src/share/vm/gc_implementation/g1/g1CollectorPolicy.hpp

Wed, 21 Dec 2011 07:53:53 -0500

author
tonyp
date
Wed, 21 Dec 2011 07:53:53 -0500
changeset 3356
67fdcb391461
parent 3337
41406797186b
child 3358
1cbe7978b021
permissions
-rw-r--r--

7119027: G1: use atomics to update RS length / predict time of inc CSet
Summary: Make sure that the updates to the RS length and inc CSet predicted time are updated in an MT-safe way.
Reviewed-by: brutisso, iveresov

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
    28 #include "gc_implementation/g1/collectionSetChooser.hpp"
    29 #include "gc_implementation/g1/g1MMUTracker.hpp"
    30 #include "memory/collectorPolicy.hpp"
    32 // A G1CollectorPolicy makes policy decisions that determine the
    33 // characteristics of the collector.  Examples include:
    34 //   * choice of collection set.
    35 //   * when to collect.
    37 class HeapRegion;
    38 class CollectionSetChooser;
    40 // Yes, this is a bit unpleasant... but it saves replicating the same thing
    41 // over and over again and introducing subtle problems through small typos and
    42 // cutting and pasting mistakes. The macros below introduces a number
    43 // sequnce into the following two classes and the methods that access it.
    45 #define define_num_seq(name)                                                  \
    46 private:                                                                      \
    47   NumberSeq _all_##name##_times_ms;                                           \
    48 public:                                                                       \
    49   void record_##name##_time_ms(double ms) {                                   \
    50     _all_##name##_times_ms.add(ms);                                           \
    51   }                                                                           \
    52   NumberSeq* get_##name##_seq() {                                             \
    53     return &_all_##name##_times_ms;                                           \
    54   }
    56 class MainBodySummary;
    58 class PauseSummary: public CHeapObj {
    59   define_num_seq(total)
    60     define_num_seq(other)
    62 public:
    63   virtual MainBodySummary*    main_body_summary()    { return NULL; }
    64 };
    66 class MainBodySummary: public CHeapObj {
    67   define_num_seq(satb_drain) // optional
    68   define_num_seq(parallel) // parallel only
    69     define_num_seq(ext_root_scan)
    70     define_num_seq(mark_stack_scan)
    71     define_num_seq(update_rs)
    72     define_num_seq(scan_rs)
    73     define_num_seq(obj_copy)
    74     define_num_seq(termination) // parallel only
    75     define_num_seq(parallel_other) // parallel only
    76   define_num_seq(mark_closure)
    77   define_num_seq(clear_ct)
    78 };
    80 class Summary: public PauseSummary,
    81                public MainBodySummary {
    82 public:
    83   virtual MainBodySummary*    main_body_summary()    { return this; }
    84 };
    86 class G1CollectorPolicy: public CollectorPolicy {
    87 private:
    88   // either equal to the number of parallel threads, if ParallelGCThreads
    89   // has been set, or 1 otherwise
    90   int _parallel_gc_threads;
    92   // The number of GC threads currently active.
    93   uintx _no_of_gc_threads;
    95   enum SomePrivateConstants {
    96     NumPrevPausesForHeuristics = 10
    97   };
    99   G1MMUTracker* _mmu_tracker;
   101   void initialize_flags();
   103   void initialize_all() {
   104     initialize_flags();
   105     initialize_size_info();
   106     initialize_perm_generation(PermGen::MarkSweepCompact);
   107   }
   109   CollectionSetChooser* _collectionSetChooser;
   111   double _cur_collection_start_sec;
   112   size_t _cur_collection_pause_used_at_start_bytes;
   113   size_t _cur_collection_pause_used_regions_at_start;
   114   size_t _prev_collection_pause_used_at_end_bytes;
   115   double _cur_collection_par_time_ms;
   116   double _cur_satb_drain_time_ms;
   117   double _cur_clear_ct_time_ms;
   118   double _cur_ref_proc_time_ms;
   119   double _cur_ref_enq_time_ms;
   121 #ifndef PRODUCT
   122   // Card Table Count Cache stats
   123   double _min_clear_cc_time_ms;         // min
   124   double _max_clear_cc_time_ms;         // max
   125   double _cur_clear_cc_time_ms;         // clearing time during current pause
   126   double _cum_clear_cc_time_ms;         // cummulative clearing time
   127   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
   128 #endif
   130   // These exclude marking times.
   131   TruncatedSeq* _recent_gc_times_ms;
   133   TruncatedSeq* _concurrent_mark_remark_times_ms;
   134   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
   136   Summary*           _summary;
   138   NumberSeq* _all_pause_times_ms;
   139   NumberSeq* _all_full_gc_times_ms;
   140   double _stop_world_start;
   141   NumberSeq* _all_stop_world_times_ms;
   142   NumberSeq* _all_yield_times_ms;
   144   int        _aux_num;
   145   NumberSeq* _all_aux_times_ms;
   146   double*    _cur_aux_start_times_ms;
   147   double*    _cur_aux_times_ms;
   148   bool*      _cur_aux_times_set;
   150   double* _par_last_gc_worker_start_times_ms;
   151   double* _par_last_ext_root_scan_times_ms;
   152   double* _par_last_mark_stack_scan_times_ms;
   153   double* _par_last_update_rs_times_ms;
   154   double* _par_last_update_rs_processed_buffers;
   155   double* _par_last_scan_rs_times_ms;
   156   double* _par_last_obj_copy_times_ms;
   157   double* _par_last_termination_times_ms;
   158   double* _par_last_termination_attempts;
   159   double* _par_last_gc_worker_end_times_ms;
   160   double* _par_last_gc_worker_times_ms;
   162   // Each workers 'other' time i.e. the elapsed time of the parallel
   163   // phase of the pause minus the sum of the individual sub-phase
   164   // times for a given worker thread.
   165   double* _par_last_gc_worker_other_times_ms;
   167   // indicates whether we are in young or mixed GC mode
   168   bool _gcs_are_young;
   170   // if true, then it tries to dynamically adjust the length of the
   171   // young list
   172   bool _adaptive_young_list_length;
   173   size_t _young_list_target_length;
   174   size_t _young_list_fixed_length;
   175   size_t _prev_eden_capacity; // used for logging
   177   // The max number of regions we can extend the eden by while the GC
   178   // locker is active. This should be >= _young_list_target_length;
   179   size_t _young_list_max_length;
   181   bool                  _last_gc_was_young;
   183   unsigned              _young_pause_num;
   184   unsigned              _mixed_pause_num;
   186   bool                  _during_marking;
   187   bool                  _in_marking_window;
   188   bool                  _in_marking_window_im;
   190   SurvRateGroup*        _short_lived_surv_rate_group;
   191   SurvRateGroup*        _survivor_surv_rate_group;
   192   // add here any more surv rate groups
   194   double                _gc_overhead_perc;
   196   double _reserve_factor;
   197   size_t _reserve_regions;
   199   bool during_marking() {
   200     return _during_marking;
   201   }
   203 private:
   204   enum PredictionConstants {
   205     TruncatedSeqLength = 10
   206   };
   208   TruncatedSeq* _alloc_rate_ms_seq;
   209   double        _prev_collection_pause_end_ms;
   211   TruncatedSeq* _pending_card_diff_seq;
   212   TruncatedSeq* _rs_length_diff_seq;
   213   TruncatedSeq* _cost_per_card_ms_seq;
   214   TruncatedSeq* _young_cards_per_entry_ratio_seq;
   215   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
   216   TruncatedSeq* _cost_per_entry_ms_seq;
   217   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
   218   TruncatedSeq* _cost_per_byte_ms_seq;
   219   TruncatedSeq* _constant_other_time_ms_seq;
   220   TruncatedSeq* _young_other_cost_per_region_ms_seq;
   221   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
   223   TruncatedSeq* _pending_cards_seq;
   224   TruncatedSeq* _rs_lengths_seq;
   226   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
   228   TruncatedSeq* _young_gc_eff_seq;
   230   bool   _using_new_ratio_calculations;
   231   size_t _min_desired_young_length; // as set on the command line or default calculations
   232   size_t _max_desired_young_length; // as set on the command line or default calculations
   234   size_t _eden_cset_region_length;
   235   size_t _survivor_cset_region_length;
   236   size_t _old_cset_region_length;
   238   void init_cset_region_lengths(size_t eden_cset_region_length,
   239                                 size_t survivor_cset_region_length);
   241   size_t eden_cset_region_length()     { return _eden_cset_region_length;     }
   242   size_t survivor_cset_region_length() { return _survivor_cset_region_length; }
   243   size_t old_cset_region_length()      { return _old_cset_region_length;      }
   245   size_t _free_regions_at_end_of_collection;
   247   size_t _recorded_rs_lengths;
   248   size_t _max_rs_lengths;
   250   double _recorded_young_free_cset_time_ms;
   251   double _recorded_non_young_free_cset_time_ms;
   253   double _sigma;
   254   double _expensive_region_limit_ms;
   256   size_t _rs_lengths_prediction;
   258   size_t _known_garbage_bytes;
   259   double _known_garbage_ratio;
   261   double sigma() {
   262     return _sigma;
   263   }
   265   // A function that prevents us putting too much stock in small sample
   266   // sets.  Returns a number between 2.0 and 1.0, depending on the number
   267   // of samples.  5 or more samples yields one; fewer scales linearly from
   268   // 2.0 at 1 sample to 1.0 at 5.
   269   double confidence_factor(int samples) {
   270     if (samples > 4) return 1.0;
   271     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
   272   }
   274   double get_new_neg_prediction(TruncatedSeq* seq) {
   275     return seq->davg() - sigma() * seq->dsd();
   276   }
   278 #ifndef PRODUCT
   279   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
   280 #endif // PRODUCT
   282   void adjust_concurrent_refinement(double update_rs_time,
   283                                     double update_rs_processed_buffers,
   284                                     double goal_ms);
   286   uintx no_of_gc_threads() { return _no_of_gc_threads; }
   287   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
   289   double _pause_time_target_ms;
   290   double _recorded_young_cset_choice_time_ms;
   291   double _recorded_non_young_cset_choice_time_ms;
   292   size_t _pending_cards;
   293   size_t _max_pending_cards;
   295 public:
   296   // Accessors
   298   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
   299     hr->set_young();
   300     hr->install_surv_rate_group(_short_lived_surv_rate_group);
   301     hr->set_young_index_in_cset(young_index_in_cset);
   302   }
   304   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
   305     assert(hr->is_young() && hr->is_survivor(), "pre-condition");
   306     hr->install_surv_rate_group(_survivor_surv_rate_group);
   307     hr->set_young_index_in_cset(young_index_in_cset);
   308   }
   310 #ifndef PRODUCT
   311   bool verify_young_ages();
   312 #endif // PRODUCT
   314   double get_new_prediction(TruncatedSeq* seq) {
   315     return MAX2(seq->davg() + sigma() * seq->dsd(),
   316                 seq->davg() * confidence_factor(seq->num()));
   317   }
   319   void record_max_rs_lengths(size_t rs_lengths) {
   320     _max_rs_lengths = rs_lengths;
   321   }
   323   size_t predict_pending_card_diff() {
   324     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
   325     if (prediction < 0.00001) {
   326       return 0;
   327     } else {
   328       return (size_t) prediction;
   329     }
   330   }
   332   size_t predict_pending_cards() {
   333     size_t max_pending_card_num = _g1->max_pending_card_num();
   334     size_t diff = predict_pending_card_diff();
   335     size_t prediction;
   336     if (diff > max_pending_card_num) {
   337       prediction = max_pending_card_num;
   338     } else {
   339       prediction = max_pending_card_num - diff;
   340     }
   342     return prediction;
   343   }
   345   size_t predict_rs_length_diff() {
   346     return (size_t) get_new_prediction(_rs_length_diff_seq);
   347   }
   349   double predict_alloc_rate_ms() {
   350     return get_new_prediction(_alloc_rate_ms_seq);
   351   }
   353   double predict_cost_per_card_ms() {
   354     return get_new_prediction(_cost_per_card_ms_seq);
   355   }
   357   double predict_rs_update_time_ms(size_t pending_cards) {
   358     return (double) pending_cards * predict_cost_per_card_ms();
   359   }
   361   double predict_young_cards_per_entry_ratio() {
   362     return get_new_prediction(_young_cards_per_entry_ratio_seq);
   363   }
   365   double predict_mixed_cards_per_entry_ratio() {
   366     if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
   367       return predict_young_cards_per_entry_ratio();
   368     } else {
   369       return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
   370     }
   371   }
   373   size_t predict_young_card_num(size_t rs_length) {
   374     return (size_t) ((double) rs_length *
   375                      predict_young_cards_per_entry_ratio());
   376   }
   378   size_t predict_non_young_card_num(size_t rs_length) {
   379     return (size_t) ((double) rs_length *
   380                      predict_mixed_cards_per_entry_ratio());
   381   }
   383   double predict_rs_scan_time_ms(size_t card_num) {
   384     if (gcs_are_young()) {
   385       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   386     } else {
   387       return predict_mixed_rs_scan_time_ms(card_num);
   388     }
   389   }
   391   double predict_mixed_rs_scan_time_ms(size_t card_num) {
   392     if (_mixed_cost_per_entry_ms_seq->num() < 3) {
   393       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
   394     } else {
   395       return (double) (card_num *
   396                        get_new_prediction(_mixed_cost_per_entry_ms_seq));
   397     }
   398   }
   400   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
   401     if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
   402       return (1.1 * (double) bytes_to_copy) *
   403               get_new_prediction(_cost_per_byte_ms_seq);
   404     } else {
   405       return (double) bytes_to_copy *
   406              get_new_prediction(_cost_per_byte_ms_during_cm_seq);
   407     }
   408   }
   410   double predict_object_copy_time_ms(size_t bytes_to_copy) {
   411     if (_in_marking_window && !_in_marking_window_im) {
   412       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
   413     } else {
   414       return (double) bytes_to_copy *
   415               get_new_prediction(_cost_per_byte_ms_seq);
   416     }
   417   }
   419   double predict_constant_other_time_ms() {
   420     return get_new_prediction(_constant_other_time_ms_seq);
   421   }
   423   double predict_young_other_time_ms(size_t young_num) {
   424     return (double) young_num *
   425            get_new_prediction(_young_other_cost_per_region_ms_seq);
   426   }
   428   double predict_non_young_other_time_ms(size_t non_young_num) {
   429     return (double) non_young_num *
   430            get_new_prediction(_non_young_other_cost_per_region_ms_seq);
   431   }
   433   void check_if_region_is_too_expensive(double predicted_time_ms);
   435   double predict_young_collection_elapsed_time_ms(size_t adjustment);
   436   double predict_base_elapsed_time_ms(size_t pending_cards);
   437   double predict_base_elapsed_time_ms(size_t pending_cards,
   438                                       size_t scanned_cards);
   439   size_t predict_bytes_to_copy(HeapRegion* hr);
   440   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
   442   void set_recorded_rs_lengths(size_t rs_lengths);
   444   size_t cset_region_length()       { return young_cset_region_length() +
   445                                              old_cset_region_length(); }
   446   size_t young_cset_region_length() { return eden_cset_region_length() +
   447                                              survivor_cset_region_length(); }
   449   void record_young_free_cset_time_ms(double time_ms) {
   450     _recorded_young_free_cset_time_ms = time_ms;
   451   }
   453   void record_non_young_free_cset_time_ms(double time_ms) {
   454     _recorded_non_young_free_cset_time_ms = time_ms;
   455   }
   457   double predict_young_gc_eff() {
   458     return get_new_neg_prediction(_young_gc_eff_seq);
   459   }
   461   double predict_survivor_regions_evac_time();
   463   void cset_regions_freed() {
   464     bool propagate = _last_gc_was_young && !_in_marking_window;
   465     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
   466     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
   467     // also call it on any more surv rate groups
   468   }
   470   void set_known_garbage_bytes(size_t known_garbage_bytes) {
   471     _known_garbage_bytes = known_garbage_bytes;
   472     size_t heap_bytes = _g1->capacity();
   473     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   474   }
   476   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
   477     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
   479     _known_garbage_bytes -= known_garbage_bytes;
   480     size_t heap_bytes = _g1->capacity();
   481     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
   482   }
   484   G1MMUTracker* mmu_tracker() {
   485     return _mmu_tracker;
   486   }
   488   double max_pause_time_ms() {
   489     return _mmu_tracker->max_gc_time() * 1000.0;
   490   }
   492   double predict_remark_time_ms() {
   493     return get_new_prediction(_concurrent_mark_remark_times_ms);
   494   }
   496   double predict_cleanup_time_ms() {
   497     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
   498   }
   500   // Returns an estimate of the survival rate of the region at yg-age
   501   // "yg_age".
   502   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
   503     TruncatedSeq* seq = surv_rate_group->get_seq(age);
   504     if (seq->num() == 0)
   505       gclog_or_tty->print("BARF! age is %d", age);
   506     guarantee( seq->num() > 0, "invariant" );
   507     double pred = get_new_prediction(seq);
   508     if (pred > 1.0)
   509       pred = 1.0;
   510     return pred;
   511   }
   513   double predict_yg_surv_rate(int age) {
   514     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
   515   }
   517   double accum_yg_surv_rate_pred(int age) {
   518     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
   519   }
   521 private:
   522   void print_stats(int level, const char* str, double value);
   523   void print_stats(int level, const char* str, int value);
   525   void print_par_stats(int level, const char* str, double* data);
   526   void print_par_sizes(int level, const char* str, double* data);
   528   void check_other_times(int level,
   529                          NumberSeq* other_times_ms,
   530                          NumberSeq* calc_other_times_ms) const;
   532   void print_summary (PauseSummary* stats) const;
   534   void print_summary (int level, const char* str, NumberSeq* seq) const;
   535   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
   537   double avg_value (double* data);
   538   double max_value (double* data);
   539   double sum_of_values (double* data);
   540   double max_sum (double* data1, double* data2);
   542   double _last_pause_time_ms;
   544   size_t _bytes_in_collection_set_before_gc;
   545   size_t _bytes_copied_during_gc;
   547   // Used to count used bytes in CS.
   548   friend class CountCSClosure;
   550   // Statistics kept per GC stoppage, pause or full.
   551   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
   553   // Add a new GC of the given duration and end time to the record.
   554   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
   556   // The head of the list (via "next_in_collection_set()") representing the
   557   // current collection set. Set from the incrementally built collection
   558   // set at the start of the pause.
   559   HeapRegion* _collection_set;
   561   // The number of bytes in the collection set before the pause. Set from
   562   // the incrementally built collection set at the start of an evacuation
   563   // pause.
   564   size_t _collection_set_bytes_used_before;
   566   // The associated information that is maintained while the incremental
   567   // collection set is being built with young regions. Used to populate
   568   // the recorded info for the evacuation pause.
   570   enum CSetBuildType {
   571     Active,             // We are actively building the collection set
   572     Inactive            // We are not actively building the collection set
   573   };
   575   CSetBuildType _inc_cset_build_state;
   577   // The head of the incrementally built collection set.
   578   HeapRegion* _inc_cset_head;
   580   // The tail of the incrementally built collection set.
   581   HeapRegion* _inc_cset_tail;
   583   // The number of bytes in the incrementally built collection set.
   584   // Used to set _collection_set_bytes_used_before at the start of
   585   // an evacuation pause.
   586   size_t _inc_cset_bytes_used_before;
   588   // Used to record the highest end of heap region in collection set
   589   HeapWord* _inc_cset_max_finger;
   591   // The RSet lengths recorded for regions in the CSet. It is updated
   592   // by the thread that adds a new region to the CSet. We assume that
   593   // only one thread can be allocating a new CSet region (currently,
   594   // it does so after taking the Heap_lock) hence no need to
   595   // synchronize updates to this field.
   596   size_t _inc_cset_recorded_rs_lengths;
   598   // A concurrent refinement thread periodcially samples the young
   599   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
   600   // the RSets grow. Instead of having to syncronize updates to that
   601   // field we accumulate them in this field and add it to
   602   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
   603   ssize_t _inc_cset_recorded_rs_lengths_diffs;
   605   // The predicted elapsed time it will take to collect the regions in
   606   // the CSet. This is updated by the thread that adds a new region to
   607   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
   608   // MT-safety assumptions.
   609   double _inc_cset_predicted_elapsed_time_ms;
   611   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
   612   double _inc_cset_predicted_elapsed_time_ms_diffs;
   614   // Stash a pointer to the g1 heap.
   615   G1CollectedHeap* _g1;
   617   // The ratio of gc time to elapsed time, computed over recent pauses.
   618   double _recent_avg_pause_time_ratio;
   620   double recent_avg_pause_time_ratio() {
   621     return _recent_avg_pause_time_ratio;
   622   }
   624   // At the end of a pause we check the heap occupancy and we decide
   625   // whether we will start a marking cycle during the next pause. If
   626   // we decide that we want to do that, we will set this parameter to
   627   // true. So, this parameter will stay true between the end of a
   628   // pause and the beginning of a subsequent pause (not necessarily
   629   // the next one, see the comments on the next field) when we decide
   630   // that we will indeed start a marking cycle and do the initial-mark
   631   // work.
   632   volatile bool _initiate_conc_mark_if_possible;
   634   // If initiate_conc_mark_if_possible() is set at the beginning of a
   635   // pause, it is a suggestion that the pause should start a marking
   636   // cycle by doing the initial-mark work. However, it is possible
   637   // that the concurrent marking thread is still finishing up the
   638   // previous marking cycle (e.g., clearing the next marking
   639   // bitmap). If that is the case we cannot start a new cycle and
   640   // we'll have to wait for the concurrent marking thread to finish
   641   // what it is doing. In this case we will postpone the marking cycle
   642   // initiation decision for the next pause. When we eventually decide
   643   // to start a cycle, we will set _during_initial_mark_pause which
   644   // will stay true until the end of the initial-mark pause and it's
   645   // the condition that indicates that a pause is doing the
   646   // initial-mark work.
   647   volatile bool _during_initial_mark_pause;
   649   bool _should_revert_to_young_gcs;
   650   bool _last_young_gc;
   652   // This set of variables tracks the collector efficiency, in order to
   653   // determine whether we should initiate a new marking.
   654   double _cur_mark_stop_world_time_ms;
   655   double _mark_remark_start_sec;
   656   double _mark_cleanup_start_sec;
   657   double _mark_closure_time_ms;
   659   // Update the young list target length either by setting it to the
   660   // desired fixed value or by calculating it using G1's pause
   661   // prediction model. If no rs_lengths parameter is passed, predict
   662   // the RS lengths using the prediction model, otherwise use the
   663   // given rs_lengths as the prediction.
   664   void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
   666   // Calculate and return the minimum desired young list target
   667   // length. This is the minimum desired young list length according
   668   // to the user's inputs.
   669   size_t calculate_young_list_desired_min_length(size_t base_min_length);
   671   // Calculate and return the maximum desired young list target
   672   // length. This is the maximum desired young list length according
   673   // to the user's inputs.
   674   size_t calculate_young_list_desired_max_length();
   676   // Calculate and return the maximum young list target length that
   677   // can fit into the pause time goal. The parameters are: rs_lengths
   678   // represent the prediction of how large the young RSet lengths will
   679   // be, base_min_length is the alreay existing number of regions in
   680   // the young list, min_length and max_length are the desired min and
   681   // max young list length according to the user's inputs.
   682   size_t calculate_young_list_target_length(size_t rs_lengths,
   683                                             size_t base_min_length,
   684                                             size_t desired_min_length,
   685                                             size_t desired_max_length);
   687   // Check whether a given young length (young_length) fits into the
   688   // given target pause time and whether the prediction for the amount
   689   // of objects to be copied for the given length will fit into the
   690   // given free space (expressed by base_free_regions).  It is used by
   691   // calculate_young_list_target_length().
   692   bool predict_will_fit(size_t young_length, double base_time_ms,
   693                         size_t base_free_regions, double target_pause_time_ms);
   695   // Count the number of bytes used in the CS.
   696   void count_CS_bytes_used();
   698   void update_young_list_size_using_newratio(size_t number_of_heap_regions);
   700 public:
   702   G1CollectorPolicy();
   704   virtual G1CollectorPolicy* as_g1_policy() { return this; }
   706   virtual CollectorPolicy::Name kind() {
   707     return CollectorPolicy::G1CollectorPolicyKind;
   708   }
   710   // Check the current value of the young list RSet lengths and
   711   // compare it against the last prediction. If the current value is
   712   // higher, recalculate the young list target length prediction.
   713   void revise_young_list_target_length_if_necessary();
   715   size_t bytes_in_collection_set() {
   716     return _bytes_in_collection_set_before_gc;
   717   }
   719   unsigned calc_gc_alloc_time_stamp() {
   720     return _all_pause_times_ms->num() + 1;
   721   }
   723   // This should be called after the heap is resized.
   724   void record_new_heap_size(size_t new_number_of_regions);
   726 public:
   728   void init();
   730   // Create jstat counters for the policy.
   731   virtual void initialize_gc_policy_counters();
   733   virtual HeapWord* mem_allocate_work(size_t size,
   734                                       bool is_tlab,
   735                                       bool* gc_overhead_limit_was_exceeded);
   737   // This method controls how a collector handles one or more
   738   // of its generations being fully allocated.
   739   virtual HeapWord* satisfy_failed_allocation(size_t size,
   740                                               bool is_tlab);
   742   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
   744   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
   746   // Update the heuristic info to record a collection pause of the given
   747   // start time, where the given number of bytes were used at the start.
   748   // This may involve changing the desired size of a collection set.
   750   void record_stop_world_start();
   752   void record_collection_pause_start(double start_time_sec, size_t start_used);
   754   // Must currently be called while the world is stopped.
   755   void record_concurrent_mark_init_end(double
   756                                            mark_init_elapsed_time_ms);
   758   void record_mark_closure_time(double mark_closure_time_ms) {
   759     _mark_closure_time_ms = mark_closure_time_ms;
   760   }
   762   void record_concurrent_mark_remark_start();
   763   void record_concurrent_mark_remark_end();
   765   void record_concurrent_mark_cleanup_start();
   766   void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
   767   void record_concurrent_mark_cleanup_completed();
   769   void record_concurrent_pause();
   770   void record_concurrent_pause_end();
   772   void record_collection_pause_end(int no_of_gc_threads);
   773   void print_heap_transition();
   775   // Record the fact that a full collection occurred.
   776   void record_full_collection_start();
   777   void record_full_collection_end();
   779   void record_gc_worker_start_time(int worker_i, double ms) {
   780     _par_last_gc_worker_start_times_ms[worker_i] = ms;
   781   }
   783   void record_ext_root_scan_time(int worker_i, double ms) {
   784     _par_last_ext_root_scan_times_ms[worker_i] = ms;
   785   }
   787   void record_mark_stack_scan_time(int worker_i, double ms) {
   788     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
   789   }
   791   void record_satb_drain_time(double ms) {
   792     assert(_g1->mark_in_progress(), "shouldn't be here otherwise");
   793     _cur_satb_drain_time_ms = ms;
   794   }
   796   void record_update_rs_time(int thread, double ms) {
   797     _par_last_update_rs_times_ms[thread] = ms;
   798   }
   800   void record_update_rs_processed_buffers (int thread,
   801                                            double processed_buffers) {
   802     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
   803   }
   805   void record_scan_rs_time(int thread, double ms) {
   806     _par_last_scan_rs_times_ms[thread] = ms;
   807   }
   809   void reset_obj_copy_time(int thread) {
   810     _par_last_obj_copy_times_ms[thread] = 0.0;
   811   }
   813   void reset_obj_copy_time() {
   814     reset_obj_copy_time(0);
   815   }
   817   void record_obj_copy_time(int thread, double ms) {
   818     _par_last_obj_copy_times_ms[thread] += ms;
   819   }
   821   void record_termination(int thread, double ms, size_t attempts) {
   822     _par_last_termination_times_ms[thread] = ms;
   823     _par_last_termination_attempts[thread] = (double) attempts;
   824   }
   826   void record_gc_worker_end_time(int worker_i, double ms) {
   827     _par_last_gc_worker_end_times_ms[worker_i] = ms;
   828   }
   830   void record_pause_time_ms(double ms) {
   831     _last_pause_time_ms = ms;
   832   }
   834   void record_clear_ct_time(double ms) {
   835     _cur_clear_ct_time_ms = ms;
   836   }
   838   void record_par_time(double ms) {
   839     _cur_collection_par_time_ms = ms;
   840   }
   842   void record_aux_start_time(int i) {
   843     guarantee(i < _aux_num, "should be within range");
   844     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
   845   }
   847   void record_aux_end_time(int i) {
   848     guarantee(i < _aux_num, "should be within range");
   849     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
   850     _cur_aux_times_set[i] = true;
   851     _cur_aux_times_ms[i] += ms;
   852   }
   854   void record_ref_proc_time(double ms) {
   855     _cur_ref_proc_time_ms = ms;
   856   }
   858   void record_ref_enq_time(double ms) {
   859     _cur_ref_enq_time_ms = ms;
   860   }
   862 #ifndef PRODUCT
   863   void record_cc_clear_time(double ms) {
   864     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
   865       _min_clear_cc_time_ms = ms;
   866     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
   867       _max_clear_cc_time_ms = ms;
   868     _cur_clear_cc_time_ms = ms;
   869     _cum_clear_cc_time_ms += ms;
   870     _num_cc_clears++;
   871   }
   872 #endif
   874   // Record how much space we copied during a GC. This is typically
   875   // called when a GC alloc region is being retired.
   876   void record_bytes_copied_during_gc(size_t bytes) {
   877     _bytes_copied_during_gc += bytes;
   878   }
   880   // The amount of space we copied during a GC.
   881   size_t bytes_copied_during_gc() {
   882     return _bytes_copied_during_gc;
   883   }
   885   // Choose a new collection set.  Marks the chosen regions as being
   886   // "in_collection_set", and links them together.  The head and number of
   887   // the collection set are available via access methods.
   888   void choose_collection_set(double target_pause_time_ms);
   890   // The head of the list (via "next_in_collection_set()") representing the
   891   // current collection set.
   892   HeapRegion* collection_set() { return _collection_set; }
   894   void clear_collection_set() { _collection_set = NULL; }
   896   // Add old region "hr" to the CSet.
   897   void add_old_region_to_cset(HeapRegion* hr);
   899   // Incremental CSet Support
   901   // The head of the incrementally built collection set.
   902   HeapRegion* inc_cset_head() { return _inc_cset_head; }
   904   // The tail of the incrementally built collection set.
   905   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
   907   // Initialize incremental collection set info.
   908   void start_incremental_cset_building();
   910   // Perform any final calculations on the incremental CSet fields
   911   // before we can use them.
   912   void finalize_incremental_cset_building();
   914   void clear_incremental_cset() {
   915     _inc_cset_head = NULL;
   916     _inc_cset_tail = NULL;
   917   }
   919   // Stop adding regions to the incremental collection set
   920   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
   922   // Add information about hr to the aggregated information for the
   923   // incrementally built collection set.
   924   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
   926   // Update information about hr in the aggregated information for
   927   // the incrementally built collection set.
   928   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
   930 private:
   931   // Update the incremental cset information when adding a region
   932   // (should not be called directly).
   933   void add_region_to_incremental_cset_common(HeapRegion* hr);
   935 public:
   936   // Add hr to the LHS of the incremental collection set.
   937   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
   939   // Add hr to the RHS of the incremental collection set.
   940   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
   942 #ifndef PRODUCT
   943   void print_collection_set(HeapRegion* list_head, outputStream* st);
   944 #endif // !PRODUCT
   946   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
   947   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
   948   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
   950   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
   951   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
   952   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
   954   // This sets the initiate_conc_mark_if_possible() flag to start a
   955   // new cycle, as long as we are not already in one. It's best if it
   956   // is called during a safepoint when the test whether a cycle is in
   957   // progress or not is stable.
   958   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
   960   // This is called at the very beginning of an evacuation pause (it
   961   // has to be the first thing that the pause does). If
   962   // initiate_conc_mark_if_possible() is true, and the concurrent
   963   // marking thread has completed its work during the previous cycle,
   964   // it will set during_initial_mark_pause() to so that the pause does
   965   // the initial-mark work and start a marking cycle.
   966   void decide_on_conc_mark_initiation();
   968   // If an expansion would be appropriate, because recent GC overhead had
   969   // exceeded the desired limit, return an amount to expand by.
   970   size_t expansion_amount();
   972 #ifndef PRODUCT
   973   // Check any appropriate marked bytes info, asserting false if
   974   // something's wrong, else returning "true".
   975   bool assertMarkedBytesDataOK();
   976 #endif
   978   // Print tracing information.
   979   void print_tracing_info() const;
   981   // Print stats on young survival ratio
   982   void print_yg_surv_rate_info() const;
   984   void finished_recalculating_age_indexes(bool is_survivors) {
   985     if (is_survivors) {
   986       _survivor_surv_rate_group->finished_recalculating_age_indexes();
   987     } else {
   988       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
   989     }
   990     // do that for any other surv rate groups
   991   }
   993   bool is_young_list_full() {
   994     size_t young_list_length = _g1->young_list()->length();
   995     size_t young_list_target_length = _young_list_target_length;
   996     return young_list_length >= young_list_target_length;
   997   }
   999   bool can_expand_young_list() {
  1000     size_t young_list_length = _g1->young_list()->length();
  1001     size_t young_list_max_length = _young_list_max_length;
  1002     return young_list_length < young_list_max_length;
  1005   size_t young_list_max_length() {
  1006     return _young_list_max_length;
  1009   bool gcs_are_young() {
  1010     return _gcs_are_young;
  1012   void set_gcs_are_young(bool gcs_are_young) {
  1013     _gcs_are_young = gcs_are_young;
  1016   bool adaptive_young_list_length() {
  1017     return _adaptive_young_list_length;
  1019   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
  1020     _adaptive_young_list_length = adaptive_young_list_length;
  1023   inline double get_gc_eff_factor() {
  1024     double ratio = _known_garbage_ratio;
  1026     double square = ratio * ratio;
  1027     // square = square * square;
  1028     double ret = square * 9.0 + 1.0;
  1029 #if 0
  1030     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
  1031 #endif // 0
  1032     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
  1033     return ret;
  1036 private:
  1037   //
  1038   // Survivor regions policy.
  1039   //
  1041   // Current tenuring threshold, set to 0 if the collector reaches the
  1042   // maximum amount of suvivors regions.
  1043   int _tenuring_threshold;
  1045   // The limit on the number of regions allocated for survivors.
  1046   size_t _max_survivor_regions;
  1048   // For reporting purposes.
  1049   size_t _eden_bytes_before_gc;
  1050   size_t _survivor_bytes_before_gc;
  1051   size_t _capacity_before_gc;
  1053   // The amount of survor regions after a collection.
  1054   size_t _recorded_survivor_regions;
  1055   // List of survivor regions.
  1056   HeapRegion* _recorded_survivor_head;
  1057   HeapRegion* _recorded_survivor_tail;
  1059   ageTable _survivors_age_table;
  1061 public:
  1063   inline GCAllocPurpose
  1064     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
  1065       if (age < _tenuring_threshold && src_region->is_young()) {
  1066         return GCAllocForSurvived;
  1067       } else {
  1068         return GCAllocForTenured;
  1072   inline bool track_object_age(GCAllocPurpose purpose) {
  1073     return purpose == GCAllocForSurvived;
  1076   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
  1078   size_t max_regions(int purpose);
  1080   // The limit on regions for a particular purpose is reached.
  1081   void note_alloc_region_limit_reached(int purpose) {
  1082     if (purpose == GCAllocForSurvived) {
  1083       _tenuring_threshold = 0;
  1087   void note_start_adding_survivor_regions() {
  1088     _survivor_surv_rate_group->start_adding_regions();
  1091   void note_stop_adding_survivor_regions() {
  1092     _survivor_surv_rate_group->stop_adding_regions();
  1095   void record_survivor_regions(size_t      regions,
  1096                                HeapRegion* head,
  1097                                HeapRegion* tail) {
  1098     _recorded_survivor_regions = regions;
  1099     _recorded_survivor_head    = head;
  1100     _recorded_survivor_tail    = tail;
  1103   size_t recorded_survivor_regions() {
  1104     return _recorded_survivor_regions;
  1107   void record_thread_age_table(ageTable* age_table)
  1109     _survivors_age_table.merge_par(age_table);
  1112   void update_max_gc_locker_expansion();
  1114   // Calculates survivor space parameters.
  1115   void update_survivors_policy();
  1117 };
  1119 // This should move to some place more general...
  1121 // If we have "n" measurements, and we've kept track of their "sum" and the
  1122 // "sum_of_squares" of the measurements, this returns the variance of the
  1123 // sequence.
  1124 inline double variance(int n, double sum_of_squares, double sum) {
  1125   double n_d = (double)n;
  1126   double avg = sum/n_d;
  1127   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
  1130 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP

mercurial