,
  1064       cur_promo, desired_promo, change);
  1067   return desired_promo;
  1070 // Try to share this with PS.
  1071 size_t CMSAdaptiveSizePolicy::scale_by_gen_gc_cost(size_t base_change,
  1072                                                   double gen_gc_cost) {
  1074   // Calculate the change to use for the tenured gen.
  1075   size_t scaled_change = 0;
  1076   // Can the increment to the generation be scaled?
  1077   if (gc_cost() >= 0.0 && gen_gc_cost >= 0.0) {
  1078     double scale_by_ratio = gen_gc_cost / gc_cost();
  1079     scaled_change =
  1080       (size_t) (scale_by_ratio * (double) base_change);
  1081     if (PrintAdaptiveSizePolicy && Verbose) {
  1082       gclog_or_tty->print_cr(
  1083         "Scaled tenured increment: " SIZE_FORMAT " by %f down to "
  1084           SIZE_FORMAT,
  1085         base_change, scale_by_ratio, scaled_change);
  1087   } else if (gen_gc_cost >= 0.0) {
  1088     // Scaling is not going to work.  If the major gc time is the
  1089     // larger than the other GC costs, give it a full increment.
  1090     if (gen_gc_cost >= (gc_cost() - gen_gc_cost)) {
  1091       scaled_change = base_change;
  1093   } else {
  1094     // Don't expect to get here but it's ok if it does
  1095     // in the product build since the delta will be 0
  1096     // and nothing will change.
  1097     assert(false, "Unexpected value for gc costs");
  1100   return scaled_change;
  1103 size_t CMSAdaptiveSizePolicy::adjust_promo_for_throughput(size_t cur_promo) {
  1105   size_t desired_promo = cur_promo;
  1107   set_change_old_gen_for_throughput(increase_old_gen_for_throughput_true);
  1109   size_t change = promo_increment_aligned_up(cur_promo);
  1110   size_t scaled_change = scale_by_gen_gc_cost(change, major_gc_cost());
  1112   if (cur_promo + scaled_change > cur_promo) {
  1113     desired_promo = cur_promo + scaled_change;
  1116   _old_gen_change_for_major_throughput++;
  1118   if (PrintAdaptiveSizePolicy && Verbose) {
  1119     gclog_or_tty->print_cr(
  1120       "CMSAdaptiveSizePolicy::adjust_promo_for_throughput "
  1121       "adjusting promo for throughput. "
  1122       " starting promo size " SIZE_FORMAT
  1123       " increased promo size " SIZE_FORMAT
  1124       " promo delta " SIZE_FORMAT,
  1125       cur_promo, desired_promo, scaled_change);
  1128   return desired_promo;
  1131 size_t CMSAdaptiveSizePolicy::adjust_promo_for_footprint(size_t cur_promo,
  1132                                                          size_t cur_eden) {
  1134   set_decrease_for_footprint(decrease_young_gen_for_footprint_true);
  1136   size_t change = promo_decrement(cur_promo);
  1137   size_t desired_promo_size = cur_promo - change;
  1139   if (PrintAdaptiveSizePolicy && Verbose) {
  1140     gclog_or_tty->print_cr(
  1141       "CMSAdaptiveSizePolicy::adjust_promo_for_footprint "
  1142       "adjusting promo for footprint. "
  1143       " starting promo size " SIZE_FORMAT
  1144       " reduced promo size " SIZE_FORMAT
  1145       " promo delta " SIZE_FORMAT,
  1146       cur_promo, desired_promo_size, change);
  1148   return desired_promo_size;
  1151 void CMSAdaptiveSizePolicy::compute_tenured_generation_free_space(
  1152                                 size_t cur_tenured_free,
  1153                                 size_t max_tenured_available,
  1154                                 size_t cur_eden) {
  1155   // This can be bad if the desired value grows/shrinks without
  1156   // any connection to the read free space
  1157   size_t desired_promo_size = promo_size();
  1158   size_t tenured_limit = max_tenured_available;
  1160   // Printout input
  1161   if (PrintGC && PrintAdaptiveSizePolicy) {
  1162     gclog_or_tty->print_cr(
  1163       "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space: "
  1164       "cur_tenured_free " SIZE_FORMAT
  1165       " max_tenured_available " SIZE_FORMAT,
  1166       cur_tenured_free, max_tenured_available);
  1169   // Used for diagnostics
  1170   clear_generation_free_space_flags();
  1172   set_decide_at_full_gc(decide_at_full_gc_true);
  1173   if (avg_remark_pause()->padded_average() > gc_pause_goal_sec() ||
  1174       avg_initial_pause()->padded_average() > gc_pause_goal_sec()) {
  1175     desired_promo_size = adjust_promo_for_pause_time(cur_tenured_free);
  1176   } else if (avg_minor_pause()->padded_average() > gc_pause_goal_sec()) {
  1177     // Nothing to do since the minor collections are too large and
  1178     // this method only deals with the cms generation.
  1179   } else if ((cms_gc_cost() >= 0.0) &&
  1180              (adjusted_mutator_cost() < _throughput_goal)) {
  1181     desired_promo_size = adjust_promo_for_throughput(cur_tenured_free);
  1182   } else {
  1183     desired_promo_size = adjust_promo_for_footprint(cur_tenured_free,
  1184                                                     cur_eden);
  1187   if (PrintGC && PrintAdaptiveSizePolicy) {
  1188     gclog_or_tty->print_cr(
  1189       "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space limits:"
  1190       " desired_promo_size: " SIZE_FORMAT
  1191       " old_promo_size: " SIZE_FORMAT,
  1192       desired_promo_size, cur_tenured_free);
  1195   set_promo_size(desired_promo_size);
  1198 uint CMSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold(
  1199                                              bool is_survivor_overflow,
  1200                                              uint tenuring_threshold,
  1201                                              size_t survivor_limit) {
  1202   assert(survivor_limit >= generation_alignment(),
  1203          "survivor_limit too small");
  1204   assert((size_t)align_size_down(survivor_limit, generation_alignment())
  1205          == survivor_limit, "survivor_limit not aligned");
  1207   // Change UsePSAdaptiveSurvivorSizePolicy -> UseAdaptiveSurvivorSizePolicy?
  1208   if (!UsePSAdaptiveSurvivorSizePolicy ||
  1209       !young_gen_policy_is_ready()) {
  1210     return tenuring_threshold;
  1213   // We'll decide whether to increase or decrease the tenuring
  1214   // threshold based partly on the newly computed survivor size
  1215   // (if we hit the maximum limit allowed, we'll always choose to
  1216   // decrement the threshold).
  1217   bool incr_tenuring_threshold = false;
  1218   bool decr_tenuring_threshold = false;
  1220   set_decrement_tenuring_threshold_for_gc_cost(false);
  1221   set_increment_tenuring_threshold_for_gc_cost(false);
  1222   set_decrement_tenuring_threshold_for_survivor_limit(false);
  1224   if (!is_survivor_overflow) {
  1225     // Keep running averages on how much survived
  1227     // We use the tenuring threshold to equalize the cost of major
  1228     // and minor collections.
  1229     // ThresholdTolerance is used to indicate how sensitive the
  1230     // tenuring threshold is to differences in cost betweent the
  1231     // collection types.
  1233     // Get the times of interest. This involves a little work, so
  1234     // we cache the values here.
  1235     const double major_cost = major_gc_cost();
  1236     const double minor_cost = minor_gc_cost();
  1238     if (minor_cost > major_cost * _threshold_tolerance_percent) {
  1239       // Minor times are getting too long;  lower the threshold so
  1240       // less survives and more is promoted.
  1241       decr_tenuring_threshold = true;
  1242       set_decrement_tenuring_threshold_for_gc_cost(true);
  1243     } else if (major_cost > minor_cost * _threshold_tolerance_percent) {
  1244       // Major times are too long, so we want less promotion.
  1245       incr_tenuring_threshold = true;
  1246       set_increment_tenuring_threshold_for_gc_cost(true);
  1249   } else {
  1250     // Survivor space overflow occurred, so promoted and survived are
  1251     // not accurate. We'll make our best guess by combining survived
  1252     // and promoted and count them as survivors.
  1253     //
  1254     // We'll lower the tenuring threshold to see if we can correct
  1255     // things. Also, set the survivor size conservatively. We're
  1256     // trying to avoid many overflows from occurring if defnew size
  1257     // is just too small.
  1259     decr_tenuring_threshold = true;
  1262   // The padded average also maintains a deviation from the average;
  1263   // we use this to see how good of an estimate we have of what survived.
  1264   // We're trying to pad the survivor size as little as possible without
  1265   // overflowing the survivor spaces.
  1266   size_t target_size = align_size_up((size_t)_avg_survived->padded_average(),
  1267                                      generation_alignment());
  1268   target_size = MAX2(target_size, generation_alignment());
  1270   if (target_size > survivor_limit) {
  1271     // Target size is bigger than we can handle. Let's also reduce
  1272     // the tenuring threshold.
  1273     target_size = survivor_limit;
  1274     decr_tenuring_threshold = true;
  1275     set_decrement_tenuring_threshold_for_survivor_limit(true);
  1278   // Finally, increment or decrement the tenuring threshold, as decided above.
  1279   // We test for decrementing first, as we might have hit the target size
  1280   // limit.
  1281   if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1282     if (tenuring_threshold > 1) {
  1283       tenuring_threshold--;
  1285   } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) {
  1286     if (tenuring_threshold < MaxTenuringThreshold) {
  1287       tenuring_threshold++;
  1291   // We keep a running average of the amount promoted which is used
  1292   // to decide when we should collect the old generation (when
  1293   // the amount of old gen free space is less than what we expect to
  1294   // promote).
  1296   if (PrintAdaptiveSizePolicy) {
  1297     // A little more detail if Verbose is on
  1298     GenCollectedHeap* gch = GenCollectedHeap::heap();
  1299     if (Verbose) {
  1300       gclog_or_tty->print( "  avg_survived: %f"
  1301                   "  avg_deviation: %f",
  1302                   _avg_survived->average(),
  1303                   _avg_survived->deviation());
  1306     gclog_or_tty->print( "  avg_survived_padded_avg: %f",
  1307                 _avg_survived->padded_average());
  1309     if (Verbose) {
  1310       gclog_or_tty->print( "  avg_promoted_avg: %f"
  1311                   "  avg_promoted_dev: %f",
  1312                   gch->gc_stats(1)->avg_promoted()->average(),
  1313                   gch->gc_stats(1)->avg_promoted()->deviation());
  1316     gclog_or_tty->print( "  avg_promoted_padded_avg: %f"
  1317                 "  avg_pretenured_padded_avg: %f"
  1318                 "  tenuring_thresh: %u"
  1319                 "  target_size: " SIZE_FORMAT
  1320                 "  survivor_limit: " SIZE_FORMAT,
  1321                 gch->gc_stats(1)->avg_promoted()->padded_average(),
  1322                 _avg_pretenured->padded_average(),
  1323                 tenuring_threshold, target_size, survivor_limit);
  1324     gclog_or_tty->cr();
  1327   set_survivor_size(target_size);
  1329   return tenuring_threshold;
  1332 bool CMSAdaptiveSizePolicy::get_and_clear_first_after_collection() {
  1333   bool result = _first_after_collection;
  1334   _first_after_collection = false;
  1335   return result;
  1338 bool CMSAdaptiveSizePolicy::print_adaptive_size_policy_on(
  1339                                                     outputStream* st) const {
  1341   if (!UseAdaptiveSizePolicy) return false;
  1343   GenCollectedHeap* gch = GenCollectedHeap::heap();
  1344   Generation* gen0 = gch->get_gen(0);
  1345   DefNewGeneration* def_new = gen0->as_DefNewGeneration();
  1346   return
  1347     AdaptiveSizePolicy::print_adaptive_size_policy_on(
  1348                                          st,
  1349                                          def_new->tenuring_threshold());

mercurial