src/share/vm/opto/compile.cpp

Fri, 22 Feb 2008 17:55:13 -0800

author
kvn
date
Fri, 22 Feb 2008 17:55:13 -0800
changeset 463
67914967a4b5
parent 435
a61af66fc99e
child 473
b789bcaf2dd9
permissions
-rw-r--r--

6650373: Assert in methodOopDesc::make_adapters()
Summary: AdapterHandlerLibrary::get_create_adapter_index() returns incorrect value (-2) when CodeCache is full.
Reviewed-by: sgoldman

     1 /*
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_compile.cpp.incl"
    28 /// Support for intrinsics.
    30 // Return the index at which m must be inserted (or already exists).
    31 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
    32 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
    33 #ifdef ASSERT
    34   for (int i = 1; i < _intrinsics->length(); i++) {
    35     CallGenerator* cg1 = _intrinsics->at(i-1);
    36     CallGenerator* cg2 = _intrinsics->at(i);
    37     assert(cg1->method() != cg2->method()
    38            ? cg1->method()     < cg2->method()
    39            : cg1->is_virtual() < cg2->is_virtual(),
    40            "compiler intrinsics list must stay sorted");
    41   }
    42 #endif
    43   // Binary search sorted list, in decreasing intervals [lo, hi].
    44   int lo = 0, hi = _intrinsics->length()-1;
    45   while (lo <= hi) {
    46     int mid = (uint)(hi + lo) / 2;
    47     ciMethod* mid_m = _intrinsics->at(mid)->method();
    48     if (m < mid_m) {
    49       hi = mid-1;
    50     } else if (m > mid_m) {
    51       lo = mid+1;
    52     } else {
    53       // look at minor sort key
    54       bool mid_virt = _intrinsics->at(mid)->is_virtual();
    55       if (is_virtual < mid_virt) {
    56         hi = mid-1;
    57       } else if (is_virtual > mid_virt) {
    58         lo = mid+1;
    59       } else {
    60         return mid;  // exact match
    61       }
    62     }
    63   }
    64   return lo;  // inexact match
    65 }
    67 void Compile::register_intrinsic(CallGenerator* cg) {
    68   if (_intrinsics == NULL) {
    69     _intrinsics = new GrowableArray<CallGenerator*>(60);
    70   }
    71   // This code is stolen from ciObjectFactory::insert.
    72   // Really, GrowableArray should have methods for
    73   // insert_at, remove_at, and binary_search.
    74   int len = _intrinsics->length();
    75   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
    76   if (index == len) {
    77     _intrinsics->append(cg);
    78   } else {
    79 #ifdef ASSERT
    80     CallGenerator* oldcg = _intrinsics->at(index);
    81     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
    82 #endif
    83     _intrinsics->append(_intrinsics->at(len-1));
    84     int pos;
    85     for (pos = len-2; pos >= index; pos--) {
    86       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
    87     }
    88     _intrinsics->at_put(index, cg);
    89   }
    90   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
    91 }
    93 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
    94   assert(m->is_loaded(), "don't try this on unloaded methods");
    95   if (_intrinsics != NULL) {
    96     int index = intrinsic_insertion_index(m, is_virtual);
    97     if (index < _intrinsics->length()
    98         && _intrinsics->at(index)->method() == m
    99         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   100       return _intrinsics->at(index);
   101     }
   102   }
   103   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   104   if (m->intrinsic_id() != vmIntrinsics::_none) {
   105     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   106     if (cg != NULL) {
   107       // Save it for next time:
   108       register_intrinsic(cg);
   109       return cg;
   110     } else {
   111       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   112     }
   113   }
   114   return NULL;
   115 }
   117 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   118 // in library_call.cpp.
   121 #ifndef PRODUCT
   122 // statistics gathering...
   124 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   125 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   127 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   128   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   129   int oflags = _intrinsic_hist_flags[id];
   130   assert(flags != 0, "what happened?");
   131   if (is_virtual) {
   132     flags |= _intrinsic_virtual;
   133   }
   134   bool changed = (flags != oflags);
   135   if ((flags & _intrinsic_worked) != 0) {
   136     juint count = (_intrinsic_hist_count[id] += 1);
   137     if (count == 1) {
   138       changed = true;           // first time
   139     }
   140     // increment the overall count also:
   141     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   142   }
   143   if (changed) {
   144     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   145       // Something changed about the intrinsic's virtuality.
   146       if ((flags & _intrinsic_virtual) != 0) {
   147         // This is the first use of this intrinsic as a virtual call.
   148         if (oflags != 0) {
   149           // We already saw it as a non-virtual, so note both cases.
   150           flags |= _intrinsic_both;
   151         }
   152       } else if ((oflags & _intrinsic_both) == 0) {
   153         // This is the first use of this intrinsic as a non-virtual
   154         flags |= _intrinsic_both;
   155       }
   156     }
   157     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   158   }
   159   // update the overall flags also:
   160   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   161   return changed;
   162 }
   164 static char* format_flags(int flags, char* buf) {
   165   buf[0] = 0;
   166   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   167   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   168   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   169   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   170   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   171   if (buf[0] == 0)  strcat(buf, ",");
   172   assert(buf[0] == ',', "must be");
   173   return &buf[1];
   174 }
   176 void Compile::print_intrinsic_statistics() {
   177   char flagsbuf[100];
   178   ttyLocker ttyl;
   179   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   180   tty->print_cr("Compiler intrinsic usage:");
   181   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   182   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   183   #define PRINT_STAT_LINE(name, c, f) \
   184     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   185   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   186     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   187     int   flags = _intrinsic_hist_flags[id];
   188     juint count = _intrinsic_hist_count[id];
   189     if ((flags | count) != 0) {
   190       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   191     }
   192   }
   193   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   194   if (xtty != NULL)  xtty->tail("statistics");
   195 }
   197 void Compile::print_statistics() {
   198   { ttyLocker ttyl;
   199     if (xtty != NULL)  xtty->head("statistics type='opto'");
   200     Parse::print_statistics();
   201     PhaseCCP::print_statistics();
   202     PhaseRegAlloc::print_statistics();
   203     Scheduling::print_statistics();
   204     PhasePeephole::print_statistics();
   205     PhaseIdealLoop::print_statistics();
   206     if (xtty != NULL)  xtty->tail("statistics");
   207   }
   208   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   209     // put this under its own <statistics> element.
   210     print_intrinsic_statistics();
   211   }
   212 }
   213 #endif //PRODUCT
   215 // Support for bundling info
   216 Bundle* Compile::node_bundling(const Node *n) {
   217   assert(valid_bundle_info(n), "oob");
   218   return &_node_bundling_base[n->_idx];
   219 }
   221 bool Compile::valid_bundle_info(const Node *n) {
   222   return (_node_bundling_limit > n->_idx);
   223 }
   226 // Identify all nodes that are reachable from below, useful.
   227 // Use breadth-first pass that records state in a Unique_Node_List,
   228 // recursive traversal is slower.
   229 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   230   int estimated_worklist_size = unique();
   231   useful.map( estimated_worklist_size, NULL );  // preallocate space
   233   // Initialize worklist
   234   if (root() != NULL)     { useful.push(root()); }
   235   // If 'top' is cached, declare it useful to preserve cached node
   236   if( cached_top_node() ) { useful.push(cached_top_node()); }
   238   // Push all useful nodes onto the list, breadthfirst
   239   for( uint next = 0; next < useful.size(); ++next ) {
   240     assert( next < unique(), "Unique useful nodes < total nodes");
   241     Node *n  = useful.at(next);
   242     uint max = n->len();
   243     for( uint i = 0; i < max; ++i ) {
   244       Node *m = n->in(i);
   245       if( m == NULL ) continue;
   246       useful.push(m);
   247     }
   248   }
   249 }
   251 // Disconnect all useless nodes by disconnecting those at the boundary.
   252 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   253   uint next = 0;
   254   while( next < useful.size() ) {
   255     Node *n = useful.at(next++);
   256     // Use raw traversal of out edges since this code removes out edges
   257     int max = n->outcnt();
   258     for (int j = 0; j < max; ++j ) {
   259       Node* child = n->raw_out(j);
   260       if( ! useful.member(child) ) {
   261         assert( !child->is_top() || child != top(),
   262                 "If top is cached in Compile object it is in useful list");
   263         // Only need to remove this out-edge to the useless node
   264         n->raw_del_out(j);
   265         --j;
   266         --max;
   267       }
   268     }
   269     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   270       record_for_igvn( n->unique_out() );
   271     }
   272   }
   273   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   274 }
   276 //------------------------------frame_size_in_words-----------------------------
   277 // frame_slots in units of words
   278 int Compile::frame_size_in_words() const {
   279   // shift is 0 in LP32 and 1 in LP64
   280   const int shift = (LogBytesPerWord - LogBytesPerInt);
   281   int words = _frame_slots >> shift;
   282   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   283   return words;
   284 }
   286 // ============================================================================
   287 //------------------------------CompileWrapper---------------------------------
   288 class CompileWrapper : public StackObj {
   289   Compile *const _compile;
   290  public:
   291   CompileWrapper(Compile* compile);
   293   ~CompileWrapper();
   294 };
   296 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   297   // the Compile* pointer is stored in the current ciEnv:
   298   ciEnv* env = compile->env();
   299   assert(env == ciEnv::current(), "must already be a ciEnv active");
   300   assert(env->compiler_data() == NULL, "compile already active?");
   301   env->set_compiler_data(compile);
   302   assert(compile == Compile::current(), "sanity");
   304   compile->set_type_dict(NULL);
   305   compile->set_type_hwm(NULL);
   306   compile->set_type_last_size(0);
   307   compile->set_last_tf(NULL, NULL);
   308   compile->set_indexSet_arena(NULL);
   309   compile->set_indexSet_free_block_list(NULL);
   310   compile->init_type_arena();
   311   Type::Initialize(compile);
   312   _compile->set_scratch_buffer_blob(NULL);
   313   _compile->begin_method();
   314 }
   315 CompileWrapper::~CompileWrapper() {
   316   if (_compile->failing()) {
   317     _compile->print_method("Failed");
   318   }
   319   _compile->end_method();
   320   if (_compile->scratch_buffer_blob() != NULL)
   321     BufferBlob::free(_compile->scratch_buffer_blob());
   322   _compile->env()->set_compiler_data(NULL);
   323 }
   326 //----------------------------print_compile_messages---------------------------
   327 void Compile::print_compile_messages() {
   328 #ifndef PRODUCT
   329   // Check if recompiling
   330   if (_subsume_loads == false && PrintOpto) {
   331     // Recompiling without allowing machine instructions to subsume loads
   332     tty->print_cr("*********************************************************");
   333     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   334     tty->print_cr("*********************************************************");
   335   }
   336   if (env()->break_at_compile()) {
   337     // Open the debugger when compiing this method.
   338     tty->print("### Breaking when compiling: ");
   339     method()->print_short_name();
   340     tty->cr();
   341     BREAKPOINT;
   342   }
   344   if( PrintOpto ) {
   345     if (is_osr_compilation()) {
   346       tty->print("[OSR]%3d", _compile_id);
   347     } else {
   348       tty->print("%3d", _compile_id);
   349     }
   350   }
   351 #endif
   352 }
   355 void Compile::init_scratch_buffer_blob() {
   356   if( scratch_buffer_blob() != NULL )  return;
   358   // Construct a temporary CodeBuffer to have it construct a BufferBlob
   359   // Cache this BufferBlob for this compile.
   360   ResourceMark rm;
   361   int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
   362   BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
   363   // Record the buffer blob for next time.
   364   set_scratch_buffer_blob(blob);
   365   guarantee(scratch_buffer_blob() != NULL, "Need BufferBlob for code generation");
   367   // Initialize the relocation buffers
   368   relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
   369   set_scratch_locs_memory(locs_buf);
   370 }
   373 //-----------------------scratch_emit_size-------------------------------------
   374 // Helper function that computes size by emitting code
   375 uint Compile::scratch_emit_size(const Node* n) {
   376   // Emit into a trash buffer and count bytes emitted.
   377   // This is a pretty expensive way to compute a size,
   378   // but it works well enough if seldom used.
   379   // All common fixed-size instructions are given a size
   380   // method by the AD file.
   381   // Note that the scratch buffer blob and locs memory are
   382   // allocated at the beginning of the compile task, and
   383   // may be shared by several calls to scratch_emit_size.
   384   // The allocation of the scratch buffer blob is particularly
   385   // expensive, since it has to grab the code cache lock.
   386   BufferBlob* blob = this->scratch_buffer_blob();
   387   assert(blob != NULL, "Initialize BufferBlob at start");
   388   assert(blob->size() > MAX_inst_size, "sanity");
   389   relocInfo* locs_buf = scratch_locs_memory();
   390   address blob_begin = blob->instructions_begin();
   391   address blob_end   = (address)locs_buf;
   392   assert(blob->instructions_contains(blob_end), "sanity");
   393   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   394   buf.initialize_consts_size(MAX_const_size);
   395   buf.initialize_stubs_size(MAX_stubs_size);
   396   assert(locs_buf != NULL, "sanity");
   397   int lsize = MAX_locs_size / 2;
   398   buf.insts()->initialize_shared_locs(&locs_buf[0],     lsize);
   399   buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
   400   n->emit(buf, this->regalloc());
   401   return buf.code_size();
   402 }
   404 void  Compile::record_for_escape_analysis(Node* n) {
   405   if (_congraph != NULL)
   406     _congraph->record_for_escape_analysis(n);
   407 }
   410 // ============================================================================
   411 //------------------------------Compile standard-------------------------------
   412 debug_only( int Compile::_debug_idx = 100000; )
   414 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   415 // the continuation bci for on stack replacement.
   418 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads )
   419                 : Phase(Compiler),
   420                   _env(ci_env),
   421                   _log(ci_env->log()),
   422                   _compile_id(ci_env->compile_id()),
   423                   _save_argument_registers(false),
   424                   _stub_name(NULL),
   425                   _stub_function(NULL),
   426                   _stub_entry_point(NULL),
   427                   _method(target),
   428                   _entry_bci(osr_bci),
   429                   _initial_gvn(NULL),
   430                   _for_igvn(NULL),
   431                   _warm_calls(NULL),
   432                   _subsume_loads(subsume_loads),
   433                   _failure_reason(NULL),
   434                   _code_buffer("Compile::Fill_buffer"),
   435                   _orig_pc_slot(0),
   436                   _orig_pc_slot_offset_in_bytes(0),
   437                   _node_bundling_limit(0),
   438                   _node_bundling_base(NULL),
   439 #ifndef PRODUCT
   440                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   441                   _printer(IdealGraphPrinter::printer()),
   442 #endif
   443                   _congraph(NULL) {
   444   C = this;
   446   CompileWrapper cw(this);
   447 #ifndef PRODUCT
   448   if (TimeCompiler2) {
   449     tty->print(" ");
   450     target->holder()->name()->print();
   451     tty->print(".");
   452     target->print_short_name();
   453     tty->print("  ");
   454   }
   455   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   456   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   457   set_print_assembly(PrintOptoAssembly || _method->should_print_assembly());
   458 #endif
   460   if (ProfileTraps) {
   461     // Make sure the method being compiled gets its own MDO,
   462     // so we can at least track the decompile_count().
   463     method()->build_method_data();
   464   }
   466   Init(::AliasLevel);
   469   print_compile_messages();
   471   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   472     _ilt = InlineTree::build_inline_tree_root();
   473   else
   474     _ilt = NULL;
   476   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   477   assert(num_alias_types() >= AliasIdxRaw, "");
   479 #define MINIMUM_NODE_HASH  1023
   480   // Node list that Iterative GVN will start with
   481   Unique_Node_List for_igvn(comp_arena());
   482   set_for_igvn(&for_igvn);
   484   // GVN that will be run immediately on new nodes
   485   uint estimated_size = method()->code_size()*4+64;
   486   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   487   PhaseGVN gvn(node_arena(), estimated_size);
   488   set_initial_gvn(&gvn);
   490   if (DoEscapeAnalysis)
   491     _congraph = new ConnectionGraph(this);
   493   { // Scope for timing the parser
   494     TracePhase t3("parse", &_t_parser, true);
   496     // Put top into the hash table ASAP.
   497     initial_gvn()->transform_no_reclaim(top());
   499     // Set up tf(), start(), and find a CallGenerator.
   500     CallGenerator* cg;
   501     if (is_osr_compilation()) {
   502       const TypeTuple *domain = StartOSRNode::osr_domain();
   503       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   504       init_tf(TypeFunc::make(domain, range));
   505       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
   506       initial_gvn()->set_type_bottom(s);
   507       init_start(s);
   508       cg = CallGenerator::for_osr(method(), entry_bci());
   509     } else {
   510       // Normal case.
   511       init_tf(TypeFunc::make(method()));
   512       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
   513       initial_gvn()->set_type_bottom(s);
   514       init_start(s);
   515       float past_uses = method()->interpreter_invocation_count();
   516       float expected_uses = past_uses;
   517       cg = CallGenerator::for_inline(method(), expected_uses);
   518     }
   519     if (failing())  return;
   520     if (cg == NULL) {
   521       record_method_not_compilable_all_tiers("cannot parse method");
   522       return;
   523     }
   524     JVMState* jvms = build_start_state(start(), tf());
   525     if ((jvms = cg->generate(jvms)) == NULL) {
   526       record_method_not_compilable("method parse failed");
   527       return;
   528     }
   529     GraphKit kit(jvms);
   531     if (!kit.stopped()) {
   532       // Accept return values, and transfer control we know not where.
   533       // This is done by a special, unique ReturnNode bound to root.
   534       return_values(kit.jvms());
   535     }
   537     if (kit.has_exceptions()) {
   538       // Any exceptions that escape from this call must be rethrown
   539       // to whatever caller is dynamically above us on the stack.
   540       // This is done by a special, unique RethrowNode bound to root.
   541       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   542     }
   544     // Remove clutter produced by parsing.
   545     if (!failing()) {
   546       ResourceMark rm;
   547       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   548     }
   549   }
   551   // Note:  Large methods are capped off in do_one_bytecode().
   552   if (failing())  return;
   554   // After parsing, node notes are no longer automagic.
   555   // They must be propagated by register_new_node_with_optimizer(),
   556   // clone(), or the like.
   557   set_default_node_notes(NULL);
   559   for (;;) {
   560     int successes = Inline_Warm();
   561     if (failing())  return;
   562     if (successes == 0)  break;
   563   }
   565   // Drain the list.
   566   Finish_Warm();
   567 #ifndef PRODUCT
   568   if (_printer) {
   569     _printer->print_inlining(this);
   570   }
   571 #endif
   573   if (failing())  return;
   574   NOT_PRODUCT( verify_graph_edges(); )
   576   // Perform escape analysis
   577   if (_congraph != NULL) {
   578     NOT_PRODUCT( TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, TimeCompiler); )
   579     _congraph->compute_escape();
   580 #ifndef PRODUCT
   581     if (PrintEscapeAnalysis) {
   582       _congraph->dump();
   583     }
   584 #endif
   585   }
   586   // Now optimize
   587   Optimize();
   588   if (failing())  return;
   589   NOT_PRODUCT( verify_graph_edges(); )
   591 #ifndef PRODUCT
   592   if (PrintIdeal) {
   593     ttyLocker ttyl;  // keep the following output all in one block
   594     // This output goes directly to the tty, not the compiler log.
   595     // To enable tools to match it up with the compilation activity,
   596     // be sure to tag this tty output with the compile ID.
   597     if (xtty != NULL) {
   598       xtty->head("ideal compile_id='%d'%s", compile_id(),
   599                  is_osr_compilation()    ? " compile_kind='osr'" :
   600                  "");
   601     }
   602     root()->dump(9999);
   603     if (xtty != NULL) {
   604       xtty->tail("ideal");
   605     }
   606   }
   607 #endif
   609   // Now that we know the size of all the monitors we can add a fixed slot
   610   // for the original deopt pc.
   612   _orig_pc_slot =  fixed_slots();
   613   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   614   set_fixed_slots(next_slot);
   616   // Now generate code
   617   Code_Gen();
   618   if (failing())  return;
   620   // Check if we want to skip execution of all compiled code.
   621   {
   622 #ifndef PRODUCT
   623     if (OptoNoExecute) {
   624       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   625       return;
   626     }
   627     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   628 #endif
   630     if (is_osr_compilation()) {
   631       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   632       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   633     } else {
   634       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   635       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   636     }
   638     env()->register_method(_method, _entry_bci,
   639                            &_code_offsets,
   640                            _orig_pc_slot_offset_in_bytes,
   641                            code_buffer(),
   642                            frame_size_in_words(), _oop_map_set,
   643                            &_handler_table, &_inc_table,
   644                            compiler,
   645                            env()->comp_level(),
   646                            true, /*has_debug_info*/
   647                            has_unsafe_access()
   648                            );
   649   }
   650 }
   652 //------------------------------Compile----------------------------------------
   653 // Compile a runtime stub
   654 Compile::Compile( ciEnv* ci_env,
   655                   TypeFunc_generator generator,
   656                   address stub_function,
   657                   const char *stub_name,
   658                   int is_fancy_jump,
   659                   bool pass_tls,
   660                   bool save_arg_registers,
   661                   bool return_pc )
   662   : Phase(Compiler),
   663     _env(ci_env),
   664     _log(ci_env->log()),
   665     _compile_id(-1),
   666     _save_argument_registers(save_arg_registers),
   667     _method(NULL),
   668     _stub_name(stub_name),
   669     _stub_function(stub_function),
   670     _stub_entry_point(NULL),
   671     _entry_bci(InvocationEntryBci),
   672     _initial_gvn(NULL),
   673     _for_igvn(NULL),
   674     _warm_calls(NULL),
   675     _orig_pc_slot(0),
   676     _orig_pc_slot_offset_in_bytes(0),
   677     _subsume_loads(true),
   678     _failure_reason(NULL),
   679     _code_buffer("Compile::Fill_buffer"),
   680     _node_bundling_limit(0),
   681     _node_bundling_base(NULL),
   682 #ifndef PRODUCT
   683     _trace_opto_output(TraceOptoOutput),
   684     _printer(NULL),
   685 #endif
   686     _congraph(NULL) {
   687   C = this;
   689 #ifndef PRODUCT
   690   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   691   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   692   set_print_assembly(PrintFrameConverterAssembly);
   693 #endif
   694   CompileWrapper cw(this);
   695   Init(/*AliasLevel=*/ 0);
   696   init_tf((*generator)());
   698   {
   699     // The following is a dummy for the sake of GraphKit::gen_stub
   700     Unique_Node_List for_igvn(comp_arena());
   701     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   702     PhaseGVN gvn(Thread::current()->resource_area(),255);
   703     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   704     gvn.transform_no_reclaim(top());
   706     GraphKit kit;
   707     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   708   }
   710   NOT_PRODUCT( verify_graph_edges(); )
   711   Code_Gen();
   712   if (failing())  return;
   715   // Entry point will be accessed using compile->stub_entry_point();
   716   if (code_buffer() == NULL) {
   717     Matcher::soft_match_failure();
   718   } else {
   719     if (PrintAssembly && (WizardMode || Verbose))
   720       tty->print_cr("### Stub::%s", stub_name);
   722     if (!failing()) {
   723       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   725       // Make the NMethod
   726       // For now we mark the frame as never safe for profile stackwalking
   727       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   728                                                       code_buffer(),
   729                                                       CodeOffsets::frame_never_safe,
   730                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   731                                                       frame_size_in_words(),
   732                                                       _oop_map_set,
   733                                                       save_arg_registers);
   734       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   736       _stub_entry_point = rs->entry_point();
   737     }
   738   }
   739 }
   741 #ifndef PRODUCT
   742 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
   743   if(PrintOpto && Verbose) {
   744     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
   745   }
   746 }
   747 #endif
   749 void Compile::print_codes() {
   750 }
   752 //------------------------------Init-------------------------------------------
   753 // Prepare for a single compilation
   754 void Compile::Init(int aliaslevel) {
   755   _unique  = 0;
   756   _regalloc = NULL;
   758   _tf      = NULL;  // filled in later
   759   _top     = NULL;  // cached later
   760   _matcher = NULL;  // filled in later
   761   _cfg     = NULL;  // filled in later
   763   set_24_bit_selection_and_mode(Use24BitFP, false);
   765   _node_note_array = NULL;
   766   _default_node_notes = NULL;
   768   _immutable_memory = NULL; // filled in at first inquiry
   770   // Globally visible Nodes
   771   // First set TOP to NULL to give safe behavior during creation of RootNode
   772   set_cached_top_node(NULL);
   773   set_root(new (this, 3) RootNode());
   774   // Now that you have a Root to point to, create the real TOP
   775   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
   776   set_recent_alloc(NULL, NULL);
   778   // Create Debug Information Recorder to record scopes, oopmaps, etc.
   779   env()->set_oop_recorder(new OopRecorder(comp_arena()));
   780   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
   781   env()->set_dependencies(new Dependencies(env()));
   783   _fixed_slots = 0;
   784   set_has_split_ifs(false);
   785   set_has_loops(has_method() && method()->has_loops()); // first approximation
   786   _deopt_happens = true;  // start out assuming the worst
   787   _trap_can_recompile = false;  // no traps emitted yet
   788   _major_progress = true; // start out assuming good things will happen
   789   set_has_unsafe_access(false);
   790   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
   791   set_decompile_count(0);
   793   // Compilation level related initialization
   794   if (env()->comp_level() == CompLevel_fast_compile) {
   795     set_num_loop_opts(Tier1LoopOptsCount);
   796     set_do_inlining(Tier1Inline != 0);
   797     set_max_inline_size(Tier1MaxInlineSize);
   798     set_freq_inline_size(Tier1FreqInlineSize);
   799     set_do_scheduling(false);
   800     set_do_count_invocations(Tier1CountInvocations);
   801     set_do_method_data_update(Tier1UpdateMethodData);
   802   } else {
   803     assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
   804     set_num_loop_opts(LoopOptsCount);
   805     set_do_inlining(Inline);
   806     set_max_inline_size(MaxInlineSize);
   807     set_freq_inline_size(FreqInlineSize);
   808     set_do_scheduling(OptoScheduling);
   809     set_do_count_invocations(false);
   810     set_do_method_data_update(false);
   811   }
   813   if (debug_info()->recording_non_safepoints()) {
   814     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
   815                         (comp_arena(), 8, 0, NULL));
   816     set_default_node_notes(Node_Notes::make(this));
   817   }
   819   // // -- Initialize types before each compile --
   820   // // Update cached type information
   821   // if( _method && _method->constants() )
   822   //   Type::update_loaded_types(_method, _method->constants());
   824   // Init alias_type map.
   825   if (!DoEscapeAnalysis && aliaslevel == 3)
   826     aliaslevel = 2;  // No unique types without escape analysis
   827   _AliasLevel = aliaslevel;
   828   const int grow_ats = 16;
   829   _max_alias_types = grow_ats;
   830   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
   831   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
   832   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
   833   {
   834     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
   835   }
   836   // Initialize the first few types.
   837   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
   838   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
   839   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
   840   _num_alias_types = AliasIdxRaw+1;
   841   // Zero out the alias type cache.
   842   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
   843   // A NULL adr_type hits in the cache right away.  Preload the right answer.
   844   probe_alias_cache(NULL)->_index = AliasIdxTop;
   846   _intrinsics = NULL;
   847   _macro_nodes = new GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
   848   register_library_intrinsics();
   849 }
   851 //---------------------------init_start----------------------------------------
   852 // Install the StartNode on this compile object.
   853 void Compile::init_start(StartNode* s) {
   854   if (failing())
   855     return; // already failing
   856   assert(s == start(), "");
   857 }
   859 StartNode* Compile::start() const {
   860   assert(!failing(), "");
   861   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
   862     Node* start = root()->fast_out(i);
   863     if( start->is_Start() )
   864       return start->as_Start();
   865   }
   866   ShouldNotReachHere();
   867   return NULL;
   868 }
   870 //-------------------------------immutable_memory-------------------------------------
   871 // Access immutable memory
   872 Node* Compile::immutable_memory() {
   873   if (_immutable_memory != NULL) {
   874     return _immutable_memory;
   875   }
   876   StartNode* s = start();
   877   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
   878     Node *p = s->fast_out(i);
   879     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
   880       _immutable_memory = p;
   881       return _immutable_memory;
   882     }
   883   }
   884   ShouldNotReachHere();
   885   return NULL;
   886 }
   888 //----------------------set_cached_top_node------------------------------------
   889 // Install the cached top node, and make sure Node::is_top works correctly.
   890 void Compile::set_cached_top_node(Node* tn) {
   891   if (tn != NULL)  verify_top(tn);
   892   Node* old_top = _top;
   893   _top = tn;
   894   // Calling Node::setup_is_top allows the nodes the chance to adjust
   895   // their _out arrays.
   896   if (_top != NULL)     _top->setup_is_top();
   897   if (old_top != NULL)  old_top->setup_is_top();
   898   assert(_top == NULL || top()->is_top(), "");
   899 }
   901 #ifndef PRODUCT
   902 void Compile::verify_top(Node* tn) const {
   903   if (tn != NULL) {
   904     assert(tn->is_Con(), "top node must be a constant");
   905     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
   906     assert(tn->in(0) != NULL, "must have live top node");
   907   }
   908 }
   909 #endif
   912 ///-------------------Managing Per-Node Debug & Profile Info-------------------
   914 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
   915   guarantee(arr != NULL, "");
   916   int num_blocks = arr->length();
   917   if (grow_by < num_blocks)  grow_by = num_blocks;
   918   int num_notes = grow_by * _node_notes_block_size;
   919   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
   920   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
   921   while (num_notes > 0) {
   922     arr->append(notes);
   923     notes     += _node_notes_block_size;
   924     num_notes -= _node_notes_block_size;
   925   }
   926   assert(num_notes == 0, "exact multiple, please");
   927 }
   929 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
   930   if (source == NULL || dest == NULL)  return false;
   932   if (dest->is_Con())
   933     return false;               // Do not push debug info onto constants.
   935 #ifdef ASSERT
   936   // Leave a bread crumb trail pointing to the original node:
   937   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
   938     dest->set_debug_orig(source);
   939   }
   940 #endif
   942   if (node_note_array() == NULL)
   943     return false;               // Not collecting any notes now.
   945   // This is a copy onto a pre-existing node, which may already have notes.
   946   // If both nodes have notes, do not overwrite any pre-existing notes.
   947   Node_Notes* source_notes = node_notes_at(source->_idx);
   948   if (source_notes == NULL || source_notes->is_clear())  return false;
   949   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
   950   if (dest_notes == NULL || dest_notes->is_clear()) {
   951     return set_node_notes_at(dest->_idx, source_notes);
   952   }
   954   Node_Notes merged_notes = (*source_notes);
   955   // The order of operations here ensures that dest notes will win...
   956   merged_notes.update_from(dest_notes);
   957   return set_node_notes_at(dest->_idx, &merged_notes);
   958 }
   961 //--------------------------allow_range_check_smearing-------------------------
   962 // Gating condition for coalescing similar range checks.
   963 // Sometimes we try 'speculatively' replacing a series of a range checks by a
   964 // single covering check that is at least as strong as any of them.
   965 // If the optimization succeeds, the simplified (strengthened) range check
   966 // will always succeed.  If it fails, we will deopt, and then give up
   967 // on the optimization.
   968 bool Compile::allow_range_check_smearing() const {
   969   // If this method has already thrown a range-check,
   970   // assume it was because we already tried range smearing
   971   // and it failed.
   972   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
   973   return !already_trapped;
   974 }
   977 //------------------------------flatten_alias_type-----------------------------
   978 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
   979   int offset = tj->offset();
   980   TypePtr::PTR ptr = tj->ptr();
   982   // Process weird unsafe references.
   983   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
   984     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
   985     tj = TypeOopPtr::BOTTOM;
   986     ptr = tj->ptr();
   987     offset = tj->offset();
   988   }
   990   // Array pointers need some flattening
   991   const TypeAryPtr *ta = tj->isa_aryptr();
   992   if( ta && _AliasLevel >= 2 ) {
   993     // For arrays indexed by constant indices, we flatten the alias
   994     // space to include all of the array body.  Only the header, klass
   995     // and array length can be accessed un-aliased.
   996     if( offset != Type::OffsetBot ) {
   997       if( ta->const_oop() ) { // methodDataOop or methodOop
   998         offset = Type::OffsetBot;   // Flatten constant access into array body
   999         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
  1000       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1001         // range is OK as-is.
  1002         tj = ta = TypeAryPtr::RANGE;
  1003       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1004         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1005         ta = TypeAryPtr::RANGE; // generic ignored junk
  1006         ptr = TypePtr::BotPTR;
  1007       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1008         tj = TypeInstPtr::MARK;
  1009         ta = TypeAryPtr::RANGE; // generic ignored junk
  1010         ptr = TypePtr::BotPTR;
  1011       } else {                  // Random constant offset into array body
  1012         offset = Type::OffsetBot;   // Flatten constant access into array body
  1013         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::OffsetBot, ta->instance_id());
  1016     // Arrays of fixed size alias with arrays of unknown size.
  1017     if (ta->size() != TypeInt::POS) {
  1018       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1019       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset, ta->instance_id());
  1021     // Arrays of known objects become arrays of unknown objects.
  1022     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1023       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1024       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset, ta->instance_id());
  1026     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1027     // cannot be distinguished by bytecode alone.
  1028     if (ta->elem() == TypeInt::BOOL) {
  1029       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1030       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1031       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset, ta->instance_id());
  1033     // During the 2nd round of IterGVN, NotNull castings are removed.
  1034     // Make sure the Bottom and NotNull variants alias the same.
  1035     // Also, make sure exact and non-exact variants alias the same.
  1036     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
  1037       if (ta->const_oop()) {
  1038         tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1039       } else {
  1040         tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1045   // Oop pointers need some flattening
  1046   const TypeInstPtr *to = tj->isa_instptr();
  1047   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1048     if( ptr == TypePtr::Constant ) {
  1049       // No constant oop pointers (such as Strings); they alias with
  1050       // unknown strings.
  1051       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1052     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1053       // During the 2nd round of IterGVN, NotNull castings are removed.
  1054       // Make sure the Bottom and NotNull variants alias the same.
  1055       // Also, make sure exact and non-exact variants alias the same.
  1056       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset, to->instance_id());
  1058     // Canonicalize the holder of this field
  1059     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1060     if (offset >= 0 && offset < oopDesc::header_size() * wordSize) {
  1061       // First handle header references such as a LoadKlassNode, even if the
  1062       // object's klass is unloaded at compile time (4965979).
  1063       tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset, to->instance_id());
  1064     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1065       to = NULL;
  1066       tj = TypeOopPtr::BOTTOM;
  1067       offset = tj->offset();
  1068     } else {
  1069       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1070       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1071         tj = to = TypeInstPtr::make(TypePtr::BotPTR, canonical_holder, false, NULL, offset, to->instance_id());
  1076   // Klass pointers to object array klasses need some flattening
  1077   const TypeKlassPtr *tk = tj->isa_klassptr();
  1078   if( tk ) {
  1079     // If we are referencing a field within a Klass, we need
  1080     // to assume the worst case of an Object.  Both exact and
  1081     // inexact types must flatten to the same alias class.
  1082     // Since the flattened result for a klass is defined to be
  1083     // precisely java.lang.Object, use a constant ptr.
  1084     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1086       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
  1087                                    TypeKlassPtr::OBJECT->klass(),
  1088                                    offset);
  1091     ciKlass* klass = tk->klass();
  1092     if( klass->is_obj_array_klass() ) {
  1093       ciKlass* k = TypeAryPtr::OOPS->klass();
  1094       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1095         k = TypeInstPtr::BOTTOM->klass();
  1096       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1099     // Check for precise loads from the primary supertype array and force them
  1100     // to the supertype cache alias index.  Check for generic array loads from
  1101     // the primary supertype array and also force them to the supertype cache
  1102     // alias index.  Since the same load can reach both, we need to merge
  1103     // these 2 disparate memories into the same alias class.  Since the
  1104     // primary supertype array is read-only, there's no chance of confusion
  1105     // where we bypass an array load and an array store.
  1106     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
  1107     if( offset == Type::OffsetBot ||
  1108         off2 < Klass::primary_super_limit()*wordSize ) {
  1109       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
  1110       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1114   // Flatten all Raw pointers together.
  1115   if (tj->base() == Type::RawPtr)
  1116     tj = TypeRawPtr::BOTTOM;
  1118   if (tj->base() == Type::AnyPtr)
  1119     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1121   // Flatten all to bottom for now
  1122   switch( _AliasLevel ) {
  1123   case 0:
  1124     tj = TypePtr::BOTTOM;
  1125     break;
  1126   case 1:                       // Flatten to: oop, static, field or array
  1127     switch (tj->base()) {
  1128     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1129     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1130     case Type::AryPtr:   // do not distinguish arrays at all
  1131     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1132     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1133     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1134     default: ShouldNotReachHere();
  1136     break;
  1137   case 2:                       // No collasping at level 2; keep all splits
  1138   case 3:                       // No collasping at level 3; keep all splits
  1139     break;
  1140   default:
  1141     Unimplemented();
  1144   offset = tj->offset();
  1145   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1147   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1148           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1149           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1150           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1151           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1152           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1153           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1154           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1155   assert( tj->ptr() != TypePtr::TopPTR &&
  1156           tj->ptr() != TypePtr::AnyNull &&
  1157           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1158 //    assert( tj->ptr() != TypePtr::Constant ||
  1159 //            tj->base() == Type::RawPtr ||
  1160 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1162   return tj;
  1165 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1166   _index = i;
  1167   _adr_type = at;
  1168   _field = NULL;
  1169   _is_rewritable = true; // default
  1170   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1171   if (atoop != NULL && atoop->is_instance()) {
  1172     const TypeOopPtr *gt = atoop->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE);
  1173     _general_index = Compile::current()->get_alias_index(gt);
  1174   } else {
  1175     _general_index = 0;
  1179 //---------------------------------print_on------------------------------------
  1180 #ifndef PRODUCT
  1181 void Compile::AliasType::print_on(outputStream* st) {
  1182   if (index() < 10)
  1183         st->print("@ <%d> ", index());
  1184   else  st->print("@ <%d>",  index());
  1185   st->print(is_rewritable() ? "   " : " RO");
  1186   int offset = adr_type()->offset();
  1187   if (offset == Type::OffsetBot)
  1188         st->print(" +any");
  1189   else  st->print(" +%-3d", offset);
  1190   st->print(" in ");
  1191   adr_type()->dump_on(st);
  1192   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1193   if (field() != NULL && tjp) {
  1194     if (tjp->klass()  != field()->holder() ||
  1195         tjp->offset() != field()->offset_in_bytes()) {
  1196       st->print(" != ");
  1197       field()->print();
  1198       st->print(" ***");
  1203 void print_alias_types() {
  1204   Compile* C = Compile::current();
  1205   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1206   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1207     C->alias_type(idx)->print_on(tty);
  1208     tty->cr();
  1211 #endif
  1214 //----------------------------probe_alias_cache--------------------------------
  1215 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1216   intptr_t key = (intptr_t) adr_type;
  1217   key ^= key >> logAliasCacheSize;
  1218   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1222 //-----------------------------grow_alias_types--------------------------------
  1223 void Compile::grow_alias_types() {
  1224   const int old_ats  = _max_alias_types; // how many before?
  1225   const int new_ats  = old_ats;          // how many more?
  1226   const int grow_ats = old_ats+new_ats;  // how many now?
  1227   _max_alias_types = grow_ats;
  1228   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1229   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1230   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1231   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1235 //--------------------------------find_alias_type------------------------------
  1236 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
  1237   if (_AliasLevel == 0)
  1238     return alias_type(AliasIdxBot);
  1240   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1241   if (ace->_adr_type == adr_type) {
  1242     return alias_type(ace->_index);
  1245   // Handle special cases.
  1246   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1247   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1249   // Do it the slow way.
  1250   const TypePtr* flat = flatten_alias_type(adr_type);
  1252 #ifdef ASSERT
  1253   assert(flat == flatten_alias_type(flat), "idempotent");
  1254   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1255   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1256     const TypeOopPtr* foop = flat->is_oopptr();
  1257     const TypePtr* xoop = foop->cast_to_exactness(!foop->klass_is_exact())->is_ptr();
  1258     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1260   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1261 #endif
  1263   int idx = AliasIdxTop;
  1264   for (int i = 0; i < num_alias_types(); i++) {
  1265     if (alias_type(i)->adr_type() == flat) {
  1266       idx = i;
  1267       break;
  1271   if (idx == AliasIdxTop) {
  1272     if (no_create)  return NULL;
  1273     // Grow the array if necessary.
  1274     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1275     // Add a new alias type.
  1276     idx = _num_alias_types++;
  1277     _alias_types[idx]->Init(idx, flat);
  1278     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1279     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1280     if (flat->isa_instptr()) {
  1281       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1282           && flat->is_instptr()->klass() == env()->Class_klass())
  1283         alias_type(idx)->set_rewritable(false);
  1285     if (flat->isa_klassptr()) {
  1286       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
  1287         alias_type(idx)->set_rewritable(false);
  1288       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
  1289         alias_type(idx)->set_rewritable(false);
  1290       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
  1291         alias_type(idx)->set_rewritable(false);
  1292       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
  1293         alias_type(idx)->set_rewritable(false);
  1295     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1296     // but the base pointer type is not distinctive enough to identify
  1297     // references into JavaThread.)
  1299     // Check for final instance fields.
  1300     const TypeInstPtr* tinst = flat->isa_instptr();
  1301     if (tinst && tinst->offset() >= oopDesc::header_size() * wordSize) {
  1302       ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1303       ciField* field = k->get_field_by_offset(tinst->offset(), false);
  1304       // Set field() and is_rewritable() attributes.
  1305       if (field != NULL)  alias_type(idx)->set_field(field);
  1307     const TypeKlassPtr* tklass = flat->isa_klassptr();
  1308     // Check for final static fields.
  1309     if (tklass && tklass->klass()->is_instance_klass()) {
  1310       ciInstanceKlass *k = tklass->klass()->as_instance_klass();
  1311       ciField* field = k->get_field_by_offset(tklass->offset(), true);
  1312       // Set field() and is_rewritable() attributes.
  1313       if (field != NULL)   alias_type(idx)->set_field(field);
  1317   // Fill the cache for next time.
  1318   ace->_adr_type = adr_type;
  1319   ace->_index    = idx;
  1320   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1322   // Might as well try to fill the cache for the flattened version, too.
  1323   AliasCacheEntry* face = probe_alias_cache(flat);
  1324   if (face->_adr_type == NULL) {
  1325     face->_adr_type = flat;
  1326     face->_index    = idx;
  1327     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1330   return alias_type(idx);
  1334 Compile::AliasType* Compile::alias_type(ciField* field) {
  1335   const TypeOopPtr* t;
  1336   if (field->is_static())
  1337     t = TypeKlassPtr::make(field->holder());
  1338   else
  1339     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1340   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
  1341   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
  1342   return atp;
  1346 //------------------------------have_alias_type--------------------------------
  1347 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1348   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1349   if (ace->_adr_type == adr_type) {
  1350     return true;
  1353   // Handle special cases.
  1354   if (adr_type == NULL)             return true;
  1355   if (adr_type == TypePtr::BOTTOM)  return true;
  1357   return find_alias_type(adr_type, true) != NULL;
  1360 //-----------------------------must_alias--------------------------------------
  1361 // True if all values of the given address type are in the given alias category.
  1362 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1363   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1364   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1365   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1366   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1368   // the only remaining possible overlap is identity
  1369   int adr_idx = get_alias_index(adr_type);
  1370   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1371   assert(adr_idx == alias_idx ||
  1372          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1373           && adr_type                       != TypeOopPtr::BOTTOM),
  1374          "should not be testing for overlap with an unsafe pointer");
  1375   return adr_idx == alias_idx;
  1378 //------------------------------can_alias--------------------------------------
  1379 // True if any values of the given address type are in the given alias category.
  1380 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1381   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1382   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1383   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1384   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1386   // the only remaining possible overlap is identity
  1387   int adr_idx = get_alias_index(adr_type);
  1388   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1389   return adr_idx == alias_idx;
  1394 //---------------------------pop_warm_call-------------------------------------
  1395 WarmCallInfo* Compile::pop_warm_call() {
  1396   WarmCallInfo* wci = _warm_calls;
  1397   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1398   return wci;
  1401 //----------------------------Inline_Warm--------------------------------------
  1402 int Compile::Inline_Warm() {
  1403   // If there is room, try to inline some more warm call sites.
  1404   // %%% Do a graph index compaction pass when we think we're out of space?
  1405   if (!InlineWarmCalls)  return 0;
  1407   int calls_made_hot = 0;
  1408   int room_to_grow   = NodeCountInliningCutoff - unique();
  1409   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1410   int amount_grown   = 0;
  1411   WarmCallInfo* call;
  1412   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1413     int est_size = (int)call->size();
  1414     if (est_size > (room_to_grow - amount_grown)) {
  1415       // This one won't fit anyway.  Get rid of it.
  1416       call->make_cold();
  1417       continue;
  1419     call->make_hot();
  1420     calls_made_hot++;
  1421     amount_grown   += est_size;
  1422     amount_to_grow -= est_size;
  1425   if (calls_made_hot > 0)  set_major_progress();
  1426   return calls_made_hot;
  1430 //----------------------------Finish_Warm--------------------------------------
  1431 void Compile::Finish_Warm() {
  1432   if (!InlineWarmCalls)  return;
  1433   if (failing())  return;
  1434   if (warm_calls() == NULL)  return;
  1436   // Clean up loose ends, if we are out of space for inlining.
  1437   WarmCallInfo* call;
  1438   while ((call = pop_warm_call()) != NULL) {
  1439     call->make_cold();
  1444 //------------------------------Optimize---------------------------------------
  1445 // Given a graph, optimize it.
  1446 void Compile::Optimize() {
  1447   TracePhase t1("optimizer", &_t_optimizer, true);
  1449 #ifndef PRODUCT
  1450   if (env()->break_at_compile()) {
  1451     BREAKPOINT;
  1454 #endif
  1456   ResourceMark rm;
  1457   int          loop_opts_cnt;
  1459   NOT_PRODUCT( verify_graph_edges(); )
  1461   print_method("Start");
  1464   // Iterative Global Value Numbering, including ideal transforms
  1465   // Initialize IterGVN with types and values from parse-time GVN
  1466   PhaseIterGVN igvn(initial_gvn());
  1468     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1469     igvn.optimize();
  1472   print_method("Iter GVN 1", 2);
  1474   if (failing())  return;
  1476   // get rid of the connection graph since it's information is not
  1477   // updated by optimizations
  1478   _congraph = NULL;
  1481   // Loop transforms on the ideal graph.  Range Check Elimination,
  1482   // peeling, unrolling, etc.
  1484   // Set loop opts counter
  1485   loop_opts_cnt = num_loop_opts();
  1486   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  1488       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1489       PhaseIdealLoop ideal_loop( igvn, NULL, true );
  1490       loop_opts_cnt--;
  1491       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
  1492       if (failing())  return;
  1494     // Loop opts pass if partial peeling occurred in previous pass
  1495     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  1496       TracePhase t3("idealLoop", &_t_idealLoop, true);
  1497       PhaseIdealLoop ideal_loop( igvn, NULL, false );
  1498       loop_opts_cnt--;
  1499       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
  1500       if (failing())  return;
  1502     // Loop opts pass for loop-unrolling before CCP
  1503     if(major_progress() && (loop_opts_cnt > 0)) {
  1504       TracePhase t4("idealLoop", &_t_idealLoop, true);
  1505       PhaseIdealLoop ideal_loop( igvn, NULL, false );
  1506       loop_opts_cnt--;
  1507       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
  1510   if (failing())  return;
  1512   // Conditional Constant Propagation;
  1513   PhaseCCP ccp( &igvn );
  1514   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  1516     TracePhase t2("ccp", &_t_ccp, true);
  1517     ccp.do_transform();
  1519   print_method("PhaseCPP 1", 2);
  1521   assert( true, "Break here to ccp.dump_old2new_map()");
  1523   // Iterative Global Value Numbering, including ideal transforms
  1525     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  1526     igvn = ccp;
  1527     igvn.optimize();
  1530   print_method("Iter GVN 2", 2);
  1532   if (failing())  return;
  1534   // Loop transforms on the ideal graph.  Range Check Elimination,
  1535   // peeling, unrolling, etc.
  1536   if(loop_opts_cnt > 0) {
  1537     debug_only( int cnt = 0; );
  1538     while(major_progress() && (loop_opts_cnt > 0)) {
  1539       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1540       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  1541       PhaseIdealLoop ideal_loop( igvn, NULL, true );
  1542       loop_opts_cnt--;
  1543       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
  1544       if (failing())  return;
  1548     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  1549     PhaseMacroExpand  mex(igvn);
  1550     if (mex.expand_macro_nodes()) {
  1551       assert(failing(), "must bail out w/ explicit message");
  1552       return;
  1556  } // (End scope of igvn; run destructor if necessary for asserts.)
  1558   // A method with only infinite loops has no edges entering loops from root
  1560     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  1561     if (final_graph_reshaping()) {
  1562       assert(failing(), "must bail out w/ explicit message");
  1563       return;
  1567   print_method("Optimize finished", 2);
  1571 //------------------------------Code_Gen---------------------------------------
  1572 // Given a graph, generate code for it
  1573 void Compile::Code_Gen() {
  1574   if (failing())  return;
  1576   // Perform instruction selection.  You might think we could reclaim Matcher
  1577   // memory PDQ, but actually the Matcher is used in generating spill code.
  1578   // Internals of the Matcher (including some VectorSets) must remain live
  1579   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  1580   // set a bit in reclaimed memory.
  1582   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1583   // nodes.  Mapping is only valid at the root of each matched subtree.
  1584   NOT_PRODUCT( verify_graph_edges(); )
  1586   Node_List proj_list;
  1587   Matcher m(proj_list);
  1588   _matcher = &m;
  1590     TracePhase t2("matcher", &_t_matcher, true);
  1591     m.match();
  1593   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1594   // nodes.  Mapping is only valid at the root of each matched subtree.
  1595   NOT_PRODUCT( verify_graph_edges(); )
  1597   // If you have too many nodes, or if matching has failed, bail out
  1598   check_node_count(0, "out of nodes matching instructions");
  1599   if (failing())  return;
  1601   // Build a proper-looking CFG
  1602   PhaseCFG cfg(node_arena(), root(), m);
  1603   _cfg = &cfg;
  1605     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  1606     cfg.Dominators();
  1607     if (failing())  return;
  1609     NOT_PRODUCT( verify_graph_edges(); )
  1611     cfg.Estimate_Block_Frequency();
  1612     cfg.GlobalCodeMotion(m,unique(),proj_list);
  1614     print_method("Global code motion", 2);
  1616     if (failing())  return;
  1617     NOT_PRODUCT( verify_graph_edges(); )
  1619     debug_only( cfg.verify(); )
  1621   NOT_PRODUCT( verify_graph_edges(); )
  1623   PhaseChaitin regalloc(unique(),cfg,m);
  1624   _regalloc = &regalloc;
  1626     TracePhase t2("regalloc", &_t_registerAllocation, true);
  1627     // Perform any platform dependent preallocation actions.  This is used,
  1628     // for example, to avoid taking an implicit null pointer exception
  1629     // using the frame pointer on win95.
  1630     _regalloc->pd_preallocate_hook();
  1632     // Perform register allocation.  After Chaitin, use-def chains are
  1633     // no longer accurate (at spill code) and so must be ignored.
  1634     // Node->LRG->reg mappings are still accurate.
  1635     _regalloc->Register_Allocate();
  1637     // Bail out if the allocator builds too many nodes
  1638     if (failing())  return;
  1641   // Prior to register allocation we kept empty basic blocks in case the
  1642   // the allocator needed a place to spill.  After register allocation we
  1643   // are not adding any new instructions.  If any basic block is empty, we
  1644   // can now safely remove it.
  1646     NOT_PRODUCT( TracePhase t2("removeEmpty", &_t_removeEmptyBlocks, TimeCompiler); )
  1647     cfg.RemoveEmpty();
  1650   // Perform any platform dependent postallocation verifications.
  1651   debug_only( _regalloc->pd_postallocate_verify_hook(); )
  1653   // Apply peephole optimizations
  1654   if( OptoPeephole ) {
  1655     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  1656     PhasePeephole peep( _regalloc, cfg);
  1657     peep.do_transform();
  1660   // Convert Nodes to instruction bits in a buffer
  1662     // %%%% workspace merge brought two timers together for one job
  1663     TracePhase t2a("output", &_t_output, true);
  1664     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  1665     Output();
  1668   print_method("End");
  1670   // He's dead, Jim.
  1671   _cfg     = (PhaseCFG*)0xdeadbeef;
  1672   _regalloc = (PhaseChaitin*)0xdeadbeef;
  1676 //------------------------------dump_asm---------------------------------------
  1677 // Dump formatted assembly
  1678 #ifndef PRODUCT
  1679 void Compile::dump_asm(int *pcs, uint pc_limit) {
  1680   bool cut_short = false;
  1681   tty->print_cr("#");
  1682   tty->print("#  ");  _tf->dump();  tty->cr();
  1683   tty->print_cr("#");
  1685   // For all blocks
  1686   int pc = 0x0;                 // Program counter
  1687   char starts_bundle = ' ';
  1688   _regalloc->dump_frame();
  1690   Node *n = NULL;
  1691   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1692     if (VMThread::should_terminate()) { cut_short = true; break; }
  1693     Block *b = _cfg->_blocks[i];
  1694     if (b->is_connector() && !Verbose) continue;
  1695     n = b->_nodes[0];
  1696     if (pcs && n->_idx < pc_limit)
  1697       tty->print("%3.3x   ", pcs[n->_idx]);
  1698     else
  1699       tty->print("      ");
  1700     b->dump_head( &_cfg->_bbs );
  1701     if (b->is_connector()) {
  1702       tty->print_cr("        # Empty connector block");
  1703     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  1704       tty->print_cr("        # Block is sole successor of call");
  1707     // For all instructions
  1708     Node *delay = NULL;
  1709     for( uint j = 0; j<b->_nodes.size(); j++ ) {
  1710       if (VMThread::should_terminate()) { cut_short = true; break; }
  1711       n = b->_nodes[j];
  1712       if (valid_bundle_info(n)) {
  1713         Bundle *bundle = node_bundling(n);
  1714         if (bundle->used_in_unconditional_delay()) {
  1715           delay = n;
  1716           continue;
  1718         if (bundle->starts_bundle())
  1719           starts_bundle = '+';
  1722       if( !n->is_Region() &&    // Dont print in the Assembly
  1723           !n->is_Phi() &&       // a few noisely useless nodes
  1724           !n->is_Proj() &&
  1725           !n->is_MachTemp() &&
  1726           !n->is_Catch() &&     // Would be nice to print exception table targets
  1727           !n->is_MergeMem() &&  // Not very interesting
  1728           !n->is_top() &&       // Debug info table constants
  1729           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  1730           ) {
  1731         if (pcs && n->_idx < pc_limit)
  1732           tty->print("%3.3x", pcs[n->_idx]);
  1733         else
  1734           tty->print("   ");
  1735         tty->print(" %c ", starts_bundle);
  1736         starts_bundle = ' ';
  1737         tty->print("\t");
  1738         n->format(_regalloc, tty);
  1739         tty->cr();
  1742       // If we have an instruction with a delay slot, and have seen a delay,
  1743       // then back up and print it
  1744       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1745         assert(delay != NULL, "no unconditional delay instruction");
  1746         if (node_bundling(delay)->starts_bundle())
  1747           starts_bundle = '+';
  1748         if (pcs && n->_idx < pc_limit)
  1749           tty->print("%3.3x", pcs[n->_idx]);
  1750         else
  1751           tty->print("   ");
  1752         tty->print(" %c ", starts_bundle);
  1753         starts_bundle = ' ';
  1754         tty->print("\t");
  1755         delay->format(_regalloc, tty);
  1756         tty->print_cr("");
  1757         delay = NULL;
  1760       // Dump the exception table as well
  1761       if( n->is_Catch() && (Verbose || WizardMode) ) {
  1762         // Print the exception table for this offset
  1763         _handler_table.print_subtable_for(pc);
  1767     if (pcs && n->_idx < pc_limit)
  1768       tty->print_cr("%3.3x", pcs[n->_idx]);
  1769     else
  1770       tty->print_cr("");
  1772     assert(cut_short || delay == NULL, "no unconditional delay branch");
  1774   } // End of per-block dump
  1775   tty->print_cr("");
  1777   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  1779 #endif
  1781 //------------------------------Final_Reshape_Counts---------------------------
  1782 // This class defines counters to help identify when a method
  1783 // may/must be executed using hardware with only 24-bit precision.
  1784 struct Final_Reshape_Counts : public StackObj {
  1785   int  _call_count;             // count non-inlined 'common' calls
  1786   int  _float_count;            // count float ops requiring 24-bit precision
  1787   int  _double_count;           // count double ops requiring more precision
  1788   int  _java_call_count;        // count non-inlined 'java' calls
  1789   VectorSet _visited;           // Visitation flags
  1790   Node_List _tests;             // Set of IfNodes & PCTableNodes
  1792   Final_Reshape_Counts() :
  1793     _call_count(0), _float_count(0), _double_count(0), _java_call_count(0),
  1794     _visited( Thread::current()->resource_area() ) { }
  1796   void inc_call_count  () { _call_count  ++; }
  1797   void inc_float_count () { _float_count ++; }
  1798   void inc_double_count() { _double_count++; }
  1799   void inc_java_call_count() { _java_call_count++; }
  1801   int  get_call_count  () const { return _call_count  ; }
  1802   int  get_float_count () const { return _float_count ; }
  1803   int  get_double_count() const { return _double_count; }
  1804   int  get_java_call_count() const { return _java_call_count; }
  1805 };
  1807 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  1808   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  1809   // Make sure the offset goes inside the instance layout.
  1810   return (uint)tp->offset() < (uint)(oopDesc::header_size() + k->nonstatic_field_size())*wordSize;
  1811   // Note that OffsetBot and OffsetTop are very negative.
  1814 //------------------------------final_graph_reshaping_impl----------------------
  1815 // Implement items 1-5 from final_graph_reshaping below.
  1816 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &fpu ) {
  1818   uint nop = n->Opcode();
  1820   // Check for 2-input instruction with "last use" on right input.
  1821   // Swap to left input.  Implements item (2).
  1822   if( n->req() == 3 &&          // two-input instruction
  1823       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  1824       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  1825       n->in(2)->outcnt() == 1 &&// right use IS a last use
  1826       !n->in(2)->is_Con() ) {   // right use is not a constant
  1827     // Check for commutative opcode
  1828     switch( nop ) {
  1829     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  1830     case Op_MaxI:  case Op_MinI:
  1831     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  1832     case Op_AndL:  case Op_XorL:  case Op_OrL:
  1833     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  1834       // Move "last use" input to left by swapping inputs
  1835       n->swap_edges(1, 2);
  1836       break;
  1838     default:
  1839       break;
  1843   // Count FPU ops and common calls, implements item (3)
  1844   switch( nop ) {
  1845   // Count all float operations that may use FPU
  1846   case Op_AddF:
  1847   case Op_SubF:
  1848   case Op_MulF:
  1849   case Op_DivF:
  1850   case Op_NegF:
  1851   case Op_ModF:
  1852   case Op_ConvI2F:
  1853   case Op_ConF:
  1854   case Op_CmpF:
  1855   case Op_CmpF3:
  1856   // case Op_ConvL2F: // longs are split into 32-bit halves
  1857     fpu.inc_float_count();
  1858     break;
  1860   case Op_ConvF2D:
  1861   case Op_ConvD2F:
  1862     fpu.inc_float_count();
  1863     fpu.inc_double_count();
  1864     break;
  1866   // Count all double operations that may use FPU
  1867   case Op_AddD:
  1868   case Op_SubD:
  1869   case Op_MulD:
  1870   case Op_DivD:
  1871   case Op_NegD:
  1872   case Op_ModD:
  1873   case Op_ConvI2D:
  1874   case Op_ConvD2I:
  1875   // case Op_ConvL2D: // handled by leaf call
  1876   // case Op_ConvD2L: // handled by leaf call
  1877   case Op_ConD:
  1878   case Op_CmpD:
  1879   case Op_CmpD3:
  1880     fpu.inc_double_count();
  1881     break;
  1882   case Op_Opaque1:              // Remove Opaque Nodes before matching
  1883   case Op_Opaque2:              // Remove Opaque Nodes before matching
  1884     n->replace_by(n->in(1));
  1885     break;
  1886   case Op_CallStaticJava:
  1887   case Op_CallJava:
  1888   case Op_CallDynamicJava:
  1889     fpu.inc_java_call_count(); // Count java call site;
  1890   case Op_CallRuntime:
  1891   case Op_CallLeaf:
  1892   case Op_CallLeafNoFP: {
  1893     assert( n->is_Call(), "" );
  1894     CallNode *call = n->as_Call();
  1895     // Count call sites where the FP mode bit would have to be flipped.
  1896     // Do not count uncommon runtime calls:
  1897     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  1898     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  1899     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  1900       fpu.inc_call_count();   // Count the call site
  1901     } else {                  // See if uncommon argument is shared
  1902       Node *n = call->in(TypeFunc::Parms);
  1903       int nop = n->Opcode();
  1904       // Clone shared simple arguments to uncommon calls, item (1).
  1905       if( n->outcnt() > 1 &&
  1906           !n->is_Proj() &&
  1907           nop != Op_CreateEx &&
  1908           nop != Op_CheckCastPP &&
  1909           !n->is_Mem() ) {
  1910         Node *x = n->clone();
  1911         call->set_req( TypeFunc::Parms, x );
  1914     break;
  1917   case Op_StoreD:
  1918   case Op_LoadD:
  1919   case Op_LoadD_unaligned:
  1920     fpu.inc_double_count();
  1921     goto handle_mem;
  1922   case Op_StoreF:
  1923   case Op_LoadF:
  1924     fpu.inc_float_count();
  1925     goto handle_mem;
  1927   case Op_StoreB:
  1928   case Op_StoreC:
  1929   case Op_StoreCM:
  1930   case Op_StorePConditional:
  1931   case Op_StoreI:
  1932   case Op_StoreL:
  1933   case Op_StoreLConditional:
  1934   case Op_CompareAndSwapI:
  1935   case Op_CompareAndSwapL:
  1936   case Op_CompareAndSwapP:
  1937   case Op_StoreP:
  1938   case Op_LoadB:
  1939   case Op_LoadC:
  1940   case Op_LoadI:
  1941   case Op_LoadKlass:
  1942   case Op_LoadL:
  1943   case Op_LoadL_unaligned:
  1944   case Op_LoadPLocked:
  1945   case Op_LoadLLocked:
  1946   case Op_LoadP:
  1947   case Op_LoadRange:
  1948   case Op_LoadS: {
  1949   handle_mem:
  1950 #ifdef ASSERT
  1951     if( VerifyOptoOopOffsets ) {
  1952       assert( n->is_Mem(), "" );
  1953       MemNode *mem  = (MemNode*)n;
  1954       // Check to see if address types have grounded out somehow.
  1955       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  1956       assert( !tp || oop_offset_is_sane(tp), "" );
  1958 #endif
  1959     break;
  1961   case Op_If:
  1962   case Op_CountedLoopEnd:
  1963     fpu._tests.push(n);         // Collect CFG split points
  1964     break;
  1966   case Op_AddP: {               // Assert sane base pointers
  1967     const Node *addp = n->in(AddPNode::Address);
  1968     assert( !addp->is_AddP() ||
  1969             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  1970             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  1971             "Base pointers must match" );
  1972     break;
  1975   case Op_ModI:
  1976     if (UseDivMod) {
  1977       // Check if a%b and a/b both exist
  1978       Node* d = n->find_similar(Op_DivI);
  1979       if (d) {
  1980         // Replace them with a fused divmod if supported
  1981         Compile* C = Compile::current();
  1982         if (Matcher::has_match_rule(Op_DivModI)) {
  1983           DivModINode* divmod = DivModINode::make(C, n);
  1984           d->replace_by(divmod->div_proj());
  1985           n->replace_by(divmod->mod_proj());
  1986         } else {
  1987           // replace a%b with a-((a/b)*b)
  1988           Node* mult = new (C, 3) MulINode(d, d->in(2));
  1989           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
  1990           n->replace_by( sub );
  1994     break;
  1996   case Op_ModL:
  1997     if (UseDivMod) {
  1998       // Check if a%b and a/b both exist
  1999       Node* d = n->find_similar(Op_DivL);
  2000       if (d) {
  2001         // Replace them with a fused divmod if supported
  2002         Compile* C = Compile::current();
  2003         if (Matcher::has_match_rule(Op_DivModL)) {
  2004           DivModLNode* divmod = DivModLNode::make(C, n);
  2005           d->replace_by(divmod->div_proj());
  2006           n->replace_by(divmod->mod_proj());
  2007         } else {
  2008           // replace a%b with a-((a/b)*b)
  2009           Node* mult = new (C, 3) MulLNode(d, d->in(2));
  2010           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
  2011           n->replace_by( sub );
  2015     break;
  2017   case Op_Load16B:
  2018   case Op_Load8B:
  2019   case Op_Load4B:
  2020   case Op_Load8S:
  2021   case Op_Load4S:
  2022   case Op_Load2S:
  2023   case Op_Load8C:
  2024   case Op_Load4C:
  2025   case Op_Load2C:
  2026   case Op_Load4I:
  2027   case Op_Load2I:
  2028   case Op_Load2L:
  2029   case Op_Load4F:
  2030   case Op_Load2F:
  2031   case Op_Load2D:
  2032   case Op_Store16B:
  2033   case Op_Store8B:
  2034   case Op_Store4B:
  2035   case Op_Store8C:
  2036   case Op_Store4C:
  2037   case Op_Store2C:
  2038   case Op_Store4I:
  2039   case Op_Store2I:
  2040   case Op_Store2L:
  2041   case Op_Store4F:
  2042   case Op_Store2F:
  2043   case Op_Store2D:
  2044     break;
  2046   case Op_PackB:
  2047   case Op_PackS:
  2048   case Op_PackC:
  2049   case Op_PackI:
  2050   case Op_PackF:
  2051   case Op_PackL:
  2052   case Op_PackD:
  2053     if (n->req()-1 > 2) {
  2054       // Replace many operand PackNodes with a binary tree for matching
  2055       PackNode* p = (PackNode*) n;
  2056       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
  2057       n->replace_by(btp);
  2059     break;
  2060   default:
  2061     assert( !n->is_Call(), "" );
  2062     assert( !n->is_Mem(), "" );
  2063     if( n->is_If() || n->is_PCTable() )
  2064       fpu._tests.push(n);       // Collect CFG split points
  2065     break;
  2069 //------------------------------final_graph_reshaping_walk---------------------
  2070 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  2071 // requires that the walk visits a node's inputs before visiting the node.
  2072 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &fpu ) {
  2073   fpu._visited.set(root->_idx); // first, mark node as visited
  2074   uint cnt = root->req();
  2075   Node *n = root;
  2076   uint  i = 0;
  2077   while (true) {
  2078     if (i < cnt) {
  2079       // Place all non-visited non-null inputs onto stack
  2080       Node* m = n->in(i);
  2081       ++i;
  2082       if (m != NULL && !fpu._visited.test_set(m->_idx)) {
  2083         cnt = m->req();
  2084         nstack.push(n, i); // put on stack parent and next input's index
  2085         n = m;
  2086         i = 0;
  2088     } else {
  2089       // Now do post-visit work
  2090       final_graph_reshaping_impl( n, fpu );
  2091       if (nstack.is_empty())
  2092         break;             // finished
  2093       n = nstack.node();   // Get node from stack
  2094       cnt = n->req();
  2095       i = nstack.index();
  2096       nstack.pop();        // Shift to the next node on stack
  2101 //------------------------------final_graph_reshaping--------------------------
  2102 // Final Graph Reshaping.
  2103 //
  2104 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  2105 //     and not commoned up and forced early.  Must come after regular
  2106 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  2107 //     inputs to Loop Phis; these will be split by the allocator anyways.
  2108 //     Remove Opaque nodes.
  2109 // (2) Move last-uses by commutative operations to the left input to encourage
  2110 //     Intel update-in-place two-address operations and better register usage
  2111 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  2112 //     calls canonicalizing them back.
  2113 // (3) Count the number of double-precision FP ops, single-precision FP ops
  2114 //     and call sites.  On Intel, we can get correct rounding either by
  2115 //     forcing singles to memory (requires extra stores and loads after each
  2116 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  2117 //     clearing the mode bit around call sites).  The mode bit is only used
  2118 //     if the relative frequency of single FP ops to calls is low enough.
  2119 //     This is a key transform for SPEC mpeg_audio.
  2120 // (4) Detect infinite loops; blobs of code reachable from above but not
  2121 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  2122 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  2123 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  2124 //     Detection is by looking for IfNodes where only 1 projection is
  2125 //     reachable from below or CatchNodes missing some targets.
  2126 // (5) Assert for insane oop offsets in debug mode.
  2128 bool Compile::final_graph_reshaping() {
  2129   // an infinite loop may have been eliminated by the optimizer,
  2130   // in which case the graph will be empty.
  2131   if (root()->req() == 1) {
  2132     record_method_not_compilable("trivial infinite loop");
  2133     return true;
  2136   Final_Reshape_Counts fpu;
  2138   // Visit everybody reachable!
  2139   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2140   Node_Stack nstack(unique() >> 1);
  2141   final_graph_reshaping_walk(nstack, root(), fpu);
  2143   // Check for unreachable (from below) code (i.e., infinite loops).
  2144   for( uint i = 0; i < fpu._tests.size(); i++ ) {
  2145     Node *n = fpu._tests[i];
  2146     assert( n->is_PCTable() || n->is_If(), "either PCTables or IfNodes" );
  2147     // Get number of CFG targets; 2 for IfNodes or _size for PCTables.
  2148     // Note that PCTables include exception targets after calls.
  2149     uint expected_kids = n->is_PCTable() ? n->as_PCTable()->_size : 2;
  2150     if (n->outcnt() != expected_kids) {
  2151       // Check for a few special cases.  Rethrow Nodes never take the
  2152       // 'fall-thru' path, so expected kids is 1 less.
  2153       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  2154         if (n->in(0)->in(0)->is_Call()) {
  2155           CallNode *call = n->in(0)->in(0)->as_Call();
  2156           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  2157             expected_kids--;      // Rethrow always has 1 less kid
  2158           } else if (call->req() > TypeFunc::Parms &&
  2159                      call->is_CallDynamicJava()) {
  2160             // Check for null receiver. In such case, the optimizer has
  2161             // detected that the virtual call will always result in a null
  2162             // pointer exception. The fall-through projection of this CatchNode
  2163             // will not be populated.
  2164             Node *arg0 = call->in(TypeFunc::Parms);
  2165             if (arg0->is_Type() &&
  2166                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  2167               expected_kids--;
  2169           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  2170                      call->req() > TypeFunc::Parms+1 &&
  2171                      call->is_CallStaticJava()) {
  2172             // Check for negative array length. In such case, the optimizer has
  2173             // detected that the allocation attempt will always result in an
  2174             // exception. There is no fall-through projection of this CatchNode .
  2175             Node *arg1 = call->in(TypeFunc::Parms+1);
  2176             if (arg1->is_Type() &&
  2177                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  2178               expected_kids--;
  2183       // Recheck with a better notion of 'expected_kids'
  2184       if (n->outcnt() != expected_kids) {
  2185         record_method_not_compilable("malformed control flow");
  2186         return true;            // Not all targets reachable!
  2189     // Check that I actually visited all kids.  Unreached kids
  2190     // must be infinite loops.
  2191     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  2192       if (!fpu._visited.test(n->fast_out(j)->_idx)) {
  2193         record_method_not_compilable("infinite loop");
  2194         return true;            // Found unvisited kid; must be unreach
  2198   // If original bytecodes contained a mixture of floats and doubles
  2199   // check if the optimizer has made it homogenous, item (3).
  2200   if( Use24BitFPMode && Use24BitFP &&
  2201       fpu.get_float_count() > 32 &&
  2202       fpu.get_double_count() == 0 &&
  2203       (10 * fpu.get_call_count() < fpu.get_float_count()) ) {
  2204     set_24_bit_selection_and_mode( false,  true );
  2207   set_has_java_calls(fpu.get_java_call_count() > 0);
  2209   // No infinite loops, no reason to bail out.
  2210   return false;
  2213 //-----------------------------too_many_traps----------------------------------
  2214 // Report if there are too many traps at the current method and bci.
  2215 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  2216 bool Compile::too_many_traps(ciMethod* method,
  2217                              int bci,
  2218                              Deoptimization::DeoptReason reason) {
  2219   ciMethodData* md = method->method_data();
  2220   if (md->is_empty()) {
  2221     // Assume the trap has not occurred, or that it occurred only
  2222     // because of a transient condition during start-up in the interpreter.
  2223     return false;
  2225   if (md->has_trap_at(bci, reason) != 0) {
  2226     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  2227     // Also, if there are multiple reasons, or if there is no per-BCI record,
  2228     // assume the worst.
  2229     if (log())
  2230       log()->elem("observe trap='%s' count='%d'",
  2231                   Deoptimization::trap_reason_name(reason),
  2232                   md->trap_count(reason));
  2233     return true;
  2234   } else {
  2235     // Ignore method/bci and see if there have been too many globally.
  2236     return too_many_traps(reason, md);
  2240 // Less-accurate variant which does not require a method and bci.
  2241 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  2242                              ciMethodData* logmd) {
  2243  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  2244     // Too many traps globally.
  2245     // Note that we use cumulative trap_count, not just md->trap_count.
  2246     if (log()) {
  2247       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  2248       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  2249                   Deoptimization::trap_reason_name(reason),
  2250                   mcount, trap_count(reason));
  2252     return true;
  2253   } else {
  2254     // The coast is clear.
  2255     return false;
  2259 //--------------------------too_many_recompiles--------------------------------
  2260 // Report if there are too many recompiles at the current method and bci.
  2261 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  2262 // Is not eager to return true, since this will cause the compiler to use
  2263 // Action_none for a trap point, to avoid too many recompilations.
  2264 bool Compile::too_many_recompiles(ciMethod* method,
  2265                                   int bci,
  2266                                   Deoptimization::DeoptReason reason) {
  2267   ciMethodData* md = method->method_data();
  2268   if (md->is_empty()) {
  2269     // Assume the trap has not occurred, or that it occurred only
  2270     // because of a transient condition during start-up in the interpreter.
  2271     return false;
  2273   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  2274   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  2275   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  2276   Deoptimization::DeoptReason per_bc_reason
  2277     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  2278   if ((per_bc_reason == Deoptimization::Reason_none
  2279        || md->has_trap_at(bci, reason) != 0)
  2280       // The trap frequency measure we care about is the recompile count:
  2281       && md->trap_recompiled_at(bci)
  2282       && md->overflow_recompile_count() >= bc_cutoff) {
  2283     // Do not emit a trap here if it has already caused recompilations.
  2284     // Also, if there are multiple reasons, or if there is no per-BCI record,
  2285     // assume the worst.
  2286     if (log())
  2287       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  2288                   Deoptimization::trap_reason_name(reason),
  2289                   md->trap_count(reason),
  2290                   md->overflow_recompile_count());
  2291     return true;
  2292   } else if (trap_count(reason) != 0
  2293              && decompile_count() >= m_cutoff) {
  2294     // Too many recompiles globally, and we have seen this sort of trap.
  2295     // Use cumulative decompile_count, not just md->decompile_count.
  2296     if (log())
  2297       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  2298                   Deoptimization::trap_reason_name(reason),
  2299                   md->trap_count(reason), trap_count(reason),
  2300                   md->decompile_count(), decompile_count());
  2301     return true;
  2302   } else {
  2303     // The coast is clear.
  2304     return false;
  2309 #ifndef PRODUCT
  2310 //------------------------------verify_graph_edges---------------------------
  2311 // Walk the Graph and verify that there is a one-to-one correspondence
  2312 // between Use-Def edges and Def-Use edges in the graph.
  2313 void Compile::verify_graph_edges(bool no_dead_code) {
  2314   if (VerifyGraphEdges) {
  2315     ResourceArea *area = Thread::current()->resource_area();
  2316     Unique_Node_List visited(area);
  2317     // Call recursive graph walk to check edges
  2318     _root->verify_edges(visited);
  2319     if (no_dead_code) {
  2320       // Now make sure that no visited node is used by an unvisited node.
  2321       bool dead_nodes = 0;
  2322       Unique_Node_List checked(area);
  2323       while (visited.size() > 0) {
  2324         Node* n = visited.pop();
  2325         checked.push(n);
  2326         for (uint i = 0; i < n->outcnt(); i++) {
  2327           Node* use = n->raw_out(i);
  2328           if (checked.member(use))  continue;  // already checked
  2329           if (visited.member(use))  continue;  // already in the graph
  2330           if (use->is_Con())        continue;  // a dead ConNode is OK
  2331           // At this point, we have found a dead node which is DU-reachable.
  2332           if (dead_nodes++ == 0)
  2333             tty->print_cr("*** Dead nodes reachable via DU edges:");
  2334           use->dump(2);
  2335           tty->print_cr("---");
  2336           checked.push(use);  // No repeats; pretend it is now checked.
  2339       assert(dead_nodes == 0, "using nodes must be reachable from root");
  2343 #endif
  2345 // The Compile object keeps track of failure reasons separately from the ciEnv.
  2346 // This is required because there is not quite a 1-1 relation between the
  2347 // ciEnv and its compilation task and the Compile object.  Note that one
  2348 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  2349 // to backtrack and retry without subsuming loads.  Other than this backtracking
  2350 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  2351 // by the logic in C2Compiler.
  2352 void Compile::record_failure(const char* reason) {
  2353   if (log() != NULL) {
  2354     log()->elem("failure reason='%s' phase='compile'", reason);
  2356   if (_failure_reason == NULL) {
  2357     // Record the first failure reason.
  2358     _failure_reason = reason;
  2360   _root = NULL;  // flush the graph, too
  2363 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  2364   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
  2366   if (dolog) {
  2367     C = Compile::current();
  2368     _log = C->log();
  2369   } else {
  2370     C = NULL;
  2371     _log = NULL;
  2373   if (_log != NULL) {
  2374     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
  2375     _log->stamp();
  2376     _log->end_head();
  2380 Compile::TracePhase::~TracePhase() {
  2381   if (_log != NULL) {
  2382     _log->done("phase nodes='%d'", C->unique());

mercurial